WO2022193446A1 - 一种巡检机器人系统 - Google Patents

一种巡检机器人系统 Download PDF

Info

Publication number
WO2022193446A1
WO2022193446A1 PCT/CN2021/098443 CN2021098443W WO2022193446A1 WO 2022193446 A1 WO2022193446 A1 WO 2022193446A1 CN 2021098443 W CN2021098443 W CN 2021098443W WO 2022193446 A1 WO2022193446 A1 WO 2022193446A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail
wire rope
track
detection device
robot system
Prior art date
Application number
PCT/CN2021/098443
Other languages
English (en)
French (fr)
Inventor
寇子明
吴娟
焦少妮
李鑫
张伟
范鑫杰
薛佳保
张丽军
董勇勇
牛青山
Original Assignee
太原理工大学
山西戴德测控技术有限公司
太原市博世通机电液工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原理工大学, 山西戴德测控技术有限公司, 太原市博世通机电液工程有限公司 filed Critical 太原理工大学
Priority to DE112021006972.1T priority Critical patent/DE112021006972T5/de
Priority to US18/282,797 priority patent/US20240166449A1/en
Publication of WO2022193446A1 publication Critical patent/WO2022193446A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G43/00Control devices, e.g. for safety, warning or fault-correcting
    • B65G43/02Control devices, e.g. for safety, warning or fault-correcting detecting dangerous physical condition of load carriers, e.g. for interrupting the drive in the event of overheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G17/00Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface
    • B65G17/20Conveyors having an endless traction element, e.g. a chain, transmitting movement to a continuous or substantially-continuous load-carrying surface or to a series of individual load-carriers; Endless-chain conveyors in which the chains form the load-carrying surface comprising load-carriers suspended from overhead traction chains
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40252Robot on track, rail moves only back and forth
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45066Inspection robot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/80Specific applications of the controlled vehicles for information gathering, e.g. for academic research
    • G05D2105/89Specific applications of the controlled vehicles for information gathering, e.g. for academic research for inspecting structures, e.g. wind mills, bridges, buildings or vehicles

Definitions

  • Embodiments of the present invention relate to the field of mining equipment, in particular to an inspection robot system.
  • Underground belt conveyor is an important equipment in coal mine production, and its operation status directly affects the production efficiency of coal mine.
  • Underground belt conveyors are prone to problems such as belt tearing, belt deviation, belt slippage, and idler wear during operation. Once there is a problem with the underground belt conveyor in the working process, it will affect the coal mine transportation efficiency at light level, and endanger the life safety of underground workers at worst. Therefore, in the process of underground production, it is necessary to monitor the working state of the underground belt conveyor to realize fault warning.
  • the inspection method of underground belt conveyor is mainly based on the combination of manual inspection and fixed-point camera monitoring.
  • the manual inspection method increases the labor cost of the enterprise.
  • the underground belt conveyor is often installed The long distance, dark installation location, loud working noise, and narrow workstation are not conducive to the inspection personnel to carry out a more comprehensive inspection, and it is easy to make the inspection personnel work fatigue and increase the risk of safe production.
  • the use of fixed-point camera monitoring can only monitor some key areas, and can not fully control the operation of the entire equipment, there are great hidden dangers.
  • the embodiments of the present application are expected to provide an inspection robot system, which can reduce the labor cost of enterprises and solve the problem that manual inspection and fixed-point camera monitoring are difficult to achieve real-time and large-scale monitoring.
  • an inspection robot system including:
  • a detection device which can at least acquire environmental image information
  • the traction device includes a wire rope and a wire rope driving assembly, the wire rope driving assembly is connected with the wire rope and drives the wire rope to move along the axial direction of the wire rope;
  • the connecting device is slidably connected with the track, the detection device is arranged on the connecting device, the connecting device is connected with the wire rope and can be driven along the track by the wire rope move;
  • At least part of the connecting device is provided with a multi-axis manipulator, and the multi-axis manipulator can carry the detection device to move the detection device relative to the track.
  • the track is in the form of a closed loop
  • the wire rope drive assembly includes two traction sheaves and two shelving drives for driving the traction sheaves to rotate, the wire rope and the two The circumferential arc surfaces of the traction sheave are abutted and form a closed ring.
  • the connecting device includes a rail-holding assembly, a wire rope fixing assembly, a quick-connect fixing member and a connecting rod
  • the rail-holding assembly is disposed at the top of the connecting rod
  • the rail-holding assembly is connected to the connecting rod.
  • the track is in contact with and can move on the track
  • the quick-connect fixing piece is arranged at the bottom end of the connecting rod and is detachably connected with the detection device
  • the wire rope fixing component is arranged at the position of the rail-holding component.
  • the wire rope fixing assembly is connected with the wire rope.
  • the inspection robot system includes a rail installation rod, the bottom of the rail installation rod is connected with the top of the rail so that the rail is suspended in the air, and the rail passes through the holding In the rail assembly, the holding rail assembly is provided with an avoidance notch for avoiding the rail mounting rod during movement.
  • the cross-section of the rail perpendicular to its extending direction is circular
  • the rail-holding assembly includes a rail-holding clip and a pulley disposed on the rail-holding clip, the pulley is fitted with the rail and can be rolled along the extending direction of the rail, the rail-holding clip is spaced apart from the rail along the radial direction of the rail, and the rail-holding clip surrounds part of the rail along the circumferential direction of the rail.
  • the number of the pulleys is multiple, a part of the pulleys is fitted with the upper half of the track, and another part of the pulleys is fitted with the lower half of the track.
  • the cable fixing assembly includes a splint, and the cable is sandwiched between the splint and the connecting rod.
  • the cable fixing assembly includes a rotating shaft and a torsion spring, a first installation hole is formed on the splint, a second installation hole is formed on the connecting rod, and the rotating shaft passes through the first installation hole.
  • An installation hole and the second installation hole, the splint can rotate around the rotating shaft, and the rotating shaft passes through the torsion spring.
  • the connecting rod is provided with a cable groove
  • the splint is provided with a limiting boss protruding toward the steel cable
  • the limiting boss is in contact with the steel cable to restrict the The wire rope is pressed against the wire rope groove.
  • the detection device includes an inspection device body and a positioning plate, the positioning plate and the detection device body are surrounded to form a quick-connection socket, the bottom side of the quick-connection socket is open, and part of the A positioning groove is formed at the lower end of the positioning plate, and the quick-connect fixing member includes a plug-in plate, a positioning protrusion and a support plate, the support plate is arranged in a horizontal direction and is connected with the connecting rod, and the plug The connecting plate is arranged at one end of the supporting plate away from the connecting rod, the positioning protrusion protrudes from the upper surface of the supporting plate and is located between the connecting rod and the plug-in board, and the The detection device can move from top to bottom so that the plug board is inserted into the quick connection hole until the positioning protrusion is inserted into the positioning groove, and the upper surface of the support board is in contact with the The lower surface of the positioning plate abuts.
  • the inspection robot system includes a wireless charging device
  • the wireless charging device includes a telescopic pile and a wireless charger for wirelessly charging the detection device
  • the wireless charger is arranged on the On the telescopic pile, the telescopic pile can drive the wireless charger to move in the up and down direction.
  • the environmental image information obtained by the detection device in the embodiment of the present invention can be transmitted to the display or data processing device outside the well in real time, and the user or the data processing device can analyze whether there are problems such as idler vibration, belt slippage, belt tearing, etc., so as to remotely Judging whether there is an abnormality in the underground belt conveyor, there is no need for personnel to check in real time on site, which reduces labor costs and avoids the potential safety hazards caused by personnel conducting long-term inspections in the underground.
  • the wire rope directly pulls the detection device through the connecting device, so that the detection device can move along the extension direction of the track. Compared with the fixed-point camera monitoring method, the continuously moving detection device has a wider detection range, which improves the working condition of the underground belt conveyor. perception ability.
  • the electric energy in the detection device only needs to be supplied to the relevant detection equipment, and there is no need to drive the connecting device to move on the track through the electric energy, which reduces the loss of electric energy in the detection device and prolongs the service time of the detection device.
  • the power of the detection device is uniformly derived from the steel cable, which avoids the problem of insufficient battery life when the detection device adopts its own power due to the need to detect the underground belt conveyor under complex conditions such as long installation distance, many uphill sections, and many curves.
  • the additional driving mechanism and battery are arranged in the detection device, which increases the weight and volume of the detection device, reduces the number of parts, reduces the workload of installation, debugging and maintenance, and reduces the structural strength requirements of the track.
  • the detection device, the track, the traction device, the connecting device and the multi-axis manipulator are suspended in the air, which avoids the interference of the movement between the inspection robot system and the underground belt conveyor when it is installed on the ground, and also prevents the inspection.
  • Robotic systems hinder personnel access to underground belt conveyors.
  • the connecting device moves on the track and is supported by the track, thus suppressing the shaking of the wire rope transmitted to the connecting device during the running process, providing a more stable working environment for the camera set in the detection device, and reducing the burden caused by this.
  • the inaccurate focus of the camera caused by the constantly changing position of the incoming detection device improves the accuracy of data collection of the detection device.
  • the embodiment of the present invention combines a multi-axis manipulator with a detection device, and utilizes the multi-degree of freedom and large activity radius of the multi-axis manipulator.
  • the multi-axis manipulator can move the detection device to the approximate fault position, which avoids the situation that the detection device cannot judge the fault due to the long distance or the occlusion of other parts on the underground belt conveyor.
  • More detailed data can be collected in close proximity, and combined with the continuous movement of the connecting device on the track, the embodiment of the present invention can carry out more detailed detection of the underground belt conveyor compared with the traditional manual inspection and fixed-point camera monitoring, and realize Real-time and large-scale monitoring of the working status of the underground belt conveyor improves the efficiency of troubleshooting.
  • FIG. 1 is a schematic diagram of an inspection robot system in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the connection of a steel cable, a rail, a connection device and a detection device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the connection of the rail-holding assembly, the connecting rod and the rail mounting rod in an embodiment of the present invention
  • Fig. 4 is the enlarged schematic diagram of A position in Fig. 2;
  • FIG. 5 is a schematic diagram of a detection device and a quick-connect fixing member according to an embodiment of the present invention.
  • Inspection robot system 10 detection device 11; detection device body 111; positioning plate 112; quick connection socket 112a; positioning groove 112b; track 12; traction device 13; driver 1312; steel wire 132; connecting device 14; rail holding assembly 141; avoidance gap 141a; rail holding clip 1411; pulley 1412; wire rope fixing assembly 142; Quick connection fixing part 143; supporting plate 1431; positioning protrusion 1432; plug-in plate 1433; connecting rod 144; cable groove 144a; 20.
  • the inspection robot system 10 includes a detection device 11, a rail 12, a traction device 13, a connection device 14, and a multi-axis manipulator 15.
  • the detection device 11 can obtain at least environmental image information; the track 12 is suspended in the air; the traction device 13 includes a wire rope 132 and a wire rope driving assembly 131, the wire rope driving assembly 131 is connected with the wire rope 132 and drives the wire rope 132 along the axis of the wire rope 132
  • the connecting device 14 is slidably connected with the track 12, the detection device 11 is arranged on the connecting device 14, and the connecting device 14 is connected with the wire 132 and can move along the track 12 under the traction of the wire 132; at least part of the connecting device 14
  • a multi-axis manipulator 15 is configured, and the multi-axis manipulator 15 can carry the detection device 11 to move the detection device 11 relative to the track 12 .
  • the environmental image information obtained by the detection device 11 can be transmitted to the display or data processing device outside the well in real time, and the user or the data processing device can analyze whether there are problems such as roller vibration, belt slippage, belt tearing, etc., so as to remotely judge the underground belt conveyor. 20 Whether there is an abnormality, there is no need for personnel to check in real time on site, which reduces labor costs and avoids the potential safety hazards caused by personnel conducting long-term inspection operations in the well.
  • the wire rope 132 directly pulls the detection device 11 through the connecting device 14, so that the detection device 11 can move along the extension direction of the track 12.
  • the constantly moving detection device 11 has a wider detection range, which improves the accuracy of the detection.
  • the electric energy in the detection device 11 only needs to be supplied to the relevant detection equipment, and there is no need to drive the connection device 14 to move on the track 12 through the electric energy, which reduces the consumption of electric energy in the detection device 11 and prolongs the service time of the detection device 11 .
  • the power of the detection device 11 is uniformly derived from the steel cable 132, which avoids the need to detect the underground belt conveyor 20 under complex working conditions such as long installation distance, many uphill sections, and many curves when the detection device 11 adopts its own power.
  • the detection device 11 , the track 12 , the traction device 13 , the connection device 14 and the multi-axis manipulator 15 are suspended in the air, which avoids the movement interference between the inspection robot system 10 and the underground belt conveyor 20 when installed on the ground.
  • the inspection robot system 10 is prevented from obstructing personnel when inspecting the underground belt conveyor 20 .
  • the connecting device 14 moves on the track 12 and is supported by the track 12 , thereby suppressing the vibration transmitted to the connecting device 14 during the operation of the wire rope 132 , and providing a more stable working environment for the camera set in the detection device 11 , the problems such as inaccurate focus of the camera caused by the constant change of the position of the detection device 11 are alleviated, and the accuracy of the data collection of the detection device 11 is improved.
  • the multi-axis manipulator 15 is combined with the detection device 11, and the multi-axis manipulator 15 can carry the detection device 11 to move in a wide range and at multiple angles by utilizing the multi-degree of freedom and large activity radius of the multi-axis manipulator 15.
  • the multi-axis manipulator 15 can move the detection device 11 to the approximate fault position, so as to avoid the detection device 11 from being far away or other parts on the underground belt conveyor 20 from being damaged.
  • the detection device 11 can be approached to collect more detailed data, and then combined with the connecting device 14 to continuously move on the track 12, the embodiment of the present invention is compared with the traditional manual inspection and fixed-point camera monitoring combined method
  • the underground belt conveyor 20 can be inspected in more detail, the real-time and large-scale monitoring of the working state of the underground belt conveyor 20 is realized, and the troubleshooting efficiency is improved.
  • the detection device 11 can be directly fixed on the multi-axis manipulator 15; or when the work is required, the multi-axis manipulator 15 can remove the detection device 11 from other positions of the connecting device 14. Remove.
  • the detection device 11 can also acquire a variety of environmental information data by adding other sensors.
  • a thermal imaging camera can be added to the detection device 11 to monitor the heating of various parts of the underground belt conveyor 20, especially the moving structure. According to the abnormal heating situation, the lubrication or failure of the parts can be predicted in advance; an air molecule detector can also be added to the detection device 11 to analyze the content of toxic gases such as gas in the underground air in real time, so as to improve the safety of underground operations;
  • a sound collection device such as a microphone is installed on the device 11 to determine whether there is abnormal noise during the operation of the underground belt conveyor 20, so as to determine whether the underground belt conveyor 20 is faulty.
  • connection devices 14 and a plurality of detection devices 11 can be provided, and the detection devices 11 and the connection devices 14 are installed in a one-to-one correspondence and move continuously on the track 12, thereby increasing the rate of detection data update and avoiding the need for a single detection device.
  • the detection device 11 fails, there are false alarms and omissions of the operation problem of the underground belt conveyor 20 , which improves the safety redundancy of the inspection robot system 10 .
  • a multi-axis robot arm 15 can be configured on each connection device 14 to facilitate rapid and detailed inspection of problematic locations on the downhole belt conveyor 20; it is also possible to configure only one multi-axis robot arm on some of the connection devices 14. 15. After the detection device 11 on the other connection devices 14 determines that there may be a problem and records the position, the connection device 14 to be equipped with the multi-axis robot hand 15 moves to the position and then performs detailed detection.
  • the installation and extension direction of the underground belt conveyor 20 is adapted to the extension direction of the part of the track 12 , so that the moving range of the connecting device 14 can cover the entire installation range of the underground belt conveyor 20 , avoiding areas that are missed during inspection.
  • the track 12 is in the form of a closed loop
  • the wire rope driving assembly 131 includes two traction sheaves 1311 and two wheel drives 1312 for driving the traction sheaves 1311 to rotate
  • the wire rope 132 and the two The circumferential arc surfaces of each traction sheave 1311 fit together to form a closed ring.
  • the track 12 and the steel cable 132 are arranged in a ring shape, so that the connecting device 14 can always move cyclically along the track 12 in the same direction, thereby expanding the detection range of a single detection device 11 .
  • multiple detection devices 11 can be mutually backup, and the same position on the underground belt conveyor 20 can be scanned by all the detection devices 11, which reduces the probability of false alarms and omissions of the inspection robot system 10.
  • the wheel drive 1312 can be composed of a motor and a reducer, and can also be driven by a permanent magnet motor for variable frequency speed regulation, so as to adapt to the load required to be pulled by the wire rope 132 and the moving speed required by the detection device 11 .
  • the wheel disc driver 1312 can be suspended and fixed on the top of the mine tunnel or roadway, or a gantry bracket can be set in the mine road or the roadway, and the wheel disc driver 1312 can be suspended and fixed on the gantry bracket.
  • a clamping groove (not shown in the figure) is provided in the circumferential direction of the traction sheave 1311, and at least part of the steel cable 132 is fitted in the clamping groove.
  • the frictional force of the wire rope 132 prevents slippage between the traction sheave 1311 and the wire rope 132 during the rolling process, and improves the transmission efficiency between the traction sheave 1311 and the wire rope 132;
  • the wall supports the wire rope 132 to prevent the wire rope 132 from sliding down under the influence of its own gravity or shaking.
  • the connecting device 14 includes a rail-holding assembly 141 , a wire rope fixing assembly 142 , a quick-connect fixing member 143 and a connecting rod 144 .
  • 141 is in contact with the track 12 and can be moved on the track 12.
  • the quick-connect fixing member 143 is arranged at the bottom end of the connecting rod 144 and is detachably connected with the detection device 11.
  • the wire rope fixing assembly 142 is connected with the wire rope 132 .
  • the rail-holding assembly 141, the wire-cable fixing assembly 142 and the quick-connecting fixing member 143 are arranged at intervals in the up-down direction, so that they are separately connected to the track 12, the wire-cable 132 and the detection device 11 to prevent the interference of the respective connections and facilitate the installation by the user;
  • the components on the connecting device 14, the track 12, the wire rope 132 and the detection device 11 are arranged in the up and down direction, which reduces the projected area of the inspection robot system 10 in the up and down direction, and reduces the width of the mine or roadway.
  • the detection device 11 is suspended at the lowest position, which reduces the interference of other components on the inspection robot system 10 to the movement of the detection device 11 and the blocking of the detection range of the detection device 11 .
  • the inspection robot system 10 includes a rail mounting rod 16 , the bottom of the rail mounting rod 16 is connected with the top of the rail 12 to suspend the rail 12 in the air, and the rail 12 passes through the rail-holding assembly In 141, the rail-holding assembly 141 is provided with an avoidance notch 141a for avoiding the rail mounting rod 16 during movement.
  • the rail mounting rod 16 can fix the rail 12 in the air, so that the connection device 14, the detection device 11 and the multi-axis robot arm 15 can be suspended in the air.
  • the connecting device 14 can move on the rail 12 without interruption.
  • the top of the rail mounting rod 16 is fixed on the top of the mine or roadway, or a bracket or a roof can be set in the mine or roadway, and the top of the rail installation rod 16 is fixed on the bracket or the roof.
  • the cross section of the rail 12 perpendicular to its extending direction is circular
  • the rail-holding assembly 141 includes a rail-holding clip 1411 and a pulley 1412 disposed on the rail-holding clip 1411 , and the pulley 1412 is attached to the rail 12 . It can be rolled along the extending direction of the rail 12 , the rail-holding clip 1411 is spaced apart from the rail 12 along the radial direction of the rail 12 , and the rail-holding clip 1411 surrounds part of the rail 12 along the circumference of the rail 12 .
  • the circular cross section of the rail 12 can reduce the stress concentration generated when the rail 12 supports the connecting device 14 , reduce the damage to the surface of the rail 12 caused by the pressure exerted by the connecting device 14 , and improve the service life of the rail 12 .
  • the pulley 1412 reduces the resistance of the connecting device 14 moving on the track 12 , reduces the load of the wire rope driving assembly 131 and the noise during operation, and prolongs the service life of the wire rope 132 .
  • the rail-holding clip 1411 surrounds the partially circular track 12 , which can reduce the probability of derailment of the rail-holding assembly 141 during the movement of the connecting device 14 .
  • the rails 12 can be formed by connecting standard-sized round steel pipes, and the use of hollow steel pipes can reduce the structural weight of the rails 12.
  • the standard-sized round steel pipes are convenient for procurement, which is conducive to reducing manufacturing costs.
  • the number of pulleys 1412 is plural.
  • the plurality of pulleys 1412 are in contact with the track 12 , which can reduce the pressure exerted by the connecting device 14 on the track 12 and improve the service life of the track 12 and the pulleys 1412 .
  • the plurality of pulleys 1412 may be arranged at intervals along the extending direction of the rail 12, or may be arranged at intervals along the up-down direction.
  • the plurality of pulleys 1412 can be attached to the rail 12 from different directions, so that the connection between the rail-holding assembly 141 and the rail 12 is more stable.
  • a portion of the pulleys 1412 are fitted with the upper half of the track 12
  • another portion of the pulleys 1412 are fitted with the lower half of the track 12 .
  • the plurality of pulleys 1412 are attached to the rail 12 from the upper and lower directions, which can suppress the gap between the pulleys 1412 and the rail 12 caused by the vibration generated in the up and down direction, so that the pulleys 1412 and the rail 12 are always in contact with each other.
  • a plurality of pulleys 1412 are arranged at equal intervals along the circumference of the track 12, and the pulleys 1412 are respectively symmetrical with respect to a plane perpendicular to the section of the track 12 along the extending direction.
  • the above arrangement completely limits the degree of freedom of the rail-holding assembly 141 along the radial direction of the rail 12, suppresses the impact of vibrations in various directions on the fitting relationship between the pulley 1412 and the rail 12, and improves the movement of the rail-holding assembly 141. stability.
  • the wire rope fixing assembly 142 can be configured to be fixedly connected to the wire rope 132 , or can be configured to be detachably connected to the wire rope 132 .
  • the cable fixing assembly 142 includes a splint 1421 with the cable 132 sandwiched between the splint 1421 and the connecting rod 144 .
  • the connecting device 14 can be removed from the wire rope 132 to facilitate daily maintenance;
  • the connection position is adjusted so as to adjust the spacing between the connection devices 14 according to the actual situation on site.
  • the splint 1421 and the connecting rod 144 can be connected by adjusting screws (not shown in the figure), and the distance between the splint 1421 and the connecting rod 144 can be adjusted by the screwing of the adjusting screw, so as to realize the change of clamping tightness.
  • a reset mechanism can also be provided between the splint 1421 and the connecting rod 144 , so that the splint 1421 and the connecting rod 144 can be quickly assembled and disassembled.
  • the cable fixing assembly 142 includes a rotating shaft 1422 and a torsion spring 1423 , a first mounting hole (not shown in the figure) is provided on the splint 1421 , and a second mounting hole is provided on the connecting rod 144 An installation hole (not shown in the figure), the rotating shaft 1422 passes through the first installation hole and the second installation hole, the splint 1421 can rotate around the rotating shaft 1422, and the rotating shaft 1422 passes through the torsion spring 1423.
  • the torsion force generated by the torsion spring 1423 makes the steel cable 132 stably clamped between the clamping plate 1421 and the connecting rod 144.
  • the clamping plate 1421 is pushed to open relative to the connecting rod 144. As a result, the connecting device 14 is moved relative to the wire rope 132 .
  • Auxiliary structures can be provided on the clamping plate 1421 and the connecting rod 144 to clamp the wire rope 132 more firmly.
  • the connecting rod 144 is provided with a cable groove 144 a
  • the clamping plate 1421 is provided with a limiting boss 1424 protruding toward the steel cable 132
  • the limiting boss 1424 and the steel cable 132 are provided with a limiting boss 1424 .
  • the abutment abuts the wire rope 132 in the wire rope groove 144a.
  • the friction force between the wire rope 132 and the connecting rod 144 is increased by the wire rope groove 144 a, which prevents the wire rope 132 from sliding on the connecting rod 144 and prevents the wire rope 132 from coming out between the clamping plate 1421 and the connecting rod 144 .
  • the position where the limiting boss 1424 abuts against the wire rope 132 can be set to be in a similar shape to the outer surface of the wire rope 132 to further increase the contact area and improve the frictional force.
  • a quick connection structure is adopted between the detection device 11 and the quick connection fixing member 143 , which is convenient for personnel to overhaul or to pick and place the multi-axis robot hand 15 .
  • the detection device 11 includes an inspection device body 111 and a positioning plate 112 .
  • the positioning plate 112 and the detection device body 111 surround a quick-connection socket 112 a , and the bottom side of the quick-connection socket 112 a is formed.
  • a positioning groove 112b is formed at the lower end of part of the positioning plate 112
  • the quick-connect fixing member 143 includes a plug-in plate 1433, a positioning protrusion 1432 and a supporting plate 1431.
  • the supporting plate 1431 is arranged in the horizontal direction and is connected with the connecting rod 144.
  • the plug board 1433 is arranged on the end of the support board 1431 away from the connecting rod 144, the positioning protrusion 1432 protrudes from the upper surface of the support board 1431 and is located between the connecting rod 144 and the plug board 1433, the detection device 11 can Move from top to bottom to insert the plug-in board 1433 into the quick-connect hole 112 a until the positioning protrusion 1432 is inserted into the positioning groove 112 b and the upper surface of the support plate 1431 abuts against the lower surface of the positioning plate 112 .
  • the upper surface of the support plate 1431 is in contact with the lower surface of the positioning plate 112, so that the detection device 11 is supported in the up-down direction.
  • the positioning between the lifter 1432 and the positioning plate 112 jointly realizes a fast and stable connection between the detection device 11 and the quick-connect fixing member 143 .
  • the gap tolerance between the plug-in board 1433 and the positioning plate 112 and the detection device body 111 is relatively large, which is convenient for the plug-in board 1433 to be inserted into the quick-connect jack 112a, and the gap between the positioning protrusion 1432 and the positioning groove 112b.
  • the tolerance is small, which facilitates the installation and positioning of the detection device 11, and prevents shaking from affecting data collection.
  • the continuous working time of the detection device 11 can be increased by increasing the capacity of the battery in the detection device 11 or by adopting a fast charging method.
  • the inspection robot system 10 includes a wireless charging device 17
  • the wireless charging device 17 includes a telescopic pile (shown in the figure) and a wireless charging device for wirelessly charging the detection device 11 .
  • the charger (not shown in the figure), the wireless charger is arranged on the telescopic pile, and the telescopic pile can drive the wireless charger to move in the up and down direction.
  • the request for charging is sent to the control system of the inspection robot system 10 through technologies such as RFID (Radio Frequency Identification) or NFC (Near Field Communication) , the control system controls the detection device 11 to move above the wireless charging device 17 , and controls the telescopic pile to extend and retract so that the distance between the wireless charger and the detection device 11 is within the distance of wireless charging, and then the detection device 11 is charged.
  • the telescopic pile drives the wireless charger to move up and down, so that the wireless charger keeps a long distance from the detection device 11 under normal conditions, so as to avoid interfering with the movement and detection of the detection device 11 . In the above manner, the detection device 11 can work for a long time without stopping the machine.
  • the embodiment of the present invention can perform more detailed detection on the underground belt conveyor, realize real-time and large-scale monitoring of the working state of the underground belt conveyor, and improve the efficiency of troubleshooting .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

一种巡检机器人系统,包括检测装置、轨道、牵引装置、连接装置和多轴机械手,检测装置至少可以获取环境图像信息,轨道悬置于空中,牵引装置包括钢索和钢索驱动组件,钢索驱动组件与钢索连接并驱动钢索沿所述钢索的轴向移动,连接装置与轨道滑动连接,检测装置设置于连接装置上,连接装置与钢索连接并可在钢索的牵引下沿轨道移动,至少部分连接装置上配置有多轴机械手,多轴机械手可以携带检测装置使检测装置相对轨道移动。

Description

一种巡检机器人系统
相关申请的交叉引用
本申请基于申请号为202110296522.0、申请日为2021年3月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及矿用设备领域,特别涉及一种巡检机器人系统。
背景技术
井下带式运输机是煤矿生产的重要设备,其设备运行状态直接影响到煤矿的生产效率。
井下带式运输机在运行过程容易出现皮带撕裂、皮带跑偏、皮带打滑、托辊磨损等问题。井下带式运输机一旦在工作过程中出现问题,轻则影响煤矿输送效率,重则危及井下工作人员的生命安全。因此,在井下生产的过程中,需要对井下带式运输机的工作状态进行监测,实现故障预警。
目前,井下带式运输机的巡检方式主要以人工巡检和定点摄像头监控相结合的方式为主,采用人工巡检方式一方面增加了企业的人力成本,另一方面,井下带式运输机往往安装距离长、安装位置环境阴暗、工作噪音大、工位狭小,不利于巡检人员进行较为全面的检测,也容易使巡检人员工作疲劳,增大安全生产风险。采用定点摄像头监控往往只能监视一些重点区域,不能全面掌控整个设备的运行情况,存在较大隐患。
发明内容
有鉴于此,本申请实施例期望提供一种巡检机器人系统,能够降低企业用工成本的同时,解决人工巡检和定点摄像头监控难以实现实时、大范围监控的问题。
为达到上述目的,本申请实施例提供一种巡检机器人系统,包括:
检测装置,所述检测装置至少可以获取环境图像信息;
轨道,所述轨道悬置于空中;
牵引装置,所述牵引装置包括钢索和钢索驱动组件,所述钢索驱动组件与所述钢索连接并驱动所述钢索沿所述钢索的轴向移动;
连接装置,所述连接装置与所述轨道滑动连接,所述检测装置设置于所述连接装置上,所述连接装置与所述钢索连接并可在所述钢索的牵引下沿所述轨道移动;
至少部分所述连接装置上配置有多轴机械手,所述多轴机械手可以携带所述检测装置使所述检测装置相对所述轨道移动。
在一些实施例中,所述轨道呈闭合的环形,所述钢索驱动组件包括两个牵引轮盘以及两个用于驱动所述牵引轮盘转动的轮盘驱动器,所述钢索与两个所述牵引轮盘的周向弧面贴合并形成闭合的环形。
在一些实施例中,所述连接装置包括抱轨组件、钢索固定组件、快接固定件和连接杆,所述抱轨组件设置在所述连接杆的顶端,所述抱轨组件与所述轨道接触并可在所述轨道上移动,所述快接固定件设置在所述连接杆的底端且与所述检测装置可拆卸连接,所述钢索固定组件设置在位于所述抱轨组件和所述快接固定件之间的所述连接杆上,所述钢索固定组件与所述钢索连接。
在一些实施例中,所述巡检机器人系统包括轨道安装杆,所述轨道安装杆的底部与所述轨道的顶部连接以使所述轨道悬置于空中,所述轨道穿 设于所述抱轨组件中,所述抱轨组件上设有在移动中避让所述轨道安装杆的避让缺口。
在一些实施例中,所述轨道垂直于其延伸方向的截面为圆形,所述抱轨组件包括抱轨夹和设置于所述抱轨夹上的滑轮,所述滑轮与所述轨道贴合且可以沿所述轨道的延伸方向滚动,所述抱轨夹沿所述轨道的径向与所述轨道间隔设置,且所述抱轨夹沿所述轨道的周向环绕部分所述轨道。
在一些实施例中,所述滑轮的数量为多个,一部分所述滑轮与所述轨道的上半部分贴合,另一部分所述滑轮与所述轨道的下半部分贴合。
在一些实施例中,所述钢索固定组件包括夹板,所述钢索夹设在所述夹板和所述连接杆之间。
在一些实施例中,所述钢索固定组件包括转轴和扭簧,所述夹板上设有第一安装孔,所述连接杆上设有第二安装孔,所述转轴穿设于所述第一安装孔和所述第二安装孔,所述夹板可以围绕所述转轴转动,所述转轴穿设在所述扭簧中。
在一些实施例中,所述连接杆上设有钢索槽,所述夹板设有朝向所述钢索凸出的限位凸台,所述限位凸台与所述钢索抵接将所述钢索抵紧在所述钢索槽中。
在一些实施例中,所述检测装置包括检查装置本体和定位板,所述定位板与所述检测装置本体围设形成快接插孔,所述快接插孔的底侧敞开,部分所述定位板的下端端部形成定位凹槽,所述快接固定件包括插接板、定位凸起和承托板,所述承托板沿水平方向布置且与所述连接杆相连,所述插接板设置于所述承托板远离所述连接杆的一端,所述定位凸起凸出于所述承托板的上表面且位于所述连接杆和所述插接板之间,所述检测装置可以自上而下地移动以使所述插接板插入所述快接插孔中,直至所述定位凸起插入所述定位凹槽内,以及所述承托板的上表面与所述定位板的下表 面抵接。
在一些实施例中,所述巡检机器人系统包括无线充电装置,所述无线充电装置包括伸缩桩和用于对所述检测装置进行无线充电的无线充电器,所述无线充电器设置在所述伸缩桩上,所述伸缩桩能够带动所述无线充电器沿上下方向移动。
本发明实施例中的检测装置获取的环境图像信息可以实时传输给井外的显示器或者数据处理装置,由用户或者数据处理装置分析是否存在托辊震动、皮带打滑、皮带撕裂等问题,从而远程判断井下带式运输机是否存在异常,无需人员在现场实时检查,降低了人力成本,避免了人员在井下长期巡查作业而带来的安全隐患。钢索通过连接装置直接牵引检测装置,使检测装置可以沿轨道的延伸方向运动,相比定点摄像头监控的方式,不断移动的检测装置具有更加广阔的检测范围,提高了对井下带式运输机工作状态的感知能力。
另外,检测装置内的电能只需供应相关探测设备所需,而无需通过电能驱动连接装置在轨道上移动,减少了检测装置内电能的损耗,延长了检测装置的使用时间。检测装置的动力统一来源自钢索,避免了检测装置采用自带动力时因需要检测处于安装距离长、上坡路段多、弯道多等复杂工况下的井下带式运输机而面临的续航不足问题,防止因单个检测装置丧失动力停止在轨道上而阻挡后续检测装置的巡检,也避免检测装置在移动过程中因采用外接电源线而发生线缆纠缠,提高了检测装置移动的灵活性,避免了在检测装置内设置额外的驱动机构和电池而造成检测装置的重量和体积增大,减少了零部件数量,降低了安装、调试和检修的工作量,降低了轨道的结构强度要求。
再者,检测装置、轨道、牵引装置、连接装置和多轴机械手悬置于空中,避免了安装在地面上时巡检机器人系统与井下带式运输机之间的运动 发生干涉,也防止了巡检机器人系统对人员检修井下带式运输机时造成阻碍。连接装置在轨道上移动并受到轨道的支撑,从而抑制了钢索运行过程中传导到连接装置上的晃动,为设置在检测装置中的摄像头提供了更为稳定的工作环境,减轻了由此带来的检测装置位置不断变化引发的摄像头对焦不准确等问题,提高了检测装置数据收集的准确性。
本发明实施例将多轴机械手与检测装置结合起来,利用多轴机械手多自由度、活动半径大的特点,多轴机械手可以携带检测装置进行大范围、多角度地移动,使检测装置在判断了井下带式运输机的大致故障位置后,多轴机械手可以将检测装置移动到大致故障位置,避免了检测装置因距离远或者井下带式运输机上其它零件的遮挡而无法判断故障的情况,使检测装置可以抵近收集更加详实的数据,再结合连接装置在轨道上不断运动,本发明实施例相比传统人工巡检和定点摄像头监控相结合方式能够对井下带式运输机进行更为详细的检测,实现对井下带式运输机工作状态的实时、大范围监控,提高了排故效率。
附图说明
图1为本发明一实施例中巡检机器人系统的示意图;
图2为本发明一实施例中钢索、轨道、连接装置及检测装置的连接示意图;
图3为本发明一实施例中抱轨组件、连接杆及轨道安装杆的连接示意图;
图4为图2中A位置的放大示意图;
图5为本发明一实施例中检测装置与快接固定件的示意图。
附图标记说明
巡检机器人系统10;检测装置11;检测装置本体111;定位板112;快接插孔112a;定位凹槽112b;轨道12;牵引装置13;钢索驱动组件131; 牵引轮盘1311;轮盘驱动器1312;钢索132;连接装置14;抱轨组件141;避让缺口141a;抱轨夹1411;滑轮1412;钢索固定组件142;夹板1421;转轴1422;扭簧1423;限位凸台1424;快接固定件143;承托板1431;定位凸起1432;插接板1433;连接杆144;钢索槽144a;多轴机器手15;轨道安装杆16;无线充电装置17;井下带式运输机20。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。
在本申请的描述中,“上”、“下”、“顶”、“底”、“水平方向”方位或位置关系为基于附图1所示的方位或位置关系,需要理解的是,这些方位术语仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本发明实施例提供了一种巡检机器人系统10,参阅图1至图5,巡检机器人系统10该包括检测装置11、轨道12、牵引装置13、连接装置14和多轴机械手15,检测装置11至少可以获取环境图像信息;轨道12悬置于空中;牵引装置13包括钢索132和钢索驱动组件131,钢索驱动组件131与钢索132连接并驱动钢索132沿钢索132的轴向移动;连接装置14与轨道12滑动连接,检测装置11设置于连接装置14上,连接装置14与钢索132连接并可在钢索132的牵引下沿轨道12移动;至少部分连接装置14上配置有多轴机械手15,多轴机械手15可以携带检测装置11使检测装置11相对轨道12移动。
检测装置11获取的环境图像信息可以实时传输给井外的显示器或者数据处理装置,由用户或者数据处理装置分析是否存在托辊震动、皮带打滑、 皮带撕裂等问题,从而远程判断井下带式运输机20是否存在异常,无需人员在现场实时检查,降低了人力成本,避免了人员在井下长期巡查作业而带来的安全隐患。
钢索132通过连接装置14直接牵引检测装置11,使检测装置11可以沿轨道12的延伸方向运动,相比定点摄像头监控的方式,不断移动的检测装置11具有更加广阔的检测范围,提高了对井下带式运输机20工作状态的感知能力。
检测装置11内的电能只需供应相关探测设备所需,而无需通过电能驱动连接装置14在轨道12上移动,减少了检测装置11内电能的损耗,延长了检测装置11的使用时间。检测装置11的动力统一来源自钢索132,避免了检测装置11采用自带动力时因需要检测处于安装距离长、上坡路段多、弯道多等复杂工况下的井下带式运输机20而面临的续航不足问题,防止因单个检测装置11丧失动力停止在轨道12上而阻挡后续检测装置11的巡检,也避免检测装置11采用外接电源线而发生线缆纠缠,提高了检测装置11移动的灵活性,另外,避免了在检测装置11内设置额外的驱动机构和电池而造成检测装置11的重量和体积增大,减少了零部件数量,降低了安装、调试和检修的工作量,降低了轨道12的结构强度要求。
检测装置11、轨道12、牵引装置13、连接装置14和多轴机械手15悬置于空中,避免了安装在地面上时巡检机器人系统10与井下带式运输机20之间的运动发生干涉,也防止了巡检机器人系统10对人员检修井下带式运输机20时造成阻碍。
连接装置14在轨道12上移动并受到轨道12的支撑,从而抑制了钢索132运行过程中传导到连接装置14上的晃动,为设置在检测装置11中的摄像头提供了更为稳定的工作环境,减轻了由此带来的检测装置11位置不断变化引发的摄像头对焦不准确等问题,提高了检测装置11数据收集的准确 性。
本发明实施例将多轴机械手15与检测装置11结合起来,利用多轴机械手15多自由度、活动半径大的特点,多轴机械手15可以携带检测装置11进行大范围、多角度地移动,使检测装置11在判断了井下带式运输机20的大致故障位置后,多轴机械手15可以将检测装置11移动到大致故障位置,避免了检测装置11因距离远或者井下带式运输机20上其它零件的遮挡而无法判断故障的情况,使检测装置11可以抵近收集更加详实的数据,再结合连接装置14在轨道12上不断运动,本发明实施例相比传统人工巡检和定点摄像头监控相结合方式能够对井下带式运输机20进行更为详细的检测,实现对井下带式运输机20工作状态的实时、大范围监控,提高了排故效率。
在配置有多轴机械手15的连接装置14上,检测装置11可以直接固定于多轴机械手15上;也可以在需要工作时,由多轴机械手15将检测装置11从连接装置14的其他位置上取下。
检测装置11还可以通过增加其他传感器的方式获取多种环境信息数据,例如,可以在检测装置11上增设热成像相机,对井下带式运输机20各零件,尤其是运动结构的发热情况进行监控,根据异常发热情况来提前预知零件的润滑或者故障情况;也可以在检测装置11上增设空气分子检测仪来实时分析井下空气中瓦斯等有毒气体的含量,提高井下作业的安全性;还可以在检测装置11上装设麦克风等声音收集装置来判断井下带式运输机20的运转过程中是否存在异响,从而判断井下带式运输机20是否存在故障。
可以理解的是,可以设置多个连接装置14和多个检测装置11,检测装置11与连接装置14一一对应安装并在轨道12上不断移动,从而提高检测数据更新的速率,避免了因单一检测装置11出现故障,而出现井下带式运输机20运行问题的误报、漏报,提高了巡检机器人系统10的安全冗余。
可以在每个连接装置14上配置一台多轴机器手15,便于迅速对井下带式运输机20上存在问题的位置进行详细检查;也可以仅在部分连接装置14上配置一台多轴机器手15,在其余连接装置14上的检测装置11判断可能出现问题并记录位置后,待配置有多轴机器手15的连接装置14移动到该位置再进行详细检测。
井下带式运输机20的安装延伸方向与部分轨道12的延伸方向相适配,使得连接装置14的移动范围能够涵盖井下带式运输机20的全部安装范围,避免巡检中出现遗漏的区域。
具体地,在一些实施例中,轨道12呈闭合的环形,钢索驱动组件131包括两个牵引轮盘1311以及两个用于驱动牵引轮盘1311转动的轮盘驱动器1312,钢索132与两个牵引轮盘1311的周向弧面贴合并形成闭合的环形。轨道12以及钢索132呈环形布置,使连接装置14可以始终顺着同一方向沿轨道12循环移动,扩大了单个检测装置11的检测范围。另外,多个检测装置11之间可以互为备份,对井下带式运输机20上同一位置可以由所有检测装置11完成扫描,减低了巡检机器人系统10误报、漏报故障的概率。
轮盘驱动器1312可以由电机及减速机组合而成,也可以由永磁电机作为驱动进行变频调速,以适应钢索132所需牵引的负载以及检测装置11所需的移动速度。
轮盘驱动器1312可以悬吊固定在矿道或者巷道顶部,也可以在矿道或者巷道内设置龙门支架,将轮盘驱动器1312悬吊固定在龙门支架上。
可以理解的是,在牵引轮盘1311的周向设置有卡槽(图中未示出),至少部分钢索132嵌合在卡槽中,一方面通过卡槽增大了牵引轮盘1311与钢索132的摩擦力,防止牵引轮盘1311在滚动的过程中与钢索132之间出现打滑,提高牵引轮盘1311与钢索132之间的传动效率;另一方面,通过 卡槽的侧壁对钢索132进行支撑,防止钢索132受自身重力影响或者抖动而滑落。
在一些实施例中,参阅图2,连接装置14包括抱轨组件141、钢索固定组件142、快接固定件143和连接杆144,抱轨组件141设置在连接杆144的顶端,抱轨组件141与轨道12接触并可在轨道12上移动,快接固定件143设置在连接杆144的底端且与检测装置11可拆卸连接,钢索固定组件142设置在位于抱轨组件141和快接固定件143之间的连接杆144上,钢索固定组件142与钢索132连接。抱轨组件141、钢索固定组件142以及快接固定件143沿上下方向间隔布置,使得它们与轨道12、钢索132以及检测装置11分开连接,防止各自的连接出现干涉,便于用户安装;同时,连接装置14上的各组件、轨道12、钢索132以及检测装置11沿上下方向布置,减小了巡检机器人系统10沿上下方向的投影面积,减小了矿道或者巷道的宽度对巡检机器人系统10安装的限制;再者,检测装置11悬吊于最低位置,减少了巡检机器人系统10上其它部件对检测装置11运动的干扰以及对检测装置11检测范围的遮挡。
在一些实施例中,参阅图3,巡检机器人系统10包括轨道安装杆16,轨道安装杆16的底部与轨道12的顶部连接以使轨道12悬置于空中,轨道12穿设于抱轨组件141中,抱轨组件141上设有在移动中避让轨道安装杆16的避让缺口141a。轨道安装杆16能够使轨道12固定于空中,便于连接装置14、检测装置11和多轴机器手15悬于空中设置。结合避让缺口141a,连接装置14可以在轨道12上不间断运动。
轨道安装杆16的顶部固定在矿道或者巷道顶部,也可以在矿道或者巷道内设置支架或者顶板,将轨道安装杆16的顶部固定在支架或者顶板上。
在一些实施例中,参阅图3,轨道12垂直于其延伸方向的截面为圆形,抱轨组件141包括抱轨夹1411和设置于抱轨夹1411上的滑轮1412,滑轮 1412与轨道12贴合且可以沿轨道12的延伸方向滚动,抱轨夹1411沿轨道12的径向与轨道12间隔设置,且抱轨夹1411沿轨道12的周向环绕部分轨道12。轨道12的截面为圆形可以减少轨道12对连接装置14支撑时所产生的应力集中,减轻连接装置14所施加的压力对轨道12表面所施加的损坏,提高轨道12的使用寿命。滑轮1412减小了连接装置14在轨道12上移动的阻力,减小了钢索驱动组件131的负载和运行过程中的噪音,延长了钢索132的使用寿命。抱轨夹1411环抱部分圆形的轨道12,能够降低抱轨组件141在连接装置14移动的过程中的脱轨概率。
可以理解的是,轨道12可以通过标准尺寸圆形钢管连接形成,采用空心钢管可以减少轨道12的结构重量,标准尺寸圆形钢管便于采购,有利于降低制造成本。
在一些实施例中,参阅图3,滑轮1412的数量为多个。多个滑轮1412与轨道12相贴合,能够减小连接装置14施加在轨道12上的压强,提高轨道12及滑轮1412的使用寿命。
可以理解的是,多个滑轮1412既可以沿轨道12的延伸方向间隔布置,也可以沿上下方向间隔布置。
多个滑轮1412可以从不同方向与轨道12相贴合,使抱轨组件141与轨道12的连接更加稳定。
具体地,在一些实施例中,参阅图3,一部分滑轮1412与轨道12的上半部分贴合,另一部分滑轮1412与轨道12的下半部分贴合。多个滑轮1412从上下两个方向与轨道12贴合,能够抑制因上下方向产生的震动而导致的滑轮1412与轨道12之间所产生的间隙,使滑轮1412与轨道12之间始终贴合。
进一步地,在一些实施例中,参阅图3,多个滑轮1412沿轨道12的周向等间距布置,且各滑轮1412之间分别关于垂直于轨道12沿延伸方向的 截面的平面对称。采用以上布置方式,完全限制了抱轨组件141沿轨道12的径向的自由度,可以抑制各个方向的震动对滑轮1412与轨道12之间贴合关系的影响,提高了抱轨组件141的移动稳定性。
钢索固定组件142可以设置为与钢索132固定连接,也可以设置为与钢索132可拆卸连接。
例如,在一些实施例中,参阅图4,钢索固定组件142包括夹板1421,钢索132夹设在夹板1421和连接杆144之间。通过调节夹板1421和连接杆144之间的夹持力度,一方面可以将连接装置14从钢索132上取下,便于日常检修;另一方面可以改变钢索132与钢索固定组件142之间连接位置,从而根据现场的实际情况调节各个连接装置14之间的间距。
夹板1421与连接杆144之间可以通过调节螺丝(图中未示出)连接,通过调节螺丝的旋合来调节夹板1421与连接杆144之间的间距,实现夹持松紧的变化。
另外,也可以在夹板1421与连接杆144之间设置复位机构,使夹板1421与连接杆144之间实现快速装拆。
例如,在一些实施例中,参阅图4,钢索固定组件142包括转轴1422和扭簧1423,夹板1421上设有第一安装孔(图中未示出),连接杆144上设有第二安装孔(图中未示出),转轴1422穿设于第一安装孔和第二安装孔,夹板1421可以围绕转轴1422转动,转轴1422穿设在扭簧1423中。通过扭簧1423产生的扭力使钢索132稳定夹设在夹板1421和连接杆144之间,当需要检修或者更改连接装置14的位置时,通过推挤夹板1421使其相对连接杆144张开,从而使连接装置14相对钢索132发生移动。
在夹板1421和连接杆144上可以设置辅助结构使对钢索132的夹持更加牢固。
具体地,在一些实施例中,参阅图4,连接杆144上设有钢索槽144a, 夹板1421设有朝向钢索132凸出的限位凸台1424,限位凸台1424与钢索132抵接将钢索132抵紧在钢索槽144a中。通过钢索槽144a增大了钢索132与连接杆144之间的摩擦力,防止钢索132在连接杆144上滑动,避免钢索132从夹板1421和连接杆144之间脱出。
限位凸台1424与钢索132抵接的位置可以设为与钢索132外表面相仿的仿形,进一步增大接触面积,提高摩擦力。
检测装置11与快接固定件143之间采用快接结构,便于人员检修或者多轴机器手15进行取放。
例如,在一些实施例中,参阅图5,检测装置11包括检查装置本体111和定位板112,定位板112与检测装置本体111围设形成快接插孔112a,快接插孔112a的底侧敞开,部分定位板112的下端端部形成定位凹槽112b,快接固定件143包括插接板1433、定位凸起1432和承托板1431,承托板1431沿水平方向布置且与连接杆144相连,插接板1433设置于承托板1431远离连接杆144的一端,定位凸起1432凸出于承托板1431的上表面且位于连接杆144和插接板1433之间,检测装置11可以自上而下地移动以使插接板1433插入快接插孔112a中,直至定位凸起1432插入定位凹槽112b内,以及承托板1431的上表面与定位板112的下表面抵接。承托板1431的上表面与定位板112的下表面抵接使检测装置11受到沿上下方向的支撑,通过插接板1433与检测装置本体111、定位板112之间的限位,以及定位凸起1432与定位板112之间的定位共同实现了检测装置11与快接固定件143之间快速、稳定连接。
可以理解的是,插接板1433与定位板112以及检测装置本体111的间隙公差较大,便于插接板1433插入快接插孔112a中,定位凸起1432与定位凹槽112b之间的间隙公差较小,便于检测装置11安装定位,防止晃动影响数据收集。
可以通过增大检测装置11内电池容量或者采用快充的方式,来提高检测装置11的持续工作时长。
具体地,在一些实施例中,参阅图1,巡检机器人系统10包括无线充电装置17,无线充电装置17包括伸缩桩(图中为示出)和用于对检测装置11进行无线充电的无线充电器(图中未示出),无线充电器设置在伸缩桩上,伸缩桩能够带动无线充电器沿上下方向移动。当某个检测装置11处于低电量状态后,通过RFID(Radio Frequency Identification,射频识别)或者NFC(Near Field Communication,近场通信)等技术将需要充电的请求发送给巡检机器人系统10的控制系统,控制系统控制该检测装置11移动至无线充电装置17的上方,并控制伸缩桩伸缩使无线充电器与该检测装置11的距离靠近至无线充电的距离内,再对该检测装置11进行充电。伸缩桩带动无线充电器上下移动,使无线充电器在正常情况下与检测装置11保持较远的距离,避免干涉检测装置11的移动和检测。通过以上方式,使检测装置11可以实现不停机长时间工作。
本申请提供的各个实施例/实施方式在不产生矛盾的情况下可以相互组合。
以上所述仅为本申请的较佳实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
本发明实施例相比传统人工巡检和定点摄像头监控相结合方式能够对井下带式运输机进行更为详细的检测,实现对井下带式运输机工作状态的实时、大范围监控,提高了排故效率。

Claims (11)

  1. 一种巡检机器人系统,所述巡检机器人系统包括
    检测装置,所述检测装置至少可以获取环境图像信息;
    轨道,所述轨道悬置于空中;
    牵引装置,所述牵引装置包括钢索和钢索驱动组件,所述钢索驱动组件与所述钢索连接并驱动所述钢索沿所述钢索的轴向移动;
    连接装置,所述连接装置与所述轨道滑动连接,所述检测装置设置于所述连接装置上,所述连接装置与所述钢索连接并可在所述钢索的牵引下沿所述轨道移动;
    至少部分所述连接装置上配置有多轴机械手,所述多轴机械手可以携带所述检测装置使所述检测装置相对所述轨道移动。
  2. 根据权利要求1所述巡检机器人系统,其中,所述轨道呈闭合的环形,所述钢索驱动组件包括两个牵引轮盘以及两个用于驱动所述牵引轮盘转动的轮盘驱动器,所述钢索与两个所述牵引轮盘的周向弧面贴合并形成闭合的环形。
  3. 根据权利要求1所述巡检机器人系统,其中,所述连接装置包括抱轨组件、钢索固定组件、快接固定件和连接杆,所述抱轨组件设置在所述连接杆的顶端,所述抱轨组件与所述轨道接触并可在所述轨道上移动,所述快接固定件设置在所述连接杆的底端且与所述检测装置可拆卸连接,所述钢索固定组件设置在位于所述抱轨组件和所述快接固定件之间的所述连接杆上,所述钢索固定组件与所述钢索连接。
  4. 根据权利要求3所述巡检机器人系统,其中,所述巡检机器人系统包括轨道安装杆,所述轨道安装杆的底部与所述轨道的顶部连接以使所述轨道悬置于空中,所述轨道穿设于所述抱轨组件中,所述抱轨组件上设有在移动中避让所述轨道安装杆的避让缺口。
  5. 根据权利要求4所述巡检机器人系统,其中,所述轨道垂直于其延伸方向的截面为圆形,所述抱轨组件包括抱轨夹和设置于所述抱轨夹上的滑轮,所述滑轮与所述轨道贴合且可以沿所述轨道的延伸方向滚动,所述抱轨夹沿所述轨道的径向与所述轨道间隔设置,且所述抱轨夹沿所述轨道的周向环绕部分所述轨道。
  6. 根据权利要求5所述巡检机器人系统,其中,所述滑轮的数量为多个,一部分所述滑轮与所述轨道的上半部分贴合,另一部分所述滑轮与所述轨道的下半部分贴合。
  7. 根据权利要求3所述巡检机器人系统,其中,所述钢索固定组件包括夹板,所述钢索夹设在所述夹板和所述连接杆之间。
  8. 根据权利要求7所述巡检机器人系统,其中,所述钢索固定组件包括转轴和扭簧,所述夹板上设有第一安装孔,所述连接杆上设有第二安装孔,所述转轴穿设于所述第一安装孔和所述第二安装孔,所述夹板可以围绕所述转轴转动,所述转轴穿设在所述扭簧中。
  9. 根据权利要求7所述巡检机器人系统,其中,所述连接杆上设有钢索槽,所述夹板设有朝向所述钢丝绳凸出的限位凸台,所述限位凸台与所述钢索抵接将所述钢索抵紧在所述钢索槽中。
  10. 根据权利要求3所述巡检机器人系统,其中,所述检测装置包括检查装置本体和定位板,所述定位板与所述检测装置本体围设形成快接插孔,所述快接插孔的底侧敞开,部分所述定位板的下端端部形成定位凹槽,所述快接固定件包括插接板、定位凸起和承托板,所述承托板沿水平方向布置且与所述连接杆相连,所述插接板设置于所述承托板远离所述连接杆的一端,所述定位凸起凸出于所述承托板的上表面且位于所述连接杆和所述插接板之间,所述检测装置可以自上而下地移动以使所述插接板插入所述快接插孔中,直至所述定位凸起插入所述定位凹槽内, 以及所述承托板的上表面与所述定位板的下表面抵接。
  11. 根据权利要求1所述巡检机器人系统,其中,所述巡检机器人系统包括无线充电装置,所述无线充电装置包括伸缩桩和用于对所述检测装置进行无线充电的无线充电器,所述无线充电器设置在所述伸缩桩上,所述伸缩桩能够带动所述无线充电器沿上下方向移动。
PCT/CN2021/098443 2021-03-19 2021-06-04 一种巡检机器人系统 WO2022193446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021006972.1T DE112021006972T5 (de) 2021-03-19 2021-06-04 Inspektionsrobotersystem
US18/282,797 US20240166449A1 (en) 2021-03-19 2021-06-04 Inspection robot system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110296522.0A CN113021305B (zh) 2021-03-19 2021-03-19 一种巡检机器人系统
CN202110296522.0 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022193446A1 true WO2022193446A1 (zh) 2022-09-22

Family

ID=76471856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098443 WO2022193446A1 (zh) 2021-03-19 2021-06-04 一种巡检机器人系统

Country Status (4)

Country Link
US (1) US20240166449A1 (zh)
CN (1) CN113021305B (zh)
DE (1) DE112021006972T5 (zh)
WO (1) WO2022193446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565087A (zh) * 2024-01-16 2024-02-20 陕西开来机电设备制造有限公司 Ai视觉矿用固定监测机器人及其监测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378842B (zh) * 2021-12-30 2023-12-01 北京中煤矿山工程有限公司 一种煤矿立井机器人绳轨驱动装置
CN118456382B (zh) * 2024-07-10 2024-09-03 深圳壹智云科技有限公司 一种用于柔性轨道吊挂式机器人的安全防护机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216608A (ja) * 1988-04-21 1990-01-19 Mannesmann Ag レール式作業機器
JPH05333191A (ja) * 1992-06-02 1993-12-17 Hitachi Ltd 移動式作業ロボットの救助装置
CN106540390A (zh) * 2016-10-27 2017-03-29 中国矿业大学 吊轨式消防巡检机器人系统
CN208043683U (zh) * 2018-01-17 2018-11-02 深圳市智能机器人研究院 一种电厂管道检测机器人
CN208034689U (zh) * 2018-01-26 2018-11-02 深圳市智能机器人研究院 一种电厂管道检测机器人
CN110744557A (zh) * 2019-10-16 2020-02-04 山东中衡光电科技有限公司 一种矿用皮带运输机二维索道巡检机器人
CN211278385U (zh) * 2019-11-20 2020-08-18 中国煤矿机械装备有限责任公司 一种自适应轨道的井下工作面巡检机器人系统
CN112009956A (zh) * 2019-05-30 2020-12-01 中煤科工集团上海有限公司 巷道巡检设备用轨道装置及巷道巡检系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758526B2 (ja) * 1992-02-17 1998-05-28 株式会社日立製作所 移動式点検ロボット
DE102005055655A1 (de) * 2005-11-22 2007-05-31 Siemens Ag Vorrichtung zum Ermitteln des Zustandes eines Förderbandes
US9950873B2 (en) * 2013-07-15 2018-04-24 Abb Schweiz Ag Conveyor inspection with unmanned vehicle carying sensor structure
JP6432291B2 (ja) * 2014-11-10 2018-12-05 横浜ゴム株式会社 コンベヤベルトの摩耗モニタリングシステム
JP6478234B2 (ja) * 2017-06-26 2019-03-06 ファナック株式会社 ロボットシステム
JP6939271B2 (ja) * 2017-08-31 2021-09-22 横浜ゴム株式会社 コンベヤベルトのモニタリングシステム
KR20190092763A (ko) * 2018-01-31 2019-08-08 한국전력공사 전력구 진단 시스템
CN210175821U (zh) * 2019-05-30 2020-03-24 中煤科工集团上海有限公司 巷道巡检设备用轨道装置及巷道巡检系统
CN111498425A (zh) * 2020-03-08 2020-08-07 太原理工大学 一种钢丝绳牵引式煤矿井下带式输送机循环检测系统
CN111980750B (zh) * 2020-07-27 2022-08-12 西安科技大学 一种柔性轨道、跨座式综采工作面巡检机器人
US11866267B2 (en) * 2021-12-23 2024-01-09 Metso Outotec USA Inc. System and method for monitoring an apron feeder

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0216608A (ja) * 1988-04-21 1990-01-19 Mannesmann Ag レール式作業機器
JPH05333191A (ja) * 1992-06-02 1993-12-17 Hitachi Ltd 移動式作業ロボットの救助装置
CN106540390A (zh) * 2016-10-27 2017-03-29 中国矿业大学 吊轨式消防巡检机器人系统
CN208043683U (zh) * 2018-01-17 2018-11-02 深圳市智能机器人研究院 一种电厂管道检测机器人
CN208034689U (zh) * 2018-01-26 2018-11-02 深圳市智能机器人研究院 一种电厂管道检测机器人
CN112009956A (zh) * 2019-05-30 2020-12-01 中煤科工集团上海有限公司 巷道巡检设备用轨道装置及巷道巡检系统
CN110744557A (zh) * 2019-10-16 2020-02-04 山东中衡光电科技有限公司 一种矿用皮带运输机二维索道巡检机器人
CN211278385U (zh) * 2019-11-20 2020-08-18 中国煤矿机械装备有限责任公司 一种自适应轨道的井下工作面巡检机器人系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117565087A (zh) * 2024-01-16 2024-02-20 陕西开来机电设备制造有限公司 Ai视觉矿用固定监测机器人及其监测方法
CN117565087B (zh) * 2024-01-16 2024-03-29 陕西开来机电设备制造有限公司 Ai视觉矿用固定监测机器人及其监测方法

Also Published As

Publication number Publication date
DE112021006972T5 (de) 2023-12-21
US20240166449A1 (en) 2024-05-23
CN113021305A (zh) 2021-06-25
CN113021305B (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2022193446A1 (zh) 一种巡检机器人系统
CN209782015U (zh) 一种用于工程管道检测的装置
US20070033795A1 (en) Apparatus and method for quadrail ergonomic assembly
CN110977928A (zh) 挂轨机器人和巡检系统
WO2021056719A1 (zh) 一种风井巡检机器人
CN111682457B (zh) 一种电缆敷设装置
CN110577125B (zh) 井筒巡检系统及其钢丝绳移动装置
CN109262583B (zh) 一种电缆隧道巡检机器人
US20140138340A1 (en) Overhead Hoist
CN105158276A (zh) 一种用于检测桥梁吊杆的装置及其检测方法
AU2016244301A1 (en) Robotic inspection device
CN215923546U (zh) 一种巡检机器人、管带机巡检装置和管带机
CN102097140A (zh) 压水堆燃料水下运输小车及倾翻装置
CN220066676U (zh) 用于巡检机器人的紧凑型电缆牵引组件
CN107064425B (zh) 一种可调式无线可燃气体探测系统和调节方法及其应用
CN209007531U (zh) 一种电缆隧道巡检机器人
CN216549305U (zh) 一种用于管道提吊安装的组合式三脚架
KR102011201B1 (ko) 자기정렬 롤러가 결합된 베이스 프레임 및 이를 구비하는 케이블 보빈 윈치
WO2020065770A1 (ja) 重量物据付装置
CN204079294U (zh) 伸缩式吊钩偏角检测装置
CN104477775A (zh) 伸缩式吊钩偏角检测装置
CN218919799U (zh) 一种电缆敷设设备
CN212391620U (zh) 用于岩井检测的电磁测量装置
CN221032570U (zh) 用于气密性检测工具安装的辅助装置及检测系统
CN117080800B (zh) 一种挂轨式巡检机器人充电装置及其调节方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282797

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112021006972

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931031

Country of ref document: EP

Kind code of ref document: A1