WO2023008220A1 - スパイラル型膜エレメント及び膜分離システム - Google Patents

スパイラル型膜エレメント及び膜分離システム Download PDF

Info

Publication number
WO2023008220A1
WO2023008220A1 PCT/JP2022/027761 JP2022027761W WO2023008220A1 WO 2023008220 A1 WO2023008220 A1 WO 2023008220A1 JP 2022027761 W JP2022027761 W JP 2022027761W WO 2023008220 A1 WO2023008220 A1 WO 2023008220A1
Authority
WO
WIPO (PCT)
Prior art keywords
central tube
membrane element
separation
spiral wound
membrane
Prior art date
Application number
PCT/JP2022/027761
Other languages
English (en)
French (fr)
Inventor
慎 片桐
吉宏 中村
真哉 西山
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280045918.0A priority Critical patent/CN117580635A/zh
Priority to JP2023538432A priority patent/JPWO2023008220A1/ja
Priority to EP22849283.1A priority patent/EP4378569A1/en
Publication of WO2023008220A1 publication Critical patent/WO2023008220A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/107Specific properties of the central tube or the permeate channel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a spiral membrane element and a membrane separation system.
  • a membrane separation method has been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide.
  • the membrane separation method can efficiently separate the acid gas while suppressing the operating cost, compared to the absorption method in which the acid gas contained in the mixed gas is absorbed by an absorbent and separated.
  • a spiral membrane element is used for the membrane separation method.
  • a spiral wound membrane element comprises a central tube and a separation membrane wound around the central tube.
  • a spiral wound membrane element is suitable for increasing the membrane area of the separation membrane in the membrane element.
  • the central tube is usually formed with an opening for guiding the permeated fluid that has passed through the separation membrane to the inside of the central tube.
  • Patent Literature 1 discloses a spiral membrane element having a central tube with a circular through hole.
  • the permeation rate of the permeating fluid from the separation membrane tends to be lower than the permeation rate of the permeating fluid from the same flat membrane separation membrane. In other words, when the separation membrane is applied to the spiral membrane element, the permeation rate of the permeating fluid from the separation membrane tends to decrease.
  • an object of the present invention is to provide a spiral membrane element suitable for suppressing a decrease in permeation rate of a permeating fluid through a separation membrane.
  • the present invention a central canal; a separation membrane wrapped around the central tube; with
  • the central tube has an opening for guiding the permeated fluid that has passed through the separation membrane to the inside of the central tube,
  • the opening provides a spiral-wound membrane element extending longitudinally of the central tube.
  • the present invention provides the above spiral membrane element; a decompression device for decompressing the inside of the central tube; to provide a membrane separation system.
  • FIG. 1 is an exploded perspective view schematically showing a spiral wound type membrane element according to an embodiment of the present invention
  • FIG. FIG. 4 is a perspective view of a central tube provided in the spiral wound membrane element
  • FIG. 4 is an exploded view showing an example of a central tube
  • FIG. 4 is an exploded view showing another example of the central tube
  • FIG. 10 is an exploded view showing still another example of the central canal
  • FIG. 10 is an exploded view showing still another example of the central canal
  • It is a figure for demonstrating the dimension of a central tube and an opening.
  • 1 is a schematic cross-sectional view of a spiral wound membrane element;
  • FIG. FIG. 4 is a perspective view of a central tube provided in the spiral wound membrane element
  • FIG. 4 is an exploded view showing an example of a central tube
  • FIG. 4 is an exploded view showing another example of the central tube
  • FIG. 10 is an exploded view showing still another example of the central canal
  • FIG. 10 is an exploded view showing still another example
  • FIG. 3 is a schematic cross-sectional view of a separation membrane included in the spiral wound type membrane element.
  • FIG. 4 is a diagram for explaining a method for manufacturing a spiral wound type membrane element;
  • FIG. 4 is a diagram for explaining a method for manufacturing a spiral wound type membrane element;
  • 1 is a configuration diagram of a membrane separation system equipped with a spiral membrane element;
  • FIG. 3 is a perspective view of a central tube provided in a conventional spiral membrane element.
  • 10B is an exploded view of the central canal shown in FIG. 10A.
  • the spiral wound membrane element according to the first aspect of the present invention comprises a central canal; a separation membrane wrapped around the central tube; with The central tube has an opening for guiding the permeated fluid that has passed through the separation membrane to the inside of the central tube, The opening extends longitudinally of the central tube.
  • the shape of the opening is rectangular.
  • the aspect ratio R of the opening satisfies 1 ⁇ R ⁇ 1000.
  • the maximum length of the opening in the circumferential direction of the central tube is 1 mm to 10 mm.
  • the central tube has a plurality of openings.
  • the plurality of openings are arranged in the circumferential direction of the central tube.
  • the central tube has 2 to 64 openings.
  • the spiral wound type membrane element according to any one of the first to seventh aspects comprises a membrane leaf having the separation membrane and the permeation spacer, and the membrane leaf is attached to the central tube. wrapped around.
  • the membrane leaf has two separation membranes, and the two separation membranes are overlapped to form a bag-like structure. is sealed so as to have
  • the permeation spacer is arranged between the two separation membranes.
  • the spiral wound type membrane element according to any one of the eighth to tenth aspects further comprises a feed spacer stacked on the membrane leaf.
  • the spiral wound type membrane element according to any one of the eighth to eleventh aspects is connected to the permeation spacer and connected to the central tube on the central tube side of the membrane leaves. It further comprises a flow path spacer that is wrapped around.
  • the channel spacer is in contact with the opening.
  • the separation membrane comprises a separation functional layer and a porous membrane supporting the separation functional layer. It has a support and an intermediate layer disposed between the separation functional layer and the porous support.
  • the spiral wound membrane element according to any one of the first to fourteenth aspects is used for treating gas.
  • the spiral wound membrane element according to any one of the first to fifteenth aspects is used to separate carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the membrane separation system according to the seventeenth aspect of the present invention comprises a spiral wound membrane element according to any one of the first to sixteenth aspects; a decompression device for decompressing the inside of the central tube; Prepare.
  • FIG. 1 shows a spiral membrane element 10 (hereinafter referred to as "separation membrane element 10") according to one embodiment of the present invention.
  • the separation membrane element 10 includes a central tube 21 and a laminate 22 having separation membranes 12 .
  • the laminate 22 (and the separation membrane 12 ) is wound around the central tube 21 and arranged around the central tube 21 .
  • a feed fluid channel and a permeate fluid channel are formed inside the laminate 22 .
  • the feed fluid is supplied from one end surface of the laminate 22 into the separation membrane element 10 and flows through the feed fluid channel parallel to the longitudinal direction of the central tube 21 .
  • the feed fluid is separated by the separation membrane 12 to produce a permeate fluid and a non-permeate fluid.
  • the permeating fluid is led outside through the central tube 21 .
  • the non-permeating fluid is discharged outside the separation membrane element 10 from the other end face of the laminate 22 .
  • the feed fluid to be treated by the separation membrane element 10 may be gas or liquid.
  • the feed fluid is a gas mixture containing acid gases, particularly a gas mixture containing carbon dioxide and nitrogen.
  • the shape of the central tube 21 is typically cylindrical, particularly cylindrical.
  • the central tube 21 has an opening 30 for introducing the permeated fluid that has passed through the separation membrane 12 into the central tube 21 .
  • the opening 30 extends in the longitudinal direction X of the central tube 21 . That is, the opening 30 has a maximum length in the longitudinal direction X.
  • the opening 30 is formed in the wall surface of the central tube 21 and communicates the inner space and the outer space of the central tube 21 . In other words, the opening 30 penetrates the wall surface of the central tube 21 .
  • the central tube 21 plays a role of guiding the permeated fluid collected through the opening 30 to the outside of the separation membrane element 10 .
  • FIG. 3A shows a diagram in which the central tube 21 is developed in the circumferential direction Y of the central tube 21.
  • the shape of the opening 30 is typically rectangular, and may be rectangular with rounded corners.
  • the shape of the opening 30 is not limited to a rectangle, and may be an elliptical shape elongated in the longitudinal direction X, a polygonal shape other than a rectangle, or the like.
  • the central tube 21 preferably has a plurality of openings 30.
  • the number of openings 30 in the central tube 21 is, for example, two or more, and may be four or more.
  • the upper limit of the number of openings 30 is not particularly limited, and may be 64, may be 32, may be 16, or may be 8, for example.
  • the number of multiple openings 30 is, for example, 2-64, and may be 2-8.
  • the shape and dimensions of the plurality of openings 30 may be the same or different.
  • the plurality of openings 30 are arranged in the circumferential direction Y of the central tube 21, and preferably arranged in the circumferential direction Y at regular intervals.
  • the central tube 21 having four or more openings 30 arranged in the circumferential direction Y tends to further suppress the decrease in permeation speed of the permeating fluid.
  • the plurality of openings 30 may be arranged in the longitudinal direction X of the central tube 21, or may be arranged in the longitudinal direction X of the central tube 21 at regular intervals.
  • the durability of the central tube 21 tends to be improved.
  • the number of openings 30 aligned in the longitudinal direction X is preferably 5 or less, more preferably 3 or less.
  • the plurality of openings 30 may be arranged in a grid pattern, or may be arranged in a zigzag pattern.
  • FIG. 3A shows an example in which two openings 30a and 30b are arranged in the circumferential direction Y in the central tube 21.
  • FIG. 3A the two openings 30a and 30b have the same shape and size as each other.
  • FIG. 3B shows an example in which four openings 30a to 30d are arranged in the circumferential direction Y in the central tube 21.
  • the four openings 30a to 30d have the same shape and size and are arranged in the circumferential direction Y at regular intervals.
  • 3C shows an example in which eight openings 30a to 30h are arranged in the circumferential direction Y in the central tube 21.
  • FIG. 3C the eight openings 30a to 30h have the same shape and size and are arranged in the circumferential direction Y at regular intervals.
  • FIG. 3D shows an example in which six openings 30a to 30f are arranged in a grid pattern in the central tube 21.
  • three openings 30d to 30f are arranged in the longitudinal direction X.
  • Rows of the openings 30a to 30c and rows of the openings 30d to 30f are arranged in the circumferential direction Y. As shown in FIG.
  • FIG. 3E shows an example in which 12 openings 30a to 30l are arranged in a grid pattern in the central tube 21.
  • the openings 30j to 30l are arranged in the longitudinal direction X.
  • a row of openings 30a to 30c, a row of openings 30d to 30f, a row of openings 30g to 30i, and a row of openings 30j to 30l are arranged in the circumferential direction Y. I'm in.
  • Materials for the central tube 21 include metals and resins.
  • a central tube 21 made of metal tends to be more durable.
  • a central tube 21 made of resin tends to be inexpensive to manufacture.
  • Examples of the metal forming the central tube 21 include stainless steel.
  • Examples of the resin forming the central tube 21 include noryl resin and ABS resin, and ABS resin is preferable.
  • the material of the central tube 21 may be fiber reinforced plastic (FRP), plastic, ceramics, or the like.
  • the length A1 of the central tube 21 in the longitudinal direction X is not particularly limited, and is, for example, 100 mm to 1500 mm, preferably 200 mm to 1200 mm.
  • the outer diameter of the central tube 21 is not particularly limited, and is, for example, 10 mm to 100 mm, preferably 12 mm to 50 mm.
  • a length A2 of the central tube 21 in the circumferential direction Y is not particularly limited, and is, for example, 30 mm to 350 mm, preferably 40 mm to 160 mm. Note that FIG. 4 shows, as an example, the length A1 and the like of the central tube 21 shown in FIG. 3A.
  • the maximum length a1 of the opening 30 in the longitudinal direction X is not particularly limited, and is, for example, 10 mm to 1500 mm, preferably 100 mm to 300 mm.
  • a maximum length a2 of the opening 30 in the circumferential direction Y is not particularly limited, and is, for example, 1 mm to 20 mm, preferably 1 mm to 10 mm.
  • the aspect ratio R of the opening 30 satisfies 1 ⁇ R ⁇ 1000, for example.
  • the aspect ratio R is preferably 5 or more, and may be 10 or more, 20 or more, 30 or more, 40 or more, 50 or more, or even 60 or more.
  • the aspect ratio R may be 500 or less, or 100 or less.
  • the aspect ratio R of the opening 30 means the ratio of the maximum length a1 (mm) in the longitudinal direction X to the maximum length a2 (mm) in the circumferential direction Y.
  • the ratio P1 of the maximum length a1 (mm) of the opening 30 in the longitudinal direction X to the length A1 (mm) of the central tube 21 in the longitudinal direction X is not particularly limited, and is, for example, 10% or more and 30%. It may be 50% or more, or 70% or more.
  • the upper limit of the ratio P1 is not particularly limited, and is, for example, 90%.
  • a ratio P2 of the maximum length a2 (mm) of the opening 30 in the circumferential direction Y to the length A2 (mm) of the central tube 21 in the circumferential direction Y is not particularly limited, and is, for example, 50% or less, or 30%. It may be 20% or less, 10% or less, or 5% or less.
  • the lower limit of the ratio P2 is not particularly limited, and is 1%, for example.
  • the distance between two openings 30 adjacent to each other is not particularly limited, and is, for example, 50 mm or less, may be 30 mm or less, or may be 10 mm or less. It may be 5 mm or less.
  • the lower limit of the distance between two openings 30 adjacent to each other is not particularly limited, and is 1 mm, for example.
  • the total area B of all openings 30 is not particularly limited, and is, for example, 1 cm 2 to 1500 cm 2 , preferably 10 cm 2 to 200 cm 2 .
  • a ratio P3 of the total area B of all the openings 30 to the area B1 of the main surface (the surface having the widest area) of the central tube 21 is not particularly limited, and is, for example, 10% or more, or 30% or more. , or 50% or more.
  • the upper limit of the ratio P3 is not particularly limited, and is, for example, 70%.
  • the laminate 22 has a plurality of membrane leaves 11. As shown in FIG. 5, the laminate 22 has a plurality of membrane leaves 11. As shown in FIG. Each membrane leaf 11 is wrapped around a central tube 21 . Each membrane leaf 11 has a separation membrane 12 and a permeate spacer 14 . Specifically, the membrane leaf 11 has two separation membranes 12 . Two separation membranes 12 are superimposed on each other and sealed on three sides to have a bag-like structure. For sealing the two separation membranes 12, for example, an adhesive layer 26 containing an adhesive is used. A permeation spacer 14 is arranged between the two separation membranes 12 so as to be located inside the bag-like structure. The permeate spacer 14 secures a space as a permeate fluid channel between the two separation membranes 12 .
  • the number of membrane leaves 11 in the laminate 22 is not particularly limited, and is, for example, 2-30.
  • the laminate 22 further has supply spacers 13 .
  • the feed spacer 13 is positioned outside the bag-like structure and laminated to the membrane leaf 11 .
  • the stack 22 has a plurality of supply spacers 13, and in the stack 22, a plurality of supply spacers 13 and a plurality of film leaves 11 are alternately stacked.
  • the supply spacer 13 secures a space as a supply fluid channel between the membrane leaves 11 .
  • the separation membrane element 10 further includes a channel spacer 15.
  • the channel spacer 15 is positioned between the central tube 21 and the laminate 22 and is wound around the central tube 21 on the central tube 21 side of the laminate 22 (and the membrane leaf 11).
  • the channel spacer 15 secures a space as a permeating fluid channel between the laminate 22 and the central tube 21 .
  • a channel spacer 15 is connected to the open end of the membrane leaf 11 described above. Thereby, the permeate spacer 14 of the membrane leaf 11 is connected to the channel spacer 15 .
  • the channel spacer 15 is in contact with the opening 30 of the central tube 21 . This allows the permeating fluid to flow from the channel spacer 15 into the central tube 21 through the opening 30 .
  • Examples of the supply spacer 13, the permeation spacer 14, and the channel spacer 15 include nets, meshes, wire fabrics, fiber fabrics, nonwoven fabrics, grooved sheets, corrugated sheets, and the like.
  • Examples of materials for these spacers 13 to 15 include polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyamide, polyphenylene sulfide (PPS), ethylene-chlorotrifluoroethylene copolymer (ECTFE), Resin materials such as epoxy resins and urethane resins; natural polymers; rubbers; metals, and the like.
  • the thickness of the spacers 13-15 is not particularly limited, and is, for example, 100 ⁇ m-2000 ⁇ m.
  • the aperture ratio of the spacers 13-15 is not particularly limited, and is, for example, 10%-80%.
  • the aperture ratio of the spacer can be specified by the following method. First, the spacer to be measured is placed on the film, and the surface of the spacer is observed with a scanning electron microscope (SEM). From the obtained electron microscope image, the area C1 of the surface of the spacer and the area C2 where the film can be confirmed through the spacer (the area of the gap formed in the spacer) are calculated by image processing. The ratio of the area C2 to the area C1 can be specified as the aperture ratio of the spacer.
  • the separation membrane element 10 may further include a shell surrounding the laminate 22.
  • the shell may be made of FRP.
  • end surface members may be arranged on both sides of the laminate 22 .
  • the separation membrane 12 is arranged, for example, in the separation functional layer 1, the porous support 3 supporting the separation functional layer 1, and between the separation functional layer 1 and the porous support 3. It has an intermediate layer 2 with a The intermediate layer 2 is in direct contact with the separation functional layer 1 and the porous support 3, for example.
  • the separation functional layer 1 is, for example, a layer that preferentially allows the acidic gas contained in the mixed gas to permeate.
  • the separation functional layer 1 contains a resin.
  • resins contained in the separation functional layer 1 include polyether block amide resins, polyamide resins, polyether resins, polyimide resins, cellulose acetate resins, silicone resins and fluorine resins.
  • the separation functional layer 1 preferably contains a polyether block amide resin.
  • the separation functional layer 1 is preferably substantially made of resin.
  • "consisting essentially of” means excluding other ingredients that alter the essential characteristics of the material referred to, such as 95 wt% or more, or even 99 wt% or more of the material. It means that it is composed of
  • the separation functional layer 1 contains an ionic liquid.
  • the separation functional layer 1 has, for example, a double network gel containing an ionic liquid.
  • a double network gel is a gel that has two types of network structures that are independent of each other.
  • a double network gel includes, for example, a first network structure mainly composed of an organic material, a second network structure mainly composed of an inorganic material, and an ionic liquid.
  • "mainly composed of” means that 50 wt% or more, or even 70 wt% or more is composed of the material.
  • the organic material for forming the first network structure includes, for example, a polymer such as polyacrylamide (especially polydialkylacrylamide such as polydimethylacrylamide).
  • the polymer contained in the organic material has a structural unit derived from an acrylamide derivative and may further contain a crosslinked structure.
  • a polymer containing a crosslinked structure can be produced by a known method. For example, first, a prepolymer having structural units having N-hydroxysuccinimide ester groups is prepared. A structural unit having an N-hydroxysuccinimide ester group is derived from, for example, N-acryloxysuccinimide. Next, a polymer containing a crosslinked structure can be obtained by reacting the prepolymer with an amine-based crosslinking agent.
  • Amine crosslinkers are compounds with two or more primary amino groups, such as ethylene glycol bis(3-aminopropyl) ether.
  • the second network structure may include a network of multiple particles.
  • a network of a plurality of particles is formed, for example, by bonding a plurality of particles to each other through hydrogen bonding.
  • Particles included in the second network structure may be particles exemplified as nanoparticles to be described later.
  • the particles included in the second network structure are silica particles.
  • specific ionic liquids include, for example, ionic liquids having imidazolium, pyridinium, ammonium, or phosphonium and substituents having 1 or more carbon atoms.
  • the substituent having 1 or more carbon atoms includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, and a cycloalkyl group having 3 to 14 carbon atoms. 6 or more and 20 or less aryl groups, etc., which may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group or the like (for example, a hydroxyalkyl group having 1 or more and 20 or less carbon atoms etc).
  • alkyl groups having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl
  • the above alkyl group may be substituted with a cycloalkyl group.
  • the number of carbon atoms in the alkyl group substituted by the cycloalkyl group is, for example, 1 or more and 20 or less.
  • Alkyl groups substituted by cycloalkyl groups include cyclopropylmethyl, cyclobutylmethyl, cyclohexylmethyl, cyclohexylpropyl groups and the like, which further include hydroxy, cyano, amino, monovalent ether It may be substituted with a group or the like.
  • cycloalkyl groups having 3 to 14 carbon atoms include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclododecyl, norbornyl, bornyl and adamantyl groups. , and these may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group, or the like.
  • aryl group having 6 to 20 carbon atoms examples include phenyl, toluyl, xylyl, mesityl, anisyl, naphthyl, benzyl, etc. These are further hydroxy, cyano, amino, mono may be substituted with a valent ether group or the like.
  • the compound having imidazolium and a substituent having 1 or more carbon atoms may further have a substituent such as an alkyl group, and may form a salt with a counter anion.
  • Counter anions include alkylsulfate, tosylate, methanesulfonate, acetate, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, thiocyanate, dicyanamide, tricyanometanide, tetracyanoborate, hexafluorophosphate, tetrafluoro Examples include borates and halides, and bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, dicyanamide, tricyanometanide, and tetracyanoborate are preferred from the viewpoint of gas separation performance.
  • ionic liquids having imidazolium and substituents having 1 or more carbon atoms include 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium dicyanamide.
  • 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide [EMI] [FSI]
  • 1-ethyl-3-methylimidazolium dicyanamide [EMI] [DCA]
  • 1-ethyl-3-methylimidazolium tricyanometanide [EMI] [TCM]
  • 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C mim] [ TF 2 N]
  • 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 2 OHim][TF 2 N]
  • the method for producing a double network gel is not particularly limited, and for example, the method disclosed in E.Kamio et al., Adv.Mater, 29, 1704118 (2017) can be used.
  • the content of the ionic liquid in the double network gel is, for example, 50 wt% or more, preferably 60 wt% or more, more preferably 70 wt% or more, and still more preferably 80 wt% or more.
  • the upper limit of the content of the ionic liquid is not particularly limited, and is, for example, 95 wt%.
  • the content of the first network structure mainly composed of an organic material in the double network gel is, for example, 1 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more.
  • the upper limit of the content of the first network structure is, for example, 15 wt%.
  • the content of the second network structure mainly composed of an inorganic material in the double network gel is, for example, 1 wt % or more from the viewpoint of improving the strength of the double network gel.
  • the upper limit of the content of the second network structure is, for example, 5 wt%.
  • the ratio of the sum of the weight of the first network structure and the weight of the second network structure to the weight of the double network gel is, for example, 2 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more. . This proportion is preferably less than or equal to 20 wt%.
  • the separation functional layer 1 is preferably substantially made of double network gel.
  • the thickness of the separation functional layer 1 is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less.
  • the thickness of the separation functional layer 1 may be 10 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less depending on the case.
  • the thickness of the separation functional layer 1 may be 0.05 ⁇ m or more, or may be 0.1 ⁇ m or more.
  • the intermediate layer 2 contains, for example, a resin, and may further contain nanoparticles dispersed in the resin (matrix).
  • the nanoparticles may be spaced apart from each other within the matrix or may be partially aggregated.
  • the material of the matrix is not particularly limited, and examples thereof include silicone resins such as polydimethylsiloxane; fluorine resins such as polytetrafluoroethylene; epoxy resins such as polyethylene oxide; polyimide resins; polyacetylene resins such as polymethylpentene; polyolefin resins such as polymethylpentene; and polyurethane resins.
  • the matrix preferably contains at least one selected from the group consisting of silicone resins and polyurethane resins, and more preferably contains both silicone resins and polyurethane resins.
  • the nanoparticles may contain inorganic materials or organic materials.
  • Inorganic materials included in nanoparticles include, for example, silica, titania, and alumina.
  • the nanoparticles preferably contain silica.
  • the thickness of the intermediate layer 2 is not particularly limited, and is, for example, less than 50 ⁇ m, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the lower limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 1 ⁇ m.
  • the intermediate layer 2 is, for example, a layer having a thickness of less than 50 ⁇ m.
  • porous support 3 supports the separation functional layer 1 with the intermediate layer 2 interposed therebetween.
  • Porous support 3 includes, for example, nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; silicone; silicone rubber; permeation containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polystyrene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide and polyphenylene oxide open-celled or closed-celled metal foams; open-celled or closed-celled polymeric foams; silica; porous glass;
  • the porous support 3 may be a combination of two or more of these.
  • the porous support 3 has an average pore size of, for example, 0.01-0.4 ⁇ m.
  • the thickness of the porous support 3 is not particularly limited, and is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the thickness of the porous support 3 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • Separation membrane 12 can be produced, for example, by the following method. First, a coating liquid containing a material for the intermediate layer 2 is prepared. Next, a coating liquid containing the material of the intermediate layer 2 is applied onto the porous support 3 to form a coating film.
  • a method for applying the coating liquid is not particularly limited, and for example, a spin coating method, a dip coating method, a gravure coating method, or the like can be used. The coating liquid may be applied using a wire bar or the like. The thickness of the intermediate layer 2 to be formed can be adjusted by adjusting the concentration of the material of the intermediate layer 2 in the coating liquid.
  • the coating film is dried to form the intermediate layer 2 .
  • the coating film can be dried, for example, under heating conditions.
  • the heating temperature of the coating film is, for example, 50° C. or higher.
  • the heating time of the coating film is, for example, 1 minute or longer, and may be 5 minutes or longer.
  • the surface of the intermediate layer 2 can be subjected to an easy-adhesion treatment as necessary.
  • Surface treatments such as application of a primer, corona discharge treatment, plasma treatment, etc. may be applied as the adhesion-promoting treatment.
  • a coating liquid containing the material for the separation functional layer 1 is prepared.
  • a coating liquid containing the material of the separation functional layer 1 is applied onto the intermediate layer 2 to obtain a coating film.
  • This coating film is dried to form the separation functional layer 1 .
  • the coating method and drying conditions of the coating liquid the methods and conditions described above for the intermediate layer 2 can be used. Thereby, the separation membrane 12 is obtained.
  • the method for producing the separation membrane 12 is not limited to the above method.
  • the separation membrane 12 can also be produced by the following method. For example, a coating liquid containing the material of the separation functional layer 1 is applied onto the transfer film to obtain a coating film. The separation functional layer 1 is formed by drying the coating film. Next, the intermediate layer 2 is formed by applying a coating liquid containing the material of the intermediate layer 2 onto the separation function layer 1 and drying it. A laminate of the intermediate layer 2 and the separation functional layer 1 is transferred to the porous support 3 . Thereby, the separation membrane 12 is obtained.
  • FIG. 7 the separation membrane 12 is folded in two such that the separation functional layer 1 of the separation membrane 12 is located inside.
  • a feed spacer 13 is placed between the two folded separation membranes 12 and a permeate spacer 14 is placed above the separation membrane 12 .
  • an adhesive 26a is applied to the three sides of the perimeter of the transmissive spacer 14. As shown in FIG. Thus, the separation membrane unit U is obtained.
  • the adhesive 26a is in an uncured state at this point.
  • a central tube 21, spacers 16, and a plurality of separation membrane units U are prepared.
  • the spacer 16 has, for example, a first portion 16a directly wound around the central tube 21 and a second portion 16b laminated with the separation membrane unit U.
  • the first portion 16 a of the spacer 16 corresponds to the channel spacer 15 and the second portion 16 b corresponds to the permeation spacer 14 .
  • a plurality of separation membrane units U are arranged stepwise on the second portion 16 b of the spacer 16 .
  • the number of multiple separation membrane units U is not particularly limited, and is, for example, 2-30. Note that the uppermost separation membrane unit U may not have the permeation spacer 14 .
  • the number of turns of the first portion 16a is not particularly limited, and is, for example, 1-15, preferably 2-10.
  • a plurality of separation membrane units U are wound around the central tube 21 .
  • the uppermost separation membrane unit U is stacked with the second portion 16 b of the spacer 16 .
  • the adhesive 26a is cured to form the adhesive layer 26 and the bag-like membrane leaf 11 is formed. An assembly including the central tube 21 and the laminate 22 is thereby obtained.
  • the spacer 16 is not limited to the shape shown in FIG.
  • the spacer 16 may further have a third portion (not shown) connected to the second portion 16b and extending from the second portion 16b on the opposite side of the central tube 21 .
  • the third portion is wound around the central tube 21 on the outside of the laminate 22 formed by winding the separation membrane unit U around the central tube 21 . That is, the third portion can cover the laminate 22 on the outside of the laminate 22 .
  • a film for example, Lumirror 38E20 manufactured by Panac Co., Ltd.
  • a central tube 921 of a conventional spiral membrane element is generally provided with a circular through hole 930.
  • a plurality of through holes 930 are arranged in the longitudinal direction X of the central tube 921 .
  • the plurality of through holes 930 may be arranged in a staggered pattern.
  • the opening 30 extends in the longitudinal direction X of the central tube 21 .
  • the permeated fluid reaching the wall surface of the central tube 21 from moving in the longitudinal direction X along the wall surface of the central tube 21 .
  • an increase in pressure loss can be suppressed, and a decrease in pressure difference between the feed fluid and the permeate fluid can be suppressed.
  • the separation membrane element 10 of the present embodiment the decrease in the permeation rate of the permeating fluid through the separation membrane 12 can be sufficiently suppressed by suppressing the decrease in the pressure difference.
  • the separation membrane element with respect to the permeation rate T1 (GPU) of carbon dioxide from the flat membrane separation membrane 12 when the flat membrane separation membrane 12 is operated in a reduced pressure system As an example, using carbon dioxide as a feed fluid, the separation membrane element with respect to the permeation rate T1 (GPU) of carbon dioxide from the flat membrane separation membrane 12 when the flat membrane separation membrane 12 is operated in a reduced pressure system.
  • the ratio R1 of the permeation rate T2 (GPU) of carbon dioxide from the separation membrane element 10 when the separation membrane element 10 is operated in the pressurized mode is, for example, 90% or more, preferably 95% or more.
  • the feed fluid supplied to the flat separation membrane 12 has a temperature of 23° C. and a pressure of 0.1 MPa.
  • a vacuum pump is used to depressurize the space where the permeated fluid is obtained to about 10 kPa or less.
  • GPU means 10 ⁇ 6 ⁇ cm 3 (STP)/(sec ⁇ cm 2 ⁇ cmHg).
  • cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
  • the temperature of the feed fluid supplied to the separation membrane element 10 is 23°C.
  • the pressure of the feed fluid is 0.1 MPa, 0.3 MPa or 0.5 MPa.
  • the pressure in the space where the permeate is obtained matches the atmospheric pressure (eg, 101 kPa) in the measurement environment.
  • the permeation rate of carbon dioxide through the flat separation membrane 12 is T1 (GPU).
  • T1 is, for example, 83.5% or more, and may be 84% or more, or even 88% or more.
  • the operating conditions of the reduced pressure system for specifying the permeation rate T3 are the same as the conditions described above for the permeation rate T1.
  • the separation membrane element 10 of the present embodiment even when the pressure difference between the feed fluid and the permeate fluid is set small, the permeation rate of the permeate fluid through the separation membrane 12 is sufficiently reduced. can be suppressed.
  • the pressure difference between the feed fluid and the permeate fluid is set to, for example, 500 kPa or less, preferably 400 kPa or less, more preferably 300 kPa or less, even more preferably 200 kPa or less, and particularly preferably 100 kPa or less. can be done.
  • the central tube 21 tends to be less likely to be deformed or damaged.
  • Applications of the separation membrane element 10 of the present embodiment include applications for processing gases, particularly applications for separating acidic gases from mixed gases containing acidic gases.
  • the acid gas of the mixed gas includes carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, nitrogen oxides (NOx), etc. Carbon dioxide is preferred.
  • the mixed gas contains other gases than acid gas. Other gases include, for example, hydrogen, non-polar gases such as nitrogen, and inert gases such as helium, preferably nitrogen.
  • the separation membrane element 10 of this embodiment is suitable for separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the application of the separation membrane element 10 is not limited to the application of separating acid gas from the mixed gas.
  • Patent document 1 describes that a slit may be provided in the wall surface of the central tube of the spiral membrane element along the axial direction of the central tube.
  • the purpose of the slits in Patent Document 1 is to keep the permeating gas channel member fixed by sandwiching the tip of the permeating gas channel member.
  • the slit does not have the function of guiding the permeating fluid into the central tube, and is completely different from the opening 30 of the central tube 21 in this embodiment.
  • the membrane separation system 100 of this embodiment includes the separation membrane element 10 and the decompression device 60 described above.
  • the pressure reducing device 60 can reduce the pressure inside the central tube 21 of the separation membrane element 10 .
  • the decompression device 60 can generate or increase the differential pressure between the space in the feed fluid channel and the space in the permeate fluid channel of the separation membrane element 10 .
  • a specific example of the decompression device 60 is a vacuum device such as a vacuum pump.
  • the membrane separation system 100 may comprise two separation membrane elements 10a and 10b and two pressure reducing devices 60a and 60b.
  • the membrane separation system 100 further includes a mixed fluid supply path 50.
  • the mixed fluid supply path 50 is connected to the mixed fluid inlet of the separation membrane element 10a, and is a path for supplying the mixed fluid from a tank (not shown) storing the mixed fluid to the separation membrane element 10a.
  • the mixed fluid supply path 50 may or may not be provided with a pressurizing device 64 for pressurizing the space in the supply fluid path of the separation membrane element 10a.
  • Pressurization devices 64 include, for example, compressors, blowers, and back pressure valves. The pressurizing device 64 can pressurize the space in the feed fluid path of the separation membrane element 10a, for example, by pressurizing the mixed fluid supplied to the separation membrane element 10a.
  • the membrane separation system 100 further comprises a permeate fluid supply channel 52 .
  • the permeate fluid supply path 52 is connected to the permeate fluid outlet of the separation membrane element 10a and the permeate fluid inlet of the separation membrane element 10b, and supplies the permeate fluid from the separation membrane element 10a to the separation membrane element 10b from the separation membrane element 10a. It is a route for The permeated fluid from the separation membrane element 10a is further processed in the separation membrane element 10b.
  • a decompression device 60 a is arranged in the permeate fluid supply path 52 .
  • the permeate fluid supply path 52 has a first portion 52a extending from the separation membrane element 10a to the pressure reducing device 60a and a second portion 52b extending from the pressure reducing device 60a to the separation membrane element 10b.
  • the decompression device 60a can decompress the space in the permeate fluid path of the separation membrane element 10a through the first portion 52a.
  • the decompression device 60a for example, sucks the permeated fluid that has passed through the first portion 52a and discharges the permeated fluid to the second portion 52b.
  • a pressure device (not shown) for pressurizing the permeated fluid discharged from the decompression device 60a may or may not be disposed in the second portion 52b. According to this pressurizing device, the space in the supply fluid path of the separation membrane element 10b can be pressurized.
  • Pressurization devices include, for example, compressors, blowers and back pressure valves.
  • the membrane separation system 100 further includes a first discharge path 54.
  • the first discharge path 54 is connected to the non-permeate fluid outlet of the separation membrane element 10a, and is a path for discharging the non-permeate fluid from the separation membrane element 10a.
  • the first discharge path 54 is formed with an opening (discharge port 72 ) for discharging non-permeating fluid from the first discharge path 54 .
  • the membrane separation system 100 may further comprise a tank (not shown) for storing the non-permeate fluid, and the first discharge line 54 may be connected to the tank.
  • the membrane separation system 100 further comprises a second discharge path 56 and a tank 70.
  • the second discharge path 56 is connected to the permeated fluid outlet of the separation membrane element 10b and the inlet of the tank 70, and is a path for sending the permeated fluid from the separation membrane element 10b to the tank 70.
  • the tank 70 can store the permeated fluid sent from the separation membrane element 10b.
  • a decompression device 60 b is arranged in the second discharge path 56 .
  • the second discharge path 56 has a first portion 56a extending from the separation membrane element 10b to the pressure reducing device 60b and a second portion 56b extending from the pressure reducing device 60b to the tank 70.
  • the decompression device 60 can decompress the space in the permeate fluid path of the separation membrane element 10b through the first portion 56a.
  • the decompression device 60b for example, sucks the permeated fluid that has passed through the first portion 56a and discharges the permeated fluid to the second portion 56b.
  • the membrane separation system 100 further includes a third discharge path 58.
  • the third discharge path 58 is connected to the non-permeate fluid outlet of the separation membrane element 10b and is a path for discharging the non-permeate fluid from the separation membrane element 10b.
  • the third discharge path 58 may join the mixed fluid supply path 50 .
  • the third discharge path 58 is connected to the pressurizing device 64 and joins the mixed fluid supply path 50 at the pressurizing device 64 . Since the third discharge path 58 joins the mixed fluid supply path 50, it is possible to reuse, for example, the non-permeating fluid containing the acid gas that has not been completely separated by the separation membrane element 10b.
  • Each of the routes of the membrane separation system 100 is composed of, for example, metal or resin piping.
  • the separation operation can be performed by decompressing the space in the permeate fluid path of the separation membrane element 10 by the decompression device 60 . Separation operation by such a depressurization method is suitable for reducing the energy required to separate the mixed fluid compared to the pressurization method.
  • Example 1 [Preparation of Separation Membrane] First, a coating solution containing silicone resin and polyurethane resin at a weight ratio of 9:1 was prepared. The coating liquid contained water as a solvent. Next, a coating film was obtained by applying the coating liquid onto the porous support by a gravure coating method. As the porous support, a UF membrane (ultrafiltration membrane) RS-50 (a laminate of a PVDF porous layer and a PET nonwoven fabric) manufactured by Nitto Denko was used. An intermediate layer was formed by drying the obtained coating film.
  • UF membrane ultrafiltration membrane
  • polyether block amide (Pebax MH1657 manufactured by Arkema) was added to 98 g of a 70 wt% isopropanol aqueous solution and stirred at 80°C for 3 hours to prepare a 2 wt% Pebax solution.
  • the prepared solution was applied onto the intermediate layer by gravure coating.
  • the separated functional layer was formed by drying the obtained coating film. Thus, a separation membrane was obtained.
  • a central tube made of stainless steel (SUS) was prepared to provide the developed view shown in FIG. 3B.
  • the central tube had a length A1 of 300 mm in the longitudinal direction X, a length A2 of 54.3 mm in the circumferential direction Y, and an outer diameter of 17.3 mm.
  • This central tube had four openings extending in the longitudinal direction X of the central tube. The four openings had the same shape and size, and were evenly spaced in the circumferential direction Y of the central tube. The shape of the opening was rectangular.
  • the opening had a maximum length a1 of 130 mm in the longitudinal direction X, a maximum length a2 of 4.2 mm in the circumferential direction Y, and an aspect ratio R of 30.95.
  • the distance between two openings adjacent to each other was 9.375 mm.
  • the total area B of all openings was 21.84 cm 2 .
  • the spiral wound type membrane element of Example 1 was produced by the method described with reference to FIGS. 7 and 8 using the above central tube and separation membrane. #1000E manufactured by KB Seiren Co., Ltd. was used as the transmission spacer.
  • As a supply spacer 34 mil manufactured by Tokyo Ink Co., Ltd. was used.
  • Example 2 A spiral wound membrane element of Example 2 was produced in the same manner as in Example 1, except that a SUS central tube giving the developed view shown in FIG. 3C was used.
  • the central tube used in Example 2 had eight openings extending in the longitudinal direction X of the central tube.
  • the eight openings had the same shape and size and were evenly spaced in the circumferential direction Y of the central tube.
  • the shape of the opening was rectangular.
  • the opening had a maximum length a1 of 130 mm in the longitudinal direction X, a maximum length a2 of 2.1 mm in the circumferential direction Y, and an aspect ratio R of 61.90.
  • the distance between two openings adjacent to each other was 4.69 mm.
  • the total area B of all openings was 21.84 cm 2 .
  • Example 3 A spiral wound membrane element of Example 3 was produced in the same manner as in Example 1, except that a SUS central tube having the developed view shown in FIG. 3A was used.
  • the central tube used in Example 3 had two openings extending in the longitudinal direction X of the central tube.
  • the two openings had the same shape and size as each other and were aligned in the circumferential direction Y of the central tube.
  • the shape of the opening was rectangular.
  • the opening had a maximum length a1 of 130 mm in the longitudinal direction X, a maximum length a2 of 8.4 mm in the circumferential direction Y, and an aspect ratio R of 15.47.
  • the distance between the two openings was 18.75 mm.
  • the total area B of all openings was 21.84 cm 2 .
  • Example 4 A spiral wound membrane element of Example 4 was produced in the same manner as in Example 1, except that an ABS resin central tube giving the developed view shown in FIG. 3E was used.
  • the central tube used in Example 4 had 12 openings extending in the longitudinal direction X of the central tube.
  • the 12 openings had the same shape and size and were arranged in a grid. Specifically, there were four rows of three openings aligned in the longitudinal direction X of the central canal, and these rows were aligned in the circumferential direction Y of the central canal.
  • the shape of the opening was rectangular.
  • the opening had a maximum length a1 of 40 mm in the longitudinal direction X, a maximum length a2 of 4.2 mm in the circumferential direction Y, and an aspect ratio R of 9.52.
  • the total area B of all openings was 21.32 cm 2 .
  • Comparative example 1 A spiral wound membrane element of Comparative Example 1 was produced in the same manner as in Example 1, except that a SUS central tube giving the developed view shown in FIG. 10B was used.
  • the central tube used in Comparative Example 1 had 174 circular openings. These openings had the same shape and size as each other and were arranged in a staggered pattern. The diameter of the opening was 4 mm. The total area B of all openings was 21.85 cm 2 .
  • the carbon dioxide permeation rate T1 (GPU) in the flat membrane state was measured for the separation membrane used in the spiral membrane element.
  • the permeation rate T1 was measured by the following method using a differential pressure type gas permeability measuring device (GTR-31AHND manufactured by GTR Tech).
  • GTR-31AHND differential pressure type gas permeability measuring device manufactured by GTR Tech.
  • the separation membrane was set in a metal cell in the state of a flat membrane and sealed with an O-ring to prevent leakage.
  • the membrane area of the separation membrane was 3.14 cm 2 .
  • the supply fluid was injected into the metal cell so that the supply fluid contacted the main surface of the separation membrane on the side of the separation functional layer.
  • the feed fluid injected into the metal cell had a temperature of 23° C. and a pressure of 0.1 MPa.
  • the pressure in the space adjacent to the main surface of the separation membrane on the porous support side was reduced to about 10 kPa or less.
  • a permeated fluid was obtained from the main surface of the separation membrane on the porous support side.
  • the permeation rate T1 of carbon dioxide was calculated based on the obtained composition of the permeated fluid, the weight of the permeated fluid, and the like.
  • the composition of the permeating fluid was measured using gas chromatography (G2700T manufactured by Yanaco Technical Science).
  • the permeation rate T2-1 was measured by the following method. First, a feed fluid was supplied to the feed fluid channel of the spiral membrane element. The feed fluid had a temperature of 23° C. and a pressure of 0.1 MPa. As a result, a permeated fluid was obtained through the central tube of the spiral membrane element. The carbon dioxide permeation rate T2-1 was calculated based on the obtained flow rate of the permeated fluid. The flow rate of the permeated fluid was measured using a soap film flowmeter (manufactured by HORIBA).
  • the permeation rate T2-2 was measured by the same method as the permeation rate T2-1, except that the pressure of the supply fluid was changed to 0.3 MPa.
  • Permeation rate T2-3 was measured by the same method as permeation rate T2-1, except that the pressure of the feed fluid was changed to 0.5 MPa.
  • the permeation rate T3 was measured by the same method as for the permeation rate T2-1, except that the pressure inside the central tube of the spiral membrane element was reduced to about 10 kPa or less using a vacuum pump.
  • the values of the ratios R1-1 to R1-3 and R2 differ depending on the shape of the openings. I can confirm.
  • the spiral wound membrane element of Example using a central tube having an opening extending in the longitudinal direction X has a ratio R1- 1 to R1-3 and R2 were high values.
  • the ratios R1-1 to R1-3 and R2 were particularly high.
  • the spiral wound type membrane elements of Examples were suitable for suppressing a decrease in the permeation rate of the permeating fluid from the separation membrane.
  • the spiral wound type membrane element of this embodiment is suitable for separating acid gas from a mixed gas containing acid gas.
  • the spiral wound membrane element of the present embodiment is suitable for separating carbon dioxide from off-gases of chemical plants or thermal power plants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本発明は、分離膜からの透過流体の透過速度の低下を抑制することに適したスパイラル型膜エレメントを提供する。本発明のスパイラル型膜エレメント10は、中心管21と、中心管21に巻き付けられた分離膜12と、を備える。中心管21は、分離膜12を透過した透過流体を中心管21の内部に導くための開口部30を有する。開口部30は、中心管21の長手方向Xに延びている。

Description

スパイラル型膜エレメント及び膜分離システム
 本発明は、スパイラル型膜エレメント及び膜分離システムに関する。
 二酸化炭素などの酸性ガスを含む混合気体から酸性ガスを分離する方法として、膜分離法が開発されている。膜分離法は、混合気体に含まれる酸性ガスを吸収剤に吸収させて分離する吸収法と比べて、運転コストを抑えながら酸性ガスを効率的に分離することができる。
 膜分離法には、例えば、スパイラル型膜エレメントが用いられる。スパイラル型膜エレメントは、中心管と、中心管に巻き付けられた分離膜とを備えている。スパイラル型膜エレメントは、膜エレメントにおける分離膜の膜面積を増加させることに適している。
 スパイラル型膜エレメントにおいて、中心管には、通常、分離膜を透過した透過流体を中心管の内部に導くための開口部が形成されている。一例として、特許文献1は、円形の貫通孔が設けられた中心管を備えたスパイラル型膜エレメントを開示している。
特開2016-137462号公報
 スパイラル型膜エレメントでは、分離膜からの透過流体の透過速度が、平膜状の同じ分離膜からの透過流体の透過速度よりも小さい傾向がある。すなわち、分離膜をスパイラル型膜エレメントに適用すると、分離膜からの透過流体の透過速度が低下する傾向がある。
 そこで本発明は、分離膜からの透過流体の透過速度の低下を抑制することに適したスパイラル型膜エレメントを提供することを目的とする。
 本発明者らは、鋭意検討の結果、スパイラル型膜エレメントにおける透過流体の透過速度の低下が中心管での圧力損失に起因していることを新たに見出した。本発明者らは、この知見に基づいてさらに検討を進め、本発明を完成するに至った。
 本発明は、
 中心管と、
 前記中心管に巻き付けられた分離膜と、
を備え、
 前記中心管は、前記分離膜を透過した透過流体を前記中心管の内部に導くための開口部を有し、
 前記開口部は、前記中心管の長手方向に延びている、スパイラル型膜エレメントを提供する。
 さらに、本発明は、
 上記のスパイラル型膜エレメントと、
 前記中心管の内部を減圧する減圧装置と、
を備えた、膜分離システムを提供する。
 本発明によれば、分離膜からの透過流体の透過速度の低下を抑制することに適したスパイラル型膜エレメントを提供できる。
本発明の一実施形態にかかるスパイラル型膜エレメントを模式的に示す展開斜視図である。 スパイラル型膜エレメントが備える中心管の斜視図である。 中心管の一例を示す展開図である。 中心管の別の例を示す展開図である。 中心管のさらに別の例を示す展開図である。 中心管のさらに別の例を示す展開図である。 中心管のさらに別の例を示す展開図である。 中心管や開口部の寸法を説明するための図である。 スパイラル型膜エレメントの概略断面図である。 スパイラル型膜エレメントが備える分離膜の概略断面図である。 スパイラル型膜エレメントの製造方法を説明するための図である。 スパイラル型膜エレメントの製造方法を説明するための図である。 スパイラル型膜エレメントを備える膜分離システムの構成図である。 従来のスパイラル型膜エレメントが備える中心管の斜視図である。 図10Aに示す中心管の展開図である。
 本発明の第1態様にかかるスパイラル型膜エレメントは、
 中心管と、
 前記中心管に巻き付けられた分離膜と、
を備え、
 前記中心管は、前記分離膜を透過した透過流体を前記中心管の内部に導くための開口部を有し、
 前記開口部は、前記中心管の長手方向に延びている。
 本発明の第2態様において、例えば、第1態様にかかるスパイラル型膜エレメントでは、前記開口部の形状が矩形である。
 本発明の第3態様において、例えば、第1又は第2態様にかかるスパイラル型膜エレメントでは、前記開口部のアスペクト比Rが1<R≦1000を満たす。
 本発明の第4態様において、例えば、第1~第3態様のいずれか1つにかかるスパイラル型膜エレメントでは、前記中心管の周方向における前記開口部の最大長さが1mm~10mmである。
 本発明の第5態様において、例えば、第1~第4態様のいずれか1つにかかるスパイラル型膜エレメントでは、前記中心管は、複数の前記開口部を有する。
 本発明の第6態様において、例えば、第5態様にかかるスパイラル型膜エレメントでは、複数の前記開口部は、前記中心管の周方向に並んでいる。
 本発明の第7態様において、例えば、第5又は第6態様にかかるスパイラル型膜エレメントでは、前記中心管において、複数の前記開口部の数が2~64である。
 本発明の第8態様において、例えば、第1~第7態様のいずれか1つにかかるスパイラル型膜エレメントは、前記分離膜及び透過スペーサを有する膜リーフを備え、前記膜リーフが前記中心管に巻き付けられている。
 本発明の第9態様において、例えば、第8態様にかかるスパイラル型膜エレメントでは、前記膜リーフは、2つの前記分離膜を有し、2つの前記分離膜は、互いに重ね合わされ、袋状の構造を有するように封止されている。
 本発明の第10態様において、例えば、第9態様にかかるスパイラル型膜エレメントでは、前記透過スペーサは、2つの前記分離膜の間に配置されている。
 本発明の第11態様において、例えば、第8~第10態様のいずれか1つにかかるスパイラル型膜エレメントは、前記膜リーフに積層された供給スペーサをさらに備える。
 本発明の第12態様において、例えば、第8~第11態様のいずれか1つにかかるスパイラル型膜エレメントは、前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられている流路スペーサをさらに備える。
 本発明の第13態様において、例えば、第12態様にかかるスパイラル型膜エレメントでは、前記流路スペーサが前記開口部に接している。
 本発明の第14態様において、例えば、第1~第13態様のいずれか1つにかかるスパイラル型膜エレメントでは、前記分離膜は、分離機能層と、前記分離機能層を支持している多孔性支持体と、前記分離機能層と前記多孔性支持体との間に配置された中間層と、を有する。
 本発明の第15態様において、例えば、第1~第14態様のいずれか1つにかかるスパイラル型膜エレメントは、気体を処理するために用いられる。
 本発明の第16態様において、例えば、第1~第15態様のいずれか1つにかかるスパイラル型膜エレメントは、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる。
 本発明の第17態様にかかる膜分離システムは、
 第1~第16態様のいずれか1つにかかるスパイラル型膜エレメントと、
 前記中心管の内部を減圧する減圧装置と、
を備える。
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。
<スパイラル型膜エレメントの実施形態>
 図1は、本発明の一実施形態にかかるスパイラル型膜エレメント10(以下、「分離膜エレメント10」と称する)を示している。分離膜エレメント10は、中心管21と、分離膜12を有する積層体22とを備えている。積層体22(及び分離膜12)は、中心管21に巻き付けられ、中心管21の周囲に配置されている。積層体22の内部には、供給流体流路と透過流体流路とが形成されている。
 供給流体は、積層体22の一方の端面から分離膜エレメント10の内部に供給され、中心管21の長手方向に平行に供給流体流路を流れる。分離膜エレメント10において、分離膜12によって供給流体が分離されて透過流体と非透過流体とが生成される。透過流体は、中心管21を通じて外部に導かれる。非透過流体は、積層体22の他方の端面から分離膜エレメント10の外部に排出される。
 分離膜エレメント10によって処理されるべき供給流体は、気体であってもよく、液体であってもよい。一例として、供給流体は、酸性ガスを含む混合気体、特に二酸化炭素及び窒素を含む混合気体、である。
 図2に示すように、中心管21の形状は、典型的には、筒状、特に円筒状、である。中心管21は、分離膜12を透過した透過流体を中心管21の内部に導くための開口部30を有する。開口部30は、中心管21の長手方向Xに延びている。すなわち、開口部30は、長手方向Xに最大長さを有する。開口部30は、中心管21の壁面に形成されており、中心管21の内部空間と外部空間とを連通する。言い換えると、開口部30は、中心管21の壁面を貫通している。中心管21は、開口部30を通じて集めた透過流体を分離膜エレメント10の外部に導く役割を担っている。
 図3Aは、中心管21の周方向Yについて、中心管21を展開した図を示している。図3Aに示すとおり、開口部30の形状は、典型的には矩形であり、角が丸みを帯びた矩形であってもよい。ただし、開口部30の形状は、矩形に限定されず、長手方向Xに引き延ばされた楕円状、矩形以外の多角形状などであってもよい。
 中心管21は、複数の開口部30を有することが好ましい。中心管21において、複数の開口部30の数は、例えば2以上であり、4以上であってもよい。複数の開口部30の数の上限値は、特に限定されず、例えば64であり、32であってもよく、16であってもよく、8であってもよい。一例として、複数の開口部30の数は、例えば2~64であり、2~8であってもよい。複数の開口部30の形状及び寸法は、互いに同じであってもよく、異なっていてもよい。
 複数の開口部30は、例えば、中心管21の周方向Yに並んでおり、好ましくは、周方向Yに等間隔で並んでいる。後述する実施例の結果からわかるとおり、4以上の開口部30が周方向Yに並んでいる中心管21によれば、透過流体の透過速度の低下をより抑制できる傾向がある。複数の開口部30は、中心管21の長手方向Xに並んでいてもよく、中心管21の長手方向Xに等間隔で並んでいてもよい。複数の開口部30が長手方向Xに並んでいる場合、中心管21の耐久性が向上する傾向がある。ただし、長手方向Xに並んでいる複数の開口部30の数は、5以下であることが好ましく、3以下であることがより好ましい。複数の開口部30は、格子状に並んでいてもよく、千鳥状に並んでいてもよい。
 図3Aは、中心管21において、2つの開口部30a及び30bが周方向Yに並んでいる例を示している。図3Aにおいて、2つの開口部30a及び30bは、互いに同じ形状及び寸法を有している。同様に、図3Bは、中心管21において、4つの開口部30a~30dが周方向Yに並んでいる例を示している。図3Bにおいて、4つの開口部30a~30dは、互いに同じ形状及び寸法を有し、さらに周方向Yに等間隔で並んでいる。図3Cは、中心管21において、8つの開口部30a~30hが周方向Yに並んでいる例を示している。図3Cにおいて、8つの開口部30a~30hは、互いに同じ形状及び寸法を有し、さらに周方向Yに等間隔で並んでいる。
 図3Dは、中心管21において、6つの開口部30a~30fが格子状に並んでいる例を示している。詳細には、開口部30a~30fのうち、3つの開口部30a~30cが長手方向Xに並んでいる。さらに、3つの開口部30d~30fが長手方向Xに並んでいる。開口部30a~30cで構成された列と、開口部30d~30fで構成された列とが周方向Yに並んでいる。
 図3Eは、中心管21において、12個の開口部30a~30lが格子状に並んでいる例を示している。詳細には、3つの開口部30a~30cが長手方向Xに並び、3つの開口部30d~30fが長手方向Xに並び、3つの開口部30g~30iが長手方向Xに並び、さらに、3つの開口部30j~30lが長手方向Xに並んでいる。開口部30a~30cで構成された列、開口部30d~30fで構成された列、開口部30g~30iで構成された列、及び開口部30j~30lで構成された列が周方向Yに並んでいる。
 中心管21の材料としては、金属、樹脂などが挙げられる。金属で構成された中心管21は、耐久性に優れる傾向がある。樹脂で構成された中心管21は、安価に作製できる傾向がある。中心管21を構成する金属の例としては、ステンレス鋼などが挙げられる。中心管21を構成する樹脂の例としては、ノリル樹脂、ABS樹脂などが挙げられ、ABS樹脂が好ましい。中心管21の材料は、繊維強化プラスチック(FRP:fiber reinforced plastic)、プラスチック、セラミックスなどであってもよい。
 図4に示すように、長手方向Xにおける中心管21の長さA1は、特に限定されず、例えば100mm~1500mmであり、好ましくは200mm~1200mmである。中心管21の外径は、特に限定されず、例えば10mm~100mmであり、好ましくは12mm~50mmである。周方向Yにおける中心管21の長さA2は、特に限定されず、例えば30mm~350mmであり、好ましくは40mm~160mmである。なお、図4は、一例として、図3Aに示した中心管21について、長さA1などを示している。
 長手方向Xにおける開口部30の最大長さa1は、特に限定されず、例えば10mm~1500mmであり、好ましくは100mm~300mmである。周方向Yにおける開口部30の最大長さa2は、特に限定されず、例えば1mm~20mmであり、好ましくは1mm~10mmである。
 開口部30のアスペクト比Rは、例えば、1<R≦1000を満たす。アスペクト比Rは、好ましくは5以上であり、10以上、20以上、30以上、40以上、50以上、さらには60以上であってもよい。アスペクト比Rは、500以下であってもよく、100以下であってもよい。なお、本開示において、開口部30のアスペクト比Rは、周方向Yにおける最大長さa2(mm)に対する長手方向Xにおける最大長さa1(mm)の比を意味する。
 長手方向Xにおける中心管21の長さA1(mm)に対する、長手方向Xにおける開口部30の最大長さa1(mm)の比率P1は、特に限定されず、例えば10%以上であり、30%以上であってもよく、50%以上であってもよく、70%以上であってもよい。比率P1の上限値は、特に限定されず、例えば90%である。
 周方向Yにおける中心管21の長さA2(mm)に対する、周方向Yにおける開口部30の最大長さa2(mm)の比率P2は、特に限定されず、例えば50%以下であり、30%以下であってもよく、20%以下であってもよく、10%以下であってもよく、5%以下であってもよい。比率P2の下限値は、特に限定されず、例えば1%である。
 中心管21が複数の開口部30を有する場合、互いに隣接する2つの開口部30の距離は、特に限定されず、例えば50mm以下であり、30mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。互いに隣接する2つの開口部30の距離の下限値は、特に限定されず、例えば1mmである。
 中心管21において、全ての開口部30の面積の合計値Bは、特に限定されず、例えば1cm2~1500cm2であり、好ましくは10cm2~200cm2である。中心管21の主面(最も広い面積を有する面)の面積B1に対する、全ての開口部30の面積の合計値Bの比率P3は、特に限定されず、例えば10%以上であり、30%以上であってもよく、50%以上であってもよい。比率P3の上限値は、特に限定されず、例えば70%である。
 図5に示すとおり、積層体22は、複数の膜リーフ11を有する。各膜リーフ11が中心管21に巻き付けられている。各膜リーフ11は、分離膜12及び透過スペーサ14を有する。詳細には、膜リーフ11は、2つの分離膜12を有する。2つの分離膜12が互いに重ね合わされ、袋状の構造を有するように3辺において封止されている。2つの分離膜12の封止には、例えば、接着剤を含む接着剤層26が利用される。袋状の構造の内部に位置するように、2つの分離膜12の間に透過スペーサ14が配置されている。透過スペーサ14は、2つの分離膜12の間に透過流体流路としての空間を確保している。積層体22における膜リーフ11の数は、特に限定されず、例えば2~30である。
 積層体22は、供給スペーサ13をさらに有する。供給スペーサ13は、上述の袋状の構造の外部に位置するとともに、膜リーフ11に積層されている。詳細には、積層体22が複数の供給スペーサ13を有し、積層体22において、複数の供給スペーサ13と複数の膜リーフ11とが交互に積層されている。供給スペーサ13は、膜リーフ11と膜リーフ11との間に供給流体流路としての空間を確保している。
 分離膜エレメント10は、流路スペーサ15をさらに備えている。流路スペーサ15は、中心管21と積層体22との間に位置し、積層体22(及び膜リーフ11)よりも中心管21側で中心管21に巻き付けられている。流路スペーサ15は、積層体22と中心管21との間に透過流体流路としての空間を確保している。流路スペーサ15は、上述した膜リーフ11の開口端に接続されている。これにより、膜リーフ11の透過スペーサ14が流路スペーサ15に接続されている。流路スペーサ15は、中心管21の開口部30に接している。これにより、透過流体は、開口部30を通じて、流路スペーサ15から中心管21の内部に流入することができる。
 供給スペーサ13、透過スペーサ14及び流路スペーサ15としては、例えば、ネット、メッシュ、線材織物、繊維織物、不織布、溝付きシート、波形シートなどが挙げられる。これらのスペーサ13~15の材料としては、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリアミド、ポリフェニレンサルファイド(PPS)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、エポキシ樹脂、ウレタン樹脂などの樹脂材料;天然高分子;ゴム;金属などが挙げられる。
 スペーサ13~15の厚さは、特に限定されず、例えば100μm~2000μmである。スペーサ13~15の開口率は、特に限定されず、例えば10%~80%である。スペーサの開口率は、次の方法によって特定できる。まず、測定対象のスペーサをフィルムの上に配置し、スペーサの表面を走査型電子顕微鏡(SEM)で観察する。得られた電子顕微鏡像から、画像処理によって、スペーサの表面の面積C1と、スペーサを通じてフィルムが確認できる面積C2(スペーサに形成された隙間の面積)とを算出する。面積C1に対する面積C2の比率をスペーサの開口率として特定できる。
 分離膜エレメント10は、積層体22を包囲するシェルをさらに備えていてもよい。シェルは、FRPによって作られていてもよい。積層体22の端面を保護するとともに、積層体22がテレスコピック状に伸張することを防止するために、積層体22の両側に端面部材が配置されていてもよい。
[分離膜]
 図6に示すとおり、分離膜12は、例えば、分離機能層1、分離機能層1を支持する多孔性支持体3、及び、分離機能層1と多孔性支持体3との間に配置されている中間層2を備えている。中間層2は、例えば、分離機能層1及び多孔性支持体3のそれぞれに直接接している。
(分離機能層)
 分離機能層1は、例えば、混合気体に含まれる酸性ガスを優先的に透過させることができる層である。好ましい一形態では、分離機能層1は、樹脂を含む。分離機能層1に含まれる樹脂としては、例えば、ポリエーテルブロックアミド樹脂、ポリアミド樹脂、ポリエーテル樹脂、ポリイミド樹脂、酢酸セルロース樹脂、シリコーン樹脂及びフッ素樹脂が挙げられる。分離機能層1は、好ましくはポリエーテルブロックアミド樹脂を含む。この形態において、分離機能層1は、好ましくは、実質的に樹脂からなる。本明細書において、「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味し、例えば95wt%以上、さらには99wt%以上が当該材料により構成されていることを意味する。
 別の好ましい一形態では、分離機能層1は、イオン液体を含む。分離機能層1は、例えば、イオン液体を含むダブルネットワークゲルを有する。ダブルネットワークゲルは、互いに独立した2種類の網目構造を備えるゲルである。ダブルネットワークゲルは、例えば、主として有機材料により構成された第1網目構造、主として無機材料により構成された第2網目構造、及び、イオン液体を含む。本明細書において、「主として構成された」は、50wt%以上、さらには70wt%以上が当該材料により構成されていることを意味する。
 第1網目構造を構成するための有機材料は、例えば、ポリアクリルアミド(特に、ポリジメチルアクリルアミドなどのポリジアルキルアクリルアミド)などの重合体を含む。有機材料に含まれる重合体は、アクリルアミド誘導体に由来する構造単位を有し、さらに架橋構造を含んでいてもよい。架橋構造を含む重合体は、公知の方法によって作製することができる。例えば、まず、N-ヒドロキシスクシンイミドエステル基を有する構造単位を有するプレポリマーを準備する。N-ヒドロキシスクシンイミドエステル基を有する構造単位は、例えば、N-アクリルオキシスクシンイミドに由来する。次に、プレポリマーとアミン系架橋剤とを反応させることによって、架橋構造を含む重合体を得ることができる。アミン系架橋剤は、2つ以上の第一級アミノ基を有する化合物であり、例えばエチレングリコールビス(3-アミノプロピル)エーテルである。
 第2網目構造は、複数の粒子のネットワークを含んでいてもよい。複数の粒子のネットワークは、例えば、複数の粒子が水素結合によって互いに結合することによって形成されている。第2網目構造に含まれる粒子は、後述するナノ粒子として例示する粒子であってもよい。一例として、第2網目構造に含まれる粒子は、シリカ粒子である。
 本実施形態において、具体的なイオン液体としては、例えば、イミダゾリウム、ピリジニウム、アンモニウム又はホスホニウムと、炭素数1以上の置換基とを有するイオン液体等が挙げられる。
 イミダゾリウムと炭素数1以上の置換基とを有するイオン液体において、炭素数1以上の置換基としては、炭素数1以上20以下のアルキル基、炭素数3以上14以下のシクロアルキル基、炭素数6以上20以下のアリール基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい(例えば、炭素数1以上20以下のヒドロキシアルキル基等)。
 炭素数1以上20以下のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコサデシル基、i-プロピル基、sec-ブチル基、i-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、i-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、t-ペンチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。
 上述のアルキル基は、シクロアルキル基によって置換されていてもよい。シクロアルキル基によって置換されたアルキル基の炭素数は、例えば、1以上20以下である。シクロアルキル基によって置換されたアルキル基としては、シクロプロピルメチル基、シクロブチルメチル基、シクロヘキシルメチル基、シクロヘキシルプロピル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。
 炭素数3以上14以下のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、ノルボルニル基、ボルニル基、アダマンチル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。
 炭素数6以上20以下のアリール基としては、フェニル基、トルイル基、キシリル基、メシチル基、アニシル基、ナフチル基、ベンジル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。
 イミダゾリウムおよび炭素数1以上の置換基を有する化合物は、さらに、アルキル基等の置換基を有してもよく、対アニオンと塩を形成してもよい。対アニオンとしては、アルキルスルフェート、トシレート、メタンスルホネート、アセテート、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、チオシアネート、ジシアンアミド、トリシアノメタニド、テトラシアノボレート、ヘキサフルオロホスフェート、テトラフルオロボレート、ハライド等が挙げられ、ガス分離性能の観点から、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、ジシアンアミド、トリシアノメタニド、テトラシアノボレートが好ましい。
 イミダゾリウム及び炭素数1以上の置換基を有するイオン液体としては、具体的には、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアンアミド、1-ブチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスホネート、1-ブチル-3-メチルイミダゾリウムテトラクロロフェレート、1-ブチル-3-メチルイミダゾリウムヨーダイド、1-ブチル-2,3-ジメチルイミダゾリウムクロリド、1-ブチル-2,3-ジメチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムトリフルオロ(トリフルオロメチル)ボレート、1-ブチル-3-メチルイミダゾリウムトリブロミド、1,3-ジメシチルイミダゾリウムクロライド、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロライド、1,3-ジイソプロピルイミダゾリウムテトラフルオロボレート、1,3-ジ-tert-ブチルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムクロライド、1,2-ジメチル-3-プロピルイミダゾリウムヨーダイド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ヘキシル-3-メチルイミダゾリウムテトラフルオロボレート、1-ヘキシル-3-メチルイミダゾリウムブロミド、1-メチル-3-プロピルイミダゾリウムヨーダイド、1-メチル-3-n-オクチルイミダゾリウムブロミド、1-メチル-3-n-オクチルイミダゾリウムクロライド、1-メチル-3-n-オクチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-[6-(メチルスルフィニル)ヘキシル]イミダゾリウムp-トルエンスルホネート、1-エチル-3-メチルイミダゾリウムトリシアノメタニド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド等が挙げられる。
 なかでも、ガス分離性能の観点から、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド([EMI][FSI])、1-エチル-3-メチルイミダゾリウムジシアンアミド([EMI][DCA])、1-エチル-3-メチルイミダゾリウムトリシアノメタニド([EMI][TCM])、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド([C4mim][TF2N])、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド([C2OHim][TF2N])が特に好ましい。
 ダブルネットワークゲルを作製する方法は、特に限定されず、例えば、E.Kamio et al.,Adv.Mater,29,1704118(2017)に開示された方法を利用することができる。
 ダブルネットワークゲルにおけるイオン液体の含有率は、例えば50wt%以上であり、好ましくは60wt%以上であり、より好ましくは70wt%以上であり、さらに好ましくは80wt%以上である。イオン液体の含有率が高ければ高いほど、分離機能層1は、混合気体に含まれる酸性ガスを優先的に透過させることができる。イオン液体の含有率の上限値は、特に限定されず、例えば95wt%である。
 ダブルネットワークゲルにおける主として有機材料により構成された第1網目構造の含有率は、例えば1wt%以上であり、好ましくは5wt%以上であり、より好ましくは10wt%以上である。第1網目構造の含有率の上限値は、例えば15wt%である。ダブルネットワークゲルにおける主として無機材料により構成された第2網目構造の含有率は、ダブルネットワークゲルの強度を向上させる観点から、例えば1wt%以上である。第2網目構造の含有率の上限値は、例えば5wt%である。ダブルネットワークゲルの重量に対する第1網目構造の重量と第2網目構造の重量との合計値の比率は、例えば2wt%以上であり、好ましくは5wt%以上であり、より好ましくは10wt%以上である。この比率は、好ましくは20wt%以下である。この形態において、分離機能層1は、好ましくは、実質的にダブルネットワークゲルからなる。
 分離機能層1の厚さは、例えば50μm以下であり、好ましくは25μm以下であり、より好ましくは15μm以下である。分離機能層1の厚さは、場合によっては、10μm以下であってもよく、5.0μm以下であってもよく、2.0μm以下であってもよい。分離機能層1の厚さは、0.05μm以上であってもよく、0.1μm以上であってもよい。
(中間層)
 中間層2は、例えば、樹脂を含み、樹脂(マトリクス)に分散したナノ粒子をさらに含んでいてもよい。ナノ粒子は、マトリクス内で互いに離間していてもよく、部分的に凝集していてもよい。マトリクスの材料は、特に限定されず、例えば、ポリジメチルシロキサンなどのシリコーン樹脂;ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエチレンオキシドなどのエポキシ樹脂;ポリイミド樹脂;ポリスルホン樹脂;ポリトリメチルシリルプロピン、ポリジフェニルアセチレンなどのポリアセチレン樹脂;ポリメチルペンテンなどのポリオレフィン樹脂;ポリウレタン樹脂が挙げられる。マトリクスは、シリコーン樹脂及びポリウレタン樹脂からなる群より選ばれる少なくとも1つを含むことが好ましく、シリコーン樹脂及びポリウレタン樹脂の両方を含むことがより好ましい。
 ナノ粒子は、無機材料を含んでいてもよく、有機材料を含んでいてもよい。ナノ粒子に含まれる無機材料としては、例えば、シリカ、チタニア及びアルミナが挙げられる。ナノ粒子は、シリカを含むことが好ましい。
 中間層2の厚さは、特に限定されず、例えば50μm未満であり、好ましくは40μm以下であり、より好ましくは30μm以下である。中間層2の厚さの下限値は、特に限定されず、例えば1μmである。中間層2は、例えば、50μm未満の厚さを有する層である。
(多孔性支持体)
 多孔性支持体3は、中間層2を介して分離機能層1を支持する。多孔性支持体3としては、例えば、不織布;多孔質ポリテトラフルオロエチレン;芳香族ポリアミド繊維;多孔質金属;焼結金属;多孔質セラミック;多孔質ポリエステル;多孔質ナイロン;活性化炭素繊維;ラテックス;シリコーン;シリコーンゴム;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリウレタン、ポリプロピレン、ポリエチレン、ポリスチレン、ポリカーボネート、ポリスルホン、ポリエーテルエーテルケトン、ポリアクリロニトリル、ポリイミド及びポリフェニレンオキシドからなる群より選ばれる少なくとも1つを含む透過性(多孔質)ポリマー;連続気泡又は独立気泡を有する金属発泡体;連続気泡又は独立気泡を有するポリマー発泡体;シリカ;多孔質ガラス;メッシュスクリーンなどが挙げられる。多孔性支持体3は、これらのうちの2種以上を組み合わせたものであってもよい。
 多孔性支持体3は、例えば0.01~0.4μmの平均孔径を有する。多孔性支持体3の厚さは、特に限定されず、例えば10μm以上であり、好ましくは20μm以上であり、より好ましくは50μm以上である。多孔性支持体3の厚さは、例えば300μm以下であり、好ましくは200μm以下であり、より好ましくは150μm以下である。
[分離膜の製造方法]
 分離膜12は、例えば、次の方法によって作製することができる。まず、中間層2の材料を含む塗布液を調製する。次に、多孔性支持体3の上に、中間層2の材料を含む塗布液を塗布し、塗布膜を形成する。塗布液の塗布方法は、特に限定されず、例えばスピンコート法、ディップコート法、グラビアコート法などを利用できる。ワイヤーバーなどを利用して塗布液を塗布してもよい。塗布液における中間層2の材料の濃度などを調整することによって、形成される中間層2の厚さを調整することができる。次に、塗布膜を乾燥し、中間層2を形成する。塗布膜の乾燥は、例えば、加熱条件下で行うことができる。塗布膜の加熱温度は、例えば50℃以上である。塗布膜の加熱時間は、例えば1分以上であり、5分以上であってもよい。
 中間層2の表面には必要に応じて易接着処理を施すことができる。易接着処理として、下塗り剤の塗布、コロナ放電処理、プラズマ処理などの表面処理が施されてもよい。
 次に、分離機能層1の材料を含む塗布液を調整する。中間層2の上に分離機能層1の材料を含む塗布液を塗布し、塗布膜を得る。この塗布膜を乾燥し、分離機能層1を形成する。塗布液の塗工方法、及び乾燥条件は、中間層2について上述した方法及び条件を用いることができる。これにより、分離膜12が得られる。
 分離膜12の作製方法は、上記の方法に限定されない。例えば、次の方法によっても分離膜12を作製することができる。例えば、分離機能層1の材料を含む塗布液を転写フィルムの上に塗布して塗布膜を得る。塗布膜を乾燥することによって分離機能層1が形成される。次に、中間層2の材料を含む塗布液を分離機能層1の上に塗工して乾燥することによって、中間層2を形成する。中間層2及び分離機能層1の積層体を多孔性支持体3に転写する。これにより、分離膜12が得られる。
[スパイラル型膜エレメントの製造方法]
 次に、図7及び8を参照して分離膜エレメント10の製造方法の一例を説明する。まず、図7に示すように、分離膜12の分離機能層1が内側に位置するように、分離膜12を2つに折り畳む。2つに折り畳まれた分離膜12の間に供給スペーサ13を配置し、分離膜12の上に透過スペーサ14を配置する。さらに、透過スペーサ14の外周部の3辺に接着剤26aを塗布する。これにより、分離膜ユニットUが得られる。接着剤26aは、この時点では、未硬化の状態である。
 次に、図8に示すように、中心管21、スペーサ16、及び複数の分離膜ユニットUを準備する。スペーサ16は、例えば、中心管21に直接巻き付けられる第1部分16aと、分離膜ユニットUと積層される第2部分16bと、を有する。スペーサ16の第1部分16aが流路スペーサ15に相当し、第2部分16bが透過スペーサ14に相当する。複数の分離膜ユニットUは、スペーサ16の第2部分16bの上において、階段状に配置される。複数の分離膜ユニットUの数は、特に限定されず、例えば2~30である。なお、最も上方に位置する分離膜ユニットUは、透過スペーサ14を有していなくてもよい。
 次に、中心管21に、スペーサ16の第1部分16aを巻き付ける。第1部分16aの巻き数は、特に限定されず、例えば1~15であり、好ましくは2~10である。
 次に、中心管21に、複数の分離膜ユニットUを巻き付ける。このとき、最も上方に位置していた分離膜ユニットUは、スペーサ16の第2部分16bと積層される。中心管21に分離膜ユニットUが巻き付けられたのち、接着剤26aが硬化して接着剤層26が形成されるとともに、袋状の膜リーフ11が形成される。これにより、中心管21及び積層体22を含む組立体が得られる。
 なお、スペーサ16は、図8に示す形状に限定されない。例えば、スペーサ16は、第2部分16bに接続され、第2部分16bから中心管21とは反対側に延びる第3部分(図示せず)をさらに有していてもよい。第3部分は、中心管21に分離膜ユニットUが巻き付けられて形成された積層体22の外側において、中心管21に巻き付けられる。すなわち、第3部分は、積層体22の外側において、積層体22を覆うことができる。積層体22の供給スペーサ13と第3部分とが接触しないように、積層体22と第3部分との間には、フィルム(例えば、パナック株式会社製のルミラー38E20)が配置されていてもよい。
[スパイラル型膜エレメントの特性]
 スパイラル型膜エレメントでは、供給流体の圧力と透過流体の圧力との差(圧力差)を駆動力として、分離膜による供給流体の膜分離が進行する。そのため、スパイラル型膜エレメント内で圧力損失が生じると、上記の圧力差が減少し、分離膜からの透過流体の透過速度が低下する。特に、中心管の内部を減圧してスパイラル型膜エレメントを運転する方式(減圧方式)では、供給流体を加圧してスパイラル型膜エレメントを運転する方式(加圧方式)に比べて圧力差が小さい傾向があるため、圧力損失による圧力差の減少の影響が大きい。
 図10A及び10Bに示すとおり、従来のスパイラル型膜エレメントが備える中心管921には、通常、円形の貫通孔930が設けられている。詳細には、複数の貫通孔930が中心管921の長手方向Xに並んでいる。図10Bに示すとおり、複数の貫通孔930は、千鳥状に配置されていることもある。このような中心管921を備えたスパイラル型膜エレメントを用いた場合、中心管921の壁面に到達した透過流体は、当該壁面に沿って、貫通孔930まで、周方向Yだけでなく、長手方向Xにも移動する傾向がある。本発明者らの検討によれば、透過流体が中心管921の壁面に沿って長手方向Xに移動すると、透過流体の流れ抵抗に起因して圧力損失が顕著に増加する傾向がある。
 これに対して、本実施形態の分離膜エレメント10では、開口部30は、中心管21の長手方向Xに延びている。このような構成によれば、中心管21の壁面に到達した透過流体が、中心管21の壁面に沿って長手方向Xに移動することを抑制できる。これにより、圧力損失の増加が抑制され、供給流体と透過流体との圧力差の減少を抑制することができる。本実施形態の分離膜エレメント10によれば、圧力差の減少が抑制されることによって、分離膜12からの透過流体の透過速度の低下を十分に抑制することができる。
 一例として、二酸化炭素を供給流体として用いて、平膜状の分離膜12を減圧方式で運転した場合における平膜状の分離膜12からの二酸化炭素の透過速度T1(GPU)に対する、分離膜エレメント10を加圧方式で運転した場合における分離膜エレメント10からの二酸化炭素の透過速度T2(GPU)の比率R1は、例えば90%以上であり、好ましくは95%以上である。
 透過速度T1を特定するための減圧方式の運転において、平膜状の分離膜12に供給される供給流体は、温度が23℃であり、圧力が0.1MPaである。減圧方式では、真空ポンプを用いて、透過流体が得られる空間を10kPa程度以下まで減圧する。なお、GPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。
 透過速度T2を特定するための加圧方式の運転において、分離膜エレメント10に供給される供給流体は、温度が23℃である。供給流体の圧力は、0.1MPa、0.3MPa又は0.5MPaである。加圧方式では、透過流体が得られる空間(透過流体流路内の空間)の圧力は、測定環境における大気圧(例えば101kPa)と一致する。
 二酸化炭素を供給流体として用いて、分離膜エレメント10、及び平膜状の分離膜12のそれぞれを減圧方式で運転した場合、平膜状の分離膜12からの二酸化炭素の透過速度T1(GPU)に対する、分離膜エレメント10からの二酸化炭素の透過速度T3(GPU)の比率R2は、例えば83.5%以上であり、84%以上、さらには88%以上であってもよい。透過速度T3を特定するための減圧方式の運転条件は、透過速度T1について上述した条件と同じである。
 以上のとおり、本実施形態の分離膜エレメント10によれば、供給流体と透過流体との圧力差を小さく設定した場合であっても、分離膜12からの透過流体の透過速度の低下を十分に抑制することができる。一例として、分離膜エレメント10では、供給流体と透過流体との圧力差を、例えば500kPa以下、好ましくは400kPa以下、より好ましくは300kPa以下、さらに好ましくは200kPa以下、特に好ましくは100kPa以下に設定することができる。供給流体と透過流体との圧力差がこの程度に小さい場合には、中心管21の開口部30に流路スペーサ15などのスペーサが入り込みにくい傾向がある。さらに、この場合、中心管21について、変形や破損が生じにくい傾向もある。
 本実施形態の分離膜エレメント10の用途としては、気体を処理する用途、特に酸性ガスを含む混合気体から酸性ガスを分離する用途、が挙げられる。混合気体の酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。混合気体は、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素などの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。特に、本実施形態の分離膜エレメント10は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離する用途に適している。ただし、分離膜エレメント10の用途は、上記の混合気体から酸性ガスを分離する用途に限定されない。
 なお、特許文献1には、スパイラル型膜エレメントの中心管の壁面に、中心管の軸方向に沿ってスリットを設けてもよいことが記載されている。ただし、特許文献1のスリットは、あくまで透過ガス流路用部材の先端部を挟み込むことによって、透過ガス流路用部材の固定を維持することを目的としている。特許文献1において、スリットは、透過流体を中心管の内部に導く機能を有しておらず、本実施形態における中心管21の開口部30とは全く異なる。
<膜分離システムの実施形態>
 図9に示すとおり、本実施形態の膜分離システム100は、上述の分離膜エレメント10及び減圧装置60を備える。減圧装置60は、分離膜エレメント10の中心管21の内部を減圧することができる。言い換えると、減圧装置60によって、分離膜エレメント10の供給流体流路内の空間と透過流体流路内の空間との間において、差圧を生じさせる、又は、差圧を増加させることができる。減圧装置60の具体例は、真空ポンプなどの真空装置である。膜分離システム100は、2つの分離膜エレメント10a及び10bと、2つの減圧装置60a及び60bとを備えていてもよい。
 膜分離システム100は、混合流体供給経路50をさらに備えている。混合流体供給経路50は、分離膜エレメント10aの混合流体入口に接続されており、混合流体を貯蔵しているタンク(図示せず)などから分離膜エレメント10aに混合流体を供給するための経路である。混合流体供給経路50には、分離膜エレメント10aの供給流体経路内の空間を加圧する加圧装置64が配置されていてもよく、配置されていなくてもよい。加圧装置64としては、例えば、コンプレッサ、ブロワー及び背圧弁が挙げられる。加圧装置64は、例えば、分離膜エレメント10aに供給される混合流体を昇圧することによって、分離膜エレメント10aの供給流体経路内の空間を加圧することができる。
 膜分離システム100は、透過流体供給経路52をさらに備えている。透過流体供給経路52は、分離膜エレメント10aの透過流体出口及び分離膜エレメント10bの透過流体入口に接続され、分離膜エレメント10aから分離膜エレメント10bに、分離膜エレメント10aからの透過流体を供給するための経路である。分離膜エレメント10aからの透過流体は、分離膜エレメント10bでさらに処理される。透過流体供給経路52には、減圧装置60aが配置されている。
 透過流体供給経路52は、分離膜エレメント10aから減圧装置60aまで延びている第1部分52aと、減圧装置60aから分離膜エレメント10bまで延びている第2部分52bとを有する。減圧装置60aは、第1部分52aを通じて、分離膜エレメント10aの透過流体経路内の空間を減圧することができる。減圧装置60aは、例えば、第1部分52aを通過した透過流体を吸引し、当該透過流体を第2部分52bに排出する。第2部分52bには、減圧装置60aから排出された透過流体を昇圧する加圧装置(図示せず)が配置されていてもよく、配置されていなくてもよい。この加圧装置によれば、分離膜エレメント10bの供給流体経路内の空間を加圧することができる。加圧装置としては、例えば、コンプレッサ、ブロワー及び背圧弁が挙げられる。
 膜分離システム100は、第1排出経路54をさらに備えている。第1排出経路54は、分離膜エレメント10aの非透過流体出口に接続されており、分離膜エレメント10aから非透過流体を排出するための経路である。第1排出経路54には、第1排出経路54から非透過流体を排出するための開口(排出口72)が形成されている。膜分離システム100が非透過流体を貯蔵するタンク(図示せず)をさらに備えており、第1排出経路54が当該タンクに接続されていてもよい。
 膜分離システム100は、第2排出経路56及びタンク70をさらに備えている。第2排出経路56は、分離膜エレメント10bの透過流体出口及びタンク70の入口に接続されており、分離膜エレメント10bからタンク70に透過流体を送るための経路である。タンク70は、分離膜エレメント10bから送られた透過流体を貯蔵することができる。第2排出経路56には、減圧装置60bが配置されている。
 第2排出経路56は、分離膜エレメント10bから減圧装置60bまで延びている第1部分56aと、減圧装置60bからタンク70まで延びている第2部分56bとを有する。減圧装置60は、第1部分56aを通じて、分離膜エレメント10bの透過流体経路内の空間を減圧することができる。減圧装置60bは、例えば、第1部分56aを通過した透過流体を吸引し、当該透過流体を第2部分56bに排出する。
 膜分離システム100は、第3排出経路58をさらに備えている。第3排出経路58は、分離膜エレメント10bの非透過流体出口に接続されており、分離膜エレメント10bから非透過流体を排出するための経路である。第3排出経路58は、混合流体供給経路50に合流していてもよい。図9において、第3排出経路58は、加圧装置64に接続されており、加圧装置64において混合流体供給経路50に合流している。第3排出経路58が混合流体供給経路50に合流していることによって、例えば、分離膜エレメント10bで分離しきれなかった酸性ガスを含む非透過流体を再利用することができる。
 膜分離システム100の経路のそれぞれは、例えば、金属製又は樹脂製の配管で構成されている。
 本実施形態の膜分離システム100によれば、減圧装置60によって、分離膜エレメント10の透過流体経路内の空間を減圧して分離操作を行うことができる。このような減圧方式による分離操作は、加圧方式に比べて、混合流体を分離するために必要なエネルギーを低減することに適している。
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。
(実施例1)
[分離膜の作製]
 まず、シリコーン樹脂及びポリウレタン樹脂を9:1の重量比で含む塗布液を調製した。塗布液は、溶媒として水を含んでいた。次に、グラビアコート法によって、塗布液を多孔性支持体の上に塗布することによって塗布膜を得た。多孔性支持体としては、日東電工社製のUF膜(限外ろ過膜)RS-50(PVDF多孔質層とPET不織布との積層体)を用いた。得られた塗布膜を乾燥させることによって、中間層を形成した。
 次に、ポリエーテルブロックアミド(アルケマ社製のPebax MH1657)2gを70wt%のイソプロパノール水溶液98gに投入し、80℃で3時間攪拌することで、2wt%のPebax溶液を作製した。次に、グラビアコート法によって、作製した溶液を中間層の上に塗布した。次に、得られた塗布膜を乾燥させることで分離機能層が形成された。これにより、分離膜を得た。
[スパイラル型膜エレメントの作製]
 まず、図3Bに示す展開図を与えるステンレス鋼(SUS)製の中心管を準備した。中心管は、長手方向Xにおける長さA1が300mmであり、周方向Yにおける長さA2が54.3mmであり、外径が17.3mmであった。この中心管は、中心管の長手方向Xに延びている4つの開口部を有していた。4つの開口部は、互いに同じ形状及び寸法を有しており、中心管の周方向Yに等間隔で並んでいた。開口部の形状は、矩形であった。開口部は、長手方向Xにおける最大長さa1が130mmであり、周方向Yにおける最大長さa2が4.2mmであり、アスペクト比Rが30.95であった。互いに隣接する2つの開口部の距離は、9.375mmであった。全ての開口部の面積の合計値Bは、21.84cm2であった。次に、上記の中心管及び分離膜を用いて、図7及び8を参照して説明した方法によって実施例1のスパイラル型膜エレメントを作製した。なお、透過スペーサとしては、KBセーレン社製の#1000Eを用いた。供給スペーサとしては、東京インキ社製の34milを用いた。
(実施例2)
 図3Cに示す展開図を与えるSUS製の中心管を用いたことを除き、実施例1と同じ方法によって、実施例2のスパイラル型膜エレメントを作製した。実施例2で用いた中心管は、中心管の長手方向Xに延びている8つの開口部を有していた。8つの開口部は、互いに同じ形状及び寸法を有しており、中心管の周方向Yに等間隔で並んでいた。開口部の形状は、矩形であった。開口部は、長手方向Xにおける最大長さa1が130mmであり、周方向Yにおける最大長さa2が2.1mmであり、アスペクト比Rが61.90であった。互いに隣接する2つの開口部の距離は、4.69mmであった。全ての開口部の面積の合計値Bは、21.84cm2であった。
(実施例3)
 図3Aに示す展開図を与えるSUS製の中心管を用いたことを除き、実施例1と同じ方法によって、実施例3のスパイラル型膜エレメントを作製した。実施例3で用いた中心管は、中心管の長手方向Xに延びている2つの開口部を有していた。2つの開口部は、互いに同じ形状及び寸法を有しており、中心管の周方向Yに並んでいた。開口部の形状は、矩形であった。開口部は、長手方向Xにおける最大長さa1が130mmであり、周方向Yにおける最大長さa2が8.4mmであり、アスペクト比Rが15.47であった。2つの開口部の距離は、18.75mmであった。全ての開口部の面積の合計値Bは、21.84cm2であった。
(実施例4)
 図3Eに示す展開図を与えるABS樹脂製の中心管を用いたことを除き、実施例1と同じ方法によって、実施例4のスパイラル型膜エレメントを作製した。実施例4で用いた中心管は、中心管の長手方向Xに延びている12個の開口部を有していた。12個の開口部は、互いに同じ形状及び寸法を有しており、格子状に並んでいた。詳細には、中心管の長手方向Xに並んでいる3つの開口部で構成された列が4つ存在し、これらの列が中心管の周方向Yに並んでいた。開口部の形状は、矩形であった。開口部は、長手方向Xにおける最大長さa1が40mmであり、周方向Yにおける最大長さa2が4.2mmであり、アスペクト比Rが9.52であった。全ての開口部の面積の合計値Bは、21.32cm2であった。
(比較例1)
 図10Bに示す展開図を与えるSUS製の中心管を用いたことを除き、実施例1と同じ方法によって、比較例1のスパイラル型膜エレメントを作製した。比較例1で用いた中心管は、174個の円形の開口部を有していた。これらの開口部は、互いに同じ形状及び寸法を有しており、千鳥状に配置されていた。開口部の直径は4mmであった。全ての開口部の面積の合計値Bは、21.85cm2であった。
<平膜状の分離膜の評価>
 スパイラル型膜エレメントに用いた分離膜について、平膜の状態での二酸化炭素の透過速度T1(GPU)を測定した。透過速度T1の測定は、差圧式ガス透過率測定装置(GTRテック社製のGTR-31AHND)を用いて、以下の方法によって行った。まず、分離膜を平膜の状態で金属セル中にセットし、リークが発生しないようにOリングでシールした。分離膜の膜面積は、3.14cm2であった。次に、分離膜の分離機能層側の主面に供給流体が接触するように、金属セル内に供給流体を注入した。金属セル内に注入された供給流体は、温度が23℃であり、圧力が0.1MPaであった。次に、真空ポンプを用いて、分離膜の多孔性支持体側の主面に隣接する空間を10kPa程度以下まで減圧した。これにより、分離膜の多孔性支持体側の主面から透過流体が得られた。得られた透過流体の組成、透過流体の重量などに基づいて、二酸化炭素の透過速度T1を算出した。なお、透過流体の組成などは、ガスクロマトグラフィー(ヤナコテクニカルサイエンス社製のG2700T)を用いて測定した。
<スパイラル型膜エレメントの評価>
 次に、スパイラル型膜エレメントを加圧方式で運転したときの二酸化炭素の透過速度T2(T2-1~T2-3)(GPU)、及び、スパイラル型膜エレメントを減圧方式で運転したときの二酸化炭素の透過速度T3(GPU)を測定した。
 透過速度T2-1は、以下の方法によって測定した。まず、スパイラル型膜エレメントの供給流体流路に供給流体を供給した。供給流体は、温度が23℃であり、圧力が0.1MPaであった。これにより、スパイラル型膜エレメントの中心管を通じて、透過流体が得られた。得られた透過流体の流量などに基づいて、二酸化炭素の透過速度T2-1を算出した。なお、透過流体の流量は、石鹸膜流量計(HORIBA社製)を用いて測定した。
 透過速度T2-2は、供給流体の圧力を0.3MPaに変更したことを除き、透過速度T2-1と同じ方法によって測定した。透過速度T2-3は、供給流体の圧力を0.5MPaに変更したことを除き、透過速度T2-1と同じ方法によって測定した。
 透過速度T3は、真空ポンプを用いて、スパイラル型膜エレメントの中心管内を10kPa程度以下まで減圧したことを除き、透過速度T2-1と同じ方法によって測定した。
 次に、透過速度T1に対する透過速度T2-1の比率R1-1、透過速度T1に対する透過速度T2-2の比率R1-2、透過速度T1に対する透過速度T2-3の比率R1-3、及び、透過速度T1に対する透過速度T3の比率R2を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からは、中心管における全ての開口部の面積の合計値Bがほとんど同じ値であったとしても、開口部の形状によって、比率R1-1~R1-3及びR2の値が異なることが確認できる。表1からわかるとおり、運転方式が同じ条件で比較すると、長手方向Xに延びている開口部を有する中心管を用いた実施例のスパイラル型膜エレメントでは、比較例1と比べて、比率R1-1~R1-3及びR2が高い値であった。さらに、実施例1及び2のスパイラル型膜エレメントでは、比率R1-1~R1-3及びR2が特に高い値であった。このように、実施例のスパイラル型膜エレメントは、分離膜からの透過流体の透過速度の低下を抑制することに適していた。
 実施例1~4からわかるとおり、中心管の材料として、金属や樹脂を用いることができた。なお、比率R1-1~R1-3及びR2の値は、あくまで中心管における開口部の形状及び寸法に依存し、中心管の材料には依存しないことが推定される。
 本実施形態のスパイラル型膜エレメントは、酸性ガスを含む混合気体から酸性ガスを分離することに適している。特に、本実施形態のスパイラル型膜エレメントは、化学プラント又は火力発電のオフガスから二酸化炭素を分離することに適している。
 

Claims (17)

  1.  中心管と、
     前記中心管に巻き付けられた分離膜と、
    を備え、
     前記中心管は、前記分離膜を透過した透過流体を前記中心管の内部に導くための開口部を有し、
     前記開口部は、前記中心管の長手方向に延びている、スパイラル型膜エレメント。
  2.  前記開口部の形状が矩形である、請求項1に記載のスパイラル型膜エレメント。
  3.  前記開口部のアスペクト比Rが1<R≦1000を満たす、請求項1に記載のスパイラル型膜エレメント。
  4.  前記中心管の周方向における前記開口部の最大長さが1mm~10mmである、請求項1に記載のスパイラル型膜エレメント。
  5.  前記中心管は、複数の前記開口部を有する、請求項1に記載のスパイラル型膜エレメント。
  6.  複数の前記開口部は、前記中心管の周方向に並んでいる、請求項5に記載のスパイラル型膜エレメント。
  7.  前記中心管において、複数の前記開口部の数が2~64である、請求項5に記載のスパイラル型膜エレメント。
  8.  前記分離膜及び透過スペーサを有する膜リーフを備え、
     前記膜リーフが前記中心管に巻き付けられている、請求項1に記載のスパイラル型膜エレメント。
  9.  前記膜リーフは、2つの前記分離膜を有し、
     2つの前記分離膜は、互いに重ね合わされ、袋状の構造を有するように封止されている、請求項8に記載のスパイラル型膜エレメント。
  10.  前記透過スペーサは、2つの前記分離膜の間に配置されている、請求項9に記載のスパイラル型膜エレメント。
  11.  前記膜リーフに積層された供給スペーサをさらに備えた、請求項8に記載のスパイラル型膜エレメント。
  12.  前記透過スペーサに接続され、前記膜リーフよりも前記中心管側で前記中心管に巻き付けられている流路スペーサをさらに備えた、請求項8に記載のスパイラル型膜エレメント。
  13.  前記流路スペーサが前記開口部に接している、請求項12に記載のスパイラル型膜エレメント。
  14.  前記分離膜は、
     分離機能層と、
     前記分離機能層を支持している多孔性支持体と、
     前記分離機能層と前記多孔性支持体との間に配置された中間層と、
    を有する、請求項1に記載のスパイラル型膜エレメント。
  15.  気体を処理するために用いられる、請求項1に記載のスパイラル型膜エレメント。
  16.  二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる、請求項1に記載のスパイラル型膜エレメント。
  17.  請求項1~16のいずれか1項に記載のスパイラル型膜エレメントと、
     前記中心管の内部を減圧する減圧装置と、
    を備えた、膜分離システム。
     
PCT/JP2022/027761 2021-07-28 2022-07-14 スパイラル型膜エレメント及び膜分離システム WO2023008220A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280045918.0A CN117580635A (zh) 2021-07-28 2022-07-14 螺旋型膜元件及膜分离系统
JP2023538432A JPWO2023008220A1 (ja) 2021-07-28 2022-07-14
EP22849283.1A EP4378569A1 (en) 2021-07-28 2022-07-14 Spiral membrane element and membrane separation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021122998 2021-07-28
JP2021-122998 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008220A1 true WO2023008220A1 (ja) 2023-02-02

Family

ID=85087586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027761 WO2023008220A1 (ja) 2021-07-28 2022-07-14 スパイラル型膜エレメント及び膜分離システム

Country Status (4)

Country Link
EP (1) EP4378569A1 (ja)
JP (1) JPWO2023008220A1 (ja)
CN (1) CN117580635A (ja)
WO (1) WO2023008220A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476022A (en) * 1983-03-11 1984-10-09 Doll David W Spirally wrapped reverse osmosis membrane cell
JPH11137974A (ja) * 1997-11-12 1999-05-25 Nitto Denko Corp スパイラル型膜エレメント
WO2011158518A1 (ja) * 2010-06-18 2011-12-22 日東電工株式会社 スパイラル型分離膜エレメント、有孔中空管およびその製造方法
JP2016137462A (ja) 2015-01-28 2016-08-04 富士フイルム株式会社 酸性ガス分離用スパイラル型モジュール
US20170056829A1 (en) * 2011-10-19 2017-03-02 General Electric Company Material efficiency and fabrication of membrane elements
WO2020195911A1 (ja) * 2019-03-26 2020-10-01 日東電工株式会社 分離膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4476022A (en) * 1983-03-11 1984-10-09 Doll David W Spirally wrapped reverse osmosis membrane cell
JPH11137974A (ja) * 1997-11-12 1999-05-25 Nitto Denko Corp スパイラル型膜エレメント
WO2011158518A1 (ja) * 2010-06-18 2011-12-22 日東電工株式会社 スパイラル型分離膜エレメント、有孔中空管およびその製造方法
US20170056829A1 (en) * 2011-10-19 2017-03-02 General Electric Company Material efficiency and fabrication of membrane elements
JP2016137462A (ja) 2015-01-28 2016-08-04 富士フイルム株式会社 酸性ガス分離用スパイラル型モジュール
WO2020195911A1 (ja) * 2019-03-26 2020-10-01 日東電工株式会社 分離膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
E. KAMIO ET AL., ADV.MATER, vol. 29, 2017, pages 1704118

Also Published As

Publication number Publication date
EP4378569A1 (en) 2024-06-05
CN117580635A (zh) 2024-02-20
JPWO2023008220A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
JP7421379B2 (ja) 分離膜
EP3389836B1 (en) Selectively permeable graphene oxide membrane
US6168648B1 (en) Spiral wound type membrane module, spiral wound type membrane element and running method thereof
EP2954943B1 (en) Device for separation of oxygen and nitrogen
CA1266367A (en) Selective-permeation gas-separation process and apparatus
EP2979749A1 (en) Manufacturing method for composite membrane for acid gas separation, and membrane module for acid gas separation
US9919275B2 (en) Techniques for preparing multi-layer polymeric and mixed matrix membranes and a device for membrane distillation
KR102408068B1 (ko) 가스 분리막, 가스 분리막 엘리먼트 및 가스 분리 방법
JPWO2018168820A1 (ja) ガス分離膜エレメント、ガス分離膜モジュール、及びガス分離装置
WO2022190938A1 (ja) スパイラル型膜エレメント及び膜分離システム
WO2023008220A1 (ja) スパイラル型膜エレメント及び膜分離システム
WO2022030267A1 (ja) ガス分離システム及び混合ガスの分離方法
ES2687894T3 (es) Montaje que incluye módulos enrollados en espiral conectados en serie con controlador de flujo de filtrado
US20240359140A1 (en) Spiral membrane element and membrane separation system
WO2022059368A1 (ja) 分離膜、分離膜の製造方法及び分離膜を製造するための塗布液
EP2749346B1 (en) Hollow fiber membrane module
KR102630018B1 (ko) 직교류 멤브레인 모듈
CN114025866B (zh) 分离膜元件及其使用方法、以及水处理装置
US20110143232A1 (en) Gel-Filled Membrane Device and Method
CN115151334A (zh) 二氧化碳分离膜用离子液体组合物及保持有该组合物的二氧化碳分离膜、以及具备该二氧化碳分离膜的二氧化碳的浓缩装置
WO2024038722A1 (ja) スパイラル型膜エレメント及び膜分離装置
WO2024190846A1 (ja) ガス分離システム及び混合ガスの分離方法
WO2021039309A1 (ja) 酸性ガス分離膜、酸性ガス分離装置、酸性ガス分離膜の製造方法、及び酸性ガス分離方法
WO2024177026A1 (ja) ガス分離システム及び混合ガスの分離方法
WO2023176436A1 (ja) 炭酸水素塩の製造方法、二酸化炭素の製造方法、有機化合物の製造方法、及び炭酸水素塩の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849283

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280045918.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023538432

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022849283

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849283

Country of ref document: EP

Effective date: 20240228