WO2022191171A1 - 細胞クラスターの製造方法 - Google Patents

細胞クラスターの製造方法 Download PDF

Info

Publication number
WO2022191171A1
WO2022191171A1 PCT/JP2022/009925 JP2022009925W WO2022191171A1 WO 2022191171 A1 WO2022191171 A1 WO 2022191171A1 JP 2022009925 W JP2022009925 W JP 2022009925W WO 2022191171 A1 WO2022191171 A1 WO 2022191171A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pluripotent stem
cell
stem cells
wnt signal
Prior art date
Application number
PCT/JP2022/009925
Other languages
English (en)
French (fr)
Inventor
貴則 武部
憲和 佐伯
Original Assignee
国立大学法人 東京医科歯科大学
武田薬品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京医科歯科大学, 武田薬品工業株式会社 filed Critical 国立大学法人 東京医科歯科大学
Priority to EP22767125.2A priority Critical patent/EP4306633A1/en
Priority to JP2023505567A priority patent/JPWO2022191171A1/ja
Priority to CN202280019926.8A priority patent/CN116964193A/zh
Priority to US18/281,442 priority patent/US20240158740A1/en
Publication of WO2022191171A1 publication Critical patent/WO2022191171A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/165Vascular endothelial growth factor [VEGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases [EC 2.]
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for producing cell clusters enriched with desired cells, which are cell clusters having micropatterns specific to embryonic developmental regions formed from pluripotent stem cell colonies by a differentiation-inducing factor. . It also relates to a method for producing a cell population generated by further differentiation of cells in the cell cluster, and an organoid or three-dimensional organ formed by further culturing the cells in the cell cluster or the cells in the cell population.
  • Pluripotent stem cells such as ES cells and iPS cells correspond to the epiblast (epithelial layer) in the definition of embryology, and embryogenesis is initiated from colonies of pluripotent stem cells by differentiation-inducing factors. It is known that cell clusters with region-specific micropatterns are formed.
  • Non-Patent Document 1 describes that two-dimensional culture of human ES cells formed micropatterns containing three germ layers (endoderm, mesoderm and ectoderm) by BMP4 signals.
  • Non-Patent Document 2 describes that differentiation into endoderm and mesoderm was controlled by inhibiting Wnt signals after forming micropatterns from human ES cells.
  • Non-Patent Document 3 describes that when micropatterns were formed from mouse ES cells, yolk sac mesoderm cells also emerged, albeit at a low rate.
  • Patent Document 1 describes a method for producing a matrix composition in which a hierarchical cell network (e.g., blood vessel or nerve network) is formed by air-liquid interface culture. describes the use of vascular endothelial cells as vascular cells.
  • a hierarchical cell network e.g., blood vessel or nerve network
  • lateral plate mesoderm cells are induced from human iPS cells by culturing using a medium containing BMP4, VEGF, CHIR99021, etc., and hematopoietic vascular endothelial cells ( CD34-positive, CD73-negative) were obtained, and a plurality of types of cells including hematopoietic vascular endothelial cells thus obtained were used to produce a matrix composition in which a hierarchical cell network was formed. is stated.
  • the present invention provides desired cells contained in cell clusters formed from pluripotent stem cells, particularly yolk sac mesoderm cells (hereinafter sometimes referred to as "YSMC”) or amniotic membranes.
  • YSMC yolk sac mesoderm cells
  • An object of the present invention is to provide means for enriching ectodermal cells (amniotic ectoderm cells, sometimes referred to as "AEC" in this specification).
  • the present inventors have found that two-dimensional culturing of pluripotent stem cells under the control of Wnt signals can enrich desired cells in cell clusters.
  • By two-dimensionally culturing pluripotent stem cells under conditions that activate Wnt signaling, such as adding an activator to the medium it is possible to produce cell clusters enriched with YSMCs.
  • AEC-enriched cell clusters can be produced by two-dimensionally culturing pluripotent stem cells under conditions in which Wnt signals are suppressed, such as by adding a Wnt signal inhibitor to the medium at the start of culture. .
  • desired cells such as YSMC and AEC and other cells form a layered structure while maintaining a two-dimensional positional relationship and boundary, and the layer containing the desired cells. It is also an important feature that the thickness can be increased.
  • the present invention includes at least the following items.
  • a method for producing cell clusters enriched with desired cells from pluripotent stem cells comprising the step of two-dimensionally culturing pluripotent stem cells under Wnt signal control.
  • the desired cells are yolk sac mesoderm cells, and the step of two-dimensionally culturing the pluripotent stem cells under the control of Wnt signals includes two-dimensionally culturing the pluripotent stem cells under conditions that activate Wnt signals. , Wnt signal activation culture step, the method according to [1].
  • the Wnt signal activation culturing step is a step of two-dimensionally culturing the pluripotent stem cells using a medium supplemented with a Wnt signal activator.
  • the Wnt signal activator is a GSK3 inhibitor.
  • the GSK3 inhibitor is CHIR99021.
  • the Wnt signal activation culture step is performed at the start of culture of the pluripotent stem cells.
  • the method of [1], wherein the pluripotent stem cells are induced pluripotent stem cells.
  • a method for producing a cell population further comprising a culturing step of differentiating the obtained yolk sac mesoderm cells into CD34+ vascular endothelial progenitor cells after the Wnt signal activation culturing step of [2].
  • the method of [7] further comprising a culturing step of differentiating the CD34+ vascular endothelial progenitor cells into CD34+CD32+ vitelline vein hematopoietic endothelial cells.
  • a cell cluster obtained by the method described in [1].
  • a method for producing an organoid or a three-dimensional organ comprising three-dimensionally culturing at least part of the cell cluster according to [9] or the cell population according to [10].
  • An organoid or three-dimensional organ obtained by the production method of [11].
  • the desired cells are amniotic ectoderm cells, and the step of two-dimensionally culturing the pluripotent stem cells under the control of Wnt signals includes two-dimensionally culturing the pluripotent stem cells under conditions in which Wnt signals are suppressed.
  • the method according to [13], wherein the Wnt signal suppression culture step is performed using a medium supplemented with a Wnt signal inhibitor.
  • the method of [14], wherein the Wnt signaling inhibitor is IWP-2.
  • YSMC-enriched cell clusters can be produced, and AEC-enriched cell clusters can be produced by a Wnt signal suppression culture step. Furthermore, YSMC-enriched cell clusters can efficiently produce CD34+ vascular endothelial progenitor cells, which can be used, for example, in the production of organoids or three-dimensional organs.
  • FIG. 1 shows examples of [1] “Preparation of human yolk sac mesoderm cells by Wnt signal activation culture process (first embodiment of the present invention)” and [3] “Cell population differentiation markers by immunocell staining About “analysis”. "+CHIR” indicates when CHIR99021 (Wnt signal activator) was added to the medium, and "(-)” indicates when CHIR99021 was not added as a control.
  • Fig. 1A An image observed by an optical microscope. The upper right row is an image of human iPS cells 2 days after the start of culture under Wnt signal activation conditions (Wnt signal activator is added to the medium), and the lower right row is a control condition in which Wnt signals are not activated ( Fig.
  • FIG. 10 is an image of human iPS cells 2 days after initiation of culture under the condition that no Wnt signal activator is added to the medium.
  • FIG. 1B Fluorescence images of Brachyury and GATA6. In the color image, the center of the cell cluster is stained green, indicating Brachyury expression, and the outer edge is stained purple, indicating GATA6 expression.
  • FIG. 1C A graph showing the relationship between the fluorescence intensity (converted to grayscale) of each of Brachyury, GATA6 and FOXF1 in each of +CHIR and (-) fluorescence images and the distance from the center.
  • the center of the cell cluster is stained blue with DAPI, and the outer edge is stained red, indicating the expression of GATA6.
  • Middle row fluorescence images of SOX2 and CDX2.
  • the center of the cell cluster is stained with cyan, indicating SOX2 expression, and the outer edge is stained with pink, indicating CDX2 expression.
  • Bottom fluorescence images of TFAP2A and SOX2.
  • the central part of the cell cluster is stained with cyan indicating SOX2 expression and the outer edge is stained with orange indicating TFAP2A expression (predominantly +IWP-2).
  • FIG. 3 shows examples of [4] “Preparation of human yolk vein hematopoietic endothelial cells”, [5] Differentiation marker analysis of cell populations by immune cell staining, and [6] “Differentiation marker analysis using flow cytometry”.
  • “+CHIR” indicates the case of differentiation induction from cell clusters obtained by adding CHIR99021 (Wnt signal activator) to the medium, and "(-)” indicates cells obtained without the addition of CHIR99021 as a control. This is the case when differentiation is induced from the cluster.
  • FIG. 3A Fluorescence images of Brachyury and CD34.
  • the cell population on the right (+CHIR) has a relatively small green central area showing Brachyury expression and a relatively large red peripheral area showing CD34 expression.
  • the cell population on the left (-) has a relatively large green central area indicating Brachyury expression, and the outer edge is stained with GATA6 and orange indicating lower Brachyury expression than the central area.
  • FIG. 3B Analysis results of flow cytometry based on the expression of CD34 and CD32.
  • the method for producing cell clusters of the present invention is a method for producing cell clusters enriched with desired cells from pluripotent stem cells, and includes a step of two-dimensionally culturing pluripotent stem cells under the control of Wnt signals.
  • the method for producing cell clusters of the present invention typically includes the following two embodiments, a first embodiment and a second embodiment.
  • desired cells are "enriched" by the amount of desired cells in a cell cluster or the ratio of the amount of desired cells to the amount of total cells is enriched Refers to an increase relative to the amount or proportion in a control, such as a previous cell cluster, or a cell cluster obtained without practicing the invention (under conditions that do not modulate the Wnt signal).
  • a control such as a previous cell cluster, or a cell cluster obtained without practicing the invention (under conditions that do not modulate the Wnt signal).
  • enriching and “enrichment” of desired cells refer to the desired amount of cells in a cell cluster or the desired amount of cells relative to the total amount of cells. Refers to increasing the proportion of an amount as compared to the amount or proportion in a control.
  • the amount or proportion of desired cells in cell clusters produced by the invention is at least 20%, 30%, 40%, or 40% compared to the amount or proportion in control cell clusters. %, 50%, 60%, 70%, 80%, 90%, 100%, 120%, 150%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, Enriched to increase by 1000%.
  • two-dimensional culture of pluripotent stem cells refers to feeder-free adherent culture of pluripotent stem cells.
  • Culture methods for two-dimensionally culturing pluripotent stem cells such as iPS cells and ES cells (feeder-free adherent culture) are known.
  • methods for culturing human ES/iPS cells feeder-free are described in Rodin S et al., Nat Biotechnol. (2010) 28(6):611-5, Chen et al., Nat Methods (2011) 8(5 ):424-429, Miyazaki, T. et al. Nat Commun (2012) 3, 1236, Okita et al., Stem Cells, (2013) 31(3):458-66, and Nakagawa M et al., Scientific Reports , (2014) 4:3594.
  • cell cluster refers to an aggregate of cells formed from colonies of pluripotent stem cells and having micropatterns specific to embryonic development regions.
  • a "colony” refers to a visible clump formed from a single cell on a solid medium
  • a “pluripotent stem cell colony” refers to a single pluripotent stem cell that is undifferentiated. It refers to a visible cell aggregate that self-renews while maintaining , and that the replicated cells adhere to each other and multiply.
  • micropattern refers to a state in which different cell types are not randomly arranged but arranged according to a certain rule (the rule may be naturally occurring or artificially designed), and "embryonic development area A “specific micropattern” is a geometric arrangement that partially approximates the cell differentiation pattern in living embryogenesis, formed by the differentiation of cell aggregates into multiple types of cells while maintaining radial symmetry.
  • differentiation-inducing factors added to the medium are known (see, for example, Non-Patent Documents 1 to 3 cited above).
  • the same differentiation-inducing factors as in the past can be used in both the first embodiment and the second embodiment described below. Examples of such differentiation-inducing factors include BMP4, TGFb, bFGF, and VEGF, and BMP4 and VEGF are particularly preferred.
  • the amount of the differentiation-inducing factor to be used is not particularly limited, and it depends on the type of the differentiation-inducing factor in the Wnt signal activation culture step or the Wnt signal suppression culture step, the combination of the differentiation-inducing factors, or the combination of the differentiation-inducing factor and the medium.
  • cell clusters having a predetermined micropattern are formed, and particularly in the present invention, cell clusters enriched with desired cells are formed when a Wnt signal activator or Wnt signal inhibitor is further added.
  • the concentration of BMP4 in the medium can be, for example, in the range of 10-100 ⁇ M, preferably 50-80 ⁇ M.
  • the concentration of TGFb in the medium can be, for example, in the range of 2-20 ⁇ M, preferably 2-10 ⁇ M.
  • the concentration of bFGF in the medium can be, for example, within the range of 10-100 ⁇ M, preferably 50-80 ⁇ M.
  • the concentration of VEGF in the medium can be, for example, in the range of 5-100 ⁇ M, preferably 50-80 ⁇ M.
  • a Wnt signal activator may be further added to the "medium" used for two-dimensional culturing of pluripotent stem cells under the control of Wnt signals.
  • general media used for two-dimensional culture of pluripotent stem cells especially two-dimensional culture of pluripotent stem cells It can be basically the same as a known medium used for forming micropatterned cell clusters.
  • a person skilled in the art can prepare an appropriate medium by selecting an appropriate type and amount of basal medium and additives used as necessary according to the pluripotent stem cells to be cultured, and mixing them. be able to.
  • Media for pluripotent stem cells such as iPS cells and ES cells include, for example, DMEM, DMEM/F12 or DME culture medium containing 10-15% FBS (these culture mediums further include LIF, penicillin/ streptomycin, puromycin, L-glutamine, non-essential amino acids, ⁇ -mercaptoethanol, etc.) and commercially available culture media such as mouse ES cell culture media (TX-WES culture media, Thrombo X), primate ES cell culture medium (primate ES/iPS cell culture medium, Reprocell), serum-free medium (mTESR, Stemcell Technology), iPS/ES cell growth medium/for regenerative medicine Medium (StemFit (registered trademark) AK02N, Ajinomoto Healthy Supply Co., Inc.), feeder-free medium for iPS cell culture (Essential 8, Gibco), and serum-free medium can also be used (e.g., Sun N, et al. (2009), Proc Natl Acad Sci
  • the culture vessel is not particularly limited, and dishes, flasks, microplates, cell culture sheets such as the product name "OptiCell” (Nunc), etc. can be used.
  • Culture vessels are surface-treated to improve cell adhesion (hydrophilicity), collagen, gelatin, poly-L-lysine, poly-D-lysine, laminin, fibronectin, matrigel (e.g., BD Matrigel (Japan) It is preferably coated with a substrate for cell adhesion such as Becton Deckinson)), vitronectin or the like.
  • the first embodiment is a method for producing a cell cluster enriched with "yolk sac mesoderm cells” (YSMC) as “desired cells",
  • YSMC yolk sac mesoderm cells
  • Wnt signal activation culture step a step of two-dimensionally culturing pluripotent stem cells under conditions that activate Wnt signals.
  • YSMC are cells that differentiate into blood cells that form blood islands and cells that form blood vessels in the yolk sac, which is an extraembryonic hematopoietic organ in the early stages of development.
  • FOXF1, GATA3, GATA4, fibronectin (FN1), collagen (e.g., COL1A1, COL1A2, COL3A1, COL4A1, COL6A1, COL6A3), laminin-111 (e.g., LAMA1, LAMB1, LAMC1), KDR and HAND1, etc. may also be positive.
  • YSMC are enriched in cell clusters and to what extent they are enriched can be determined, for example, by analyzing fluorescence images obtained by immunostaining targeting such cell markers and comparing them with controls. can be evaluated or determined quantitatively or qualitatively.
  • the Wnt signal activation culture step is performed at the start of culture (early culture) for inducing differentiation from pluripotent stem cells to cell clusters having a predetermined micropattern, more specifically, from pluripotent stem cells to extraembryonic cells.
  • this occurs before differentiation into the embryonic epiblast, which contains the embryonic ectoderm and the primitive streak, and the extraembryonic ectoderm.
  • Wnt signaling is activated.
  • a Wnt signal activator (together with a predetermined differentiation-inducing factor) to the medium on Day 0, and culture pluripotent stem cells such as iPS cells in the medium. In such embodiments, it is not essential to add the Wnt signal activator to the medium on Day 1 and/or the medium on Day 2 as well.
  • Conditions for activating Wnt signaling are not particularly limited as long as the effect of the present invention is that YSMC-enriched cell clusters are obtained, and known means are used. be able to.
  • conditions for activating Wnt signaling include the addition of a type and amount of a substance that has the effect of activating Wnt signaling, ie, a “Wnt signaling activator” to the medium.
  • Wnt signal activator is not particularly limited, for example, a GSK3 inhibitor is preferable.
  • GSK3 inhibitors include compounds such as CHIR99021, SB-216763, BIO (6-bromoindirubin-3'-oxime), and LY2090314.
  • Wnt signal activators other than GSK3 inhibitors include SFRP inhibitors (eg, WAY-316606), Notum inhibitors (eg, ABC99), PP2A activators (eg, IQ1), ARFGAP1 activation (e.g. QS11), ⁇ -catenin activator (e.g.
  • DCA (hetero)arylpyrimidine, 2-amino-4-[3,4-(methylenedioxy)benzyl-amino]-6-(3- and compounds such as methoxyphenyl)pyrimidines.
  • two or more, eg, two, three, or four Wnt signaling activators may be used in combination.
  • the amount of Wnt signal activator to be used is not particularly limited. can be adjusted as appropriate so as to be enriched in
  • a GSK3 inhibitor such as CHIR99021
  • the concentration of the GSK3 inhibitor in the medium can be, for example, within the range of 0.5-3 ⁇ M, preferably 1-2 ⁇ M.
  • the growth factor BMP4 which is commonly used for culturing iPS cells and the like (essential for induction of almost all differentiated cells from epiblasts), is known to be related to Wnt signals.
  • Wnt signal activator in the first embodiment When used in a general amount for use in the culture of, i.e., in an amount in which the effect of the first embodiment of the present invention of enriching YSMC is not observed (e.g., used as a control in the examples below) shall not be regarded as the Wnt signal activator in the first embodiment.
  • the Wnt signal activator in the present invention is the first embodiment of the present invention that alone enriches YSMCs even if BMP4 is present in the medium in a general amount. Refers to substances other than BMP4 of a type and amount that are found (such as by comparison with a control) to have the effect of
  • the second embodiment is a method for producing a cell cluster enriched with "amniotic ectoderm cells (AEC)" as “desired cells”, , as a “step of two-dimensionally culturing pluripotent stem cells under the control of Wnt signals", perform a "step of two-dimensionally culturing pluripotent stem cells under conditions in which Wnt signals are suppressed" (Wnt signal-suppressed culture step).
  • AEC amniotic ectoderm cells
  • AECs are ectodermal cells that differentiate into amniotic epithelial cells that cover the fetal embryo.
  • cell markers for AEC CDX2, TFAP2A, GATA3, TFAP2B, E-cadherin, etc. are known, and can be identified by whether one or more of them are positive (if positive, AEC, other than AEC if negative).
  • cell markers positive markers
  • whether or not one or more of NANOG, SOX2, etc. which are cell markers of undifferentiated cells or embryonic ectoderm are negative, is also used to identify AECs. Available (AEC if negative, undifferentiated cells or ectoderm if positive).
  • Whether AEC is enriched in cell clusters can be quantitatively or qualitatively evaluated or determined, for example, by analyzing fluorescence images obtained by immunostaining targeting such cell markers and comparing with controls. can do.
  • Wnt signal inhibitor is not particularly limited, for example, a porcupine (porcupin, PORCN) inhibitor is preferable.
  • Porcupine inhibitors include, for example, compounds such as IWP-2, LGK974, Wnt-C59, ETC-159, IWP-O1, IWP L6, GNF-6231, Porcn-IN-1.
  • Wnt signal inhibitors include, for example, (non-membrane-bound) free Wnt inhibitors (e.g., Ant1.4Br/Ant1.4Cl), Frizzled inhibitors (e.g., Niclosamide), Vacuolar ATPase inhibitors.
  • agents e.g., apicularen and bafilomycin
  • tankyrase 1/Axin activators e.g., XAV939
  • Axin activators e.g., IWR
  • tankyrase e.g., Axin activators
  • Axin activators e.g., G007-LK and G244-LM
  • CK1 inhibitors e.g. pyrvinium
  • Dsh inhibitors e.g. NSC668036
  • TCF/ ⁇ -catenin inhibitors e.g. 2,4-diamino-quinazoline, PKF115-584
  • TCF inhibitors e.g.
  • CREB Compounds such as binding protein inhibitors (eg ICG-001), ⁇ -catenin TBL interaction inhibitors (eg BC2059), Shizokaol D and the like.
  • binding protein inhibitors eg ICG-001
  • ⁇ -catenin TBL interaction inhibitors eg BC2059
  • Shizokaol D e.g., Shizokaol D and the like.
  • two or more, for example, two, three, or four Wnt signal inhibitors may be used in combination.
  • the amount of the Wnt signal inhibitor to be used is not particularly limited, and depending on the type of the Wnt signal inhibitor, the desired degree of action and effect, that is, the desired degree of enrichment of AECs in cell clusters, can be obtained. can be adjusted as appropriate.
  • a porcupine inhibitor such as IWP-2
  • the concentration of the porcupine inhibitor in the medium is, for example, 0.5-2 ⁇ M, preferably 0.5-1 ⁇ M. can be done.
  • BMP4 can be added to the medium in a general amount for use in culturing iPS cells and the like. However, it refers to the types and amounts of substances found (such as by comparison with a control) to have the effect of the second embodiment of the present invention of enriching AECs.
  • the cell clusters obtained by the method for producing cell clusters of the present invention contain cells other than desired cells such as YSMC and AEC (herein referred to as "undesired cells”). can be done. Undesired cells include cells other than YSMC and AEC contained in known micropatterns, such as SOX2-positive embryonic ectoderm, T (brachyury)-positive cells (primitive streak), definitive mesoderm derived therefrom, and and definitive endoderm.
  • desired cells such as YSMC and AEC and undesired cells form a layered structure while maintaining two-dimensional positional relationships and boundaries. It is also one of the features of the present invention that the thickness of the layer containing desired cells can be increased.
  • CD34+ vascular endothelial progenitor cells In the method for producing a cell population of the present invention, CD34+ vascular endothelial progenitor cells (EPCs) (EPC differentiation step), and may further include other steps as necessary.
  • EPCs endothelial progenitor cells
  • the "cell population” particularly referred to in relation to the production method is the differentiation from the desired cells (YSMC, AEC, etc.) by further culturing after the above-mentioned “cell cluster” is formed. It refers to an aggregate of cells that contains the cells that have been treated.
  • EPCs are cells that can be identified as CD34-positive cells and have the ability to differentiate into vascular endothelial cells (EC).
  • ECs differentiated from EPCs include, for example, vitelline venous hemogenic endothelial cells (VVHEC, CD34-positive and CD32-positive) described later, microvessel endothelial cells (MVEC), umbilical vein Endothelial cells (umbilical-vein endothelial cells: UVEC) and the like are included.
  • ECs differentiated from EPCs include hematopoietic endothelial cells (hemogenic endothelial cells; HEC, CD34-positive and CD73-negative), which refer to vascular endothelial cells with hematopoietic potential, and vascular endothelial cells without hematopoietic potential. Both non-hemogenic endothelial cells (non-HEC, CD31 positive, CD73 positive and CD144 positive) are included.
  • the medium in the method for producing a cell population of the present invention may be a medium for pluripotent stem cells in the above-described method for producing a cell cluster of the present invention, or a medium for target cells differentiated from pluripotent stem cells or the like, or Mixtures can be used.
  • Basic media for EPC include, for example, DMEM/F-12 (Gibco), Stempro-34 SFM (Gibco), Essential 6 medium (Gibco), Essential 8 medium (Gibco), EGM (Lonza), BulletKit (Lonza) , EGM-2 (Lonza), BulletKit (Lonza), EGM-2 MV (Lonza), VascuLife EnGS Comp Kit (LCT), Human Endothelial-SFM Basal Growth Medium (Invitrogen), Human Microvascular Endothelial Cell Growth Medium (TOYOBO) etc.
  • Additives for EPC include, for example, B27 Supplements (GIBCO), BMP4 (bone morphogenetic factor 4), GSK ⁇ inhibitor (e.g., CHIR99021), VEGF (vascular endothelial cell growth factor), FGF2 (Fibroblast Growth Factor (bFGF ( basic fibroblast growth factor)), Folskolin, SCF (Stem Cell Factor), TGF ⁇ receptor inhibitor (e.g., SB431542), Flt-3L (Fms-related tyrosine kinase 3 ligand), IL-3 (Interleukin 3) , IL-6 (Interleukin 6), TPO (thrombopoietin), hEGF (recombinant human epidermal growth factor), hydrocortisone, ascorbic acid, IGF1, FBS (fetal bovine serum), antibiotics (e.g. gentamicin, amphotericin B ), heparin, L-glutamine, phenol red and BBE.
  • the EPC differentiation step is a predetermined period (e.g., about 2 days) following the Wnt signal activation culture step, in other words, it is calculated from the start of differentiation induction from the above-described pluripotent stem cells into cell clusters having a predetermined micropattern. It is appropriate to perform it on the 2nd to 4th day (Day2-Day4).
  • YSMCs Culture methods for differentiating YSMCs into EPCs, medium composition (types and amounts of basal medium, differentiation-inducing factors, other additives, etc.), culture conditions, and other culture-related matters are described, for example, by Ohta, R. See et al, J. Vis. Exp. (148), e59823, doi:10.3791/59823 (2019).
  • a differentiation-inducing factor such as VEGF, FGF2 (bFGF), SCF, TGFb inhibitor (eg, SB431542) can be added to the medium for the EPC differentiation step.
  • the method for producing a cell population of the present invention can further include other steps as necessary.
  • Such optional steps include, for example, a culturing step in which EPCs obtained by the EPC differentiation step are further differentiated into other cells.
  • the method for producing a cell population of the present invention further comprises a culture step (VVHEC differentiation step) of differentiating CD34 + CD32 + vitelline venous hemogenic endothelial cells (VVHEC) from EPCs.
  • VVHEC is a HEC derived from the yolk sac mesoderm, is known as a cell responsible for hematopoiesis in the yolk sac in the early fetal period, and is a cell that can be differentiated from YSMC via EPC in the present invention.
  • VVHEC cell markers for VVHEC
  • FN1 ACTA2 and LYVE1
  • vein markers such as NR2F2, APLNR and PROX1, and one or more (preferably all) of them are known. It can be identified by whether it is positive (VVHEC if positive, other than VVHEC if negative).
  • the VVHEC differentiation step is performed for a predetermined period (e.g., about 2 days) following the EPC culture step, in other words, 4 days from the start of differentiation induction from the above-described pluripotent stem cells to cell clusters having a predetermined micropattern. It is suitable to perform on the 6th day (Day 4-Day 6).
  • the culture method for differentiating EPCs into VVHEC, medium composition (types and amounts of basal medium, differentiation-inducing factors, other additives, etc.), culture conditions, and other culture-related matters include, for example, Matsybara et al. , Biochemical and Biophysical Research Communications, 515(1), 2019.
  • the medium for the VVHEC differentiation step can be supplemented with appropriate amounts of differentiation inducers such as VEGF, SCF, Flt-3L, IL-3, IL-6 and TPO.
  • the method for producing a cell population of the present invention includes a culture step of differentiating VVHEC obtained by the VVHEC differentiation step into other cells such as monocytes/macrophages (CD14 positive), erythroid/myelocyte progenitor cells (CD33 positive), and the like. It can also contain more.
  • the culture method for differentiating VVHEC into these cells, medium composition (types and amounts of basal medium, differentiation-inducing factors, other additives, etc.), culture conditions, and other culture-related matters are the same as known methods. can be When differentiating VVHEC into monocytes/macrophages (CD14 positive), erythroid/myelocyte progenitor cells (CD33 positive), etc., see, for example, Gene I. Uenishi et al, Nature Communications (2018) 9:1828. can.
  • the method for producing an organoid or three-dimensional organ of the present invention involves three-dimensionally culturing the cell cluster obtained by the method for producing a cell cluster of the present invention or at least a part of the cell population obtained by the method for producing a cell cluster of the present invention. including the step of
  • three-dimensional culture refers to culturing cells in a state of being embedded in a medium containing scaffolding components such as extracellular matrix.
  • Various methods and embodiments are common or publicly known as methods for producing organoids or three-dimensional organs by three-dimensional culture (see, for example, Patent Document 1 cited above).
  • the same methods and embodiments as conventional general or known production methods are used. , organoids or three-dimensional organs can be produced.
  • embryoids and gastruloids which are a type of organoid and are three-dimensionally constructed from the structure of early embryos.
  • the cell clusters or cell populations according to the present invention which contain cells located in the boundary region between the embryo and the ectoderm, such as YSMC and AEC, it is possible to produce embryoids or gastruloids whose structures can be more precisely reproduced. .
  • Kits according to the present invention include, for example, kits for the production of cell clusters enriched in yolk sac mesoderm cells (YSMC) comprising one or more Wnt signal activators, or one or more Wnt signal inhibitors, A kit for the production of cell clusters enriched for amniotic ectodermal cells (AEC). Matters related to such kits, such as Wnt signal activators, Wnt signal inhibitors, culture methods using the above kits, other components that can be included in the kit, etc., are described in this specification. The matters described in relation to the method for producing a cluster, the method for producing a cell population, etc. are the same, and the matters described therein can be referred to.
  • pluripotent stem cell refers to a cell that can differentiate into various tissues and cells with different morphologies and functions in the body, ectoderm) refers to stem cells that have the ability to differentiate into cells of any lineage. Pluripotent stem cells that can be used in the present invention are not particularly limited. Embryonic stem cells derived from cloned embryos obtained, spermatogonial stem cells, embryonic germ cells and the like can be mentioned.
  • iPS cells Induced pluripotent stem cells
  • iPS cells refer to cells obtained by reprogramming mammalian somatic cells or undifferentiated stem cells by introducing specific factors (nuclear reprogramming factors).
  • iPSCs induced pluripotent stem cells, and iPSCs established by Yamanaka et al. (Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676), and human cell-derived iPSCs established by introducing the same four factors into human fibroblasts (Takahashi K, Yamanaka S. , et al.
  • Nanog-iPS cells were established by selecting Nanog expression as an indicator (Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.), iPS cells generated by c-Myc-free method (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101 - 106), iPS cells established by introducing 6 factors by virus-free method (Okita K et al. Nat. Methods 2011 May;8(5):409-12, Okita K et al. Stem Cells. 31( 3):458-66.) can also be used.
  • induced pluripotent stem cells established by introducing the four factors of OCT3/4, SOX2, NANOG, and LIN28 produced by Thomson et al. (Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.), induced pluripotent stem cells produced by Daley et al. (Park IH, Daley GQ. et al., Nature (2007) 451: 141-146), induced pluripotent stem cells produced by Sakurada et al. (Japanese Unexamined Patent Application Publication No. 2008-307007) and the like can also be used.
  • iPS cell lines established by NIH, RIKEN (RIKEN), Kyoto University, etc. can be used as induced pluripotent stem cells (iPS cells).
  • iPS cells induced pluripotent stem cells
  • human iPS cell lines RIKEN's HiPS-RIKEN-1A, HiPS-RIKEN-2A, HiPS-RIKEN-12A, and Nips-B2 strains, Kyoto University's 201B7, 253G1, and 253G4 strains, 409B2 strain, 454E2 strain, 606A1 strain, 610B1 strain, 625A4 strain, 648A1 strain, 1201C1 strain, 1205D1 strain, 1210B2 strain, 1231A3 strain, 1383D2 strain, 1383D6 strain, and the like.
  • clinical grade cell lines provided by Kyoto University, Cellular Dynamics International, etc., and research and clinical cell lines produced using these cell lines may be used.
  • mouse ESCs can use various mouse ES cell lines established by inGenious targeting laboratory, RIKEN (RIKEN), etc., and human ES cells , NIH, RIKEN, Kyoto University, and various human ES cell lines established by Cellartis are available.
  • human ES cell lines include NIH CHB-1 to CHB-12, RUES1, RUES2, HUES1 to HUES28 strains, WisCell Research H1 and H9 strains, RIKEN KhES-1 and KhES- 2 strains, KhES-3 strain, KhES-4 strain, KhES-5 strain, SSES1 strain, SSES2 strain, SSES3 strain, etc. can be used.
  • clinical grade cell lines and research and clinical cell lines generated using those cell lines may be used.
  • the term “cell marker” refers to a gene that is specifically expressed (positive marker) or not expressed (negative marker) in a given cell type, specifically as mRNA by transcription of the gene in the genome , or a substance that is produced (positive marker) or not produced (negative marker) as a protein by translation of its mRNA.
  • the cell marker is preferably a protein expressed on the cell surface (cell surface marker) that can be labeled (stained) with a fluorescent substance, and can easily detect, concentrate, isolate, etc. cells expressing the cell marker. is.
  • a marker gene is "positive” means that the expression level of the mRNA or protein of the gene is detectable by a technique commonly used or known to those skilled in the art, or is lower than a predetermined threshold (background level, etc.) means high.
  • a predetermined threshold background level, etc.
  • Whether a cell marker is positive or negative can be determined with qualitative or quantitative results by methods commonly known to those skilled in the art.
  • a cell marker as a protein can be detected or its expression level can be measured using an immunological assay using an antibody specific to the protein, such as ELISA, immunostaining, flow cytometry, and the like.
  • Cell markers as mRNA are detected or the expression level is measured using assays using nucleic acids specific to the mRNA, such as RT-PCR (including quantitative PCR), microarrays, biochips, etc. be able to.
  • Organoid refers to a three-dimensional structure that is artificially created by combining multiple types of cells and resembles various organs and tissues. Organoids include organ organoids, cancer organoids, etc. In a broad sense, embryoids that are three-dimensionally constructed from the structure of an early embryo (eg, Science 07 Jun 2019: Vol. 364, Issue 6444, pp. 948-951 DOI: 10.1126/science.aax0164) and gastruloids (eg, Nature volume 582, pages 410-415 (2020)).
  • Organ organoids include not only those at a relatively mature stage as organoids that have similar functions and structures to various organs or tissues, but also "organ buds” at an early stage of such complexity, Structures called “primordia” and the like are also included.
  • organ organoids such as liver, pancreas, kidney, heart, lung, spleen, esophagus, stomach, thyroid, parathyroid, thymus, gonad, brain, spinal cord, etc. (e.g.
  • the three-dimensional structure of organoids can be confirmed with the naked eye or by microscopic observation.
  • proteins of these markers are more preferably secreted into the culture supernatant. It can be determined by whether
  • three-dimensional organ refers to a structure comprising a more mature cell population or structure than an organ organoid, which can also be called a mature organ organoid.
  • Whether or not a three-dimensional organ was obtained from an organ organoid is determined, for example, by the density of cells in the structure (whether it exceeds a predetermined standard, etc.), the three-dimensional shape of the structure (whether it is more three-dimensional than a certain level, etc.), Functions and traits (whether a predetermined function or trait such as a metabolic function is acquired), cell markers (whether the gene or protein expression of the cell marker is positive, whether the density of positive cells exceeds a predetermined standard, whether the amount of marker protein secreted in the culture supernatant exceeds a predetermined standard, etc.).
  • the above cell density, three-dimensional shape, function and trait, cell markers, etc. can be appropriately set according to the organ organoid and three-dimensional organ. Or whether or not a level close to it has been achieved can be used as the basis for the above determination.
  • the cells contained in colonies, cell clusters, cell populations, organoids, three-dimensional organs, etc. of pluripotent stem cells of the present invention may be derived from humans or non-human animals such as mice, rats, and dogs. , pigs, monkeys, and other mammals.
  • the cells are preferably of human origin.
  • “Comprise, include, contain, etc.” means the inclusion of elements following the phrase, but is not limited to this. Thus, the inclusion of the elements following the phrase, but not the exclusion of any other element, is suggested.
  • “consisting of,” means including and limited to any and all elements following the phrase. Thus, the phrase “consisting of” indicates that the listed element is required or required and that other elements are substantially absent.
  • “consisting essentially of, etc.” includes any element following the phrase and is limited to other elements that do not affect the activity or action specified in this disclosure for that element. means to be Thus, the phrase “consisting essentially of” indicates that the listed elements are required or required but other elements are optional and that they affect the activity or action of the listed elements. indicates that it may or may not be present, depending on whether it exerts
  • Day represents the number of days from the initiation of differentiation induction of human iPS cell colonies.
  • Day 0 is the time of initiation of culture under Wnt signal control.
  • Example 1 Preparation of yolk sac mesoderm cells and amniotic ectoderm cells under Wnt signal control
  • Human iPS cells (625A4; iPS Research Institute, Kyoto University) were cultured in AK02N (Ajinomoto) (10cm dish; 8ml, 24-well plate; 0.5ml) at 5% CO 2 and 37°C for 6-7 days. , formed iPS cell colonies with a diameter of 500-700 ⁇ m.
  • the resulting colonies were added to Essential 8 medium (Gibco) (10 cm dish; 8 ml, 24-well plate; 0.5 ml) with BMP4 (80 ng/ml), VEGF (80 ng/ml) and CHIR99021 (2 ⁇ M). It was cultured in a medium at 5% CO 2 and 37° C. for 2 days (Day 0-2).
  • Essential 8 medium Gibco
  • BMP4 80 ng/ml
  • VEGF 80 ng/ml
  • CHIR99021 2 ⁇ M
  • Fig. 1 shows the analysis results of the cell markers Brachyury, GATA6 and FOXF1 for the cell clusters on Day 2 of [1].
  • the Wnt signal activator CHIR99021 was added to the medium (+CHIR), compared to the case where it was not added (-), Brachyury-negative, GATA6-positive and FOXF1-positive
  • YSMC was enriched, in other words, the peripheral YSMC region was increased
  • FIGGS. 1B and 1C the peripheral YSMC region was increased
  • Fig. 2 shows the analysis results of the cell markers GATA6, SOX2, CDX2 and TFAP2A for the cell clusters on Day 2 of [1] and [2].
  • IWP-2 which is a Wnt signal inhibitor
  • - when IWP-2, which is a Wnt signal inhibitor, was added to the medium (+IWP-2), compared to when it was not added (-), CDX2 positive (middle row) and It was confirmed that cell clusters enriched with TFAP2A-positive (bottom row) AECs, in other words, having an AEC region at the outer edge, were formed.
  • Stempro-34 SFM (Gibco) (10 cm dish; 8 ml) was added with VEGF (80 ng/ml), SCF (50 ng/ml), Flt-3L (50 ng/ml), IL-3 (50 ng/ml), IL- 6 (50 ng/ml) and TPO (5 ng/ml) were added to the medium, cultured at 5% CO 2 at 37° C. for 2 days, and then the medium with the above composition was replaced with a medium excluding VEGF.
  • CD34-positive and CD32-positive yolk vein hematopoietic endothelial cells were induced by culturing at 37° C. in 5% CO 2 for 2 days.
  • FIG. 3(A) shows the analysis results of cell markers Brachyury and CD34 for the cell population on Day 6 of [4]. It was confirmed that abundant CD34-positive vascular endothelial progenitor cells emerged from the outer YSM region of the cell cluster (+CHIR) obtained according to the first embodiment of the present invention.
  • Figure 3(B) shows the results of flow cytometry for the cell population on Day 8 of [4]. From the YSM region at the outer edge of the cell cluster (+CHIR) obtained according to the first embodiment of the present invention, more CD34-positive and CD32-positive vitelliform hematopoietic endothelial cells compared to the control (-) In other words, CD34-positive vascular endothelial progenitor cells in the YSM region were confirmed to have the ability to differentiate into CD32-positive yolk vein hematopoietic endothelial cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pregnancy & Childbirth (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、iPS細胞等の多能性幹細胞のコロニーから分化誘導因子によって形成される細胞クラスターにおいて、胚発生領域特異的なマイクロパターン構造に含まれる所望の細胞、特に卵黄嚢中胚葉細胞または羊膜外胚葉細胞を富化するための手段として、以下の方法を提供する。Wntシグナル調節下で多能性幹細胞を二次元培養する工程を含む、多能性幹細胞から所望の細胞が富化された細胞クラスターを製造する方法。例えば、Wntシグナルを活性化する条件下で多能性幹細胞を二次元培養する工程を含む、多能性幹細胞から卵黄嚢中胚葉細胞が富化された細胞クラスターを製造する方法、および、Wntシグナルが抑制された条件下で多能性幹細胞を二次元培養する工程を含む、多能性幹細胞から羊膜外胚葉細胞が富化された細胞クラスターを製造する方法。

Description

細胞クラスターの製造方法
 本発明は、多能性幹細胞のコロニーから、分化誘導因子によって形成される、胚発生領域特異的なマイクロパターンを有する細胞クラスターであって、所望の細胞が富化された細胞クラスターの製造方法に関する。また、その細胞クラスター中の細胞がさらに分化することで生成する細胞集団の製造方法、その細胞クラスター中の細胞または細胞集団中の細胞をさらに培養することにより形成されるオルガノイドまたは立体臓器に関する。
 ES細胞、iPS細胞などの多能性幹細胞は、発生学上の定義でいうエピブラスト(epiblast、胚盤葉上層)に該当し、多能性幹細胞のコロニーからは、分化誘導因子によって、胚発生領域特異的なマイクロパターンを有する細胞クラスターが形成されることが知られている。例えば、非特許文献1には、ヒトES細胞を二次元培養すると、BMP4シグナルによって三胚葉(内胚葉、中胚葉および外胚葉)を含むマイクロパターンを形成したことが記載されている。また、非特許文献2には、ヒトES細胞からマイクロパターンを形成した後、Wntシグナルを阻害することにより、内胚葉および中胚葉への分化を制御したことが記載されている。非特許文献3には、マウスES細胞からマイクロパターンを形成した場合、卵黄嚢中胚葉細胞も低い割合ながら出現したことが記載されている。
 一方、中胚葉細胞からはさらに、血管内皮細胞などが分化する。例えば、特許文献1には、気液界面培養により階層的な細胞ネットワーク(例、血管や神経のネットワーク)を形成させたマトリックス組成物の製造方法が記載されており、その細胞ネットワークの形成のために、脈管細胞として血管内皮細胞を用いることが記載されている。特許文献1の実施例には、BMP4、VEGF、CHIR99021などを含む培地を用いた培養によりヒトiPS細胞から側板中胚葉系細胞を誘導し、培地の交換後のさらなる培養により造血性血管内皮細胞(CD34陽性、CD73陰性)を得たことや、そのようにして得られた造血性血管内皮細胞を含む複数の種類の細胞を用いて、階層的な細胞ネットワークを形成させたマトリックス組成物を製造したことが記載されている。
WO2020/203713
Warmflash et al., NATURE METHOD VOL.11 No.8 August 2014 Martyn et al., Development(2019) 146, dev17291 Morgani et al., eLife 2018 ;7 :e32839
 多能性幹細胞のコロニーから分化誘導因子によって形成される細胞クラスターにおいて、胚発生領域特異的なマイクロパターン構造に含まれる特定の細胞の比率を調節する方法、例えば特定の細胞を富化し、その細胞から分化する目的細胞を効率的に得られるようにする方法は、これまで知られていない。
 本発明は、多能性幹細胞から形成される細胞クラスターに含まれる所望の細胞、特に卵黄嚢中胚葉細胞(yolk sac mesoderm cell、本明細書において「YSMC」と標記する場合がある。)または羊膜外胚葉細胞(amniotic ectoderm cell、本明細書において「AEC」と標記する場合がある。)を富化するための手段を提供することを課題とする。
 本発明者らは、Wntシグナル調節下で多能性幹細胞を二次元培養することにより、細胞クラスター中の所望の細胞を富化することができること、例えば、多能性幹細胞の培養開始時にWntシグナル活性化剤を培地に添加するなど、Wntシグナルを活性化する条件下で多能性幹細胞を二次元培養することにより、YSMCが富化された細胞クラスターを製造できること、逆に多能性幹細胞の培養開始時にWntシグナル阻害剤を培地に添加するなど、Wntシグナルが抑制された条件化で多能性幹細胞を二次元培養することにより、AECが富化された細胞クラスターを製造できることなどを見出した。細胞クラスターの一つの局面では、YSMCやAECなどの所望の細胞とそれ以外の細胞とが、二次元的な位置関係と境界を保ちながら層状構造を形成しており、所望の細胞を含む層の厚みを増やすことができるということも重要な特徴である。
 すなわち、本発明は少なくとも下記の事項を含む。
[1]
 多能性幹細胞から所望の細胞が富化された細胞クラスターを製造する方法であり、Wntシグナル調節下で多能性幹細胞を二次元培養する工程を含む、方法。
[2]
 前記所望の細胞が、卵黄嚢中胚葉細胞であり、前記Wntシグナル調節下で多能性幹細胞を二次元培養する工程が、Wntシグナルを活性化する条件下で多能性幹細胞を二次元培養する、Wntシグナル活性化培養工程である、[1]に記載の方法。
[3]
 前記Wntシグナル活性化培養工程が、Wntシグナル活性化剤を添加した培地を用いて多能性幹細胞を二次元培養する工程である、[2]に記載の方法。
[4]
 前記Wntシグナル活性化剤がGSK3阻害剤である、[3]に記載の方法。
[4a]
 前記GSK3阻害剤がCHIR99021である、[4]に記載の方法。
[5]
 前記Wntシグナル活性化培養工程が、前記多能性幹細胞の培養開始時に行われる、[2]に記載の方法。
[6]
 前記多能性幹細胞が、人工多能性幹細胞である、[1]に記載の方法。
[7]
 [2]に記載のWntシグナル活性化培養工程の後、得られた前記卵黄嚢中胚葉細胞からCD34+血管内皮前駆細胞に分化させる培養工程をさらに含む、細胞集団の製造方法。
[8]
 前記CD34+血管内皮前駆細胞から、CD34+CD32+卵黄静脈造血性内皮細胞に分化させる培養工程をさらに含む、[7]に記載の方法。
[9]
 [1]に記載の方法により得られた細胞クラスター。
[10]
 [7]に記載の方法により得られた細胞集団。
[11]
 [9]に記載の細胞クラスターまたは[10]に記載の細胞集団の少なくとも一部を三次元培養する工程を含む、オルガノイドまたは立体臓器の製造方法。
[12]
 [11]に記載の製造方法により得られた、オルガノイドまたは立体臓器。
[13]
 前記所望の細胞が、羊膜外胚葉細胞であり、前記Wntシグナル調節下で多能性幹細胞を二次元培養する工程が、Wntシグナルが抑制された条件下で多能性幹細胞を二次元培養する、Wntシグナル抑制培養工程である、[1]に記載の方法。
[14]
 前記Wntシグナル抑制培養工程が、Wntシグナル阻害剤を添加した培地を用いて行われる、[13]に記載の方法。
[15]
 前記Wntシグナル阻害剤がIWP-2である、[14]に記載の方法。
 本発明に従い、Wntシグナル調節下で多能性幹細胞を二次元培養することにより、多能性幹細胞から所望の細胞が富化された細胞クラスターを製造すること、特に、Wntシグナル活性化培養工程によりYSMCが富化された細胞クラスターを製造すること、およびWntシグナル抑制培養工程によりAECが富化された細胞クラスターを製造することができる。さらに、YSMCが富化された細胞クラスターからは、例えばオルガノイドまたは立体臓器の製造に利用することができる、CD34+血管内皮前駆細胞を効率的に製造することができる。
図1は、実施例の[1]「Wntシグナル活性化培養工程によるヒト卵黄嚢中胚葉細胞の作製(本発明の第1実施形態)」および[3]「免疫細胞染色による細胞集団の分化マーカー解析」に関する。「+CHIR」はCHIR99021(Wntシグナル活性化剤)を培地に添加した場合、「(-)」は対照としてCHIR99021を添加しなかった場合を示す。[図1A]光学顕微鏡による観察像。右上段が、Wntシグナル活性化条件(Wntシグナル活性化剤を培地に添加)下におけるヒトiPS細胞の培養開始後2日目の画像であり、右下段が対照としてWntシグナルを活性化しない条件(Wntシグナル活性化剤を培地に添加しない)下におけるヒトiPS細胞の培養開始後2日目の画像である。[図1B]BrachyuryおよびGATA6の蛍光画像。カラー画像では、細胞クラスターの中央部はBrachyuryの発現を示す緑色で染色され、外縁部はGATA6の発現を示す紫色で染色されている。[図1C]+CHIR、(-)それぞれの蛍光画像における、Brachyury、GATA6およびFOXF1それぞれの蛍光強度(グレースケールに換算した場合)と、中心からの距離の関係を示すグラフ。 図2は、実施例の[2]「Wntシグナル阻害培養工程によるヒト羊膜外胚葉細胞の作製(本発明の第2実施形態)」および[3]「免疫細胞染色による細胞集団の分化マーカー解析」に関する。「+IWP-2」はIWP-2(Wntシグナル阻害剤)を培地に添加した場合、「(-)」は対照としてIWP-2を培地に添加しなかった場合、「+CHIR」は参考としてIWP-2の代わりに本発明の第1実施形態で用いたCHIR99021を培地に添加した場合を示す。上段:DAPIおよびGATA6の蛍光画像。カラー画像では、細胞クラスターの中央部はDAPIにより青色で染色され、外縁部はGATA6の発現を示す赤色で染色されている。中段:SOX2およびCDX2の蛍光画像。カラー画像では、細胞クラスターの中央部はSOX2の発現を示すシアン色で染色され、外縁部はCDX2の発現を示すピンク色で染色されている。下段:TFAP2AおよびSOX2の蛍光画像。カラー画像では、細胞クラスターの中央部はSOX2の発現を示すシアン色で染色され、外縁部はTFAP2Aの発現を示す橙色で染色されている(主に+IWP-2)。 図3は、実施例の[4]「ヒト卵黄静脈造血性内皮細胞の作製」、[5]免疫細胞染色による細胞集団の分化マーカー解析および[6]「フローサイトメトリーを用いた分化マーカー解析」に関する。「+CHIR」はCHIR99021(Wntシグナル活性化剤)を培地に添加して得られた細胞クラスターから分化誘導した場合であり、「(-)」は対照としてCHIR99021を添加せずに得られた細胞クラスターから分化誘導した場合である。[図3A]BrachyuryおよびCD34の蛍光画像。カラー画像では、右側(+CHIR)の細胞集団は、Brachyuryの発現を示す緑色の中央部の領域は比較的小さく、CD34の発現を示す赤色の外縁部の領域が比較的大きく広がっているのに対し、左側(-)の細胞集団は、Brachyuryの発現を示す緑色の中央部の領域が比較的大きく、外縁部は、GATA6と、中央部より低いBrachyuryの発現を示す橙色で染色されている。[図3B]CD34およびCD32の発現に基づくフローサイトメトリーの解析結果。
-細胞クラスターの製造方法-
 本発明の細胞クラスターの製造方法は、多能性幹細胞から所望の細胞が富化された細胞クラスターを製造する方法であり、Wntシグナル調節下で多能性幹細胞を二次元培養する工程を含む。本発明の細胞クラスターの製造方法は、代表的には下記の2つの実施形態、第1実施形態および第2実施形態を包含する。
 本明細書において、所望の細胞が「富化された(enriched)」とは、細胞クラスター中の所望の細胞の量、または全細胞の量に対する所望の細胞の量の比率が、富化される前の細胞クラスター、または本発明を実施せずに(Wntシグナルを調節しない条件下で)得られた細胞クラスターのような対照における量または比率と比較して、増加していることを指す。逆の表現として、所望の細胞を「富化する(enrich)」及び「富化すること(enrichment)」とは、細胞クラスター中の所望の細胞の量、または全細胞の量に対する所望の細胞の量の比率を、対照における量または比率と比較して、増加させることを指す。本発明の特定の実施形態では、本発明により製造される細胞クラスター中の所望の細胞の量または比率は、対照の細胞クラスター中の量または比率と比較して、少なくとも20%、30%、40%、50%、60%、70%、80%、90%、100%、120%、150%、200%、300%、400%、500%、600%、700%、800%、900%、1000%増加するよう、富化される。
 本明細書において、多能性幹細胞を「二次元培養」するとは、多能性幹細胞をフィーダーフリーで接着培養することを指す。iPS細胞、ES細胞などの多能性幹細胞を二次元培養する(フィーダーフリーで接着培養する)ための培養方法は公知である。例えば、ヒトES/iPS細胞をフィーダーフリーで培養する方法は、Rodin S et al., Nat Biotechnol. (2010) 28(6):611-5、Chen et al., Nat Methods  (2011) 8(5):424-429、Miyazaki, T. et al. Nat Commun (2012) 3, 1236、Okita et al., Stem Cells, (2013) 31(3):458-66、およびNakagawa M et al., Scientific Reports , (2014) 4:3594に記載されている。
 本明細書において「細胞クラスター」とは、多能性幹細胞のコロニーから形成される、胚発生領域特異的なマイクロパターンを有する細胞の集合体を指す。「コロニー」とは、固型培地で1個の細胞から出発してできた可視的な集塊を指し、「多能性幹細胞のコロニー」とは、1個の多能性幹細胞が未分化性を維持しながら自己複製し、複製された細胞と細胞が接着して増えてできた可視的な細胞集合体を指す。また、「マイクロパターン」とは、異なる細胞種がランダムではなく、一定の規則に従って配列した状態(規則は自然に生まれたものでも人工的にデザインされてものでもよい)を指し、「胚発生領域特異的なマイクロパターン」とは、細胞集合体が放射形対称を維持しながら複数種の細胞に分化することで形成された、生体胚形成における細胞分化パターンと部分的に近似する幾何学的配置を指す。多能性幹細胞のコロニーからそのような細胞クラスターを形成するための手段、例えば培地に添加する分化誘導因子は公知である(例えば、前掲非特許文献1~3参照)。本発明においても、以下に記載する第1実施形態および第2実施形態ともに、従来と同様の分化誘導因子を用いることができる。そのような分化誘導因子としては、例えば、BMP4、TGFb、bFGF、VEGFが挙げられ、特にBMP4およびVEGFを用いることが好ましい。
 分化誘導因子の使用量は特に限定されるものではなく、Wntシグナル活性化培養工程やWntシグナル抑制培養工程における分化誘導因子の種類や、分化誘導因子同士または分化誘導因子と培地の組み合わせなどに応じて、所定のマイクロパターンを有する細胞クラスターが形成されるよう、また本発明においては特に、Wntシグナル活性化剤またはWntシグナル抑制剤をさらに添加したときに所望の細胞が富化された細胞クラスターが製造可能であるように、当業者であれば適宜調節することができる。BMP4の培地中の濃度は、例えば10~100μM、好ましくは50~80μMの範囲内とすることができる。TGFbの培地中の濃度は、例えば2~20μM、好ましくは2~10μMの範囲内とすることができる。bFGFの培地中の濃度は、例えば10~100μM、好ましくは50~80μMの範囲内とすることができる。VEGFの培地中の濃度は、例えば5~100μM、好ましくは50~80μMの範囲内とすることができる。
 Wntシグナル調節下で多能性幹細胞を二次元培養する際に用いる「培地」は、以下に記載する第1実施形態ではWntシグナル活性化剤をさらに添加してもよいこと、また第2実施形態ではWntシグナル抑制剤をさらに添加してもよいこと以外は、多能性幹細胞の二次元培養に用いられている一般的な培地、特に多能性幹細胞の二次元培養により胚発生領域特異的なマイクロパターンを有する細胞クラスターを形成するために用いられている公知の培地と、基本的に同じものとすることができる。当業者であれば、培養する多能性幹細胞に応じて、適切な種類および量の基礎培地および必要に応じて用いられる添加物を選択し、それらを混合することにより、適切な培地を調製することができる。
 iPS細胞、ES細胞などの多能性幹細胞のための培地としては、例えば、10~15%FBSを含有するDMEM、DMEM/F12またはDME培養液(これらの培養液にはさらに、LIF、ペニシリン/ストレプトマイシン、ピューロマイシン、L-グルタミン、非必須アミノ酸類、β-メルカプトエタノールなどを適宜含むことができる。)や、市販の培養液、例えば、マウスES細胞培養用培養液(TX-WES培養液、トロンボX社)、霊長類ES細胞培養用培養液(霊長類ES/iPS細胞用培養液、リプロセル社)、無血清培地(mTESR、Stemcell Technology社)、iPS/ES細胞増殖用培地/再生医療用培地(StemFit(登録商標)AK02N、Ajinomoto Healthy Supply Co., Inc.)、iPS細胞培養用フィーダーフリー培地(Essential 8、Gibco)が挙げられ、無血清培地を用いることも可能である(例、Sun N, et al.(2009), Proc Natl Acad Sci USA. 106:15720-15725)。
 培養容器は特に限定されるものではなく、ディッシュ、フラスコ、マイクロプレート、商品名「OptiCell」(Nunc社)等の細胞培養シートなどを用いることができる。培養容器は、細胞との接着性(親水性)を向上させるための表面処理や、コラーゲン、ゼラチン、ポリ-L-リジン、ポリ-D-リジン、ラミニン、フィブロネクチン、マトリゲル(例、BDマトリゲル(日本ベクトン・デッキンソン社))、ビトロネクチンなどの細胞接着用基質でコーティングされていることが好ましい。
・第1実施形態/Wntシグナル活性化培養工程
 第1実施形態は、「所望の細胞」として「卵黄嚢中胚葉細胞」(YSMC)が富化された細胞クラスターを製造する方法であって、「Wntシグナル調節下で多能性幹細胞を二次元培養する工程」として、「Wntシグナルを活性化する条件下で多能性幹細胞を二次元培養する工程」(Wntシグナル活性化培養工程)を行う実施形態である。
 YSMCは、胚外にある発生初期の造血器官である卵黄嚢において、血島を形成する血球と血管構造を構成する細胞へ分化する細胞であり、細胞マーカーとして、GATA6陽性かつBrachyury陰性(GATA6+Brachyury-)の細胞として特定することができ、他にFOXF1、GATA3、GATA4、フィブロネクチン(FN1)、コラーゲン(例、COL1A1、COL1A2、COL3A1、COL4A1、COL6A1、COL6A3)、ラミニン-111(例、LAMA1、LAMB1、LAMC1)、KDRおよびHAND1等も陽性であり得る。細胞クラスターにおいてYSMCが富化されているか否か、またどの程度富化されているかは、例えば、そのような細胞マーカーを標的とした免疫染色により得られる蛍光画像を解析し、対照と比較することによって、定量的または定性的に評価または判定することができる。
 Wntシグナル活性化培養工程は、多能性幹細胞から所定のマイクロパターンを有する細胞クラスターへの分化誘導のための培養開始時(培養初期)に、より具体的には、多能性幹細胞から胚体外胚葉(embryonic ectoderm)および原始線条(primitive streak)を含む胚体エピブラスト(embryonic epiblast)と胚外外胚葉(extraembryonic ectoderm)に分化が分かれる前に、行うことが適切である。例えば、所定の分化誘導因子が添加された培地中でiPS細胞(のコロニー)を培養する分化誘導の開始から起算して0日目から2日目(Day0~Day2)に、Wntシグナルを活性化する条件下でiPS細胞を培養すること、すなわちWntシグナル活性化培養工程を行うことが好ましい。より具体的には、Day0に、Wntシグナル活性化剤を(所定の分化誘導因子と共に)培地に添加し、その培地中でiPS細胞等の多能性幹細胞を培養することが好ましい。なお、そのような実施形態において、Day1の培地および/またはDay2の培地にもWntシグナル活性化剤を添加することは、必須ではない。
 「Wntシグナルを活性化する条件」は、YSMCが富化された細胞クラスターが得られるという本発明の作用効果が奏されるのであれば、特に限定されるものではなく、公知の手段を利用することができる。典型的には、Wntシグナルを活性化する作用を有する種類および量の物質、すなわち「Wntシグナル活性化剤」を培地に添加することが、Wntシグナルを活性化する条件として挙げられる。
 Wntシグナル活性化剤の種類は特に限定されるものではないが、例えば、GSK3阻害剤が好ましい。GSK3阻害剤としては、例えばCHIR99021、SB-216763、BIO(6-bromoindirubin-3'-oxime)、LY2090314などの化合物が挙げられる。Wntシグナル活性化剤としては、GSK3阻害剤以外にも、例えば、SFRP阻害剤(例、WAY-316606)、Notum阻害剤(例、ABC99)、PP2A活性化剤(例、IQ1)、ARFGAP1活性化剤(例、QS11)、βカテニン活性化剤(例、DCA)、(ヘテロ)アリールピリミジン、2-アミノ-4-[3,4-(メチレンジオキシ)ベンジル-アミノ]-6-(3-メトキシフェニル)ピリミジンなどの化合物が挙げられる。本発明の方法においては、2以上、例えば2、3、または4種類のWntシグナル活性化剤を併用してもよい。
 Wntシグナル活性化剤の使用量は特に限定されるものではなく、Wntシグナル活性化剤の種類に応じて、所望の程度の作用効果が奏されるよう、つまり細胞クラスター中のYSMCが所望の程度に富化されるよう、適宜調節することができる。例えば、Wntシグナル活性化剤としてGSK3阻害剤(CHIR99021など)を用いる場合、GSK3阻害剤の培地中の濃度は、例えば0.5~3μM、好ましくは1~2μMの範囲内とすることができる。
 なお、iPS細胞等を培養するために慣用されている(エピブラストからほぼ全ての分化細胞誘導に必須である)成長因子BMP4は、Wntシグナルと関係することが知られているが、iPS細胞等の培養に用いるための一般的な量、すなわちYSMCの富化という本発明の第1実施形態の作用効果が認められない量で用いられる(例えば、後記実施例における対照のように用いられる)場合のBMP4は、第1実施形態におけるWntシグナル活性化剤とはみなさないこととする。言い換えれば、本発明におけるWntシグナル活性化剤は、仮にBMP4が一般的な量で培地中に存在する場合であっても、それによらずに単独でYSMCの富化という本発明の第1実施形態の作用効果を有するものと(対照と比較すること等により)認められる、BMP4以外の種類および量の物質を指す。
・第2実施形態/Wntシグナル抑制培養工程
 第2実施形態は、「所望の細胞」として「羊膜外胚葉細胞」(amniotic ectoderm cell:AEC)が富化された細胞クラスターを製造する方法であって、「Wntシグナル調節下で多能性幹細胞を二次元培養する工程」として、「Wntシグナルが抑制された条件下で多能性幹細胞を二次元培養する工程」(Wntシグナル抑制培養工程)を行う実施形態である。
 AECは、胎児胚を覆う、羊膜上皮細胞へ分化する外胚葉系細胞である。AECの細胞マーカーとしては、CDX2、TFAP2A、GATA3、TFAP2B、E-カドヘリンなどが知られており、それらの1種または2種以上が陽性であるかどうかにより特定することができる(陽性であればAEC、陰性であればAEC以外)。また、上記細胞マーカー(陽性マーカー)と組み合わせて、未分化細胞や胚体外胚葉の細胞マーカーであるNANOG、SOX2などの1種または2種以上が陰性であるかどうかも、AECを特定するために利用することができる(陰性であればAEC、陽性であれば未分化細胞または外胚葉)。細胞クラスターにおいてAECが富化されているかは、例えば、そのような細胞マーカーを標的とした免疫染色により得られる蛍光画像を解析し、対照と比較することによって、定量的または定性的に評価または判定することができる。
 「Wntシグナルが抑制された条件」は、AECが富化された細胞クラスターが得られるという本発明の作用効果が奏されるのであれば、特に限定されるものではなく、公知の手段を利用することができる。典型的には、Wntシグナルを抑制する作用を有する種類および量の物質、すなわち「Wntシグナル抑制剤」を培地に添加することが、Wntシグナルを抑制する条件として挙げられる。
 Wntシグナル抑制剤の種類は特に限定されるものではないが、例えば、Porcupine(ポルクピン、PORCN)阻害剤が好ましい。Porcupine阻害剤としては、例えばIWP-2、LGK974、Wnt-C59、ETC-159、IWP-O1、IWP L6、GNF-6231、Porcn-IN-1などの化合物が挙げられる。Wntシグナル抑制剤には、Porcupine阻害剤以外にも、例えば、(膜結合性でない)遊離Wnt阻害剤(例、Ant1.4Br/Ant 1.4Cl)、Frizzled阻害剤(例、Niclosamide)、Vacuolar ATPase阻害剤(例、apicularen and bafilomycin)、tankyrase 1/Axin活性化剤(例、XAV939)、Axin活性化剤(例、IWR)、tankyrase, Axin活性化剤(例、G007-LKおよびG244-LM)、CK1阻害剤(例、pyrvinium)、Dsh阻害剤(例、NSC668036)、TCF/βカテニン阻害剤(例、2,4-ジアミノ-キナゾリン、PKF115-584)、TCF阻害剤(例、ケルセチン)、CREB結合タンパク質阻害剤(例、ICG-001)、βカテニンTBL相互作用阻害剤(例、BC2059)、Shizokaol Dなどの化合物が挙げられる。本発明の方法においては、2以上、例えば2、3、または4種類のWntシグナル抑制剤を併用してもよい。
 Wntシグナル抑制剤の使用量は特に限定されるものではなく、Wntシグナル抑制剤の種類に応じて、所望の程度の作用効果が奏されるよう、つまり細胞クラスター中のAECが所望の程度に富化されるよう、適宜調節することができる。例えば、Wntシグナル抑制剤としてPorcupine阻害剤(IWP-2など)を用いる場合、培地中のPorcupine阻害剤の濃度は、例えば0.5~2μM、好ましくは0.5~1μMの範囲内とすることができる。
 なお、本発明の第2実施形態においても、iPS細胞等の培養に用いるための一般的な量でBMP4を培地に添加することができるが、本発明におけるWntシグナル抑制剤は、そのような場合であっても、AECの富化という本発明の第2実施形態の作用効果を有するものと(対照と比較すること等により)認められる種類および量の物質を指す。
・所望の細胞以外の細胞
 本発明の細胞クラスターの製造方法により得られる細胞クラスターは、YSMCやAECなどの所望の細胞以外の細胞(本明細書において「非所望細胞」と呼ぶ。)を含むことができる。非所望細胞としては、公知のマイクロパターンに含まれる、YSMCおよびAEC以外の細胞、例えば、SOX2陽性胚体外胚葉や、T(Brachyury)陽性細胞(primitive streak)ならびにこれに由来する胚体中胚葉および胚体内胚葉などが挙げられる。本発明の製造方法により得られる細胞クラスターは、一つの局面では、YSMCやAECなどの所望の細胞と非所望細胞とが、二次元的な位置関係と境界を保ちながら層状構造を形成しており、所望の細胞を含む層の厚みを増やすことができるということも本発明の特徴の一つである。
-細胞集団の製造方法-
 本発明の細胞集団の製造方法は、細胞クラスターの製造方法の第1実施形態に従ったWntシグナル活性化培養工程の後、得られた卵黄嚢中胚葉細胞(YSMC)からCD34+血管内皮前駆細胞(endothelial progenitor cell:EPC)に分化させる培養工程(EPC分化工程)をさらに含み、必要に応じてその他の工程をさらに含むこともできる方法である。
 本明細書において、特に製造方法との関係で言及される「細胞集団」は、前述した「細胞クラスター」が形成された後、さらに培養することで、所望の細胞(YSMC、AECなど)から分化した細胞が含まれることとなった細胞の集合体を指す。
 EPCは、CD34陽性細胞として特定することができ、血管内皮細胞(endothelial cell:EC)への分化能を有する細胞である。EPCから分化するECには、例えば、後述する卵黄静脈造血性内皮細胞(vitelline venous hemogenic endothelial cell:VVHEC、CD34陽性かつCD32陽性)の他、微小血管内皮細胞(microvessel endothelial cells: MVEC)、臍帯静脈内皮細胞(umbilical-vein endothelial cells: UVEC)などが包含される。また、EPCから分化するECには、造血能を有する血管内皮細胞を指す、造血性血管内皮細胞(hemogenic endothelial cell;HEC、CD34陽性かつCD73陰性)と、造血能を有さない血管内皮細胞を指す、非造血性血管内皮細胞(non-hemogenic endothelial cell;non-HEC、CD31陽性、CD73陽性およびCD144陽性)の両方が包含される。
 本発明の細胞集団の製造方法における培地としては、前述した本発明の細胞クラスターの製造方法における多能性幹細胞用の培地、または多能性幹細胞等から分化する目的細胞用の培地、あるいはそれらの混合物を用いることができる。EPC用の基礎培地としては、例えば、DMEM/F-12(Gibco)、Stempro-34 SFM (Gibco)、Essential 6培地(Gibco)、Essential 8培地(Gibco)、EGM(Lonza)、BulletKit(Lonza)、EGM-2(Lonza)、BulletKit(Lonza)、EGM-2 MV(Lonza)、VascuLife EnGS Comp Kit(LCT)、Human Endothelial-SFM Basal Growth Medium(Invitrogen)、ヒト微小血管内皮細胞増殖培地(TOYOBO)などが挙げられる。EPC用の添加物としては、例えば、B27 Supplements(GIBCO)、BMP4(骨形成因子4)、GSKβ阻害剤(例、CHIR99021)、VEGF(血管内皮細胞成長因子)、FGF2(Fibroblast Growth Factor(bFGF(basic fibroblast growth factor)ともいう))、Folskolin、SCF(Stem Cell Factor)、TGFβ受容体阻害剤(例、SB431542)、Flt-3L(Fms-related tyrosine kinase 3 ligand)、IL-3(Interleukin 3)、IL-6(Interleukin 6)、TPO(トロンボポイエチン)、hEGF(組換えヒト上皮細胞成長因子)、ヒドロコルチゾン、アスコルビン酸、IGF1、FBS(ウシ胎児血清)、抗生物質(例えば、ゲンタマイシン、アンフォテリシンB)、ヘパリン、L-グルタミン、フェノールレッドおよびBBEからなる群より選ばれる1種以上が挙げられる。
 EPC分化工程は、Wntシグナル活性化培養工程に続く所定の期間(例えば約2日間)、言い換えれば、前述した多能性幹細胞から所定のマイクロパターンを有する細胞クラスターへの分化誘導の開始から起算して2日目から4日目(Day2~Day4)に行うことが適切である。
 YSMCからEPCに分化させるための培養方法、培地組成(基礎培地、分化誘導因子、その他の添加物などの、種類および使用量)、培養条件、その他の培養に関する事項としては、例えば、Ohta, R. et al, J. Vis. Exp. (148), e59823, doi:10.3791/59823 (2019)を参照することができる。例えば、EPC分化工程用の培地には、VEGF、FGF2(bFGF)、SCF、TGFb阻害剤(例、SB431542)などの分化誘導因子を適量、添加することができる。
 本発明の細胞集団の製造方法は、必要に応じてその他の工程をさらに含むことができる。そのような任意工程としては、例えば、EPC分化工程により得られたEPCから他の細胞にさらに分化させる培養工程が挙げられる。
 本発明の一実施形態において、本発明の細胞集団の製造方法は、EPCから、CD34+CD32+卵黄静脈造血性内皮細胞(vitelline venous hemogenic endothelial cell:VVHEC)に分化させる培養工程(VVHEC分化工程)をさらに含むことができる。VVHECは、卵黄嚢中胚葉に由来するHECであり、胎児期初期における卵黄嚢内での造血を担う細胞として知られており、本発明ではYSMCからEPCを経て分化させることができる細胞である。VVHECの細胞マーカーとしては、CD34およびCD32以外に、FN1、ACTA2およびLYVE1、ならびに静脈マーカーであるNR2F2、APLNRおよびPROX1などが知られており、それらの1種または2種以上(好ましくは全て)が陽性であるかどうかにより特定することができる(陽性であればVVHEC、陰性であればVVHEC以外)。
 VVHEC分化工程は、EPC培養工程に続く所定の期間(例えば約2日間)、言い換えれば、前述した多能性幹細胞から所定のマイクロパターンを有する細胞クラスターへの分化誘導の開始から起算して4日目から6日目(Day4~Day6)に行うことが適切である。
 EPCからVVHECに分化させるための培養方法、培地組成(基礎培地、分化誘導因子、その他の添加物などの、種類および使用量)、培養条件、その他の培養に関する事項としては、例えば、Matsybara et al, Biochemical and Biophysical Research Communications, 515(1), 2019を参照することができる。例えば、VVHEC分化工程用の培地には、VEGF、SCF、Flt-3L、IL-3、IL-6、TPOなどの分化誘導因子を適量、添加することができる。
 本発明の細胞集団の製造方法は、VVHEC分化工程により得られたVVHECから他の細胞、例えば単球/マクロファージ(CD14陽性)、赤血球・骨髄球前駆細胞(CD33陽性)などに分化させる培養工程をさらに含むこともできる。VVHECからそれらの細胞に分化させるための培養方法、培地組成(基礎培地、分化誘導因子、その他の添加物などの、種類および使用量)、培養条件、その他の培養に関する事項は公知の方法と同様とすることができる。VVHECから単球/マクロファージ(CD14陽性)、赤血球・骨髄球前駆細胞(CD33陽性)などに分化させる場合は、例えば、Gene I. Uenishi et al, Nature Communications (2018)9:1828を参照することができる。
-オルガノイドまたは立体臓器の製造方法-
 本発明のオルガノイドまたは立体臓器の製造方法は、本発明の細胞クラスターの製造方法により得られた細胞クラスター、または本発明の細胞集団の製造方法により得られた細胞集団の少なくとも一部を三次元培養する工程を含む。
 本明細書において「三次元培養」するとは、細胞外マトリックス等の足場となる成分を含む培地中に包埋した状態で細胞を培養することを指す。三次元培養によるオルガノイドまたは立体臓器の製造方法としては、様々な方法および実施形態が一般的または公知になっている(例えば、前掲特許文献1参照)。本発明では、オルガノイドまたは立体臓器を製造するための原料となる細胞として、本発明による細胞クラスターまたは細胞集団を用いること以外は、従来の一般的または公知の製造方法と同様の方法および実施形態により、オルガノイドまたは立体臓器を製造することができる。
 また、近年では、オルガノイドの一種といえる、初期胚の構造を三次元的に構築したembryoidおよびgastruloidの製造方法も公知である。YSMCやAECのように胚と外胚葉の境界領域に位置する細胞を含む、本発明による細胞クラスターまたは細胞集団を用いることにより、構造をより精緻に再現できるembryoidまたはgastruloidを製造できる可能性がある。
-キット-
 本発明の別の側面により、Wntシグナル調節下で多能性幹細胞を二次元培養することにより、多能性幹細胞から所望の細胞が富化された細胞クラスターを製造するためのキットも提供される。本発明によるキットは、例えば、1以上のWntシグナル活性化剤を含む、卵黄嚢中胚葉細胞(YSMC)が富化された細胞クラスターの製造用キット、または1以上のWntシグナル抑制剤を含む、羊膜外胚葉細胞(AEC)が富化された細胞クラスターの製造用キットである。このようなキットに関係する事項、例えばWntシグナル活性化剤、Wntシグナル抑制剤、上記それぞれのキットを用いる培養方法、キットに含めることができるその他の構成部材等については、本明細書において、細胞クラスターの製造方法、細胞集団の製造方法などとの関係において記載した事項と同様であり、それらの記載事項を参照することができる。
-定義-
 ・多能性幹細胞
 本明細書において「多能性幹細胞(pluripotent stem cell)」とは、生体の種々の異なった形態や機能を持つ組織や細胞に分化でき、三胚葉(内胚葉、中胚葉、外胚葉)のどの系統の細胞にも分化し得る能力を有する幹細胞を指す。本発明において使用可能な多能性幹細胞は、特に限定されないが、例えば、人工多能性幹細胞(iPS細胞と称することもある)、胚性幹細胞(ES細胞と称することもある)、核移植により得られるクローン胚由来の胚性幹細胞、精子幹細胞、胚性生殖細胞などが挙げられる。
 「人工多能性幹細胞」(iPS細胞)とは、哺乳動物体細胞または未分化幹細胞に、特定の因子(核初期化因子)を導入して再プログラミングすることにより得られる細胞を指す。現在、「人工多能性幹細胞」にはさまざまなものがあり、山中らにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c-Mycの4因子を導入することにより、樹立されたiPSC(Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676)のほか、同様の4因子をヒト線維芽細胞に導入して樹立されたヒト細胞由来のiPSC(Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.)、上記4因子導入後、Nanogの発現を指標として選別し、樹立したNanog-iPS細胞(Okita, K., Ichisaka, T., and Yamanaka, S. (2007). Nature 448, 313-317.)、c-Mycを含まない方法で作製されたiPS細胞(Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101 - 106)、ウイルスフリー法で6因子を導入して樹立されたiPS細胞(Okita K et al. Nat. Methods 2011 May;8(5):409-12, Okita K et al. Stem Cells. 31(3):458-66.)も用いることができる。また、Thomsonらにより作製されたOCT3/4・SOX2・NANOG・LIN28の4因子を導入して樹立された人工多能性幹細胞(Yu J., Thomson JA. et al., Science (2007) 318: 1917-1920.)、Daleyらにより作製された人工多能性幹細胞(Park IH, Daley GQ. et al., Nature (2007) 451: 141-146)、桜田らにより作製された人工多能性幹細胞(特開2008-307007号)等も用いることができる。このほか、公開されている全ての非特許文献(例えば、Shi Y., Ding S., et al., Cell Stem Cell, (2008) Vol3, Issue 5,568-574;、Kim JB., Scholer HR., et al., Nature, (2008) 454, 646-650;Huangfu D., Melton, DA., et al., Nature Biotechnology, (2008) 26, No 7, 795-797)または特許文献(例えば、特開2008-307007号、特開2008-283972号、US2008/2336610、US2009/047263、WO2007/069666、WO2008/118220、WO2008/124133、WO2008/151058、WO2009/006930、WO2009/006997、WO2009/007852)に記載されている、当該分野で公知の人工多能性幹細胞のいずれも用いることができる。
 人工多能性幹細胞(iPS細胞)としては、NIH、理研(理化学研究所)、京都大学等が樹立した各種iPS細胞株が利用可能である。例えば、ヒトiPS細胞株であれば、理研のHiPS-RIKEN-1A株、HiPS-RIKEN-2A株、HiPS-RIKEN-12A株、Nips-B2株、京都大学の201B7株、253G1株、253G4株、409B2株、454E2株、606A1株、610B1株、625A4株、648A1株、1201C1株、1205D1株、1210B2株、1231A3株、1383D2株、1383D6株等が挙げられる。あるいは、京都大学やCellular Dynamics International等から提供される臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。
 「胚性幹細胞」(ES細胞)としては、マウスESCであれば、inGenious targeting laboratory社、理研(理化学研究所)等が樹立した各種マウスES細胞株が利用可能であり、ヒトES細胞であれば、NIH、理研、京都大学、Cellartis社が樹立した各種ヒトES細胞株が利用可能である。たとえば、ヒトES細胞株としては、NIHのCHB-1~CHB-12株、RUES1株、RUES2株、HUES1~HUES28株等、WisCell ResearchのH1株、H9株、理研のKhES-1株、KhES-2株、KhES-3株、KhES-4株、KhES-5株、SSES1株、SSES2株、SSES3株等を利用することができる。あるいは、臨床グレードの細胞株並びにそれらの細胞株を用いて作製された研究用および臨床用の細胞株等を用いてもよい。
 ・細胞マーカー
 本明細書において「細胞マーカー」は、所定の細胞型において特異的に発現する(陽性マーカー)または発現しない(陰性マーカー)遺伝子、具体的にはゲノム中の当該遺伝子の転写によるmRNAとして、またはそのmRNAの翻訳によるタンパク質として、生成する(陽性マーカー)または生成しない(陰性マーカー)物質を指す。細胞マーカーは、好ましくは蛍光物質により標識(染色)可能であり、当該細胞マーカーを発現している細胞の検出、濃縮、単離等を容易に行える、細胞表面に発現するタンパク質(細胞表面マーカー)である。
 マーカー遺伝子が「陽性」であるとは、その遺伝子のmRNAまたはタンパク質の発現量が、当業者にとって一般的または公知の手法により、検出可能である、または所定の閾値(バックグラウンドレベル等)よりも高いことを意味する。マーカー遺伝子が「陰性」とは、その遺伝子のmRNAまたはタンパク質の発現量が、当業者にとって一般的または公知の手法により、検出不可能である、または所定の閾値(バックグラウンドレベル等)よりも低いことを意味する。
 細胞マーカーが陽性であるか陰性であるかは、当業者にとって一般的または公知の手法により、定性的または定量的な結果をもって判定することができる。タンパク質としての細胞マーカーは、当該タンパク質に特異的な抗体を用いた免疫学的アッセイ、例えば、ELISA、免疫染色、フローサイトメトリーなどを利用して、検出するまたは発現量を測定することができる。mRNAとしての細胞マーカーは、当該mRNAに特異的な核酸を用いたアッセイ、例えば、RT-PCR(定量的PCRを含む)、マイクロアレイ、バイオチップなどを利用して、検出するまたは発現量を測定することができる。
 ・オルガノイド
 本明細書において「オルガノイド」は、複数種の細胞を組み合わせて人為的に創出される、各種の臓器や組織などに類似する三次元構造体を指す。オルガノイドには、臓器オルガノイド、癌オルガノイドなども包含され、広義には、初期胚の構造を三次元的に構築したembryoid(例、Science 07 Jun 2019:Vol. 364, Issue 6444, pp. 948-951; DOI: 10.1126/science.aax0164)やgastruloid(例、Nature volume 582, pages410-415(2020))も包含される。「臓器オルガノイド」には、各種の臓器または組織に類似した機能や構造を有する、オルガノイドとして比較的成熟した段階にあるもののみならず、そのような複雑化の初期段階にある「器官芽」、「原基」などと呼ばれている構造体も包含される。臓器オルガノイドには、例えば肝臓、膵臓、腎臓、心臓、肺臓、脾臓、食道、胃、甲状腺、副甲状腺、胸腺、生殖腺、脳、脊髄など、様々な種類の臓器オルガノイドが公知になっている(例、https://www.nejm.org/doi/pdf/10.1056/NEJMra1806175、https://www.nature.com/articles/s41568-018-0007-6、http://www.amsbio.com/brochures/organoid-culture-handbook.pdf参照)。
 オルガノイドの立体構造は、肉眼または顕微鏡観察により確認することができる。そのような立体構造の確認に加えて、臓器含まれる細胞に応じたマーカー、特に臓器の実質細胞のマーカーが陽性であるかによって、さらに好ましくは培養上清中にそれらのマーカーのタンパク質が分泌されているかによって、判別することができる。
 ・立体臓器
 本明細書において「立体臓器」は、成熟臓器オルガノイドともいえる、臓器オルガノイドよりも一層成熟した細胞集団または構造を含む構造体を指す。
 臓器オルガノイドから立体臓器が得られたかどうかは、例えば、構造体中の細胞の密度(所定の基準を超えるか等)、構造体の立体的な形状(一定水準より立体的であるか等)、機能や形質(代謝機能等の所定の機能または形質を獲得しているか等)、細胞マーカー(細胞マーカーの遺伝子またはタンパク質の発現が陽性であるか、陽性細胞の密度が所定の基準を超えるか、培養上清中のマーカータンパク質分泌量が所定の基準を超えるか等)などの一つまたは複数の観点から判定することができる。上記の細胞の密度、立体的な形状、機能や形質、細胞マ-カーなどは、臓器オルガノイドおよび立体臓器に応じて、適宜設定することができるが、例えば、生体内の臓器と同程度の、またはそれに近似した水準を達成しているかどうかを、上記のような判定の基達とすることができる。
 本発明における多能性幹細胞のコロニー、細胞クラスター、細胞集団、オルガノイド、立体臓器等に含まれる細胞は、ヒトに由来するものであってもよいし、ヒト以外の動物、例えばマウス、ラット、イヌ、ブタ、サルなどの哺乳動物に由来するものであってもよい。例えば、臓器オルガノイドまたは立体臓器の用途が、ヒトへの移植や、ヒトの医薬の開発(従来の動物実験やヒト細胞試験等では発見されにくい薬物中毒を引き起こす薬物の検出等)などである場合は、細胞はヒトに由来するものが好ましい。
 本明細書において、細胞、化合物、その他の物質について、それらが単数形で記載されている事項と複数形で記載されている事項は、別途明記されていない限り、相互に変換して解釈可能であるものとする。
 「~を含む(comprise、include、contain等)」とは、その語句に続く要素の包含を示すがこれに限定されないことを意味する。したがって、その語句に続く要素の包含は示唆するが、他の任意の要素の除外は示唆しない。一方、「~からなる(consisting of等)」とは、その語句に続くあらゆる要素を包含し、かつ、これに限定されることを意味する。したがって、「~からなる」という語句は、列挙された要素が要求されるか又は必須であり、他の要素は実質的に存在しないことを示す。「~から本質的になる(consisting essentially of等)」とは、その語句に続く任意の要素を包含し、かつ、その要素について本開示で特定された活性又は作用に影響しない他の要素に限定されることを意味する。したがって、「~から本質的になる」という語句は、列挙された要素が要求されるか又は必須であるが、他の要素は任意選択であり、それらが列挙された要素の活性又は作用に影響を及ぼすかどうかに応じて、存在させる場合もあり、存在させない場合もあることを示す。
 以下の実施例において、「Day」は、ヒトiPS細胞コロニーの分化誘導開始からの日数を表す。「Day 0」が、Wntシグナル調節下での培養開始時である。
[実施例1]Wntシグナル調節下における卵黄嚢中胚葉細胞および羊膜外胚葉細胞の作製
 [1]Wntシグナル活性化培養工程によるヒト卵黄嚢中胚葉細胞の作製(本発明の第1実施形態)
 ヒトiPS細胞(625A4;京都大学iPS研究所)を、AK02N(味の素)(10cm dish; 8ml、24-well plate; 0.5ml)中、5%CO、37℃で6~7日間培養することで、直径500-700μmのiPS細胞コロニーを形成させた。得られたコロニーを、Essential 8培地(Gibco)(10cm dish; 8ml、24-well plate; 0.5ml)にBMP4(80 ng/ml)、VEGF(80 ng/ml)およびCHIR99021(2μM)を添加した培地中、5%CO、37℃で2日間培養した(Day 0-2)。
 [2]Wntシグナル阻害培養工程によるヒト羊膜外胚葉細胞の作製(本発明の第2実施形態)
 ヒトiPS細胞(625A4;京都大学iPS研究所)を、AK02N(味の素)(10cm dish; 8ml、24-well plate; 0.5ml)中、5%CO、37℃で6~7日間培養することで、直径500-700μmのiPS細胞コロニーを形成させた。得られたコロニーを、Essential 8培地(Gibco)(10cm dish; 8ml、24-well plate; 0.5ml)にBMP4(80 ng/ml)、VEGF(80 ng/ml)およびIWP-2(2μM)を添加した培地中、5%CO、37℃で2日間培養した(Day 0-2)。
 対照として、[1]および[2]と同様にしてiPS細胞コロニーを形成させた後、得られたコロニーを、Essential 8培地(Gibco)(10cm dish; 8ml、24-well plate; 0.5ml)にBMP4(80 ng/ml)およびVEGF(80 ng/ml)を添加した培地中、5%CO、37℃で2日間培養した(Day 0-2)。
 [3]免疫細胞染色による細胞クラスターの分化マーカー解析
 [1]もしくは[2]のDay 0-2の工程で分化誘導を実施後、培地を除去してPBS(-)(GIBCO)で1回洗浄後、細胞に4%パラホルムアルデヒドを500μl/24 wellの容量で添加して15分間室温で放置した。その後PBS(-)で3回洗浄し、4℃で一晩保存した。その後細胞にPROTEIN BLOCK SERUM-FREE blocking溶液[DAKO, X909]を500μl/24wellの容量で添加して60分間室温で放置してブロッキングをおこなった。その後1% blocking溶液 in PBS(-)にターゲットとなる抗原に対する1次抗体(1/100 Anti-GATA6 (Abcam, ab22600), 1/50 Anti-Brachyury T (R&D, AF2085), 1/400 Anti-Sox2 (CST, 3579P2), 1/100 Anti-CDX2 (R&D, MAB3665), 1/50 Anti-AP-2a (Santa Cruz, sc-12726))をいずれか加えた、1次抗体溶液を500μl/24wellの容量で添加し、室温60分または4℃で一晩静置した。次いでPBS(-)で3回洗浄後、1% blocking溶液 in PBS(-)に1次抗体に対応する2次抗体(1/1000 Alexa Flour 555,1/1000 Alexa Flour 647および 1/1000 DAPI-HCB Hycult Biotech, HM2167)を加えた、2次抗体溶液を500μl/24wellの容量で添加し、室温で60分インキュベートした。その後PBS(-)で3回洗浄後、PBS(-)500μl/24wellの容量で添加、保持し、LSM880共焦点レーザー顕微鏡(Zeiss)を用いて蛍光画像の取得を実施した。取得した画像の処理および定量解析は画像解析ソフト「Fiji」を用いて実施した。
 [1]のDay 2の細胞クラスターについて、細胞マーカーBrachyury、GATA6およびFOXF1に関する解析結果を図1に示す。本発明の第1実施形態に従い、培地にWntシグナル活性化剤であるCHIR99021を添加した場合(+CHIR)は、添加しなかった場合(-)に比べて、Brachyury陰性、GATA6陽性かつFOXF1陽性のYSMCが富化された、言い換えれば外縁部のYSMC領域が増加した、細胞クラスターが形成されることが確認された(図1B、C)。なお、光学顕微鏡による観察像により、本発明の第1実施形態により得られる細胞クラスターは、従来の方法により得られる細胞クラスターと形態学的にも相違することが確認された(図1A)。また、これらの図に示されているように、本発明の方法により得られた細胞クラスターは、所定の細胞が二次元的に明確な層状構造を形成していることが分かる。
 [1]および[2]それぞれのDay 2の細胞クラスターについて、細胞マーカーGATA6、SOX2、CDX2およびTFAP2Aに関する解析結果を図2に示す。本発明の第2実施形態に従い、培地にWntシグナル抑制剤であるIWP-2を添加した場合(+IWP-2)は、添加しなかった場合(-)に比べて、CDX2陽性(中段)かつTFAP2A陽性(下段)のAECが富化された、言い換えれば外縁部にAEC領域を備えた、細胞クラスターが形成されることが確認された。培地にCHIR99021を添加した場合(+CHIR)と異なり、IWP-2を添加した場合(+IWP-2)は、外縁部におけるGATA6陽性細胞は少数であった(上段)。+CHIRの条件下では、CDX2陰性の領域(中段)はGATA6陽性(上段)であること、+IWP-2の条件下では、CDX2陽性(中段)の領域でGATA6陰性(上段)であることも確認された。
 [4]ヒト卵黄静脈造血性内皮細胞の作製
 [1]によるヒト卵黄嚢中胚葉細胞の作製に引き続き、Essential 6培地(Gibco)(10cm dish; 8ml)にVEGF(80ng/ml)、FGF2(25ng/ml)、SCF(50ng/ml)およびSB431542(2 μM)を添加した培地に交換し、5%CO、37℃でさらに2日間培養することで血球-血管内皮共通前駆細胞を誘導した。その後、Stempro-34 SFM(Gibco)(10cm dish; 8ml)にVEGF(80ng/ml)、SCF(50ng/ml)、Flt-3L(50ng/ml)、IL-3(50ng/ml)、IL-6(50ng/ml)およびTPO(5ng/ml)を添加した培地に交換し、5%CO、37℃で2日間培養した後、上記組成の培地からVEGFを除いた培地に交換して、5%CO、37℃で2日間培養することで、CD34陽性かつCD32陽性の卵黄静脈造血性内皮細胞を誘導した。
 [5]免疫細胞染色による細胞集団の分化マーカー解析
 [4]のDay 4-6の工程で分化誘導を実施後、1次抗体として1/50 Anti-CD34(Abcam, ab81289)を用いるよう変更したこと以外は[3]と同様の手順により、免疫細胞染色を行った。[4]のDay 6の細胞集団についての、細胞マーカーBrachyuryおよびCD34に関する解析結果を図3(A)に示す。本発明の第1実施形態に従って得られた細胞クラスター(+CHIR)の外縁部のYSM領域からは、豊富なCD34陽性の血管内皮前駆細胞が出現することが確認された。
 [6]フローサイトメトリーを用いた分化マーカー解析
 [4]のDay 6-8の工程で卵黄静脈造血性内皮細胞を分化誘導後、培地を除去してPBS(-)(GIBCO)で2回洗浄後、TrypLE Express(Gibco)を3mL/dishの容量で添加して15分間37℃で放置した。その後P1000 マイクロピペットによるピペッティングにより、細胞を乖離しながら15mLチューブへ回収し、Stempro-34 SFM(Gibco)培地を7mL添加した後、1000 rpm、室温、5分間遠心分離した。上清を除去後、1mM EDTA、4% FBS を含むPBS(-)バッファを用いて1度洗浄後、1次抗体溶液(1/50 PE-CD32 (BioLegend, Cat: 303205), BV421-CD34 (BD Biosciences, Cat: 562577) in BD Horizon BrilliantTM Stain Buffer)50μlにて細胞を懸濁し、氷上で30分間静置した。次いで1mM EDTA、4% FBS を含むPBS(-)バッファで2回洗浄後、1/1000 DAPI、1mM EDTA、4% FBS を含むPBS(-)バッファにて細胞を懸濁し、40μmセルストレーナーキャップ付きチューブに移した。得られた抗体染色細胞懸濁液を用いて、BD LSRFortessa フローサイトメトリーによって分化マーカーの解析を実施した。フローサイトメトリーから得られたデータの解析は、FlowJoを用いて実施した。
 [4]のDay 8の細胞集団についての、フローサイトメトリーの結果を図3(B)に示す。本発明の第1実施形態に従って得られた細胞クラスター(+CHIR)の外縁部のYSM領域からは、対照(-)と比較して、より多くのCD34陽性かつCD32陽性の卵黄静脈造血性内皮細胞が産生されること、言い換えればYSM領域中のCD34陽性の血管内皮前駆細胞は、さらにCD32陽性である卵黄静脈造血性内皮細への分化能を有することが確認された。

Claims (15)

  1.  多能性幹細胞から所望の細胞が富化された細胞クラスターを製造する方法であり、Wntシグナル調節下で多能性幹細胞を二次元培養する工程を含む、方法。
  2.  前記所望の細胞が、卵黄嚢中胚葉細胞であり、前記Wntシグナル調節下で多能性幹細胞を二次元培養する工程が、Wntシグナルを活性化する条件下で多能性幹細胞を二次元培養する、Wntシグナル活性化培養工程である、請求項1に記載の方法。
  3.  前記Wntシグナル活性化培養工程が、Wntシグナル活性化剤を添加した培地を用いて多能性幹細胞を二次元培養する工程である、請求項2に記載の方法。
  4.  前記Wntシグナル活性化剤がGSK3阻害剤である、請求項3に記載の方法。
  5.  前記Wntシグナル活性化培養工程が、前記多能性幹細胞の培養開始時に行われる、請求項2に記載の方法。
  6.  前記多能性幹細胞が、人工多能性幹細胞である、請求項1に記載の方法。
  7.  請求項2に記載のWntシグナル活性化培養工程の後、得られた前記卵黄嚢中胚葉細胞からCD34+血管内皮前駆細胞に分化させる培養工程をさらに含む、細胞集団の製造方法。
  8.  前記CD34+血管内皮前駆細胞から、CD34+CD32+卵黄静脈造血性内皮細胞に分化させる培養工程をさらに含む、請求項7に記載の方法。
  9.  請求項1に記載の方法により得られた細胞クラスター。
  10.  請求項7に記載の方法により得られた細胞集団。
  11.  請求項9に記載の細胞クラスターまたは請求項10に記載の細胞集団の少なくとも一部を三次元培養する工程を含む、オルガノイドまたは立体臓器の製造方法。
  12.  請求項11に記載の製造方法により得られた、オルガノイドまたは立体臓器。
  13.  前記所望の細胞が、羊膜外胚葉細胞であり、前記Wntシグナル調節下で多能性幹細胞を二次元培養する工程が、Wntシグナルが抑制された条件下で多能性幹細胞を二次元培養する、Wntシグナル抑制培養工程である、請求項1に記載の方法。
  14.  前記Wntシグナル抑制培養工程が、Wntシグナル阻害剤を添加した培地を用いて行われる、請求項13に記載の方法。
  15.  前記Wntシグナル阻害剤がIWP-2である、請求項14に記載の方法。
PCT/JP2022/009925 2021-03-09 2022-03-08 細胞クラスターの製造方法 WO2022191171A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22767125.2A EP4306633A1 (en) 2021-03-09 2022-03-08 Cell cluster production method
JP2023505567A JPWO2022191171A1 (ja) 2021-03-09 2022-03-08
CN202280019926.8A CN116964193A (zh) 2021-03-09 2022-03-08 细胞簇的制造方法
US18/281,442 US20240158740A1 (en) 2021-03-09 2022-03-08 Cell cluster production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021037339 2021-03-09
JP2021-037339 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022191171A1 true WO2022191171A1 (ja) 2022-09-15

Family

ID=83228050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009925 WO2022191171A1 (ja) 2021-03-09 2022-03-08 細胞クラスターの製造方法

Country Status (5)

Country Link
US (1) US20240158740A1 (ja)
EP (1) EP4306633A1 (ja)
JP (1) JPWO2022191171A1 (ja)
CN (1) CN116964193A (ja)
WO (1) WO2022191171A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007130474A2 (en) * 2006-05-02 2007-11-15 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
WO2020175594A1 (ja) * 2019-02-28 2020-09-03 公立大学法人横浜市立大学 血液凝固および/または補体異常疾患の治療用組成物
WO2020203713A1 (ja) 2019-03-29 2020-10-08 公立大学法人横浜市立大学 マトリックス組成物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090047263A1 (en) 2005-12-13 2009-02-19 Kyoto University Nuclear reprogramming factor and induced pluripotent stem cells
JP2008283972A (ja) 2005-12-13 2008-11-27 Kyoto Univ 誘導多能性幹細胞の製造方法
WO2007069666A1 (ja) 2005-12-13 2007-06-21 Kyoto University 核初期化因子
WO2007130474A2 (en) * 2006-05-02 2007-11-15 Wisconsin Alumni Research Foundation Method of differentiating stem cells into cells of the endoderm and pancreatic lineage
WO2008118220A2 (en) 2006-11-28 2008-10-02 Veritainer Corporation Radiation detection unit for mounting a radiation sensor to a container crane
WO2008124133A1 (en) 2007-04-07 2008-10-16 Whitehead Institute For Biomedical Research Reprogramming of somatic cells
WO2008151058A2 (en) 2007-05-30 2008-12-11 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
JP2008307007A (ja) 2007-06-15 2008-12-25 Bayer Schering Pharma Ag 出生後のヒト組織由来未分化幹細胞から誘導したヒト多能性幹細胞
WO2009006930A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells induced from undifferentiated stem cells derived from a human postnatal tissue
WO2009007852A2 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc Multipotent/pluripotent cells and methods
WO2009006997A1 (en) 2007-06-15 2009-01-15 Izumi Bio, Inc. Human pluripotent stem cells and their medical use
WO2020175594A1 (ja) * 2019-02-28 2020-09-03 公立大学法人横浜市立大学 血液凝固および/または補体異常疾患の治療用組成物
WO2020203713A1 (ja) 2019-03-29 2020-10-08 公立大学法人横浜市立大学 マトリックス組成物

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL., NAT METHODS, vol. 8, no. 5, 2011, pages 424 - 429
GENE I. UENISHI ET AL., NATURE COMMUNICATIONS, vol. 9, 2018, pages 1828
HUANGFU D.MELTON, DA. ET AL., NATURE BIOTECHNOLOGY, vol. 26, no. 7, 2008, pages 795 - 797
KIM JB.SCHOLER HR. ET AL., NATURE, vol. 454, 2008, pages 646 - 650
MARTYN ET AL., DEVELOPMENT, vol. 146, 2019, pages dev17291
MATSYBARA ET AL., BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 515, no. 1, 2019
MIYAZAKI, T ET AL., NAT COMMUN, vol. 3, 2012, pages 1236
MORGANI ET AL., ELIFE, vol. 7, 2018, pages e32839
NAKAGAWA M ET AL., SCIENTIFIC REPORTS, vol. 4, 2014, pages 3594
NATURE, vol. 582, 2020, pages 410 - 415
OHTA, R ET AL., J. VIS. EXP., no. 148, 2019, pages e59823
OKITA ET AL., STEM CELLS, vol. 31, no. 3, 2013, pages 458 - 66
OKITA K ET AL., NAT. METHODS, vol. 8, no. 5, May 2011 (2011-05-01), pages 409 - 12
OKITA K ET AL., STEM CELLS, vol. 31, no. 3, pages 458 - 66
OKITA, K.ICHISAKA, T.YAMANAKA, S., NATURE, vol. 451, 2007, pages 141 - 146
RODIN S ET AL., NAT BIOTECHNOL., vol. 28, no. 6, 2010, pages 611 - 5
SCIENCE, vol. 364, 7 June 2019 (2019-06-07), pages 948 - 951
SHI Y.DING S. ET AL., CELL STEM CELL, vol. 3, 2008, pages 568 - 574
SUN N ET AL., PROC NATL ACAD SCI USA., vol. 106, 2009, pages 15720 - 15725
TAKAHASHI KYAMANAKA S. ET AL., CELL, vol. 131, 2007, pages 861 - 872
TAKAHASHI KYAMANAKA S., CELL, vol. 126, 2006, pages 663 - 676
WANG KAI, LIN RUEI-ZENG, HONG XUECHONG, NG ALEX H, LEE CHIN NIEN, NEUMEYER JOSEPH, WANG GANG, WANG XI, MA MINGLIN, PU WILLIAM T, C: "Robust differentiation of human pluripotent stem cells into endothelial cells via temporal modulation of ETV2 with modified mRNA", SCIENCE ADVANCES, vol. 6, no. 30, 24 July 2020 (2020-07-24), XP055965280 *
WARMFLASH ET AL., NATURE METHOD, vol. 11, no. 8, August 2014 (2014-08-01)
YU J.THOMSON JA ET AL., SCIENCE, vol. 318, 2007, pages 1917 - 1920
ZHENG YI; XUE XUFENG; SHAO YUE; WANG SICONG; ESFAHANI SAJEDEH NASR; LI ZIDA; MUNCIE JONATHON M.; LAKINS JOHNATHON N.; WEAVER VALER: "Controlled modelling of human epiblast and amnion development using stem cells", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 573, no. 7774, 1 September 2019 (2019-09-01), London, pages 421 - 425, XP036888018, ISSN: 0028-0836, DOI: 10.1038/s41586-019-1535-2 *

Also Published As

Publication number Publication date
US20240158740A1 (en) 2024-05-16
JPWO2022191171A1 (ja) 2022-09-15
EP4306633A1 (en) 2024-01-17
CN116964193A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP6678107B2 (ja) 膵前駆細胞の増殖方法
CA2717962C (en) Human cardiovascular progenitor cells
US10711246B2 (en) Methods and compositions for generating epicardium cells
US8507275B2 (en) Method of inducing differentiation of embryonic stem cells into hemangioblast
CN112041428A (zh) 用于在悬浮培养物中分化人多能干细胞系的方法
JP7176764B2 (ja) ナイーブ型多能性幹細胞からの原始内胚葉誘導方法
EP3348632B1 (en) Method for producing kidney progenitor cells
JP7330466B2 (ja) 細胞の培養方法
JP7541700B2 (ja) 腎間質細胞の製造方法
WO2020100481A1 (ja) 脳オルガノイドの製造方法
WO2022191171A1 (ja) 細胞クラスターの製造方法
WO2022244841A1 (ja) 脳毛細血管内皮様細胞の製造方法およびその利用
JP7533896B2 (ja) スクリーニング方法および毒性評価法
WO2022230919A1 (ja) 細胞の製造方法
JP7072756B2 (ja) 多能性幹細胞から中胚葉前駆細胞および血液血管前駆細胞への分化誘導法
JPWO2020130068A1 (ja) 胚型赤芽球を含む細胞集団及びその製造方法、細胞培養組成物並びに化合物試験法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505567

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280019926.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18281442

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022767125

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022767125

Country of ref document: EP

Effective date: 20231009