WO2022190938A1 - スパイラル型膜エレメント及び膜分離システム - Google Patents
スパイラル型膜エレメント及び膜分離システム Download PDFInfo
- Publication number
- WO2022190938A1 WO2022190938A1 PCT/JP2022/008373 JP2022008373W WO2022190938A1 WO 2022190938 A1 WO2022190938 A1 WO 2022190938A1 JP 2022008373 W JP2022008373 W JP 2022008373W WO 2022190938 A1 WO2022190938 A1 WO 2022190938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spacer
- membrane element
- separation
- membrane
- separation membrane
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 352
- 238000000926 separation method Methods 0.000 title claims abstract description 283
- 125000006850 spacer group Chemical group 0.000 claims abstract description 208
- 238000012360 testing method Methods 0.000 claims abstract description 27
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 58
- 239000012466 permeate Substances 0.000 claims description 52
- 239000002346 layers by function Substances 0.000 claims description 51
- -1 polyethylene terephthalate Polymers 0.000 claims description 48
- 239000007788 liquid Substances 0.000 claims description 47
- 239000007789 gas Substances 0.000 claims description 46
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- 239000001569 carbon dioxide Substances 0.000 claims description 29
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 29
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 22
- 230000006837 decompression Effects 0.000 claims description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 15
- 229920005989 resin Polymers 0.000 claims description 15
- 239000011347 resin Substances 0.000 claims description 15
- 229920002050 silicone resin Polymers 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 9
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- 229920002614 Polyether block amide Polymers 0.000 claims description 5
- 238000010030 laminating Methods 0.000 claims description 4
- 239000012530 fluid Substances 0.000 abstract description 125
- 230000004907 flux Effects 0.000 abstract description 19
- 230000009467 reduction Effects 0.000 abstract 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 40
- 238000000576 coating method Methods 0.000 description 39
- 239000011248 coating agent Substances 0.000 description 38
- 238000000034 method Methods 0.000 description 38
- 239000010410 layer Substances 0.000 description 37
- 239000000463 material Substances 0.000 description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 239000000945 filler Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 16
- 208000028659 discharge Diseases 0.000 description 15
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 10
- 239000002608 ionic liquid Substances 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 9
- 239000012855 volatile organic compound Substances 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 229910021536 Zeolite Inorganic materials 0.000 description 7
- 230000002378 acidificating effect Effects 0.000 description 7
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000011241 protective layer Substances 0.000 description 7
- 239000010457 zeolite Substances 0.000 description 7
- 125000000217 alkyl group Chemical group 0.000 description 6
- 125000000753 cycloalkyl group Chemical group 0.000 description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 125000001033 ether group Chemical group 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000004744 fabric Substances 0.000 description 4
- 239000004745 nonwoven fabric Substances 0.000 description 4
- 238000005373 pervaporation Methods 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920005749 polyurethane resin Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 125000004093 cyano group Chemical group *C#N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 238000007756 gravure coating Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 2
- IQQRAVYLUAZUGX-UHFFFAOYSA-N 1-butyl-3-methylimidazolium Chemical compound CCCCN1C=C[N+](C)=C1 IQQRAVYLUAZUGX-UHFFFAOYSA-N 0.000 description 2
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229920001780 ECTFE Polymers 0.000 description 2
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- ANFWGAAJBJPAHX-UHFFFAOYSA-N bis(fluorosulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium Chemical compound CC[N+]=1C=CN(C)C=1.FS(=O)(=O)[N-]S(F)(=O)=O ANFWGAAJBJPAHX-UHFFFAOYSA-N 0.000 description 2
- UCCKRVYTJPMHRO-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butyl-2,3-dimethylimidazol-3-ium Chemical compound CCCC[N+]=1C=CN(C)C=1C.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F UCCKRVYTJPMHRO-UHFFFAOYSA-N 0.000 description 2
- INDFXCHYORWHLQ-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butyl-3-methylimidazol-3-ium Chemical compound CCCCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F INDFXCHYORWHLQ-UHFFFAOYSA-N 0.000 description 2
- GIIZYNGNGTZORC-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;2-(3-methylimidazol-3-ium-1-yl)ethanol Chemical compound CN1C=C[N+](CCO)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F GIIZYNGNGTZORC-UHFFFAOYSA-N 0.000 description 2
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- MKHFCTXNDRMIDR-UHFFFAOYSA-N cyanoiminomethylideneazanide;1-ethyl-3-methylimidazol-3-ium Chemical compound [N-]=C=NC#N.CCN1C=C[N+](C)=C1 MKHFCTXNDRMIDR-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 2
- 239000013500 performance material Substances 0.000 description 2
- NMHMNPHRMNGLLB-UHFFFAOYSA-N phloretic acid Chemical group OC(=O)CCC1=CC=C(O)C=C1 NMHMNPHRMNGLLB-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920000306 polymethylpentene Polymers 0.000 description 2
- 239000011116 polymethylpentene Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- YXMISKNUHHOXFT-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) prop-2-enoate Chemical compound C=CC(=O)ON1C(=O)CCC1=O YXMISKNUHHOXFT-UHFFFAOYSA-N 0.000 description 1
- HFBHOAHFRNLZGN-LURJTMIESA-N (2s)-2-formamido-4-methylpentanoic acid Chemical compound CC(C)C[C@@H](C(O)=O)NC=O HFBHOAHFRNLZGN-LURJTMIESA-N 0.000 description 1
- ISHFYECQSXFODS-UHFFFAOYSA-M 1,2-dimethyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1C ISHFYECQSXFODS-UHFFFAOYSA-M 0.000 description 1
- OTOSIXGMLYKKOW-UHFFFAOYSA-M 1,3-bis(2,4,6-trimethylphenyl)imidazol-1-ium;chloride Chemical compound [Cl-].CC1=CC(C)=CC(C)=C1N1C=[N+](C=2C(=CC(C)=CC=2C)C)C=C1 OTOSIXGMLYKKOW-UHFFFAOYSA-M 0.000 description 1
- AVJBQMXODCVJCJ-UHFFFAOYSA-M 1,3-bis[2,6-di(propan-2-yl)phenyl]imidazol-1-ium;chloride Chemical compound [Cl-].CC(C)C1=CC=CC(C(C)C)=C1N1C=[N+](C=2C(=CC=CC=2C(C)C)C(C)C)C=C1 AVJBQMXODCVJCJ-UHFFFAOYSA-M 0.000 description 1
- UPJKDKOHHMKJAY-UHFFFAOYSA-M 1,3-dicyclohexylimidazol-1-ium;chloride Chemical compound [Cl-].C1CCCCC1N1C=[N+](C2CCCCC2)C=C1 UPJKDKOHHMKJAY-UHFFFAOYSA-M 0.000 description 1
- KYCQOKLOSUBEJK-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;bromide Chemical compound [Br-].CCCCN1C=C[N+](C)=C1 KYCQOKLOSUBEJK-UHFFFAOYSA-M 0.000 description 1
- FHDQNOXQSTVAIC-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;chloride Chemical compound [Cl-].CCCCN1C=C[N+](C)=C1 FHDQNOXQSTVAIC-UHFFFAOYSA-M 0.000 description 1
- FRZPYEHDSAQGAS-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.CCCC[N+]=1C=CN(C)C=1 FRZPYEHDSAQGAS-UHFFFAOYSA-M 0.000 description 1
- XREPTGNZZKNFQZ-UHFFFAOYSA-M 1-butyl-3-methylimidazolium iodide Chemical compound [I-].CCCCN1C=C[N+](C)=C1 XREPTGNZZKNFQZ-UHFFFAOYSA-M 0.000 description 1
- NKRASMXHSQKLHA-UHFFFAOYSA-M 1-hexyl-3-methylimidazolium chloride Chemical compound [Cl-].CCCCCCN1C=C[N+](C)=C1 NKRASMXHSQKLHA-UHFFFAOYSA-M 0.000 description 1
- URVSXZLUUCVGQM-UHFFFAOYSA-M 1-methyl-3-octylimidazol-1-ium;bromide Chemical compound [Br-].CCCCCCCCN1C=C[N+](C)=C1 URVSXZLUUCVGQM-UHFFFAOYSA-M 0.000 description 1
- IVCMUVGRRDWTDK-UHFFFAOYSA-M 1-methyl-3-propylimidazol-1-ium;iodide Chemical compound [I-].CCCN1C=C[N+](C)=C1 IVCMUVGRRDWTDK-UHFFFAOYSA-M 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- WXMVWUBWIHZLMQ-UHFFFAOYSA-N 3-methyl-1-octylimidazolium Chemical compound CCCCCCCCN1C=C[N+](C)=C1 WXMVWUBWIHZLMQ-UHFFFAOYSA-N 0.000 description 1
- OXFBEEDAZHXDHB-UHFFFAOYSA-M 3-methyl-1-octylimidazolium chloride Chemical compound [Cl-].CCCCCCCCN1C=C[N+](C)=C1 OXFBEEDAZHXDHB-UHFFFAOYSA-M 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- TYOVSFHFYHSADG-UHFFFAOYSA-N 4,8-dichloro-2-methylquinoline Chemical compound C1=CC=C(Cl)C2=NC(C)=CC(Cl)=C21 TYOVSFHFYHSADG-UHFFFAOYSA-N 0.000 description 1
- UQRONKZLYKUEMO-UHFFFAOYSA-N 4-methyl-1-(2,4,6-trimethylphenyl)pent-4-en-2-one Chemical group CC(=C)CC(=O)Cc1c(C)cc(C)cc1C UQRONKZLYKUEMO-UHFFFAOYSA-N 0.000 description 1
- YITFXJWLFMQQRC-UHFFFAOYSA-M 4-methylbenzenesulfonate;1-methyl-3-(6-methylsulfinylhexyl)imidazol-1-ium Chemical compound CC1=CC=C(S([O-])(=O)=O)C=C1.C[N+]=1C=CN(CCCCCCS(C)=O)C=1 YITFXJWLFMQQRC-UHFFFAOYSA-M 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229920011033 Pebax® MH 1657 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 150000008051 alkyl sulfates Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- AXDDAQHKIQWFDG-UHFFFAOYSA-N b3596 Chemical compound Br[Br-]Br.CCCCN1C=C[N+](C)=C1 AXDDAQHKIQWFDG-UHFFFAOYSA-N 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000004850 cyclobutylmethyl group Chemical group C1(CCC1)C* 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000004210 cyclohexylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004186 cyclopropylmethyl group Chemical group [H]C([H])(*)C1([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000006262 metallic foam Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- RVKZDIDATLDTNR-UHFFFAOYSA-N sulfanylideneeuropium Chemical compound [Eu]=S RVKZDIDATLDTNR-UHFFFAOYSA-N 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 125000005425 toluyl group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/103—Details relating to membrane envelopes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/36—Pervaporation; Membrane distillation; Liquid permeation
- B01D61/362—Pervaporation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/103—Details relating to membrane envelopes
- B01D63/1031—Glue line or sealing patterns
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/107—Specific properties of the central tube or the permeate channel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/70—Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/14—Specific spacers
- B01D2313/146—Specific spacers on the permeate side
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/10—Cross-flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/52—Polyethers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/80—Block polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present invention relates to a spiral membrane element and a membrane separation system.
- a membrane separation method has been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide.
- the membrane separation method can efficiently separate the acid gas while suppressing the operating cost, compared to the absorption method in which the acid gas contained in the mixed gas is absorbed by an absorbent and separated.
- a spiral membrane element is used for the membrane separation method.
- a spiral-wound membrane element comprises a central tube and membrane leaves wound around the central tube.
- a membrane leaf has a separation membrane and a permeate spacer.
- a spiral wound membrane element is suitable for increasing the membrane area of the separation membrane in the membrane element.
- the spiral wound type membrane element further has, for example, a channel spacer wound around the central tube on the central tube side of the membrane leaf (for example, Patent Document 1).
- the channel spacer facilitates the delivery of permeate fluid from the membrane leaves to the central tube.
- the presence of the channel spacer when fabricating the spiral-wound membrane element facilitates winding the membrane leaves around the central tube.
- the permeation rate of the permeating fluid from the separation membrane tends to be lower than the permeation rate of the permeating fluid from the same flat membrane separation membrane.
- the permeation rate of the permeating fluid from the separation membrane tends to decrease. This tendency is particularly conspicuous in a system in which the inside of the central tube is evacuated to operate the spiral wound type membrane element (decompression system).
- an object of the present invention is to provide a spiral membrane element that is suitable for suppressing a decrease in permeation velocity (or permeation flux) of a permeation fluid through a separation membrane.
- the present inventors newly discovered that the decrease in the permeation rate of the permeating fluid in the spiral membrane element is caused by the pressure loss in the spacers, especially the channel spacers. Based on this knowledge, the inventors have further studied and completed the present invention.
- the present invention a central canal; a membrane leaf having a separation membrane and a permeate spacer wrapped around the central tube; a channel spacer connected to the permeation spacer and wound around the central tube on the central tube side of the membrane leaf; with Provided is a spiral membrane element in which the pressure loss P1 of the flow path spacer measured by the following test is smaller than the pressure loss P2 of the permeation spacer measured by the following test.
- Test A test piece is prepared by laminating a strip-shaped spacer (the channel spacer or the permeation spacer) of 150 mm long ⁇ 47 mm wide on a film made of polyethylene terephthalate.
- Nitrogen gas is sent to the space so that the pressure in the space adjacent to the film of the test piece is 0.1 MPa, and the nitrogen gas is sent to the spacer at a flow rate of 2.5 L/min. The pressure loss caused by the movement of nitrogen gas in the spacer in the longitudinal direction of the spacer is measured.
- the present invention provides the above spiral membrane element; a decompression device for decompressing the inside of the central tube; to provide a membrane separation system.
- the present invention provides a central canal; a membrane leaf having a separation membrane and a permeate spacer wrapped around the central tube; a channel spacer connected to the permeation spacer and wound around the central tube on the central tube side of the membrane leaf; with Provided is a spiral wound type membrane element in which the pressure loss P1 of the channel spacer measured by the following test is 30 kPa or less.
- Test A test piece is prepared by laminating the strip-shaped channel spacer of 150 mm long ⁇ 47 mm wide on a film made of polyethylene terephthalate.
- Nitrogen gas is sent to the space adjacent to the film of the test piece so that the pressure in the space becomes 0.1 MPa, and the nitrogen gas is sent to the flow path spacer at a flow rate of 2.5 L/min. A pressure loss caused by the movement of nitrogen gas in the longitudinal direction of the channel spacer is measured within the channel spacer.
- FIG. 1 is an exploded perspective view schematically showing a spiral wound type membrane element according to an embodiment of the present invention
- FIG. 1 is a schematic cross-sectional view of a spiral wound membrane element
- FIG. 1 is a schematic cross-sectional view showing an example of a measuring device for measuring pressure loss of a spacer
- FIG. 3 is a schematic cross-sectional view showing an example of a separation membrane included in the spiral wound type membrane element
- FIG. 4 is a schematic cross-sectional view showing a modification of the separation membrane provided in the spiral wound type membrane element.
- FIG. 4 is a diagram for explaining a method for manufacturing a spiral wound type membrane element
- FIG. 4 is a diagram for explaining a method for manufacturing a spiral wound type membrane element
- 1 is a configuration diagram of a membrane separation system equipped with a spiral membrane element
- ⁇ Embodiment of Spiral Membrane Element> 1 and 2 show a spiral membrane element 10 (hereinafter referred to as "separation membrane element 10") according to one embodiment of the present invention.
- the separation membrane element 10 has a central tube 21 and a laminate 22 .
- the laminate 22 is wrapped around the central tube 21 and arranged around the central tube 21 .
- a feed fluid channel and a permeate fluid channel are formed inside the laminate 22 .
- the feed fluid is supplied from one end surface of the laminate 22 into the separation membrane element 10 and flows through the feed fluid channel parallel to the longitudinal direction of the central tube 21 .
- the feed fluid is separated to produce permeate and non-permeate fluids.
- the permeating fluid is led outside through the central tube 21 .
- the non-permeating fluid is discharged outside the separation membrane element 10 from the other end face of the laminate 22 .
- the feed fluid to be treated by the separation membrane element 10 may be gas or liquid.
- the feed fluid is a gas mixture containing acid gases, particularly a gas mixture containing carbon dioxide and nitrogen.
- the feed fluid is a mixed liquid containing volatile organic compounds, particularly a mixed liquid containing alcohol (eg isopropanol) and water.
- the separation membrane element 10 further includes a channel spacer 15.
- the flow path spacer 15 is positioned between the central tube 21 and the laminate 22 and is wound around the central tube 21 on the central tube 21 side of the laminate 22 .
- the channel spacer 15 secures a space as a permeating fluid channel between the laminate 22 and the central tube 21 .
- the separation membrane element 10 may further include a shell surrounding the laminate 22.
- the shell may be made of FRP (fiber reinforced plastic).
- end surface members may be arranged on both sides of the laminate 22 .
- the laminate 22 has multiple membrane leaves 11 .
- Each membrane leaf 11 has a separation membrane 12 and a permeate spacer 14 .
- the membrane leaf 11 has two separation membranes 12 .
- Two separation membranes 12 are superimposed on each other and sealed on three sides to have a bag-like structure.
- an adhesive layer 26 containing an adhesive is used for sealing the two separation membranes 12, for example.
- a permeation spacer 14 is arranged between the two separation membranes 12 so as to be located inside the bag-like structure.
- the open end of membrane leaf 11 is connected to channel spacer 15 , thereby connecting permeate spacer 14 to channel spacer 15 .
- the permeate spacer 14 secures a space as a permeate fluid channel between the two separation membranes 12 .
- the number of membrane leaves 11 in the laminate 22 is not particularly limited, and is, for example, 2-30.
- the laminate 22 further has supply spacers 13 .
- the feed spacer 13 is positioned outside the bag-like structure and laminated to the membrane leaf 11 .
- the stack 22 has a plurality of supply spacers 13, and in the stack 22, a plurality of supply spacers 13 and a plurality of film leaves 11 are alternately stacked.
- the supply spacer 13 secures a space as a supply fluid channel between the membrane leaves 11 .
- the central tube 21 has the role of collecting permeated fluids that have passed through each separation membrane 12 and guiding them to the outside of the separation membrane element 10 .
- the central tube 21 is provided with an opening 21h that communicates the inner space and the outer space of the central tube 21 .
- the opening 21h is, for example, a through hole formed in the wall surface of the central tube 21 .
- the center tube 21 is provided with a plurality of openings 21h at predetermined intervals along the direction in which the center tube 21 extends.
- the number of rows of the plurality of openings 21h provided along the direction in which the central tube 21 extends is not particularly limited, and is one or two, for example.
- the central tube 21 may be provided with two rows of openings 21h facing each other.
- a channel spacer 15 is in contact with each of the plurality of openings 21h. This allows the permeating fluid to flow from the channel spacer 15 into the central tube 21 through the plurality of openings 21h.
- the outer diameter of the central tube 21 is, for example, 10-100 mm, preferably 12-50 mm.
- the pressure loss P1 (kPa) of the channel spacer 15 is smaller than the pressure loss P2 (kPa) of the permeation spacer 14 .
- the pressure loss P1 can be measured by the following method using the measuring device 30 shown in FIG. First, a strip-shaped spacer 15a having a length of 150 mm and a width of 47 mm is prepared. The spacer 15a has the same shape as the channel spacer 15 before being wound around the central tube 21, except for the length and width. The longitudinal direction of the spacer 15 a coincides with the direction in which the channel spacer 15 is wound around the central tube 21 . Next, a film 41 made of polyethylene terephthalate is laminated on the spacer 15a to prepare a test piece 40. As shown in FIG. The film 41 is, for example, PET100SG2 manufactured by Panac.
- the measuring device 30 includes, for example, a holder 31, a lid member 35 and a seal member 34. As shown in FIG. Specifically, the test piece 40 is set in the holder 31 of the measuring device 30 so that the spacer 15 a of the test piece 40 is positioned below the film 41 . Openings 32 and 33 are formed in the wall surface of the holder 31 . Each of openings 32 and 33 communicates with spacer 15 a of test piece 40 . The openings 32 and 33 are positioned so that when nitrogen gas is introduced into the holder 31 through one opening 32, the nitrogen gas moves in the longitudinal direction X of the spacer 15a and is discharged from the other opening 33. is doing. The openings 32 and 33 may or may not face each other.
- the lid member 35 is fastened to the holder 31 above the holder 31 using fasteners (not shown).
- the lid member 35 is formed with an opening 36 for sending nitrogen gas to the space 37 adjacent to the film 41 of the test strip 40 .
- the sealing member 34 is positioned between the holder 31 and the lid member 35 and prevents ventilation inside and outside the measuring device 30 in portions other than the openings 32 , 33 and 36 .
- the seal member 34 is, for example, a circular cross-section seal ring (O-ring) made of an elastic material.
- FIG. 3 depicts a state in which the seal member 34, which is a seal ring, is crushed.
- nitrogen gas is sent into the space 37 through the opening 36 of the lid member 35 so that the pressure in the space 37 adjacent to the film 41 of the test piece 40 becomes 0.1 MPa, and through the opening 32 of the holder 31, 2.
- Nitrogen gas is sent to the spacer 15a at a flow rate of 5 L/min.
- the temperature of the nitrogen gas sent into the measuring device 30 is, for example, 23°C.
- Nitrogen gas sent through the opening 32 moves in the longitudinal direction X of the spacer 15 a within the spacer 15 a and is discharged from the opening 33 .
- a difference (differential pressure D1) between the pressure of the nitrogen gas sent to the opening 32 and the pressure of the nitrogen gas discharged from the opening 33 is measured.
- the differential pressure D0 is measured in the same manner as the differential pressure D1, except that the spacer 15a is not present.
- the pressure loss due to the spacer 15a is calculated based on the differential pressures D0 and D1.
- the calculated value can be regarded as the pressure loss P1 caused by the movement of the nitrogen gas in the longitudinal direction X of the spacer 15a within the spacer 15a.
- the pressure loss P2 can be measured by the same method as the pressure loss P1, except that the spacer 14a corresponding to the transmission spacer 14 is used instead of the spacer 15a.
- Spacer 14a has the same shape as transmissive spacer 14 before it is wrapped around central tube 21, except for its length and width.
- a separation membrane element 10 usually has a plurality of permeation spacers 14 .
- the pressure loss P1 of the channel spacer 15 should be smaller than the pressure loss P2 of at least one permeation spacer 14 selected from the plurality of permeation spacers 14 .
- the separation membrane element 10 may include a permeation spacer 14 exhibiting a pressure loss P2 equal to or smaller than the pressure loss P1.
- the pressure loss P1 of the channel spacer 15 has the same value as the pressure loss P2 of one permeation spacer 14 among the plurality of permeation spacers 14, and is lower than the pressure loss P2 of all the other permeation spacers 14. It can be small.
- the pressure drop P1 across the channel spacers 15 is preferably less than the pressure drop P2 across all permeate spacers 14 .
- the value (P2-P1) obtained by subtracting the pressure loss P1 from the pressure loss P2 is not particularly limited, and is, for example, 5 kPa or more, preferably 10 kPa or more, and more preferably 20 kPa or more.
- the upper limit of the value (P2-P1) is not particularly limited, and is 50 kPa, for example.
- a ratio (P1/P2) of the pressure loss P1 to the pressure loss P2 is not particularly limited, and is, for example, 0.8 or less, preferably 0.5 or less, and more preferably 0.2 or less.
- the lower limit of the ratio (P1/P2) is not particularly limited, and is 0.01, for example.
- the pressure loss P1 is, for example, 30 kPa or less, preferably 20 kPa or less, more preferably 10 kPa or less, and even more preferably 6 kPa or less.
- the lower limit of the pressure loss P1 is not particularly limited, and is 0.1 kPa, for example. Pressure loss P1 may be greater than 30 kPa in some cases.
- a central canal 21 a membrane leaf 11 having a separation membrane 12 and a permeate spacer 14 and wrapped around a central tube 21; a channel spacer 15 connected to the permeation spacer 14 and wound around the central tube 21 on the central tube 21 side of the membrane leaf 11; with A spiral wound type membrane element 10 is provided in which the pressure loss P1 of the channel spacer 15 measured by the above test is 30 kPa or less.
- the pressure loss P2 is, for example, greater than 30 kPa and less than or equal to 50 kPa.
- the pressure loss P2 may be 30 kPa or less in some cases.
- Examples of the flow path spacer 15 include nets, meshes, wire fabrics, fiber fabrics, nonwoven fabrics, grooved sheets, corrugated sheets, and the like.
- Examples of materials for the flow path spacer 15 include polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyamide, polyphenylene sulfide (PPS), ethylene-chlorotrifluoroethylene copolymer (ECTFE), and epoxy resin. , resin materials such as urethane resin; natural polymers; rubber; metals, and the like.
- the thickness of the channel spacer 15 is not particularly limited, and is, for example, 300 ⁇ m or more, preferably 400 ⁇ m or more, more preferably 500 ⁇ m or more, and still more preferably 600 ⁇ m or more.
- the pressure loss P1 of the flow path spacer 15 tends to decrease as the thickness of the flow path spacer 15 increases.
- the upper limit of the thickness of the channel spacer 15 is not particularly limited, it is, for example, 2000 ⁇ m from the viewpoint of sufficiently securing the membrane area of the separation membrane 12 in the separation membrane element 10 .
- the opening ratio of the channel spacer 15 is not particularly limited, and is, for example, 30% or more, preferably 40% or more, and more preferably 50% or more.
- the pressure loss P1 of the flow path spacer 15 tends to decrease as the opening ratio of the flow path spacer 15 increases.
- the upper limit of the aperture ratio of the channel spacer 15 is not particularly limited, and is, for example, 80%.
- the aperture ratio of the channel spacer 15 can be specified by the following method. First, the channel spacer 15 is arranged on the film, and the surface of the channel spacer 15 is observed with a scanning electron microscope (SEM). From the obtained electron microscope image, the area A1 of the surface of the channel spacer 15 and the area A2 where the film can be confirmed through the channel spacer 15 (the area of the gap formed in the channel spacer 15) are calculated by image processing. do. The ratio of the area A2 to the area A1 can be specified as the aperture ratio of the flow path spacer 15 .
- SEM scanning electron microscope
- the flow path spacer 15 is preferably PE30.
- permeable spacer 14 examples include nets, meshes, wire fabrics, fiber fabrics, nonwoven fabrics, grooved sheets, corrugated sheets, and the like. Materials for the permeable spacer 14 include those mentioned above for the channel spacer 15 .
- the thickness of the transmission spacer 14 is not particularly limited, and is, for example, less than 300 ⁇ m, preferably 250 ⁇ m or less.
- the smaller the thickness of the permeate spacer 14 the easier it is to arrange a sufficient number of membrane leaves 11 within the separation membrane element 10 . In other words, a sufficient membrane area can be easily secured for the separation membrane 12 in the separation membrane element 10 .
- the lower limit of the thickness of the transmissive spacer 14 is not particularly limited, and is, for example, 100 ⁇ m.
- the thickness of the transmissive spacer 14 may be 300 ⁇ m or more in some cases.
- the opening ratio of the transmission spacers 14 is not particularly limited, and is, for example, less than 30%, preferably 25% or less, more preferably 20% or less.
- the lower limit of the aperture ratio of the transmissive spacer 14 is not particularly limited, and is, for example, 10%.
- the aperture ratio of the transmissive spacers 14 may be 30% or more in some cases.
- the aperture ratio of the permeable spacer 14 can be specified by the method described above for the channel spacer 15 .
- transmission spacer 14 is #1000E (material: PET, aperture ratio: 22%, thickness: 250 ⁇ m, pressure loss P2: 33.6 kPa).
- Transmissive spacers 14 may optionally be those illustrated in Table 1.
- the permeation spacer 14 is basically different from the channel spacer 15 .
- at least one permeation spacer 14 selected from the plurality of permeation spacers 14 may be the same as the channel spacer 15 .
- one permeation spacer 14 of the plurality of permeation spacers 14 may be the same as the channel spacer 15 and all other permeation spacers 14 may be different from the channel spacer 15 .
- one transparent spacer 14 of the plurality of transparent spacers 14 may be PE30, and all other transparent spacers 14 may be #1000E.
- the supply spacer 13 is not particularly limited, and for example, the above-described permeation spacer 14 or channel spacer 15 can be used as appropriate.
- the separation membrane 12 may be a separation membrane (gas separation membrane) that can preferentially permeate acidic gases contained in the mixed gas, and preferentially permeate volatile organic compounds contained in the mixed liquid. It may be a separation membrane (liquid separation membrane) capable of separating The separation membrane 12 as a gas separation membrane will be described below.
- a separation membrane 12A as a gas separation membrane includes, for example, a separation functional layer 1 and a porous support 3 that supports the separation functional layer 1. It may further comprise an intermediate layer 2 arranged between and. The intermediate layer 2 is in direct contact with the separation functional layer 1 and the porous support 3, for example.
- the separation functional layer 1 is, for example, a layer that preferentially allows the acidic gas contained in the mixed gas to permeate.
- the separation functional layer 1 contains a resin.
- resins contained in the separation functional layer 1 include polyether block amide resins, polyamide resins, polyether resins, polyimide resins, cellulose acetate resins, silicone resins and fluorine resins.
- the separation functional layer 1 preferably contains a polyether block amide resin.
- the separation functional layer 1 is preferably substantially made of resin.
- "consisting essentially of” means excluding other ingredients that alter the essential characteristics of the material referred to, such as 95 wt% or more, or even 99 wt% or more of the material. It means that it is composed of
- the separation functional layer 1 contains an ionic liquid.
- the separation functional layer 1 has, for example, a double network gel containing an ionic liquid.
- a double network gel is a gel that has two types of network structures that are independent of each other.
- a double network gel includes, for example, a first network structure mainly composed of an organic material, a second network structure mainly composed of an inorganic material, and an ionic liquid.
- "mainly composed of” means that 50 wt% or more, or even 70 wt% or more is composed of the material.
- the organic material for forming the first network structure includes, for example, a polymer such as polyacrylamide (especially polydialkylacrylamide such as polydimethylacrylamide).
- the polymer contained in the organic material has a structural unit derived from an acrylamide derivative and may further contain a crosslinked structure.
- a polymer containing a crosslinked structure can be produced by a known method. For example, first, a prepolymer having structural units having N-hydroxysuccinimide ester groups is prepared. A structural unit having an N-hydroxysuccinimide ester group is derived from, for example, N-acryloxysuccinimide. Next, a polymer containing a crosslinked structure can be obtained by reacting the prepolymer with an amine-based crosslinking agent.
- Amine crosslinkers are compounds with two or more primary amino groups, such as ethylene glycol bis(3-aminopropyl) ether.
- the second network structure may include a network of multiple particles.
- a network of a plurality of particles is formed, for example, by bonding a plurality of particles to each other through hydrogen bonding.
- Particles included in the second network structure may be particles exemplified as nanoparticles to be described later.
- the particles included in the second network structure are silica particles.
- specific ionic liquids include, for example, ionic liquids having imidazolium, pyridinium, ammonium, or phosphonium and substituents having 1 or more carbon atoms.
- the substituent having 1 or more carbon atoms includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, and a cycloalkyl group having 3 to 14 carbon atoms. 6 or more and 20 or less aryl groups, etc., which may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group or the like (for example, a hydroxyalkyl group having 1 or more and 20 or less carbon atoms etc).
- alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl
- the above alkyl group may be substituted with a cycloalkyl group.
- the number of carbon atoms in the alkyl group substituted by the cycloalkyl group is, for example, 1 or more and 20 or less.
- Alkyl groups substituted by cycloalkyl groups include cyclopropylmethyl, cyclobutylmethyl, cyclohexylmethyl, cyclohexylpropyl groups and the like, which further include hydroxy, cyano, amino, monovalent ether It may be substituted with a group or the like.
- cycloalkyl groups having 3 to 14 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, norbornyl, bornyl and adamantyl groups. , and these may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group, or the like.
- aryl group having 6 to 20 carbon atoms examples include phenyl, toluyl, xylyl, mesityl, anisyl, naphthyl, benzyl, etc. These are further hydroxy, cyano, amino, mono may be substituted with a valent ether group or the like.
- the compound having imidazolium and a substituent having 1 or more carbon atoms may further have a substituent such as an alkyl group, and may form a salt with a counter anion.
- Counter anions include alkylsulfate, tosylate, methanesulfonate, acetate, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, thiocyanate, dicyanamide, tricyanometanide, tetracyanoborate, hexafluorophosphate, tetrafluoro Examples include borates and halides, and bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, dicyanamide, tricyanometanide, and tetracyanoborate are preferred from the viewpoint of gas separation performance.
- ionic liquids having imidazolium and substituents having 1 or more carbon atoms include 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium dicyanamide.
- 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide [EMI] [FSI]
- 1-ethyl-3-methylimidazolium dicyanamide [EMI] [DCA]
- 1-ethyl-3-methylimidazolium tricyanometanide [EMI] [TCM]
- 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C mim] [ TF 2 N]
- 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 2 OHim][TF 2 N]
- the method for producing a double network gel is not particularly limited, and for example, the method disclosed in E.Kamio et al., Adv.Mater, 29, 1704118 (2017) can be used.
- the content of the ionic liquid in the double network gel is, for example, 50 wt% or more, preferably 60 wt% or more, more preferably 70 wt% or more, and still more preferably 80 wt% or more.
- the upper limit of the content of the ionic liquid is not particularly limited, and is, for example, 95 wt%.
- the content of the first network structure mainly composed of an organic material in the double network gel is, for example, 1 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more.
- the upper limit of the content of the first network structure is, for example, 15 wt%.
- the content of the second network structure mainly composed of an inorganic material in the double network gel is, for example, 1 wt % or more from the viewpoint of improving the strength of the double network gel.
- the upper limit of the content of the second network structure is, for example, 5 wt%.
- the ratio of the sum of the weight of the first network structure and the weight of the second network structure to the weight of the double network gel is, for example, 2 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more. . This proportion is preferably less than or equal to 20 wt%.
- the separation functional layer 1 is preferably substantially made of double network gel.
- the thickness of the separation functional layer 1 is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less.
- the thickness of the separation functional layer 1 may be 10 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less depending on the case.
- the thickness of the separation functional layer 1 may be 0.05 ⁇ m or more, or may be 0.1 ⁇ m or more.
- the intermediate layer 2 contains, for example, a resin, and may further contain nanoparticles dispersed in the resin (matrix).
- the nanoparticles may be spaced apart from each other within the matrix or may be partially aggregated.
- the material of the matrix is not particularly limited, and examples thereof include silicone resins such as polydimethylsiloxane; fluorine resins such as polytetrafluoroethylene; epoxy resins such as polyethylene oxide; polyimide resins; polyacetylene resins such as polymethylpentene; polyolefin resins such as polymethylpentene; and polyurethane resins.
- the matrix preferably contains at least one selected from the group consisting of silicone resins and polyurethane resins, and more preferably contains both silicone resins and polyurethane resins.
- the nanoparticles may contain inorganic materials or organic materials.
- Inorganic materials included in nanoparticles include, for example, silica, titania, and alumina.
- the nanoparticles preferably contain silica.
- the thickness of the intermediate layer 2 is not particularly limited, and is, for example, less than 50 ⁇ m, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
- the lower limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 1 ⁇ m.
- the intermediate layer 2 is, for example, a layer having a thickness of less than 50 ⁇ m.
- porous support 3 supports the separation functional layer 1 with the intermediate layer 2 interposed therebetween.
- Porous support 3 includes, for example, nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; silicone; silicone rubber; permeation containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide and polyphenylene oxide open-celled or closed-celled metal foams; open-celled or closed-celled polymeric foams; silica; porous glass;
- the porous support 3 may be a combination of two or more of these.
- the porous support 3 has an average pore size of, for example, 0.01-0.4 ⁇ m.
- the thickness of the porous support 3 is not particularly limited, and is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more.
- the thickness of the porous support 3 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
- Separation membrane 12A can be produced, for example, by the following method. First, a coating liquid containing a material for the intermediate layer 2 is prepared. Next, a coating liquid containing the material of the intermediate layer 2 is applied onto the porous support 3 to form a coating film.
- a method for applying the coating liquid is not particularly limited, and for example, a spin coating method, a dip coating method, a gravure coating method, or the like can be used. The coating liquid may be applied using a wire bar or the like. The thickness of the intermediate layer 2 to be formed can be adjusted by adjusting the concentration of the material of the intermediate layer 2 in the coating liquid.
- the coating film is dried to form the intermediate layer 2 .
- the coating film can be dried, for example, under heating conditions.
- the heating temperature of the coating film is, for example, 50° C. or higher.
- the heating time of the coating film is, for example, 1 minute or longer, and may be 5 minutes or longer.
- the surface of the intermediate layer 2 can be subjected to an easy-adhesion treatment as necessary.
- Surface treatments such as application of a primer, corona discharge treatment, plasma treatment, etc. may be applied as the adhesion-promoting treatment.
- a coating liquid containing the material for the separation functional layer 1 is prepared.
- a coating liquid containing the material of the separation functional layer 1 is applied onto the intermediate layer 2 to obtain a coating film.
- This coating film is dried to form the separation functional layer 1 .
- the coating method and drying conditions of the coating liquid the methods and conditions described above for the intermediate layer 2 can be used. Thereby, the separation membrane 12A is obtained.
- the method for producing the separation membrane 12A is not limited to the above method.
- the separation membrane 12A can also be produced by the following method. For example, a coating liquid containing the material of the separation functional layer 1 is applied onto the transfer film to obtain a coating film. The separation functional layer 1 is formed by drying the coating film. Next, the intermediate layer 2 is formed by applying a coating liquid containing the material of the intermediate layer 2 onto the separation function layer 1 and drying it. A laminate of the intermediate layer 2 and the separation functional layer 1 is transferred to the porous support 3 . Thereby, the separation membrane 12A is obtained.
- the separation membrane 12 may be a separation membrane (liquid separation membrane) capable of preferentially permeating volatile organic compounds contained in the mixed liquid.
- the separation membrane 12 as a liquid separation membrane is, for example, a pervaporation membrane that produces a gas permeation fluid containing the above organic compound by a pervaporation method.
- the separation membrane 12 as a liquid separation membrane will be described below.
- a separation membrane 12B as a liquid separation membrane includes, for example, a separation functional layer 5 and a porous support 6 that supports the separation functional layer 5.
- Separation membrane 12B may further include a protective layer (not shown) that protects separation functional layer 5 .
- the separation functional layer 5 is in direct contact with the porous support 6, for example.
- the separation functional layer 5 is, for example, a layer that allows preferential transmission of volatile organic compounds contained in the mixed liquid.
- Separation functional layer 5 includes, for example, a silicone resin such as polydimethylsiloxane (PDMS); a hydrophobic material such as a polyolefin resin such as polypropylene.
- Separation function layer 5 preferably contains a silicone resin as a hydrophobic material.
- the separation function layer 5 may contain a hydrophobic material as a main component, or may be substantially composed only of the hydrophobic material.
- a “main component” means a component contained in the separation functional layer 5 in the largest amount by weight.
- the separation function layer 5 may contain a matrix containing a hydrophobic material and a filler dispersed in the matrix.
- the filler is embedded within the matrix. Within the matrix all fillers may be spaced from each other or may be partially agglomerated.
- the filler includes, for example, inorganic materials such as zeolite.
- the zeolite contained in the filler is preferably high silica zeolite having a high ratio of silica to alumina.
- High-silica zeolite has excellent hydrolysis resistance, and is therefore suitable for use in separating liquids containing water.
- As the high silica zeolite HSZ (registered trademark) manufactured by Tosoh Corporation, HiSiv (registered trademark) manufactured by Union Showa Corporation, USKY manufactured by Union Showa Corporation, and Zeoal (registered trademark) manufactured by Nakamura Choukou Co., Ltd. can be used. .
- the shape of the filler is, for example, particulate.
- "particulate” includes spherical, ellipsoidal, scaly and fibrous.
- the average particle size of the filler is not particularly limited, and is, for example, 50 ⁇ m or less, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less.
- the lower limit of the average particle size of the filler is, for example, 0.01 ⁇ m.
- the average particle size of the filler can be specified, for example, by the following method. First, a cross section of the separation functional layer 5 is observed with a transmission electron microscope. In the obtained electron microscope image, the area of the specific filler is calculated by image processing.
- the diameter of a circle having the same area as the calculated area is taken as the particle size (particle diameter) of that particular filler.
- the particle size of an arbitrary number (at least 50) of fillers is calculated, and the average value of the calculated values is regarded as the average particle size of the filler.
- the filler content in the separation functional layer 5 is, for example, 10 wt% or more, preferably 20 wt% or more.
- the upper limit of the filler content in the separation functional layer 5 is not particularly limited, and is, for example, 70 wt %.
- the matrix content in the separation function layer 5 is not particularly limited, and is, for example, 30 wt % to 90 wt %.
- the thickness of the separation functional layer 5 is, for example, 200 ⁇ m or less, preferably 100 ⁇ m or less, and more preferably 80 ⁇ m or less.
- the thickness of the separation functional layer 5 may be 1.0 ⁇ m or more, 10 ⁇ m or more, or 30 ⁇ m or more.
- the separation function layer 5 may have a microporous structure with an average pore size of less than 0.01 ⁇ m, or may be a dense layer with no pores on the surface.
- porous support As the porous support 6, those described above for the separation membrane 12A can be used.
- the protective layer covers, for example, the surface of the separation functional layer 5 .
- the material for the protective layer is not particularly limited, and examples thereof include silicone resins.
- the material of the protective layer may be the same as the material of the matrix of the separation functional layer 5 .
- the thickness of the protective layer is not particularly limited, and is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
- the thickness of the protective layer is, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
- the separation membrane 12B can be produced by forming the separation function layer 5 on the porous support 6, for example. Specifically, first, a coating liquid containing the material of the separation functional layer 5 is prepared. The coating liquid may contain a dispersing agent for dispersing the filler in the coating liquid together with the filler. When the coating liquid contains a silicone resin, the coating liquid may further contain a catalyst for curing the silicone resin. Next, a coating film is obtained by coating the coating liquid on the porous support 6 . The separation functional layer 5 is formed by drying the coating film.
- the separation membrane 12 is folded in two such that the separation functional layer 1 of the separation membrane 12 is located inside.
- a feed spacer 13 is placed between the two folded separation membranes 12 and a permeate spacer 14 is placed above the separation membrane 12 .
- an adhesive 26a is applied to the three sides of the perimeter of the transmissive spacer 14. As shown in FIG. Thus, the separation membrane unit U is obtained.
- the adhesive 26a is in an uncured state at this point.
- the spacer 16 has, for example, a first portion 16a directly wound around the central tube 21 and a second portion 16b laminated with the separation membrane unit U.
- the first portion 16 a of the spacer 16 corresponds to the channel spacer 15 and the second portion 16 b corresponds to the permeation spacer 14 .
- the material, thickness, etc. of the first portion 16a may be the same as or different from those of the second portion 16b.
- a plurality of separation membrane units U are arranged stepwise on the second portion 16 b of the spacer 16 .
- the number of multiple separation membrane units U is not particularly limited, and is, for example, 2-30. Note that the uppermost separation membrane unit U may not have the permeation spacer 14 .
- the number of turns of the first portion 16a is not particularly limited, and is, for example, 1-15, preferably 2-10.
- a plurality of separation membrane units U are wound around the central tube 21 .
- the uppermost separation membrane unit U is stacked with the second portion 16 b of the spacer 16 .
- the adhesive 26a is cured to form the adhesive layer 26 and the bag-like membrane leaf 11 is formed. An assembly including the central tube 21 and the laminate 22 is thereby obtained.
- the spacer 16 is not limited to the shape shown in FIG.
- the spacer 16 may further have a third portion (not shown) connected to the second portion 16b and extending from the second portion 16b on the opposite side of the central tube 21 .
- the third portion is wound around the central tube 21 on the outside of the laminate 22 formed by winding the separation membrane unit U around the central tube 21 . That is, the third portion can cover the laminate 22 on the outside of the laminate 22 .
- a film for example, Lumirror 38E20 manufactured by Panac Co., Ltd.
- the material, thickness, etc. of the third portion may be the same as or different from the first portion 16a.
- membrane separation of the feed fluid by the separation membrane 12 proceeds with the difference (pressure difference) between the pressure of the feed fluid and the pressure of the permeated fluid as a driving force. Therefore, when a pressure loss occurs in the separation membrane element 10, the pressure difference is reduced, and the permeation speed and permeation flux of the fluid passing through the separation membrane 12 are lowered.
- the pressure difference is greater than in the method of pressurizing the feed fluid to operate the separation membrane element 10 (pressurization method). Since it tends to be small, the influence of the decrease in pressure difference due to pressure loss is large.
- the pressure loss tends to occur particularly significantly in the channel spacer 15 where the permeated fluid from each membrane leaf 11 concentrates.
- the pressure loss P1 of the channel spacer 15 is set smaller than the pressure loss P2 of the permeation spacer 14, thereby effectively suppressing the decrease in the pressure difference.
- the separation membrane element 10 of the present embodiment it is possible to sufficiently suppress a decrease in the permeation velocity and permeation flux of the permeating fluid through the separation membrane 12 by suppressing a decrease in the pressure difference.
- the separation membrane element 10 provided with the separation membrane 12 (specifically, the separation membrane 12A) and the flat membrane-like separation membrane 12 (specifically, the separation membrane 12A) are each separated.
- the ratio R of the carbon dioxide permeation rate T2 (GPU) from the separation membrane element 10 to the carbon dioxide permeation rate T (GPU) from the flat separation membrane 12 is, for example, 90. % or more, preferably 95% or more.
- the feed fluid supplied to the separation membrane element 10 or the flat separation membrane 12 has a temperature of 23° C.
- the pressure in the space where the permeate is obtained matches the atmospheric pressure (eg, 101 kPa) in the measurement environment.
- GPU means 10 ⁇ 6 ⁇ cm 3 (STP)/(sec ⁇ cm 2 ⁇ cmHg).
- cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
- the separation membrane element 10 is increased with respect to the permeation rate T1 (GPU) of carbon dioxide from the flat separation membrane 12 when the flat separation membrane 12 is operated in a reduced pressure system.
- the ratio R1 of the permeation rate T2 (GPU) of carbon dioxide from the separation membrane element 10 when operated in the pressure mode is, for example, 85% or more, preferably 90% or more, and more preferably 95% or more.
- the permeation rate T1 can be measured under the conditions described later.
- the transmission rate T2 is the same as described above for the ratio R.
- the permeation rate of carbon dioxide through the flat separation membrane 12 is T1 (GPU).
- T1 GPU
- the feed fluid supplied to the separation membrane element 10 or the flat separation membrane 12 has a temperature of 23° C. and a pressure of 0.1 MPa. be.
- a vacuum pump is used to reduce the pressure of the space in which the permeated fluid is obtained (the space within the permeated fluid flow path) to about 10 kPa or less.
- the separation membrane element 10 provided with the separation membrane 12 (specifically, the separation membrane 12B) and the flat separation membrane 12 ( Specifically, when each of the separation membranes 12B) is operated under reduced pressure, the ratio of IPA from the separation membrane element 10 to permeation flux F1 (kg/m 2 /hr) of IPA from the flat separation membrane 12 is A ratio L of the permeation flux F2 (kg/m 2 /hr) is, for example, 60% or more.
- the upper limit of the ratio L is not particularly limited, and is, for example, 90%.
- the temperature of the feed fluid supplied to the separation membrane element 10 or the flat separation membrane 12 is 40°C.
- the amount of feed fluid is appropriately set within a range that does not affect the measurement of the permeation fluxes F1 and F2.
- the supply flow rate of the feed fluid sent to the separation membrane element 10 may be set at 40 g/min.
- the concentration of IPA in the feed fluid is 5 wt%.
- a vacuum pump is used to reduce the pressure of the space in which the permeated fluid is obtained (the space within the permeated fluid channel) to 1.5 kPa.
- Vacuum systems typically result in gaseous permeate fluids. By condensing the gaseous permeate and analyzing the composition of the resulting liquid permeate, the permeate fluxes F1 and F2 can be determined.
- the separation membrane element 10 of this embodiment it is not necessary to reduce the pressure loss P2 of the permeation spacer 14 as compared with the conventional one. That is, there is no need, for example, to increase the thickness of the transmissive spacer 14 in order to reduce the pressure drop P2. Therefore, according to the separation membrane element 10 of the present embodiment, there is an advantage that the number of membrane leaves 11 in the separation membrane element 10 can be maintained, thereby securing a sufficient membrane area for the separation membrane 12 .
- a permeation spacer 14 exhibiting a smaller pressure loss P2 than conventional ones may be used.
- An example of the application of the separation membrane element 10 of the present embodiment is the application of separating acidic gas from a mixed gas containing acidic gas.
- the acid gas of the mixed gas includes carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, nitrogen oxides (NOx), etc. Carbon dioxide is preferred.
- the mixed gas contains other gases than acid gas. Other gases include, for example, hydrogen, non-polar gases such as nitrogen, and inert gases such as helium, preferably nitrogen.
- the separation membrane element 10 having the separation membrane 12A described above is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
- Volatile organic compounds include, for example, alcohols, typically lower alcohols.
- a lower alcohol is, for example, an alcohol having 5 or less carbon atoms.
- the lower alcohol may be a monohydric alcohol or a polyhydric alcohol.
- the lower alcohol may be linear or branched.
- Lower alcohols include, for example, methanol, ethanol, n-propanol, isopropanol (IPA), n-butanol, 2-butanol, isobutanol, t-butanol and n-pentanol, preferably IPA.
- Volatile organic compounds may be alcohols other than lower alcohols, such as phenol.
- the mixed liquid contains liquids other than volatile organic compounds.
- the other liquid is typically water.
- the separation membrane element 10 having the separation membrane 12B described above is suitable for separating alcohol from a mixed liquid containing alcohol and water.
- the separation membrane element 10 of the present embodiment is used to (i) separate carbon dioxide from a mixed gas containing carbon dioxide and nitrogen, and (ii) separate alcohol from a mixed liquid containing alcohol and water. It is preferable that at least one of is established.
- the application of the separation membrane element 10 is not limited to the application (i) or (ii) above.
- the membrane separation system 100 of this embodiment includes the separation membrane element 10 and the decompression device 60 described above.
- the pressure reducing device 60 can reduce the pressure inside the central tube 21 of the separation membrane element 10 .
- the decompression device 60 can generate or increase the differential pressure between the space in the feed fluid channel and the space in the permeate fluid channel of the separation membrane element 10 .
- a specific example of the decompression device 60 is a vacuum device such as a vacuum pump.
- the membrane separation system 100 may comprise two separation membrane elements 10a and 10b and two pressure reducing devices 60a and 60b.
- the membrane separation system 100 is suitable for separating acid gases from gas mixtures containing acid gases.
- the membrane separation system 100 further includes a mixed fluid supply path 50.
- the mixed fluid supply path 50 is connected to the mixed fluid inlet of the separation membrane element 10a, and is a path for supplying the mixed fluid from a tank (not shown) storing the mixed fluid to the separation membrane element 10a.
- the mixed fluid supply path 50 may or may not be provided with a pressurizing device 64 for pressurizing the space in the supply fluid path of the separation membrane element 10a.
- Pressurization devices 64 include, for example, compressors, blowers, and back pressure valves. The pressurizing device 64 can pressurize the space in the feed fluid path of the separation membrane element 10a, for example, by pressurizing the mixed fluid supplied to the separation membrane element 10a.
- the membrane separation system 100 further comprises a permeate fluid supply channel 52 .
- the permeate fluid supply path 52 is connected to the permeate fluid outlet of the separation membrane element 10a and the permeate fluid inlet of the separation membrane element 10b, and supplies the permeate fluid from the separation membrane element 10a to the separation membrane element 10b from the separation membrane element 10a. It is a route for The permeated fluid from the separation membrane element 10a is further processed in the separation membrane element 10b.
- a decompression device 60 a is arranged in the permeate fluid supply path 52 .
- the permeate fluid supply path 52 has a first portion 52a extending from the separation membrane element 10a to the pressure reducing device 60a and a second portion 52b extending from the pressure reducing device 60a to the separation membrane element 10b.
- the decompression device 60a can decompress the space in the permeate fluid path of the separation membrane element 10a through the first portion 52a.
- the decompression device 60a for example, sucks the permeated fluid that has passed through the first portion 52a and discharges the permeated fluid to the second portion 52b.
- a pressure device (not shown) for pressurizing the permeated fluid discharged from the decompression device 60a may or may not be disposed in the second portion 52b. According to this pressurizing device, the space in the supply fluid path of the separation membrane element 10b can be pressurized.
- Pressurization devices include, for example, compressors, blowers and back pressure valves.
- the membrane separation system 100 further includes a first discharge path 54.
- the first discharge path 54 is connected to the non-permeate fluid outlet of the separation membrane element 10a, and is a path for discharging the non-permeate fluid from the separation membrane element 10a.
- the first discharge path 54 is formed with an opening (discharge port 72 ) for discharging non-permeating fluid from the first discharge path 54 .
- the membrane separation system 100 may further comprise a tank (not shown) for storing the non-permeate fluid, and the first discharge line 54 may be connected to the tank.
- the membrane separation system 100 further comprises a second discharge path 56 and a tank 70.
- the second discharge path 56 is connected to the permeated fluid outlet of the separation membrane element 10b and the inlet of the tank 70, and is a path for sending the permeated fluid from the separation membrane element 10b to the tank 70.
- the tank 70 can store the permeated fluid sent from the separation membrane element 10b.
- a decompression device 60 b is arranged in the second discharge path 56 .
- the second discharge path 56 has a first portion 56a extending from the separation membrane element 10b to the pressure reducing device 60b and a second portion 56b extending from the pressure reducing device 60b to the tank 70.
- the decompression device 60 can decompress the space in the permeate fluid path of the separation membrane element 10b through the first portion 56a.
- the decompression device 60b for example, sucks the permeated fluid that has passed through the first portion 56a and discharges the permeated fluid to the second portion 56b.
- the membrane separation system 100 further includes a third discharge path 58.
- the third discharge path 58 is connected to the non-permeate fluid outlet of the separation membrane element 10b and is a path for discharging the non-permeate fluid from the separation membrane element 10b.
- the third discharge path 58 may join the mixed fluid supply path 50 .
- the third discharge path 58 is connected to the pressurizing device 64 and joins the mixed fluid supply path 50 at the pressurizing device 64 . Since the third discharge path 58 joins the mixed fluid supply path 50, it is possible to reuse, for example, the non-permeating fluid containing the acid gas that has not been completely separated by the separation membrane element 10b.
- Each of the routes of the membrane separation system 100 is composed of, for example, metal or resin piping.
- the separation operation can be performed by decompressing the space in the permeate fluid path of the separation membrane element 10 by the decompression device 60 . Separation operation by such a depressurization method is suitable for reducing the energy required to separate the mixed fluid compared to the pressurization method.
- Example 1 [Preparation of Separation Membrane] First, a coating solution containing silicone resin and polyurethane resin at a weight ratio of 9:1 was prepared. The coating liquid contained water as a solvent. Next, a coating film was obtained by applying the coating liquid onto the porous support by a gravure coating method. As the porous support, a UF membrane (ultrafiltration membrane) RS-50 (a laminate of a PVDF porous layer and a PET nonwoven fabric) manufactured by Nitto Denko was used. An intermediate layer was formed by drying the obtained coating film. Thus, a laminate of the porous support and the intermediate layer was produced.
- UF membrane ultrafiltration membrane
- RS-50 a laminate of a PVDF porous layer and a PET nonwoven fabric
- polyether block amide (Pebax MH1657 manufactured by Arkema) was added to 98 g of a 70 wt% isopropanol aqueous solution and stirred at 80°C for 3 hours to prepare a 2 wt% Pebax solution.
- the prepared solution was applied onto the intermediate layer by gravure coating.
- the separated functional layer was formed by drying the obtained coating film. Thus, a separation membrane was obtained.
- PE30 manufactured by NBC Meshtec Co., Ltd. was used as the spacer 16 in FIG.
- a spiral wound membrane element of Example 1 was produced by the method described with reference to .
- the first portion 16a of the spacer 16 had a length of 90 mm in the direction in which it was wound around the central tube, and a length of 280 mm in the direction in which the central tube extends.
- the permeable spacer 14 had a length of 290 mm in the direction in which it was wrapped around the central tube, and a length of 280 mm in the direction in which the central tube extended. Spacers 16 and permeate spacers 14 were wrapped around the central tube and then cut at the ends.
- the effective length of these spacers in the extending direction of the central tube was 180 mm.
- the outer diameter of the central tube 21 was 17.3 mm, and the outer diameter of the spiral wound membrane element was about 2 inches.
- Example 2 Spiral membrane elements of Examples 2 and 3 were produced in the same manner as in Example 1, except that the spacer 16 was changed as shown in Table 2.
- Example 4 The spiral membrane element of Example 4 was prepared in the same manner as in Example 1, except that the laminate of the porous support and the intermediate layer (the laminate before producing the separation functional layer) was used as the separation membrane. made.
- Example 5 changing the length of the first portion 16a of the spacer 16 and the permeable spacer 14 to 1 m in the direction in which the central tube extends; changing the length of the permeable spacer 14 in the direction in which it is wound around the central tube to 400 mm; Same as Example 1 except that the length of the first portion 16a of the spacer 16 in the winding direction was changed to 136 mm and the outer diameter of the spiral membrane element was changed to about 4 inches.
- a spiral wound membrane element of Example 5 was produced by the method.
- Comparative example 1 A spiral membrane element of Comparative Example 1 was produced in the same manner as in Example 1, except that #1000E manufactured by KB Seiren Co., Ltd. was used as the spacer 16 .
- Comparative example 2 A spiral membrane element of Comparative Example 2 was produced in the same manner as in Example 4, except that #1000E manufactured by KB Seiren Co., Ltd. was used as the spacer 16 .
- the feed fluid injected into the metal cell had a temperature of 23° C. and a pressure of 0.1 MPa.
- the pressure in the space adjacent to the main surface of the separation membrane on the porous support side was reduced to about 10 kPa or less.
- the permeation rate T1 of carbon dioxide was calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
- the composition of the permeating fluid was measured using gas chromatography (G2700T manufactured by Yanaco Technical Science).
- the permeation rate T1 of the separation membrane used in Example 1 was 100 GPU.
- the permeation rate T1 of the separation membrane (laminate of porous support and intermediate layer) used in Example 4 was 1500 GPU.
- the permeation rate T2 was measured by the following method. First, a feed fluid (carbon dioxide) was supplied to the feed fluid channel of the spiral membrane element. The feed fluid had a temperature of 23° C. and a pressure of 0.2 MPa. As a result, a permeated fluid was obtained through the central tube of the spiral membrane element. The carbon dioxide permeation rate T2 was calculated based on the obtained flow rate of the permeated fluid. The flow rate of the permeated fluid was measured using a soap film flowmeter (manufactured by HORIBA).
- the permeation rate T3 was determined by changing the pressure of the feed fluid (carbon dioxide) supplied to the feed fluid channel to 0.1 MPa, and by using a vacuum pump to reduce the pressure in the central tube of the spiral membrane element to about 10 kPa or less. It was measured by the same method as the permeation rate T2, except that
- the ratios R1 and R2 are lower than those of Comparative Examples 1 and 2, respectively.
- the ratios R1 were all 83% or more, which was higher than the ratios R1 of Comparative Examples 1 and 2.
- the ratio R2 was 78% or more, which was higher than the ratio R2 of Comparative Examples 1 and 2. From this result, it can be seen that the spiral wound type membrane element of the present embodiment is suitable for suppressing a decrease in the permeation rate of the permeating fluid through the separation membrane.
- Example 6 [Preparation of Separation Membrane] First, silicone resin (YSR3022 manufactured by Momentive Performance Materials Japan), silicone curing catalyst (YC6831 manufactured by Momentive Performance Materials Japan), and high silica zeolite (HiSiv3000 manufactured by Union Showa) A coating liquid was prepared by mixing. Next, a coating film was obtained by applying the coating solution onto a porous support (RS-50 manufactured by Nitto Denko Corporation). A separation functional layer was produced by drying the coating film. Thus, a separation membrane was obtained. In the separation functional layer, the weight ratio of silicone resin and high silica zeolite was 50:50.
- PE30 manufactured by NBC Meshtec Co., Ltd. was used as the spacer 16 in FIG.
- a spiral wound membrane element of Example 6 was produced by the method described with reference to .
- the first portion 16a of the spacer 16 had a length of 90 mm in the direction in which it was wound around the central tube, and a length of 280 mm in the direction in which the central tube extends.
- the transmission spacer 14 had a length of 140 mm in the direction in which it was wrapped around the central tube, and a length of 280 mm in the direction in which the central tube extended. Spacers 16 and permeate spacers 14 were wrapped around the central tube and then cut at the ends.
- the effective length of these spacers in the extending direction of the central tube was 180 mm.
- the outer diameter of the central tube 21 was 17.3 mm, and the outer diameter of the spiral wound membrane element was about 2 inches.
- Example 7 A spiral membrane element of Example 7 was produced in the same manner as in Example 6, except that the spacer 16 was changed as shown in Table 3.
- Comparative Example 3 A spiral membrane element of Comparative Example 3 was produced in the same manner as in Example 6, except that #1000E manufactured by KB Seiren Co., Ltd. was used as the spacer 16 .
- the permeation flux F1 (kg/m 2 /hr) of isopropanol (IPA) in the flat membrane state was measured.
- the permeation flux F1 was measured by the following method. First, the separation membrane was set in a metal cell in the state of a flat membrane and sealed with an O-ring to prevent leakage. The membrane area of the separation membrane was 34.2 cm 2 . Next, the metal cell was filled with the supply fluid so that the supply fluid was in contact with the main surface of the separation membrane on the side of the separation functional layer.
- the feed fluid consisted essentially of IPA and water.
- the concentration of IPA in the feed fluid was 5 wt%.
- the feed fluid fed into the metal cell had a temperature of 40°C.
- the pressure in the space adjacent to the main surface of the separation membrane on the porous support side was reduced to 1.5 kPa.
- a gas permeating fluid was obtained from the main surface of the separation membrane on the porous support side. That is, separation by the pervaporation method (PV) progressed due to the reduced pressure operation.
- the permeate was liquefied by cooling the gaseous permeate with liquid nitrogen at -196°C. Gas chromatography was used to analyze the composition of the liquid permeate.
- the permeation flux F1 of IPA was calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
- the permeation flux F2 was measured by the following method. First, a feed fluid was supplied to the feed fluid channel of the spiral membrane element.
- the feed fluid consisted essentially of IPA and water.
- the concentration of IPA in the feed fluid was 5 wt%.
- the feed fluid had a temperature of 40°C.
- the feed flow rate of the feed fluid was 40 g/min.
- the pressure inside the central tube of the spiral membrane element was reduced to 1.5 kPa using a vacuum pump. As a result, a gas permeate fluid was obtained through the central tube of the spiral wound type membrane element. That is, separation by the pervaporation method (PV) progressed due to the reduced pressure operation.
- PV pervaporation method
- the permeate was liquefied by cooling the gaseous permeate with liquid nitrogen at -196°C. Gas chromatography was used to analyze the composition of the liquid permeate.
- the permeation flux F2 of IPA was calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
- the ratio L was higher than that of Comparative Example 3.
- the ratio L was about 63%, which was higher than the ratio L of Comparative Example 3.
- the spiral wound type membrane element of this embodiment is suitable for separating acid gas from a mixed gas containing acid gas.
- the spiral wound membrane element of the present embodiment is suitable for separating carbon dioxide from off-gases of chemical plants or thermal power plants.
- the spiral wound type membrane element of this embodiment is also suitable for separating organic compounds from a mixed liquid containing volatile organic compounds.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
中心管と、
分離膜及び透過スペーサを有し、前記中心管に巻き付けられた膜リーフと、
前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられた流路スペーサと、
を備え、
下記試験により測定された前記流路スペーサの圧力損失P1が、下記試験により測定された前記透過スペーサの圧力損失P2よりも小さい、スパイラル型膜エレメントを提供する。
試験:縦150mm×横47mmの短冊状のスペーサ(前記流路スペーサ又は前記透過スペーサ)をポリエチレンテレフタレート製のフィルムに積層させた試験片を準備する。前記試験片の前記フィルムに隣接する空間の圧力が0.1MPaとなるように窒素ガスを前記空間に送るとともに、2.5L/minの流量で前記スペーサに窒素ガスを送る。前記スペーサ内で、窒素ガスが前記スペーサの長手方向に移動することによって生じた圧力損失を測定する。
上記のスパイラル型膜エレメントと、
前記中心管の内部を減圧する減圧装置と、
を備えた、膜分離システムを提供する。
中心管と、
分離膜及び透過スペーサを有し、前記中心管に巻き付けられた膜リーフと、
前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられた流路スペーサと、
を備え、
下記試験により測定された前記流路スペーサの圧力損失P1が30kPa以下である、スパイラル型膜エレメントを提供する。
試験:縦150mm×横47mmの短冊状の前記流路スペーサをポリエチレンテレフタレート製のフィルムに積層させた試験片を準備する。前記試験片の前記フィルムに隣接する空間の圧力が0.1MPaとなるように窒素ガスを前記空間に送るとともに、2.5L/minの流量で前記流路スペーサに窒素ガスを送る。前記流路スペーサ内で、窒素ガスが前記流路スペーサの長手方向に移動することによって生じた圧力損失を測定する。
図1及び2は、本発明の一実施形態にかかるスパイラル型膜エレメント10(以下、「分離膜エレメント10」と称する)を示している。分離膜エレメント10は、中心管21及び積層体22を備えている。積層体22は、中心管21に巻き付けられ、中心管21の周囲に配置されている。積層体22の内部には、供給流体流路と透過流体流路とが形成されている。
中心管21と、
分離膜12及び透過スペーサ14を有し、中心管21に巻き付けられた膜リーフ11と、
透過スペーサ14に接続され、膜リーフ11よりも中心管21側で中心管21に巻き付けられた流路スペーサ15と、
を備え、
上記の試験により測定された流路スペーサ15の圧力損失P1が30kPa以下である、スパイラル型膜エレメント10を提供する。
分離膜12は、混合気体に含まれる酸性ガスを優先的に透過させることができる分離膜(ガス分離膜)であってもよく、混合液体に含まれる揮発性の有機化合物を優先的に透過させることができる分離膜(液体分離膜)であってもよい。以下では、ガス分離膜としての分離膜12について説明する。
分離機能層1は、例えば、混合気体に含まれる酸性ガスを優先的に透過させることができる層である。好ましい一形態では、分離機能層1は、樹脂を含む。分離機能層1に含まれる樹脂としては、例えば、ポリエーテルブロックアミド樹脂、ポリアミド樹脂、ポリエーテル樹脂、ポリイミド樹脂、酢酸セルロース樹脂、シリコーン樹脂及びフッ素樹脂が挙げられる。分離機能層1は、好ましくはポリエーテルブロックアミド樹脂を含む。この形態において、分離機能層1は、好ましくは、実質的に樹脂からなる。本明細書において、「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味し、例えば95wt%以上、さらには99wt%以上が当該材料により構成されていることを意味する。
中間層2は、例えば、樹脂を含み、樹脂(マトリクス)に分散したナノ粒子をさらに含んでいてもよい。ナノ粒子は、マトリクス内で互いに離間していてもよく、部分的に凝集していてもよい。マトリクスの材料は、特に限定されず、例えば、ポリジメチルシロキサンなどのシリコーン樹脂;ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレンオキシドなどのエポキシ樹脂;ポリイミド樹脂;ポリスルホン樹脂;ポリトリメチルシリルプロピン、ポリジフェニルアセチレンなどのポリアセチレン樹脂;ポリメチルペンテンなどのポリオレフィン樹脂;ポリウレタン樹脂が挙げられる。マトリクスは、シリコーン樹脂及びポリウレタン樹脂からなる群より選ばれる少なくとも1つを含むことが好ましく、シリコーン樹脂及びポリウレタン樹脂の両方を含むことがより好ましい。
多孔性支持体3は、中間層2を介して分離機能層1を支持する。多孔性支持体3としては、例えば、不織布;多孔質ポリテトラフルオロエチレン;芳香族ポリアミド繊維;多孔質金属;焼結金属;多孔質セラミック;多孔質ポリエステル;多孔質ナイロン;活性化炭素繊維;ラテックス;シリコーン;シリコーンゴム;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリウレタン、ポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルエーテルケトン、ポリアクリロニトリル、ポリイミド及びポリフェニレンオキシドからなる群より選ばれる少なくとも1つを含む透過性(多孔質)ポリマー;連続気泡又は独立気泡を有する金属発泡体;連続気泡又は独立気泡を有するポリマー発泡体;シリカ;多孔質ガラス;メッシュスクリーンなどが挙げられる。多孔性支持体3は、これらのうちの2種以上を組み合わせたものであってもよい。
分離膜12Aは、例えば、次の方法によって作製することができる。まず、中間層2の材料を含む塗布液を調製する。次に、多孔性支持体3の上に、中間層2の材料を含む塗布液を塗布し、塗布膜を形成する。塗布液の塗布方法は、特に限定されず、例えばスピンコート法、ディップコート法、グラビアコート法などを利用できる。ワイヤーバーなどを利用して塗布液を塗布してもよい。塗布液における中間層2の材料の濃度などを調整することによって、形成される中間層2の厚さを調整することができる。次に、塗布膜を乾燥し、中間層2を形成する。塗布膜の乾燥は、例えば、加熱条件下で行うことができる。塗布膜の加熱温度は、例えば50℃以上である。塗布膜の加熱時間は、例えば1分以上であり、5分以上であってもよい。
上述のとおり、分離膜12は、混合液体に含まれる揮発性の有機化合物を優先的に透過させることができる分離膜(液体分離膜)であってもよい。液体分離膜としての分離膜12は、例えば、浸透気化法によって、上記の有機化合物を含む気体の透過流体を生じさせる浸透気化膜である。以下では、液体分離膜としての分離膜12について説明する。
分離機能層5は、例えば、混合液体に含まれる揮発性の有機化合物を優先的に透過させることができる層である。分離機能層5は、例えば、ポリジメチルシロキサン(PDMS)などのシリコーン樹脂;ポリプロピレンなどのポリオレフィン樹脂などの疎水性材料を含む。分離機能層5は、疎水性材料としてシリコーン樹脂を含むことが好ましい。分離機能層5は、疎水性材料を主成分として含んでいてもよく、実質的に疎水性材料のみから構成されていてもよい。「主成分」は、分離機能層5に重量比で最も多く含まれる成分を意味する。
多孔性支持体6としては、分離膜12Aについて上述したものを用いることができる。
保護層は、例えば、分離機能層5の表面を被覆している。保護層の材料としては、特に限定されず、例えばシリコーン樹脂が挙げられる。保護層の材料は、分離機能層5のマトリクスの材料と同じであってもよい。保護層の厚さは、特に限定されず、例えば5μm以上であり、好ましくは10μm以上であり、より好ましくは20μm以上である。保護層の厚さは、例えば100μm以下であり、好ましくは50μm以下である。
分離膜12Bは、例えば、多孔性支持体6の上に分離機能層5を形成することによって作製することができる。詳細には、まず、分離機能層5の材料を含む塗布液を調製する。塗布液は、フィラーとともにフィラーを塗布液中に分散させるための分散剤を含んでいてもよい。塗布液がシリコーン樹脂を含む場合、塗布液は、シリコーン樹脂を硬化させるための触媒をさらに含んでいてもよい。次に、塗布液を多孔性支持体6の上に塗布することによって塗布膜を得る。塗布膜を乾燥させることによって、分離機能層5が形成される。
次に、図5及び6を参照して分離膜エレメント10の製造方法の一例を説明する。まず、図5に示すように、分離膜12の分離機能層1が内側に位置するように、分離膜12を2つに折り畳む。2つに折り畳まれた分離膜12の間に供給スペーサ13を配置し、分離膜12の上に透過スペーサ14を配置する。さらに、透過スペーサ14の外周部の3辺に接着剤26aを塗布する。これにより、分離膜ユニットUが得られる。接着剤26aは、この時点では、未硬化の状態である。
分離膜エレメント10では、供給流体の圧力と透過流体の圧力との差(圧力差)を駆動力として、分離膜12による供給流体の膜分離が進行する。そのため、分離膜エレメント10内で圧力損失が生じると、上記の圧力差が減少し、分離膜12からの透過流体の透過速度や透過流束が低下する。特に、中心管21の内部を減圧して分離膜エレメント10を運転する方式(減圧方式)では、供給流体を加圧して分離膜エレメント10を運転する方式(加圧方式)に比べて圧力差が小さい傾向があるため、圧力損失による圧力差の減少の影響が大きい。
一例として、二酸化炭素を供給流体として用いて、分離膜12(詳細には分離膜12A)を備えた分離膜エレメント10、及び平膜状の分離膜12(詳細には分離膜12A)のそれぞれを加圧方式で運転した場合、平膜状の分離膜12からの二酸化炭素の透過速度T(GPU)に対する、分離膜エレメント10からの二酸化炭素の透過速度T2(GPU)の比率Rは、例えば90%以上であり、好ましくは95%以上である。ここで、比率Rを特定するための加圧方式の運転において、分離膜エレメント10、又は平膜状の分離膜12に供給される供給流体は、温度が23℃であり、圧力が0.2MPaである。加圧方式では、透過流体が得られる空間(透過流体流路内の空間)の圧力は、測定環境における大気圧(例えば101kPa)と一致する。なお、GPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。
他の例として、イソプロパノール(IPA)及び水からなる混合液体を供給流体として用いて、分離膜12(詳細には分離膜12B)を備えた分離膜エレメント10、及び平膜状の分離膜12(詳細には分離膜12B)のそれぞれを減圧方式で運転した場合、平膜状の分離膜12からのIPAの透過流束F1(kg/m2/hr)に対する、分離膜エレメント10からのIPAの透過流束F2(kg/m2/hr)の比率Lは、例えば60%以上である。比率Lの上限値は、特に限定されず、例えば90%である。ここで、比率Lを特定するための減圧方式の運転において、分離膜エレメント10、又は平膜状の分離膜12に供給される供給流体は、温度が40℃である。供給流体の量は、透過流束F1及びF2の測定に影響が生じない範囲で適切に設定する。一例として、透過流束F2の測定では、分離膜エレメント10に送られる供給流体の供給流量を40g/minに設定してもよい。供給流体におけるIPAの濃度は5wt%である。減圧方式では、真空ポンプを用いて、透過流体が得られる空間(透過流体流路内の空間)を1.5kPaまで減圧する。減圧方式では、通常、気体の透過流体が得られる。気体の透過流体を凝縮し、得られた液体の透過流体の組成を分析することによって、透過流束F1及びF2を特定することができる。
本実施形態の分離膜エレメント10の用途の一例としては、酸性ガスを含む混合気体から酸性ガスを分離する用途が挙げられる。混合気体の酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。混合気体は、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素などの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。上記の分離膜12Aを備えた分離膜エレメント10は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離する用途に適している。
図7に示すとおり、本実施形態の膜分離システム100は、上述の分離膜エレメント10及び減圧装置60を備える。減圧装置60は、分離膜エレメント10の中心管21の内部を減圧することができる。言い換えると、減圧装置60によって、分離膜エレメント10の供給流体流路内の空間と透過流体流路内の空間との間において、差圧を生じさせる、又は、差圧を増加させることができる。減圧装置60の具体例は、真空ポンプなどの真空装置である。膜分離システム100は、2つの分離膜エレメント10a及び10bと、2つの減圧装置60a及び60bとを備えていてもよい。膜分離システム100は、酸性ガスを含む混合気体から酸性ガスを分離する用途に適している。
[分離膜の作製]
まず、シリコーン樹脂及びポリウレタン樹脂を9:1の重量比で含む塗布液を調製した。塗布液は、溶媒として水を含んでいた。次に、グラビアコート法によって、塗布液を多孔性支持体の上に塗布することによって塗布膜を得た。多孔性支持体としては、日東電工社製のUF膜(限外ろ過膜)RS-50(PVDF多孔質層とPET不織布との積層体)を用いた。得られた塗布膜を乾燥させることによって、中間層を形成した。これにより、多孔性支持体及び中間層の積層体を作製した。
図6のスペーサ16としてNBCメッシュテック社製のPE30を用い、他の透過スペーサ14としてKBセーレン社製の#1000Eを用い、さらに、供給スペーサ13として東京インキ社製の34milを用いて、図6を参照して説明した方法によって実施例1のスパイラル型膜エレメントを作製した。なお、スペーサ16の第1部分16aは、中心管に巻き付けられる方向における長さが90mmであり、中心管が延びる方向における長さが280mmであった。透過スペーサ14は、中心管に巻き付けられる方向における長さが290mmであり、中心管が延びる方向における長さが280mmであった。スペーサ16及び透過スペーサ14は、中心管に巻き付けられたのち端部が切断された。スパイラル型膜エレメントにおいて、中心管が延びる方向について、これらのスペーサが有効に機能する長さは、180mmであった。中心管21の外径は17.3mmであり、スパイラル型膜エレメントの外径は約2インチであった。
スペーサ16を表2のように変更したことを除き、実施例1と同じ方法によって、実施例2及び3のスパイラル型膜エレメントを作製した。
分離膜として、多孔性支持体及び中間層の積層体(分離機能層を作製する前の積層体)を用いたことを除き、実施例1と同じ方法によって、実施例4のスパイラル型膜エレメントを作製した。
スペーサ16の第1部分16a、及び透過スペーサ14について、中心管が延びる方向における長さを1mに変更したこと、透過スペーサ14について、中心管に巻き付けられる方向における長さを400mmに変更したこと、スペーサ16の第1部分16aについて、中心管に巻き付けられる方向における長さを136mmに変更したこと、及び、スパイラル型膜エレメントの外径を約4インチに変更したことを除き、実施例1と同じ方法によって、実施例5のスパイラル型膜エレメントを作製した。
スペーサ16としてKBセーレン社製の#1000Eを用いたことを除き、実施例1と同じ方法によって、比較例1のスパイラル型膜エレメントを作製した。
スペーサ16としてKBセーレン社製の#1000Eを用いたことを除き、実施例4と同じ方法によって、比較例2のスパイラル型膜エレメントを作製した。
実施例1~5及び比較例1~2のスパイラル型膜エレメントに用いた分離膜について、平膜の状態での二酸化炭素の透過速度T1(GPU)を測定した。透過速度T1の測定は、差圧式ガス透過率測定装置(GTRテック社製のGTR-31AHND)を用いて、以下の方法によって行った。まず、分離膜を平膜の状態で金属セル中にセットし、リークが発生しないようにOリングでシールした。分離膜の膜面積は、3.14cm2であった。次に、分離膜の分離機能層(又は中間層)側の主面に供給流体が接触するように、金属セル内に供給流体(二酸化炭素)を注入した。金属セル内に注入された供給流体は、温度が23℃であり、圧力が0.1MPaであった。次に、真空ポンプを用いて、分離膜の多孔性支持体側の主面に隣接する空間を10kPa程度以下まで減圧した。これにより、分離膜の多孔性支持体側の主面から透過流体が得られた。得られた透過流体の組成、透過流体の重量などに基づいて、二酸化炭素の透過速度T1を算出した。なお、透過流体の組成などは、ガスクロマトグラフィー(ヤナコテクニカルサイエンス社製のG2700T)を用いて測定した。
次に、実施例1~5及び比較例1~2のスパイラル型膜エレメントを加圧方式で運転したときの二酸化炭素の透過速度T2(GPU)、及び、当該スパイラル型膜エレメントを減圧方式で運転したときの二酸化炭素の透過速度T3(GPU)を測定した。
[分離膜の作製]
まず、シリコーン樹脂(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のYSR3022)、シリコーン硬化触媒(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のYC6831)、及びハイシリカゼオライト(ユニオン昭和社製のHiSiv3000)を混合して塗布液を調製した。次に、塗布液を多孔性支持体(日東電工社製のRS-50)の上に塗布することによって塗布膜を得た。塗布膜を乾燥させることによって、分離機能層を作製した。これにより、分離膜を得た。分離機能層において、シリコーン樹脂とハイシリカゼオライトとの重量比は、50:50であった。
図6のスペーサ16としてNBCメッシュテック社製のPE30を用い、他の透過スペーサ14としてKBセーレン社製の#1000Eを用い、さらに、供給スペーサ13として東京インキ社製の34milを用いて、図6を参照して説明した方法によって実施例6のスパイラル型膜エレメントを作製した。なお、スペーサ16の第1部分16aは、中心管に巻き付けられる方向における長さが90mmであり、中心管が延びる方向における長さが280mmであった。透過スペーサ14は、中心管に巻き付けられる方向における長さが140mmであり、中心管が延びる方向における長さが280mmであった。スペーサ16及び透過スペーサ14は、中心管に巻き付けられたのち端部が切断された。スパイラル型膜エレメントにおいて、中心管が延びる方向について、これらのスペーサが有効に機能する長さは、180mmであった。中心管21の外径は17.3mmであり、スパイラル型膜エレメントの外径は約2インチであった。
スペーサ16を表3のように変更したことを除き、実施例6と同じ方法によって、実施例7のスパイラル型膜エレメントを作製した。
スペーサ16としてKBセーレン社製の#1000Eを用いたことを除き、実施例6と同じ方法によって、比較例3のスパイラル型膜エレメントを作製した。
実施例6~7及び比較例3のスパイラル型膜エレメントに用いた分離膜について、平膜の状態でのイソプロパノール(IPA)の透過流束F1(kg/m2/hr)を測定した。透過流束F1の測定は、以下の方法によって行った。まず、分離膜を平膜の状態で金属セル中にセットし、リークが発生しないようにOリングでシールした。分離膜の膜面積は、34.2cm2であった。次に、分離膜の分離機能層側の主面に供給流体が接触するように、金属セル内に供給流体を充填した。供給流体は、実質的にIPA及び水から構成されていた。供給流体におけるIPAの濃度は5wt%であった。金属セル内に供給された供給流体は、温度が40℃であった。次に、真空ポンプを用いて、分離膜の多孔性支持体側の主面に隣接する空間を1.5kPaまで減圧した。これにより、分離膜の多孔性支持体側の主面から気体の透過流体が得られた。すなわち、減圧方式の運転により、浸透気化法(PV)による分離が進行した。-196℃の液体窒素を用いて、気体の透過流体を冷却することによって、透過流体を液化した。ガスクロマトグラフィーを用いて、液体の透過流体の組成を分析した。得られた透過流体の組成、透過流体の重量などに基づいて、IPAの透過流束F1を算出した。
次に、実施例6~7及び比較例3のスパイラル型膜エレメントを減圧方式で運転したときのIPAの透過流束F2(kg/m2/hr)を測定した。
Claims (14)
- 中心管と、
分離膜及び透過スペーサを有し、前記中心管に巻き付けられた膜リーフと、
前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられた流路スペーサと、
を備え、
下記試験により測定された前記流路スペーサの圧力損失P1が、下記試験により測定された前記透過スペーサの圧力損失P2よりも小さい、スパイラル型膜エレメント。
試験:縦150mm×横47mmの短冊状のスペーサ(前記流路スペーサ又は前記透過スペーサ)をポリエチレンテレフタレート製のフィルムに積層させた試験片を準備する。前記試験片の前記フィルムに隣接する空間の圧力が0.1MPaとなるように窒素ガスを前記空間に送るとともに、2.5L/minの流量で前記スペーサに窒素ガスを送る。前記スペーサ内で、窒素ガスが前記スペーサの長手方向に移動することによって生じた圧力損失を測定する。 - 前記圧力損失P1が30kPa以下である、請求項1に記載のスパイラル型膜エレメント。
- 前記流路スペーサの開口率が30%以上である、請求項1又は2に記載のスパイラル型膜エレメント。
- 前記流路スペーサの厚さが300μm以上である、請求項1~3のいずれか1項に記載のスパイラル型膜エレメント。
- 前記膜リーフは、2つの前記分離膜を有し、
2つの前記分離膜は、互いに重ね合わされ、袋状の構造を有するように封止されている、請求項1~4のいずれか1項に記載のスパイラル型膜エレメント。 - 前記透過スペーサは、2つの前記分離膜の間に配置されている、請求項5に記載のスパイラル型膜エレメント。
- 前記膜リーフに積層された供給スペーサをさらに備えた、請求項1~6のいずれか1項に記載のスパイラル型膜エレメント。
- 前記中心管には、開口部が設けられており、
前記流路スペーサが前記開口部に接している、請求項1~7のいずれか1項に記載のスパイラル型膜エレメント。 - 前記分離膜は、
分離機能層と、
前記分離機能層を支持している多孔性支持体と、
を有する、請求項1~8のいずれか1項に記載のスパイラル型膜エレメント。 - 前記分離機能層は、ポリエーテルブロックアミド樹脂を含む、請求項9に記載のスパイラル型膜エレメント。
- 前記分離機能層は、シリコーン樹脂を含む、請求項9に記載のスパイラル型膜エレメント。
- (i)二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる、並びに、(ii)アルコール及び水を含む混合液体からアルコールを分離するために用いられる、の少なくとも1つが成立する、請求項1~11のいずれか1項に記載のスパイラル型膜エレメント。
- 請求項1~12のいずれか1項に記載のスパイラル型膜エレメントと、
前記中心管の内部を減圧する減圧装置と、
を備えた、膜分離システム。 - 中心管と、
分離膜及び透過スペーサを有し、前記中心管に巻き付けられた膜リーフと、
前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられた流路スペーサと、
を備え、
下記試験により測定された前記流路スペーサの圧力損失P1が30kPa以下である、スパイラル型膜エレメント。
試験:縦150mm×横47mmの短冊状の前記流路スペーサをポリエチレンテレフタレート製のフィルムに積層させた試験片を準備する。前記試験片の前記フィルムに隣接する空間の圧力が0.1MPaとなるように窒素ガスを前記空間に送るとともに、2.5L/minの流量で前記流路スペーサに窒素ガスを送る。前記流路スペーサ内で、窒素ガスが前記流路スペーサの長手方向に移動することによって生じた圧力損失を測定する。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/281,116 US20240149221A1 (en) | 2021-03-09 | 2022-02-28 | Spiral membrane element and membrane separation system |
EP22766897.7A EP4306205A1 (en) | 2021-03-09 | 2022-02-28 | Spiral membrane element and membrane separation system |
JP2023505308A JPWO2022190938A1 (ja) | 2021-03-09 | 2022-02-28 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021037655 | 2021-03-09 | ||
JP2021-037655 | 2021-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190938A1 true WO2022190938A1 (ja) | 2022-09-15 |
Family
ID=83226618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/008373 WO2022190938A1 (ja) | 2021-03-09 | 2022-02-28 | スパイラル型膜エレメント及び膜分離システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240149221A1 (ja) |
EP (1) | EP4306205A1 (ja) |
JP (1) | JPWO2022190938A1 (ja) |
WO (1) | WO2022190938A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202568A1 (ja) * | 2023-03-28 | 2024-10-03 | 日東電工株式会社 | 分離膜 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010082575A (ja) * | 2008-10-01 | 2010-04-15 | Toray Ind Inc | スパイラル型流体分離膜エレメントの製造方法およびその製造装置 |
JP4650921B2 (ja) | 2003-04-03 | 2011-03-16 | 日東電工株式会社 | スパイラル型分離膜エレメント |
JP2012020282A (ja) * | 2010-06-18 | 2012-02-02 | Nitto Denko Corp | スパイラル型分離膜エレメント、有孔中空管およびその製造方法 |
JP2015085233A (ja) * | 2013-10-29 | 2015-05-07 | 日東電工株式会社 | 流路部材及び正浸透膜エレメント |
-
2022
- 2022-02-28 EP EP22766897.7A patent/EP4306205A1/en active Pending
- 2022-02-28 US US18/281,116 patent/US20240149221A1/en active Pending
- 2022-02-28 WO PCT/JP2022/008373 patent/WO2022190938A1/ja active Application Filing
- 2022-02-28 JP JP2023505308A patent/JPWO2022190938A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4650921B2 (ja) | 2003-04-03 | 2011-03-16 | 日東電工株式会社 | スパイラル型分離膜エレメント |
JP2010082575A (ja) * | 2008-10-01 | 2010-04-15 | Toray Ind Inc | スパイラル型流体分離膜エレメントの製造方法およびその製造装置 |
JP2012020282A (ja) * | 2010-06-18 | 2012-02-02 | Nitto Denko Corp | スパイラル型分離膜エレメント、有孔中空管およびその製造方法 |
JP2015085233A (ja) * | 2013-10-29 | 2015-05-07 | 日東電工株式会社 | 流路部材及び正浸透膜エレメント |
Non-Patent Citations (1)
Title |
---|
E. KAMIO ET AL., ADV.MATER, vol. 29, 2017, pages 1704118 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024202568A1 (ja) * | 2023-03-28 | 2024-10-03 | 日東電工株式会社 | 分離膜 |
Also Published As
Publication number | Publication date |
---|---|
US20240149221A1 (en) | 2024-05-09 |
EP4306205A1 (en) | 2024-01-17 |
JPWO2022190938A1 (ja) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7421379B2 (ja) | 分離膜 | |
US9839882B2 (en) | Method for producing acid gas separation composite membrane, and acid gas separation membrane module | |
EP2954943B1 (en) | Device for separation of oxygen and nitrogen | |
US6168648B1 (en) | Spiral wound type membrane module, spiral wound type membrane element and running method thereof | |
US9718030B2 (en) | Method for producing acid gas separation composite membrane, and acid gas separation membrane module | |
US9452384B2 (en) | Acidic gas separation laminate and acidic gas separation module provided with laminate | |
US9457319B2 (en) | Acidic gas separation laminate and acidic gas separation module provided with laminate | |
WO2022190938A1 (ja) | スパイラル型膜エレメント及び膜分離システム | |
WO2018168820A1 (ja) | ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置 | |
WO2022030267A1 (ja) | ガス分離システム及び混合ガスの分離方法 | |
WO2023008220A1 (ja) | スパイラル型膜エレメント及び膜分離システム | |
WO2022196306A1 (ja) | 分離膜の製造方法及び分離膜 | |
WO2022059368A1 (ja) | 分離膜、分離膜の製造方法及び分離膜を製造するための塗布液 | |
US20240359140A1 (en) | Spiral membrane element and membrane separation system | |
WO2021172087A1 (ja) | 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置 | |
WO2024190846A1 (ja) | ガス分離システム及び混合ガスの分離方法 | |
JP5356882B2 (ja) | プリーツ成形体の製造方法及びプリーツ成形体 | |
JP5101553B2 (ja) | プリーツ成形体の製造方法及びプリーツ成形体 | |
WO2024038722A1 (ja) | スパイラル型膜エレメント及び膜分離装置 | |
JP2014065034A (ja) | 酸性ガス分離層、その製造方法及びその促進輸送膜、並びに、酸性ガス分離モジュール及び酸性ガス分離システム | |
WO2021039309A1 (ja) | 酸性ガス分離膜、酸性ガス分離装置、酸性ガス分離膜の製造方法、及び酸性ガス分離方法 | |
WO2024177026A1 (ja) | ガス分離システム及び混合ガスの分離方法 | |
JP2023030786A (ja) | 二酸化炭素分離膜用イオン液体組成物、及び該組成物を保持した二酸化炭素分離膜、並びに該二酸化炭素分離膜を備えた二酸化炭素の濃縮装置 | |
WO2014050997A1 (ja) | 分離モジュール、分離システム及び分離システム群 | |
JP2013031852A (ja) | プリーツ成形体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22766897 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023505308 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18281116 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022766897 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022766897 Country of ref document: EP Effective date: 20231009 |