WO2021027130A1 - 井筒巡检系统轨道同步移动装置及其控制方法 - Google Patents

井筒巡检系统轨道同步移动装置及其控制方法 Download PDF

Info

Publication number
WO2021027130A1
WO2021027130A1 PCT/CN2019/117115 CN2019117115W WO2021027130A1 WO 2021027130 A1 WO2021027130 A1 WO 2021027130A1 CN 2019117115 W CN2019117115 W CN 2019117115W WO 2021027130 A1 WO2021027130 A1 WO 2021027130A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving
wire rope
track
moving device
roller
Prior art date
Application number
PCT/CN2019/117115
Other languages
English (en)
French (fr)
Inventor
周公博
唐超权
朱真才
张岗
何贞志
汤洪伟
李伟
江帆
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3094212A priority Critical patent/CA3094212C/en
Priority to AU2019435041A priority patent/AU2019435041B2/en
Priority to US17/040,552 priority patent/US11125072B2/en
Publication of WO2021027130A1 publication Critical patent/WO2021027130A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F19/00Hoisting, lifting, hauling or pushing, not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B7/00Rope railway systems with suspended flexible tracks
    • B61B7/06Rope railway systems with suspended flexible tracks with self-propelled vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/36Guiding, or otherwise ensuring winding in an orderly manner, of ropes, cables, or chains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B19/00Handling rods, casings, tubes or the like outside the borehole, e.g. in the derrick; Apparatus for feeding the rods or cables
    • E21B19/02Rod or cable suspensions
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D7/00Shaft equipment, e.g. timbering within the shaft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device

Definitions

  • the invention relates to the technical field of mechanical engineering, in particular to a track synchronization moving device and a method for a patrol inspection system.
  • the shaft In mining production, the shaft is the main import and export of the mine to the ground. It is the throat project for lifting coal (or gangue), lifting personnel, transporting materials and equipment, ventilation and drainage during mine production.
  • the wellbore During the long working process of the wellbore, due to many strata, complex geological conditions, harsh operating environment and other factors, the wellbore has longitudinal, circumferential and radial strains. These strains are extremely difficult to find in a short time. If you cannot understand the wellbore and The evolution status of its key facilities is likely to cause shaft skew due to long-term accumulation, deformation of the guiding device of the lifting system, high-speed operation jam of the lifting vessel, and even water inrush and water inrush caused by the gradual accumulation to sudden change. Major accidents such as rope falling.
  • the application number CN201910207682.6 proposes a robot that climbs along the twisting direction of the wire rope guide.
  • the robot can quickly climb along the surface of the complex wire rope, which solves the problem of unstable movement and low life of the climbing robot along the wire rope.
  • a fixed wire rope cannot be used to inspect the entire wellbore.
  • the present invention provides a track synchronous moving device for a wellbore inspection system to solve the problem of wire rope deflection due to different moving speeds when the wire rope moving device moves along the circumference of the wellbore wall.
  • a track synchronization moving device for a wellbore inspection system including an upper moving track, a lower moving track, an upper wire rope moving device, a lower wire rope moving device, and a control device; the upper moving track, the lower moving track are correspondingly embedded in the inner wall of the shaft, and the upper The moving track is located above the lower moving track; the upper wire rope moving device is fitted in the upper moving track, while the lower wire rope moving device is fitted in the lower moving track; wherein: the upper wire rope moving device and the lower wire rope moving device have the same structure , Each includes a casing, a drive motor and several moving rollers; the casing is provided with a wire rope locking mechanism capable of clamping the wire rope; the moving roller includes a driving roller and more than one driven roller; each moving roller is Positioned and supported by a roller shaft, and each roller shaft is installed in the housing through a bearing; the base of the drive motor is fixedly installed on the housing, and the power output end of the drive motor is connected to the roller shaft supporting the driving roller through a reducer
  • the control device is respectively connected with the drive motor of the upper wire rope moving device and the drive motor of the lower wire rope moving device; the control device can automatically according to the information feedback from the position detection device Control the operation state of the driving motor of the upper wire rope moving device and the driving motor of the lower wire rope moving device, and prompt the upper wire rope moving device and the lower wire rope moving device to move synchronously.
  • control device can synchronously start the drive motor of the upper wire rope moving device and the drive motor of the lower wire rope moving device, and apply the same fixed pulse signal a to prompt the upper wire rope moving device and the lower wire rope to move Driven by the power of the respective drive motors, the device moves stepwise with a theoretical step length of L along the rolling surface of the corresponding track body, until the moving roller of the upper wire rope moving device triggers the upper moving track during the forward movement.
  • the position detection device in a certain groove a i gives a response
  • the moving roller of the lower wire rope moving device also synchronously triggers the position detection device in a certain groove b j of the lower moving track during the forward process to give a response
  • the control device receives a set of data at the same time, which are the data detected by the position detection device in the groove a i and the data detected by the position detection device in the groove b j ; the control device can also be based on the above
  • the information fed back by the position detecting device in the groove a i of the moving track, and the information fed back by the position detecting device in the groove b j of the lower moving track determine whether the upper wire rope moving device and the lower wire rope moving device are in each fixed pulse signal Whether the moving roller of the upper wire rope moving device is at the position of the upper moving track and the position of the moving roller of the lower wire rope moving device on the lower moving track is corresponding; if the judgment result shows that the upper wire rope moving device, the lower wire
  • the position detection device includes two types, namely a type A position detection device and a type B position detection device;
  • the type A position detection device includes n position detectors, which are arranged in a one-to-one correspondence.
  • the B-type position detection device also includes n position detection devices, which are arranged in the grooves of the lower moving track in a one-to-one correspondence and move in accordance with the downward movement.
  • Class A position detection Any position detector A i in the device and any position detector B j in the class B position detection device can be respectively connected to the control device; the control device can receive any position detector in the class A position detection device The information detected by A i is automatically recorded as It can also receive the information detected by any position detector B j in the class B position detection device, and automatically record it as The control device receives a group of data at the same time
  • the stop command is issued to stop the power supply of the drive motor of the upper wire rope moving device and the drive motor of the lower wire rope moving device; at this time, the moving roller of the upper wire rope moving device is in a certain groove a i of the upper moving track, and the lower The moving roller of the wire rope moving device is in a certain groove b j of the lower moving track; the control device is based on
  • both the upper wire rope moving device and the lower wire rope moving device are equipped with a guiding mechanism;
  • the guiding mechanism includes a horizontal guiding mechanism and a vertical guiding mechanism;
  • the horizontal guiding mechanism includes a horizontal guiding bracket and a horizontal guiding roller;
  • the horizontal guiding bracket One end is connected to the housing, and the other end is connected to the horizontal guide roller.
  • the axial direction of the horizontal guide roller is parallel to the rolling surface where the moving roller is located;
  • the longitudinal guide mechanism includes a longitudinal guide bracket and a longitudinal guide roller; one end of the longitudinal guide bracket is connected to the casing, and the other One end is connected with the longitudinal guide roller, the axial direction of the longitudinal guide roller is perpendicular to the rolling surface where the moving roller is located;
  • the active roller is driven by the power of the drive motor, and cooperates with the positioning and guidance of the horizontal guide mechanism and the longitudinal guide mechanism to drive each follower
  • the movable roller always moves along the wire rope moving track.
  • the track body also includes a horizontal guide surface and a longitudinal guide surface; one side of the rolling surface is provided with a longitudinal guide surface perpendicular to the rolling surface, and the other side is provided with a through at the turning position.
  • the L-shaped groove includes a vertical groove and a horizontal groove, the groove body of the vertical groove extends perpendicular to the rolling surface, and the notch of the vertical groove is flush with the rolling surface, and the groove body of the horizontal groove extends The direction is parallel to the rolling surface, and the horizontal groove has a horizontal guiding surface parallel to the rolling surface; each movable roller is placed directly above the rolling surface; the horizontal guiding bracket is placed in the vertical groove, and the horizontal guiding roller is placed in the horizontal groove , And one end of the horizontal guide bracket is connected with the housing after passing through the vertical slot, the other end of the horizontal guide bracket is connected with the horizontal guide roller that hooks the horizontal guide surface, and the horizontal guide roller is connected with the horizontal guide surface line; the longitudinal guide roller is connected with Longitudinal guide surface line connection; driven by the power of the driving motor, the active roller can drive the horizontal guide roller to roll along the horizontal guide surface, the longitudinal guide roller to roll along the longitudinal guide surface, and the driven rollers to roll along the rolling surface.
  • the housing is arranged in a ring sector shape; each roller shaft is arranged along the radial direction of the ring sector housing; both radial section ends of the ring sector housing are provided with a fixing bracket; each A fixed bracket is provided with a longitudinal guide mechanism and a horizontal guide mechanism; the longitudinal guide mechanism is arranged at the end adjacent to the inner circular surface of the fixed bracket and the ring sector housing; and the horizontal guide mechanism is arranged at the fixed bracket and the ring sector housing
  • the axis of is perpendicular to the ring sector of the ring sector housing; the axis of the transverse guide roller is parallel to the ring sector of the ring sector housing; the position of the longitudinal and
  • Another technical objective of the present invention is to provide a method for controlling a track synchronization moving device of a wellbore inspection system, which includes the following steps:
  • the upper wire rope moving device and the lower wire rope moving device After the upper wire rope moving device and the lower wire rope moving device perform a movement with a theoretical step length of L, if they can simultaneously detect a set of data, including the data detected by the position detection device in a certain groove a i of the upper moving track,
  • the data detected by the position detection device in a certain groove b j of the lower moving track indicates that the upper wire rope moving device and the lower wire rope moving device simultaneously trigger the positions in a certain groove a i , b j in the corresponding track body Detection device, at this time, the moving roller of the upper wire rope moving device falls into the groove a i of the upper moving track, and the moving roller of the lower wire rope moving device falls into the groove b j of the lower moving track; otherwise, go back to step (2) Until the upper wire rope moving device and the lower wire rope moving device can simultaneously trigger the position detection devices in a certain groove a i , b j of the corresponding moving guide rail;
  • the position detecting device in the groove a i and the information fed back by the position detecting device in the groove b j judge whether the upper wire rope moving device and the lower wire rope moving device are operating simultaneously: when the judgment result indicates that the upper wire rope is moving When the device and the lower wire rope moving device operate synchronously, the position of the moving roller of the upper wire rope moving device on the upper moving track corresponds to the position of the moving roller of the lower wire rope moving device on the lower moving track; if the judgment result indicates the movement of the upper wire rope moving device The position of the roller on the upper moving track is behind the position of the moving roller of the lower wire rope moving device on the lower moving track.
  • the control device can apply the driving motor of the upper moving track with another pulse signal b to prompt the upper wire rope moving device to move upward
  • the rolling surface of the track continues to move forward until the moving roller of the upper wire rope moving device is located at the groove a i+k on the upper moving track, which corresponds to the position of the groove b j of the lower moving track; or the judgment result indicates that the lower wire rope
  • the control device can apply another pulse signal c to the driving motor of the lower moving track to prompt the lower wire rope moving device Continue to move forward along the rolling surface of the lower moving track until the position of the moving roller of the lower wire rope moving device on the lower moving track is the groove b j+k , which corresponds to the position of the groove a i of the upper moving track.
  • the third technical object of the present invention is to provide a control device for a track synchronization moving device of a wellbore inspection system, including a central processing unit, in which a computer program runs, and the computer program can be executed to realize any of the above The control method.
  • the fourth technical objective of the present invention is to provide a computer readable medium storing a computer program, which can be executed to implement any of the above methods.
  • the present invention has the following advantages:
  • the movement of the wire rope moving device is controlled by the circuit (control device, position signal detection device), and the error generated by the circuit control is calibrated by the mechanical mechanism (the groove on the rolling surface) to make the upper and lower wire rope moving devices
  • the synchronized movement is more reliable.
  • Figure 1 is a structural schematic diagram of a wire rope moving device with a steel wire rope mounted on a wire rope moving track set on the shaft wall in the wellbore inspection system;
  • Figure 2 is a cross-sectional view of Figure 1 A-A;
  • FIG. 3 is a schematic diagram of the three-dimensional structure of the wire rope moving device in FIG. 1;
  • Figure 4 is a top view of the wire rope moving device in Figure 1;
  • Figure 5 is a schematic diagram of the structure of the lateral guide mechanism
  • Figure 6 is an enlarged view of the sectional structure of the wire rope moving device fitted in the wire rope moving track
  • Figure 7 is a flow chart of the synchronous motion control method of the wire rope moving device of the present invention.
  • FIG. 8 is a flowchart of a method for detecting the position of a mobile device of the present invention.
  • FIG. 9 is a schematic diagram of the unfolded structure of the upper and lower moving rails of the present invention.
  • spatially relative terms such as “above”, “above”, “above”, “above”, etc. can be used here to describe as shown in the figure. Shows the spatial positional relationship between one device or feature and other devices or features. It should be understood that the spatially relative terms are intended to encompass different orientations in use or operation other than the orientation of the device described in the figure. For example, if the device in the figure is inverted, then the device described as “above the other device or structure” or “above the other device or structure” will then be positioned as “below the other device or structure” or “on Under other devices or structures”. Thus, the exemplary term “above” can include both orientations “above” and “below”. The device can also be positioned in other different ways (rotated by 90 degrees or in other orientations).
  • the track synchronous moving device of the wellbore inspection system of the present invention can synchronously drive the robot that is proposed in Chinese patent CN201910207682.6 to climb along the wire rope guide rail and move along the circumference of the wellbore wall. Move, so as to make a circumferential inspection of the wellbore to get a better monitoring effect.
  • the track synchronous moving device includes a wire rope moving track set in the shaft and a wire rope moving device that can carry the wire rope to move along the wire rope moving track;
  • the center of the shaft is a cage, Counterweight or other working equipment. Therefore, in order to effectively avoid interfering with the normal operation of the working equipment inside the wellbore, the wire rope moving track is arranged inside the wellbore close to the wellbore wall. It can be seen that the arrangement close to the wellbore wall can effectively avoid interference with the working equipment inside the wellbore. Works normally. among them:
  • the wire rope moving track has two (only one wire rope moving track in FIG. 2), respectively an upper moving track and a lower moving track, which are correspondingly embedded in the inner wall of the shaft, and the upper moving track is located above the lower moving track;
  • the upper moving rail is equipped with an upper wire rope moving device, and
  • the lower moving rail is equipped with a lower wire rope moving device.
  • the wire rope moving device as shown in Figure 3-6, includes a housing, a drive motor, and several moving rollers; the size and number of the moving rollers can be determined by the specific load, and the outer edge of the moving rollers can be wrapped with polyurethane or other Buffer material to reduce the impact of the vibration of the wire rope moving device on the wire rope moving track.
  • the casing is provided with a wire rope locking mechanism to lock the wire rope for the robot to climb through the wire rope locking mechanism;
  • the wire rope locking mechanism can be a commercially available wire rope clamp, of course, other mechanisms can also be used for locking Tight limit.
  • the number of wire rope clamps can be one or more than two. When there is only one wire rope moving track, there are at least two wire rope grippers, so that the wire rope that can carry the robot to climb is moved along the shaft.
  • the movable roller includes a driving roller and more than one driven roller (there is only one driven roller in the figure); each movable roller is positioned and supported by a roller shaft, and each roller shaft is installed in the housing through a bearing ;
  • the base of the driving motor is fixedly installed on the housing, and the power output end of the driving motor is connected to the roller shaft supporting the driving roller through a reducer; the driving roller can drive the driven rollers along with the power of the driving motor.
  • the wire rope moves on the track.
  • the driven roller is connected to the housing by a roller shaft and a cylindrical roller bearing, and the two ends are axially limited by the bearing end cover;
  • the driving roller is connected with the housing by the roller shaft and the cylindrical roller bearing, and one end depends on the bearing end
  • the cover is axially limited, and the other end is connected with the reducer, and the power of the drive motor is transmitted to the driving roller through the reducer.
  • the wire rope moving device of the present invention is equipped with a guiding mechanism;
  • the guiding mechanism includes a horizontal guiding mechanism and a longitudinal guiding mechanism;
  • the guiding mechanism is used to realize the longitudinal (axis direction of the shaft) positioning between the wire rope moving device and the wire rope moving track, which can prevent the wire rope moving device from sideways;
  • the horizontal guiding mechanism is used to realize the lateral direction between the wire rope moving device and the wire rope moving track (Direction perpendicular to the axis of the wellbore) positioning.
  • the transverse guide mechanism includes a transverse guide bracket and a transverse guide roller; one end of the transverse guide bracket is connected with the housing, and the other end is connected with the transverse guide roller.
  • the axial direction of the transverse guide roller is parallel to the rolling surface where the moving roller is located.
  • the transverse guide bracket is an L-shaped rod arranged in an L shape, including a vertical section (a section where the L-shaped rod is parallel to the shaft axis of the wellbore) and a horizontal straight section (the L-shaped rod and the shaft The horizontally parallel section), the vertical section is connected with the housing, the horizontal section is provided with a shaft shoulder, the horizontal section outside the shaft shoulder is equipped with a horizontal guide roller, and a bearing is installed between the horizontal guide roller and the horizontal section.
  • the horizontal and straight section on the outer side of the guide roller is threaded with a limit nut. It can be seen that one side of the horizontal guide roller is positioned by the shaft shoulder, and the other side is positioned by the limit nut.
  • the longitudinal guide mechanism includes a longitudinal guide support and a longitudinal guide roller; one end of the longitudinal guide support is connected with the housing, and the other end is connected with the longitudinal guide roller, the axial direction of the longitudinal guide roller is perpendicular to the rolling surface where the moving roller is located; the active roller is at the drive motor Under power drive, coordinated with the positioning and guidance of the horizontal guide mechanism and the longitudinal guide mechanism, it can drive each driven roller to always move along the wire rope moving track.
  • the wire rope moving track of the present invention includes a rolling surface, a horizontal guiding surface, and Longitudinal guide surface; one side of the rolling surface is provided with a longitudinal guide surface perpendicular to the rolling surface, and the other side is provided with an L-shaped groove penetrating at the turning position.
  • the L-shaped groove includes a vertical groove and a horizontal groove,
  • the extending direction of the vertical groove is perpendicular to the rolling surface, and the notch of the vertical groove is flush with the rolling surface, the extending direction of the horizontal groove is parallel to the rolling surface, and the horizontal groove has a horizontal guiding surface parallel to the rolling surface ;
  • Each movable roller is placed directly above the rolling surface; the horizontal guide bracket is placed in the vertical groove, and the horizontal guide roller is placed in the horizontal groove, and one end of the horizontal guide bracket is connected to the housing after passing through the vertical groove. The other end of the guide bracket is connected with the horizontal guide roller that blocks the horizontal guide surface.
  • the horizontal guide roller is connected with the horizontal guide surface; the longitudinal guide roller is connected with the longitudinal guide surface; the active roller can be driven by the power of the drive motor.
  • the horizontal guide rollers roll along the horizontal guide surface, drive the longitudinal guide rollers to roll along the longitudinal guide surface, and drive the driven rollers to roll along the rolling surface.
  • the structural form of the steel wire rope moving track of the present invention can provide guide working surfaces (lateral guide surface, longitudinal guide surface) for each guide roller and mobile working surface (rolling surface) for each movable roller.
  • the lateral guiding mechanism of the present invention not only has a lateral guiding function, but also serves as a connection bridge between the main part of the wire rope moving device and the wire rope moving track.
  • the present invention sets the housing in a ring sector shape.
  • the ring sector housing referring to FIG. 5, is subject to the direction of the figure and passes through the upper ring fan plate and the left side plate.
  • the right side plate, the front side arc plate, and the rear side arc plate are enclosed to form a semi-closed shell with a lower ring fan-shaped end face and open.
  • the left side plate and the right side plate are respectively arranged at the left and right radial cross-section ends of the ring sector housing;
  • the front arc plate is located on the outer circular surface of the ring sector housing, and the rear arc plate is located on the ring sector housing The inner circle surface.
  • each roller shaft is arranged along the radial direction of the ring sector housing; and each movable roller can be set to expose the lower ring sector open end surface of the ring sector housing, so that Each moving roller can directly contact the rolling surface of the wire rope moving track.
  • the two radial section ends of the ring sector housing of the present invention are provided with a fixed bracket; each fixed bracket is provided with a longitudinal guide mechanism and a transverse guide. Guide mechanism; the longitudinal guide mechanism is arranged at the end of the fixed bracket adjacent to the inner circular surface of the ring sector shell; and the transverse guide mechanism is arranged at the end of the fixed bracket adjacent to the outer circular surface of the ring sector shell; divided into the ring sector shell.
  • the two longitudinal guide mechanisms at the two radial section ends of the two radial section ends are arranged symmetrically.
  • the two transverse guide mechanisms at the two radial section ends of the ring sector housing are arranged symmetrically; the axis of the longitudinal guide roller is perpendicular to the ring sector of the ring sector housing; The axis of the roller is parallel to the ring sector surface of the ring sector shell; the positions of the longitudinal guide bracket and the transverse guide bracket on the fixed bracket can be adjusted along the radial direction of the ring sector shell.
  • the fixing bracket includes more than one cross-bar, each of the cross-bars is equidistantly distributed along the height direction of the radial section end of the ring sector housing; the radial section end of the ring sector housing is provided with a fixing block; each The cross bar is supported and fixed by a fixed block and is arranged along the radial direction of the ring sector shell, and both ends of the cross bar are threadedly connected with lock nuts; the longitudinal guide bracket is provided with a mounting hole a for each cross bar; The longitudinal guide bracket is sleeved on the corresponding cross bar through each mounting hole a, and each cross bar between the longitudinal guide bracket and the fixed block is sleeved with a spring a.
  • the spring a can be set to reduce the movement of the longitudinal guide mechanism.
  • the vibration interferes with the movement of the main part of the wire rope moving device;
  • the horizontal guide bracket is provided with a mounting hole b for each crossbar;
  • the horizontal guide bracket is sleeved on the corresponding crossbar through the mounting hole b, and the horizontal guide bracket is fixed
  • a spring b is sleeved on the periphery of each cross bar between the blocks, and the spring b can be arranged to reduce the interference of the vibration of the lateral guide mechanism on the movement of the main part of the wire rope moving device.
  • each wire rope moving device in the upper wire rope moving device group are all embedded in the upper moving rail through the lateral guide rollers of the respective lateral guiding mechanism, and are located above the rolling surface of the upper moving rail; and each wire rope in the upper wire rope moving device group
  • the moving rollers of the moving device are all connected with the rolling surface line of the upper moving track;
  • the shells of the wire rope moving devices in the lower wire rope moving device group are embedded in the lower moving track through the lateral guide rollers of the respective lateral guiding mechanism, and the suspension is moved downward Below the rolling surface of the track;
  • the moving rollers of each wire rope moving device in the lower wire rope moving device group are connected with the rolling surface of the lower moving track.
  • the upper wire rope moving device group and the lower wire rope moving device group can move independently.
  • the robot can inspect the entire wellbore wall; when moving at differential speed, the robot can inspect the entire wellbore interior.
  • the steel wire rope moving track is an annular track; the annular track is formed by splicing several arc tracks.
  • the wire rope track may be composed of multiple arc track segments, which are distributed in positions where there is no interference between the tank beam and the working equipment.
  • Each arc track can be individually arranged with a group of wire rope moving devices according to actual needs, or a group of wire rope moving devices can be shared by multiple tracks.
  • the steel wire rope moving track of the present invention includes a track body, and the rolling surface of the track body is evenly provided with a number of grooves in the circumferential direction.
  • the grooves are distributed at equal intervals on the wire rope moving track, and the distance D of the grooves can be determined according to the actual inspection needs.
  • the moving device has its own control device, which controls the upper and lower wire rope moving device groups to move at the same time according to instructions.
  • the groove on the wire rope moving track is used as an auxiliary limit device, and the groove is used as the node to move the wire rope moving device on the wire rope. The movement on the track is transformed into a process of moving from one groove to another.
  • the groove of the present invention is rectangular, and the bisector between the center lines of the short sides of the rectangle where the groove is located is along the radial direction of the circular track, which is the same as the roller axis of the wire rope moving device.
  • the moving device moves on the wire rope moving track along the wire rope moving track, the roller passes through each groove in turn, and the fixed position of the groove is used to restrict the upper and lower wire rope moving device groups to be on the same vertical line.
  • the grooves of the steel wire rope moving track can also be in the shape of a cylinder, a prism, etc., and can also have different depths to facilitate the movement of the wire rope moving devices of different volumes and the cooperation with the grooves.
  • the wire rope moving device When the wire rope moving device is in a position other than the middle position in the groove, the force of the wire rope moving device cannot reach the force balance. At this time, the wire rope moving device can be rolled to the middle position of the groove under the action of the wire rope tension and the supporting force of the groove on the wire rope moving device, so as to achieve the effect of the groove restricting the wire rope moving device.
  • the width of the groove of the wire rope moving track can be determined according to the control accuracy of the wire rope moving device. Even if the wire rope moving device produces a certain error during the movement, it can still be based on the gravity of the wire rope moving device and the wire rope The tension slides back to the middle of the groove.
  • Corresponding sensors are arranged in the grooves of the wire rope moving track, such as distance sensors or pressure sensors, but not limited to these two. Other sensors that can meet the requirements are also available for detecting wire rope moving devices Whether it falls into the groove, and record the position of the upper and lower wire rope moving device.
  • the position detection device can feed back the detected information to the control device, and is connected with the control device signal; the control device is respectively connected with the drive motor of the upper wire rope moving device and the drive motor of the lower wire rope moving device; the control device can be based on the position
  • the information fed back by the detection device automatically controls the operating state of the driving motor of the upper wire rope moving device and the driving motor of the lower wire rope moving device, and prompts the upper wire rope moving device and the lower wire rope moving device to move synchronously.
  • the present invention discloses a method for controlling the track synchronization movement of a wellbore inspection system, which includes the following steps:
  • the upper wire rope moving device and the lower wire rope moving device After the upper wire rope moving device and the lower wire rope moving device perform a movement with a theoretical step length of L, if they can simultaneously detect a set of data, including the data detected by the position detection device in a certain groove a i of the upper moving track,
  • the data detected by the position detection device in a certain groove b j of the lower moving track indicates that the upper wire rope moving device and the lower wire rope moving device simultaneously trigger the positions in a certain groove a i , b j in the corresponding track body Detection device, at this time, the moving roller of the upper wire rope moving device falls into the groove a i of the upper moving track, and the moving roller of the lower wire rope moving device falls into the groove b j of the lower moving track; otherwise, go back to step (2) Until the upper wire rope moving device and the lower wire rope moving device can simultaneously trigger the position detection device in a certain groove a i , b j of the corresponding moving guide rail; i,
  • the position detecting device in the groove a i and the information fed back by the position detecting device in the groove b j judge whether the upper wire rope moving device and the lower wire rope moving device are operating simultaneously: when the judgment result indicates that the upper wire rope is moving When the device and the lower wire rope moving device operate synchronously, the position of the moving roller of the upper wire rope moving device on the upper moving track corresponds to the position of the moving roller of the lower wire rope moving device on the lower moving track; if the judgment result indicates the movement of the upper wire rope moving device The position of the roller on the upper moving track is behind the position of the moving roller of the lower wire rope moving device on the lower moving track.
  • the control device can apply the driving motor of the upper moving track with another pulse signal b to prompt the upper wire rope moving device to move upward
  • the pulse signal c prompts the lower wire rope moving device to continue to move along the rolling surface of the lower moving track until the moving roller of the lower wire rope moving device is located at the groove b j+k on the lower moving track, which is the groove of the upper moving track
  • the control device of the present invention can synchronously start the drive motor of the upper wire rope moving device and the drive motor of the lower wire rope moving device, and apply the same fixed pulse signal a to prompt the upper wire rope moving device,
  • the lower wire rope moving device is driven by the power of the respective drive motors to move along the rolling surface of the corresponding track body in a stepwise manner with a theoretical step of L until the moving roller of the upper wire rope moving device is triggered during the forward process
  • the position detecting device in a certain groove a i of the upper moving track gives a response, and the moving roller of the lower wire rope moving device also synchronously triggers the position detecting device in a certain groove b j of the lower moving track during the forward process.
  • a response is sent so that the control device simultaneously receives a group of data, which are the data detected by the position detection device in the groove a i and the data detected by the position detection device in the groove b j ; the control device also According to the information fed back by the position detecting device in the groove a i of the upper moving track, and the information fed back by the position detecting device in the groove b j of the lower moving track, it can be determined that the upper wire rope moving device and the lower wire rope moving device are in their respective positions.
  • the control device can apply the driving motor of the upper moving track
  • the upper wire rope moving device is prompted to continue to move along the rolling surface of the upper moving track until the moving roller of the upper wire rope moving device is located at the groove a′ i on the upper moving track, and the lower moving track
  • the position of the groove b j corresponds to the position; or the judgment result shows that the position of the moving roller of the lower wire rope moving device on the lower moving track is behind the position of the moving roller of the upper wire rope moving device on the
  • the present invention can provide a control device for a track synchronization moving device of a wellbore inspection system, which includes a central processing unit in which a computer program runs, and the computer program can be executed to realize the above-mentioned control method.
  • the present invention may also provide a computer-readable medium storing a computer program, and the computer program can be executed to implement the above method.
  • the information detected by the position detection device is associated with the position of the groove on the rolling surface of the position detection device, so that it can be more convenient to determine whether the upper and lower moving devices are running in synchronization, specifically:
  • the position detection device includes two types, namely a type A position detection device and a type B position detection device; the type A position detection device includes n position detectors, which are arranged on the upper moving track in a one-to-one correspondence.
  • the sequence of the grooves is: groove a 0 , groove a 1 , groove a 2 ... groove a i ...
  • the position of the groove a n starting from the initial position, are position detector A 0 , position detector A 1 , position detector A 2 &position detector A i ??position detector A n , n is greater than or equal to An integer of 0, that is, the position detectors of the upper moving track and the grooves of the upper moving track are arranged in one-to-one correspondence; the B-type position detection device also includes n position detectors, which are arranged on the lower moving track in a one-to-one correspondence.
  • the sequence of the grooves is: groove b 0 , groove b 1 , groove b 2 ... groove b i ...
  • any position detector A i in the type A position detection device and any position detector B j in the type B position detection device can be respectively connected to the control device; the control device can receive any of the position detection devices of the A type A position detector Ai detects the information and automatically records it as Put another way, the position detector A 0, the position detector A 1, A 2 ?? position detector position detector A i ?? A n position detector detects the information is sequentially recorded It can also receive the information detected by any position detector B j in the class B position detection device, and automatically record it as In other words, the position detector B 0 , the position detector B 1 , the position detector B 2 ... the position detector B j ... the information detected by the position detector B n is
  • step (3) whether a group of data can be received at the same time t
  • the first step is the start-up phase. Confirm whether the upper and lower wire rope moving devices are at the starting point of the corresponding grooves, power on the upper and lower wire rope moving devices, and input the same fixed pulse number for the upper and lower wire rope moving devices to make each wire rope moving device start to move and move and fix length.
  • the second step is the operating phase. After each wire rope moving device runs the fixed pulse, the wire rope moving device is powered off, so that the position error caused by the movement of the wire rope moving device slides to an accurate position in the groove under the action of the wire rope tension. Start the detection device in the groove, judge whether the wire rope moving device accurately enters the groove, and judge the position where the wire rope moving device falls into the groove. According to the position where the upper and lower wire rope moving devices fall into the groove, adjust the operation of the upper and lower wire rope moving devices to make the upper and lower wire rope moving devices fall into a predetermined position, and start the longitudinal inspection of the wellbore. After the inspection, repeat the moving process of the wire rope moving device. Complete the inspection of the entire wellbore.
  • the third step is the stop phase. After the wellbore inspection is completed, return to the starting point of the wire rope moving device. Wait for the next inspection task to start.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Structural Engineering (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种井筒巡检系统轨道同步移动装置及其控制方法,该移动装置包括上移动轨道、下移动轨道、上钢丝绳移动装置、下钢丝绳移动装置以及控制装置;上移动轨道和下移动轨道,对应地嵌入井筒的内壁,且上移动轨道位于下移动轨道的上方;上钢丝绳移动装置配装在上移动轨道中,而下钢丝绳移动装置配装在下移动轨道中;上移动轨道与下移动轨道结构一致,均包括轨道本体,轨道本体上设置有滚动面,且滚动面沿着轨道本体的延伸方向均布有若干凹槽(3);控制装置配合轨道本体上的凹槽结构,控制上钢丝绳移动装置和下钢丝绳移动装置的同步移动,解决了移动装置沿井筒壁周向移动时,存在的移动速度不同导致钢丝绳发生偏斜的问题。

Description

井筒巡检系统轨道同步移动装置及其控制方法 技术领域
本发明涉及机械工程技术领域,具体涉及一种巡检系统轨道同步移动装置及其方法。
背景技术
在矿业生产中,井筒是矿井通往地面的主要进出口,是矿井生产期间提升煤炭(或矸石)、升降人员、运送材料设备、通风和排水的咽喉工程。井筒在长时间的工作过程中,由于跨越地层多,地质条件复杂、运行环境恶劣等因素导致井筒发生纵向、环向和径向应变,这些应变短时间内极难发现,如果不能及时了解井筒及其关键设施的演变状态,很有可能由于长时间的积累导致井筒歪斜、提升系统导向装置变形、提升容器高速运行卡阻,甚至还有渐变积累至突变时引起的井筒断裂突水、提升容器断绳坠落等重大恶性事故。虽然《煤矿安全规程》对煤矿井筒设施规定了检查频率和要求,但目前井筒的巡检工作主要依靠人力来完成,效率低成本高,误判率高,细微变化不能及时被发现,并且很难形成矿井井筒全局巡检的连续性、系统性,常常由于未及时对纵深环境巡检修复而对工作于其中的工业基础设施造成难以修复的破坏和无法挽回的损失。
申请号CN201910207682.6提出了一种沿钢丝绳导轨捻向攀爬的机器人,该机器人可以沿着复杂的钢丝绳表面快速攀爬,解决了沿钢丝绳攀爬机器人运动不稳定且寿命低的问题,并提出利用机器人技术及无线传感网技术建立一套由巡检机器人组成的巡检系统对矿井井筒进行实时的监控,但是矿井井筒往往具有较大的半径并且井筒内具有相关的工业设备,在矿井井筒中布置一根固定的钢丝绳无法实现对于整个井筒的巡检。
发明内容
本发明针对现有技术的不足,提供一种井筒巡检系统轨道同步移动装置,以解决钢丝绳移动装置沿井筒壁周向移动时存在的移动速度不同导致钢丝绳发生偏斜的问题。
为实现上述的技术目的,本发明将采取如下的技术方案:
一种井筒巡检系统轨道同步移动装置,包括上移动轨道、下移动轨道、上钢 丝绳移动装置、下钢丝绳移动装置以及控制装置;上移动轨道、下移动轨道,对应地嵌入井筒的内壁,且上移动轨道位于下移动轨道的上方;上钢丝绳移动装置配装在上移动轨道中,而下钢丝绳移动装置则配装在下移动轨道中;其中:所述上钢丝绳移动装置、下钢丝绳移动装置,结构一致,均包括外壳、驱动电机以及若干个移动滚轮;所述外壳,设置有能够装夹钢丝绳的钢丝绳锁紧机构;所述移动滚轮,包括一个主动滚轮以及一个以上的从动滚轮;各移动滚轮均通过一根滚轮轴定位支撑,且各滚轮轴均通过轴承安装于外壳中;驱动电机的机座固定安装在外壳上,而驱动电机的动力输出端则通过减速器与支撑主动滚轮的滚轮轴连接;所述上移动轨道、下移动轨道,结构一致,均包括轨道本体,轨道本体上设置有滚动面,且滚动面沿着轨道本体的延伸方向均布有若干凹槽,相邻两个凹槽之间的间距为D;各凹槽内均设置有用于检测移动滚轮是否落入该凹槽并能够确定移动滚轮所落入凹槽的位置信息的位置检测装置;位置检测装置能够将所检测到的信息反馈至控制装置,并与控制装置信号连接;而控制装置则分别与上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机连接;控制装置能够根据位置检测装置所反馈的信息,自动控制上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机运行状态,促使上钢丝绳移动装置、下钢丝绳移动装置同步运动。
作为本发明的进一步改进,所述的控制装置,能够同步启动上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的步进式移动,直至上钢丝绳移动装置的移动滚轮在前行过程中触发上移动轨道的某一凹槽a i中的位置检测装置给出响应、下钢丝绳移动装置的移动滚轮也在前行过程中同步触发下移动轨道的某一凹槽b j中的位置检测装置给出响应,使得控制装置同时接收到一组数据,分别为凹槽a i中的位置检测装置所检测的数据、凹槽b j中的位置检测装置所检测的数据;所述的控制装置,还能够根据上移动轨道的凹槽a i中的位置检测装置所反馈的信息、下移动轨道的凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行,以致上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置 的移动滚轮在下移动轨道的所在位置是否对应;若判断结果表明上钢丝绳移动装置、下钢丝绳移动装置运行不同步,且上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a i+k,与下移动轨道的凹槽b j所在位置对应;或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b j+k,与上移动轨道的凹槽a i所在位置对应。
作为本发明的进一步改进,所述位置检测装置包括两类,分别为A类位置检测装置以及B类位置检测装置;A类位置检测装置包括n个位置检测器,一一对应地设置于上移动轨道的各凹槽中,并按照在上移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n,n为大于等于0的整数,;B类位置检测装置也包括n个位置检测装器,一一对应地设置于下移动轨道的各凹槽中,并按照在下移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n;A类位置检测装置中任一个位置检测器A i、B类位置检测装置中任一个位置检测器B j均能够分别与控制装置连接;所述的控制装置,能够接收A类位置检测装置中任一个位置检测器A i检测到的信息,并自动记录为
Figure PCTCN2019117115-appb-000001
也能够接收B类位置检测装置中任一个位置检测器B j检测到的信息,并自动记录为
Figure PCTCN2019117115-appb-000002
所述的控制装置,在同一时刻接收到一组数据
Figure PCTCN2019117115-appb-000003
时,发出制停指令,停止向上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机供电;此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的某一凹槽a i中,而下钢丝绳移动装置的移动滚轮处于下移动轨道的某一 凹槽b j中;所述的控制装置,根据在同一时刻所接收到的一组数据
Figure PCTCN2019117115-appb-000004
比较该组数据中i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
作为本发明的进一步改进,所述上钢丝绳移动装置、下钢丝绳移动装置均配置有导向机构;导向机构包括横向导向机构以及纵向导向机构;横向导向机构包括横向导向支架以及横向导向滚轮;横向导向支架一端与外壳连接,另一端则与横向导向滚轮连接,横向导向滚轮的轴向与移动滚轮所在的滚动面相平行;纵向导向机构包括纵向导向支架以及纵向导向滚轮;纵向导向支架一端与外壳连接,另一端则与纵向导向滚轮连接,纵向导向滚轮的轴向与移动滚轮所在的滚动面相垂直;主动滚轮在驱动电机的动力驱动下,配合横向导向机构、纵向导向机构的定位和导向,能够带动各从动滚轮始终沿着钢丝绳移动轨道移动。
作为本发明的进一步改进,所述轨道本体上还包括横向导向面以及纵向导向面;滚动面的一侧设置有与滚动面相垂直的纵向导向面,另一侧则设置有在转折位置处贯通的L形凹槽,该L形凹槽包括竖直槽以及横向槽,竖直槽的槽体延伸方向与滚动面相垂直,且竖直槽的槽口与滚动面齐平,横向槽的槽体延伸方向与滚动面相平行,且横向槽具有与滚动面相平行的横向导向面;各移动滚轮均直接置于滚动面的上方;横向导向支架置于竖直槽内,而横向导向滚轮置于横向槽内,且横向导向支架的一端穿出竖直槽后与外壳连接,横向导向支架的另一端则与勾拦住横向导向面的横向导向滚轮连接,横向导向滚轮与横向导向面线连接;纵向导向滚轮与纵向导向面线连接;主动滚轮在驱动电机的动力驱动下,能够带动横向导向滚轮沿着横向导向面滚动、带动纵向导向滚轮沿着纵向导向面滚动、带动各从动滚轮沿着滚动面滚动。
作为本发明的进一步改进,所述的外壳,呈环扇形设置;各滚轮轴均沿着环扇形外壳的径向布置;所述环扇形外壳的两径向截面端均设置有一个固定支架;每一个固定支架上均设置有一个纵向导向机构、一个横向导向机构;纵向导向机 构设置在固定支架与环扇形外壳的内圆面相邻的一端;而横向导向机构则设置在固定支架与环扇形外壳的外圆面相邻的一端;分处于环扇形外壳的两径向截面端的两纵向导向机构对称设置,同时,分设在环扇形外壳的两径向截面端的两横向导向机构对称设置;纵向导向滚轮的轴线与环扇形外壳的环扇面相垂直;横向导向滚轮的轴线与环扇形外壳的环扇面相平行;纵向导向支架、横向导向支架在固定支架上的位置能够沿着环扇形外壳的径向调整。
本发明的另一个技术目的是提供一种井筒巡检系统轨道同步移动装置的控制方法,包括以下步骤:
(1)初始位置
将上钢丝绳移动装置、下钢丝绳移动装置均置于初始位置;此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的凹槽a 0中,而下钢丝绳移动装置的移动滚轮处于下移动轨道的凹槽b 0中;
(2)供电
将上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机均与电源接通,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的移动后,停止供电;
(3)判断是否同时落入凹槽
上钢丝绳移动装置、下钢丝绳移动装置在做理论步长为L的移动后,若能够同时检测到一组数据,包括上移动轨道的某一凹槽a i中的位置检测装置所检测的数据、下移动轨道的某一凹槽b j中的位置检测装置所检测的数据,表明上钢丝绳移动装置、下钢丝绳移动装置同时触发各自对应的轨道本体中某一凹槽a i、b j中的位置检测装置,此时,上钢丝绳移动装置的移动滚轮落入上移动轨道的凹槽a i中,下钢丝绳移动装置的移动滚轮落入下移动轨道的凹槽b j中;反之,则回到步骤(2),直至上钢丝绳移动装置、下钢丝绳移动装置能够同时触发各自对应的移动导轨的某一凹槽a i、b j中的位置检测装置;
(4)判断是否同步运行
根据凹槽a i中的位置检测装置所反馈的信息、凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置是否同步运行:当判断结果表明上钢丝绳移动装置、下钢丝绳移动装置同步运行时,上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置对应;若判断结果表明上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a i+k,与下移动轨道的凹槽b j所在位置对应;或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b j+k,与上移动轨道的凹槽a i所在位置对应。
作为本发明的进一步改进,所述位置检测装置包括两类,所述位置检测装置包括两类,分别为A类位置检测装置以及B类位置检测装置;A类位置检测装置包括n个位置检测器,一一对应地设置于上移动轨道的各凹槽中,并按照在上移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n,n为大于等于0的整数,;B类位置检测装置也包括n个位置检测装器,一一对应地设置于下移动轨道的各凹槽中,并按照在下移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n;A类位置检测装置中任一个位置检测器A i、B类位置检测装置中任一个位置检测器B j均能够分别与控制装置连接;步骤(3)中,通过能否在同一时刻t接收到一组数据
Figure PCTCN2019117115-appb-000005
来判断t时刻,上钢丝绳移动装置的移动滚轮、下钢丝绳移动装置的移动滚轮是否均处于各自对应的移动轨道的凹槽中;当接收到数据
Figure PCTCN2019117115-appb-000006
时, 表明上钢丝绳移动装置的移动滚轮落入上移动轨道的对应凹槽中;当接收到数据
Figure PCTCN2019117115-appb-000007
时,表明下钢丝绳移动装置的移动滚轮落入下移动轨道的对应凹槽中;步骤(4)中,通过比较同时刻所接收到的一组数据
Figure PCTCN2019117115-appb-000008
中,i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
本发明的第三个技术目的提供一种井筒巡检系统轨道同步移动装置的控制装置,包括中央处理单元,该中央处理单元中运行有计算机程序,该计算机程序可被执行以实现上面任一项所述的控制方法。
本发明的第四个技术目的是提供一种计算机可读介质,存储有计算机程序,该计算机程序可被执行以实现上面任一项所述的方法。
根据上述的技术方案,相对于现有技术,本发明具有如下的优点:
(1)钢丝绳移动装置的移动由电路(控制装置、位置信号检测装置)控制,对于电路控制所产生的误差,由机械机构(滚动面上的凹槽)进行校准,使上、下钢丝绳移动装置的同步移动更可靠。
(2)钢丝绳移动轨道上凹槽可以根据巡检的精度进行细分,适用于多种工况的巡检。
(3)钢丝绳移动装置处于凹槽内时,受到凹槽对滚轮的作用力使钢丝绳移动装置固定在凹槽处,防止钢丝绳移动装置左右晃动,不需要额外的机构对移动装置进行固定。
附图说明
图1为井筒巡检系统中,装夹有钢丝绳的钢丝绳移动装置配装在井筒壁上所设置的钢丝绳移动轨道上的结构示意图;
图2是图1的A-A剖视图;
图3是图1中钢丝绳移动装置的立体结构示意图;
图4是图1中钢丝绳移动装置的俯视图;
图5是横向导向机构的结构示意图;
图6是钢丝绳移动装置配装在钢丝绳移动轨道中的剖视结构放大图;
图7是本发明钢丝绳移动装置同步运动控制方法流程图;
图8是本发明移动装置位置检测方法流程图;
图9是本发明所述上移动轨道、下移动轨道的展开结构示意图;
图中:1、钢丝绳移动轨道;2、钢丝绳移动装置;2-1、外壳的环扇形面;2-2、外壳的径向截面端;2-3、钢丝绳张紧机构;2-4、电机;2-5、连接螺栓;2-6、减速器端盖;2-7、弹簧;2-8、横杆;2-9、纵向导向支架;2-10、纵向导向滚轮;2-11、横向导向支架;2-12、横向导向滚轮;2-13、从动滚轮;2-14、减速器;2-15、主动滚轮;2-16、轴承;2-17、横向导向滚轮的限位螺母;2-18、套筒;3、凹槽。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之 上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位)。
如图1至9所示,本发明所述的井筒巡检系统轨道同步移动装置,能够同步带动中国专利CN201910207682.6所提出的沿钢丝绳导轨捻向攀爬的机器人,沿着井筒壁周向进行移动,从而对井筒的周向巡检,以得到更好的监测效果。
具体地,所述的轨道同步移动装置,如图1、图2所示,包括设置于井筒内的钢丝绳移动轨道以及能够携带着钢丝绳沿着钢丝绳移动轨道移动的钢丝绳移动装置;井筒中心为罐笼、平衡锤或其他工作设备,因此,为有效避免干扰井筒内部工作设备的正常工作,钢丝绳移动轨道布置在井筒内部靠近井筒壁的位置,由此可知,贴近井筒壁布置可有效避免干扰井筒内部工作设备的正常工作。其中:
所述钢丝绳移动轨道具有两条(附图2中仅有一条钢丝绳移动轨道),分别为上移动轨道、下移动轨道,对应地嵌入井筒的内壁,且上移动轨道位于下移动轨道的上方;钢丝绳移动装置,具有两个,分别为上钢丝绳移动装置、下钢丝绳移动装置;上移动轨道中配装上钢丝绳移动装置,下移动轨道中配装下钢丝绳移动装置。
所述钢丝绳移动装置,如图3-6所示,包括外壳、驱动电机以及若干个移动滚轮;移动滚轮的尺寸和数量可以由具体的负载所决定,移动滚轮的外缘可以包裹有聚氨酯或其他缓冲材料,以降低钢丝绳移动装置的振动对钢丝绳移动轨道的冲击。附图中,移动滚轮具有两个。
所述外壳,设置有钢丝绳锁紧机构,以通过钢丝绳锁紧机构锁住供机器人攀爬的钢丝绳;该钢丝绳锁紧机构可以采用目前市售的钢丝绳卡绳器,当然也可以采用其它机构进行锁紧限位。钢丝绳卡绳器的数目可以为1个,也可以为2个以上。当钢丝绳移动轨道只有一条时,钢丝绳卡绳器的数目至少具有两个,以便于能够携带着机器人攀爬的钢丝绳沿井筒内移动。
所述移动滚轮,包括一个主动滚轮以及一个以上的从动滚轮(附图中从动滚轮只有一个);各移动滚轮均通过一根滚轮轴定位支撑,且各滚轮轴均通过轴承安装于外壳中;驱动电机的机座固定安装在外壳上,而驱动电机的动力输出端则通过减速器与支撑主动滚轮的滚轮轴连接;主动滚轮在驱动电机的动力驱动下, 能够带动各从动滚轮沿着钢丝绳移动轨道移动。
具体地,从动滚轮由滚轮轴和圆柱滚子轴承与外壳进行连接,两端依靠轴承端盖进行轴向限位;主动滚轮由滚轮轴和圆柱滚子轴承与外壳进行连接,一端依靠轴承端盖进行轴向限位,另一端与减速器相连,驱动电机的动力由驱动电机经过减速器传输到主动滚轮上。
为确保钢丝绳移动装置能够按照预设的轨迹(井筒壁周向)沿着钢丝绳移动轨道移动,本发明所述钢丝绳移动装置配置有导向机构;导向机构包括横向导向机构以及纵向导向机构;其中,纵向导向机构用于实现钢丝绳移动装置与钢丝绳移动轨道之间的纵向(井筒的轴线方向)定位,能够防止钢丝绳移动装置发生侧偏;横向导向机构用于实现钢丝绳移动装置与钢丝绳移动轨道之间的横向(与井筒的轴向相垂直的方向)定位。
横向导向机构包括横向导向支架以及横向导向滚轮;横向导向支架一端与外壳连接,另一端则与横向导向滚轮连接,横向导向滚轮的轴向与移动滚轮所在的滚动面相平行。具体地,如图5所示,横向导向支架为呈L形设置的L形杆,包括竖直段(L形杆与井筒的轴向相平行的一段)以及横直段(L形杆与井筒的横向相平行的一段),竖直段与外壳连接,横直段上设置有轴肩,轴肩外侧的横直段上配装有横向导向滚轮,且横向导向滚轮与横直段之间安装有轴承,横向导向滚轮外侧的横直段上螺纹配装有限位螺母,由此可知,横向导向滚轮的一侧通过轴肩定位,另一侧则依靠限位螺母定位。纵向导向机构包括纵向导向支架以及纵向导向滚轮;纵向导向支架一端与外壳连接,另一端则与纵向导向滚轮连接,纵向导向滚轮的轴向与移动滚轮所在的滚动面相垂直;主动滚轮在驱动电机的动力驱动下,配合横向导向机构、纵向导向机构的定位和导向,能够带动各从动滚轮始终沿着钢丝绳移动轨道移动。
为便于钢丝绳移动装置的各移动滚轮、导向机构的各导向滚轮(包括横向导向滚轮、纵向导向滚轮)的安装,如图6所示,本发明所述钢丝绳移动轨道包括滚动面、横向导向面以及纵向导向面;滚动面的一侧设置有与滚动面相垂直的纵向导向面,另一侧则设置有在转折位置处贯通的L形凹槽,该L形凹槽包括竖直槽以及横向槽,竖直槽的槽体延伸方向与滚动面相垂直,且竖直槽的槽口与滚动面齐平,横向槽的槽体延伸方向与滚动面相平行,且横向槽具有与滚动面相平行 的横向导向面;各移动滚轮均直接置于滚动面的上方;横向导向支架置于竖直槽内,而横向导向滚轮置于横向槽内,且横向导向支架的一端穿出竖直槽后与外壳连接,横向导向支架的另一端则与勾拦住横向导向面的横向导向滚轮连接,横向导向滚轮与横向导向面线连接;纵向导向滚轮与纵向导向面线连接;主动滚轮在驱动电机的动力驱动下,能够带动横向导向滚轮沿着横向导向面滚动、带动纵向导向滚轮沿着纵向导向面滚动、带动各从动滚轮沿着滚动面滚动。本发明所述的钢丝绳移动轨道所具有的这一结构形式,一方面可以为各导向滚轮提供导向工作面(横向导向面、纵向导向面)、为各移动滚轮提供移动工作面(滚动面),另一方面,还可以为横向导向机构提供安装空间,并通过特定的安装方式,将钢丝绳移动装置的主体部分(外壳及分别安装在外壳的各移动滚轮、驱动电机、滚轮轴)通过横向导向机构嵌装到钢丝绳移动轨道中。由此可知,本发明所述的横向导向机构不仅具有横向导向作用,同时还作为钢丝绳移动装置的主体部分与钢丝绳移动轨道之间的连接桥梁。
为使得钢丝绳移动装置沿着井筒壁周向运动,本发明将所述外壳设置成环扇形,该环扇形外壳,参考附图5,以图示方向为准,通过上环扇板、左侧板、右侧板、前侧弧形板、后侧弧形板围接而成的一个下环扇形端面敞口的半封闭壳体。其中:左侧板、右侧板分别对应布置在环扇形外壳的左、右径向截面端;前侧弧形板位于该环扇形外壳的外圆面,后侧弧形板位于该环扇形外壳的内圆面。此时,驱动电机直接安装在上环扇板的上表面,各滚轮轴均沿着环扇形外壳的径向布置;而各移动滚轮能够露出环扇形外壳的下环扇形敞口端面设置,以使得各移动滚轮能够直接接触钢丝绳移动轨道的滚动面。
根据不同的负载选用不同的驱动电机时,可以根据实际需要增加电机座、联轴器等设施进行固定。
为实现导向机构与外壳的连接,同时保证导向的平稳,本发明所述环扇形外壳的两径向截面端均设置有一个固定支架;每一个固定支架上均设置有一个纵向导向机构、一个横向导向机构;纵向导向机构设置在固定支架与环扇形外壳的内圆面相邻的一端;而横向导向机构则设置在固定支架与环扇形外壳的外圆面相邻的一端;分处于环扇形外壳的两径向截面端的两纵向导向机构对称设置,同时,分设在环扇形外壳的两径向截面端的两横向导向机构对称设置;纵向导向滚轮的 轴线与环扇形外壳的环扇面相垂直;横向导向滚轮的轴线与环扇形外壳的环扇面相平行;纵向导向支架、横向导向支架在固定支架上的位置能够沿着环扇形外壳的径向调整。
具体地,所述固定支架包括一根以上的横杆,各横杆沿着环扇形外壳的径向截面端的高度方向等距分布;所述环扇形外壳的径向截面端设置有固定块;各横杆通过固定块支撑固定并沿着环扇形外壳的径向设置,且横杆的两端均螺纹配合连接有锁紧螺母;纵向导向支架针对每一根横杆均设置有一个安装孔a;纵向导向支架通过各安装孔a套接在相应横杆上,且纵向导向支架与固定块之间的每一根横杆外围均套接有一根弹簧a,设置弹簧a可以降低纵向导向机构运动时的振动对钢丝绳移动装置主体部分移动的干扰;横向导向支架针对每一根横杆均设置有一个安装孔b;横向导向支架通过安装孔b套接在相应横杆上,且横向导向支架与固定块之间的每一根横杆外围均套接有一根弹簧b,设置弹簧b可以降低横向导向机构运动时的振动对钢丝绳移动装置主体部分移动的干扰。
上钢丝绳移动装置组中各钢丝绳移动装置的外壳,均通过各自横向导向机构的横向导向滚轮嵌装在上移动轨道中,而位于上移动轨道的滚动面上方;且上钢丝绳移动装置组中各钢丝绳移动装置的移动滚轮均与上移动轨道的滚动面线连接;下钢丝绳移动装置组中各钢丝绳移动装置的外壳,均通过各自横向导向机构的横向导向滚轮嵌装在下移动轨道中,而悬挂在下移动轨道的滚动面下方;且下钢丝绳移动装置组中各钢丝绳移动装置的移动滚轮均与下移动轨道的滚动面线连接。工作时,上钢丝绳移动装置组、下钢丝绳移动装置组可以独立运动,转速相同时,机器人可以巡检整个井筒壁;差速移动时,机器人可以巡检整个井筒内部。
进一步地,所述钢丝绳移动轨道为环形轨道;该环形轨道通过若干段圆弧轨道拼接而成。具体地,根据井筒内部罐道梁和工作设备的位置,钢丝绳轨道可以由多个圆弧轨道分段组成,分布在没有罐道梁和工作设备干涉的位置。每个圆弧轨道根据实际需要可以单独布置一组钢丝绳移动装置,也可以多个轨道共用一组钢丝绳移动装置。
由于上、下钢丝绳移动装置组之间没有刚性连接,故在钢丝绳移动过程中会由于上、下钢丝绳移动装置组的移动速度不同累计的误差,造成钢丝绳的偏斜, 甚至缠绕在井筒内的工作设备上。因此,如图1所示,本发明所述的钢丝绳移动轨道包括轨道本体,轨道本体的滚动面,周向均匀地设置有若干凹槽。凹槽在钢丝绳移动轨道上等间隔分布,凹槽的间距D可以根据实际巡检的需要确定。将钢丝绳移动装置组在钢丝绳移动轨道上的圆周运动划分成多个运动点,则钢丝绳移动装置组在钢丝绳移动轨道上移动时以凹槽为单位,上、下钢丝绳移动装置组同时进行移动,各前进一格,从而保证钢丝绳始终处于竖直状态。所述移动装置具有自己的控制装置,根据指令控制上、下钢丝绳移动装置组同时移动,钢丝绳移动轨道上的凹槽作为辅助限位装置,以凹槽为节点,将钢丝绳移动装置组在钢丝绳移动轨道上的移动转化为由一个凹槽向另一个凹槽移动的过程。简而言之,本发明所述凹槽为矩形状,且凹槽所在矩形短边中心线之间的平分线沿着圆环形轨道的半径方向,与钢丝绳移动装置的滚轮轴向相同,钢丝绳移动装置在钢丝绳移动轨道上面沿着钢丝绳移动轨道进行移动,滚轮依次经过各个凹槽,利用凹槽的固定位置限制上、下钢丝绳移动装置组处于同一竖直线上。
所述钢丝绳移动轨道的凹槽除了为长方体,还可以为圆柱体、棱台等形状,也可以具有不同的深度,以方便不同体积的钢丝绳移动装置的移动以及与凹槽的配合。当钢丝绳移动装置在凹槽内处于除了中间位置以外的其它位置时,钢丝绳移动装置的受力无法达到受力平衡。此时钢丝绳移动装置均可以在钢丝绳张力与凹槽对钢丝绳移动装置支持力的作用下滚动到凹槽的中间位置,从而达到凹槽对钢丝绳移动装置限位的效果。
所述钢丝绳移动轨道的凹槽的宽度,可以根据钢丝绳移动装置的控制精度所确定,即使钢丝绳移动装置在移动过程中产生一定的误差,在断电后仍可以根据钢丝绳移动装置的重力和钢丝绳的张紧力滑回至凹槽的中间位置。
所述钢丝绳移动轨道的凹槽内布置有相应的传感器(位置检测装置),如采用距离传感器或压力传感器,但不限于这两种,其他可以满足需求的传感器也可,用于检测钢丝绳移动装置是否落入凹槽内,并记录上、下钢丝绳移动装置所在的位置。位置检测装置能够将所检测到的信息反馈至控制装置,并与控制装置信号连接;而控制装置则分别与上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机连接;控制装置能够根据位置检测装置所反馈的信息,自动控制上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机运行状态,促使上钢丝绳 移动装置、下钢丝绳移动装置同步运动。
如图7、图8所示,本发明公开了一种井筒巡检系统轨道同步移动控制方法,包括以下步骤:
(1)初始位置
将上钢丝绳移动装置、下钢丝绳移动装置均置于初始位置;此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的凹槽a 0中,而下钢丝绳移动装置的移动滚轮处于下移动轨道的凹槽b 0中;
(2)供电
将上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机均与电源接通,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的移动后,停止供电;
(3)判断是否同时落入凹槽
上钢丝绳移动装置、下钢丝绳移动装置在做理论步长为L的移动后,若能够同时检测到一组数据,包括上移动轨道的某一凹槽a i中的位置检测装置所检测的数据、下移动轨道的某一凹槽b j中的位置检测装置所检测的数据,表明上钢丝绳移动装置、下钢丝绳移动装置同时触发各自对应的轨道本体中某一凹槽a i、b j中的位置检测装置,此时,上钢丝绳移动装置的移动滚轮落入上移动轨道的凹槽a i中,下钢丝绳移动装置的移动滚轮落入下移动轨道的凹槽b j中;反之,则回到步骤(2),直至上钢丝绳移动装置、下钢丝绳移动装置能够同时触发各自对应的移动导轨的某一凹槽a i、b j中的位置检测装置;i,j∈n,n表示上移动轨道/下移动轨道的凹槽总数,且n≥0。
(4)判断是否同步运行
根据凹槽a i中的位置检测装置所反馈的信息、凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置是否同步运行:当判断结果表明上钢丝绳移动装置、下钢丝绳移动装置同步运行时,上钢丝绳移动装置的 移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置对应;若判断结果表明上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a i+k,与下移动轨道的凹槽b j所在位置对应,此时的i+k=j;或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b j+k,与上移动轨道的凹槽a i所在位置对应,此时j+k=i。
根据上述的控制方法,可知:本发明所述的控制装置,能够同步启动上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的步进式移动,直至上钢丝绳移动装置的移动滚轮在前行过程中触发上移动轨道的某一凹槽a i中的位置检测装置给出响应、下钢丝绳移动装置的移动滚轮也在前行过程中同步触发下移动轨道的某一凹槽b j中的位置检测装置给出响应,使得控制装置同时接收到一组数据,分别为凹槽a i中的位置检测装置所检测的数据、凹槽b j中的位置检测装置所检测的数据;所述的控制装置,还能够根据上移动轨道的凹槽a i中的位置检测装置所反馈的信息、下移动轨道的凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行,以致上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置是否对应;若判断结果表明上钢丝绳移动装置、下钢丝绳移动装置运行不同步,且上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢 丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a′ i,与下移动轨道的凹槽b j所在位置对应;或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b′ j,与上移动轨道的凹槽a i所在位置对应。
本发明可以提供一种井筒巡检系统轨道同步移动装置的控制装置,包括中央处理单元,该中央处理单元中运行有计算机程序,该计算机程序可被执行以实现上述的控制方法。
本发明还可以提供一种计算机可读介质,存储有计算机程序,该计算机程序可被执行以实现上述的方法。
本发明中,将位置检测装置所检测的信息与位置检测装置在滚动面上凹槽的所在位置关联,从而能够较为便捷地判断上、下移动装置是否同步运行,具体是:
如图9所示,所述位置检测装置包括两类,分别为A类位置检测装置以及B类位置检测装置;A类位置检测装置包括n个位置检测器,一一对应地设置于上移动轨道的各凹槽中,并按照在上移动轨道的各凹槽(从初始位置开始,各凹槽顺序为:凹槽a 0、凹槽a 1、凹槽a 2……凹槽a i……凹槽a n)所在位置,从初始位置开始依次为位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n,n为大于等于0的整数,即将上移动轨道的各位置检测器与上移动轨道的各凹槽按序一一对应布置;B类位置检测装置也包括n个位置检测器,一一对应地设置于下移动轨道的各凹槽中,并按照在下移动轨道的各凹槽(从初始位置开始,各凹槽顺序为:凹槽b 0、凹槽b 1、凹槽b 2……凹槽b i……凹槽b n)所在位置,从初始位置开始依次为位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n,即将下移动轨道的各位置检测器与下移动轨道的各凹槽按序一一对应布置。
A类位置检测装置中任一个位置检测器A i、B类位置检测装置中任一个位置 检测器B j均能够分别与控制装置连接;所述的控制装置,能够接收A类位置检测装置中任一个位置检测器A i检测到的信息,并自动记录为
Figure PCTCN2019117115-appb-000009
换句话来讲,位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n检测到的信息依次记录为
Figure PCTCN2019117115-appb-000010
也能够接收B类位置检测装置中任一个位置检测器B j检测到的信息,并自动记录为
Figure PCTCN2019117115-appb-000011
换句话来讲,位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n检测到的信息依次为
Figure PCTCN2019117115-appb-000012
因此,步骤(3)中,通过能否在同一时刻t接收到一组数据
Figure PCTCN2019117115-appb-000013
来判断t时刻,上钢丝绳移动装置的移动滚轮、下钢丝绳移动装置的移动滚轮是否均处于各自对应的移动轨道的凹槽中;当接收到数据
Figure PCTCN2019117115-appb-000014
时,表明上钢丝绳移动装置的移动滚轮落入上移动轨道的对应凹槽中;当接收到数据
Figure PCTCN2019117115-appb-000015
时,表明下钢丝绳移动装置的移动滚轮落入下移动轨道的对应凹槽中;步骤(4)中,通过比较同时刻所接收到的一组数据
Figure PCTCN2019117115-appb-000016
中,i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
由于本发明所述的上移动轨道、下移动轨道的各凹槽中的位置检测装置采用上述的布置方式,因此,本发明所述的控制装置,在同一时刻接收到一组数据
Figure PCTCN2019117115-appb-000017
Figure PCTCN2019117115-appb-000018
时,发出制停指令,停止向上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机供电;此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的某一凹槽a i中、而下钢丝绳移动装置的移动滚轮处于下移动轨道的某一凹槽b j中;所述的控制装置,根据在同一时刻所接收到的一组数据
Figure PCTCN2019117115-appb-000019
比较该组数据中i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号 的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
本发明具体实施例操作方法:
第一步,启动阶段。确认上、下钢丝绳移动装置是否在对应凹槽起始点上,为上、下钢丝绳移动装置通电,并为上、下钢丝绳移动装置输入相同的固定脉冲数目,使各钢丝绳移动装置开始移动并移动固定的长度。
第二步,运行阶段。待各钢丝绳移动装置运行完固定脉冲后,为钢丝绳移动装置断电,使得钢丝绳移动装置移动产生的位置误差在钢丝绳张力的作用下滑动到凹槽内的准确位置。启动凹槽内的检测装置,判断钢丝绳移动装置是否准确进入凹槽内,并判断钢丝绳移动装置落入凹槽内的位置。根据上、下钢丝绳移动装置落入凹槽内的位置,调节上、下钢丝绳移动装置的运行,使上、下钢丝绳移动装置落入既定的位置,并开始井筒的纵向巡检。巡检结束后,重复钢丝绳移动装置移动过程。完成整个井筒的巡检。
第三步,停止阶段,待井筒巡检工作结束后,返回钢丝绳移动装置起点。等待下一次巡检任务开始。

Claims (9)

  1. 一种井筒巡检系统轨道同步移动装置,其特征在于,包括上移动轨道、下移动轨道、上钢丝绳移动装置、下钢丝绳移动装置以及控制装置;上移动轨道、下移动轨道,对应地嵌入井筒的内壁,且上移动轨道位于下移动轨道的上方;上钢丝绳移动装置配装在上移动轨道中,而下钢丝绳移动装置则配装在下移动轨道中;其中:
    所述上钢丝绳移动装置、下钢丝绳移动装置,结构一致,均包括外壳、驱动电机以及若干个移动滚轮;
    所述外壳,设置有能够装夹钢丝绳的钢丝绳锁紧机构;
    所述移动滚轮,包括一个主动滚轮以及一个以上的从动滚轮;
    各移动滚轮均通过一根滚轮轴定位支撑,且各滚轮轴均通过轴承安装于外壳中;驱动电机的机座固定安装在外壳上,而驱动电机的动力输出端则通过减速器与支撑主动滚轮的滚轮轴连接;
    所述上移动轨道、下移动轨道,结构一致,均包括轨道本体,轨道本体上设置有滚动面,且滚动面沿着轨道本体的延伸方向均布有若干凹槽,相邻两个凹槽之间的间距为D;各凹槽内均设置有用于检测移动滚轮是否落入该凹槽并能够确定移动滚轮所落入凹槽的位置信息的位置检测装置;位置检测装置能够将所检测到的信息反馈至控制装置,并与控制装置信号连接;而控制装置则分别与上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机连接;控制装置能够根据位置检测装置所反馈的信息,自动控制上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机运行状态,促使上钢丝绳移动装置、下钢丝绳移动装置同步运动。
  2. 根据权利要求1所述的井筒巡检系统轨道同步移动装置,其特征在于,所述的控制装置,能够同步启动上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的步进式移动,直至上钢丝绳移动装置的移动滚轮在前行过程中触发上移动轨道的某一凹槽a i中的位置检测装置给出响应、下钢丝绳移动装置的移动滚轮也在前行过程中同步触发下移动轨道的某一凹槽b j中的位置检测装置给出响应,使得控制装置同时 接收到一组数据,分别为凹槽a i中的位置检测装置所检测的数据、凹槽b j中的位置检测装置所检测的数据;
    所述的控制装置,还能够根据上移动轨道的凹槽a i中的位置检测装置所反馈的信息、下移动轨道的凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行,以致上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置是否对应;若判断结果表明上钢丝绳移动装置、下钢丝绳移动装置运行不同步,且上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a i+k,与下移动轨道的凹槽b j所在位置对应;或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b j+k,与上移动轨道的凹槽a i所在位置对应。
  3. 根据权利要求2所述的井筒巡检系统轨道同步移动装置,其特征在于,所述位置检测装置包括两类,分别为A类位置检测装置以及B类位置检测装置;
    A类位置检测装置包括n个位置检测器,一一对应地设置于上移动轨道的各凹槽中,并按照在上移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n,n为大于等于0的整数;
    B类位置检测装置也包括n个位置检测装器,一一对应地设置于下移动轨道的各凹槽中,并按照在下移动轨道的各凹槽所在位置,从初始位置开始 依次为位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n
    A类位置检测装置中任一个位置检测器A i、B类位置检测装置中任一个位置检测器B j均能够分别与控制装置连接;
    所述的控制装置,能够接收A类位置检测装置中任一个位置检测器A i检测到的信息,并自动记录为
    Figure PCTCN2019117115-appb-100001
    也能够接收B类位置检测装置中任一个位置检测器B j检测到的信息,并自动记录为
    Figure PCTCN2019117115-appb-100002
    所述的控制装置,在同一时刻接收到一组数据
    Figure PCTCN2019117115-appb-100003
    时,发出制停指令,停止向上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机供电;
    此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的某一凹槽a i中,而下钢丝绳移动装置的移动滚轮处于下移动轨道的某一凹槽b j中;
    所述的控制装置,根据在同一时刻所接收到的一组数据
    Figure PCTCN2019117115-appb-100004
    比较该组数据中i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
  4. 根据权利要求1所述的井筒巡检系统轨道同步移动装置,其特征在于,所述上钢丝绳移动装置、下钢丝绳移动装置均配置有导向机构;导向机构包括横向导向机构以及纵向导向机构;
    横向导向机构包括横向导向支架以及横向导向滚轮;横向导向支架一端与外壳连接,另一端则与横向导向滚轮连接,横向导向滚轮的轴向与移动滚轮所在的滚动面相平行;
    纵向导向机构包括纵向导向支架以及纵向导向滚轮;纵向导向支架一端与 外壳连接,另一端则与纵向导向滚轮连接,纵向导向滚轮的轴向与移动滚轮所在的滚动面相垂直;
    主动滚轮在驱动电机的动力驱动下,配合横向导向机构、纵向导向机构的定位和导向,能够带动各从动滚轮始终沿着钢丝绳移动轨道移动。
  5. 根据权利要求4所述的井筒巡检系统轨道同步移动装置,其特征在于,所述轨道本体上还包括横向导向面以及纵向导向面;
    滚动面的一侧设置有与滚动面相垂直的纵向导向面,另一侧则设置有在转折位置处贯通的L形凹槽,该L形凹槽包括竖直槽以及横向槽,竖直槽的槽体延伸方向与滚动面相垂直,且竖直槽的槽口与滚动面齐平,横向槽的槽体延伸方向与滚动面相平行,且横向槽具有与滚动面相平行的横向导向面;
    各移动滚轮均直接置于滚动面的上方;
    横向导向支架置于竖直槽内,而横向导向滚轮置于横向槽内,且横向导向支架的一端穿出竖直槽后与外壳连接,横向导向支架的另一端则与勾拦住横向导向面的横向导向滚轮连接,横向导向滚轮与横向导向面线连接;纵向导向滚轮与纵向导向面线连接;
    主动滚轮在驱动电机的动力驱动下,能够带动横向导向滚轮沿着横向导向面滚动、带动纵向导向滚轮沿着纵向导向面滚动、带动各从动滚轮沿着滚动面滚动。
  6. 根据权利要求5所述的井筒巡检系统轨道同步移动装置,其特征在于,所述的外壳,呈环扇形设置;各滚轮轴均沿着环扇形外壳的径向布置;
    所述环扇形外壳的两径向截面端均设置有一个固定支架;每一个固定支架上均设置有一个纵向导向机构、一个横向导向机构;
    纵向导向机构设置在固定支架与环扇形外壳的内圆面相邻的一端;而横向导向机构则设置在固定支架与环扇形外壳的外圆面相邻的一端;
    分处于环扇形外壳的两径向截面端的两纵向导向机构对称设置,同时,分设在环扇形外壳的两径向截面端的两横向导向机构对称设置;
    纵向导向滚轮的轴线与环扇形外壳的环扇面相垂直;横向导向滚轮的轴线与环扇形外壳的环扇面相平行;
    纵向导向支架、横向导向支架在固定支架上的位置能够沿着环扇形外壳的径向调整。
  7. 一种井筒巡检系统轨道同步移动装置的控制方法,其特征在于,包括以下步骤:
    (1)初始位置
    将上钢丝绳移动装置、下钢丝绳移动装置均置于初始位置;此时,上钢丝绳移动装置的移动滚轮处于上移动轨道的凹槽a 0中,而下钢丝绳移动装置的移动滚轮处于下移动轨道的凹槽b 0中;
    (2)供电
    将上钢丝绳移动装置的驱动电机、下钢丝绳移动装置的驱动电机均与电源接通,并施加相同的固定脉冲信号a,促使上钢丝绳移动装置、下钢丝绳移动装置在各自驱动电机的动力驱动下,分别沿着各自对应的轨道本体的滚动面做理论步长为L的移动后,停止供电;
    (3)判断是否同时落入凹槽
    上钢丝绳移动装置、下钢丝绳移动装置在做理论步长为L的移动后,若能够同时检测到一组数据,包括上移动轨道的某一凹槽a i中的位置检测装置所检测的数据、下移动轨道的某一凹槽b j中的位置检测装置所检测的数据,表明上钢丝绳移动装置、下钢丝绳移动装置同时触发各自对应的轨道本体中某一凹槽a i、b j中的位置检测装置,此时,上钢丝绳移动装置的移动滚轮落入上移动轨道的凹槽a i中,下钢丝绳移动装置的移动滚轮落入下移动轨道的凹槽b j中;反之,则回到步骤(2),直至上钢丝绳移动装置、下钢丝绳移动装置能够同时触发各自对应的移动导轨的某一凹槽a i、b j中的位置检测装置;
    (4)判断是否同步运行
    根据凹槽a i中的位置检测装置所反馈的信息、凹槽b j中的位置检测装置所反馈的信息,判断上钢丝绳移动装置、下钢丝绳移动装置是 否同步运行:
    当判断结果表明上钢丝绳移动装置、下钢丝绳移动装置同步运行时,上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置与下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置对应;
    若判断结果表明上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置,控制装置能够施加上移动轨道的驱动电机以另一脉冲信号b,促使上钢丝绳移动装置沿着上移动轨道的滚动面继续前行,直至上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置为凹槽a i+k,与下移动轨道的凹槽b j所在位置对应;;
    或者判断结果表明下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道的所在位置,控制装置能够施加下移动轨道的驱动电机以另一脉冲信号c,促使下钢丝绳移动装置沿着下移动轨道的滚动面继续前行,直至下钢丝绳移动装置的移动滚轮在下移动轨道的所在位置为凹槽b j+k,与上移动轨道的凹槽a i所在位置对应。根据权利要求7所述的井筒巡检系统轨道同步移动装置的控制方法,其特征在于,所述位置检测装置包括两类,分别为A类位置检测装置以及B类位置检测装置;
    A类位置检测装置包括n个位置检测器,一一对应地设置于上移动轨道的各凹槽中,并按照在上移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器A 0、位置检测器A 1、位置检测器A 2……位置检测器A i……位置检测器A n,n为大于等于0的整数;
    B类位置检测装置也包括n个位置检测装器,一一对应地设置于下移动轨道的各凹槽中,并按照在下移动轨道的各凹槽所在位置,从初始位置开始依次为位置检测器B 0、位置检测器B 1、位置检测器B 2……位置检测器B j……位置检测器B n
    A类位置检测装置中任一个位置检测器A i、B类位置检测装置中任一个位置检测器B j均能够分别与控制装置连接;
    步骤(3)中,通过能否在同一时刻t接收到一组数据
    Figure PCTCN2019117115-appb-100005
    来判断t时刻,上钢丝绳移动装置的移动滚轮、下钢丝绳移动装置的移动滚轮是否均处于各自对应的移动轨道的凹槽中;
    当接收到数据
    Figure PCTCN2019117115-appb-100006
    时,表明上钢丝绳移动装置的移动滚轮落入上移动轨道的对应凹槽中;
    当接收到数据
    Figure PCTCN2019117115-appb-100007
    时,表明下钢丝绳移动装置的移动滚轮落入下移动轨道的对应凹槽中;
    步骤(4)中,通过比较同时刻所接收到的一组数据
    Figure PCTCN2019117115-appb-100008
    中,i、j的大小,以判断上钢丝绳移动装置、下钢丝绳移动装置在各自固定脉冲信号的作用下是否同步运行:当i=j时,表明上钢丝绳移动装置、下钢丝绳移动装置运行同步;当i>j时,表明下钢丝绳移动装置的移动滚轮在下移动轨道上的位置落后于上钢丝绳移动装置的移动滚轮在上移动轨道上的位置;当当i<j时,表明上钢丝绳移动装置的移动滚轮在上移动轨道上的位置落后于下钢丝绳移动装置的移动滚轮在下移动轨道上的位置。
  8. 一种井筒巡检系统轨道同步移动装置的控制装置,其特征在于,包括中央处理单元,该中央处理单元中运行有计算机程序,该计算机程序可被执行以实现如权利要求7-8中任一项所述的方法。
  9. 一种计算机可读介质,其特征在于,存储有计算机程序,该计算机程序可被执行以实现如权利要求7-8中任一项所述的方法。
PCT/CN2019/117115 2019-08-09 2019-11-11 井筒巡检系统轨道同步移动装置及其控制方法 WO2021027130A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3094212A CA3094212C (en) 2019-08-09 2019-11-11 Track synchronization moving apparatus of wellbore inspection system and control method thereof
AU2019435041A AU2019435041B2 (en) 2019-08-09 2019-11-11 Track synchronization moving apparatus of wellbore inspection system and control method thereof
US17/040,552 US11125072B2 (en) 2019-08-09 2019-11-11 Track synchronization moving apparatus of wellbore inspection system and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910733685.3 2019-08-09
CN201910733685.3A CN111086963B (zh) 2019-08-09 2019-08-09 井筒巡检系统轨道同步移动装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2021027130A1 true WO2021027130A1 (zh) 2021-02-18

Family

ID=70393410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117115 WO2021027130A1 (zh) 2019-08-09 2019-11-11 井筒巡检系统轨道同步移动装置及其控制方法

Country Status (4)

Country Link
US (1) US11125072B2 (zh)
CN (1) CN111086963B (zh)
AU (1) AU2019435041B2 (zh)
WO (1) WO2021027130A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110782543B (zh) * 2019-09-23 2021-01-05 中国矿业大学 一种超深立井井筒巡检系统及方法
CN113192230B (zh) * 2021-05-28 2024-05-03 中煤科工集团沈阳研究院有限公司 一种矿用多功能巡检装置
CN113470298B (zh) * 2021-06-30 2023-04-28 重庆消防安全技术研究服务有限责任公司 消防智能预警巡逻设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234728A (ja) * 2005-02-28 2006-09-07 Toshiba Corp 洞道内移動点検システム及びその方法
CN102682492A (zh) * 2012-05-14 2012-09-19 青岛秀山移动测量有限公司 一种煤矿竖井井筒移动巡检方法及设备
CN102923465A (zh) * 2012-11-28 2013-02-13 中国矿业大学 一种同步带牵引带式输送机自动巡检系统
CN105035200A (zh) * 2015-07-02 2015-11-11 中国矿业大学 一种超深立井钢丝绳罐道垂直爬绳巡检机器人
CN204873387U (zh) * 2015-08-25 2015-12-16 中南大学 一种基于矿井提升系统的监测装置
JP2016037808A (ja) * 2014-08-08 2016-03-22 株式会社ExH メンテナンスシステム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583031B1 (fr) * 1985-06-10 1988-08-05 Guis Paul Dispositif anti-balancement d'une charge suspendue en vue de sa manutention
JPH02179498A (ja) * 1988-12-28 1990-07-12 Shikoku Electric Power Co Inc 走行型遠隔監視装置
US5211251A (en) * 1992-04-16 1993-05-18 Woolslayer Companies, Inc. Apparatus and method for moving track guided equipment to and from a track
US10690805B2 (en) * 2013-12-05 2020-06-23 Pile Dynamics, Inc. Borehold testing device
US9376148B2 (en) * 2014-06-12 2016-06-28 Research & Business Foundation Sungkyunkwan University Caterpillar for cable mobile robot and cable mobile robot using the same
CN204913878U (zh) * 2015-04-02 2015-12-30 江苏亿嘉和信息科技有限公司 一种电缆隧道巡检机器人行走机构
US10465509B2 (en) * 2016-10-12 2019-11-05 Baker Hughes, A Ge Company, Llc Collocated multitone acoustic beam and electromagnetic flux leakage evaluation downhole
CN106393060A (zh) * 2016-12-05 2017-02-15 合肥市信同信息科技有限公司 一种悬挂式巡检机器人装置
GB201701010D0 (en) * 2017-01-20 2017-03-08 Ev Offshore Ltd Downhole inspection assembly camera viewport
GB201701012D0 (en) * 2017-01-20 2017-03-08 Ev Offshore Ltd Downhole inspection assembly camera viewport
CN207864008U (zh) * 2018-02-05 2018-09-14 刘春梅 一种用于井下的智能巡检系统
GB2585540B (en) * 2018-02-21 2022-04-27 Ev Offshore Ltd Image correction methods for downhole inspection tools
GB201802808D0 (en) * 2018-02-21 2018-04-04 Ev Offshore Ltd Depth and speed correction of logging data
CN108594833B (zh) * 2018-08-15 2024-04-09 科大智能电气技术有限公司 一种新型轻巧轨道式多功能巡检机器人系统
CN108996393B (zh) * 2018-09-10 2019-08-02 中国电子科技集团公司第三十八研究所 一种空中穿梭车的行走机构
CN209007534U (zh) * 2018-10-12 2019-06-21 广州国机智能电力科技有限公司 一种轨道巡检机器人
US20200224525A1 (en) * 2019-01-15 2020-07-16 Schlumberger Technology Corporation Utilizing Vision Systems at a Wellsite
CN109969279A (zh) * 2019-03-19 2019-07-05 中国矿业大学 一种钢丝绳捻向攀爬机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234728A (ja) * 2005-02-28 2006-09-07 Toshiba Corp 洞道内移動点検システム及びその方法
CN102682492A (zh) * 2012-05-14 2012-09-19 青岛秀山移动测量有限公司 一种煤矿竖井井筒移动巡检方法及设备
CN102923465A (zh) * 2012-11-28 2013-02-13 中国矿业大学 一种同步带牵引带式输送机自动巡检系统
JP2016037808A (ja) * 2014-08-08 2016-03-22 株式会社ExH メンテナンスシステム
CN105035200A (zh) * 2015-07-02 2015-11-11 中国矿业大学 一种超深立井钢丝绳罐道垂直爬绳巡检机器人
CN204873387U (zh) * 2015-08-25 2015-12-16 中南大学 一种基于矿井提升系统的监测装置

Also Published As

Publication number Publication date
US11125072B2 (en) 2021-09-21
AU2019435041A1 (en) 2021-02-25
CN111086963B (zh) 2021-03-30
CN111086963A (zh) 2020-05-01
AU2019435041B2 (en) 2022-03-10
US20210262337A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
WO2021027130A1 (zh) 井筒巡检系统轨道同步移动装置及其控制方法
WO2021056717A1 (zh) 一种超深立井井筒巡检系统及方法
WO2021027128A1 (zh) 井筒巡检系统及其钢丝绳移动装置
CN106395375A (zh) 一种用于卷板机的新型辅助送料装置
CN110359440A (zh) 一种智能测斜系统及其监测方法
CN113188497B (zh) 用于基坑监测的监理检测方法及系统
CN107938725B (zh) 一种地下综合管廊巡检机器人升降平台及其控制方法
KR101201878B1 (ko) 건설용 중량구조물 이송용 전동리프트
CN114524337A (zh) 一种新型轨道巡检机器人多级巡检提升连接装置
CN205838444U (zh) 一种预制件运输车
CN105351003B (zh) 刮板机水平方向运动夹角测量系统及方法
CN204661194U (zh) 瓦斯传感器升降装置
CN208366232U (zh) 一种机织地毯生产用合格检测装置
CA3094212C (en) Track synchronization moving apparatus of wellbore inspection system and control method thereof
CN201514208U (zh) 一种液压支架及其测高装置
TW201628965A (zh) 防撞天車裝置
CN210795552U (zh) 一种行车滑线支架安装用检测装置
CN212228067U (zh) 一种建筑轴线控制检测装置
CN217497615U (zh) 一种井下运输用托辊温度与噪声监测巡检平台
CN101699218A (zh) 一种液压支架及其测高装置
CN215000764U (zh) 一种巷道卧底高度测量器用的固定装置
CA3096226C (en) Wellbore inspection system and method for ultra-deep vertical shaft
CN113296392B (zh) 大型堆料机地震预警控制方法及系统
CN102926367B (zh) 用于升船机承船厢行程检测的链轮链条装置
CN114458909A (zh) 一种基于索道机器人的电缆沟巡检系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019435041

Country of ref document: AU

Date of ref document: 20191111

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941302

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941302

Country of ref document: EP

Kind code of ref document: A1