WO2022190926A1 - 液晶デバイス - Google Patents

液晶デバイス Download PDF

Info

Publication number
WO2022190926A1
WO2022190926A1 PCT/JP2022/008213 JP2022008213W WO2022190926A1 WO 2022190926 A1 WO2022190926 A1 WO 2022190926A1 JP 2022008213 W JP2022008213 W JP 2022008213W WO 2022190926 A1 WO2022190926 A1 WO 2022190926A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
electrode
transparent substrate
shape
Prior art date
Application number
PCT/JP2022/008213
Other languages
English (en)
French (fr)
Inventor
幸次朗 池田
健夫 小糸
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023505302A priority Critical patent/JP7505107B2/ja
Priority to CN202280020749.5A priority patent/CN116964516A/zh
Priority to EP22766885.2A priority patent/EP4307037A1/en
Publication of WO2022190926A1 publication Critical patent/WO2022190926A1/ja
Priority to US18/242,645 priority patent/US12044939B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133773Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers the alignment material or treatment being different for the two opposite substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells

Definitions

  • Embodiments of the present invention relate to liquid crystal devices.
  • Such a light control device controls the alignment state of liquid crystal molecules or the refractive index distribution of the liquid crystal layer to refract light (p-polarized light, s-polarized light) passing through the liquid crystal layer.
  • a technique of suppressing unevenness by forming strip-shaped electrodes for forming the respective liquid crystal lenses at mutually shifted positions.
  • An object of the present invention is to provide a liquid crystal device capable of suppressing moire.
  • a liquid crystal device includes: a first liquid crystal cell; a second liquid crystal cell overlapping the first liquid crystal cell; a third liquid crystal cell overlapping with the second liquid crystal cell; a fourth liquid crystal cell overlapping with the third liquid crystal cell; with each of the first liquid crystal cell to the fourth liquid crystal cell, a first transparent substrate; a first alignment film; a first charging electrode and a second charging electrode, which are positioned between the first transparent substrate and the first alignment film, are spaced apart from each other, and are applied with different voltages; a second transparent substrate; a second alignment film; a third band electrode and a fourth band electrode, which are positioned between the second transparent substrate and the second alignment film, are spaced apart from each other, and are applied with different voltages; a liquid crystal layer located between the first alignment film and the second alignment film; The first, second, third, and fourth electrode electrodes of the first liquid crystal cell, and the first, second, and third electrode electrodes of the third liquid crystal cell.
  • the fourth band electrode has a first shape, The first, second, third, and fourth electrode electrodes of the second liquid crystal cell, and the first, second, and third electrode electrodes of the fourth liquid crystal cell. , the fourth band electrode has a second shape different from the first shape.
  • the liquid crystal device is a first liquid crystal cell; a second liquid crystal cell overlapping the first liquid crystal cell; a third liquid crystal cell overlapping with the second liquid crystal cell; a fourth liquid crystal cell overlapping with the third liquid crystal cell; with each of the first liquid crystal cell to the fourth liquid crystal cell, a first transparent substrate; a first alignment film; a first charging electrode and a second charging electrode, which are positioned between the first transparent substrate and the first alignment film, are spaced apart from each other, and are applied with different voltages; a second transparent substrate; a second alignment film; a third band electrode and a fourth band electrode, which are positioned between the second transparent substrate and the second alignment film, are spaced apart from each other, and are applied with different voltages; a liquid crystal layer located between the first alignment film and the second alignment film; Each of the first liquid crystal cell to the fourth liquid crystal cell has the zigzag-shaped first, second, third, and fourth band electrodes.
  • a liquid crystal device includes: a first liquid crystal cell; a second liquid crystal cell overlapping the first liquid crystal cell; a third liquid crystal cell overlapping with the second liquid crystal cell; a fourth liquid crystal cell overlapping with the third liquid crystal cell; with each of the first liquid crystal cell to the fourth liquid crystal cell, a first transparent substrate; a first alignment film; a first charging electrode and a second charging electrode, which are positioned between the first transparent substrate and the first alignment film, are spaced apart from each other, and are applied with different voltages; a second transparent substrate; a second alignment film; a third band electrode and a fourth band electrode, which are positioned between the second transparent substrate and the second alignment film, are spaced apart from each other, and are applied with different voltages; a liquid crystal layer located between the first alignment film and the second alignment film; The first band electrode of the first liquid crystal cell, the second band electrode of the second liquid crystal cell, the first band electrode of the third liquid crystal cell, and the second band electrode of the fourth liquid crystal cell are the 1 shape, The second band electrode of the
  • FIG. 1 is a perspective view showing a liquid crystal device according to this embodiment.
  • 2 is an exploded perspective view of the liquid crystal device shown in FIG. 1.
  • FIG. 3 is a perspective view schematically showing the first liquid crystal cell of FIG. 2.
  • FIG. 4 is a diagram showing an example of extending directions of each band electrode constituting the liquid crystal device.
  • FIG. 5A is a plan view of the second liquid crystal cell.
  • FIG. 5B is a plan view of the second liquid crystal cell.
  • FIG. 6 is a diagram schematically showing the first liquid crystal cell in an off state in which no electric field is formed in the liquid crystal layer.
  • FIG. 7 is a diagram schematically showing an on-state first liquid crystal cell in which an electric field is formed in the liquid crystal layer.
  • FIG. 8 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device.
  • FIG. 9A is a plan view of the second liquid crystal cell.
  • FIG. 9B is a plan view of the second liquid crystal cell.
  • FIG. 10 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 11 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 12 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 13 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 14 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 10 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 11 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment
  • FIG. 15 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 16 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • FIG. 17 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device of this embodiment.
  • first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but they may intersect at an angle other than 90 degrees.
  • the direction toward the tip of the arrow in the third direction Z is defined as upward or upward, and the direction opposite to the direction toward the tip of the arrow in the third direction Z is defined as downward.
  • the first direction X, the second direction Y, and the third direction Z may also be referred to as the X direction, Y direction, and Z direction, respectively.
  • the second member when “the second member above the first member” and “the second member below the first member” are used, the second member may be in contact with the first member or separated from the first member. may be located In the latter case, a third member may be interposed between the first member and the second member. On the other hand, when “the second member above the first member” and “the second member below the first member” are used, the second member is in contact with the first member.
  • FIG. 1 is a perspective view showing a liquid crystal device 1 according to this embodiment.
  • the liquid crystal device 1 includes a first liquid crystal cell 10 , a second liquid crystal cell 20 , a third liquid crystal cell 30 and a fourth liquid crystal cell 40 .
  • the liquid crystal device 1 according to this embodiment includes two or more liquid crystal cells, and is not limited to the configuration including four liquid crystal cells as in the example shown in FIG.
  • the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 overlap in this order when viewed from the light source side.
  • the light source LS indicated by the dotted line faces the first liquid crystal cell 10 in the third direction Z.
  • the light source LS is preferably configured to emit collimated light, but it is also possible to employ a light source that emits diffused light.
  • Light emitted from the light source LS passes through the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 in order.
  • the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 are configured to refract some polarized components of incident light.
  • an illumination device capable of diffusing and converging light.
  • FIG. 2 is an exploded perspective view of the liquid crystal device 1 shown in FIG.
  • the first liquid crystal cell 10 includes a first transparent substrate S11, a second transparent substrate S21, a liquid crystal layer LC1, and a seal SE1.
  • the first transparent substrate S11 and the second transparent substrate S21 are bonded with a seal SE1.
  • the liquid crystal layer LC1 is held between the first transparent substrate S11 and the second transparent substrate S21 and sealed with a seal SE1.
  • An effective area AA1 capable of refracting incident light is formed inside surrounded by the seal SE1.
  • the direction orthogonal to the side SY is the first direction X.
  • a second direction Y is a direction parallel to the side SY.
  • the 3 o'clock direction on the XY plane that is, the tip direction of the arrow indicating the first direction X is 0°, and the counterclockwise angle with respect to the first direction X is positive (+). and a clockwise angle with respect to the first direction X is denoted by a negative (-).
  • the tip direction of the arrow indicating the second direction Y corresponds to the direction at 90° with respect to the first direction X.
  • Such a corresponding relationship in each direction can be similarly applied to other liquid crystal cells (the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40).
  • the first transparent substrate S11 has an extension portion EX1 extending in the first direction X to the outside of the second transparent substrate S21, and an extension portion EX1 extending in the second direction Y to the outside of the second transparent substrate S21. and an extending portion EY1. At least one of the extension EX1 and the extension EY1 is connected to a flexible wiring board F as indicated by a dotted line.
  • the second liquid crystal cell 20 includes a first transparent substrate S12, a second transparent substrate S22, a liquid crystal layer LC2, and a seal SE2.
  • the effective area AA2 is formed inside surrounded by the seal SE2.
  • the first transparent substrate S12 has an extension EX2 and an extension EY2.
  • the extension EX2 overlaps the extension EX1
  • the extension EY2 overlaps the extension EY1.
  • a flexible wiring substrate is connected to at least one of the extending portion EX2 and the extending portion EY2, but the illustration of the flexible wiring substrates of the second liquid crystal cell 20 to the fourth liquid crystal cell 40 is omitted.
  • the third liquid crystal cell 30 includes a first transparent substrate S13, a second transparent substrate S23, a liquid crystal layer LC3, and a seal SE3.
  • the effective area AA3 is formed inside surrounded by the seal SE3.
  • the first transparent substrate S13 has an extension EX3 and an extension EY3. In the third direction Z, the extending portion EY3 overlaps the extending portion EY2.
  • the extension EX3 does not overlap with the extension EX2 and is located on the opposite side of the extension EX2.
  • the fourth liquid crystal cell 40 includes a first transparent substrate S14, a second transparent substrate S24, a liquid crystal layer LC4, and a seal SE4.
  • the effective area AA4 is formed inside surrounded by the seal SE4.
  • the first transparent substrate S14 has an extension EX4 and an extension EY4. In the third direction Z, the extension EX4 overlaps the extension EX3, and the extension EY4 overlaps the extension EY3.
  • a transparent adhesive layer TA12 is arranged between the first liquid crystal cell 10 and the second liquid crystal cell 20 .
  • the transparent adhesive layer TA12 bonds the first transparent substrate S11 and the second transparent substrate S22.
  • a transparent adhesive layer TA23 is arranged between the second liquid crystal cell 20 and the third liquid crystal cell 30 .
  • the transparent adhesive layer TA23 bonds the first transparent substrate S12 and the second transparent substrate S23 together.
  • a transparent adhesive layer TA34 is arranged between the third liquid crystal cell 30 and the fourth liquid crystal cell 40 .
  • the transparent adhesive layer TA34 bonds the first transparent substrate S13 and the second transparent substrate S24 together.
  • the first transparent substrates S11 to S14 are each formed in a square shape and have the same size.
  • the side SX and the side SY are orthogonal to each other, and the length of the side SX is the same as the length of the side SY.
  • the first liquid crystal cell 10 the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 are adhered to each other, they are arranged in the first direction X as shown in FIG.
  • the sides along the second direction Y are overlapped with each other, and the sides along the second direction Y are also overlapped with each other.
  • the second substrate having a shape substantially the same as the shape of the region through which light is transmitted (effective region described later) a square shape
  • the first substrate a polygonal shape other than the square shape, such as a rectangular shape.
  • each liquid crystal cell will be described more specifically.
  • the first liquid crystal cell 10 will be described below as an example.
  • the configuration is substantially the same as that of the first liquid crystal cell 10 except for the extending direction of the electrodes.
  • FIG. 3 is a perspective view schematically showing the first liquid crystal cell 10 of FIG.
  • the first liquid crystal cell 10 includes, in the effective area AA1, a first and second band electrodes E11A and E11B, a first alignment film AL11, a third and fourth band electrodes E21A and E21B, and a second alignment film AL21. and have.
  • the first band electrode E11A and the second band electrode E11B are located between the first transparent substrate S11 and the first alignment film AL11, are spaced apart, and extend in the same direction.
  • the first band electrode E11A and the second band electrode E11B may be in contact with the first transparent substrate S11, or an insulating film may be interposed between them and the first transparent substrate S11. Also, an insulating film may be interposed between the first band electrode E11A and the second band electrode E11B, and the first band electrode E11A may be located in a layer different from the second band electrode E11B.
  • the plurality of first charging electrodes E11A and the plurality of second charging electrodes E11B are arranged in the first direction X and alternately arranged.
  • the plurality of first charging electrodes E11A are configured to be electrically connected to each other and to be applied with the same voltage.
  • the plurality of second charging electrodes E11B are configured to be electrically connected to each other and to be applied with the same voltage.
  • the voltage applied to the second charging electrode E11B is controlled so as to be different from the voltage applied to the first charging electrode E11A.
  • the first alignment film AL11 covers the first band electrode E11A and the second band electrode E11B.
  • the alignment treatment direction AD11 of the first alignment film AL11 is the first direction X.
  • the alignment treatment for each alignment film may be a rubbing treatment or an optical alignment treatment.
  • the alignment treatment direction is sometimes referred to as the rubbing direction.
  • the initial alignment direction of the liquid crystal molecules LM11 along the first alignment film AL11 is the first direction X.
  • the alignment treatment direction AD11 intersects the first and second charging electrodes E11A and E11B.
  • the third band electrode E21A and the fourth band electrode E21B are located between the second transparent substrate S21 and the second alignment film AL21, are spaced apart, and extend in the same direction.
  • the third band electrode E21A and the fourth band electrode E21B may be in contact with the second transparent substrate S21, or an insulating film may be interposed between them and the second transparent substrate S21. Further, an insulating film may be interposed between the third band electrode E21A and the fourth band electrode E21B, and the third band electrode E21A may be located in a different layer from the fourth band electrode E21B.
  • the plurality of third band electrodes E21A and the plurality of fourth band electrodes E21B are arranged in the second direction Y and alternately arranged.
  • the plurality of third charging electrodes E21A are configured to be electrically connected to each other and to be applied with the same voltage.
  • the plurality of fourth charging electrodes E21B are configured to be electrically connected to each other and to be applied with the same voltage.
  • the voltage applied to the fourth charging electrode E21B is controlled so as to be different from the voltage applied to the third charging electrode E21A.
  • the extending directions of the first and second band electrodes E11A and E11B are perpendicular to the extending directions of the third and fourth band electrodes E21A and E21B, which will be described in detail later.
  • the second alignment film AL21 covers the third band electrode E21A and the fourth band electrode E21B.
  • the alignment treatment direction AD21 of the second alignment film AL21 is the second direction Y. As shown in FIG. That is, in the example shown here, the initial alignment direction of the liquid crystal molecules LM21 along the second alignment film AL21 is the second direction Y. As shown in FIG. Further, the alignment treatment direction AD11 of the first alignment film AL11 and the alignment treatment direction AD21 of the second alignment film AL21 are orthogonal to each other. The alignment treatment direction AD21 intersects the third and fourth band electrodes E21A and E21B.
  • FIG. 4 is a diagram showing an example of the extending direction of each charging electrode that constitutes the liquid crystal device 1.
  • the alignment treatment direction AD11 is a direction at 0° with respect to the first direction X.
  • the extending direction of the first and second charging electrodes E11A and E11B is 90° with respect to the first direction X.
  • the extending direction of the first and second charging electrodes E11A and E11B is 90° with respect to the first direction X.
  • the first band electrode E11A and the second band electrode E11B are electrodes each having a linear shape and having a linearly extending edge.
  • the extending direction of the first and second band electrodes E11A and E11B is the angle between the first direction X, which is a common reference direction, and the edge of the band electrode.
  • the orientation treatment direction AD21 is a direction at 90° to the first direction X.
  • the extending direction of the third band electrode E21A and the fourth band electrode E21B is 0° with respect to the first direction X.
  • the third band electrode E21A and the fourth band electrode E21B are electrodes having a linear shape, and have edges extending linearly.
  • the extending direction of the third and fourth band electrodes E21A and E21B is the angle between the second direction Y, which is a common reference direction, and the edge of the band electrode.
  • the extending directions of the first and second band electrodes E11A and E11B are orthogonal to the extending directions of the third and fourth band electrodes E21A and E21B.
  • the alignment treatment direction AD12 is a direction at 0° with respect to the first direction X.
  • the extending direction of the first and second charging electrodes E12A and E12B is 90° with respect to the first direction X.
  • the orientation treatment direction AD22 is the direction of 90°.
  • the extending direction of the third band electrode E22A and the fourth band electrode E22B is 0° with respect to the first direction X.
  • the extending directions of the first and second charging electrodes E12A and E12B are orthogonal to the extending directions of the third and fourth charging electrodes E22A and E22B.
  • FIG. 5A and 5B are plan views of the second liquid crystal cell 20.
  • the first charging electrode E12A and the second charging electrode E12B are electrodes having a wavy shape.
  • An electrode having a wavy shape is a meandering curved electrode.
  • An electrode having a wavy shape can also be said to be an electrode having an electrode edge that is continuous while changing the curvature. If the waveform-shaped electrode has a shape closer to a sine wave, the extension direction of the waveform-shaped electrode is the extension direction of the straight line connecting the starting points of each cycle. Alternatively, it can be said that the traveling direction of the wavy wave is the extension direction of the wavy electrode. In FIG. 5A, the dashed arrow indicates the extension direction of the wavy electrode. However, the waveform shape does not have to be a sine wave or the like, and may be formed repeatedly while changing the curvature.
  • the wave-shaped band electrodes extend from the rectangular electrodes.
  • the first band electrode E12A extends along the second direction Y from the rectangular electrode E12Ab extending in the direction parallel to the first direction X.
  • the second band electrode E12B extends in a direction opposite to the second direction Y from a rectangular electrode E12Bb extending in a direction parallel to the first direction X.
  • the second band electrode E12B extends in a direction opposite to the second direction Y from a rectangular electrode E12Bb extending in a direction parallel to the first direction X.
  • the third band electrode E22A extends along the first direction X from the rectangular electrode E22Ab extending in the direction parallel to the second direction Y.
  • the fourth band electrode E22B extends in a direction opposite to the first direction X from a rectangular electrode E22Bb extending in a direction parallel to the second direction Y. As shown in FIG. 5B, for example, the third band electrode E22A extends along the first direction X from the rectangular electrode E22Ab extending in the direction parallel to the second direction Y.
  • the fourth band electrode E22B extends in a direction opposite to the first direction X from a rectangular electrode E22Bb extending in a direction parallel to the second direction Y.
  • the second direction Y and its opposite direction are referred to as directions parallel to the second direction Y.
  • the alignment processing direction AD13 is the direction of -90°.
  • the extending direction of the first and second band electrodes E13A and E13B having a linear shape is the direction of 0°.
  • the orientation treatment direction AD23 is the direction of 0°.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B having a linear shape is the direction of 90°.
  • the extending directions of the first and second charging electrodes E13A and E13B are orthogonal to the extending directions of the third and fourth charging electrodes E23A and E23B.
  • the alignment treatment direction AD14 is the direction of -90°.
  • the extending direction of the first and second band electrodes E14A and E14B having a wavy shape is the direction of 0°.
  • the alignment treatment direction AD24 is the direction of 0°.
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B having a wavy shape is the direction of 90°.
  • the extending directions of the first and second charging electrodes E14A and E14B are orthogonal to the extending directions of the third and fourth charging electrodes E24A and E24B.
  • the flexible wiring board F1 connected to the first transparent board S11 and the flexible wiring board F2 connected to the first transparent board S12 are pulled out generally along the second direction Y.
  • the flexible wiring board F3 connected to the first transparent board S13 and the flexible wiring board F4 connected to the first transparent board S14 are pulled out in a direction substantially parallel to the first direction X.
  • the flexible wiring boards F1 to F4 may be pulled out in different directions.
  • the electrode shapes of the first and second charging electrodes E11A and E11B and the electrode shapes of the first and second charging electrodes E12A and E12B are different from linear and wavy, respectively.
  • the first band electrode E11A and the first band electrode E12A extend in the same 90° direction, but they are straight.
  • the edges of the electrodes do not match because the shape and corrugation shape and the electrode shape are different. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • Other electrodes specifically, second and first electrode E12B, third and third electrode E21A and E22A, and fourth and fourth electrode E21B and E22B extend in the same direction, but the shapes of the electrodes are different from each other, so the edges of the electrodes do not match in plan view.
  • the extending direction of the linear first and second band electrodes E11A and E11B and the extending direction of the linear first and second band electrodes E13A and E13B are orthogonal to each other. Further, the extending direction of the linear third and fourth band electrodes E21A and E21B and the extending direction of the linear third and fourth band electrodes E23A and E23B are orthogonal to each other.
  • the extending direction of the first and second band electrodes E11A and E11B is the same as that of the first and second band electrodes E13A and E13B. match the outgoing direction.
  • the extending directions of the third and fourth band electrodes E21A and E21B match the extending directions of the third and fourth band electrodes E23A and E23B.
  • the first band electrode E11A and the second band electrode E11B, and the first band electrode E13A and the second band electrode E13B are rotationally symmetrical by 90°.
  • the third band electrode E21A and the fourth band electrode E21B, and the third band electrode E23A and the fourth band electrode E23B have 90° rotational symmetry. That is, the first liquid crystal cell 10 and the third liquid crystal cell 30 are rotationally symmetrical by 90°, and the first liquid crystal cell 10 is rotated clockwise by 90° in the XY plane to be used as the third liquid crystal cell 30. be able to. Therefore, the cost can be reduced compared to the case where the first liquid crystal cell 10 and the third liquid crystal cell 30 are separately prepared.
  • the mutual relationship between the first liquid crystal cell 10 and the third liquid crystal cell 30 has been described here, the mutual relationship between the second liquid crystal cell 20 and the fourth liquid crystal cell 40 is the same. That is, the second liquid crystal cell 20 and the fourth liquid crystal cell 40 are rotationally symmetrical by 90°, and by rotating the second liquid crystal cell 20 clockwise by 90° in the XY plane, it is used as the fourth liquid crystal cell 40. be able to. Therefore, the cost can be reduced compared to the case where the second liquid crystal cell 20 and the fourth liquid crystal cell 40 are separately prepared. Therefore, by preparing two types of liquid crystal cells with different extending directions of the charging electrodes, the liquid crystal device 1 can be constructed by stacking the first liquid crystal cell 10 to the fourth liquid crystal cell 40 .
  • the shape of the third and fourth electrode electrodes E21A and E21B on the second transparent substrate S21 of the first liquid crystal cell 10 and the shape of the first and second electrode electrodes E14A and E21B on the first transparent substrate S14 of the fourth liquid crystal cell 40 Although the electrode shapes of the charging electrode E14B are different from a linear shape and a wavy shape, they both extend in the first direction X. As shown in FIG.
  • the electrode shapes of the first and second band electrodes E11A and E11B on the first transparent substrate S11 of the first liquid crystal cell 10 and the third and third band electrodes E24A and E24A on the second transparent substrate S24 of the fourth liquid crystal cell 40 are different from a linear shape and a wavy shape, respectively, but both extend in the second direction Y. As shown in FIG.
  • the third band electrode E21A and the first band electrode E14A both extend in the same direction (first direction X).
  • the edges of the electrodes do not match because the electrode shapes are different from the linear and wavy shapes. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • both electrodes act on the same polarized light component (for example, the P polarized light component), but the difference in electrode shape makes it possible to subtly change the degree of diffusion, which also suppresses moire.
  • the Rukoto is the same polarized light component
  • Electrodes specifically, the fourth and second electrode E21B and E14B, the first and third electrode E11A and E24A, and the second and fourth electrode E11B and E24B extend in the same direction, but the shapes of the electrodes are different from each other, so the edges of the electrodes do not match in plan view.
  • the electrode shapes of the charging electrode E13B are different from a linear shape and a wavy shape, they both extend in the first direction X. As shown in FIG.
  • the electrode shapes of the first and second band electrodes E12A and E12B on the first transparent substrate S12 of the second liquid crystal cell 20 and the third and third band electrodes E23A and E23A on the second transparent substrate S23 of the third liquid crystal cell 30 The electrode shapes of the fourth band electrode E23B are different from a linear shape and a wavy shape, respectively, but they both extend in the second direction Y. As shown in FIG.
  • both the third band electrode E22A and the first band electrode E13A extend in the same direction (first direction X).
  • first direction X first direction X
  • the edges of the electrodes do not match because the electrode shapes are different from the linear and wavy shapes. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • both electrodes act on the same polarized light component (for example, the P polarized light component), but the difference in electrode shape makes it possible to subtly change the degree of diffusion, which also suppresses moire.
  • the Rukoto is the same polarized light component
  • Electrodes specifically, the fourth and second electrode E13B, the first and third electrode E12A and E23A, and the second and fourth electrode E12B and E23B extend in the same direction, but the shapes of the electrodes are different from each other, so the edges of the electrodes do not match in plan view.
  • FIG. 6 and 7 only the configuration necessary for explanation such as the liquid crystal molecules LM1 in the vicinity of the first transparent substrate S11 is illustrated.
  • FIG. 6 is a diagram schematically showing the first liquid crystal cell 10 in the off state (OFF) in which no electric field is formed in the liquid crystal layer LC1.
  • the liquid crystal molecules LM1 are initially aligned.
  • the liquid crystal layer LC1 has a substantially uniform refractive index distribution. Therefore, the polarized light component POL1, which is incident light to the first liquid crystal cell 10, passes through the liquid crystal layer LC1 without being refracted (or diffused).
  • the initial alignment directions of the liquid crystal molecules of the liquid crystal layer LC1 intersect at 90° between the upper and lower transparent substrates S11 and S21.
  • the liquid crystal molecules of the liquid crystal layer LC1 are oriented in the first direction X on the first transparent substrate S11 side, but gradually change their orientation from the first direction X toward the second transparent substrate S21 side. Y, and oriented in the second direction Y on the second transparent substrate S21 side.
  • the direction of the polarization component changes according to the change in orientation of the liquid crystal layer LC1. More specifically, the polarization component having the polarization axis in the first direction X changes its polarization axis to the second direction Y while passing through the liquid crystal layer LC1.
  • the polarization component having the polarization axis in the second direction Y changes its polarization axis from the second direction Y to the first direction X in the process of passing through the liquid crystal layer LC1. Therefore, when viewed from these mutually orthogonal polarization components, the polarization axes are switched in the process of passing through the first liquid crystal cell 10 .
  • the action of changing the direction of the polarization axis may be referred to as optical rotation.
  • FIG. 7 is a diagram schematically showing the first liquid crystal cell 10 in the ON state (ON) in which an electric field is formed in the liquid crystal layer LC1.
  • ON ON
  • an electric field is formed in the liquid crystal layer LC1 by generating a potential difference between the first charging electrode E11A and the second charging electrode E11B.
  • the liquid crystal molecules LM1 are oriented such that their long axes are aligned with the electric field.
  • the range over which the electric field between the first charging electrode E11A and the second charging electrode E11B reaches is mainly about half the thickness of the liquid crystal layer LC1. Therefore, as shown in FIG.
  • the liquid crystal layer LC1 has a region near the first transparent substrate S11 in which the liquid crystal molecules LM1 are oriented substantially perpendicularly to the substrate. A region in which the liquid crystal molecules LM1 are aligned in an oblique direction, a region in which the liquid crystal molecules LM1 are aligned substantially horizontally with respect to the substrate, and the like are formed.
  • the liquid crystal molecule LM1 has refractive index anisotropy ⁇ n. Therefore, the liquid crystal layer LC1 in the ON state has a refractive index distribution or a retardation distribution according to the alignment state of the liquid crystal molecules LM1.
  • the retardation here is represented by ⁇ n ⁇ d, where d is the thickness of the liquid crystal layer LC1.
  • positive liquid crystal is used as the liquid crystal layer LC1 in this embodiment, it is possible to use negative liquid crystal by considering the alignment direction and the like.
  • the polarization component POL1 is diffused under the influence of the refractive index distribution of the liquid crystal layer LC1 when passing through the liquid crystal layer LC1. More specifically, the polarized component having the polarization axis in the first direction X is diffused under the influence of the refractive index distribution of the liquid crystal layer LC1, and optically rotates in the second direction Y. As shown in FIG. On the other hand, the polarized light component having the polarization axis in the second direction Y is not affected by the refractive index distribution, is optically rotated only in the first direction X, and passes through the liquid crystal layer LC1 without being diffused. In FIG.
  • the polarized component diffused on the first transparent substrate S11 side is further diffused on the second transparent substrate S21 side and emitted from the first liquid crystal cell 10 .
  • the polarized component optically rotated in the first direction X in the process of passing through the liquid crystal layer LC1 is emitted from the first liquid crystal cell LC1 without being affected by the refractive index distribution.
  • Such diffusion and optical rotation of the polarized component also occur in the second liquid crystal cell LC20. That is, the polarized light component emitted from the light source and having the polarization axis in the first direction X passes through the first liquid crystal cell 10 to change the polarization axis from the first direction X to the second direction Y, and further to the second liquid crystal. The polarization axis is changed from the second direction Y to the first direction X by passing through the cell 20 . In this process, if the liquid crystal molecules parallel to the polarized component have a refractive index distribution, the polarized component diffuses according to the refractive index distribution.
  • the polarized component having the polarization axis in the second direction Y emitted from the light source changes its polarization axis from the second direction Y to the first direction X by passing through the first liquid crystal cell 10
  • the polarization axis is changed from the first direction X to the second direction Y by passing through the liquid crystal cell 20 .
  • the polarized component diffuses according to the refractive index distribution.
  • the same phenomenon occurs in the third liquid crystal cell 30 and the fourth liquid crystal cell 40, but since they are the first liquid crystal cell and the second liquid crystal cell rotated by 90 degrees, the polarization components exerting the diffusing action are exchanged.
  • the first liquid crystal cell 10 and the fourth liquid crystal cell 40 are mainly
  • the second liquid crystal cell 20 and the third liquid crystal cell 30 are configured to scatter (diffuse) the polarization component POL1 which is p-polarized
  • the second liquid crystal cell 20 and the third liquid crystal cell 30 are configured to scatter (diffuse) the polarization component POL2 which is mainly s-polarized.
  • each of the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 is configured so as not to include electrodes extending in the same direction. . Therefore, the liquid crystal layers of the respective liquid crystal cells form different refractive index distributions in the ON state. As a result, interference of light transmitted through each liquid crystal cell is reduced, and moiré can be suppressed.
  • FIG. 8 is a plan view showing another example of each charging electrode constituting the liquid crystal device 1.
  • FIG. 8 differs from the configuration example shown in FIG. 4 in that zigzag-shaped electrodes are provided.
  • the first liquid crystal cell 10 and the third liquid crystal cell 30 are the same as those shown in FIG.
  • the second liquid crystal cell 20 and the fourth liquid crystal cell 40 shown in FIG. 8 are provided with strip electrodes having zigzag shapes instead of wave shapes.
  • FIG. 9A and 9B are plan views of the second liquid crystal cell 20.
  • the first charging electrode E12A and the second charging electrode E12B are electrodes having a zigzag shape.
  • the second charging electrode E12B has a first electrode piece E12B1 and a second electrode piece E12B2, which continuously form a zigzag shape.
  • a first electrode piece E12B1 extends from a rectangular electrode E12Bb extending in a direction parallel to the first direction X, and extends counterclockwise from the first direction X as indicated by a dashed-dotted arrow. It extends in a direction forming an acute angle ⁇ .
  • the second electrode piece E12B2 extends from the first electrode piece E12B1 in a direction forming an acute angle ⁇ clockwise with the first direction X, as indicated by the dashed-dotted arrow.
  • the second charging electrode E12B has a dogleg shape by being formed by a pair of first electrode piece E12B1 and second electrode piece E12B2.
  • the second strip electrode E12B having a plurality of first electrode strips E12B1 and second electrode strips E12B2 alternately arranged in the second direction Y may be configured.
  • the zigzag shape means a shape in which the first electrode piece E12B1 and the second electrode piece E12B2 are repeated in pairs or plural times.
  • the acute angle ⁇ is 85° or more and 89° or less.
  • the extending directions of the first electrode piece E12B1 and the second electrode piece E12B2 may be reversed.
  • the second band electrode E12B as a whole moves in the second direction Y as indicated by the dotted arrow. extending along a direction parallel to The first band electrode E12A as a whole extends along the second direction Y, as indicated by the dotted line arrow, similarly to the second band electrode E12B as a whole.
  • the configuration of each first charging electrode E12A is the same as that of the second charging electrode E12B.
  • the third band electrode E22A and the fourth band electrode E22B of the second transparent substrate S22 extend along the direction parallel to the first direction X.
  • the third charging electrode E22A has a first electrode piece E22A1 and a second electrode piece E22A2, which continuously form a zigzag shape.
  • the first electrode piece and the second electrode piece of the third charging electrode E22A continuously form a zigzag shape.
  • the first electrode piece E22A1 extends clockwise from the second direction Y as indicated by the dashed-dotted arrow from the rectangular electrode E22Ab extending in the direction parallel to the second direction Y. extending in a direction forming an acute angle ⁇ .
  • the second electrode piece E22A2 extends from the first electrode piece E22A1 in a direction forming an acute angle ⁇ counterclockwise with the second direction Y, as indicated by the dashed-dotted arrow.
  • the first electrode piece E22A1 and the second electrode piece E22A2 are repeatedly formed to form the third band electrode E22A.
  • the extending directions of the first electrode piece E22A1 and the second electrode piece E22A2 may be reversed.
  • the third band electrode E22A By repeatedly forming a plurality of combinations of the first electrode pieces E22A1 and the second electrode pieces E22A2 along the first direction X, the third band electrode E22A as a whole moves in the first direction Y as indicated by the dotted arrow. extending along a direction parallel to The fourth band electrode E22B extends parallel to the first direction X from the rectangular electrode E22Bb as a whole, like the third band electrode E22A. The configuration of each fourth band electrode E22B is the same as that of the third band electrode E22B.
  • the direction in which the first band electrode E14A and the second band electrode E14B of the fourth liquid crystal cell 40 extend is the same as the direction in which the third band electrode E22A and the fourth band electrode E22B of the second liquid crystal cell 20 extend.
  • the extending direction of the third charging electrode EE24A and the fourth charging electrode E24B is the same as the extending direction of the first charging electrode E12A and the second charging electrode E12B.
  • the extending directions of the charging electrodes of the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40, and the alignment processing directions of the alignment films are the same as those in the first embodiment. is the same as described in . Therefore, the description uses the above and omits it.
  • the electrode shapes of the linear first and second band electrodes E11A and E11B and the zigzag shaped first and second band electrodes E12A and E11B are different.
  • the 2-band electrode E12B is superimposed. Due to the different electrode shapes, the edges of these electrodes do not match. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • the shape of the third and fourth electrode electrodes E21A and E21B on the second transparent substrate S21 of the first liquid crystal cell 10 and the shape of the first and second electrode electrodes E14A and E21B on the first transparent substrate S14 of the fourth liquid crystal cell 40 Although the electrode shape of the charging electrode E14B is different from a linear shape and a zigzag shape (dogleg shape), both extend in the first direction X. As shown in FIG.
  • the electrode shapes of the first and second band electrodes E11A and E11B on the first transparent substrate S11 of the first liquid crystal cell 10 and the third and third band electrodes E24A and E24A on the second transparent substrate S24 of the fourth liquid crystal cell 40 The electrode shape of the fourth band electrode E24B is different from a linear shape and a zigzag shape (dogleg shape), but both of them extend in the second direction Y. As shown in FIG.
  • the third band electrode E21A and the first band electrode E14A both extend in the same direction (first direction X).
  • first direction X first direction X
  • the electrode shape is different from the linear shape and the zigzag shape, the edges of the electrodes do not match. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • both electrodes act on the same polarized light component (for example, the P polarized light component), but the difference in electrode shape makes it possible to subtly change the degree of diffusion, which also suppresses moire.
  • the Rukoto is the same polarized light component
  • Electrodes specifically, the fourth and second electrode E21B and E14B, the first and third electrode E11A and E24A, and the second and fourth electrode E11B and E24B extend in the same direction, but the shapes of the electrodes are different from each other, so the edges of the electrodes do not match in plan view.
  • the electrode shapes of the charging electrode E13B are different from a zigzag shape (a dogleg shape) and a linear shape, they both extend in the first direction X.
  • the electrode shapes of the first and second band electrodes E12A and E12B on the first transparent substrate S12 of the second liquid crystal cell 20 and the third and third band electrodes E23A and E23A on the second transparent substrate S23 of the third liquid crystal cell 30 are different from a zigzag shape (a dogleg shape) and a linear shape, respectively, but both of them extend in the second direction Y. As shown in FIG.
  • both the third band electrode E22A and the first band electrode E13A extend in the same direction (first direction X).
  • first direction X first direction X
  • the electrode shape is different from the zigzag shape and linear shape, the edges of the electrodes do not match. Since there are no electrodes that completely overlap each other, moire can be suppressed.
  • both electrodes act on the same polarized light component (for example, the P polarized light component), but the difference in electrode shape makes it possible to subtly change the degree of diffusion, which also suppresses moire.
  • the Rukoto is the same polarized light component
  • Electrodes specifically, the fourth and second electrode E13B, the first and third electrode E12A and E23A, and the second and fourth electrode E12B and E23B extend in the same direction, but the shapes of the electrodes are different from each other, so the edges of the electrodes do not match in plan view.
  • the first liquid crystal cell 10 rotated by 90° can be used as the third liquid crystal cell 30 .
  • the second liquid crystal cell 20 rotated by 90° can be used as the fourth liquid crystal cell 40 . Therefore, the cost can be reduced compared to the case where the first liquid crystal cell 10 and the third liquid crystal cell 30 are separately prepared. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 10 is a plan view showing another example of each charging electrode constituting the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 10 differs from the configuration example shown in FIG. 4 in that zigzag-shaped and wave-shaped electrodes are superimposed.
  • the first liquid crystal cell 10 shown in FIG. 10 is similar to the second liquid crystal cell 20 shown in FIG.
  • a third liquid crystal cell 30 shown in FIG. 10 is obtained by rotating the first liquid crystal cell 10 shown in FIG. 10 clockwise by 90°.
  • the second liquid crystal cell 20 and the fourth liquid crystal cell 40 shown in FIG. 10 are the same as the second liquid crystal cell 20 and the fourth liquid crystal cell 40 shown in FIG. 4, respectively.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell.
  • the cost can be reduced compared to preparing them separately. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 11 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 11 differs from the configuration example shown in FIG. 8 in that all the band electrodes have a zigzag shape.
  • the first liquid crystal cell 10 is the same as the second liquid crystal cell 20 shown in FIG.
  • the alignment treatment direction AD11 is a direction at 0° with respect to the first direction X.
  • the zigzag-shaped first and second band electrodes E11A and E11B extend in a direction parallel to the second direction Y. As shown in FIG.
  • the orientation treatment direction AD21 is a direction at 90° to the first direction X.
  • the first electrodes E11A and 11B having a zigzag shape extend in a direction parallel to the second direction Y.
  • the third band electrode E21A and the fourth band electrode E21B having a zigzag shape extend in a direction parallel to the first direction X.
  • the extending directions of the first and second electrode E11A and E11B are orthogonal to the extending directions of the third and fourth electrode E21A and E21B, respectively.
  • the alignment treatment direction AD12 is the direction of 0°.
  • the first band electrode E12A and the second band electrode E12B having a zigzag shape extend along the second direction Y.
  • the orientation treatment direction AD22 is the direction of 90°.
  • the zigzag-shaped third and fourth band electrodes E22A and E22B extend along the first direction X.
  • the extending directions of the first and second charging electrodes E12A and E12B are orthogonal to the extending directions of the third and fourth charging electrodes E22A and E22B.
  • the alignment treatment direction AD13 is the direction of -90°.
  • the first strip electrode E13A and the second strip electrode E13B having a zigzag shape extend in a direction parallel to the first direction X.
  • the orientation treatment direction AD23 is the direction of 0°.
  • the third band electrode E23A and the fourth band electrode E23B having a zigzag shape extend along the second direction Y.
  • the extending directions of the first and second charging electrodes E13A and E13B are orthogonal to the extending directions of the third and fourth charging electrodes E23A and E23B.
  • the alignment treatment direction AD14 is the direction of -90°.
  • the first strip electrode E14A and the second strip electrode E14B having a zigzag shape extend in a direction parallel to the first direction X. As shown in FIG.
  • the alignment treatment direction AD24 is the direction of 0°.
  • the third band electrode E24A and the fourth band electrode E24B having zigzag shapes extend along the direction parallel to the second direction Y. As shown in FIG.
  • the extending directions of the first and second charging electrodes E14A and E14B are orthogonal to the extending directions of the third and fourth charging electrodes E24A and E24B.
  • the flexible wiring board F1 connected to the first transparent board S11 is pulled out generally along the second direction Y.
  • the flexible wiring board F2 connected to the first transparent board S12 is pulled out substantially along the second direction Y. As shown in FIG.
  • the flexible wiring board F3 connected to the first transparent board S13 is pulled out in a direction substantially parallel to the first direction X.
  • the flexible wiring board F4 connected to the first transparent board S14 is pulled out in a direction substantially parallel to the first direction X. As shown in FIG.
  • electrodes formed on the first transparent substrate S11 of the first liquid crystal cell 10 and the first transparent substrate S12 of the second liquid crystal cell 20 are line symmetrical with respect to the second direction Y (reversed to each other). ). That is, the protruding direction of each electrode in the first direction X is reversed between these substrates. More specifically, the electrode of the first transparent substrate S11 of the first liquid crystal cell 10 protrudes in the positive direction of the first direction X, and the electrode of the first transparent substrate S12 of the second liquid crystal cell 20 protrudes in the negative direction of the first direction X. direction.
  • electrodes formed on the substrates are in a line-symmetrical (reversed to each other) relationship with respect to the first direction X. be. More specifically, the electrode of the second transparent substrate S21 of the first liquid crystal cell 10 protrudes in the negative direction Y, and the electrode of the second transparent substrate S22 of the second liquid crystal cell 20 protrudes in the positive direction Y. direction.
  • the electrodes formed on the substrates are in a line-symmetrical (reversed to each other) relationship with respect to the first direction X.
  • the electrodes formed on the substrates are line-symmetrical (inverted to each other) with respect to the second direction Y. be.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell.
  • the cost can be reduced as compared with the case of preparing these separately. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 12 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 12 differs from the configuration example shown in FIG. 11 in that the rotated liquid crystal cell is used for another liquid crystal cell.
  • the second liquid crystal cell 20 is obtained by rotating the first liquid crystal cell 10 by 180°.
  • the fourth liquid crystal cell 40 is obtained by rotating the third liquid crystal cell 30 by 180°.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 13 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 13 differs from the configuration example shown in FIG. 11 in that the transparent substrate is rotated.
  • the first liquid crystal cell 10 shown in FIG. 13 is similar to the first liquid crystal cell 10 shown in FIG.
  • the first transparent substrate S12 of the second liquid crystal cell 20 is obtained by rotating the first transparent substrate S11 of the first liquid crystal cell 10 by 180°.
  • the second transparent substrate S22 of the second liquid crystal cell 20 is obtained by rotating the second transparent substrate S21 of the first liquid crystal cell 10 by 180°.
  • the third liquid crystal cell 30 is obtained by rotating the first liquid crystal cell 10 clockwise by 90°.
  • the fourth liquid crystal cell 40 is obtained by rotating the second liquid crystal cell 20 clockwise by 90°. Also in this embodiment, by changing the transparent substrate and using it as another transparent substrate, the cost can be reduced as compared with the case where each substrate is separately prepared.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 14 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 14 differs from the configuration example shown in FIG. 11 in that a rotated transparent substrate is used as another substrate.
  • the first liquid crystal cell 10 is the same as the first liquid crystal cell 10 shown in FIG.
  • the second liquid crystal cell 20 is obtained by turning the front and back of the first liquid crystal cell 10 and then rotating it counterclockwise by 90°. That is, the second transparent substrate S22 of the second liquid crystal cell 20 is the same as the first transparent substrate S11 of the first liquid crystal cell .
  • the first transparent substrate S12 of the second liquid crystal cell 20 is the same as the second transparent substrate S21 of the first liquid crystal cell .
  • the third liquid crystal cell 30 is obtained by rotating the first liquid crystal cell 10 clockwise by 90°.
  • the fourth liquid crystal cell 40 is obtained by rotating the second liquid crystal cell 20 clockwise by 90°.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 15 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the third liquid crystal cell 30 and the fourth liquid crystal cell 40 are arranged such that the second transparent substrate is oriented 180 degrees. It is different in that it rotates.
  • the first liquid crystal cell 10 is the same as the first liquid crystal cell 10 shown in FIG.
  • the second liquid crystal cell 20 is obtained by rotating the first liquid crystal cell 10 by 180 degrees.
  • the third liquid crystal cell 30 is obtained by rotating the second transparent substrate of the first liquid crystal cell 10 by 180 degrees, attaching it to the first transparent substrate, and then rotating it counterclockwise by 90 degrees.
  • the fourth liquid crystal cell 40 is obtained by rotating the third liquid crystal cell 30 by 180°.
  • the cost can be reduced compared to preparing separately.
  • moire can be suppressed because no electrodes completely overlap each other when viewed between the first transparent substrates or when viewed between the second transparent substrates of each liquid crystal cell. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 16 is a plan view showing another example of each charging electrode forming the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 16 differs from the configuration example shown in FIG. 11 in that one liquid crystal cell includes a wave-shaped electrode and a zigzag-shaped electrode.
  • the orientation treatment direction AD11 is 0° with respect to the first direction X.
  • the wave-shaped first and second band electrodes E11A and E11B extend in a direction parallel to the second direction Y. As shown in FIG.
  • the orientation treatment direction AD21 is a direction at 90° to the first direction X.
  • the first electrodes E21A and 21B having a zigzag shape extend in a direction parallel to the second direction Y.
  • the third band electrode E21A and the fourth band electrode E21B having a wavy shape extend in a direction parallel to the first direction X.
  • the extending directions of the first and second electrode E11A and E11B are orthogonal to the extending directions of the third and fourth electrode E21A and E21B, respectively.
  • the alignment treatment direction AD12 is the direction of 0°.
  • the first electrode E12A and the second electrode E12B having a zigzag shape extend in the second direction Y.
  • the orientation treatment direction AD22 is the direction of 90°.
  • the extending direction of the third band electrode E22A and the fourth band electrode E22B having a wavy shape extends along the first direction X.
  • the extending directions of the first and second charging electrodes E12A and E12B are orthogonal to the extending directions of the third and fourth charging electrodes E22A and E22B.
  • the alignment treatment direction AD13 is the direction of -90°.
  • the first band electrode E13A and the second band electrode E13B having a wavy shape extend in a direction parallel to the first direction X.
  • the orientation treatment direction AD23 is the direction of 0°.
  • the third band electrode E23A and the fourth band electrode E23B having a zigzag shape extend along the second direction Y.
  • the extending directions of the first and second charging electrodes E13A and E13B are orthogonal to the extending directions of the third and fourth charging electrodes E23A and E23B.
  • the alignment treatment direction AD14 is the direction of -90°.
  • the first strip electrode E14A and the second strip electrode E14B having a zigzag shape extend in a direction parallel to the first direction X.
  • the alignment treatment direction AD24 is the direction of 0°.
  • the third band electrode E24A and the fourth band electrode E24B having a wavy shape extend along the direction parallel to the second direction Y.
  • the extending directions of the first and second charging electrodes E14A and E14B are orthogonal to the extending directions of the third and fourth charging electrodes E24A and E24B.
  • the flexible wiring board F1 connected to the first transparent substrate S11 and the flexible wiring board F2 connected to the first transparent substrate S12 are extended substantially along the second direction Y. ing.
  • the flexible wiring board F3 connected to the first transparent board S13 and the flexible wiring board F4 connected to the first transparent board S14 are pulled out in a direction substantially parallel to the first direction X.
  • the third liquid crystal cell 30 is obtained by rotating the first liquid crystal cell 10 clockwise by 90°.
  • the fourth liquid crystal cell 40 is obtained by rotating the second liquid crystal cell 20 clockwise by 90°.
  • a zigzag-shaped strip electrode and a wave-shaped strip electrode are provided in one liquid crystal cell. Even in the overlapping liquid crystal cells, moire can be suppressed when viewed between the first transparent substrates of each liquid crystal cell or when viewed between the second transparent substrates, since there is no electrode that completely overlaps with each other. can.
  • One liquid crystal cell may comprise the strip electrodes having the linear shape and the zigzag shape, or the strip electrodes having the linear shape and the wavy shape.
  • a liquid crystal cell comprising a strip electrode having a linear shape and a strip electrode having a zigzag shape, a liquid crystal cell comprising a strip electrode having a straight shape and a strip electrode having a wavy shape, and a strip electrode having a zigzag shape and a wavy shape
  • Liquid crystal cells with shaped strip electrodes may be superimposed. Moire can be further suppressed by providing a liquid crystal cell having charge electrodes of different shapes. Also in the present embodiment, the same effect as described above can be obtained.
  • FIG. 17 is a plan view showing another example of each charging electrode that constitutes the liquid crystal device 1 of this embodiment.
  • the configuration example shown in FIG. 17 differs from the configuration example shown in FIG. 16 in that the flexible wiring substrates of the second liquid crystal cell and the fourth liquid crystal cell are provided on the second transparent substrate.
  • the first liquid crystal cell 10 is the same as the first liquid crystal cell 10 shown in FIG.
  • the orientation treatment direction AD11 is a direction at 0° with respect to the first direction X.
  • the first electrodes E21A and 21B having a wavy shape extend in a direction parallel to the second direction Y.
  • the orientation treatment direction AD21 is a direction at 90° to the first direction X.
  • the third band electrode E21A and the fourth band electrode E21B having zigzags extend in a direction parallel to the first direction X.
  • the extending directions of the first and second electrode E11A and E11B are orthogonal to the extending directions of the third and fourth electrode E21A and E21B, respectively.
  • the alignment treatment direction AD12 is the direction of 0°.
  • the first band electrode E12A and the second band electrode E12B having a wavy shape extend along the second direction Y.
  • the orientation treatment direction AD22 is the direction of 90°.
  • the zigzag-shaped third and fourth band electrodes E22A and E22B extend along the first direction X.
  • the extending directions of the first and second charging electrodes E12A and E12B are orthogonal to the extending directions of the third and fourth charging electrodes E22A and E22B.
  • the first transparent substrate S12 of the second liquid crystal cell 20 is obtained by rotating the second transparent substrate S21 of the first liquid crystal cell 10 clockwise by 90° and flipping it upside down.
  • the second transparent substrate S22 of the second liquid crystal cell 20 is obtained by rotating the first transparent substrate S11 of the first liquid crystal cell 10 counterclockwise by 90° and horizontally reversing it.
  • the third liquid crystal cell 30 is obtained by rotating the first liquid crystal cell 10 clockwise by 90°.
  • the first transparent substrate S14 of the fourth liquid crystal cell 40 is obtained by rotating the first transparent substrate S12 of the second liquid crystal cell 20 clockwise by 90° and horizontally reversing it.
  • the second transparent substrate S24 of the fourth liquid crystal cell 40 is obtained by rotating the second transparent substrate S22 of the second liquid crystal cell 20 clockwise by 90° and reversing the alignment treatment direction.
  • the flexible wiring board F1 connected to the first transparent substrate S11 is pulled out generally along the second direction Y.
  • the flexible wiring board F2 connected to the second transparent board S22 is pulled out along the direction substantially opposite to the first direction X. As shown in FIG.
  • the flexible wiring board F3 connected to the first transparent board S13 is pulled out along the direction generally opposite to the first direction X.
  • the flexible wiring board F4 connected to the second transparent board S24 is pulled out in the direction opposite to the second direction Y. As shown in FIG.
  • the cost can be reduced compared to the case of preparing each substrate separately.
  • the same transparent substrates of each liquid crystal cell or when viewed between the second transparent substrates there are no electrodes that completely overlap each other, so moire can be suppressed. . Also in the present embodiment, the same effect as described above can be obtained.
  • one of the linear shape, wavy shape, and zigzag shape may be called the first shape, and the other one may be called the second shape.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

本実施形態の目的は、モアレを抑制することが可能な液晶デバイスを提供することにある。 本実施形態の液晶デバイスは、第1液晶セルと、第2液晶セルと、第3液晶セルと、第4液晶セルと、を備え、第1液晶セルから第4液晶セルまでのそれぞれは、第1透明基板と第1配向膜との間に位置し、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、第2透明基板と第2配向膜との間に位置し、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、第1液晶セルの第1帯電極、第2帯電極、第3帯電極、及び第4帯電極、並びに、第3液晶セルの第1帯電極、第2帯電極、第3帯電極、及び第4帯電極は、第1形状を有し、第2液晶セルの第1帯電極、第2帯電極、第3帯電極、及び第4帯電極、並びに、第4液晶セルの第1帯電極、第2帯電極、第3帯電極、及び第4帯電極は、第1形状と異なる第2形状を有する。

Description

液晶デバイス
 本発明の実施形態は、液晶デバイスに関する。
 近年、液晶セルを用いた光制御装置が提案されている。このような光制御装置は、液晶分子の配向状態あるいは液晶層の屈折率分布を制御して、液晶層を透過する光(p偏光、s偏光)を屈折するものである。一例では、複数の液晶レンズを備えた照明装置において、各液晶レンズを形成するための帯状電極が互いにずれた位置に形成されることで、ムラを抑制する技術が提案されている。
特開2010-230887号公報
 本発明の目的は、モアレを抑制することが可能な液晶デバイスを提供することにある。
 一実施形態に係る液晶デバイスは、
 第1液晶セルと、
 前記第1液晶セルと重畳する第2液晶セルと、
 前記第2液晶セルと重畳する第3液晶セルと、
 前記第3液晶セルと重畳する第4液晶セルと、
 を備え、
 前記第1液晶セルから前記第4液晶セルのそれぞれは、
 第1透明基板と、
 第1配向膜と、
 前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
 第2透明基板と、
 第2配向膜と、
 前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
 前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
 前記第1液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極、及び、前記第3液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極は、第1形状を有し、
 前記第2液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極、及び、前記第4液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極は、前記第1形状と異なる第2形状を有する。
 また、一実施形態に係る、液晶デバイスは、
 第1液晶セルと、
 前記第1液晶セルと重畳する第2液晶セルと、
 前記第2液晶セルと重畳する第3液晶セルと、
 前記第3液晶セルと重畳する第4液晶セルと、
 を備え、
 前記第1液晶セルから前記第4液晶セルのそれぞれは、
 第1透明基板と、
 第1配向膜と、
 前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
 第2透明基板と、
 第2配向膜と、
 前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
 前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
 前記第1液晶セルから前記第4液晶セルのそれぞれは、ジグザグ形状の前記第1帯電極、第2帯電極、第3帯電極、前記第4帯電極を有する。
 一実施形態に係る液晶デバイスは、
 第1液晶セルと、
 前記第1液晶セルと重畳する第2液晶セルと、
 前記第2液晶セルと重畳する第3液晶セルと、
 前記第3液晶セルと重畳する第4液晶セルと、
 を備え、
 前記第1液晶セルから前記第4液晶セルまでのそれぞれは、
 第1透明基板と、
 第1配向膜と、
 前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
 第2透明基板と、
 第2配向膜と、
 前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
 前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
 前記第1液晶セルの前記第1帯電極、前記第2液晶セルの前記第2帯電極、前記第3液晶セルの前記第1帯電極、前記第4液晶セルの前記第2帯電極は、第1形状を有し、
 前記第1液晶セルの前記第2帯電極、前記第2液晶セルの前記第1帯電極、前記第3液晶セルの前記第2帯電極、前記第4液晶セルの前記第1帯電極は、前記第1形状と異なる第2形状を有する。
 本実施形態により、モアレを抑制することが可能な液晶デバイスを提供することができる。
図1は、本実施形態に係る液晶デバイスを示す斜視図である。 図2は、図1に示した液晶デバイスの分解斜視図である。 図3は、図2の第1液晶セルを概略的に示す斜視図である。 図4は、液晶デバイスを構成する各帯電極の延出方向の一例を示す図である。 図5Aは、第2液晶セルの平面図である。 図5Bは、第2液晶セルの平面図である。 図6は、液晶層に電界が形成されていないオフ状態の第1液晶セルを模式的に示す図である。 図7は、液晶層に電界が形成されたオン状態の第1液晶セルを模式的に示す図である。 図8は、液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図9Aは、第2液晶セルの平面図である。 図9Bは、第2液晶セルの平面図である。 図10は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図11は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図12は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図13は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図14は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図15は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図16は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。 図17は、本実施例の液晶デバイスを構成する各帯電極の他の例を示す平面図である。
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 以下、図面を参照しながら一実施形態に係る液晶デバイスについて詳細に説明する。
 本実施形態においては、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第3方向Zの矢印の先端に向かう方向を上又は上方と定義し、第3方向Zの矢印の先端に向かう方向とは反対側の方向を下又は下方と定義する。第1方向X、第2方向Y、及び、第3方向Zは、それぞれ、X方向、Y方向、及び、Z方向と呼ぶこともある。
 また、「第1部材の上方の第2部材」及び「第1部材の下方の第2部材」とした場合、第2部材は、第1部材に接していてもよく、又は第1部材から離れて位置していてもよい。後者の場合、第1部材と第2部材との間に、第3の部材が介在していてもよい。一方、「第1部材の上の第2部材」及び「第1部材の下の第2部材」とした場合、第2部材は第1部材に接している。
 また、第3方向Zの矢印の先端側に液晶デバイスを観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。第1方向X及び第3方向Zによって規定されるX-Z平面、あるいは第2方向Y及び第3方向Zによって規定されるY-Z平面における液晶デバイスの断面を見ることを断面視という。
 図1は、本実施形態に係る液晶デバイス1を示す斜視図である。
 液晶デバイス1は、第1液晶セル10と、第2液晶セル20と、第3液晶セル30と、第4液晶セル40と、を備えている。本実施形態に係る液晶デバイス1は、2つ以上の液晶セルを備えるものであり、図1に示した例の如く、4つの液晶セルを備える構成に限定されるものではない。
 第3方向Zにおいて、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40は、光源側から見てこの順に重なっている。
 点線で示す光源LSは、第3方向Zにおいて、第1液晶セル10と対向している。光源LSは、コリメート光を出射するように構成されているものが好ましいが、拡散光を出射するものも採用可能である。光源LSからの出射光は、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40を順に透過する。後述するように、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40は、入射光の一部の偏光成分を屈折するように構成されている。このように、液晶デバイス1と光源LSとを組み合わせることで、光の拡散及び集束が可能な照明装置を提供することができる。
 図2は、図1に示した液晶デバイス1の分解斜視図である。
 第1液晶セル10は、第1透明基板S11と、第2透明基板S21と、液晶層LC1と、シールSE1と、を備えている。第1透明基板S11及び第2透明基板S21は、シールSE1によって接着されている。液晶層LC1は、第1透明基板S11と第2透明基板S21との間に保持され、シールSE1によって封止されている。入射光を屈折することが可能な有効領域AA1は、シールSE1で囲まれた内側に形成されている。
 本明細書では、第1液晶セル10の平面視において、第1透明基板S11の左端に位置する1つの辺SYを基準としたとき、辺SYに直交する方向は、第1方向Xである。辺SYに平行な方向は第2方向Yである。また、辺SYを基準に、X-Y平面における3時方向つまり第1方向Xを示す矢印の先端方向を0°とし、第1方向Xに対して反時計回りの角度を正(+)で表記し、第1方向Xに対して時計回りの角度を負(-)で表記する。第2方向Yを示す矢印の先端方向は、第1方向Xに対して90°の方向に相当する。
 このような各方向の対応関係は、他の液晶セル(第2液晶セル20、第3液晶セル30、第4液晶セル40)にも同様に当てはめることができる。
 第1透明基板S11は、第1方向Xに沿って第2透明基板S21よりも外側に延出した延出部EX1と、第2方向Yに沿って第2透明基板S21よりも外側に延出した延出部EY1と、を有している。延出部EX1及び延出部EY1の少なくとも一方には、点線で示すようなフレキシブル配線基板Fが接続される。
 第2液晶セル20は、第1透明基板S12と、第2透明基板S22と、液晶層LC2と、シールSE2と、を備えている。有効領域AA2は、シールSE2で囲まれた内側に形成されている。
 第1透明基板S12は、延出部EX2及び延出部EY2を有している。第3方向Zにおいて、延出部EX2は延出部EX1に重畳し、延出部EY2は延出部EY1に重畳している。延出部EX2及び延出部EY2の少なくとも一方には、フレキシブル配線基板が接続されるが、他の第2液晶セル20から第4液晶セル40までにおいてはフレキシブル配線基板の図示を省略する。
 第3液晶セル30は、第1透明基板S13と、第2透明基板S23と、液晶層LC3と、シールSE3と、を備えている。有効領域AA3は、シールSE3で囲まれた内側に形成されている。
 第1透明基板S13は、延出部EX3及び延出部EY3を有している。第3方向Zにおいて、延出部EY3は、延出部EY2に重畳している。延出部EX3は、延出部EX2とは重畳せず、延出部EX2の反対側に位置している。
 第4液晶セル40は、第1透明基板S14と、第2透明基板S24と、液晶層LC4と、シールSE4と、を備えている。有効領域AA4は、シールSE4で囲まれた内側に形成されている。
 第1透明基板S14は、延出部EX4及び延出部EY4を有している。第3方向Zにおいて、延出部EX4は延出部EX3に重畳し、延出部EY4は延出部EY3に重畳している。
 第1液晶セル10と第2液晶セル20との間には、透明接着層TA12が配置されている。透明接着層TA12は、第1透明基板S11と第2透明基板S22とを接着している。
 第2液晶セル20と第3液晶セル30との間には、透明接着層TA23が配置されている。透明接着層TA23は、第1透明基板S12と第2透明基板S23とを接着している。
 第3液晶セル30と第4液晶セル40との間には、透明接着層TA34が配置されている。透明接着層TA34は、第1透明基板S13と第2透明基板S24とを接着している。
 第1透明基板S11からS14までは、それぞれ正方形状に形成され、同等のサイズを有している。例えば、第1透明基板S11において、辺SX及び辺SYは互いに直交し、また、辺SXの長さは辺SYの長さと同一である。
 このため、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40が互いに接着された際には、図1に示したように、第1方向Xに沿った辺が互いに重畳し、しかも、第2方向Yに沿った辺も互いに重畳している。
 なお、光が透過する領域(後述の有効領域)の形状とほぼ同じ形状を有する第2基板を正方形状とし、第1基板を正方形状以外の多角形状、たとえば長方形状とすることも可能である。また、各液晶セルの延出部のいずれか一方を削除する構成も採用可能である。
 次に、各液晶セルの構成についてより具体的に説明する。なお、以下では、液晶デバイス1を構成する複数の液晶セルのうち、第1液晶セル10を例に説明するが、他の第2液晶セル20から第4液晶セル40までそれぞれの構成も、帯電極の延出方向を除いて、第1液晶セル10の構成と概ね同様である。
 図3は、図2の第1液晶セル10を概略的に示す斜視図である。
 第1液晶セル10は、有効領域AA1において、第1帯電極E11A及び第2帯電極E11Bと、第1配向膜AL11と、第3帯電極E21A及び第4帯電極E21Bと、第2配向膜AL21と、を備えている。
 第1帯電極E11A及び第2帯電極E11Bは、第1透明基板S11と第1配向膜AL11との間に位置し、間隔を置いて配置され、同一方向に延出している。第1帯電極E11A及び第2帯電極E11Bは、第1透明基板S11に接していてもよいし、第1透明基板S11との間に絶縁膜が介在していてもよい。また、第1帯電極E11Aと第2帯電極E11Bとの間に絶縁膜が介在し、第1帯電極E11Aが第2帯電極E11Bとは異なる層に位置していてもよい。
 複数の第1帯電極E11A、及び、複数の第2帯電極E11Bは、第1方向Xに並び、交互に配置されている。複数の第1帯電極E11Aは、互いに電気的に接続され、同一電圧が印加されるように構成されている。複数の第2帯電極E11Bは、互いに電気的に接続され、同一電圧が印加されるように構成されている。但し、第2帯電極E11Bに印加される電圧は、第1帯電極E11Aに印加される電圧とは異なるように制御される。
 第1配向膜AL11は、第1帯電極E11A及び第2帯電極E11Bを覆っている。第1配向膜AL11の配向処理方向AD11は、第1方向Xである。なお、各配向膜の配向処理は、ラビング処理であってもよいし、光配向処理であってもよい。配向処理方向は、ラビング方向と称される場合がある。一般に、液晶層に電圧が印加されていない状態(初期配向状態)において、配向膜の近傍に位置する液晶分子は、配向膜の配向処理方向に沿った配向規制力によって所定の方向に初期配向される。つまり、ここに示す例では、第1配向膜AL11に沿った液晶分子LM11の初期配向方向は、第1方向Xである。配向処理方向AD11は、第1帯電極E11A及び第2帯電極E11Bと交差している。
 第3帯電極E21A及び第4帯電極E21Bは、第2透明基板S21と第2配向膜AL21との間に位置し、間隔を置いて配置され、同一方向に延出している。第3帯電極E21A及び第4帯電極E21Bは、第2透明基板S21に接していてもよいし、第2透明基板S21との間に絶縁膜が介在していてもよい。また、第3帯電極E21Aと第4帯電極E21Bとの間に絶縁膜が介在し、第3帯電極E21Aが第4帯電極E21Bとは異なる層に位置していてもよい。
 複数の第3帯電極E21A、及び、複数の第4帯電極E21Bは、第2方向Yに並び、交互に配置されている。複数の第3帯電極E21Aは、互いに電気的に接続され、同一電圧が印加されるように構成されている。複数の第4帯電極E21Bは、互いに電気的に接続され、同一電圧が印加されるように構成されている。但し、第4帯電極E21Bに印加される電圧は、第3帯電極E21Aに印加される電圧とは異なるように制御される。また、第1帯電極E11A及び第2帯電極E11Bの延出方向は、後に詳述するが、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2配向膜AL21は、第3帯電極E21A及び第4帯電極E21Bを覆っている。第2配向膜AL21の配向処理方向AD21は、第2方向Yである。つまり、ここに示す例では、第2配向膜AL21に沿った液晶分子LM21の初期配向方向は、第2方向Yである。また、第1配向膜AL11の配向処理方向AD11、及び、第2配向膜AL21の配向処理方向AD21は、互いに直交している。配向処理方向AD21は、第3帯電極E21A及び第4帯電極E21Bと交差している。
 以下に、いくつかの実施例について説明する。各実施例では、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40の各々における、配向処理方向、第1帯電極及び第2帯電極の延出方向、並びに、第3帯電極及び第4帯電極の延出方向について説明する。
 <実施例1> 
 図4は、液晶デバイス1を構成する各帯電極の延出方向の一例を示す図である。
 第1液晶セル10において、配向処理方向AD11は、第1方向Xに対して0°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は、第1方向Xに対して90°の方向である。
 第1帯電極E11A及び第2帯電極E11Bは、それぞれ、直線形状を有する電極であり、直線的に延出したエッジを有している。本実施例において、第1帯電極E11A及び第2帯電極E11Bの延出方向とは、共通の基準方向である第1方向Xと帯電極のエッジとのなす角度であるものとする。
 配向処理方向AD21は、第1方向Xに対して90°の方向である。第3帯電極E21A及び第4帯電極E21Bの延方向は、第1方向Xに対して0°の方向である。
 第3帯電極E21A及び第4帯電極E21Bは、それぞれ、直線形状を有する電極であり、直線的に延出したエッジを有している。本実施例において、第3帯電極E21A及び第4帯電極E21Bの延出方向とは、共通の基準方向である第2方向Yと帯電極のエッジとのなす角度であるものとする。
 第1帯電極E11A及び第2帯電極E11Bの延出方向は、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2液晶セル20において、配向処理方向AD12は、第1方向Xに対して0°の方向である。第1帯電極E12A及び第2帯電極E12Bの延出方向は、第1方向Xに対して90°の方向である。
 配向処理方向AD22は90°の方向である。第3帯電極E22A及び第4帯電極E22Bの延出方向は、第1方向Xに対して0°の方向である。
 第1帯電極E12A及び第2帯電極E12Bの延出方向は、第3帯電極E22A及び第4帯電極E22Bの延出方向と直交している。
 図5A及び図5Bは、第2液晶セル20の平面図である。第1帯電極E12A及び第2帯電極E12Bは、波形形状を有する電極である。波形形状を有する電極とは、蛇行している曲線状の電極である。波形形状を有する電極とは、曲率を変えながら連続する電極縁を有している電極であるともいえる。当該波形形状の電極が、正弦波により近い形状であれば、当該波形形状の電極の延出方向は、周期ごとの始点どうしを繋いだ直線の延在方向である。あるいは、波形形状の波の進行方向が、当該波形形状の電極の延出方向であるともいえる。図5A中、破線の矢印は、当該波形形状の電極の延出方向を示している。ただし、当該波形形状は、正弦波等でなくてもよく、曲率を変えながら繰り返し形成されていればよい。
 図5Aに示すように、波形形状の帯電極は、矩形電極から延出している。例えば、第1帯電極E12Aは、第1方向Xと平行な方向に延出する矩形電極E12Abから、第2方向Yに沿って延出している。第2帯電極E12Bは、第1方向Xと平行な方向に延出する矩形電極E12Bbから、第2方向Yと逆方向に沿って延出している。
 図5Bに示すように、例えば、第3帯電極E22Aは、第2方向Yと平行な方向に延出する矩形電極E22Abから、第1方向Xに沿って延出している。第4帯電極E22Bは、第2方向Yと平行な方向に延出する矩形電極E22Bbから、第1方向Xと逆方向に沿って延出している。
 本実施例では、第2方向Y及びその逆方向を、第2方向Yと平行な方向と呼ぶ。以下第1方向Xやその他特に記述される方向においても同様である。
 図4に戻り、第3液晶セル30において、配向処理方向AD13は-90°の方向である。直線形状を有する第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向である。
 配向処理方向AD23は0°の方向である。直線形状を有する第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。
 第1帯電極E13A及び第2帯電極E13Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向と直交している。
 第4液晶セル40において、配向処理方向AD14は-90°の方向である。波形形状を有する第1帯電極E14A及び第2帯電極E14Bの延出方向は0°の方向である。
 配向処理方向AD24は0°の方向である。波形形状を有する第3帯電極E24A及び第4帯電極E24Bの延出方向は90°の方向である。
 第1帯電極E14A及び第2帯電極E14Bの延出方向は、第3帯電極E24A及び第4帯電極E24Bの延出方向と直交している。
 第1透明基板S11に接続されたフレキシブル配線基板F1、及び、第1透明基板S12に接続されたフレキシブル配線基板F2は、概略第2方向Yに沿って引き出されている。第1透明基板S13に接続されたフレキシブル配線基板F3、及び、第1透明基板S14に接続されたフレキシブル配線基板F4は、概略第1方向Xと平行な方向に引き出されている。フレキシブル配線基板F1からF4は、それぞれ別の方向に引き出されていてもよい。
 ここで、液晶セルの相互の関係について説明する。
 第1液晶セル10及び第2液晶セル20に着目する。第1帯電極E11A及び第2帯電極E11Bの電極形状と、第1帯電極E12A及び第2帯電極E12Bの電極形状は、それぞれ、直線形状及び波形形状と異なっている。
 第1液晶セル10と第2液晶セル20とが接着された際に、例えば、第1帯電極E11A及び第1帯電極E12Aは、いずれも延在方向は同じ90°の方向であるものの、直線形状及び波形形状と電極形状が異なっているため、電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。なお、他の電極、具体的には、第2帯電極E11B及び第1帯電極E12B、第3帯電極E21A及び第3帯電極E22A、第4帯電極E21B及び第4帯電極E22Bについても、互いの延在方向は同じである一方、電極形状が互いに異なるため、平面視で電極のエッジは一致しない。
 ここでは、第1液晶セル10及び第2液晶セル20の相互関係について説明したが、第3液晶セル30及び第4液晶セル40の相互関係においても同様である。
 次に、第1液晶セル10及び第3液晶セル30に着目する。直線形状の第1帯電極E11A及び第2帯電極E11Bの延出方向と、直線形状の第1帯電極E13A及び第2帯電極E13Bの延出方向とは、互いに直交している。
 また、直線形状の第3帯電極E21A及び第4帯電極E21Bの延出方向と、直線形状の第3帯電極E23A及び第4帯電極E23Bの延出方向とは、互いに直交している。
 第1液晶セル10をX-Y平面において時計回りに90°回転させると、第1帯電極E11A及び第2帯電極E11Bの延出方向は、第1帯電極E13A及び第2帯電極E13Bの延出方向に一致する。同様に、第3帯電極E21A及び第4帯電極E21Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向に一致する。
 つまり、X-Y平面において、第1帯電極E11A及び第2帯電極E11B、並びに、第1帯電極E13A及び第2帯電極E13Bは、90°回転対称である。同様に、第3帯電極E21A及び第4帯電極E21B、及び、第3帯電極E23A及び第4帯電極E23Bは、90°回転対称であるといえる。つまり、第1液晶セル10及び第3液晶セル30は90°回転対称であり、第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。このため、第1液晶セル10及び第3液晶セル30をそれぞれ別個に用意する場合と比較して、コストを削減することができる。
 さらに、第1液晶セル10と第2液晶セル20と第3液晶セル30とが互いに接着された際にも、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 ここでは、第1液晶セル10及び第3液晶セル30の相互関係について説明したが、第2液晶セル20及び第4液晶セル40の相互関係においても同様である。つまり、第2液晶セル20及び第4液晶セル40は90°回転対称であり、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。このため、第2液晶セル20及び第4液晶セル40をそれぞれ別個に用意する場合と比較して、コストを削減することができる。したがって、帯電極の延出方向が異なる2種類の液晶セルを用意することで、上記の第1液晶セル10から第4液晶セル40までを重ねた液晶デバイス1を構成することができる。
 第1液晶セル10及び第4液晶セル40に着目する。第1液晶セル10の第2透明基板S21上の第3帯電極E21A及び第4帯電極E21Bの電極形状と、第4液晶セル40の第1透明基板S14上の第1帯電極E14A及び第2帯電極E14Bの電極形状は夫々、直線形状及び波形形状と異なっているものの、いずれも第1方向Xに延在している。また、第1液晶セル10の第1透明基板S11上の第1帯電極E11A及び第2帯電極E11Bの電極形状と、第4液晶セル40の第2透明基板S24上の第3帯電極E24A及び第4帯電極E24Bの電極形状は、それぞれ、直線形状及び波形形状と異なっているものの、いずれも第2方向Yに延在している。
 第1液晶セル10と第4液晶セル40とが積層された際に、例えば、第3帯電極E21A及び第1帯電極E14Aは、いずれも延在方向は同じ方向(第1方向X)であるものの、直線形状及び波形形状と電極形状が異なっているため、電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。また、いずれの電極も同じ偏光成分(例えばP偏光成分)に働きかけるものとなるが、このように電極形状が異なることで拡散の調子を微妙に変化させることができ、これによってもモアレが抑制されることとなる。なお、他の電極、具体的には、第4帯電極E21B及び第2帯電極E14B、第1帯電極E11A及び第3帯電極E24A、第2帯電極E11B及び第4帯電極E24Bについても、互いの延在方向は同じである一方、電極形状が互いに異なるため、平面視で電極のエッジは一致しない。
 同様に、第2液晶セル20及び第3液晶セル30に着目する。第2液晶セル20の第2透明基板S22上の第3帯電極E22A及び第4帯電極E22Bの電極形状と、第3液晶セル30の第1透明基板S13上の第1帯電極E13A及び第2帯電極E13Bの電極形状は夫々、直線形状及び波形形状と異なっているものの、いずれも第1方向Xに延在している。また、第2液晶セル20の第1透明基板S12上の第1帯電極E12A及び第2帯電極E12Bの電極形状と、第3液晶セル30の第2透明基板S23上の第3帯電極E23A及び第4帯電極E23Bの電極形状は、それぞれ、直線形状及び波形形状と異なっているものの、いずれも第2方向Yに延在している。
 第2液晶セル20と第3液晶セル30とが積層された際に、例えば、第3帯電極E22A及び第1帯電極E13Aは、いずれも延在方向は同じ方向(第1方向X)であるものの、直線形状及び波形形状と電極形状が異なっているため、電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。また、いずれの電極も同じ偏光成分(例えばP偏光成分)に働きかけるものとなるが、このように電極形状が異なることで拡散の調子を微妙に変化させることができ、これによってもモアレが抑制されることとなる。なお、他の電極、具体的には、第4帯電極E22B及び第2帯電極E13B、第1帯電極E12A及び第3帯電極E23A、第2帯電極E12B及び第4帯電極E23Bについても、互いの延在方向は同じである一方、電極形状が互いに異なるため、平面視で電極のエッジは一致しない。
 加えて、第1液晶セル10と第2液晶セル20と第3液晶セル30と第4液晶セル40とが互いに接着された際にも、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 ここで、図6及び図7を参照しながら、第1液晶セル10における光学作用について説明する。なお、図6及び図7においては、第1透明基板S11の近傍の液晶分子LM1などの説明に必要な構成のみを図示している。
 図6は、液晶層LC1に電界が形成されていないオフ状態(OFF)の第1液晶セル10を模式的に示す図である。
 オフ状態の液晶層LC1においては、液晶分子LM1は、初期配向している。このようなオフ状態では、液晶層LC1は、ほぼ均一な屈折率分布を有している。このため、第1液晶セル10への入射光である偏光成分POL1は、ほとんど屈折(あるいは拡散)されることなく液晶層LC1を透過する。なお、図3に示す如く、第1液晶セル10において上下透明基板S11、S21間で液晶層LC1の液晶分子の初期配向方向が90°で交差している。したがって、液晶層LC1の液晶分子は、第1透明基板S11側では第1方向Xに配向されているものの、第2透明基板S21側に向かうにつれて徐々にその向きを第1方向Xから第2方向Yに変化させ、第2透明基板S21側では第2方向Yに配向される。かかる液晶層LC1の配向の変化に応じて偏光成分の向きが変化する。より具体的には、第1方向Xに偏光軸を有する偏光成分は、液晶層LC1を通過する過程でその偏光軸を第2方向Yに変化させる。他方、第2方向Yに偏光軸を有する偏光成分は、液晶層LC1を通過する過程でその偏光軸を第2方向Yから第1方向Xに変化させる。したがって、これら互いに直交する偏光成分で見た場合、当該第1液晶セル10を通過する過程でその偏光軸が入れ替わる。以下ではかかる偏光軸の向きを変化させる作用を旋光と称する場合がある。
 図7は、液晶層LC1に電界が形成されたオン状態(ON)の第1液晶セル10を模式的に示す図である。
 オン状態では、第1帯電極E11Aと第2帯電極E11Bとの間に電位差が生じることで、液晶層LC1に電界が形成される。例えば、液晶層LC1が正の誘電率異方性を有している場合、液晶分子LM1は、その長軸が電界に沿うように配向する。ただし、第1帯電極E11Aと第2帯電極E11Bとの間の電界が及ぶ範囲は、主として液晶層LC1の厚さの約1/2の範囲である。このため、図7に示すように、液晶層LC1のうち、第1透明基板S11に近接する範囲において、液晶分子LM1が基板に対してほぼ垂直に配向した領域、液晶分子LM1が基板に対して斜め方向に配向した領域、液晶分子LM1が基板に対してほぼ水平に配向した領域などが形成される。
 液晶分子LM1は、屈折率異方性Δnを有している。このため、オン状態の液晶層LC1は、液晶分子LM1の配向状態に応じた屈折率分布、あるいは、リタデーション分布を有する。ここでのリタデーションとは、液晶層LC1の厚さをdとしたとき、Δn・dで表されるものである。なお、本実施例においては、液晶層LC1としてポジ型の液晶を採用しているが、配向方向等を考慮することでネガ型の液晶を採用することも可能である。
 このようなオン状態では、偏光成分POL1は、液晶層LC1を透過する際に、液晶層LC1の屈折率分布の影響を受けて拡散される。より具体的には、第1方向Xの偏光軸を有する偏光成分が当該液晶層LC1の屈折率分布の影響を受けて拡散し、第2方向Yに旋光する。他方、第2方向Yの偏光軸を有する偏光成分は当該屈折率分布の影響を受けず、拡散せずに第1方向Xにのみ旋光して液晶層LC1を通過する。なお、図6では、第1帯電極E11Aと第2帯電極E11Bとの間の電位差によって電界を形成する場合について説明したが、第1液晶セル10で入射光を拡散する場合には、第3帯電極E21Aと第4帯電極E21Bとの間の電位差による電界も形成することが望ましい。これにより、第1透明基板S11の近傍の液晶分子のみならず、第2透明基板S21の近傍の液晶分子の配向状態も制御され、液晶層LC1に所定の屈折率分布が形成される。より具体的には、第2透明基板S21側の液晶層LC1も屈折率分布を有することにより、液晶層LC1を通過する過程で第2方向Yに旋光した偏光成分が拡散する。すなわち、第1透明基板S11側で拡散された偏光成分が第2透明基板S21側でさらに拡散され、当該第1液晶セル10から出射される。他方、液晶層LC1を通過する過程で第1方向Xに旋光した偏光成分は、屈折率分布の影響を受けることなく第1液晶セルLC1から出射される。
 なお、かかる偏光成分の拡散や旋光は、第2液晶セルLC20でも生じる。すなわち、光源から出射される第1方向Xの偏光軸を有する偏光成分は、第1液晶セル10を通過することによって偏光軸を第1方向Xから第2方向Yに変化させ、さらに第2液晶セル20を通過することによって偏光軸を第2方向Yから第1方向Xに変化させる。また、この過程で当該偏光成分と平行な液晶分子が屈折率分布を有している場合は、当該屈折率分布に従って当該偏光成分は拡散する。同様に、光源から出射される第2方向Yの偏光軸を有す
る偏光成分は、第1液晶セル10を通過することによって偏光軸を第2方向Yから第1方向Xに変化させ、さらに第2液晶セル20を通過することによって偏光軸を第1方向Xから第2方向Yに変化させる。また、この過程で当該偏光成分と平行な液晶分子が屈折率分布を有している場合は、当該屈折率分布に従って当該偏光成分は拡散する。第3液晶セル30及び第4液晶セル40においても同じ現象が生じるが、これらは第1液晶セル及び第2液晶セルを90度回転させたものであるので、拡散作用を及ぼす偏光成分が入れ替わる。
 すなわち、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40が積層された構成において、例えば、第1液晶セル10及び第4液晶セル40は、主としてp偏光である偏光成分POL1を散乱(拡散)するように構成され、第2液晶セル20及び第3液晶セル30は、主としてs偏光である偏光成分POL2を散乱(拡散)するように構成される。
 上述したように、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40の各々は、同一方向に延出した電極を含まないように構成されている。このため、各々の液晶セルの液晶層は、オン状態において、互いに異なる屈折率分布を形成する。これにより、各液晶セルを透過した光の干渉作用が軽減され、モアレを抑制することができる。
 <実施例2> 
 図8は、液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図8に示した構成例では、図4に示した構成例と比較して、ジグザグ形状の電極を設けるという点で異なっている。
 図8において、第1液晶セル10及び第3液晶セル30は、図4に示すものと同じである。図8に示す第2液晶セル20及び第4液晶セル40は、波形形状に代えて、ジグザグ形状を有する帯電極を備えている。
 図9A及び図9Bは、第2液晶セル20の平面図である。第1帯電極E12A及び第2帯電極E12Bは、ジグザグ形状を有する電極である。例えば、第2帯電極E12Bは、第1電極片E12B1及び第2電極片E12B2を有しており、これらは連続してジグザグ形状を構成している。例えば図9Aに示すように、第1電極片E12B1は、第1方向Xと平行な方向に延出する矩形電極E12Bbから、一点破線の矢印で示すように、第1方向Xと反時計回りで鋭角θを成す方向に延出している。第2電極片E12B2は、第1電極片E12B1から、一点破線の矢印で示すように、第1方向Xと時計回りで鋭角θを成す方向に延出している。図9中において、第2帯電極E12Bは一対の第1電極片E12B1及び第2電極片E12B2によって形成されることでくの字形状を呈している。これに対し、第1電極片E12B1と第2電極片E12B2とを第2方向Yに交互に複数有する第2帯電極E12Bを構成しても構わない。上記ジグザク形状とは、このように第1電極片E12B1及び第2電極片E12B2が一対或いは複数回繰り返して形成される形状のことを意味する。鋭角θは、85°以上89°以下である。第1電極片E12B1及び第2電極片E12B2の延出方向は逆でもよい。
 第1電極片E12B1及び第2電極片E12B2の組合せが第1方向Xに沿って複数組繰り返し形成されることにより、第2帯電極E12B全体として、点線の矢印で示すように、第2方向Yと平行な方向に沿って延出する。
 第1帯電極E12A全体は、第2帯電極E12B全体と同様に、点線の矢印で示すように、第2方向Yに沿って延出している。各第1帯電極E12Aの構成は第2帯電極E12Bと同様である。
 第2透明基板S22の第3帯電極E22A及び第4帯電極E22Bは、第1方向Xに平行な方向に沿って延伸している。例えば、第3帯電極E22Aは、第1電極片E22A1及び第2電極片E22A2を有しており、これらは連続してジグザグ形状を構成している。第3帯電極E22Aの第1電極片及び第2電極片は、連続してジグザグ形状を構成している。
 図9Bに示すように、例えば、第1電極片E22A1は、第2方向Yと平行な方向に延出する矩形電極E22Abから、一点破線の矢印で示すように、第2方向Yと時計回りで鋭角θを成す方向、に延出している。第2電極片E22A2は、第1電極片E22A1から、一点破線の矢印で示すように、第2方向Yと反時計回りで鋭角θを成す方向、に延出している。第1電極片E22A1及び第2電極片E22A2は繰り返し形成され、第3帯電極E22Aを構成する。第1電極片E22A1及び第2電極片E22A2の延出方向は逆でもよい。
 第1電極片E22A1及び第2電極片E22A2の組合せが第1方向Xに沿って複数組繰り返し形成されることにより、第3帯電極E22A全体として、点線の矢印で示すように、第1方向Yと平行な方向に沿って延出する。
 第4帯電極E22Bは、第3帯電極E22Aと同様に、矩形電極E22Bbから、全体として第1方向Xに平行な方向に沿って延出している。各第4帯電極E22Bの構成は第3帯電極E22Bと同様である。
 第4液晶セル40の第1帯電極E14A及び第2帯電極E14Bが延出する方向は、第2液晶セル20の第3帯電極E22A及び第4帯電極E22Bが延出する方向と同様である。第3帯電極EE24A及び第4帯電極E24Bが延出する方向は、第1帯電極E12A及び第2帯電極E12Bの延出する方向と同様である。
 本実施例において、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び第4液晶セル40それぞれの帯電極の延出方向や、配向膜の配向処理方向は、実施例1で説明したものと同様である。そのため説明は上記を援用し、これを省略する。
 本実施例においても、例えば、第1液晶セル10及び第2液晶セル20では、直線形状の第1帯電極E11A及び第2帯電極E11Bの電極形状と、ジグザグ形状の第1帯電極E12A及び第2帯電極E12Bが重畳する。電極形状が異なるため、これらの電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 第1液晶セル10及び第2液晶セル20の相互関係について説明したが、第3液晶セル30及び第4液晶セル40の相互関係においても同様である。
 第1液晶セル10及び第4液晶セル40に着目する。第1液晶セル10の第2透明基板S21上の第3帯電極E21A及び第4帯電極E21Bの電極形状と、第4液晶セル40の第1透明基板S14上の第1帯電極E14A及び第2帯電極E14Bの電極形状は夫々、直線形状及びジグザク形状(くの字状)と異なっているものの、いずれも第1方向Xに延在している。また、第1液晶セル10の第1透明基板S11上の第1帯電極E11A及び第2帯電極E11Bの電極形状と、第4液晶セル40の第2透明基板S24上の第3帯電極E24A及び第4帯電極E24Bの電極形状は、それぞれ、直線形状及びジグザク形状(くの字状)と異なっているものの、いずれも第2方向Yに延在している。
 第1液晶セル10と第4液晶セル40とが積層された際に、例えば、第3帯電極E21A及び第1帯電極E14Aは、いずれも延在方向は同じ方向(第1方向X)であるものの、直線形状及びジグザク形状と電極形状が異なっているため、電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。また、いずれの電極も同じ偏光成分(例えばP偏光成分)に働きかけるものとなるが、このように電極形状が異なることで拡散の調子を微妙に変化させることができ、これによってもモアレが抑制されることとなる。なお、他の電極、具体的には、第4帯電極E21B及び第2帯電極E14B、第1帯電極E11A及び第3帯電極E24A、第2帯電極E11B及び第4帯電極E24Bについても、互いの延在方向は同じである一方、電極形状が互いに異なるため、平面視で電極のエッジは一致しない。
  同様に、第2液晶セル20及び第3液晶セル30に着目する。第2液晶セル20の第2透明基板S22上の第3帯電極E22A及び第4帯電極E22Bの電極形状と、第3液晶セル30の第1透明基板S13上の第1帯電極E13A及び第2帯電極E13Bの電極形状は夫々、ジグザク形状(くの字状)及び直線形状と異なっているものの、いずれも第1方向Xに延在している。また、第2液晶セル20の第1透明基板S12上の第1帯電極E12A及び第2帯電極E12Bの電極形状と、第3液晶セル30の第2透明基板S23上の第3帯電極E23A及び第4帯電極E23Bの電極形状は、それぞれ、ジグザク形状(くの字状)及び直線形状と異なっているものの、いずれも第2方向Yに延在している。
 第2液晶セル20と第3液晶セル30とが積層された際に、例えば、第3帯電極E22A及び第1帯電極E13Aは、いずれも延在方向は同じ方向(第1方向X)であるものの、ジグザク形状及び直線形状と電極形状が異なっているため、電極のエッジは一致しない。互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。また、いずれの電極も同じ偏光成分(例えばP偏光成分)に働きかけるものとなるが、このように電極形状が異なることで拡散の調子を微妙に変化させることができ、これによってもモアレが抑制されることとなる。なお、他の電極、具体的には、第4帯電極E22B及び第2帯電極E13B、第1帯電極E12A及び第3帯電極E23A、第2帯電極E12B及び第4帯電極E23Bについても、互いの延在方向は同じである一方、電極形状が互いに異なるため、平面視で電極のエッジは一致しない。
 加えて、第1液晶セル10と第2液晶セル20と第3液晶セル30と第4液晶セル40とが互いに接着された際にも、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、第1液晶セル10を90°回転させたものを、第3液晶セル30として使用することができる。第2液晶セル20を90°回転させたものを、第4液晶セル40として使用することができる。このため、第1液晶セル10及び第3液晶セル30をそれぞれ別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例3>
 図10は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図10に示した構成例では、図4に示した構成例と比較して、ジグザグ形状及び波形形状の電極を重畳させるという点で異なっている。
 図10に示す第1液晶セル10は、図8の第2液晶セル20と同様である。図10に示す第3液晶セル30は、図10の第1液晶セル10を、時計回りに90°回転させたものである。図10に示す第2液晶セル20及び第4液晶セル40は、それぞれ、図4の第2液晶セル20及び第4液晶セル40と同様である。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。液晶セルを回転させて別の液晶セルに用いることにより、これらを別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例4-1>
 図11は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図11に示した構成例では、図8に示した構成例と比較して、全ての帯電極がジグザグ形状を有するという点で異なっている。
 図11に示す液晶デバイス1において、第1液晶セル10は、図8に示す第2液晶セル20と同じである。図11の第1液晶セル10では、配向処理方向AD11は、第1方向Xに対して0°の方向である。ジグザグ形状の第1帯電極E11A及び第2帯電極E11Bは、第2方向Yに平行な方向に延出する。
 配向処理方向AD21は、第1方向Xに対して90°の方向である。ジグザグ形状を有する第1電極E11A及び11Bは、第2方向Yに平行な方向に延出する。ジグザグ形状を有する第3帯電極E21A及び第4帯電極E21Bは、第1方向Xに平行な方向に延出する。
 第1帯電極E11A及び第2帯電極E11Bの延出方向は、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2液晶セル20において、配向処理方向AD12は0°の方向である。ジグザグ形状を有する第1帯電極E12A及び第2帯電極E12Bは、第2方向Yに沿って延出している。
 配向処理方向AD22は90°の方向である。ジグザグ形状を有する第3帯電極E22A及び第4帯電極E22Bの延出方向は第1方向Xに沿って延出している。
 第1帯電極E12A及び第2帯電極E12Bの延出方向は、第3帯電極E22A及び第4帯電極E22Bの延出方向と直交している。
 第3液晶セル30において、配向処理方向AD13は-90°の方向である。ジグザグ形状を有する第1帯電極E13A及び第2帯電極E13Bは、第1方向Xに平行な方向に延出する。
 配向処理方向AD23は0°の方向である。ジグザグ形状を有する第3帯電極E23A及び第4帯電極E23Bは、第2方向Yに沿って延出する。
 第1帯電極E13A及び第2帯電極E13Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向と直交している。
 第4液晶セル40において、配向処理方向AD14は-90°の方向である。ジグザグ形状を有する第1帯電極E14A及び第2帯電極E14Bは、第1方向Xと平行な方向に延出している。
 配向処理方向AD24は0°の方向である。ジグザグ形状を有する第3帯電極E24A及び第4帯電極E24Bは、第2方向Yと平行な方向に沿って延出している。
 第1帯電極E14A及び第2帯電極E14Bの延出方向は、第3帯電極E24A及び第4帯電極E24Bの延出方向と直交している。
 第1透明基板S11に接続されたフレキシブル配線基板F1は、概略第2方向Yに沿って引き出されている。第1透明基板S12に接続されたフレキシブル配線基板F2は、概略第2方向Yに沿って引き出されている。
 第1透明基板S13に接続されたフレキシブル配線基板F3は、概略第1方向Xと平行な方向に引き出されている。第1透明基板S14に接続されたフレキシブル配線基板F4は、概略第1方向Xと平行な方向に引き出されている。
 本実施例では、第1液晶セル10の第1透明基板S11及び第2液晶セル20の第1透明基板S12は、基板上に形成された電極が第2方向Yに対して線対称(互いに反転)の関係にある。すなわち、これら基板間において第1方向Xにおける各電極の突出する向きが逆となる。より具体的には、第1液晶セル10の第1透明基板S11の電極は第1方向Xの正方向に突出し、第2液晶セル20の第1透明基板S12の電極は第1方向Xの負方向に突出する。第1液晶セル10の第2透明基板S21及び第2液晶セル20の第2透明基板S22は、基板上に形成された電極が第1方向Xに対して、線対称(互いに反転)の関係にある。より具体的には、第1液晶セル10の第2透明基板S21の電極は第2方向Yの負方向に突出し、第2液晶セル20の第2透明基板S22の電極は第2方向Yの正方向に突出する。
 第3液晶セル30の第1透明基板S13及び第4液晶セル40の第1透明基板S14は、基板上に形成された電極が第1方向Xに対して線対称(互いに反転)の関係にある。第3液晶セル30の第2透明基板S23及び第4液晶セル40の第2透明基板S24は、基板上に形成された電極が第2方向Yに対して、線対称(互いに反転)の関係にある。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。透明基板の配置を変えて別の透明基板として用いることにより、これらを別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例4-2>
 図12は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図12に示した構成例では、図11に示した構成例と比較して、液晶セルを回転させたものを別の液晶セルに用いるという点で異なっている。
 本実施例において、第2液晶セル20は、第1液晶セル10を180°回転させたものである。第4液晶セル40は、第3液晶セル30を180°回転させたものである。液晶セルを回転させて別の液晶セルに用いることにより、それぞれ別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例4-3> 
 図13は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図13に示した構成例では、図11に示した構成例と比較して、透明基板を回転させるという点で異なっている。
 図13に示す第1液晶セル10は、図11に示す第1液晶セル10と同様である。
 第2液晶セル20の第1透明基板S12は、第1液晶セル10の第1透明基板S11を180°回転させたものである。第2液晶セル20の第2透明基板S22は、第1液晶セル10の第2透明基板S21を180°回転させたものである。
 第3液晶セル30は、第1液晶セル10を時計回りに90°回転させたものである。
 第4液晶セル40は、第2液晶セル20を時計回りに90°回転させたものである。
 本実施例においても、透明基板を変えて別の透明基板として用いることにより、それぞれ別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例4-4> 
 図14は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図14に示した構成例では、図11に示した構成例と比較して、透明基板を回転させたものを他の基板に用いるという点で異なっている。
 図14に示す液晶デバイス1において、第1液晶セル10は、図11に示す第1液晶セル10と同じものである。
 第2液晶セル20は、第1液晶セル10の表裏を入れ替え、さらに反時計回りに90°回転させたものである。すなわち、第2液晶セル20の第2透明基板S22は、第1液晶セル10の第1透明基板S11と同じものである。第2液晶セル20の第1透明基板S12は、第1液晶セル10の第2透明基板S21と同じものである。
 第3液晶セル30は、第1液晶セル10を時計回りに90°回転させたものである。第4液晶セル40は、第4液晶セル40は、第2液晶セル20を時計回りに90°回転させたものである。
 液晶セルの配置を変えて別の液晶セルとして用いることにより、別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例5> 
 図15は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図15に示した構成例では、図11に示した構成例と比較して、第1液晶セル10を基準としつつ、第3液晶セル30と第4液晶セル40において第2透明基板を180°回転させるという点で異なっている。
 図15に示す液晶デバイス1では、第1液晶セル10は、図11に示す第1液晶セル10と同じものである。
 第2液晶セル20は、第1液晶セル10を180°回転させたものである。
 第3液晶セル30は、第1液晶セル10の第2透明基板を180度回転させたのちに第1透明基板に張り付けた後に反時計回りに90°回転させたものである。
 第4液晶セル40は、当該第3液晶セル30を180°回転させたものである。
 透明基板の配置を変えて別の透明基板として用いることにより、別個に用意する場合と比較して、コストを削減することができる。
 本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、上記と同様の効果を奏する。
 <実施例6-1> 
 図16は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図16に示した構成例では、図11に示した構成例と比較して、1つの液晶セルが波型形状の電極とジグザグ形状の電極を備えるという点で異なっている。
 図16に示す液晶デバイス1において、第1液晶セル10では、配向処理方向AD11は、第1方向Xに対して0°の方向である。波形形状の第1帯電極E11A及び第2帯電極E11Bは、第2方向Yに平行な方向に延出する。
 配向処理方向AD21は、第1方向Xに対して90°の方向である。ジグザグ形状を有する第1電極E21A及び21Bは、第2方向Yに平行な方向に延出する。波形形状を有する第3帯電極E21A及び第4帯電極E21Bは、第1方向Xに平行な方向に延出する。
 第1帯電極E11A及び第2帯電極E11Bの延出方向は、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2液晶セル20において、配向処理方向AD12は0°の方向である。ジグザグ形状を有する第1帯電極E12A及び第2帯電極E12Bは、第2方向Yに沿って延出方している。
 配向処理方向AD22は90°の方向である。波形形状を有する第3帯電極E22A及び第4帯電極E22Bの延出方向は第1方向Xに沿って延出している。
 第1帯電極E12A及び第2帯電極E12Bの延出方向は、第3帯電極E22A及び第4帯電極E22Bの延出方向と直交している。
 第3液晶セル30において、配向処理方向AD13は-90°の方向である。波形形状を有する第1帯電極E13A及び第2帯電極E13Bは、第1方向Xに平行な方向に延出する。
 配向処理方向AD23は0°の方向である。ジグザグ形状を有する第3帯電極E23A及び第4帯電極E23Bは、第2方向Yに沿って延出する。
 第1帯電極E13A及び第2帯電極E13Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向と直交している。
 第4液晶セル40において、配向処理方向AD14は-90°の方向である。ジグザグ形状を有する第1帯電極E14A及び第2帯電極E14Bは、第1方向Xと平行な方向に延出している。
 配向処理方向AD24は0°の方向である。波形形状を有する第3帯電極E24A及び第4帯電極E24Bは、第2方向Yと平行な方向に沿って延出している。
 第1帯電極E14A及び第2帯電極E14Bの延出方向は、第3帯電極E24A及び第4帯電極E24Bの延出方向と直交している。
 図16に示す液晶デバイス1において、第1透明基板S11に接続されたフレキシブル配線基板F1、及び、第1透明基板S12に接続されたフレキシブル配線基板F2は、概略第2方向Yに沿って引き出されている。
 第1透明基板S13に接続されたフレキシブル配線基板F3、及び、第1透明基板S14に接続されたフレキシブル配線基板F4は、概略第1方向Xと平行な方向に引き出されている。
 図16において、第3液晶セル30は、第1液晶セル10を時計回りに90°回転させたものである。第4液晶セル40は、第2液晶セル20を時計回りに90°回転させたものである。
 液晶セルの配置を変えて別の液晶セルとして用いることにより、別個に用意する場合と比較して、コストを削減することができる。
 本実施例において、ジグザグ形状を有する帯電極と波形形状を有する帯電極が、1つの液晶セルに設けられている。重畳する液晶セルどうしにおいても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 なお本実施例では、ジグザグ形状を有する帯電極と波形形状を有する帯電極が1つの液晶セルに設けられる例を述べたが、本発明はこれに限定されない。1つの液晶セルが、上述した直線形状を有する帯電極及びジグザグ形状を有する帯電極、又は、直線形状を有する帯電極及び波形形状を有する帯電極を備えていてもよい。あるいは、例えば、直線形状を有する帯電極及びジグザグ形状を有する帯電極を備える液晶セル、直線形状を有する帯電極及び波形形状を有する帯電極を備える液晶セル、及び、ジグザグ形状を有する帯電極と波形形状を有する帯電極を備える液晶セルが重畳していてもよい。このように形状の異なる帯電極を備える液晶セルを設けることにより、さらにモアレを抑制することが可能である。
 本実施例においても、上記と同様の効果を奏する。
 <実施例6-2> 
 図17は、本実施例の液晶デバイス1を構成する各帯電極の他の例を示す平面図である。図17に示した構成例では、図16に示した構成例と比較して、第2液晶セル及び第4液晶セルのフレキシブル配線基板を、第2透明基板に設ける、という点で異なっている。
 図17に示す液晶デバイス1において、第1液晶セル10は、図16に示す第1液晶セル10と同じものである。
 配向処理方向AD11は、第1方向Xに対して0°の方向である。波形形状を有する第1電極E21A及び21Bは、第2方向Yに平行な方向に延出する。配向処理方向AD21は、第1方向Xに対して90°の方向である。ジグザグを有する第3帯電極E21A及び第4帯電極E21Bは、第1方向Xに平行な方向に延出する。
 第1帯電極E11A及び第2帯電極E11Bの延出方向は、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2液晶セル20において、配向処理方向AD12は0°の方向である。波形形状を有する第1帯電極E12A及び第2帯電極E12Bは、第2方向Yに沿って延出している。
 配向処理方向AD22は90°の方向である。ジグザグ形状を有する第3帯電極E22A及び第4帯電極E22Bの延出方向は第1方向Xに沿って延出している。
 第1帯電極E12A及び第2帯電極E12Bの延出方向は、第3帯電極E22A及び第4帯電極E22Bの延出方向と直交している。
 第2液晶セル20の第1透明基板S12は、第1液晶セル10の第2透明基板S21を時計回りに90°回転させ、上下反転したものである。第2液晶セル20の第2透明基板S22は、第1液晶セル10の第1透明基板S11を反時計回りに90°回転させ、左右反転したものである。
 第3液晶セル30は、第1液晶セル10を時計回りに90°回転させたものである。
 第4液晶セル40の第1透明基板S14は、第2液晶セル20の第1透明基板S12を時計回りに90°回転させ、左右反転させたものである。第4液晶セル40の第2透明基板S24は、第2液晶セル20の第2透明基板S22を時計回りに90°回転させ、配向処理方向を逆にしたものである。
 図17に示す液晶デバイス1において、第1透明基板S11に接続されたフレキシブル配線基板F1は、概略第2方向Yに沿って引き出されている。第2透明基板S22に接続されたフレキシブル配線基板F2は、概略第1方向Xと逆方向に沿って引き出されている。
 第1透明基板S13に接続されたフレキシブル配線基板F3は、概略第1方向Xと逆方向に沿って引き出されている。第2透明基板S24に接続されたフレキシブル配線基板F4は、概略第2方向Yの逆方向に引き出されている。
 同じ透明基板の配置を変えて別の透明基板として用いることにより、それぞれ別個に用意する場合と比較して、コストを削減することができる。
 また本実施例においても、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 本実施例においても、上記と同様の効果を奏する。
 本開示において、直線形状、波型形状、及び、ジグザグ形状のうち1つを第1形状とし、別の1つを第2形状と呼ぶこともある。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1…液晶デバイス、10…第1液晶セル、20…第2液晶セル、30…第3液晶セル、40…第4液晶セル、AD11…配向処理方向、AD12…配向処理方向、AD13…配向処理方向、AD14…配向処理方向、AD21…配向処理方向、AD22…配向処理方向、AD23…配向処理方向、AD24…配向処理方向、E11A…第1帯電極、E11B…第2帯電極、E12A…第1帯電極、E12B…第2帯電極、E13A…第1帯電極、E13B…第2帯電極、E14A…第1帯電極、E14B…第2帯電極、E21A…第3帯電極、E21B…第4帯電極、E22A…第3帯電極、E22B…第4帯電極、E23A…第3帯電極、E23B…第4帯電極、E24A…第3帯電極、E24B…第4帯電極。

Claims (15)

  1.  第1液晶セルと、
     前記第1液晶セルと重畳する第2液晶セルと、
     前記第2液晶セルと重畳する第3液晶セルと、
     前記第3液晶セルと重畳する第4液晶セルと、
     を備え、
     前記第1液晶セルから前記第4液晶セルのそれぞれは、
     第1透明基板と、
     第1配向膜と、
     前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
     第2透明基板と、
     第2配向膜と、
     前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
     前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
     前記第1液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極、及び、前記第3液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極は、第1形状を有し、
     前記第2液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極、及び、前記第4液晶セルの前記第1帯電極、第2帯電極、第3帯電極、第4帯電極は、前記第1形状と異なる第2形状を有する、液晶デバイス。
  2.  前記第3液晶セルは、前記第1液晶セルを90°回転させたものであり、
     前記第4液晶セルは、前記第3液晶セルを90°回転させたものである、請求項1に記載の液晶デバイス。
  3.  前記第1形状は、直線形状であり、
     前記第2形状は、波形形状である、請求項1に記載の液晶デバイス。
  4.  前記第1形状は、直線形状であり、
     前記第2形状は、ジグザグ形状である、請求項1に記載の液晶デバイス。
  5.  前記第1形状は、ジグザグ形状であり、
     前記第2形状は、波形形状である、請求項1に記載の液晶デバイス。
  6.  前記第1液晶セルから前記第4液晶セルまでのそれぞれにおいて、前記第1透明基板の一辺を基準とし、
     前記一辺に直交する方向を第1方向とし、前記一辺に平行な方向を第2方向とし、
     前記第1配向膜の配向処理方向は、前記第1方向に平行であり、
     前記第2配向膜の配向処理方向は、前記第2方向に平行であり、
     前記第1帯電極及び前記第2帯電極の延出方向は、前記第1方向と交差し、
     前記第3帯電極及び前記第4帯電極の延出方向は、前記第2方向と交差する、請求項1に記載の液晶デバイス。
  7.  第1液晶セルと、
     前記第1液晶セルと重畳する第2液晶セルと、
     前記第2液晶セルと重畳する第3液晶セルと、
     前記第3液晶セルと重畳する第4液晶セルと、
     を備え、
     前記第1液晶セルから前記第4液晶セルのそれぞれは、
     第1透明基板と、
     第1配向膜と、
     前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
     第2透明基板と、
     第2配向膜と、
     前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
     前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
     前記第1液晶セルから前記第4液晶セルのそれぞれは、ジグザグ形状の前記第1帯電極、第2帯電極、第3帯電極、前記第4帯電極を有する、液晶デバイス。
  8.  前記第1液晶セルの前記第1透明基板に設けられた前記第1帯電極及び前記第2帯電極、並びに、前記第2液晶セルの前記第1透明基板に設けられた前記第1帯電極及び前記第2帯電極は、第1方向を軸として、線対称の関係にあり、前記第1液晶セルの前記第2透明基板に設けられた前記第3帯電極及び前記第4帯電極、並びに、前記第2液晶セルの前記第2透明基板に設けられた前記第3帯電極及び前記第4帯電極は、前記第1方向と交差する第2方向を軸として、線対称の関係にあり、
     前記第3液晶セルの前記第1透明基板に設けられた前記第1帯電極及び前記第2帯電極、並びに、前記第4液晶セルの前記第1透明基板に設けられた前記第1帯電極及び前記第2帯電極は、前記第2方向を軸として、線対称の関係にあり、前記第3液晶セルの前記第2透明基板に設けられた前記第3帯電極及び前記第4帯電極、並びに、前記第4液晶セルの前記第2透明基板に設けられた前記第3帯電極及び前記第4帯電極は、前記第1方向を軸として、線対称の関係にある、請求項7に記載の液晶デバイス。
  9.  前記第2液晶セルは、前記第1液晶セルを180°回転させたものであり、
     前記第4液晶セルは、前記第3液晶セルを180°回転させたものである、請求項7に記載の液晶デバイス。
  10.  前記第2液晶セルの第1透明基板は、前記第1液晶セルの前記第1透明基板を180°回転させたものであり、前記第2液晶セルの前記第2透明基板は、前記第1液晶セルの前記第2透明基板を180°回転させたものであり、
     前記第3液晶セルは、前記第1液晶セルを時計回りに90°回転させたものであり、
     前記第4液晶セルは、前記第2液晶セルを時計回りに90°回転させたものである、請求項7に記載の液晶デバイス。
  11.  前記第2液晶セルは、前記第1液晶セルの表裏を入れ替え、さらに反時計回りに90°回転させたものであり、
     前記第3液晶セルは、前記第1液晶セルを時計回りに90°回転させたものであり、
     前記第4液晶セルは、前記第1液晶セルの表裏を入れ替え、さらに時計回りに90°回転させたものである、請求項7に記載の液晶デバイス。
  12.  第1液晶セルと、
     前記第1液晶セルと重畳する第2液晶セルと、
     前記第2液晶セルと重畳する第3液晶セルと、
     前記第3液晶セルと重畳する第4液晶セルと、
     を備え、
     前記第1液晶セルから前記第4液晶セルまでのそれぞれは、
     第1透明基板と、
     第1配向膜と、
     前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第1帯電極及び第2帯電極と、
     第2透明基板と、
     第2配向膜と、
     前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加される第3帯電極及び第4帯電極と、
     前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
     前記第1液晶セルの前記第1帯電極、前記第2液晶セルの前記第2帯電極、前記第3液晶セルの前記第1帯電極、前記第4液晶セルの前記第2帯電極は、第1形状を有し、
     前記第1液晶セルの前記第2帯電極、前記第2液晶セルの前記第1帯電極、前記第3液晶セルの前記第2帯電極、前記第4液晶セルの前記第1帯電極は、前記第1形状と異なる第2形状を有する、液晶デバイス。
  13.  前記第1形状は、ジグザグ形状であり、
     前記第2形状は、波形形状である、請求項12に記載の液晶デバイス。
  14.  前記第1形状は、直線形状であり、
     前記第2形状は、ジグザグ形状である、請求項12に記載の液晶デバイス。
  15.  前記第1形状は、直線形状であり、
     前記第2形状は、波形形状である、請求項12に記載の液晶デバイス。
PCT/JP2022/008213 2021-03-12 2022-02-28 液晶デバイス WO2022190926A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023505302A JP7505107B2 (ja) 2021-03-12 2022-02-28 液晶デバイス
CN202280020749.5A CN116964516A (zh) 2021-03-12 2022-02-28 液晶设备
EP22766885.2A EP4307037A1 (en) 2021-03-12 2022-02-28 Liquid crystal device
US18/242,645 US12044939B2 (en) 2021-03-12 2023-09-06 Liquid crystal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021040608 2021-03-12
JP2021-040608 2021-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/242,645 Continuation US12044939B2 (en) 2021-03-12 2023-09-06 Liquid crystal device

Publications (1)

Publication Number Publication Date
WO2022190926A1 true WO2022190926A1 (ja) 2022-09-15

Family

ID=83227140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008213 WO2022190926A1 (ja) 2021-03-12 2022-02-28 液晶デバイス

Country Status (5)

Country Link
US (1) US12044939B2 (ja)
EP (1) EP4307037A1 (ja)
JP (1) JP7505107B2 (ja)
CN (1) CN116964516A (ja)
WO (1) WO2022190926A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176361A1 (ja) * 2021-02-18 2022-08-25 株式会社ジャパンディスプレイ 光学素子
MX2024002358A (es) * 2021-08-23 2024-04-10 Japan Display Inc Dispositivo de control de luz de cristal liquido y dispositivo de iluminacion.
CN118140173A (zh) * 2021-11-01 2024-06-04 株式会社日本显示器 光学元件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764081A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 照明装置,バックライト,液晶表示装置および表示装置
KR20090058368A (ko) * 2007-12-04 2009-06-09 엘지디스플레이 주식회사 횡전계형 액정표시장치용 어레이 기판 및 이의 제조 방법
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
JP2011076107A (ja) * 2005-09-30 2011-04-14 Sharp Corp 液晶表示装置
US20160252782A1 (en) * 2014-03-12 2016-09-01 Boe Technology Group Co., Ltd. Liquid crystal lens and display device
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
US20190033669A1 (en) * 2015-09-12 2019-01-31 Lensvector Inc. Liquid crystal beam control device
US20200292894A1 (en) * 2018-08-29 2020-09-17 Beijing Boe Display Technology Co., Ltd. Display panel and display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025143A (ja) 2005-07-14 2007-02-01 Asahi Glass Co Ltd 液晶光学素子および装置
JP5224230B2 (ja) 2006-04-18 2013-07-03 Nltテクノロジー株式会社 液晶表示装置
CN103926748B (zh) * 2013-06-28 2016-12-07 天马微电子股份有限公司 液晶透镜及其制作方法、立体显示装置及其制作方法
CN107229518B (zh) * 2016-03-26 2020-06-30 阿里巴巴集团控股有限公司 一种分布式集群训练方法和装置
JP2022070474A (ja) * 2020-10-27 2022-05-13 株式会社ジャパンディスプレイ 液晶デバイス
JP7558783B2 (ja) * 2020-12-10 2024-10-01 株式会社ジャパンディスプレイ 液晶デバイス
JP2022126144A (ja) * 2021-02-18 2022-08-30 株式会社ジャパンディスプレイ 照明装置
JPWO2022190785A1 (ja) * 2021-03-12 2022-09-15
EP4307036A1 (en) * 2021-03-12 2024-01-17 Japan Display Inc. Liquid crystal device
WO2022210083A1 (ja) * 2021-03-31 2022-10-06 株式会社ジャパンディスプレイ 液晶光制御装置
CN117178226A (zh) * 2021-04-28 2023-12-05 株式会社日本显示器 光学装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764081A (ja) * 1993-08-31 1995-03-10 Toshiba Lighting & Technol Corp 照明装置,バックライト,液晶表示装置および表示装置
JP2011076107A (ja) * 2005-09-30 2011-04-14 Sharp Corp 液晶表示装置
KR20090058368A (ko) * 2007-12-04 2009-06-09 엘지디스플레이 주식회사 횡전계형 액정표시장치용 어레이 기판 및 이의 제조 방법
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
US20160252782A1 (en) * 2014-03-12 2016-09-01 Boe Technology Group Co., Ltd. Liquid crystal lens and display device
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
US20190033669A1 (en) * 2015-09-12 2019-01-31 Lensvector Inc. Liquid crystal beam control device
US20200292894A1 (en) * 2018-08-29 2020-09-17 Beijing Boe Display Technology Co., Ltd. Display panel and display device

Also Published As

Publication number Publication date
US12044939B2 (en) 2024-07-23
EP4307037A1 (en) 2024-01-17
CN116964516A (zh) 2023-10-27
JPWO2022190926A1 (ja) 2022-09-15
US20230418119A1 (en) 2023-12-28
JP7505107B2 (ja) 2024-06-24

Similar Documents

Publication Publication Date Title
WO2022190926A1 (ja) 液晶デバイス
US11320680B2 (en) Viewing angle switch module and display apparatus
WO2022190786A1 (ja) 液晶デバイス
WO2022190785A1 (ja) 液晶デバイス
US10386671B2 (en) Display device and illumination device
US11586078B2 (en) Liquid crystal device
WO2021149407A1 (ja) 光制御装置及び照明装置
JP7527472B2 (ja) 液晶光制御装置
TW201009461A (en) Liquid crystal display device
TWI356255B (en) A reflective in-plane switching type lcd
US20160054599A1 (en) Optical modulator including liquid crystal, driving method thereof, and optical device using the same
JP2024107464A (ja) 光学素子
JP7543541B2 (ja) 液晶光制御装置
WO2022176436A1 (ja) 偏光変換素子
JP7504748B2 (ja) 液晶デバイス
TWI336014B (en) Transflective liquid crystal display
TW200535532A (en) Liquid crystal display device
WO2024034293A1 (ja) 光学装置
JP2024045517A (ja) 光学構造体、光学構造体付き偏光板及び表示装置
JP6824658B2 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP2023179938A (ja) 光学素子及び表示装置
JP2013105099A (ja) 液晶表示装置
JP2023173806A (ja) 光学素子及び表示装置
JP2013105032A (ja) 液晶表示装置
JP2013105031A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505302

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280020749.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022766885

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766885

Country of ref document: EP

Effective date: 20231012