WO2022193556A1 - 电机缺相检测方法、设备及存储介质 - Google Patents

电机缺相检测方法、设备及存储介质 Download PDF

Info

Publication number
WO2022193556A1
WO2022193556A1 PCT/CN2021/115066 CN2021115066W WO2022193556A1 WO 2022193556 A1 WO2022193556 A1 WO 2022193556A1 CN 2021115066 W CN2021115066 W CN 2021115066W WO 2022193556 A1 WO2022193556 A1 WO 2022193556A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
torque
phase
preset
detection
Prior art date
Application number
PCT/CN2021/115066
Other languages
English (en)
French (fr)
Inventor
张钊
王亚平
王志成
徐必业
吴丰礼
Original Assignee
广东拓斯达科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东拓斯达科技股份有限公司 filed Critical 广东拓斯达科技股份有限公司
Publication of WO2022193556A1 publication Critical patent/WO2022193556A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/16Measuring asymmetry of polyphase networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the embodiments of the present application relate to the technical field of motor control, for example, to a method, device, and storage medium for detecting phase loss of a motor.
  • Motors have been widely used in the field of industrial control, and the safety requirements for the use of motors are also increasing. During the use of the motor, it is inevitable that the power cable joints will loosen or fall off, which seriously affects the safety of equipment operation. Therefore, it is very necessary to detect the lack of phase of the motor.
  • the most common method for detecting the phase loss of the motor is to detect the phase loss state through the feedback of the motor phase current during the operation of the motor. Whether the three phases of the motor are balanced, if the ratio of the maximum phase current amplitude to the minimum amplitude value exceeds the preset judgment threshold, it will be judged as a phase loss, or by integrating the motor phase current within a period of time, according to the integral value Whether it is continuously less than the preset zero current threshold value is used for phase loss judgment.
  • the detection time needs to be more accurately estimated according to the motor speed.
  • the accuracy and reliability are low, and faults and false alarms are prone to occur.
  • Embodiments of the present application provide a method, device and storage medium for detecting phase loss of a motor, so as to achieve accurate detection of phase loss, high reliability of phase loss detection, and at the same time, improve the overall security of the system.
  • An embodiment of the present application provides a motor phase loss detection method, which is applied to a motor driver, where the motor driver is connected to a motor, and the motor phase loss detection method includes:
  • the embodiment of the present application provides an electronic device, including:
  • memory arranged to store at least one program
  • the at least one processor When the at least one program is executed by the at least one processor, the at least one processor implements the above-mentioned motor phase loss detection method.
  • An embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the foregoing method for detecting a phase loss of a motor is implemented.
  • FIG. 1 is a flowchart of a method for detecting phase loss of a motor provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another method for detecting phase loss of a motor provided by an embodiment of the present application
  • FIG. 3 is a flowchart of another method for detecting phase loss of a motor provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for detecting phase loss of a motor provided by an embodiment of the present application. This embodiment can be applied to a situation in which phase loss of a motor is detected without being affected by an operating condition of the motor.
  • the motor phase loss detection method includes the following steps:
  • This embodiment is implemented by a motor driver.
  • a motor driver can be connected to the motor.
  • the motor driver detects that the absolute value of the given torque of the motor is greater than the preset torque given threshold, and the accumulated detection timing detected by the motor driver exceeds the preset torque given detection time, the The torque given judgment condition is established, and it is judged whether the motor is in a zero torque feedback state under the torque given judgment condition.
  • the motor operation process may include a phase loss during the start-up process of the motor or during the normal operation of the motor.
  • the improved motor phase loss detection method is not affected by the motor operating conditions, and can achieve accurate motor phase loss detection.
  • the motor speed given command and the motor speed feedback form a closed loop.
  • the PI proportional integral
  • the preset torque given threshold can be selected and set by those skilled in the art according to actual motor conditions.
  • the torque given flag can be represented by setting the torque given flag corresponding to the torque given state.
  • the torque given flag is set to the first
  • the torque given flag is set to the second flag.
  • the cumulative detection will continue. The corresponding time period when the absolute value of torque given is greater than the preset torque given threshold.
  • the first flag and the second flag can be adjusted to two different states by two different binary numbers such as 1 and 0.
  • the first flag corresponding to the torque given flag bit TorqRef_F may be that TorqRef_F is equal to 1.
  • the detection timing is accumulated according to the sampling cycle time; when it is detected that the absolute value of the given torque of the motor is less than or equal to the preset torque Set the torque given threshold, then the detection timing will be cleared; if the accumulated detection timing exceeds the preset torque given detection time, the torque given flag bit is set to the first flag, that is, the torque given flag bit TorqRef_F is equal to 1; If the accumulated detection timing is less than or equal to the preset torque given detection duration, set the torque given flag to the second flag, that is, the torque given flag TorqRef_F is equal to 0.
  • the detection timing refers to the continuous time that different state quantities satisfy the judgment condition, that is, how long the judgment condition lasts. Different state quantities such as torque given, torque feedback, phase current, etc.
  • the detection timing accumulation refers to the accumulation of continuous time when different state quantities satisfy the judgment condition.
  • the detected detection timings are accumulated, indicating that they are always in the detection state.
  • determining whether the motor is in a zero torque feedback state includes: in response to detecting that the absolute value of the torque feedback of the motor is less than a preset zero torque
  • the feedback threshold is used to judge whether the accumulated detection timing exceeds the preset zero-torque feedback detection duration; according to the judgment result of judging whether the accumulated detection timing exceeds the preset zero-torque feedback detection duration, it is judged whether the motor is at zero Torque feedback status.
  • judging whether the motor is in a zero-torque feedback state according to a judgment result of judging whether the detected accumulated detection timing exceeds the preset zero-torque feedback detection duration includes: responding to detecting that the motor is in a zero-torque feedback state. If the absolute value of torque feedback is less than the preset zero-torque feedback threshold, and the accumulated detection timing detected by the motor driver exceeds the preset zero-torque feedback detection duration, it is determined that the motor is in a zero-torque feedback state and all power lines are not connected. Totally missing.
  • UVW power lines for the motor, and the three motor power lines are connected to the three-phase UVW of the motor driver.
  • the zero torque feedback flag is set to It is set as the first flag, that is, the zero torque feedback flag bit Torq0_F is equal to 1, and at this time, it is determined that the current operating state of the motor is that the motor is in a state of full phase loss.
  • the zero torque The feedback flag is set to the second flag, that is, the zero torque feedback flag Torq0_F is equal to 0, and the torque following state of the motor can be determined again at this time.
  • the zero-torque feedback state of the motor can be represented by setting the zero-torque feedback flag corresponding to the zero-torque feedback state.
  • the zero-torque feedback flag when it is detected that the absolute value of the motor's torque feedback is less than the preset zero revolution Torque feedback threshold, if the accumulated detection timing exceeds the preset zero-torque feedback detection duration, the zero-torque feedback flag is set as the first flag, and the accumulated detection timing is less than or equal to the preset zero-torque feedback detection. duration, set the zero torque feedback flag bit as the second flag.
  • the first flag and the second flag can be adjusted to two different states by two different binary numbers (eg, 0 and 1).
  • the first flag corresponding to the zero torque feedback flag bit can be Torq0_F equal to 1.
  • the detection timing is accumulated according to the sampling cycle time, and when it is detected that the absolute value of the torque feedback of the motor is greater than or equal to the preset zero torque feedback threshold , then the timing is cleared; if the accumulated detection timing exceeds the preset zero-torque feedback detection duration, the zero-torque feedback flag bit is set to the first flag, that is, the zero-torque feedback flag bit Torq0_F is equal to 1, if the accumulated detection timing is less than or equal to the preset zero-torque feedback detection duration, the zero-torque feedback flag bit is set as the second flag, that is, the zero-torque feedback flag bit Torq0_F is equal to 0.
  • sampling period time can be selected and set by those skilled in the art, and this embodiment does not impose any limitation on the time length of the sampling period time.
  • the method further includes: in response to the determination that the motor is in the zero-torque feedback state As a result, it is determined that the power line of the motor is not connected, and the power line disconnection information is output.
  • judging whether the motor is in a torque following state according to the result of the full phase loss judgment includes: in response to detecting that the absolute value of the torque following error of the motor is greater than a preset torque following error threshold, Judging whether the detected detection timing accumulation exceeds the preset torque following detection duration; according to the judgment result of judging whether the detected detection timing accumulation exceeds the preset torque following detection duration, it is judged whether the motor is in a torque following state.
  • Judging whether the motor is in a torque following state according to the judgment result of judging whether the detected accumulated detection timing exceeds the preset torque following detection duration includes: in response to judging that the detected accumulated detection timing is less than or equal to the preset torque According to the judgment result of the following detection duration, it is determined that the motor is in a torque following state and the motor has no phase loss. In response to the judgment result that the detected detection timing accumulation exceeds the preset torque following detection duration, determine that the motor is in a torque non-following state, and determine the U-phase current absolute value, V The absolute value of the phase current and the absolute value of the W-phase current are to obtain the zero-current state of the U-phase, V-phase and W-phase currents in the current operating state of the motor.
  • the torque following flag corresponding to the torque following state.
  • the torque following flag is set as the first flag;
  • the torque following The identification bit is set to the second identification.
  • the first flag and the second flag may be adjusted to two different states by two different binary numbers (eg, 1 and 0).
  • the first flag corresponding to the torque following flag bit may be TorqErr_F equal to 1.
  • the detection timing is accumulated according to the sampling period time, and when it is detected that the absolute value of the torque following error of the motor is less than or equal to the preset torque following error threshold Set the torque following error threshold, then the timer is cleared; if the accumulated detection time exceeds the preset torque following detection time, the torque following flag bit is set to the first flag, that is, the torque following flag bit TorqErr_F is equal to 1, if the detection If the time accumulation is less than or equal to the preset torque following detection duration, the torque following flag bit is set as the second flag, that is, the torque following flag bit TorqErr_F is equal to 0.
  • the processor of the motor driver samples the U/V-phase current of the motor in real time, that is, the U-phase current Iu and the V-phase current Iv, and according to the Kirchhoff current
  • the currents Iu and Iw can be obtained by transforming the coordinates of CLARK and PARK to obtain the D and Q axis currents, and the motor feedback torque TorqFdbk can be calculated.
  • the detected detection timing is accumulated to exceed the preset zero-phase current detection duration, it is determined that the U-phase phase of the motor is missing.
  • the U/V/W phase current of the motor may be represented by setting the phase zero current flag corresponding to the U/V/W phase current state of the motor.
  • the U-phase current flag bit is set as the first flag, That is, it is determined that the U-phase phase of the motor is missing; when it is detected that the absolute value of the U-phase current is greater than or equal to the preset zero-phase current threshold, and/or, the accumulated detection timing is less than or equal to the preset zero-phase current detection duration, Then the U-phase current identification bit is set as the second identification; when it is detected that the absolute value of the V-phase current is less than the preset zero-phase current threshold, and the detected detection timing is accumulated to exceed the preset zero-phase current detection duration, then the V-phase current is identified.
  • the bit is set as the first sign, that is, it is determined that the V-phase phase of the motor is missing; when it is detected that the absolute value of the V-phase current is greater than or equal to the preset zero-phase current threshold, and/or, the detected detection timing accumulation is less than or equal to the preset value.
  • the W-phase current flag bit is set as the second flag; when the absolute value of the detected W-phase current is less than the preset zero-phase current threshold, the detected detection timing is accumulated to exceed the preset zero-phase current detection time length , then the W-phase current flag bit is set as the first flag, that is, the W-phase phase loss of the motor is determined; when it is detected that the absolute value of the W-phase current is greater than or equal to the preset zero-phase current threshold, and/or the detected detection timing If the accumulation is less than or equal to the preset zero-phase current detection duration, the W-phase current flag bit is set as the second flag.
  • the first identification and the second identification can be adjusted in two different states through two different binary numbers (for example, 0 and 1), for example, the U-phase current identification bit, the V-phase current identification bit and the W-phase current identification bit
  • the corresponding first identifiers may be Iu_F, Iv_F and Iw_F respectively, and are set to 1 correspondingly.
  • the corresponding detection timings are accumulated according to the sampling cycle time.
  • the absolute value and the absolute value of the W-phase current are greater than the preset zero-phase current threshold, and the zero-phase current is cleared.
  • the W-phase current identification bits are respectively set to the first identification, that is, Iu_F, Iv_F, and Iw_F are respectively set to 1.
  • the U-phase current identification bit, the V-phase current The flag bit and the W-phase current flag bit are respectively set as the second flag, that is, Iu_F, Iv_F, and Iw_F are respectively set to 0.
  • the torque given judgment condition is established, and under the torque given judgment condition, it is judged whether the motor is in the zero torque feedback state; based on the judgment result of whether the motor is in the zero torque feedback state, the The motor performs a full phase loss judgment, and judges whether the motor is in a torque following state according to the result of the full phase loss judgment; Output phase loss detection information of the motor.
  • the embodiment of the present application solves the working condition that the accuracy and reliability of the motor phase loss detection method is low and prone to fault false alarms, so as to achieve accurate phase loss detection, high reliability of phase loss detection, and at the same time, improve the overall security of the system.
  • FIG. 2 is a flowchart of another method for detecting phase loss of a motor provided by an embodiment of the present application. This embodiment is optimized on the basis of the foregoing embodiment.
  • the method of this embodiment includes:
  • the preset torque given threshold is TorqRef_TH
  • the preset torque given detection time is TorqRef_Tmax
  • the detection time of the detection time when the absolute value of the motor torque given is greater than the preset torque given threshold is TorqRef_T
  • the torque given The identification bit is TorqRef_F
  • the detection timing TorqRef_T is accumulated according to the sampling cycle time; if the absolute value of the torque given TorqRef is less than or equal to the preset torque Torq reference threshold TorqRef_TH, the timing is cleared; if the detection timing TorqRef_T is greater than the preset torque reference detection duration TorqRef_Tmax, the torque reference flag TorqRef_F is set to 1; if the detection timing TorqRef_T is less than or equal to the preset torque reference When the detection time is TorqRef_Tmax, the torque reference bit TorqRef_F is set to 0.
  • the preset zero-torque feedback threshold is Torq0_TH
  • the preset zero-torque feedback detection duration is Torq0_Tmax
  • the detection timing when the absolute value of the motor’s torque feedback is less than the preset zero-torque feedback threshold is Torq0_T
  • the zero-torque feedback flag is Torq0_F.
  • the detection timing Torq0_T is accumulated according to the sampling cycle time. If the absolute value of the torque feedback TorqFdbk is greater than or equal to the zero torque feedback threshold Torq0_TH, then The timing is cleared; if the detection timing Torq0_T is greater than the preset zero-torque feedback detection duration Torq0_Tmax, the zero-torque feedback flag Torq0_F is set to 1; if the detection timing Torq0_T is less than or equal to the preset zero-torque feedback detection duration Torq0_Tmax, zero rotation Torque feedback flag bit Torq0_F is set to 0.
  • the motor is judged to be all phase-open. If the motor is in the zero-torque feedback state, it is determined that the motor power line is not connected and the power line is output. If the information is not connected, if the motor is in a non-zero torque feedback state, it will be judged whether the motor is in a torque following state.
  • the motor torque feedback when the motor torque feedback is in a non-zero torque feedback state, if it is detected that the absolute value of the torque following error of the motor is greater than the preset torque following error threshold, it is determined that the motor driver detects the absolute value of the torque following error. Detecting whether the accumulated timing exceeds the preset torque following detection duration; according to the judgment result of whether the detected accumulated detection timing exceeds the preset torque following detection duration, it is judged whether the motor is in a torque following state.
  • the motor is determined to be It is a non-zero torque feedback state.
  • Judging whether the motor is in a torque following state according to the judgment result of whether the detected accumulated detection timing exceeds the preset torque following detection duration includes: if the detected accumulated accumulated detection timing is less than or equal to the preset torque following detection duration, it is determined that the motor is in a phase-free state. If it is judged that the detected detection time accumulation exceeds the preset torque following detection duration, the motor is in the torque non-following state, and the absolute value of the U-phase current and the absolute value of the V-phase current in the current operating state of the motor is determined.
  • the phase loss state corresponding to the absolute value of the W-phase current that is, to obtain the zero-current state of the U-phase, V-phase and W-phase currents in the current operating state of the motor, to compare the absolute value of the U-phase current, the The absolute value of the V-phase current and the phase loss determination behavior corresponding to the absolute value of the W-phase current.
  • the preset torque following error threshold is 0.2xTorqRef_TH
  • the preset torque following detection duration is TorqErr_Tmax
  • the detection timing when the absolute value of the torque following error of the motor is greater than the preset torque following error threshold is defined as TorqErr_T
  • the torque following flag Bit is TorqErr_F.
  • judging whether the motor is out of phase includes:
  • the preset zero-phase current threshold is Is_TH
  • the preset zero-phase current detection duration is Is_Tmax
  • the detection timings when the absolute value of the motor U/V/W phase current is less than the preset zero-phase current threshold are defined as Iu_T, Iv_T, Iw_T respectively
  • the U-phase current identification bit, the V-phase current identification bit and the W-phase current identification bit correspond to Iu_F, Iv_F, and Iw_F, respectively.
  • the detection timings Iu_T, Iv_T, and Iw_T are accumulated according to the sampling cycle time.
  • the timing is cleared; if the detection timing Iu_T or Iv_T or Iw_T is greater than the preset zero-phase current detection duration Is_Tmax, then the U phase The current flag Iu_F or the V-phase current flag Iv_F or the W-phase current flag Iv_F is correspondingly set to 1; if the detection timing Iu_T or Iv_T or Iw_T is less than or equal to the preset zero-phase current detection duration Is_Tmax, the U-phase current flag Iu_F or The V-phase current identification bit Iv_F or the W-phase current identification bit Iv_F is correspondingly set to 0.
  • multiple states are monitored and detected in real time through the preset zero-phase current threshold, the preset zero-torque feedback threshold, the preset torque given threshold, and multiple detection durations; the motor driver detects the motor U and V in real time.
  • monitor motor phase current feedback, torque feedback and torque command and comprehensively analyze motor phase current feedback, torque feedback and torque command , based on the analysis results to determine the phase loss state of the motor, distinguish between all phase loss and a certain phase loss, and at the same time can indicate the phase loss state of a certain phase.
  • the embodiment of the present application does not require additional hardware cost, is simpler to implement through software, has high reliability of motor phase loss detection behavior, and can perform real-time detection during the entire operating cycle of the motor, thereby improving the overall security of the system.
  • FIG. 3 is a flowchart of another method for detecting phase loss of a motor provided by an embodiment of the present application, and an embodiment of the present application is optimized on the basis of the foregoing embodiment.
  • the method of this embodiment includes:
  • step S310 is executed.
  • step S320 is performed;
  • step S310 is executed.
  • step S330 If it is determined that the detected detection timing is accumulated to exceed the preset zero-torque feedback detection duration, step S330 is performed;
  • step S340 is executed.
  • step S330 Turn off the motor enable, and output the information that the motor power line is not connected. Return to step S310 again.
  • step S350 If it is detected that the absolute value of the torque following error of the motor is greater than the preset torque following error threshold, and the accumulated detection timing exceeds the preset torque following detection duration, step S350 is performed;
  • step S310 is executed.
  • step S351 is executed.
  • step S360 is performed.
  • step S352 is executed.
  • step S360 is executed.
  • step S353 is executed.
  • step S360 is performed.
  • step S360 Turn off the motor enable. Return to step S310 again.
  • phase loss state and output phase loss state when the torque reference meets the set judgment conditions, if the torque feedback is zero torque feedback state, it is determined that the motor power line is not connected, if the torque feedback is non-zero rotation Torque feedback state, the torque follow state is judged; when the torque is in the non-following state, if the current of a certain phase of the UVW three-phase is zero current state, it is judged that the phase is missing. It can cope with the working conditions where the accuracy and reliability of the motor phase loss detection method is low and prone to fault false alarms, so as to achieve accurate detection of phase loss, high reliability of phase loss detection, and at the same time, improve the overall safety of the system.
  • Fig. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Fig. 16 , the electronic device includes: one or more processors 110 and a memory 120. A processor 110 is taken as an example in FIG. 16 .
  • the electronic device may further include: an input device 130 and an output device 140 .
  • the processor 110 , the memory 120 , the input device 130 and the output device 140 in the electronic device may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 16 .
  • the memory 120 can be configured to store software programs, computer-executable programs, and modules.
  • the processor 110 executes various functional applications and data processing by running the software programs, instructions and modules stored in the memory 120 to implement any one of the methods in the above embodiments.
  • the memory 120 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the electronic device, and the like.
  • the memory may include volatile memory such as random access memory (Random Access Memory, RAM), and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • RAM random access memory
  • non-volatile memory such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage devices.
  • Memory 120 may be a non-transitory computer storage medium or a transitory computer storage medium.
  • the non-transitory computer storage medium such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • memory 120 may optionally include memory located remotely from processor 110, which may be connected to the electronic device via a network. Examples of such networks may include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 130 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the electronic device.
  • the output device 140 may include a display device such as a display screen.
  • the electronic device may be embodied as a motor driver, and the motor driver may be connected to the motor.
  • the motor drive may be a servo drive.
  • This embodiment also provides a computer-readable storage medium storing a computer program, where the computer program is used to execute the above method.
  • non-transitory computer-readable storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a RAM, or the like.

Abstract

本申请实施例公开了一种电机缺相检测方法、设备及存储介质。该电机缺相检测方法包括:对转矩给定、转矩反馈、相电流反馈进行分析,基于分析结果判断电机的缺相状态并输出相应信息;当转矩给定满足判定条件时,若转矩反馈为零转矩反馈状态,则判定为电机动力线未连接;当转矩处于未跟随状态,若UVW三相中的某相电流为零电流状态,则判定该相缺相。

Description

电机缺相检测方法、设备及存储介质
本公开要求在2021年03月15日提交中国专利局、申请号为202110277227.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请实施例涉及电机控制技术领域,例如涉及一种电机缺相检测方法、设备及存储介质。
背景技术
电机已广泛应用于工业控制领域,对电机使用的安全性要求也日益提高。由于电机在使用过程中,不可避免地出现动力线缆接头松动或脱落,严重影响设备运行安全,因此对电机进行缺相检测非常必要。
相关技术中,对电机进行缺相检测较常见的方法是在电机运行过程中通过电机相电流反馈检测缺相状态,例如,在一段时间内计算三相电流有效值,通过相电流幅值关系判断电机三相是否平衡,若相电流幅值最大值与幅值最小值的比值超过预设判定阈值,则判断为缺相,或是通过在一段时间内对电机相电流作积分运算,根据积分值是否连续小于预设零电流阈值进行缺相判断。然而,在电机轻载低速工况下,由于反馈电流较小且带有采样偏差,检测时长需要根据电机转速进行较准确的预估,多种因素导致上述仅依赖反馈电流进行缺相检测的方法的准确性及可靠性较低,易出现故障误报。
发明内容
本申请实施例提供一种电机缺相检测方法、设备及存储介质,以实现准确检测缺相,缺相检测可靠性高,同时,提升系统整体安全性。
本申请实施例提供了一种电机缺相检测方法,应用于电机驱动器,所述电机驱动器与电机连接,所述电机缺相检测方法包括:
在电机运行过程中,响应于检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,以及检测出检测计时累加超出预设转矩给定检测时长,判断所述电机是否处于零转矩反馈状态;
基于判断所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相,并根据判断所述电机是否全缺相的判断结果,判断所述电机是否处于转矩跟随状态;
基于判断所述电机是否处于所述转矩跟随状态的判断结果,判断所述电机是否缺相,输出所述电机的缺相检测信息。
本申请实施例提供一种电子设备,包括:
至少一个处理器;
存储器,设置为存储至少一个程序,
当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如上所述的电机缺相检测方法。
本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的电机缺相检测方法。
附图说明
图1是本申请实施例提供的一种电机缺相检测方法的流程图;
图2是本申请实施例提供的另一种电机缺相检测方法的流程图;
图3是本申请实施例提供的另一种电机缺相检测方法的流程图;
图4为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图对本申请实施例进行描述。
另外,为了便于描述,附图中仅示出了与本申请相关的部分而非全部内容。一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将多项操作(或步骤)描述成顺序的处理,但是多项操作中的部分操作可以被并行地、并发地或者同时实施。此外,多项操作的顺序可以被重新安排。当操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
一实施例
图1为本申请实施例提供的一种电机缺相检测方法的流程图,本实施例可适用于在不受电机运行工况影响的情况下对电机缺相进行检测的情况。
该电机缺相检测方法包括如下步骤:
S110、在电机运行过程中,响应于检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,以及检测出检测计时累加超出预设转矩给定检测时长,判断所述电机是否处于零转矩反馈状态。
本实施例由电机驱动器实施。电机驱动器可与电机连接。
在电机运行过程中,若电机驱动器检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,电机驱动器检测出的检测计时累加超出预设转矩给定检测时长,则转矩给定判定条件成立,在所述转矩给定判定条件下判断所述电机是否处于零转矩反馈状态。
在本实施例中电机运行过程可以包括电机处于启动过程中或电机处于正常运转过程中发生缺相,本实施例中电机运行过程指代的电机运行过程可存在多类,即本实施例所提供的电机缺相检测方法不受电机运行工况影响,均可实现准确的电机缺相检测。
在电机运行过程中,电机速度给定指令与电机速度反馈形成闭环,当指令与反馈存在偏差,通过速度环中PI(proportional integral,比例积分)调节器计算,输出转矩给定值,即对应于本实施例中电机的转矩给定绝对值可以通过速度环计算输出。
预设转矩给定阈值可以由本领域技术人员根据实际的电机情况进行选择设置。
在本实施例中,可以通过设置转矩给定状态对应的转矩给定标识位进行表示。当检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,以及检测出的检测计时累加超出预设转矩给定检测时长,则转矩给定标识位设置为第一标识;当检测出所述电机的转矩给定绝对值小于或等于预设转矩给定阈值,和/或,检测出的检测计时累加小于或等于预设转矩给定检测时长,则转矩给定标识位设置为第二标识。
在上述实施例的基础上,若检测出转矩给定绝对值大于预设转矩给定阈值,以及检测出的检测计时累加小于或等于预设转矩给定检测时长,则继续累加检测出转矩给定绝对值大于预设转矩给定阈值时对应的时长。
其中,第一标识和第二标识可以通过两个不同的二进制数例如1和0进行两种不同状态的调整,例如,转矩给定标识位TorqRef_F对应的第一标识可以为TorqRef_F等于1。
另外,当检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,则检测计时按采样周期时间累积;当检测出所述电机的转矩给定绝对值小于或等于预设转矩给定阈值,则检测计时清零;如果检测计时累加超出预设转矩给定检测时长,则将转矩给定标识位设置为第一标识,即转矩给定标识位TorqRef_F等于1;如果检测计时累加小于或等于预设转矩给定检测时长,则将转矩给定标 识位设置为第二标识,即转矩给定标识位TorqRef_F等于0。
检测计时是指,不同的状态量满足判定条件的连续时间,即表征该判定条件持续了多长时间,不同的状态量例如转矩给定、转矩反馈、相电流等。
检测计时累加是指,不同的状态量满足判定条件的连续时间的累加。
检测出的检测计时累加,表征了一直处于检测状态。
在一实施例中,在所述转矩给定判定条件下,判断所述电机是否处于零转矩反馈状态,包括:响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,判断检测出的检测计时累加是否超出预设零转矩反馈检测时长;根据判断检测出的检测计时累加是否超出预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态。
在一实施例中,根据判断检测出的检测计时累加是否超出预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态,包括:响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及电机驱动器检测出的检测计时累加超出预设零转矩反馈检测时长,确定电机处于零转矩反馈状态且动力线全部均未连接,电机全缺相。
电机动力线有UVW三条,三条电机动力线连接至电机驱动器UVW三相。
此外,当检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及电机驱动器检测出的检测计时累加超出预设零转矩反馈检测时长,则将零转矩反馈标识位设置为第一标识,即零转矩反馈标识位Torq0_F等于1,此时确定所述电机的当前运行状态为所述电机处于全缺相状态。
若检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及检测出的检测计时累加超出预设零转矩反馈检测时长,则确定所述电机处于零转矩反馈状态。
在一实施例中,当检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,检测出的检测计时累加小于或等于预设零转矩反馈检测时长,则将零转矩反馈标识位设置为第二标识,即零转矩反馈标识位Torq0_F等于0,此时可再确定电机的转矩跟随状态。
同理,电机的零转矩反馈状态可以通过设置零转矩反馈状态对应的零转矩反馈标识位进行表示,在本实施例中,当检测出电机的转矩反馈绝对值小于预设零转矩反馈阈值,检测出的检测计时累加超出预设零转矩反馈检测时长,则将零转矩反馈标识位设置为第一标识,检测出的检测计时累加小于或等于预设零转矩反馈检测时长,将零转矩反馈标识位设置为第二标识。
其中,第一标识和第二标识可以通过两个不同的二进制数(例如0和1)进行两种不同状态的调整,例如,零转矩反馈标识位对应的第一标识可以为Torq0_F等于1。
另外,当检测出电机的转矩反馈绝对值小于预设零转矩反馈阈值,则检测计时按采样周期时间累积,当检测出电机的转矩反馈绝对值大于或等于预设零转矩反馈阈值,则计时清零;如果检测计时累加超出预设零转矩反馈检测时长,则将零转矩反馈标识位设置为第一标识,即零转矩反馈标识位Torq0_F等于1,如果检测计时累加小于或等于预设零转矩反馈检测时长,将零转矩反馈标识位设置为第二标识,即零转矩反馈标识位Torq0_F等于0。
可以理解的是,上述采样周期时间可以由本领域技术人员进行选择设置,本实施例对采样周期时间的时间长度不作任何限制。
S120、基于判断所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相,并根据判断所述电机是否全缺相的判断结果,判断所述电机是否处于转矩跟随状态。
基于判断所述电机是否处于所述零转矩反馈状态的判断结果,对所述电机进行全缺相判断,若电机处于零转矩反馈状态,则判定为电机动力线未连接并输出该动力线未连接信息,若电机不处于零转矩反馈状态,则进入判断电机的转矩跟随状态的判断环节。
在一实施例中,在基于所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相之后,还包括:响应于所述电机处于零转矩反馈状态的判断结果,判定所述电机的动力线未连接,并输出动力线未连接信息。
在一实施例中,根据全缺相判断的结果,判断所述电机是否处于转矩跟随状态,包括:响应于检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,判断检测出的检测计时累加是否超出预设转矩跟随检测时长;根据判断检测出的检测计时累加是否超出预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态。
根据判断检测出的检测计时累加是否超出预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态,包括:响应于判断检测出的检测计时累加小于或等于预设转矩跟随检测时长的判断结果,确定所述电机处于转矩跟随状态且电机未缺相。响应于判断检测出的检测计时累加超出预设转矩跟随检测时长的判断结果,确定所述电机处于转矩未跟随状态,并判定所述电机的当前运行状态下的U相电流绝对值、V相电流绝对值以及W相电流绝对值,即 获取所述电机的当前运行状态下的U相、V相以及W相电流的零电流状态。
在本实施例中,可以通过设置转矩跟随状态对应的转矩跟随标识位进行表示。当检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,检测出的检测计时累加超出预设转矩跟随检测时长,则将转矩跟随标识位设置为第一标识;当检测出所述电机的转矩跟随误差绝对值小于或等于预设转矩跟随误差阈值,和/或,检测出的检测计时累加小于或等于预设转矩跟随检测时长,则将转矩跟随标识位设置为第二标识。
其中,第一标识和第二标识可以通过两个不同的二进制数(例如1和0)进行两种不同状态的调整,例如,转矩跟随标识位对应的第一标识可以为TorqErr_F等于1。
另外,当检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,则检测计时按采样周期时间累积,当检测出所述电机的转矩跟随误差绝对值小于或等于预设转矩跟随误差阈值,则计时清零;如果检测计时累加超出预设转矩跟随检测时长,则将转矩跟随标识位设置为第一标识,即转矩跟随标识位TorqErr_F等于1,如果检测计时累加小于或等于预设转矩跟随检测时长,则将转矩跟随标识位设置为第二标识,即转矩跟随标识位TorqErr_F等于0。
S130、基于判断所述电机是否处于所述转矩跟随状态的判断结果,判断所述电机是否缺相,输出所述电机的缺相检测信息。
在本实施例中,在电机驱动器运行过程中,基于驱动控制周期,电机驱动器的处理器实时采样电机U/V相电流,即U相电流Iu、V相电流Iv,并根据基尔霍夫电流定律Iu+Iv+Iw=0,计算理论值Iw;在电机缺相状态下,假设V相缺相,U/W相形成回路,则Iv=0,Iu+Iv+Iw=0仍成立;相电流Iu、Iw经CLARK、PARK坐标变换即可得到D、Q轴电流,并可计算得到电机反馈转矩TorqFdbk。
在一实施例中,若检测出所述U相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的U相缺相;
和/或,
若检测出所述V相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的V相缺相;
和/或,
若检测出所述W相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的W相缺相。
示例性的,电机U/V/W相电流可以通过设置电机U/V/W相电流状态对应的相零电流标识位进行表示。
在本实施例中,当检测出U相电流绝对值小于预设零相电流阈值,检测出的检测计时累加超出预设零相电流检测时长,则将U相电流标识位设置为第一标识,即判定所述电机的U相缺相;当检测出U相电流绝对值大于或等于预设零相电流阈值,和/或,检测出的检测计时累加小于或等于预设零相电流检测时长,则将U相电流标识位设置为第二标识;当检测出V相电流绝对值小于预设零相电流阈值,检测出的检测计时累加超出预设零相电流检测时长,则将V相电流标识位设置为第一标识,即判定所述电机的V相缺相;当检测出V相电流绝对值大于或等于预设零相电流阈值,和/或,检测出的检测计时累加小于或等于预设零相电流检测时长,则将V相电流标识位设置为第二标识;当检测出W相电流绝对值小于预设零相电流阈值,检测出的检测计时累加超出预设零相电流检测时长,则将W相电流标识位设置为第一标识,即判定电机的W相缺相;当检测出W相电流绝对值大于或等于预设零相电流阈值,和/或,检测出的检测计时累加小于或等于预设零相电流检测时长,则将W相电流标识位设置为第二标识。
其中,第一标识和第二标识可以通过两个不同的二进制数(例如0和1)进行两种不同状态的调整,例如,U相电流标识位、V相电流标识位和W相电流标识位对应的第一标识分别可以为Iu_F、Iv_F和Iw_F,对应置1。
另外,当U相电流绝对值、V相电流绝对值、W相电流绝对值分别小于预设零相电流阈值,则相应的检测计时按采样周期时间累积,当U相电流绝对值、V相电流绝对值、W相电流绝对值大于预设零相电流阈值,进行清零操作;如果相应的检测计时累加超出预设零相电流检测时长,则将U相电流标识位、V相电流标识位和W相电流标识位分别设置为第一标识,即Iu_F、Iv_F、Iw_F分别对应置1,如果相应的检测计时累加小于或等于预设零相电流检测时长,将U相电流标识位、V相电流标识位和W相电流标识位分别设置为第二标识,即Iu_F、Iv_F、Iw_F分别对应置0。
本申请实施例,在电机运行过程中,若检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,检测出的检测计时累加超出预设转矩给定检测时长,则转矩给定判定条件成立,在所述转矩给定判定条件下判断所述电机是否处于零转矩反馈状态;基于所述电机是否处于所述零转矩反馈状态的判断结果,对所述电机进行全缺相判断,并根据全缺相判断的结果判断所述电机是否处于转 矩跟随状态;基于判断所述电机是否处于转矩跟随状态的判断结果,对所述电机进行缺相判定,输出所述电机的缺相检测信息。本申请实施例解决了电机缺相检测方法准确性及可靠性较低且易出现故障误报的工况,以实现准确检测缺相,缺相检测可靠性高,同时,提升系统整体安全性。
另一实施例
图2为本申请实施例提供的另一种电机缺相检测方法的流程图,本实施例以上述实施例为基础进行优化。
相应的,本实施例的方法,包括:
S210、在电机运行过程中,响应于检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,以及检测出检测计时累加超出预设转矩给定检测时长,又检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,根据判断检测出的检测计时累加是否超出所述预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态。
预设转矩给定阈值为TorqRef_TH,预设转矩给定检测时长为TorqRef_Tmax,电机的转矩给定绝对值大于预设转矩给定阈值的检测时长的检测计时为TorqRef_T,转矩给定标识位为TorqRef_F;
在本实施例中,如果转矩给定TorqRef的绝对值大于预设转矩给定阈值TorqRef_TH,则检测计时TorqRef_T按采样周期时间累加;如果转矩给定TorqRef的绝对值小于或等于预设转矩给定阈值TorqRef_TH,则计时清零;如果检测计时TorqRef_T大于预设转矩给定检测时长TorqRef_Tmax,则转矩给定标识位TorqRef_F置1;如果检测计时TorqRef_T小于或等于预设转矩给定检测时长TorqRef_Tmax,则转矩给定标识位TorqRef_F置0。
可以理解的是,若检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,检测出的检测计时累加超出预设零转矩反馈检测时长,则确定所述电机处于全缺相状态。
S220、响应于检测出转矩给定绝对值大于预设转矩给定阈值,以及检测出的检测计时累加小于或等于预设转矩给定检测时长,继续累加检测出的转矩给定绝对值大于预设转矩给定阈值的检测结果对应的时长。
S230、响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及检测出的检测计时累加超出预设零转矩反馈检测时长,判断所述电机是否处于零转矩反馈状态。
预设零转矩反馈阈值为Torq0_TH,预设零转矩反馈检测时长为Torq0_Tmax,定义电机的转矩反馈绝对值小于预设零转矩反馈阈值的检测计时为Torq0_T,零转矩反馈标识位为Torq0_F。
在本实施例中,如果转矩反馈TorqFdbk的绝对值小于零转矩反馈阈值Torq0_TH,则检测计时Torq0_T按采样周期时间累加,如果转矩反馈TorqFdbk的绝对值大于或等于零转矩反馈阈值Torq0_TH,则计时清零;如果检测计时Torq0_T大于预设零转矩反馈检测时长Torq0_Tmax,则零转矩反馈标识位Torq0_F置1,如果检测计时Torq0_T小于或等于预设零转矩反馈检测时长Torq0_Tmax,则零转矩反馈标识位Torq0_F置0。
S240、基于判断所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相,并根据判断所述电机是否全缺相的判断结果,判断所述电机是否处于转矩跟随状态。
基于判断所述电机是否处于所述零转矩反馈状态的判断结果,对所述电机进行全缺相判断,若电机为零转矩反馈状态,则判定为电机动力线未连接并输出该动力线未连接信息,若电机为非零转矩反馈状态,则判断电机是否处于转矩跟随状态。
在一实施例中,当所述电机转矩反馈为非零转矩反馈状态时,若检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,判断电机驱动器检测出的检测计时累加是否超出预设转矩跟随检测时长;根据检测出的检测计时累加是否超出预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态。
其中,若检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及检测出的检测计时累加超出预设零转矩反馈检测时长,则确定所述电机为零转矩反馈状态;若检测出所述电机的转矩反馈绝对值大于或等于预设零转矩反馈阈值,或者,检测出的检测计时累加小于或等于预设零转矩反馈检测时长,则确定所述电机为非零转矩反馈状态。
根据检测出的检测计时累加是否超出预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态,包括:若判断检测出的检测计时累加小于或等于预设转矩跟随检测时长,则确定所述电机处于未缺相状态。若判断检测出的检测计时累加超出预设转矩跟随检测时长,则所述电机处于转矩未跟随状态,并判定所述电机的当前运行状态下的U相电流绝对值、V相电流绝对值以及W相电流绝对值对应的缺相状况,即获取所述电机的当前运行状态下的U 相、V相以及W相电流的零电流状态,以进行与所述U相电流绝对值、所述V相电流绝对值以及所述W相电流绝对值对应的缺相判定行为。
例如,预设转矩跟随误差阈值为0.2xTorqRef_TH,预设转矩跟随检测时长为TorqErr_Tmax,定义电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值的检测计时为TorqErr_T,转矩跟随标识位为TorqErr_F。
当转矩给定TorqRef的绝对值大于预设转矩给定阈值TorqRef_TH时,如果转矩跟随误差TorqErr=TorqRef-TorqFdbk的绝对值大于预设转矩跟随误差阈值0.2xTorqRef_TH,则检测计时TorqErr_T按采样周期累加,如果转矩跟随误差TorqErr=TorqRef-TorqFdbk的绝对值小于预设转矩跟随误差阈值0.2xTorqRef_TH,则计时清零;如果检测计时TorqErr_T大于预设转矩跟随检测时长TorqErr_Tmax,则转矩跟随标识位TorqErr_F置1,如果检测计时TorqErr_T小于或等于预设转矩跟随检测时长TorqErr_Tmax,则转矩跟随标识位TorqErr_F置0。
S250、基于判断所述电机是否处于所述转矩跟随状态对应的判断结果,判断所述电机是否缺相,输出所述电机的缺相检测信息。
在一实施例中,基于判断所述电机是否处于所述转矩跟随状态对应的判断结果,判断所述电机是否缺相,包括:
若检测出所述U相电流绝对值小于预设零相电流阈值,且电机驱动器检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的U相缺相;
和/或,
若检测出所述V相电流绝对值小于预设零相电流阈值,且电机驱动器检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的V相缺相;
和/或,
若检测出所述W相电流绝对值小于预设零相电流阈值,且电机驱动器检测出的检测计时累加超出预设零相电流检测时长,则判定所述电机的W相缺相。
例如,预设零相电流阈值为Is_TH,预设零相电流检测时长为Is_Tmax,定义电机U/V/W相电流绝对值小于预设零相电流阈值的检测计时分别对应为Iu_T、Iv_T、Iw_T,U相电流标识位、V相电流标识位和W相电流标识位分别对应为Iu_F、Iv_F、Iw_F。
在本实施例中,如果电机U/V/W相电流Iu、Iv、Iw的绝对值分别小于预设零相电流阈值Is_TH,则检测计时Iu_T、Iv_T、Iw_T按采样周期时间累加,如果电机U/V/W相电流Iu、Iv、Iw的绝对值分别大于预设零相电流阈值Is_TH, 则计时清零;如果检测计时Iu_T或Iv_T或Iw_T大于预设零相电流检测时长Is_Tmax,则U相电流标识位Iu_F或V相电流标识位Iv_F或W相电流标识位Iv_F对应置1;如果检测计时Iu_T或Iv_T或Iw_T小于或等于预设零相电流检测时长Is_Tmax,则U相电流标识位Iu_F或V相电流标识位Iv_F或W相电流标识位Iv_F对应置0。
本申请实施例,通过预设零相电流阈值、预设零转矩反馈阈值、预设转矩给定阈值及多项检测时长,实时监控并检测多项状态;电机驱动器实时检测电机U、V相线反馈电流,并计算得出电机反馈转矩,在电机运转过程中,对电机相电流反馈、转矩反馈以及转矩指令进行监控并综合分析电机相电流反馈、转矩反馈以及转矩指令,基于分析结果判断电机的缺相状态,区别处理全缺相和缺某相,同时能够指示某相缺相状态。本申请实施例无须额外增加硬件成本,通过软件实现更加简便,且电机缺相检测行为的可靠性高,并可在电机的整个运行周期内进行实时检测,提升了系统的整体安全性。
另一实施例
图3为本申请实施例提供的另一种电机缺相检测方法的流程图,本申请实施例是在上述实施例的基础上进行优化。本实施例的方法包括:
确定检测出电机的转矩给定绝对值大于预设转矩给定阈值,则执行步骤S310。
S310、判断检测出的检测计时累加是否超出预设转矩给定检测时长。
若检测出的检测计时累加超出预设转矩给定检测时长,则执行步骤S320;
若检测出的检测计时累加小于或等于预设转矩给定检测时长,则执行步骤S310。
S320、检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,判断检测出的检测计时累加是否超出预设零转矩反馈检测时长。
若判断检测出的检测计时累加超出预设零转矩反馈检测时长,则执行步骤S330;
若判断检测出的检测计时累加小于或等于预设零转矩反馈检测时长,则执行步骤S340。
S330、关闭电机使能,输出电机动力线未连接信息。返回重新执行步骤S310。
S340、当转矩反馈为非零转矩反馈状态时,判断检测出所述电机的转矩跟随误差绝对值是否大于预设转矩跟随误差阈值,且检测出的检测计时累加是否 超出预设转矩跟随检测时长。
若检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,且检测出的检测计时累加超出预设转矩跟随检测时长,则执行步骤S350;
若检测出所述电机的转矩跟随误差绝对值小于或等于预设转矩跟随误差阈值,和/或,检测出的检测计时累加小于或等于预设转矩跟随检测时长,则执行步骤S310。
S350、获取所述电机的当前运行状态下的U相电流绝对值、V相电流绝对值以及W相电流绝对值。
检测出所述U相电流绝对值小于预设零相电流阈值,则执行步骤S351。
S351、判断检测出的检测计时累加是否超出预设零相电流检测时长。
若检测出的检测计时累加超出预设零相电流检测时长,则输出U相缺相信息后,执行步骤S360。
检测出所述V相电流绝对值小于预设零相电流阈值,则执行步骤S352。
S352、判断检测出的检测计时累加是否超出预设零相电流检测时长。
若检测出的检测计时累加超出预设零相电流检测时长,则输出V相缺相信息后,执行步骤S360。
检测出所述W相电流绝对值小于预设零相电流阈值,则执行步骤S353。
S353、判断检测出的检测计时累加是否超出预设零相电流检测时长。
若检测出的检测计时累加超出预设零相电流检测时长,则输出W相缺相信息后,执行步骤S360。
S360、关闭电机使能。返回重新执行步骤S310。
本申请实施例,在电机运行过程中,对转矩给定、转矩反馈、相电流反馈进行持续同步监控并综合分析转矩给定、转矩反馈、相电流反馈,基于分析结果判断电机的缺相状态并输出缺相状态;当转矩给定满足所设置的判定条件时,若转矩反馈为零转矩反馈状态,则判定为电机动力线未连接,若转矩反馈为非零转矩反馈状态,则判断转矩跟随状态;当转矩处于未跟随状态,若UVW三相某相电流为零电流状态,则判定该相缺相。可应对电机缺相检测方法准确性及可靠性较低且易出现故障误报的工况,以实现准确检测缺相,缺相检测可靠性高,同时,提升系统整体安全性。
图4是本申请实施例提供的一种电子设备的结构示意图,如图16所示,该 电子设备包括:一个或多个处理器110和存储器120。图16中以一个处理器110为例。
所述电子设备还可以包括:输入装置130和输出装置140。
所述电子设备中的处理器110、存储器120、输入装置130和输出装置140可以通过总线或者其他方式连接,图16中以通过总线连接为例。
存储器120作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。处理器110通过运行存储在存储器120中的软件程序、指令以及模块,从而执行多种功能应用以及数据处理,以实现上述实施例中的任意一种方法。
存储器120可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据电子设备的使用所创建的数据等。此外,存储器可以包括随机存取存储器(Random Access Memory,RAM)等易失性存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件或者其他非暂态固态存储器件。
存储器120可以是非暂态计算机存储介质或暂态计算机存储介质。该非暂态计算机存储介质,例如至少一个磁盘存储器件、闪存器件或其他非易失性固态存储器件。在一些实施例中,存储器120可选包括相对于处理器110远程设置的存储器,这些远程存储器可以通过网络连接至电子设备。上述网络的实例可以包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置130可设置为接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。输出装置140可包括显示屏等显示设备。
在一实施例中,电子设备可体现为电机驱动器,电机驱动器可与电机连接。电机驱动器可为伺服驱动器。
本实施例还提供一种计算机可读存储介质,存储有计算机程序,所述计算机程序用于执行上述方法。
上述实施例方法中的全部或部分流程可以通过计算机程序来执行相关的硬件来完成的,该程序可存储于一个非暂态计算机可读存储介质中,该程序在执行时,可包括如上述方法的实施例的流程,其中,该非暂态计算机可读存储介质可以为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或RAM等。

Claims (12)

  1. 一种电机缺相检测方法,应用于电机驱动器,所述电机驱动器与电机连接,所述电机缺相检测方法包括:
    在电机运行过程中,响应于检测出所述电机的转矩给定绝对值大于预设转矩给定阈值,以及检测出检测计时累加超出预设转矩给定检测时长,判断所述电机是否处于零转矩反馈状态;
    基于判断所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相,并根据判断所述电机是否全缺相的判断结果,判断所述电机是否处于转矩跟随状态;
    基于判断所述电机是否处于所述转矩跟随状态的判断结果,判断所述电机是否缺相,输出所述电机的缺相检测信息。
  2. 根据权利要求1所述的电机缺相检测方法,在基于判断所述电机是否处于所述零转矩反馈状态的判断结果,判断所述电机是否全缺相之后,还包括:
    响应于所述电机处于零转矩反馈状态的判断结果,输出动力线未连接信息。
  3. 根据权利要求1所述的电机缺相检测方法,其中,所述判断所述电机是否处于零转矩反馈状态,包括:
    响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,判断检测出的检测计时累加是否超出预设零转矩反馈检测时长;
    根据判断检测出的检测计时累加是否超出所述预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态。
  4. 根据权利要求3所述的电机缺相检测方法,其中,所述根据判断检测出的检测计时累加是否超出所述预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态,包括:
    响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及检测出的检测计时累加超出所述预设零转矩反馈检测时长,确定所述电机处于零转矩反馈状态且所述电机的动力线全部均未连接,所述电机全缺相。
  5. 根据权利要求3所述的电机缺相检测方法,其中,所述根据判断检测出的检测计时累加是否超出所述预设零转矩反馈检测时长的判断结果,判断所述电机是否处于零转矩反馈状态,包括:
    响应于检测出所述电机的转矩反馈绝对值小于预设零转矩反馈阈值,以及检测出的检测计时累加超出所述预设零转矩反馈检测时长,确定所述电机处于零转矩反馈状态。
  6. 根据权利要求1所述的电机缺相检测方法,其中,所述方法还包括:
    响应于检测出所述电机的转矩跟随误差绝对值大于预设转矩跟随误差阈值,判断检测出的检测计时累加是否超出预设转矩跟随检测时长;
    根据判断检测出的检测计时累加是否超出所述预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态。
  7. 根据权利要求6所述的电机缺相检测方法,其中,所述根据判断检测出的检测计时累加是否超出所述预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态,包括:
    响应于检测出的检测计时累加小于或等于所述预设转矩跟随检测时长的判断结果,确定所述电机处于转矩跟随状态且所述电机未缺相。
  8. 根据权利要求6所述的电机缺相检测方法,其中,所述根据判断检测出的检测计时累加是否超出所述预设转矩跟随检测时长的判断结果,判断所述电机是否处于转矩跟随状态,包括:
    响应于检测出的检测计时累加超出所述预设转矩跟随检测时长的判断结果,确定所述电机处于转矩未跟随状态,并检测所述电机的当前运行状态下的U相电流绝对值、V相电流绝对值以及W相电流绝对值,以进行与所述U相电流绝对值、所述V相电流绝对值以及所述W相电流绝对值对应的缺相判定行为。
  9. 根据权利要求8所述的电机缺相检测方法,其中,所述基于判断所述电机是否处于所述转矩跟随状态的判断结果,判断所述电机是否缺相,包括:
    若检测出所述U相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,判定所述电机的U相缺相;
    和/或,
    若检测出所述V相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,判定所述电机的V相缺相;
    和/或,
    若检测出所述W相电流绝对值小于预设零相电流阈值,且检测出的检测计时累加超出预设零相电流检测时长,判定所述电机的W相缺相。
  10. 根据权利要求1所述的电机缺相检测方法,其中,所述电机缺相检测方法还包括:
    响应于检测出所述转矩给定绝对值大于所述预设转矩给定阈值,以及检测出的检测计时累加小于或等于所述预设转矩给定检测时长,继续累加检测出的转矩给定绝对值大于所述预设转矩给定阈值的检测结果对应的时长。
  11. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-10中任一项所述的电机缺相检测方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-10中任一项所述的电机缺相检测方法。
PCT/CN2021/115066 2021-03-15 2021-08-27 电机缺相检测方法、设备及存储介质 WO2022193556A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110277227.0 2021-03-15
CN202110277227.0A CN113036720B (zh) 2021-03-15 2021-03-15 一种电机缺相检测方法

Publications (1)

Publication Number Publication Date
WO2022193556A1 true WO2022193556A1 (zh) 2022-09-22

Family

ID=76470520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115066 WO2022193556A1 (zh) 2021-03-15 2021-08-27 电机缺相检测方法、设备及存储介质

Country Status (2)

Country Link
CN (1) CN113036720B (zh)
WO (1) WO2022193556A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116804611A (zh) * 2023-08-22 2023-09-26 宁德时代新能源科技股份有限公司 检测设备的自动评估方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113036720B (zh) * 2021-03-15 2023-02-28 广东拓斯达科技股份有限公司 一种电机缺相检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696627A (zh) * 2017-10-20 2019-04-30 株洲中车时代电气股份有限公司 一种电动汽车电机三相动力线缺相故障诊断方法及装置
CN110932239A (zh) * 2019-12-23 2020-03-27 四川虹美智能科技有限公司 电机缺相的检测方法、装置及电器设备
CN110994557A (zh) * 2019-11-07 2020-04-10 广东尚研电子科技有限公司 一种pmsm电机缺相检测方法及保护机制
CN113036720A (zh) * 2021-03-15 2021-06-25 广东拓斯达科技股份有限公司 一种电机缺相检测方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291149A (ja) * 2001-03-29 2002-10-04 Nissan Motor Co Ltd モータ制御装置
JP2004320945A (ja) * 2003-04-18 2004-11-11 Yaskawa Electric Corp Acサーボドライバのモータ動力線断線検出方法
CA2594124C (en) * 2005-04-01 2012-01-03 Mitsubishi Electric Corporation Electric vehicle control device
CN104242767A (zh) * 2014-09-10 2014-12-24 深圳市微秒控制技术有限公司 伺服电机动力线断线检测方法
CN109557464A (zh) * 2017-09-25 2019-04-02 郑州宇通客车股份有限公司 一种电机缺相故障检测方法及装置
DE112018007041T5 (de) * 2018-02-08 2020-10-22 Mitsubishi Electric Corporation Steuervorrichtung für einen Elektromotor und Verfahren zur Erkennung einer Kabeltrennung
CN109490646B (zh) * 2018-11-30 2021-02-02 上海大郡动力控制技术有限公司 新能源汽车驱动电机缺相检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109696627A (zh) * 2017-10-20 2019-04-30 株洲中车时代电气股份有限公司 一种电动汽车电机三相动力线缺相故障诊断方法及装置
CN110994557A (zh) * 2019-11-07 2020-04-10 广东尚研电子科技有限公司 一种pmsm电机缺相检测方法及保护机制
CN110932239A (zh) * 2019-12-23 2020-03-27 四川虹美智能科技有限公司 电机缺相的检测方法、装置及电器设备
CN113036720A (zh) * 2021-03-15 2021-06-25 广东拓斯达科技股份有限公司 一种电机缺相检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116804611A (zh) * 2023-08-22 2023-09-26 宁德时代新能源科技股份有限公司 检测设备的自动评估方法和系统
CN116804611B (zh) * 2023-08-22 2024-01-26 宁德时代新能源科技股份有限公司 检测设备的自动评估方法和系统

Also Published As

Publication number Publication date
CN113036720B (zh) 2023-02-28
CN113036720A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022193556A1 (zh) 电机缺相检测方法、设备及存储介质
CN111751722B (zh) 一种油气泵电机故障检测方法和装置
CN111572349B (zh) 电动汽车堵转故障检测方法、装置、设备及存储介质
CN109733238B (zh) 故障检测方法、装置、存储介质及处理器
JP2009038959A (ja) 永久磁石同期電動機用の一つ以上の相の欠相検出方法
US20150326167A1 (en) Motor control device that detects breakage of motor power line or power element abnormality of motor power conversion device
JP2007306758A (ja) 電力変換装置
CN110726935B (zh) 电机缺相检测方法、装置及存储介质
US9430334B2 (en) Failure storage device and failure storage method
CN113681558B (zh) 多关节机器人的电机抱闸异常控制方法、装置及机器人
JPH11332002A (ja) 電気自動車用電動機の制御装置
CN116155170B (zh) 伺服诊断方法、装置、设备和可读存储介质
WO2020133876A1 (zh) 一种伺服系统动力电缆断线检测的方法
US9667131B2 (en) Differential protection method for bridge circuit in current converter control system
US20210320603A1 (en) Motor control device
CN109213128B (zh) 闭环控制失效检测方法及系统
CN110687443A (zh) 一次设备状态的判别方法及系统
CN112152531B (zh) 三相电机电流对称性检测方法、装置、控制器及车辆
CN112034338A (zh) 一种电动助力转向电机相电流断路诊断方法和装置
CN109347065A (zh) 一种三相驱动器检测方法、系统、设备及可读存储介质
CN110967583A (zh) 一种拍打门故障预判方法、装置、设备及存储介质
KR20080029455A (ko) 직류모터의 과전류 감시제어 시스템
CN115276517A (zh) 控制器、机器人、三相电机缺相检测方法以及存储介质
CN115579863A (zh) 暂态工况的电压锁相控制方法、装置、设备及存储介质
CN117368640A (zh) 电缆故障多维度因素分析系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931131

Country of ref document: EP

Kind code of ref document: A1