WO2021056719A1 - 一种风井巡检机器人 - Google Patents

一种风井巡检机器人 Download PDF

Info

Publication number
WO2021056719A1
WO2021056719A1 PCT/CN2019/117053 CN2019117053W WO2021056719A1 WO 2021056719 A1 WO2021056719 A1 WO 2021056719A1 CN 2019117053 W CN2019117053 W CN 2019117053W WO 2021056719 A1 WO2021056719 A1 WO 2021056719A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
pulley
rope
driving
connecting rod
Prior art date
Application number
PCT/CN2019/117053
Other languages
English (en)
French (fr)
Inventor
周公博
唐超权
朱真才
商学建
汤洪伟
何贞志
张岗
李伟
江帆
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2021056719A1 publication Critical patent/WO2021056719A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of robots, in particular to an air shaft inspection robot.
  • the shaft is an important part of the entire coal mine. It is responsible for transporting underground workers, driving and mining equipment and materials, and transporting raw coal. Affected by water erosion, falling debris, dampness and production operation, the shaft wall, tank beam and other facilities have hidden safety hazards. Therefore, a special time (usually 2 hours) must be arranged every day for shaft inspection. For the main well and auxiliary well inspection workers can stand in the inspection fence on the cage to make inspections from top to bottom, record the inspection situation, or deal with minor problems in time. For the return air shaft, the inspection task can only be completed through the ladders erected on the shaft. This manual inspection method is inefficient, prone to missed inspections, and there are safety hazards in the inspection process.
  • the present invention proposes an air shaft inspection robot to solve the above problems.
  • An air shaft inspection robot including a rope driving device, a pulley type balancing device, a robot body, and a linear guide set in a shaft, wherein:
  • the rope driving device includes a power device and more than one driving rope
  • One end of the pulley-type balancing device is fixed to the robot body, and the robot body is guided and connected to the linear guide; the other end has an input end with the same number of driving ropes;
  • each drive rope is connected to the output end of the power device, and the other end is connected to the corresponding input end of the pulley-type balancing device;
  • the power output by each driving rope can be evenly actuated on the robot body after the power transmission of the pulley-type balancing device, preventing the robot body from rotating, and driving the robot body to only move along the linear guide.
  • the rope driving device includes two, namely an upper rope driving device and a lower rope driving device, and the upper rope driving device is located above the robot body, and the lower rope driving device Located under the robot body;
  • pulley-type balancing devices There are also two pulley-type balancing devices, namely the upper pulley-type balancing device and the lower pulley-type balancing device;
  • the power device of the upper rope driving device is the upper power device, and the driving rope of the upper rope driving device is the upper driving rope;
  • the power device of the lower rope driving device is the lower power device, and the driving rope of the lower rope driving device is the lower driving rope; one end of each upper driving rope is connected to the output end of the upper power device, and the other end is respectively through the upper pulley type
  • the balance device is connected with the robot body; one end of each lower driving rope is connected with the output end of the lower power device, and the other end is respectively connected with the robot body through the lower pulley type balancing device.
  • the pulley-type balancing device includes a guiding platform, a balancing platform, and a pulley block with the same number of driving ropes;
  • the steering platform is fixed in the wellbore and adjacent to the power plant;
  • the balance platform can be translated relative to the guiding platform and fixed with the robot body;
  • Each pulley block includes a guiding fixed pulley a; the guiding fixed pulley a is the input end of the pulley-type balancing device;
  • the guiding fixed pulleys a of each pulley group are positioned and installed on the guiding platform, and are evenly distributed in a ring shape;
  • the driving rope is fixed to the balance platform after being circumvented by the guide fixed pulley a, and the driving rope between the guide platform and the balance platform is arranged in a straight line.
  • each pulley group also includes a balance pulley group; the balance pulley group includes a balance wire rope and a movable pulley; and the balance pulley group is configured with two balance pulleys for the movable pulley.
  • the fixed guiding pulley b is positioned and arranged on the balance platform, and the two fixed guiding pulleys b of each pulley group as a group are evenly distributed with the two guiding fixed pulleys b of the adjacent balance pulley group as a group;
  • the connecting head includes a movable pulley support and a rope wedge; one end of the rope wedge is connected to the driving rope, and the other end is fixedly connected to the movable pulley support through a split pin; and the movable pulley It is positioned and installed on the movable pulley support.
  • the robot body includes an image acquisition platform, a housing frame, and a guiding mechanism;
  • the linear guide is a guiding wire rope;
  • the guide mechanism is fixed to the image acquisition platform through the shell frame, and can form a moving pair with the guide wire rope;
  • Each guide mechanism includes a roller and a roller adjustment mechanism capable of adjusting the distance between the roller and the guide wire rope;
  • the outer surface of the roller has an annular arc-shaped inner groove that matches the outer surface of the guide wire rope; one end of the roller adjusting mechanism is movably connected with the housing frame, and the other end is installed with the roller; the ring-shaped arc-shaped inner groove of the roller is in the Driven by the roller adjusting mechanism, it can abut against the outer surface of the guide wire rope.
  • each guide mechanism includes two rollers, namely a first roller and a second roller; the first roller and the second roller are arranged at intervals along the length of the guide wire rope;
  • the roller adjusting mechanism includes a screw rod, an elastic connecting piece and a connecting rod mechanism
  • One end of the screw rod is provided with an end nut, and the other end passes through the housing frame and is equipped with a connecting block, and the screw and the housing frame are threadedly connected;
  • the connecting block is symmetrical with the axis of the screw rod, and two mounting parts are symmetrically provided , Respectively, the first installation part and the second installation part;
  • the axis of the screw is taken as the line of symmetry, and they are symmetrically distributed on both sides of the screw;
  • One end of the first link mechanism is hinged with the first mounting part, and the other end is clamped and installed with the first roller;
  • One end of the second link mechanism is hinged with the second mounting part, and the other end is clamped and installed with the second roller;
  • the elastic connecting piece is sleeved on the periphery of the screw rod between the end nut and the shell;
  • the first link mechanism and the second link mechanism drive the first roller and the second roller correspondingly, so that the guide wire rope can be correspondingly fitted into the annular arc-shaped inner groove of the first roller, In the annular arc-shaped inner groove of the second roller.
  • each link mechanism includes two tension links, two roller links, pin a, pin b, and roller shaft;
  • the two tension links are the tension link a and the tension link b
  • the two roller links are the roller link a and the roller link b
  • the tension connecting rod a and the tension connecting rod b are coaxially positioned and connected by a pin shaft a provided in the first mounting part, while the tension connecting rod a, the tension connecting rod b, the roller connecting rod a, and the roller connecting rod b pass through
  • the pin shaft b is coaxially positioned and connected, and the roller connecting rod a and the roller connecting rod b are coaxially connected through the roller shaft;
  • the tension connecting rod a and the tension connecting rod b, and the roller connecting rod a and the roller connecting rod b are symmetrically arranged on both sides of the first mounting part through the same symmetry line;
  • the first roller/second roller is installed on the roller shaft between the roller connecting rod a and the roller connecting rod b.
  • the shell frame includes a shell bracket and a shell connecting rod; the number of shell supports and the number of shell connecting rods are the same, both ⁇ 2; the shell frame is a shell A polygonal frame formed by splicing the brackets and the connecting rods of the shells; the guide mechanism is installed on the shell brackets.
  • the number of driving ropes is three; the pulley block has three groups; the guide mechanism has three; the shell frame is a hexagonal frame, including three shell brackets, Three shell connecting rods; each guide mechanism is installed on the corresponding shell bracket one by one.
  • the present invention has the following beneficial effects:
  • the present invention adopts the rope-driven mode to supply power for the linear movement of the robot body.
  • it also uses a pulley-type balancing device with a linear guide (guide wire rope) to promote the movement of the robot body to always follow the linear guide. And the robot body will not rotate during the movement.
  • the robot of the present invention can replace manual inspections in the wellbore. This inspection method can effectively avoid missed inspections and prevent manual inspections. Security risks.
  • the present invention has the advantage of strong load capacity.
  • the present invention is equipped with a rope driving device and a pulley-type balancing device on the upper and lower sides of the robot body. Therefore, the recovery problem of the robot is not considered; at the same time, inspection tasks can be carried out in a deep environment, and its application range is wide , Strong scalability.
  • Fig. 1 is an axonometric view of the air shaft inspection robot according to embodiment 1 of the present invention
  • Figure 2 is an axonometric view of the robot body of the present invention
  • Figure 3 is a top view of the robot body of the present invention.
  • Figure 4 is an axonometric view of the upper pulley-type balancing device of the air shaft inspection robot of the present invention
  • Figures 1 to 4 1- drive motor; 2- reel; 3- guide platform; 4- robot body; 4-1, shell connecting rod; 4-2, shell frame; 4-3, screw; 4 -4, spring; 4-5, tension connecting rod; 4-5-1, tension connecting rod a; 4-5-2, tension connecting rod b; 4-6, roller connecting rod; 4-6- 1.
  • FIG 5 is an isometric view of the air shaft inspection robot according to Embodiment 2 of the present invention.
  • spatially relative terms can be used here, such as “above”, “above”, “above the surface”, “above”, etc., to describe as shown in the figure Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation in addition to the orientation of the device described in the figure. For example, if the device in the drawing is turned upside down, then a device described as “above other devices or structures” or “above other devices or structures” will then be positioned as “below the other devices or structures” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations).
  • the air shaft inspection robot described in this embodiment includes a rope drive device, a robot body, and a linear guide set in the shaft, wherein:
  • the rope drive device includes a power device and more than one drive rope (steel rope); the power device uses a motor to drive the drum to rewind the drive rope; specifically, the power device includes a drive motor and A reel connected to the motor shaft of the drive motor; each drive rope is wound on the reel, and the output end of each drive rope passes through the pulley type balance device (the pulley type balance device has the same number as the drive rope
  • the input ends of are connected with each drive rope one-to-one.
  • the input ends of the pulley-type balancing device are the guiding fixed pulleys a) connected to the robot body, and the robot body is guidingly connected to the linear guide.
  • the power output by each driving rope can be evenly actuated on the robot body after the power transmission of the pulley-type balancing device, preventing the robot body from rotating, and driving the robot body to only move along the linear guide.
  • the pulley-type balance device described in this embodiment mainly functions to balance the force of the driving wire rope and prevent the robot body from rotating and malfunctioning due to uneven force.
  • the linear guide provides a guide carrier for the robot body, so that the robot body can move along the guide wire rope to complete the inspection task.
  • the linear guide used is a guide wire rope suspended in the shaft.
  • the linear guide can also be a rod or a sliding groove.
  • the pulley-type balancing device as shown in Figures 1 and 4, includes a guiding platform, a balancing platform, and a pulley block equal to the number of driving ropes; in the figure, if there are 3 driving ropes, it is used There are 3 sets of pulley blocks; Of course, the number of driving ropes is not limited to this. In fact, the number used is not important. In the present invention, the uniform arrangement of the driving ropes on the guiding platform is more important. The reason The reason is that such an arrangement can make it easier for the driving ropes to exert a uniform force on the robot body.
  • the guiding platform is fixed in the wellbore and adjacent to the power device; a number of fixed pulley bearings a are uniformly arranged on the plate surface on the side facing the pulley type balance device, and the number is consistent with the number of driving ropes. To install the guide fixed pulley a.
  • the balance platform can be translated relative to the guiding platform and fixed with the robot body, so the robot body can move along with the movement of the balance platform.
  • Each pulley set includes a fixed guide pulley a; the fixed guide pulley a of each pulley set is positioned and installed on the fixed pulley support a uniformly distributed on the guiding platform in a one-to-one relationship; the driving rope is circumvented by the guide fixed pulley a , Fixed with the balance platform, and the driving rope between the guiding platform and the balance platform is arranged in a straight line.
  • each pulley block described in this embodiment also includes a balance pulley block; the balance pulley block includes a balance wire rope and a balance pulley block.
  • the balance pulley group for the said movable pulley, is equipped with two guiding fixed pulleys b; the guiding fixed pulley b is positioned on the balance platform, and the two guiding fixed pulleys b of each pulley group as a group, and adjacent
  • the two fixed guide pulleys b as a group in the balance pulley group are evenly distributed; the driving rope is connected to the movable pulley through a connecting head after winding through the fixed guide pulley a.
  • the connecting head includes a movable pulley support and a rope wedge; one end of the rope wedge is connected to the driving rope, and the other end is fixedly connected to the movable pulley support through a split pin; and the movable pulley is positioned and installed on the movable pulley support seat.
  • the balance wire rope is an O-shaped wire rope, which is respectively sleeved on the periphery of the movable pulley and the two guiding fixed pulleys b to form an isosceles triangle structure.
  • the movable pulley is the apex of the isosceles triangle, and the two guiding fixed pulleys b are the The two end points of the base of an isosceles triangle. Therefore, this embodiment can effectively reduce the risk of contact and entanglement between the balance wire rope and the guide wire rope in the balance pulley set; in order to further reduce the risk of contact and entanglement between the balance wire rope and the guide wire rope, the balance wire rope and the movable pulley should be arranged as much as possible Keep away from the guide wire rope.
  • the robot body includes an image acquisition platform, a housing frame, and a guiding mechanism; the linear guide is a guiding wire rope; among them:
  • the guide mechanism is fixed to the image acquisition platform through the shell frame and can form a moving pair with the guide wire rope; and the guide mechanism has at least two, evenly distributed around the guide wire rope; the guide mechanism shown in the figure has 3, the fact Above, the guide mechanism can also be 4, 5, etc., which mainly depends on the space of the housing frame. If the housing frame is large enough, the arrangement of the guide mechanisms will not cause interference with other adjacent components, then the guide The number of institutions can be more.
  • Each guide mechanism includes a roller and a roller adjustment mechanism that can adjust the distance between the roller and the guide wire rope; the outer surface of the roller has an annular arc-shaped inner groove that matches the outer surface of the guide wire rope; one end of the roller adjustment mechanism is connected to the shell
  • the body frame can be movably connected, and the other end is equipped with a roller; the ring-shaped arc-shaped inner groove of the roller can be pushed by the roller adjustment mechanism to abut the outer surface of the guide wire rope.
  • the roller adjusting mechanism can make the guide wire rope fit into the circular arc-shaped inner groove of the roller; when the rollers of each guide mechanism abut against the outer surface of the guide wire rope,
  • the annular arc-shaped inner grooves of the rollers in the same ring direction can basically be spliced into a ring that matches the outer surface of the guide wire rope.
  • the rollers in the same ring direction are in contact with the guide wire rope. The sum of the lengths is equal to the circumference of the guide wire rope, thereby effectively preventing the roller from lateral deviation when moving on the guide wire rope.
  • a rubber material curved roller that is, a roller with an annular arc-shaped inner groove on the outer surface
  • the curvature radius of the curved surface of the curved roller is the same as the radius of the guide wire rope.
  • each guide mechanism described in this embodiment includes two rollers, namely the first roller and the second roller; the first roller and the second roller are along the length of the guide wire rope. Interval settings.
  • the roller adjustment mechanism described in this embodiment includes a screw, an elastic connector, and a link mechanism; specifically, one end of the screw is provided
  • the end nut is equipped with a connecting block after the other end passes through the shell frame, and the screw is threaded and connected to the shell frame;
  • the connecting block is symmetrical with the axis of the screw, and two mounting parts are symmetrically provided, which are respectively the first One installation part, second installation part;
  • first linkage mechanism There are two linkage mechanisms, namely the first linkage mechanism and the second linkage mechanism, which are symmetrically distributed on both sides of the screw with the axis of the screw as the symmetrical line; one end of the first linkage is hinged with the first mounting part , The other end is clamped to install the first roller; one end of the second link mechanism is hinged to the second mounting part, and the other end is clamped to install the second roller; the elastic connector is sleeved between the end nut and the shell Screw periphery
  • the first link mechanism and the second link mechanism drive the first roller and the second roller correspondingly, so that the guide wire rope can be correspondingly fitted into the annular arc-shaped inner groove of the first roller, In the annular arc-shaped inner groove of the second roller.
  • each link mechanism includes two tension links, two roller links, pin a, pin b, and roller shaft; in each link mechanism, the two tension links are respectively The tension connecting rod a, the tension connecting rod b, the two roller connecting rods are respectively the roller connecting rod a and the roller connecting rod b; the tension connecting rod a and the tension connecting rod b pass through the pin shaft provided in the first mounting part a Coaxial positioning connection, while the tension connecting rod a, the tension connecting rod b, the roller connecting rod a, and the roller connecting rod b are coaxially positioned and connected by the pin shaft b, and the roller connecting rod a and the roller connecting rod b pass through the roller shaft Coaxial connection; between the tension connecting rod a and the tension connecting rod b, and between the roller connecting rod a and the roller connecting rod b are symmetrically arranged on both sides of the first mounting part through the same line of symmetry; the first roller/second The two rollers are installed on the roller shaft between the roller connecting rod a and the roller connecting rod b.
  • the linkage mechanism described in this embodiment adjusts the distance between the rollers and the guide wire rope by adjusting the rotation depth of the screw, so that the robot body described in this embodiment can adapt to guide wire ropes of different diameters.
  • the components for example, between the roller connecting rod a and the roller connecting rod b; between the tension connecting rod a and the tension connecting rod b, between the first roller and the second roller
  • the stability of the robot is stable and the overall balance is maintained.
  • the arrangement of the elastic connector can make the robot of the present invention have a certain degree of flexibility, thereby having the ability to overcome obstacles.
  • the shell frame includes a shell bracket and a shell connecting rod; the number of shell brackets is the same as the number of shell connecting rods, and both are ⁇ 2;
  • the guide mechanism is installed on the housing bracket.
  • the pulley block has 3 groups; the guide mechanism has three; the shell frame is a hexagonal frame, including three shell brackets and three shell connecting rods; each guide mechanism has one One-to-one installation on the corresponding housing bracket. Therefore, in this embodiment, the three driving ropes are arranged at 120°; the three pulley sets are also arranged at 120°.
  • the air well inspection robot further includes a power supply module and a communication module.
  • the power supply module includes an intrinsically safe power supply;
  • the communication module includes a set of wireless communication equipment with wireless communication, GPS positioning, and sensor signal acquisition. And processing functions.
  • a set of moving devices are respectively provided on the upper and lower parts of the robot body, and each set of moving devices includes a rope driving device, Drive rope, pulley type balance device.
  • the rope driving device of this embodiment includes two rope driving devices, an upper rope driving device and a lower rope driving device.
  • the upper rope driving device is located above the robot body, and the lower rope driving device is located on the robot body.
  • the power device of the upper rope drive device is the upper power device, and the drive rope of the upper rope drive device is the upper drive rope;
  • the power device of the lower rope driving device is the lower power device, and the driving rope of the lower rope driving device is the lower driving rope.
  • each upper drive rope is connected to the output end of the upper power unit, and the other end is respectively connected to the robot body through the upper pulley-type balancing device; one end of each lower drive rope is connected to the output end of the lower power unit , The other end is respectively connected with the robot body through the lower pulley type balancing device.
  • the air shaft inspection robot includes the following components:
  • the upper power device includes an upper drive motor and an upper drum; the lower power device includes a lower drive motor and a lower drum; the upper pulley type balance device includes an upper guide platform, an upper pulley block and an upper balance platform; the lower pulley type balance device includes a lower guide platform , Lower pulley block and lower balance platform. More than two fixed upper guide pulleys a are uniformly distributed on the lower surface of the upper guide platform; more than two fixed guide pulleys a are uniformly distributed on the upper surface of the lower guide platform.
  • the upper driving wire rope is wound on the upper drum, and the upper driving motor drives the upper drum to rotate to realize the winding and unwinding of the upper driving wire rope.
  • the movable end of the upper drive wire rope is connected to the top of the robot body through the upper pulley block and the upper balance platform in turn.
  • the lower driving wire rope is wound on the lower drum, and the lower driving motor drives the lower drum to rotate, so as to realize the winding and unwinding of the lower driving wire rope.
  • the movable end of the lower driving wire rope is connected to the bottom of the robot body through the lower pulley block and the lower balance platform in turn.
  • the guide wire ropes can respectively pass through the central positions of the upper guide platform, the upper balance platform, the image acquisition platform, the lower balance platform, and the lower guide platform in sequence.
  • the structure of the robot body is the same as that described in Embodiment 1, and will not be described here; the specific structure of the upper rope driving device, the lower rope driving device and the rope driving device described in Embodiment 1 Consistent, no further description here.
  • the upper pulley-type balancing device and the lower pulley-type balancing device have the same structure as the pulley-type balancing device described in Embodiment 1, and will not be described here.
  • the first step is the installation phase. First, determine the diameter of the arc surface of the roller outer surface according to the diameter of the guide wire rope and select the sensor that the robot body needs to carry, and fix the sensor and camera on the image acquisition platform of the robot body, and complete the circuit connection as required. First install the shell frame on the guide wire rope, connect the shell connecting rod and the shell bracket by bolts; then connect the balance device pan/tilt with the shell bracket by screws; on this basis, install the upper pulley type balance device And the lower pulley type balance device; finally, install the upper drive motor, upper reel, lower drive motor, lower reel, upper drive rope and lower drive rope to the specified position.
  • the second step is the debugging phase. Connect the power supply module and the communication module to test the communication quality of the system; secondly, debug the drive motor to make sure that the drive motor is fault-free, and the inspection can be carried out according to the predetermined inspection task.
  • the third step is the formal operation stage.
  • the ground control center sends start and inspection commands, and controls the robot to perform inspection tasks along the wellbore by controlling the upper drive motor and the lower drive motor to coordinate rotation.
  • the ground control center checks the data transmitted by the sensors, such as detecting the remaining power of the power module, whether the robot is working normally, and the temperature and humidity inside the wellbore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种风井巡检机器人,包括绳驱动装置、滑轮式平衡装置、机器人本体以及直线导向件;绳驱动装置,包括动力装置以及一根以上的驱动绳索;滑轮式平衡装置的一端与机器人本体固定,而机器人本体则与直线导向件之间导向连接;另一端则具有与驱动绳索数量一致的输入端;每一根驱动绳索的一端均与动力装置的输出端连接,另一端则与滑轮式平衡装置对应的输入端连接;各驱动绳索输出的动力,经滑轮式平衡装置的动力传动后,能够均匀地作动在机器人本体上,防止机器人本体旋转,带动机器人本体仅做沿着直线导向件平移的运动。因此,该机器人可以代替人工在井筒中进行巡检,能够有效地避免漏检,防止人工巡检所具有的安全隐患。

Description

一种风井巡检机器人 技术领域
本发明涉及机器人技术领域,具体涉及一种风井巡检机器人。
背景技术
井筒是整个煤矿的重要组成部分,承担接送井下作业工作人员、掘进与采煤等设备材料的上下井、以及原煤的运输等任务。受水蚀、杂物坠落、潮湿及生产运行等影响,竖井的井壁、罐梁以及其他设施存在着安全隐患。因此,每天都要安排专门的时间(一般为2个小时)进行竖井检查。对于主井和副井巡检工人可以站在罐笼上的检查栏内自上而下进行巡视,记录检查情况,或及时处理小的问题。而对于回风井井筒,只能通过架设在井筒上的梯子间完成巡检任务,这种人工巡检方式效率低,容易出现漏检,并且巡检过程中存在安全隐患等。
发明内容
针对人工巡检方式存在的效率低下,容易出现漏检,并且巡检过程中存在安全隐患等现状,本发明提出一种风井巡检机器人,用以解决以上问题。
为了实现上述目的,本发明采用了如下的技术方案:
一种风井巡检机器人,包括绳驱动装置、滑轮式平衡装置、机器人本体以及设置在井筒中的直线导向件,其中:
所述的绳驱动装置,包括动力装置以及一根以上的驱动绳索;
所述的滑轮式平衡装置,一端与机器人本体固定,而机器人本体则与直线导向件之间导向连接;另一端则具有与驱动绳索数量一致的输入端;
每一根驱动绳索的一端均与动力装置的输出端连接,另一端则与滑轮式平衡装置对应的输入端连接;
各驱动绳索输出的动力,经滑轮式平衡装置的动力传动后,能够均匀地作动在机器人本体上,防止机器人本体旋转,带动机器人本体仅做沿着直线导向件平移的运动。
作为上述风井巡检机器人的进一步改进,所述的绳驱动装置,包括两个,分别为上部绳驱动装置、下部绳驱动装置,且上部绳驱动装置位于机器人本体的上方,而下部绳驱动装置位于机器人本体的下方;
滑轮式平衡装置也具有两个,分别为上部滑轮式平衡装置、下部滑轮式平衡装置;
上部绳驱动装置的动力装置为上部动力装置,上部绳驱动装置的驱动绳索为上部驱动绳索;
下部绳驱动装置的动力装置为下部动力装置,下部绳驱动装置的驱动绳索为下部驱动绳索;每一根上部驱动绳索的一端均与上部动力装置的输出端连接,另一端则分别通过上部滑轮式平衡装置与机器人本体连接;每一根下部驱动绳索的一端均与下部动力装置的输出端连接,另一端则分别通过下部滑轮式平衡装置与机器人本体连接。
作为上述风井巡检机器人的进一步改进,所述滑轮式平衡装置包括导向平台、平衡平台以及与驱动绳索数量相等的滑轮组;
所述的导向平台,固定在井筒中,并与动力装置相邻;
所述的平衡平台,能够相对于导向平台平移,并与机器人本体固定;
每一个滑轮组,均包括有一个导向定滑轮a;导向定滑轮a为所述的滑轮式平衡装置的输入端;
各滑轮组的导向定滑轮a均定位安装于导向平台,并环形均匀分布;
驱动绳索经导向定滑轮a绕行后,与平衡平台固定,且处于导向平台与平衡平台之间的驱动绳索,呈直线状设置。
作为上述风井巡检机器人的进一步改进,每一个滑轮组,均还包括有一个平衡滑轮组;所述的平衡滑轮组包括一根平衡钢丝绳以及一个动滑轮;且该平衡滑轮组,针对所述的动滑轮,配置两个导向定滑轮b;
导向定滑轮b定位设置在平衡平台上,且每一个滑轮组的两个导向定滑轮b作为一组,与相邻平衡滑轮组中作为一组的两个导向定滑轮b均匀分布;
驱动绳索经导向定滑轮a绕行后,通过连接头与动滑轮连接;
平衡钢丝绳的两端经动滑轮绕行后,再经各自对应的导向定滑轮b导向后,与平衡平台固定。
作为上述风井巡检机器人的进一步改进,所述的连接头包括动滑轮支座以及绳索楔套;绳索楔套的一端与驱动绳索连接,另一端则通过开口销与动滑轮支座固定连接;而动滑轮则定位安装于动滑轮支座。
作为上述风井巡检机器人的进一步改进,所述机器人本体包括图像采集云台、壳体框架以及导向机构;直线导向件为导向钢丝绳;其中:
导向机构通过壳体框架与图像采集云台固定、并能够与导向钢丝绳形成移动副;
导向机构至少具有两个,均匀分布在导向钢丝绳外围;
每一个导向机构均包括滚轮以及能够调整滚轮与导向钢丝绳之间间距的滚轮调整机构;
滚轮的外表面具有与导向钢丝绳的外表面匹配的环状弧形内凹槽;滚轮调整机构的一端与壳体框架可移动连接,另一端则安装滚轮;滚轮的环状弧形内凹槽在滚轮调整机构的推动下, 能够与导向钢丝绳的外表面相抵接。
作为上述风井巡检机器人的进一步改进,每一个导向机构所包含的滚轮有两个,分别为第一滚轮、第二滚轮;第一滚轮、第二滚轮沿着导向钢丝绳长度方向间隔设置;
所述的滚轮调整机构包括螺杆、弹性连接件以及连杆机构;
螺杆的一端设置端头螺母,另一端穿过壳体框架后配装连接块,且螺杆与壳体框架之间螺纹配合连接;连接块以螺杆的轴线为对称线,对称设置有两个安装部,分别为第一安装部、第二安装部;
连杆机构为两个,分别为第一连杆机构、第二连杆机构,以螺杆的轴线为对称线,对称分布在螺杆的两侧;
第一连杆机构的一端与第一安装部铰接,另一端则夹持安装第一滚轮;
第二连杆机构的一端与第二安装部铰接,另一端则夹持安装第二滚轮;
弹性连接件套接在端头螺母与壳体之间的螺杆外围;
第一连杆机构、第二连杆机构在螺杆的作动下,对应地带动第一滚轮、第二滚轮,促使导向钢丝绳能够对应地嵌合在第一滚轮的环状弧形内凹槽、第二滚轮的环状弧形内凹槽内。
作为上述风井巡检机器人的进一步改进,每一个连杆机构均包括有两根张紧连杆、两根滚轮连杆、销轴a、销轴b以及滚轮轴;
每一连杆机构中,两根张紧连杆分别为张紧连杆a、张紧连杆b,两根滚轮连杆分别为滚轮连杆a、滚轮连杆b;
张紧连杆a、张紧连杆b通过设置于第一安装部的销轴a同轴定位连接,同时张紧连杆a、张紧连杆b、滚轮连杆a、滚轮连杆b通过销轴b同轴定位连接,且滚轮连杆a、滚轮连杆b通过滚轮轴同轴连接;
张紧连杆a与张紧连杆b之间、滚轮连杆a与滚轮连杆b之间均通过同一对称线对称地布置在第一安装部两侧;
第一滚轮/第二滚轮安装在滚轮连杆a、滚轮连杆b之间的滚轮轴上。
作为上述风井巡检机器人的进一步改进,所述壳体框架包括壳体支架和壳体连杆;壳体支架的数目和壳体连杆的数目一致,均≥2;壳体框架为壳体支架、壳体连杆相间设置后拼接而成的多边形框架;导向机构安装在壳体支架上。
作为上述风井巡检机器人的进一步改进,所述驱动绳索为3条;所述滑轮组具有3组;所述导向机构具有三个;壳体框架为六边形框架,包括三个壳体支架、三根壳体连杆;各导向机构一一对应地安装在相应的壳体支架上。
根据上述的技术方案,相对于现有技术,本发明具有如下的有益效果:
1、本发明采用绳驱动的模式,进行机器人本体直线移动的动力供给,同时还采用滑轮式平衡装置配合直线导向件(导向钢丝绳),以促使机器人本体的移动能够始终沿着直线导向件进行,且移动过程中机器人本体不会发生旋转,由此可知,本发明所述的机器人可以代替人工在井筒中进行巡检,这种巡检方式能够有效地避免漏检,防止人工巡检所具有的安全隐患。同时,本发明具有负载能力强的优点。
2、本发明在机器人本体的上方、下方均各自配置一套绳驱动装置及滑轮式平衡装置,因此,可不考虑机器人的回收问题;同时,可在纵深环境中进行巡检任务,其应用范围广、可扩展性强。
附图说明
图1为本发明实施例1所述风井巡检机器人的轴测图;
图2为本发明机器人本体轴测图;
图3为本发明机器人本体俯视图;
图4为本发明风井巡检机器人上部滑轮式平衡装置轴测图;
图1至4中:1-驱动电机;2-卷筒;3-导向平台;4-机器人本体;4-1、壳体连杆;4-2、壳体框架;4-3、螺杆;4-4、弹簧;4-5、张紧连杆;4-5-1、张紧连杆a;4-5-2、张紧连杆b;4-6、滚轮连杆;4-6-1、滚轮连杆a;4-6-2、滚轮连杆b;4-7、滚轮;4-7-1、第一滚轮;4-7-2、第二滚轮;5-导向钢丝绳;6-连接头;7-摄像机;8-驱动钢丝绳;9-图像采集云台;10、导向定滑轮a;11、定滑轮支座a;12、动滑轮支座;13、绳索楔套;14、开口销;15、动滑轮;16、平衡钢丝绳;17、定滑轮支座b;18、平衡云台;19、导向定滑轮b;
图5为本发明实施例2所述风井巡检机器人的轴测图;
图5中:1-1、上部驱动电机;1-2、下部驱动电机;2-1、上部卷筒;2-2、下部卷筒;3-1、上部导向平台;3-2、下部导向平台;4-机器人本体;5-导向钢丝绳;6-1、上部连接头;6-2、下部连接头;7-摄像机;8-1、上部驱动钢丝绳;8-2、下部驱动钢丝绳;9-图像采集云台;10-1、上部导向定滑轮a;10-2、下部导向定滑轮a。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例,都属于本发明保护的范围。除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位)。
实施例1
如图1至4所示,本实施例所述的风井巡检机器人,包括绳驱动装置、机器人本体以及设置在井筒中的直线导向件,其中:
所述的绳驱动装置,包括动力装置以及一根以上的驱动绳索(为钢丝绳);动力装置采用电机驱动卷筒的方式进行驱动绳索的收卷;具体地,所述动力装置,包括驱动电机以及与驱动电机的电机轴连接的卷筒;每一根驱动绳索均卷绕在卷筒上,且每一根驱动绳索的输出端均通过滑轮式平衡装置(滑轮式平衡装置具有与驱动绳索数量一致的输入端,与各驱动绳索一一对应连接,附图中,滑轮式平衡装置的输入端即为各导向定滑轮a)与机器人本体连接,而机器人本体则与直线导向件之间导向连接。则各驱动绳索输出的动力,经滑轮式平衡装置的动力传动后,能够均匀地作动在机器人本体上,防止机器人本体旋转,带动机器人本体仅做沿着直线导向件平移的运动。换句话来讲,本实施例所述的滑轮式平衡装置,其主要作用是使得驱动钢丝绳受力平衡,防止机器人本体因受力不均而导致旋转,发生故障。
本实施例中,所述的直线导向件,为机器人本体提供一个导向载体,使得机器人本体能够沿着导向钢丝绳移动以完成巡检任务。所采用的直线导向件为悬垂在井筒中的导向钢丝绳。当然,所述的直线导向件也可以采用杆件或者滑槽。
本实施例中,所述的滑轮式平衡装置,如图1、图4所示,包括导向平台、平衡平台 以及与驱动绳索数量相等的滑轮组;附图中,驱动绳索有3根,则所采用的滑轮组有3组;当然,驱动绳索的数量并不局限于此,事实上,其所采用的数量并不重要,在本发明中,驱动绳索在导向平台的环形均匀布置方式更为重要,原因在于,这样的布置方式能够更便于各驱动绳索施加在机器人本体上的力均匀。
所述的导向平台,固定在井筒中,并与动力装置相邻;在朝向滑轮式平衡装置一侧的板面环状均匀布置有若干定滑轮支座a,数量与驱动绳索的数量一致,用于安装导向定滑轮a。
所述的平衡平台,能够相对于导向平台平移,并与机器人本体固定,则机器人本体能够随着平衡平台的移动而移动。
每一个滑轮组,均包括有一个导向定滑轮a;各滑轮组的导向定滑轮a一一对应地定位安装于导向平台上环形均匀分布的定滑轮支座a;驱动绳索经导向定滑轮a绕行后,与平衡平台固定,且处于导向平台与平衡平台之间的驱动绳索,呈直线状设置。
为调整驱动绳索的长度,平衡驱动绳索分支拉力,进一步保证机器人本体运行平稳,本实施例所述的每一个滑轮组,均还包括有一个平衡滑轮组;所述的平衡滑轮组包括一根平衡钢丝绳以及一个动滑轮;且该平衡滑轮组,针对所述的动滑轮,配置两个导向定滑轮b;导向定滑轮b定位设置在平衡平台上,且每一个滑轮组的两个导向定滑轮b作为一组,与相邻平衡滑轮组中作为一组的两个导向定滑轮b均匀分布;驱动绳索经导向定滑轮a绕行后,通过连接头与动滑轮连接。本实施例中,所述的连接头包括动滑轮支座以及绳索楔套;绳索楔套的一端与驱动绳索连接,另一端则通过开口销与动滑轮支座固定连接;而动滑轮则定位安装于动滑轮支座。平衡钢丝绳为O形钢丝绳,分别套接在动滑轮以及两个导向定滑轮b外围,形成一等腰三角形结构,此时动滑轮为所述等腰三角形的顶点,而两个导向定滑轮b为所述等腰三角形底边的两个端点。因此,本实施例可以有效地减小所述的平衡滑轮组中,平衡钢丝绳与导向钢丝绳接触缠绕的风险;为进一步减小平衡钢丝绳与导向钢丝绳接触缠绕的风险,布置时,平衡钢丝绳及动滑轮应尽量远离导向钢丝绳。
如图1-3所示,所述机器人本体包括图像采集云台、壳体框架以及导向机构;直线导向件为导向钢丝绳;其中:
导向机构通过壳体框架与图像采集云台固定、并能够与导向钢丝绳形成移动副;且导向机构至少具有两个,均匀分布在导向钢丝绳外围;附图中所示的导向机构具有3个,事实上,导向机构也可以为4个、5个等,这主要取决于壳体框架的空间大小,如果壳体框架足够大,各导向机构的布置不会对相邻的其它部件造成干扰,则导向机构的数量可以选择更多个数。
每一个导向机构均包括滚轮以及能够调整滚轮与导向钢丝绳之间间距的滚轮调整机构;滚轮的外表面具有与导向钢丝绳的外表面匹配的环状弧形内凹槽;滚轮调整机构的一端与壳体框架可移动连接,另一端则安装滚轮;滚轮的环状弧形内凹槽在滚轮调整机构的推动下,能够与导向钢丝绳的外表面相抵接。换句话来讲,本实施例通过滚轮调整机构的作用,可以使得导向钢丝绳嵌合在滚轮的环状弧形内凹槽中;各导向机构的滚轮均与导向钢丝绳的外表面相抵接时,处于同一环向上的各滚轮的环状弧形内凹槽,基本上能够拼接成一个与导向钢丝绳外表面匹配的圆环,换句话来讲,处于同一环向上的各滚轮与导向钢丝绳的接触长度之和等于导向钢丝绳的周长,从而有效地防止滚轮在导向钢丝绳上运动时发生侧向偏移。另外,为了增大滚轮与导向钢丝绳的接触面积,采用橡胶材质的曲面滚轮(即外表面具有环状弧形内凹槽的滚轮),曲面滚轮的曲面的曲率半径与导向钢丝绳半径相同。
为了进一步保持机器人本体的结构平衡,本实施例所述的每一个导向机构所包含的滚轮有两个,分别为第一滚轮、第二滚轮;第一滚轮、第二滚轮沿着导向钢丝绳长度方向间隔设置。
为了能够调整滚轮与导向钢丝绳之间的间距,并实现上述的保持机器人本体的结构平衡,本实施例所述的滚轮调整机构包括螺杆、弹性连接件以及连杆机构;具体地,螺杆的一端设置端头螺母,另一端穿过壳体框架后配装连接块,且螺杆与壳体框架之间螺纹配合连接;连接块以螺杆的轴线为对称线,对称设置有两个安装部,分别为第一安装部、第二安装部;
连杆机构为两个,分别为第一连杆机构、第二连杆机构,以螺杆的轴线为对称线,对称分布在螺杆的两侧;第一连杆机构的一端与第一安装部铰接,另一端则夹持安装第一滚轮;第二连杆机构的一端与第二安装部铰接,另一端则夹持安装第二滚轮;弹性连接件套接在端头螺母与壳体之间的螺杆外围;
第一连杆机构、第二连杆机构在螺杆的作动下,对应地带动第一滚轮、第二滚轮,促使导向钢丝绳能够对应地嵌合在第一滚轮的环状弧形内凹槽、第二滚轮的环状弧形内凹槽内。
进一步地,每一个连杆机构均包括有两根张紧连杆、两根滚轮连杆、销轴a、销轴b以及滚轮轴;每一连杆机构中,两根张紧连杆分别为张紧连杆a、张紧连杆b,两根滚轮连杆分别为滚轮连杆a、滚轮连杆b;张紧连杆a、张紧连杆b通过设置于第一安装部的销轴a同轴定位连接,同时张紧连杆a、张紧连杆b、滚轮连杆a、滚轮连杆b通过销轴b同轴定位连接,且滚轮连杆a、滚轮连杆b通过滚轮轴同轴连接;张紧连杆a与张紧连杆b之间、滚轮连杆a与滚轮连杆b之间均通过同一对称线对称地布置在第一安装部两侧;第一滚轮/第 二滚轮安装在滚轮连杆a、滚轮连杆b之间的滚轮轴上。由此可知,本实施例所述的连杆机构,通过调节螺杆的旋向深度,从而调节滚轮与导向钢丝绳之间的间距,使得本实施例所述的机器人本体能够适应不同直径的导向钢丝绳,而各部件间(比如滚轮连杆a、滚轮连杆b之间;张紧连杆a、张紧连杆b之间,第一滚轮、第二滚轮之间)采用对称布置,可以实现机器人结构的稳定性,并保持整体的平衡,同时,弹性连接件的设置,可以使得本发明所述的机器人具有一定柔性,从而具有越障能力。
所述壳体框架包括壳体支架和壳体连杆;壳体支架的数目和壳体连杆的数目一致,均≥2;壳体框架为壳体支架、壳体连杆相间设置后拼接而成的多边形框架;导向机构安装在壳体支架上。
由于所述驱动绳索为3条;所述滑轮组具有3组;所述导向机构具有三个;壳体框架为六边形框架,包括三个壳体支架、三根壳体连杆;各导向机构一一对应地安装在相应的壳体支架上。因此,本实施例中,所述的3条驱动绳索成120°布置;所述的3组滑轮组也成120°布置。
本实施例所述的,风井巡检机器人,还包括电源模块以及通信模块,其中:电源模块包括本安型电源;通信模块包括一套无线通信设备,具有无线通信、GPS定位、传感器信号采集和处理的功能。
实施例2
为了解决所述机器人本体的回收问题,本实施例在实施例1的基础上做了进一步改进,分别在机器人本体的上部、下部各设置一套移动装置,每套移动装置均包括绳驱动装置、驱动绳索、滑轮式平衡装置。
以下将结合图5详细地说明本实施例所述风井巡检机器人结构。如图所示,本实施例所述的绳驱动装置,包括两个,分别为上部绳驱动装置、下部绳驱动装置,且上部绳驱动装置位于机器人本体的上方,而下部绳驱动装置位于机器人本体的下方;滑轮式平衡装置也具有两个,分别为上部滑轮式平衡装置、下部滑轮式平衡装置;上部绳驱动装置的动力装置为上部动力装置,上部绳驱动装置的驱动绳索为上部驱动绳索;下部绳驱动装置的动力装置为下部动力装置,下部绳驱动装置的驱动绳索为下部驱动绳索。每一根上部驱动绳索的一端均与上部动力装置的输出端连接,另一端则分别通过上部滑轮式平衡装置与机器人本体连接;每一根下部驱动绳索的一端均与下部动力装置的输出端连接,另一端则分别通过下部滑轮式平衡装置与机器人本体连接。
在图5中,所述的风井巡检机器人,包括有以下部件:
上部动力装置包括上部驱动电机、上部卷筒;下部动力装置包括下部驱动电机、下部卷筒;上部滑轮式平衡装置包括上部导向平台、上部滑轮组以及上部平衡平台;下部滑轮式平衡装置包括下部导向平台、下部滑轮组以及下部平衡平台。上部导向平台的下表面环形均布有两个以上的上部导向定滑轮a;下部导向平台的上表面环形均布有两个以上的下部导向定滑轮a。
上部卷筒上卷绕有上部驱动钢丝绳,上部驱动电机驱动上部卷筒旋转,以实现上部驱动钢丝绳的收卷\放卷。上部驱动钢丝绳的活动端依次通过上部滑轮组、上部平衡平台与机器人本体的顶部连接。
下部卷筒上卷绕有下部驱动钢丝绳,下部驱动电机驱动下部卷筒旋转,以实现下部驱动钢丝绳的收卷\放卷。下部驱动钢丝绳的活动端依次通过下部滑轮组、下部平衡平台与机器人本体的底部连接。
本实施例中,导向钢丝绳能够分别依次穿过上部导向平台、上部平衡平台、图像采集平台、下部平衡平台、下部导向平台的中心位置设置。
本实施例中,所述的机器人本体,结构与实施例1所述的一致,在此不再展开叙述;上部绳驱动装置、下部绳驱动装置与实施例1所述的绳驱动装置的具体构造一致,在此不再展开叙述。上部滑轮式平衡装置、下部滑轮式平衡装置与实施例1所述的滑轮式平衡装置结构一致,在此不再展开叙述。
本发明所述的一种风井巡检机器人的使用方法:
第一步,安装阶段。首先根据导向钢丝绳的直径确定滚轮外表面圆弧曲面的直径并选择好机器人本体需要搭载的传感器,并将传感器和摄像头固定在机器人本体的图像采集云台上,按要求完成电路的连接。首先将壳体框架安装在导向钢丝绳上,通过螺栓将壳体连杆和壳体支架连接;然后通过螺钉将将平衡装置云台与壳体支架连接;在此基础上,安装上部滑轮式平衡装置和下部滑轮式平衡装置;最后,将上部驱动电机、上部卷筒、下部驱动电机、下部卷筒、上部驱动绳索以及下部驱动绳索安装到规定位置。
第二步,调试阶段。连接电源模块和通信模块,测试系统的通信质量;其次,调试驱动电机,确定驱动电机无故障,并且可以按照事先规定的巡检任务进行巡检。
第三步,正式运行阶段。地面控制中心发送启动及巡检命令,通过控制上部驱动电机和下部驱动电机协调转动,控制机器人沿井筒进行巡检任务。同时,地面控制中心查看各个传感器传输回来的数据,如检测电源模块的剩余电量、机器人是否工作正常、井筒内部的温度和湿度等信息。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种风井巡检机器人,其特征在于,包括绳驱动装置、滑轮式平衡装置、机器人本体以及设置在井筒中的直线导向件,其中:
    所述的绳驱动装置,包括动力装置以及一根以上的驱动绳索;
    所述的滑轮式平衡装置,一端与机器人本体固定,而机器人本体则与直线导向件之间导向连接;另一端则具有与驱动绳索数量一致的输入端;
    每一根驱动绳索的一端均与动力装置的输出端连接,另一端则与滑轮式平衡装置对应的输入端连接;
    各驱动绳索输出的动力,经滑轮式平衡装置的动力传动后,能够均匀地作动在机器人本体上,防止机器人本体旋转,带动机器人本体仅做沿着直线导向件平移的运动。
  2. 根据权利要求1所述的风井巡检机器人,其特征在于,所述的绳驱动装置,包括两个,分别为上部绳驱动装置、下部绳驱动装置,且上部绳驱动装置位于机器人本体的上方,而下部绳驱动装置位于机器人本体的下方;
    滑轮式平衡装置也具有两个,分别为上部滑轮式平衡装置、下部滑轮式平衡装置;
    上部绳驱动装置的动力装置为上部动力装置,上部绳驱动装置的驱动绳索为上部驱动绳索;下部绳驱动装置的动力装置为下部动力装置,下部绳驱动装置的驱动绳索为下部驱动绳索;每一根上部驱动绳索的一端均与上部动力装置的输出端连接,另一端则分别通过上部滑轮式平衡装置与机器人本体连接;每一根下部驱动绳索的一端均与下部动力装置的输出端连接,另一端则分别通过下部滑轮式平衡装置与机器人本体连接。
  3. 根据权利要求1或2所述的风井巡检机器人,其特征在于,所述滑轮式平衡装置包括导向平台、平衡平台以及与驱动绳索数量相等的滑轮组;
    所述的导向平台,固定在井筒中,并与动力装置相邻;
    所述的平衡平台,能够相对于导向平台平移,并与机器人本体固定;
    每一个滑轮组,均包括有一个导向定滑轮a;导向定滑轮a为所述的滑轮式平衡装置的输入端;
    各滑轮组的导向定滑轮a均定位安装于导向平台,并环形均匀分布;
    驱动绳索经导向定滑轮a绕行后,与平衡平台固定,且处于导向平台与平衡平台之间的驱动绳索,呈直线状设置。
  4. 根据权利要求3所述的风井巡检机器人,其特征在于,每一个滑轮组,均还包括有一个平衡滑轮组;
    所述的平衡滑轮组包括一根平衡钢丝绳以及一个动滑轮;且该平衡滑轮组,针对所述的动滑 轮,配置两个导向定滑轮b;
    导向定滑轮b定位设置在平衡平台上,且每一个滑轮组的两个导向定滑轮b作为一组,与相邻平衡滑轮组中作为一组的两个导向定滑轮b均匀分布;
    驱动绳索经导向定滑轮a绕行后,通过连接头与动滑轮连接;
    平衡钢丝绳的两端经动滑轮绕行后,再经各自对应的导向定滑轮b导向后,与平衡平台固定。
  5. 根据权利要求4所述的风井巡检机器人,其特征在于,所述的连接头包括动滑轮支座以及绳索楔套;
    绳索楔套的一端与驱动绳索连接,另一端则通过开口销与动滑轮支座固定连接;而动滑轮则定位安装于动滑轮支座。
  6. 根据权利要求1或2所述的风井巡检机器人,其特征在于,所述机器人本体包括图像采集云台、壳体框架以及导向机构;直线导向件为导向钢丝绳;其中:
    导向机构通过壳体框架与图像采集云台固定、并能够与导向钢丝绳形成移动副;
    导向机构至少具有两个,均匀分布在导向钢丝绳外围;
    每一个导向机构均包括滚轮以及能够调整滚轮与导向钢丝绳之间间距的滚轮调整机构;
    滚轮的外表面具有与导向钢丝绳的外表面匹配的环状弧形内凹槽;滚轮调整机构的一端与壳体框架可移动连接,另一端则安装滚轮;滚轮的环状弧形内凹槽在滚轮调整机构的推动下,能够与导向钢丝绳的外表面相抵接。
  7. 根据权利要求5所述的风井巡检机器人,其特征在于,每一个导向机构所包含的滚轮有两个,分别为第一滚轮、第二滚轮;第一滚轮、第二滚轮沿着导向钢丝绳长度方向间隔设置;所述的滚轮调整机构包括螺杆、弹性连接件以及连杆机构;
    螺杆的一端设置端头螺母,另一端穿过壳体框架后配装连接块,且螺杆与壳体框架之间螺纹配合连接;连接块以螺杆的轴线为对称线,对称设置有两个安装部,分别为第一安装部、第二安装部;
    连杆机构为两个,分别为第一连杆机构、第二连杆机构,以螺杆的轴线为对称线,对称分布在螺杆的两侧;
    第一连杆机构的一端与第一安装部铰接,另一端则夹持安装第一滚轮;
    第二连杆机构的一端与第二安装部铰接,另一端则夹持安装第二滚轮;
    弹性连接件套接在端头螺母与壳体之间的螺杆外围;
    第一连杆机构、第二连杆机构在螺杆的作动下,对应地带动第一滚轮、第二滚轮,促使导向钢丝绳能够对应地嵌合在第一滚轮的环状弧形内凹槽、第二滚轮的环状弧形内凹槽内。
  8. 根据权利要求6所述的风井巡检机器人,其特征在于,每一个连杆机构均包括有两根张紧连杆、两根滚轮连杆、销轴a、销轴b以及滚轮轴;
    每一连杆机构中,两根张紧连杆分别为张紧连杆a、张紧连杆b,两根滚轮连杆分别为滚轮连杆a、滚轮连杆b;
    张紧连杆a、张紧连杆b通过设置于第一安装部的销轴a同轴定位连接,同时张紧连杆a、张紧连杆b、滚轮连杆a、滚轮连杆b通过销轴b同轴定位连接,且滚轮连杆a、滚轮连杆b通过滚轮轴同轴连接;
    张紧连杆a与张紧连杆b之间、滚轮连杆a与滚轮连杆b之间均通过同一对称线对称地布置在第一安装部两侧;
    第一滚轮/第二滚轮安装在滚轮连杆a、滚轮连杆b之间的滚轮轴上。
  9. 根据权利要求5所述的风井巡检机器人,其特征在于,所述壳体框架包括壳体支架和壳体连杆;壳体支架的数目和壳体连杆的数目一致,均≥2;壳体框架为壳体支架、壳体连杆相间设置后拼接而成的多边形框架;导向机构安装在壳体支架上。
  10. 根据权利要求5所述的风井巡检机器人,其特征在于,所述驱动绳索为3条;所述滑轮组具有3组;所述导向机构具有三个;壳体框架为六边形框架,包括三个壳体支架、三根壳体连杆;各导向机构一一对应地安装在相应的壳体支架上。
PCT/CN2019/117053 2019-09-23 2019-11-11 一种风井巡检机器人 WO2021056719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910901130.5 2019-09-23
CN201910901130.5A CN110774289B (zh) 2019-09-23 2019-09-23 一种风井巡检机器人

Publications (1)

Publication Number Publication Date
WO2021056719A1 true WO2021056719A1 (zh) 2021-04-01

Family

ID=69383701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117053 WO2021056719A1 (zh) 2019-09-23 2019-11-11 一种风井巡检机器人

Country Status (2)

Country Link
CN (1) CN110774289B (zh)
WO (1) WO2021056719A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612164A (zh) * 2021-08-25 2021-11-05 国家电网有限公司 一种电力线廊布线装置
CN114029964A (zh) * 2021-08-26 2022-02-11 中国矿业大学 深井移动轨道式巡检机器人及其跨绳越障方法
CN114408769A (zh) * 2022-01-07 2022-04-29 大连华锐重工集团股份有限公司 一种起重机钢丝绳平衡及安全装置
CN114408782A (zh) * 2021-12-21 2022-04-29 国家电投集团雄安能源有限公司 一种用于通风井的热网管道巡检机器人下放与回收装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111923014B (zh) * 2020-05-28 2022-08-26 中国矿业大学 可载人风井巡检机器人及风井巡检方法
CN111685967A (zh) * 2020-06-10 2020-09-22 苏州大学 一种绳驱动康复机器人的绳索导向装置
CN112924463B (zh) * 2021-01-26 2022-04-01 中国矿业大学 一种煤矿竖井井筒巡检装置及激光扫描缺陷检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501947A1 (de) * 1991-02-27 1992-09-02 Andreas Dipl.-Ing. Hornyik Verfahren zur Messung von Querschnitten eines Hohlraumes
CN102682492A (zh) * 2012-05-14 2012-09-19 青岛秀山移动测量有限公司 一种煤矿竖井井筒移动巡检方法及设备
CN204355972U (zh) * 2014-12-18 2015-05-27 北京诺安舟应急缓降机械装置有限公司 一种三组钢丝绳自动平衡装置
CN105035200A (zh) * 2015-07-02 2015-11-11 中国矿业大学 一种超深立井钢丝绳罐道垂直爬绳巡检机器人
CN208009499U (zh) * 2017-12-21 2018-10-26 中冶京诚工程技术有限公司 一种地下综合管廊巡检机器人升降平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275799B (zh) * 2011-07-08 2013-01-16 中国矿业大学 一种矿用电梯
CN104261225B (zh) * 2014-10-10 2017-04-12 中国矿业大学 一种超深矿井提升系统试验台及方法
KR101966261B1 (ko) * 2017-07-06 2019-04-05 동국종합산업 주식회사 인력 리프트

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0501947A1 (de) * 1991-02-27 1992-09-02 Andreas Dipl.-Ing. Hornyik Verfahren zur Messung von Querschnitten eines Hohlraumes
CN102682492A (zh) * 2012-05-14 2012-09-19 青岛秀山移动测量有限公司 一种煤矿竖井井筒移动巡检方法及设备
CN204355972U (zh) * 2014-12-18 2015-05-27 北京诺安舟应急缓降机械装置有限公司 一种三组钢丝绳自动平衡装置
CN105035200A (zh) * 2015-07-02 2015-11-11 中国矿业大学 一种超深立井钢丝绳罐道垂直爬绳巡检机器人
CN208009499U (zh) * 2017-12-21 2018-10-26 中冶京诚工程技术有限公司 一种地下综合管廊巡检机器人升降平台

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113612164A (zh) * 2021-08-25 2021-11-05 国家电网有限公司 一种电力线廊布线装置
CN113612164B (zh) * 2021-08-25 2023-08-29 国家电网有限公司 一种电力线廊布线装置
CN114029964A (zh) * 2021-08-26 2022-02-11 中国矿业大学 深井移动轨道式巡检机器人及其跨绳越障方法
CN114029964B (zh) * 2021-08-26 2024-04-23 中国矿业大学 深井移动轨道式巡检机器人及其跨绳越障方法
CN114408782A (zh) * 2021-12-21 2022-04-29 国家电投集团雄安能源有限公司 一种用于通风井的热网管道巡检机器人下放与回收装置
CN114408782B (zh) * 2021-12-21 2024-01-19 国家电投集团雄安能源有限公司 一种用于通风井的热网管道巡检机器人下放与回收装置
CN114408769A (zh) * 2022-01-07 2022-04-29 大连华锐重工集团股份有限公司 一种起重机钢丝绳平衡及安全装置
CN114408769B (zh) * 2022-01-07 2024-02-23 大连华锐重工集团股份有限公司 一种起重机钢丝绳平衡及安全装置

Also Published As

Publication number Publication date
CN110774289B (zh) 2023-04-21
CN110774289A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
WO2021056719A1 (zh) 一种风井巡检机器人
KR101451190B1 (ko) 케이블 이동로봇
US6619432B1 (en) Object transport apparatus, drive mechanism for object transport apparatus and method of using object transport apparatus
CN104993422A (zh) 巡线机器人上下线装置及设有其的巡线机器人上下线系统
CN109677497B (zh) 一种基于永磁体具有可变吸附力的爬壁机器人
EP3183201B1 (en) Winch assembly and method of use
CN104733829B (zh) 一种天文望远镜用索驱动系统
CN110577125B (zh) 井筒巡检系统及其钢丝绳移动装置
CN114341048A (zh) 导绳装置、电动卷扬机和起重机系统
WO2021027130A1 (zh) 井筒巡检系统轨道同步移动装置及其控制方法
KR102012006B1 (ko) 가이드 케이블을 이용한 고소 시설물의 무인 외관 점검 장치 및 방법
WO2022193446A1 (zh) 一种巡检机器人系统
WO2013121232A1 (en) Tensioning system
CN212074247U (zh) 一种缆索攀爬机器人
KR102219079B1 (ko) 원격조종 시스템이 구비된 하수관 보수 자동 견인장치
CN116551651A (zh) 面向非结构环境的刚柔耦合动态检测机器人
EP3466867A1 (en) Rope management apparatus
KR101562299B1 (ko) 수질측정시설용 채수기의 호스 권취장치
KR200401381Y1 (ko) 삭도용 수평 캐리지
CN206110736U (zh) 一种馈源舱建造、停靠和维护装置
CN106639403B (zh) 一种馈源舱建造、停靠和维护装置
CN211037084U (zh) 一种桩孔检测装置
KR101295065B1 (ko) 드럼 이동식 교차 와이어형 무진동 리프트장치
CN210111475U (zh) 一种绕线装置和迪尼玛绳绕线系统
CN113614019A (zh) 绞车的绳引导装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946559

Country of ref document: EP

Kind code of ref document: A1