WO2022190785A1 - 液晶デバイス - Google Patents

液晶デバイス Download PDF

Info

Publication number
WO2022190785A1
WO2022190785A1 PCT/JP2022/005860 JP2022005860W WO2022190785A1 WO 2022190785 A1 WO2022190785 A1 WO 2022190785A1 JP 2022005860 W JP2022005860 W JP 2022005860W WO 2022190785 A1 WO2022190785 A1 WO 2022190785A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal cell
band electrode
band
electrode
Prior art date
Application number
PCT/JP2022/005860
Other languages
English (en)
French (fr)
Inventor
幸次朗 池田
健夫 小糸
康一 長尾
慎一郎 田中
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023505244A priority Critical patent/JPWO2022190785A1/ja
Priority to CN202280019406.7A priority patent/CN116997848A/zh
Priority to EP22766750.8A priority patent/EP4307035A1/en
Publication of WO2022190785A1 publication Critical patent/WO2022190785A1/ja
Priority to US18/367,116 priority patent/US12078891B2/en
Priority to US18/750,455 priority patent/US20240337878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital

Definitions

  • Embodiments of the present invention relate to liquid crystal devices.
  • Such a light control device controls the alignment state of liquid crystal molecules or the refractive index distribution of the liquid crystal layer to refract light (p-polarized light, s-polarized light) passing through the liquid crystal layer.
  • a technique of suppressing unevenness by forming strip-shaped electrodes for forming the respective liquid crystal lenses at mutually shifted positions.
  • An object of the embodiments is to provide a liquid crystal device capable of suppressing moire.
  • a liquid crystal device includes: a first liquid crystal cell and a second liquid crystal cell overlapping the first liquid crystal cell, each of the first liquid crystal cell and the second liquid crystal cell comprising a first transparent substrate; a first alignment film; a first band electrode and a second band electrode which are positioned between the first transparent substrate and the first alignment film, are spaced apart from each other, and are configured to be applied with different voltages; a transparent substrate, a second alignment film, and a third belt positioned between the second transparent substrate and the second alignment film, spaced apart from each other, and configured to be applied with different voltages.
  • the first and second band electrodes in the first liquid crystal cell The extending direction is different from the extending direction of the first band electrode and the second band electrode in the second liquid crystal cell, and in each of the first liquid crystal cell and the second liquid crystal cell, the first band electrode And the extending direction of the second band electrode is orthogonal to the extending direction of the third and fourth band electrodes in a plan view.
  • liquid crystal device capable of suppressing moire.
  • FIG. 1 is a perspective view showing a liquid crystal device 1 according to an embodiment.
  • FIG. 2 is an exploded perspective view of the liquid crystal device 1 shown in FIG.
  • FIG. 3 is a perspective view schematically showing the first liquid crystal cell 10 of FIG.
  • FIG. 4 is a diagram showing an example of the extending direction of each charging electrode that constitutes the liquid crystal device 1.
  • FIG. 5 is a diagram schematically showing the first liquid crystal cell 10 in the off state (OFF) in which no electric field is formed in the liquid crystal layer LC1.
  • FIG. 6 is a diagram schematically showing the first liquid crystal cell 10 in the on state (ON) in which an electric field is formed in the liquid crystal layer LC1.
  • FIG. OFF off state
  • ON on state
  • FIG. 7 is a diagram showing another example of the extending direction of each charging electrode constituting the liquid crystal device 1.
  • FIG. 8 is a diagram showing another example of the extending direction of each charging electrode that constitutes the liquid crystal device 1.
  • FIG. 9 is a diagram showing another example of the extending direction of each charging electrode that constitutes the liquid crystal device 1.
  • FIG. 10 is a diagram showing another example of the extension direction of each charging electrode that constitutes the liquid crystal device 1.
  • FIG. 11A and 11B are diagrams showing another example of the extending direction of each charging electrode constituting the liquid crystal device 1.
  • FIG. 12A and 12B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • FIG. 13A and 13B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • X-axis, Y-axis, and Z-axis which are orthogonal to each other, are shown as necessary for easy understanding.
  • the direction along the X axis is called the X direction or first direction
  • the direction along the Y axis is called the Y direction or second direction
  • the direction along the Z axis is called the Z direction or third direction.
  • a plane defined by the X and Y axes is called the XY plane. Viewing the XY plane is called planar viewing.
  • FIG. 1 is a perspective view showing a liquid crystal device 1 according to this embodiment.
  • the liquid crystal device 1 includes a first liquid crystal cell 10 , a second liquid crystal cell 20 , a third liquid crystal cell 30 and a fourth liquid crystal cell 40 .
  • the liquid crystal device 1 according to this embodiment includes two or more liquid crystal cells, and is not limited to the configuration including four liquid crystal cells as in the example shown in FIG.
  • the first liquid crystal cell 10 In the third direction Z, the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 overlap in this order.
  • the light source LS indicated by the dotted line faces the first liquid crystal cell 10 in the third direction Z.
  • the light source LS is preferably configured to emit collimated light, but it is also possible to employ a light source that emits diffused light.
  • Light emitted from the light source LS passes through the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 in order.
  • the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 are configured to refract some polarized components of incident light.
  • an illumination device capable of diffusing and converging light.
  • FIG. 2 is an exploded perspective view of the liquid crystal device 1 shown in FIG.
  • the first liquid crystal cell 10 includes a first transparent substrate S11, a second transparent substrate S21, a liquid crystal layer LC1, and a seal SE1.
  • the first transparent substrate S11 and the second transparent substrate S21 are bonded with a seal SE1.
  • the liquid crystal layer LC1 is held between the first transparent substrate S11 and the second transparent substrate S21 and sealed with a seal SE1.
  • An effective area AA1 capable of refracting incident light is formed inside surrounded by the seal SE1.
  • the direction orthogonal to the side SY is defined as a first direction X
  • the side SY A direction parallel to is defined as a second direction Y
  • a direction orthogonal to the first direction X and the second direction Y (thickness direction) is defined as a third direction Z.
  • the side SY as a reference, the 3 o'clock direction on the XY plane, that is, the tip direction of the arrow indicating the first direction X is 0°, and the counterclockwise angle with respect to the first direction X is positive (+).
  • a clockwise angle with respect to the first direction X is denoted by a negative (-).
  • the tip direction of the arrow indicating the second direction Y corresponds to the direction at 90° with respect to the first direction X. As shown in FIG. Such correspondence in each direction can be similarly applied to the other liquid crystal cells 20 to 40 as well.
  • the first transparent substrate S11 has an extension portion EX1 extending in the first direction X to the outside of the second transparent substrate S21, and an extension portion EX1 extending in the second direction Y to the outside of the second transparent substrate S21. and an extending portion EY1. At least one of the extension EX1 and the extension EY1 is connected to a flexible wiring board F as indicated by a dotted line.
  • the second liquid crystal cell 20 includes a first transparent substrate S12, a second transparent substrate S22, a liquid crystal layer LC2, and a seal SE2.
  • the effective area AA2 is formed inside surrounded by the seal SE2.
  • the first transparent substrate S12 has an extension EX2 and an extension EY2. In the third direction Z, the extension EX2 overlaps the extension EX1, and the extension EY2 overlaps the extension EY1.
  • a flexible wiring board is connected to at least one of the extension EX2 and the extension EY2, but the illustration of the flexible wiring board in the liquid crystal cells 20 to 40 is omitted.
  • the third liquid crystal cell 30 includes a first transparent substrate S13, a second transparent substrate S23, a liquid crystal layer LC3, and a seal SE3.
  • the effective area AA3 is formed inside surrounded by the seal SE3.
  • the first transparent substrate S13 has an extension EX3 and an extension EY3. In the third direction Z, the extending portion EY3 overlaps the extending portion EY2.
  • the extension EX3 does not overlap with the extension EX2 and is located on the opposite side of the extension EX2.
  • the fourth liquid crystal cell 40 includes a first transparent substrate S14, a second transparent substrate S24, a liquid crystal layer LC4, and a seal SE4.
  • the effective area AA4 is formed inside surrounded by the seal SE4.
  • the first transparent substrate S14 has an extension EX4 and an extension EY4. In the third direction Z, the extension EX4 overlaps the extension EX3, and the extension EY4 overlaps the extension EY3.
  • a transparent adhesive layer TA12 is arranged between the first liquid crystal cell 10 and the second liquid crystal cell 20 .
  • the transparent adhesive layer TA12 bonds the first transparent substrate S11 and the second transparent substrate S22.
  • a transparent adhesive layer TA23 is arranged between the second liquid crystal cell 20 and the third liquid crystal cell 30 .
  • the transparent adhesive layer TA23 bonds the first transparent substrate S12 and the second transparent substrate S23 together.
  • a transparent adhesive layer TA34 is arranged between the third liquid crystal cell 30 and the fourth liquid crystal cell 40 .
  • the transparent adhesive layer TA34 bonds the first transparent substrate S13 and the second transparent substrate S24 together.
  • the first transparent substrates S11 to S14 are each formed in a square shape and have the same size.
  • the side SX and the side SY are orthogonal to each other, and the length of the side SX is the same as the length of the side SY. Therefore, when the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 are adhered to each other, they are arranged in the first direction X as shown in FIG.
  • the sides along the second direction Y are overlapped with each other, and the sides along the second direction Y are also overlapped with each other.
  • the second substrate having a shape substantially the same as the shape of the region through which light is transmitted (effective region described later) a square shape
  • the first substrate a polygonal shape other than the square shape, such as a rectangular shape.
  • the configuration of each liquid crystal cell will be described more specifically.
  • the first liquid crystal cell 10 will be described as an example below. , is substantially the same as the first liquid crystal cell 10 .
  • FIG. 3 is a perspective view schematically showing the first liquid crystal cell 10 of FIG.
  • the first liquid crystal cell 10 includes, in the effective area AA1, a first and second band electrodes E11A and E11B, a first alignment film AL11, a third and fourth band electrodes E21A and E21B, and a second alignment film AL21. and has.
  • the first band electrode E11A and the second band electrode E11B are located between the first transparent substrate S11 and the first alignment film AL11, are spaced apart, and extend in the same direction.
  • the first band electrode E11A and the second band electrode E11B may be in contact with the first transparent substrate S11, or an insulating film may be interposed between them and the first transparent substrate S11. Also, an insulating film may be interposed between the first band electrode E11A and the second band electrode E11B, and the first band electrode E11A may be located in a layer different from the second band electrode E11B.
  • the plurality of first charging electrodes E11A and the plurality of second charging electrodes E11B are arranged in the first direction X and alternately arranged.
  • the plurality of first charging electrodes E11A are configured to be electrically connected to each other and to be applied with the same voltage.
  • the plurality of second charging electrodes E11B are configured to be electrically connected to each other and to be applied with the same voltage.
  • the voltage applied to the second charging electrode E11B is controlled so as to be different from the voltage applied to the first charging electrode E11A.
  • the first alignment film AL11 covers the first band electrode E11A and the second band electrode E11B.
  • the alignment treatment direction AD11 of the first alignment film AL11 is the first direction X.
  • the alignment treatment for each alignment film may be a rubbing treatment or an optical alignment treatment.
  • the alignment treatment direction is sometimes referred to as the rubbing direction.
  • the initial alignment direction of the liquid crystal molecules LM11 along the first alignment film AL11 is the first direction X.
  • the alignment treatment direction AD11 intersects the first and second charging electrodes E11A and E11B.
  • the third band electrode E21A and the fourth band electrode E21B are located between the second transparent substrate S21 and the second alignment film AL21, are spaced apart, and extend in the same direction.
  • the third band electrode E21A and the fourth band electrode E21B may be in contact with the second transparent substrate S21, or an insulating film may be interposed between them and the second transparent substrate S21. Further, an insulating film may be interposed between the third band electrode E21A and the fourth band electrode E21B, and the third band electrode E21A may be located in a different layer from the fourth band electrode E21B.
  • the plurality of third band electrodes E21A and the plurality of fourth band electrodes E21B are arranged in the second direction Y and alternately arranged.
  • the plurality of third charging electrodes E21A are configured to be electrically connected to each other and to be applied with the same voltage.
  • the plurality of fourth charging electrodes E21B are configured to be electrically connected to each other and to be applied with the same voltage.
  • the voltage applied to the fourth charging electrode E21B is controlled so as to be different from the voltage applied to the third charging electrode E21A.
  • the extending directions of the first and second band electrodes E11A and E11B are perpendicular to the extending directions of the third and fourth band electrodes E21A and E21B, which will be described in detail later.
  • the second alignment film AL21 covers the third band electrode E21A and the fourth band electrode E21B.
  • the alignment treatment direction AD21 of the second alignment film AL21 is the second direction Y. As shown in FIG. That is, in the example shown here, the initial alignment direction of the liquid crystal molecules LM21 along the second alignment film AL21 is the second direction Y. As shown in FIG. Further, the alignment treatment direction AD11 of the first alignment film AL11 and the alignment treatment direction AD21 of the second alignment film AL21 are orthogonal to each other. The alignment treatment direction AD21 intersects the third and fourth band electrodes E21A and E21B.
  • the extending direction of the first band electrode and the second band electrode in each of the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 The extension directions of the 3rd band electrode and the 4th band electrode will be described. It is assumed that the extending direction of the first band electrodes is the same as that of the second band electrodes, and that the extending direction of the third band electrodes is the same as that of the fourth band electrodes. . These first, second, third, and fourth band electrodes each have an edge extending linearly.
  • the extending direction of each charging electrode will be described as an angle between the first direction X, which is a common reference direction, and the edge of the charging electrode.
  • FIG. 4 is a diagram showing an example of the extending direction of each charging electrode that constitutes the liquid crystal device 1. As shown in FIG.
  • the alignment treatment direction AD11 is 0° with respect to the first direction X
  • the alignment treatment direction AD21 is 90° with respect to the first direction X
  • the extending direction of the first band electrode E11A and the second band electrode E11B is 90° to the first direction X
  • the extending direction of the third band electrode E21A and the fourth band electrode E21B is the first direction X is oriented at 0° with respect to .
  • the extending directions of the first and second electrode E11A and E11B are orthogonal to the extending directions of the third and fourth electrode E21A and E21B, respectively.
  • the orientation treatment direction AD12 is the direction of 0°
  • the orientation treatment direction AD22 is the direction of 90°
  • the extension directions of the first and second belt electrodes E12A and E12B are 91°.
  • the extending direction of the third and fourth band electrodes E22A and E22B is the direction of 1°.
  • the extending directions of the first and second charging electrodes E12A and E12B are orthogonal to the extending directions of the third and fourth charging electrodes E22A and E22B.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extension directions of the first and second belt electrodes E13A and E13B are 0°
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 90°.
  • the extending directions of the first and second charging electrodes E13A and E13B are orthogonal to the extending directions of the third and fourth charging electrodes E23A and E23B.
  • the orientation treatment direction AD14 is the direction of ⁇ 90°
  • the orientation treatment direction AD24 is the direction of 0°
  • the extending directions of the first band electrode E14A and the second band electrode E14B are 1°.
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B is the direction of 91°.
  • the extending directions of the first and second charging electrodes E14A and E14B are orthogonal to the extending directions of the third and fourth charging electrodes E24A and E24B.
  • the flexible wiring board F1 connected to the first transparent board S11 and the flexible wiring board F2 connected to the first transparent board S12 are pulled out downward in the figure.
  • the flexible wiring board F3 connected to the first transparent board S13 and the flexible wiring board F4 connected to the first transparent board S14 are pulled out to the left of the figure.
  • the extending direction of the first and second electrode E11A and E11B and the extending direction of the first and second electrode E12A and E12B intersect at an angle other than 90°.
  • the intersection at an angle other than 90° means that the intersection angle between them in plan view is an acute angle of greater than 0° and less than 90°, and is non-parallel and non-orthogonal. Synonymous.
  • the extending directions of the third and fourth band electrodes E21A and E21B intersect with the extending directions of the third and fourth band electrodes E22A and E22B at an angle other than 90°.
  • the crossing angle between the first charging electrode E11A and the first charging electrode E12A and the crossing angle between the third charging electrode E21A and the third charging electrode E22A are 1°.
  • the first and second electrode E11A and E11B, the first and second electrode E12A and E12B, and the third electrode E21A are formed.
  • the fourth band electrode E21B, the third band electrode E22A and the fourth band electrode E22B do not match each other (that is, they are not parallel to each other). In this way, moire can be suppressed because there are no electrodes that completely overlap each other.
  • the crossing angle is 1°
  • it is desirable that the crossing angle is greater than 0° and equal to or less than 4°.
  • the extending direction of the first and second charging electrodes E11A and E11B and the extending direction of the first and second charging electrodes E13A and E13B are orthogonal to each other. Further, the extending direction of the third and fourth band electrodes E21A and E21B and the extending direction of the third and fourth band electrodes E23A and E23B are orthogonal to each other.
  • the extending directions of the first and second band electrodes E11A and E11B are the same as those of the first and second band electrodes E13A and E13B.
  • the extending directions of the third and fourth band electrodes E21A and E21B match the extending directions of the third and fourth band electrodes E23A and E23B, respectively.
  • the first band electrode E11A and the second band electrode E11B, and the first band electrode E13A and the second band electrode E13B are rotationally symmetrical by 90°.
  • the third and fourth band electrodes E21A and E21B, and the third and fourth band electrodes E23A and E23B are rotationally symmetrical by 90°. That is, the first liquid crystal cell 10 and the third liquid crystal cell 30 are rotationally symmetrical by 90°, and the first liquid crystal cell 10 is rotated clockwise by 90° in the XY plane to be used as the third liquid crystal cell 30. be able to. Therefore, the cost can be reduced compared to the case where the first liquid crystal cell 10 and the third liquid crystal cell 30 are separately prepared.
  • the mutual relationship between the first liquid crystal cell 10 and the third liquid crystal cell 30 has been described here, the mutual relationship between the second liquid crystal cell 20 and the fourth liquid crystal cell 40 is the same. That is, the second liquid crystal cell 20 and the fourth liquid crystal cell 40 are rotationally symmetrical by 90°, and by rotating the second liquid crystal cell 20 clockwise by 90° in the XY plane, it is used as the fourth liquid crystal cell 40. be able to. Therefore, the cost can be reduced compared to the case where the second liquid crystal cell 20 and the fourth liquid crystal cell 40 are separately prepared. Therefore, by preparing two types of liquid crystal cells with different extending directions of the charging electrodes, the liquid crystal device 1 can be constructed by stacking the liquid crystal cells 10 to 40 described above.
  • FIG. 5 and 6 only the configuration necessary for explanation such as the liquid crystal molecules LM1 in the vicinity of the first transparent substrate S11 is illustrated. 5 and 6, the light from the light source is incident from the first transparent substrate S11 side unlike in FIG.
  • FIG. 5 is a diagram schematically showing the first liquid crystal cell 10 in the off state (OFF) in which no electric field is formed in the liquid crystal layer LC1.
  • the liquid crystal molecules LM1 maintain their initial alignment state.
  • the liquid crystal layer LC1 has a substantially uniform refractive index distribution. Therefore, the polarized light component POL1, which is incident light to the first liquid crystal cell 10, passes through the liquid crystal layer LC1 without being refracted (or diffused).
  • the initial alignment directions of the liquid crystal molecules intersect at 90° between the upper and lower transparent substrates.
  • the direction is gradually changed from the X direction to the Y direction toward the second transparent substrate side, and the second substrate is aligned. side is oriented in the Y direction.
  • the orientation of the polarized light component changes according to the change in orientation of the liquid crystal layer. More specifically, a polarized component having a polarization axis in the X direction changes its polarization axis in the Y direction during the process of passing through the liquid crystal layer. On the other hand, the polarized component having the polarization axis in the Y direction changes its polarization axis from the Y direction to the X direction in the process of passing through the liquid crystal layer.
  • the polarization axes are exchanged in the process of passing through the liquid crystal cell.
  • the action of changing the direction of the polarization axis may be referred to as optical rotation.
  • FIG. 6 is a diagram schematically showing the first liquid crystal cell 10 in the on state (ON) in which an electric field is formed in the liquid crystal layer LC1.
  • ON an electric field is formed in the liquid crystal layer LC1 by generating a potential difference between the first charging electrode E11A and the second charging electrode E11B.
  • the liquid crystal molecules LM1 are aligned in a convex arc shape between the adjacent electrodes such that the major axis of the liquid crystal molecules LM1 is aligned with the electric field.
  • the range over which the electric field between the first charging electrode E11A and the second charging electrode E11B reaches is mainly about half the thickness of the liquid crystal layer LC1. Therefore, as shown in FIG. 6, the liquid crystal layer LC1 has a region near the first transparent substrate S11 in which the liquid crystal molecules LM1 are oriented substantially perpendicularly to the substrate. A region in which the liquid crystal molecules LM1 are aligned in an oblique direction, a region in which the liquid crystal molecules LM1 are aligned substantially horizontally with respect to the substrate, and the like are formed.
  • the liquid crystal molecules LM1 have refractive index anisotropy ⁇ n. Therefore, the liquid crystal layer LC1 in the ON state has a refractive index distribution or a retardation distribution according to the alignment state of the liquid crystal molecules LM1.
  • the retardation here is represented by ⁇ n ⁇ d, where d is the thickness of the liquid crystal layer LC1.
  • positive liquid crystal is used as the liquid crystal layer in this embodiment, it is also possible to use negative liquid crystal by considering the alignment direction and the like.
  • the polarization component POL1 is diffused under the influence of the refractive index distribution of the liquid crystal layer LC1 when passing through the liquid crystal layer LC1. More specifically, a polarized light component having a polarization axis in the X direction diffuses in the X direction under the influence of the refractive index distribution of the liquid crystal layer and rotates in the Y direction. On the other hand, the polarized light component having the polarization axis in the Y direction is not affected by the refractive index distribution, and passes through the liquid crystal layer with only optical rotation in the X direction without being diffused.
  • FIG. 6 the case where the electric field is formed by the potential difference between the first charging electrode E11A and the second charging electrode E11B has been described.
  • the polarized light component optically rotated in the Y direction diffuses in the process of passing through the liquid crystal layer. That is, the polarized component diffused on the first transparent substrate side is further diffused in the Y direction on the second transparent substrate side and emitted from the liquid crystal cell.
  • the polarized component optically rotated in the X direction in the process of passing through the liquid crystal layer is emitted from the liquid crystal cell without being affected by the refractive index distribution.
  • Such diffusion and optical rotation of the polarized component also occur in the second liquid crystal cell. That is, the polarized light component emitted from the light source and having the polarization axis in the X direction changes the polarization axis from the X direction to the Y direction by passing through the first liquid crystal, and further changes the polarization axis by passing through the second liquid crystal. Change from the Y direction to the X direction.
  • the polarized component diffuses according to the refractive index distribution.
  • a polarized light component having a polarization axis in the Y direction emitted from the light source changes its polarization axis from the Y direction to the X direction by passing through the first liquid crystal, and further passes through the second liquid crystal to change the polarization axis is changed from the X direction to the Y direction.
  • the polarized component diffuses according to the refractive index distribution.
  • the same phenomenon occurs in the third and fourth liquid crystal cells, but since they are the first and second liquid crystal cells rotated by 90 degrees, the polarization components exerting the diffusion action are interchanged.
  • the first liquid crystal cell 10 and the fourth liquid crystal cell 40 are mainly
  • the second liquid crystal cell 20 and the third liquid crystal cell 30 are configured to scatter (diffuse) the polarization component POL1 which is p-polarized
  • the second liquid crystal cell 20 and the third liquid crystal cell 30 are configured to scatter (diffuse) the polarization component POL2 which is mainly s-polarized.
  • each of the first liquid crystal cell 10, the second liquid crystal cell 20, the third liquid crystal cell 30, and the fourth liquid crystal cell 40 is configured so as not to include electrodes extending in the same direction. . Therefore, the liquid crystal layers of the respective liquid crystal cells form different refractive index distributions in the ON state. As a result, interference of light transmitted through each liquid crystal cell is reduced, and moiré can be suppressed.
  • FIG. 7 is a diagram showing another example of the extending direction of each charging electrode constituting the liquid crystal device 1. As shown in FIG.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 90°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of 0°.
  • the orientation treatment direction AD12 is the direction of 0°
  • the orientation treatment direction AD22 is the direction of 90°
  • the extension directions of the first and second belt electrodes E12A and E12B are 91°.
  • the extending direction of the third and fourth band electrodes E22A and E22B is the direction of 1°.
  • the alignment processing direction AD13 is the direction of 90°
  • the alignment processing direction AD23 is the direction of 180°
  • the extending directions of the first and second belt electrodes E13A and E13B are 0°. direction
  • the extension direction of the third and fourth band electrodes E23A and E23B is the direction of 90°.
  • the orientation treatment direction AD14 is the direction of 90°
  • the orientation treatment direction AD24 is the direction of 180°
  • the extension directions of the first and second belt electrodes E14A and E14B are 1°. direction
  • the extension direction of the third and fourth band electrodes E24A and E24B is the direction of 91°.
  • the first liquid crystal cell 10 By rotating the first liquid crystal cell 10 counterclockwise by 90° on the XY plane, it can be used as the third liquid crystal cell 30 . Further, the second liquid crystal cell 20 can be used as the fourth liquid crystal cell 40 by rotating it 90° counterclockwise on the XY plane.
  • FIG. 8 is a diagram showing another example of the extending direction of each charging electrode that constitutes the liquid crystal device 1. As shown in FIG.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 90°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of 0°.
  • the alignment treatment direction AD12 is the direction of 0°
  • the alignment treatment direction AD22 is the direction of 90°
  • the extending directions of the first and second belt electrodes E12A and E12B are 89°.
  • the direction in which the third and fourth band electrodes E22A and E22B extend is -1°.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extension directions of the first and second belt electrodes E13A and E13B are 0°.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 90°.
  • the orientation treatment direction AD14 is the direction of ⁇ 90°
  • the orientation treatment direction AD24 is the direction of 0°
  • the extending direction of the first band electrode E14A and the second band electrode E14B is ⁇ 1.
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B is the direction of 89°.
  • the first liquid crystal cell 10 By rotating the first liquid crystal cell 10 clockwise by 90° on the XY plane, it can be used as the third liquid crystal cell 30 . Further, the second liquid crystal cell 20 can be used as the fourth liquid crystal cell 40 by rotating it 90 degrees clockwise on the XY plane.
  • FIG. 9 is a diagram showing another example of the extending direction of each charging electrode that constitutes the liquid crystal device 1. As shown in FIG.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 89°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of -1°.
  • the orientation treatment direction AD12 is the direction of 0°
  • the orientation treatment direction AD22 is the direction of 90°
  • the extension directions of the first and second belt electrodes E12A and E12B are 91°.
  • the extending direction of the third and fourth band electrodes E22A and E22B is the direction of 1°.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extending direction of the first band electrode E13A and the second band electrode E13B is ⁇ 1.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 89°.
  • the orientation treatment direction AD14 is the direction of ⁇ 90°
  • the orientation treatment direction AD24 is the direction of 0°
  • the extending directions of the first band electrode E14A and the second band electrode E14B are 1°.
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B is the direction of 91°.
  • the first liquid crystal cell 10 By rotating the first liquid crystal cell 10 clockwise by 90° on the XY plane, it can be used as the third liquid crystal cell 30 . Further, the second liquid crystal cell 20 can be used as the fourth liquid crystal cell 40 by rotating it 90 degrees clockwise on the XY plane.
  • FIG. 10 is a diagram showing another example of the extension direction of each charging electrode that constitutes the liquid crystal device 1.
  • FIG. 10 is a diagram showing another example of the extension direction of each charging electrode that constitutes the liquid crystal device 1.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 89°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of -1°.
  • the first transparent substrate S12 faces the first liquid crystal cell 10
  • the second transparent substrate S22 faces the third liquid crystal cell 30.
  • the orientation treatment direction AD12 is the direction of ⁇ 90°
  • the orientation treatment direction AD22 is the direction of 180°
  • the extending directions of the first and second band electrodes E12A and E12B are the direction of 1°
  • the third The extending direction of the charging electrode E22A and the fourth charging electrode E22B is the direction of 91°.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extending direction of the first band electrode E13A and the second band electrode E13B is ⁇ 1.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 89°.
  • the first transparent substrate S14 faces the third liquid crystal cell 30.
  • the orientation processing direction AD14 is the direction of 180°
  • the orientation processing direction AD24 is the direction of 90°
  • the extending direction of the first band electrode E14A and the second band electrode E14B is the direction of 91°
  • the extending direction of the electrode E24A and the fourth band electrode E24B is the direction of 1°.
  • the first liquid crystal cell 10 can be used as the second liquid crystal cell 20 by rotating it 90° clockwise in the XY plane and turning it over. Also, the first liquid crystal cell 10 can be used as the third liquid crystal cell 30 by rotating it 90 degrees clockwise on the XY plane. Furthermore, the second liquid crystal cell 20 can be used as a fourth liquid crystal cell 40 by rotating it clockwise by 90° on the XY plane. That is, by preparing one type of liquid crystal cell, the liquid crystal device 1 in which the above liquid crystal cells 10 to 40 are stacked can be configured.
  • the alignment treatment direction of one alignment film of each liquid crystal cell is parallel to the first direction X (that is, the direction of 0° or the direction of 180°), is parallel to the second direction Y (that is, the direction of 90° or -90°).
  • the extending direction of the first band electrode is perpendicular to the first direction X or intersects with the first direction X at an angle other than 90°
  • the extending direction of the third band electrode is the second direction. It is orthogonal to direction Y or intersects at an angle other than 90°.
  • the terms “perpendicular or intersecting at an angle other than 90°” mean that the intersecting angle between the two is greater than 0° and equal to or less than 90° in plan view, and is synonymous with non-parallel.
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 is parallel to the second direction Y
  • the extending direction of the third band electrode E21A is parallel to the second direction Y.
  • the exit direction is parallel to the first direction X.
  • the extending direction of the first band electrode E12A of the second liquid crystal cell 20 intersects the second direction Y at an angle other than 90°
  • the extending direction of the third band electrode E22A is the first direction X other than 90°.
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 is perpendicular to the orientation treatment direction AD11 of the first alignment film covering the first band electrode E11A, and the first band electrode E12A of the second liquid crystal cell 20 intersects the orientation processing direction AD12 of the first orientation film covering the first belt electrode E12A at an angle other than 90°.
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 and the extending direction of the first band electrode E12A of the second liquid crystal cell 20 are also intersects the second direction Y at an angle other than 90°.
  • the extension direction of the third band electrode E21A and the extension direction of the third band electrode E22A of the first liquid crystal cell 10 both cross the first direction X at an angle other than 90°.
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 intersects the orientation processing direction AD11 of the first orientation film covering the first band electrode E11A at an angle other than 90°, and the second liquid crystal The extending direction of the first band electrode E12A of the cell 20 intersects the alignment processing direction AD12 of the first alignment film covering the first band electrode E12A at an angle other than 90°.
  • FIG. 1 is diagrams showing another example of the extending direction of each charging electrode constituting the liquid crystal device 1.
  • FIG. 1 is diagrams showing another example of the extending direction of each charging electrode constituting the liquid crystal device 1.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 90°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of 0°.
  • the orientation treatment direction AD12 is the direction of 1°
  • the orientation treatment direction AD22 is the direction of 91°
  • the extension directions of the first and second belt electrodes E12A and E12B are 91°.
  • the extending direction of the third and fourth band electrodes E22A and E22B is the direction of 1°.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extension directions of the first and second belt electrodes E13A and E13B are 0°.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 90°.
  • the alignment treatment direction AD14 is the direction of ⁇ 89°
  • the alignment treatment direction AD24 is the direction of 1°
  • the extension directions of the first and second belt electrodes E14A and E14B are 1°
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B is the direction of 91°.
  • the first liquid crystal cell 10 and the third liquid crystal cell 30 are rotationally symmetrical by 90°, and by rotating the first liquid crystal cell 10 clockwise by 90° in the XY plane, it can be used as the third liquid crystal cell 30. can.
  • the second liquid crystal cell 20 and the fourth liquid crystal cell 40 are rotationally symmetrical by 90°, and by rotating the second liquid crystal cell 20 clockwise by 90° in the XY plane, it is used as the fourth liquid crystal cell 40. be able to.
  • Example 2-2>> 12A and 12B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • FIG. 12A and 12B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • the orientation treatment direction AD11 is the direction of 0°
  • the orientation treatment direction AD21 is the direction of 90°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 90°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of 0°.
  • the orientation treatment direction AD12 is the direction of ⁇ 1°
  • the orientation treatment direction AD22 is the direction of 89°
  • the extension directions of the first and second belt electrodes E12A and E12B are 89°.
  • the extending direction of the third band electrode E22A and the fourth band electrode E22B is the direction of ⁇ 1°.
  • the alignment treatment direction AD13 is the direction of ⁇ 90°
  • the alignment treatment direction AD23 is the direction of 0°
  • the extension directions of the first and second belt electrodes E13A and E13B are 0°.
  • the extending direction of the third band electrode E23A and the fourth band electrode E23B is the direction of 90°.
  • the alignment treatment direction AD14 is the direction of ⁇ 91°
  • the alignment treatment direction AD24 is the direction of ⁇ 1°
  • the extension direction of the first band electrode E14A and the second band electrode E14B is ⁇
  • the extending direction of the third and fourth band electrodes E24A and E24B is the direction of 89°.
  • the first liquid crystal cell 10 By rotating the first liquid crystal cell 10 clockwise by 90° on the XY plane, it can be used as the third liquid crystal cell 30 . Further, the second liquid crystal cell 20 can be used as the fourth liquid crystal cell 40 by rotating it 90 degrees clockwise on the XY plane.
  • FIG. 1A and 13B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • FIG. 13A and 13B are diagrams showing other examples of extending directions of the respective charging electrodes constituting the liquid crystal device 1.
  • the alignment treatment direction AD11 is the direction of -1°
  • the alignment treatment direction AD21 is the direction of 89°
  • the extending direction of the first and second band electrodes E11A and E11B is the direction of 89°
  • the extending direction of the third and fourth band electrodes E21A and E21B is the direction of -1°.
  • the orientation treatment direction AD12 is the direction of 1°
  • the orientation treatment direction AD22 is the direction of 91°
  • the extension directions of the first and second belt electrodes E12A and E12B are 91°.
  • the extending direction of the third and fourth band electrodes E22A and E22B is the direction of 1°.
  • the alignment treatment direction AD13 is the direction of -91°
  • the alignment treatment direction AD23 is the direction of -1°
  • the extending direction of the first band electrode E13A and the second band electrode E13B is -. 1°
  • the extending direction of the third and fourth band electrodes E23A and E23B is the direction of 89°.
  • the alignment treatment direction AD14 is the direction of ⁇ 89°
  • the alignment treatment direction AD24 is the direction of 1°
  • the extension directions of the first and second belt electrodes E14A and E14B are 1°
  • the extending direction of the third band electrode E24A and the fourth band electrode E24B is the direction of 91°.
  • the first liquid crystal cell 10 By rotating the first liquid crystal cell 10 clockwise by 90° on the XY plane, it can be used as the third liquid crystal cell 30 . Further, the second liquid crystal cell 20 can be used as the fourth liquid crystal cell 40 by rotating it 90 degrees clockwise on the XY plane.
  • the extension direction of the first band electrode of each liquid crystal cell is orthogonal to the orientation processing direction of the first alignment film covering the first band electrode, and the third band electrode The extending direction of the electrodes is perpendicular to the orientation processing direction of the second orientation film covering the third band electrodes.
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 is parallel to the second direction Y, and the extending direction of the third band electrode E21A is the first direction. parallel to the direction X;
  • the extending direction of the first band electrode E12A of the second liquid crystal cell 20 intersects the second direction Y at an angle other than 90°, and the extending direction of the third band electrode E22A is the first direction X other than 90°. intersect at an angle of
  • the alignment treatment direction AD11 of the first alignment film in the first liquid crystal cell 10 is parallel to the first direction X
  • the alignment treatment direction AD21 of the second alignment film is parallel to the second direction Y.
  • the alignment treatment direction AD12 of the first alignment film in the second liquid crystal cell 20 intersects the first direction X at an angle other than 90°
  • the alignment treatment direction AD22 of the second alignment film crosses the second direction Y at an angle other than 90°. intersect at an angle of
  • the extending direction of the first band electrode E11A of the first liquid crystal cell 10 and the extending direction of the first band electrode E12A of the second liquid crystal cell 20 are both the second direction Y and intersect at an angle other than 90°.
  • the extension direction of the third band electrode E21A and the extension direction of the third band electrode E22A of the first liquid crystal cell 10 both cross the first direction X at an angle other than 90°.
  • the alignment treatment direction AD11 of the first alignment film in the first liquid crystal cell 10 and the alignment treatment direction AD12 of the first alignment film in the second liquid crystal cell 20 cross the first direction X at an angle other than 90°.
  • the alignment treatment direction AD21 of the second alignment film in the first liquid crystal cell 10 and the alignment treatment direction AD22 of the second alignment film in the second liquid crystal cell 20 intersect the second direction Y at an angle other than 90°. .
  • the liquid crystal device 1 described in each of the above embodiments has four liquid crystal cells, two of which scatter p-polarized light, and the other two liquid crystal cells scatter s-polarized light.
  • the liquid crystal device 1 may be composed of one liquid crystal cell that scatters p-polarized light and one liquid crystal cell that scatters s-polarized light.
  • the combination of the first liquid crystal cell 10 and the second liquid crystal cell 20 the combination of the third liquid crystal cell 30 and the fourth liquid crystal cell 40, the first liquid crystal cell 10 and the fourth liquid crystal cell 40 combinations, the combination of the second liquid crystal cell 20 and the third liquid crystal cell 30 are applicable.
  • liquid crystal devices described as the embodiments of the present invention all liquid crystal devices that can be implemented by those skilled in the art by appropriately changing the design also belong to the scope of the present invention as long as they include the gist of the present invention.
  • liquid crystal device LS light source 10 first liquid crystal cell S11 first transparent substrate E11A first band electrode, E11B second band electrode S21 second transparent substrate E21A third band electrode, E21B fourth band Electrodes LC1 First liquid crystal layer 20 Second liquid crystal cell S12 First transparent substrate E12A First band electrode E12B Second band electrode S22 Second transparent substrate E22A Third band electrode E22B Fourth band Electrodes LC2 Second liquid crystal layer 30 Third liquid crystal cell S13 First transparent substrate E13A First band electrode E13B Second band electrode S23 Second transparent substrate E23A Third band electrode E23B Fourth band Electrodes LC3 Third liquid crystal layer 40 Fourth liquid crystal cell S14 First transparent substrate E14A First band electrode E14B Second band electrode S24 Second transparent substrate E24A Third band electrode E24B Fourth band Electrode LC4... Fourth liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

実施形態の目的は、モアレを抑制することが可能な液晶デバイスを提供することにある。 一実施形態によれば、液晶デバイスは、第1液晶セルと、第2液晶セルと、を備え、前記第1液晶セル及び前記第2液晶セルの各々は、第1帯電極及び第2帯電極と、第1配向膜と、第3帯電極及び第4帯電極と、第2配向膜と、第1配向膜と第2配向膜との間に位置する液晶層と、を備え、第1液晶セルにおける第1帯電極及び第2帯電極の延出方向は、第2液晶セルにおける第1帯電極及び第2帯電極の延出方向とは異なり、第1液晶セル及び第2液晶セルの各々において、第1帯電極及び第2帯電極の延出方向は、平面視で、第3帯電極及び第4帯電極の延出方向と直交している。

Description

液晶デバイス
 本発明の実施形態は、液晶デバイスに関する。
 近年、液晶セルを用いた光制御装置が提案されている。このような光制御装置は、液晶分子の配向状態あるいは液晶層の屈折率分布を制御して、液晶層を透過する光(p偏光、s偏光)を屈折するものである。一例では、複数の液晶レンズを備えた照明装置において、各液晶レンズを形成するための帯状電極が互いにずれた位置に形成されることで、ムラを抑制する技術が提案されている。
特開2010-230887号公報
 実施形態の目的は、モアレを抑制することが可能な液晶デバイスを提供することにある。
 一実施形態に係る液晶デバイスは、 
 第1液晶セルと、前記第1液晶セルに重なった第2液晶セルと、を備え、前記第1液晶セル及び前記第2液晶セルの各々は、第1透明基板と、第1配向膜と、前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加されるように構成された第1帯電極及び第2帯電極と、第2透明基板と、第2配向膜と、前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加されるように構成された第3帯電極及び第4帯電極と、前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、前記第1液晶セルにおける前記第1帯電極及び前記第2帯電極の延出方向は、前記第2液晶セルにおける前記第1帯電極及び前記第2帯電極の延出方向とは異なり、前記第1液晶セル及び前記第2液晶セルの各々において、前記第1帯電極及び前記第2帯電極の延出方向は、平面視で、前記第3帯電極及び前記第4帯電極の延出方向と直交している。
 一実施形態によれば、モアレを抑制することが可能な液晶デバイスを提供することができる。
図1は、実施形態に係る液晶デバイス1を示す斜視図である。 図2は、図1に示した液晶デバイス1の分解斜視図である。 図3は、図2の第1液晶セル10を概略的に示す斜視図である。 図4は、液晶デバイス1を構成する各帯電極の延出方向の一例を示す図である。 図5は、液晶層LC1に電界が形成されていないオフ状態(OFF)の第1液晶セル10を模式的に示す図である。 図6は、液晶層LC1に電界が形成されたオン状態(ON)の第1液晶セル10を模式的に示す図である。 図7は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図8は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図9は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図10は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図11は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図12は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。 図13は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
 なお、図面には、必要に応じて理解を容易にするために、互いに直交するX軸、Y軸、及び、Z軸を記載する。X軸に沿った方向をX方向または第1方向と称し、Y軸に沿った方向をY方向または第2方向と称し、Z軸に沿った方向をZ方向または第3方向と称する。X軸及びY軸によって規定される面をX-Y平面と称する。X-Y平面を見ることを平面視という。
 図1は、本実施形態に係る液晶デバイス1を示す斜視図である。
 液晶デバイス1は、第1液晶セル10と、第2液晶セル20と、第3液晶セル30と、第4液晶セル40と、を備えている。本実施形態に係る液晶デバイス1は、2つ以上の液晶セルを備えるものであり、図1に示した例の如く、4つの液晶セルを備える構成に限定されるものではない。
 第3方向Zにおいて、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40は、この順に重なっている。
 点線で示す光源LSは、第3方向Zにおいて、第1液晶セル10と対向している。光源LSは、コリメート光を出射するように構成されているものが好ましいが、拡散光を出射するものも採用可能である。光源LSからの出射光は、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40を順に透過する。後述するように、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40は、入射光の一部の偏光成分を屈折するように構成されている。このように、液晶デバイス1と光源LSとを組み合わせることで、光の拡散及び集束が可能な照明装置を提供することができる。
 図2は、図1に示した液晶デバイス1の分解斜視図である。
 第1液晶セル10は、第1透明基板S11と、第2透明基板S21と、液晶層LC1と、シールSE1と、を備えている。第1透明基板S11及び第2透明基板S21は、シールSE1によって接着されている。液晶層LC1は、第1透明基板S11と第2透明基板S21との間に保持され、シールSE1によって封止されている。入射光を屈折することが可能な有効領域AA1は、シールSE1で囲まれた内側に形成されている。
 本明細書では、第1液晶セル10の平面視において、第1透明基板S11の左端に位置する1つの辺SYを基準としたとき、辺SYに直交する方向を第1方向Xとし、辺SYに平行な方向を第2方向Yとし、第1方向X及び第2方向Yに直交する方向(厚さ方向)を第3方向Zと定義する。また、辺SYを基準に、X-Y平面における3時方向つまり第1方向Xを示す矢印の先端方向を0°とし、第1方向Xに対して反時計回りの角度を正(+)で表記し、第1方向Xに対して時計回りの角度を負(-)で表記する。第2方向Yを示す矢印の先端方向は、第1方向Xに対して90°の方向に相当する。
 このような各方向の対応関係は、他の液晶セル20乃至40にも同様に当てはめることができる。
 第1透明基板S11は、第1方向Xに沿って第2透明基板S21よりも外側に延出した延出部EX1と、第2方向Yに沿って第2透明基板S21よりも外側に延出した延出部EY1と、を有している。延出部EX1及び延出部EY1の少なくとも一方には、点線で示すようなフレキシブル配線基板Fが接続される。
 第2液晶セル20は、第1透明基板S12と、第2透明基板S22と、液晶層LC2と、シールSE2と、を備えている。有効領域AA2は、シールSE2で囲まれた内側に形成されている。
 第1透明基板S12は、延出部EX2及び延出部EY2を有している。第3方向Zにおいて、延出部EX2は延出部EX1に重畳し、延出部EY2は延出部EY1に重畳している。延出部EX2及び延出部EY2の少なくとも一方には、フレキシブル配線基板が接続されるが、液晶セル20乃至40においてはフレキシブル配線基板の図示を省略する。
 第3液晶セル30は、第1透明基板S13と、第2透明基板S23と、液晶層LC3と、シールSE3と、を備えている。有効領域AA3は、シールSE3で囲まれた内側に形成されている。
 第1透明基板S13は、延出部EX3及び延出部EY3を有している。第3方向Zにおいて、延出部EY3は、延出部EY2に重畳している。延出部EX3は、延出部EX2とは重畳せず、延出部EX2の反対側に位置している。
 第4液晶セル40は、第1透明基板S14と、第2透明基板S24と、液晶層LC4と、シールSE4と、を備えている。有効領域AA4は、シールSE4で囲まれた内側に形成されている。
 第1透明基板S14は、延出部EX4及び延出部EY4を有している。第3方向Zにおいて、延出部EX4は延出部EX3に重畳し、延出部EY4は延出部EY3に重畳している。
 第1液晶セル10と第2液晶セル20との間には、透明接着層TA12が配置されている。透明接着層TA12は、第1透明基板S11と第2透明基板S22とを接着している。
 第2液晶セル20と第3液晶セル30との間には、透明接着層TA23が配置されている。透明接着層TA23は、第1透明基板S12と第2透明基板S23とを接着している。
 第3液晶セル30と第4液晶セル40との間には、透明接着層TA34が配置されている。透明接着層TA34は、第1透明基板S13と第2透明基板S24とを接着している。
 第1透明基板S11乃至S14は、それぞれ正方形状に形成され、同等のサイズを有している。例えば、第1透明基板S11において、辺SX及び辺SYは互いに直交し、また、辺SXの長さは辺SYの長さと同一である。
 このため、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40が互いに接着された際には、図1に示したように、第1方向Xに沿った辺が互いに重畳し、しかも、第2方向Yに沿った辺も互いに重畳している。
 なお、光が透過する領域(後述の有効領域)の形状とほぼ同じ形状を有する第2基板を正方形状とし、第1基板を正方形状以外の多角形状、たとえば長方形状とすることも可能である。また、各液晶セルの延出部のいずれか一方を削除する構成も採用可能である。
 次に、各液晶セルの構成についてより具体的に説明する。なお、以下では、液晶デバイス1を構成する複数の液晶セルのうち、第1液晶セル10を例に説明するが、他の液晶セル20乃至40の構成も、帯電極の延出方向を除いて、第1液晶セル10の構成と概ね同様である。
 図3は、図2の第1液晶セル10を概略的に示す斜視図である。
 第1液晶セル10は、有効領域AA1において、第1帯電極E11A及び第2帯電極E11Bと、第1配向膜AL11と、第3帯電極E21A及び第4帯電極E21Bと、第2配向膜AL21と、を備えている。
 第1帯電極E11A及び第2帯電極E11Bは、第1透明基板S11と第1配向膜AL11との間に位置し、間隔を置いて配置され、同一方向に延出している。第1帯電極E11A及び第2帯電極E11Bは、第1透明基板S11に接していてもよいし、第1透明基板S11との間に絶縁膜が介在していてもよい。また、第1帯電極E11Aと第2帯電極E11Bとの間に絶縁膜が介在し、第1帯電極E11Aが第2帯電極E11Bとは異なる層に位置していてもよい。
 複数の第1帯電極E11A、及び、複数の第2帯電極E11Bは、第1方向Xに並び、交互に配置されている。複数の第1帯電極E11Aは、互いに電気的に接続され、同一電圧が印加されるように構成されている。複数の第2帯電極E11Bは、互いに電気的に接続され、同一電圧が印加されるように構成されている。但し、第2帯電極E11Bに印加される電圧は、第1帯電極E11Aに印加される電圧とは異なるように制御される。
 第1配向膜AL11は、第1帯電極E11A及び第2帯電極E11Bを覆っている。第1配向膜AL11の配向処理方向AD11は、第1方向Xである。なお、各配向膜の配向処理は、ラビング処理であってもよいし、光配向処理であってもよい。配向処理方向は、ラビング方向と称される場合がある。一般に、液晶層に電圧が印加されていない状態(初期配向状態)において、配向膜の近傍に位置する液晶分子は、配向膜の配向処理方向に沿った配向規制力によって所定の方向に初期配向される。つまり、ここに示す例では、第1配向膜AL11に沿った液晶分子LM11の初期配向方向は、第1方向Xである。配向処理方向AD11は、第1帯電極E11A及び第2帯電極E11Bと交差している。
 第3帯電極E21A及び第4帯電極E21Bは、第2透明基板S21と第2配向膜AL21との間に位置し、間隔を置いて配置され、同一方向に延出している。第3帯電極E21A及び第4帯電極E21Bは、第2透明基板S21に接していてもよいし、第2透明基板S21との間に絶縁膜が介在していてもよい。また、第3帯電極E21Aと第4帯電極E21Bとの間に絶縁膜が介在し、第3帯電極E21Aが第4帯電極E21Bとは異なる層に位置していてもよい。
 複数の第3帯電極E21A、及び、複数の第4帯電極E21Bは、第2方向Yに並び、交互に配置されている。複数の第3帯電極E21Aは、互いに電気的に接続され、同一電圧が印加されるように構成されている。複数の第4帯電極E21Bは、互いに電気的に接続され、同一電圧が印加されるように構成されている。但し、第4帯電極E21Bに印加される電圧は、第3帯電極E21Aに印加される電圧とは異なるように制御される。また、第1帯電極E11A及び第2帯電極E11Bの延出方向は、後に詳述するが、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2配向膜AL21は、第3帯電極E21A及び第4帯電極E21Bを覆っている。第2配向膜AL21の配向処理方向AD21は、第2方向Yである。つまり、ここに示す例では、第2配向膜AL21に沿った液晶分子LM21の初期配向方向は、第2方向Yである。また、第1配向膜AL11の配向処理方向AD11、及び、第2配向膜AL21の配向処理方向AD21は、互いに直交している。配向処理方向AD21は、第3帯電極E21A及び第4帯電極E21Bと交差している。
 以下に、いくつかの実施例について説明する。各実施例において、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40の各々における第1帯電極及び第2帯電極の延出方向、及び、第3帯電極及び第4帯電極の延出方向について説明する。なお、第1帯電極の延出方向は第2帯電極の延出方向と同一であり、また、第3帯電極の延出方向は第4帯電極の延出方向と同一であるものとする。これらの第1帯電極、第2帯電極、第3帯電極、及び、第4帯電極は、それぞれ直線的に延出したエッジを有している。以下において、各帯電極の延出方向は、共通の基準方向である第1方向Xと帯電極のエッジとのなす角度として説明する。
  ≪実施例1-1≫ 
 図4は、液晶デバイス1を構成する各帯電極の延出方向の一例を示す図である。
 第1液晶セル10において、配向処理方向AD11は第1方向Xに対して0°の方向であり、配向処理方向AD21は第1方向Xに対して90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は第1方向Xに対して90°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は第1方向Xに対して0°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は、第3帯電極E21A及び第4帯電極E21Bの延出方向と直交している。
 第2液晶セル20において、配向処理方向AD12は0°の方向であり、配向処理方向AD22は90°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は91°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は1°の方向である。第1帯電極E12A及び第2帯電極E12Bの延出方向は、第3帯電極E22A及び第4帯電極E22Bの延出方向と直交している。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。第1帯電極E13A及び第2帯電極E13Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向と直交している。
 第4液晶セル40において、配向処理方向AD14は-90°の方向であり、配向処理方向AD24は0°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は91°の方向である。第1帯電極E14A及び第2帯電極E14Bの延出方向は、第3帯電極E24A及び第4帯電極E24Bの延出方向と直交している。
 第1透明基板S11に接続されたフレキシブル配線基板F1、及び、第1透明基板S12に接続されたフレキシブル配線基板F2は、図の下方に引き出されている。第1透明基板S13に接続されたフレキシブル配線基板F3、及び、第1透明基板S14に接続されたフレキシブル配線基板F4は、図の左方に引き出されている。
 ここで、液晶セルの相互の関係について説明する。
 第1液晶セル10及び第2液晶セル20に着目する。第1帯電極E11A及び第2帯電極E11Bの延出方向と、第1帯電極E12A及び第2帯電極E12Bの延出方向とは、90°以外の角度で交差している。本明細書で、90°以外の角度での交差とは、平面視における両者の交差角が0°より大きく、90°未満の鋭角であることを意味するものであり、非平行且つ非直交と同義である。
 第3帯電極E21A及び第4帯電極E21Bの延出方向と、第3帯電極E22A及び第4帯電極E22Bの延出方向とは、90°以外の角度で交差している。一例では、第1帯電極E11Aと第1帯電極E12Aとの交差角、及び、第3帯電極E21Aと第3帯電極E22Aとの交差角は、1°である。
 要するに、第1液晶セル10と第2液晶セル20とが接着された際に、第1帯電極E11A及び第2帯電極E11B、第1帯電極E12A及び第2帯電極E12B、第3帯電極E21A及び第4帯電極E21B、及び、第3帯電極E22A及び第4帯電極E22Bの各々の延出方向は一致しない(つまり、互いに非平行である)。このように、互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 なお、ここでは、交差角が1°の例について説明したが、これに限らない。モアレを抑制する観点では、例えば、交差角は、0°より大きく、4°以下であることが望ましい。
 ここでは、第1液晶セル10及び第2液晶セル20の相互関係について説明したが、第3液晶セル30及び第4液晶セル40の相互関係においても同様である。
 次に、第1液晶セル10及び第3液晶セル30に着目する。第1帯電極E11A及び第2帯電極E11Bの延出方向と、第1帯電極E13A及び第2帯電極E13Bの延出方向とは、互いに直交している。また、第3帯電極E21A及び第4帯電極E21Bの延出方向と、第3帯電極E23A及び第4帯電極E23Bの延出方向とは、互いに直交している。
 第1液晶セル10をX-Y平面において時計回りに90°回転させた際に、第1帯電極E11A及び第2帯電極E11Bの延出方向は、第1帯電極E13A及び第2帯電極E13Bの延出方向に一致し、また、第3帯電極E21A及び第4帯電極E21Bの延出方向は、第3帯電極E23A及び第4帯電極E23Bの延出方向に一致する。
 要するに、X-Y平面において、第1帯電極E11A及び第2帯電極E11B、及び、第1帯電極E13A及び第2帯電極E13Bは、90°回転対称である。同様に、第3帯電極E21A及び第4帯電極E21B、及び、第3帯電極E23A及び第4帯電極E23Bは、90°回転対称である。つまり、第1液晶セル10及び第3液晶セル30は90°回転対称であり、第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。このため、第1液晶セル10及び第3液晶セル30をそれぞれ別個に用意する場合と比較して、コストを削減することができる。
 加えて、第1液晶セル10と第2液晶セル20と第3液晶セル30とが互いに接着された際にも、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 ここでは、第1液晶セル10及び第3液晶セル30の相互関係について説明したが、第2液晶セル20及び第4液晶セル40の相互関係においても同様である。つまり、第2液晶セル20及び第4液晶セル40は90°回転対称であり、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。このため、第2液晶セル20及び第4液晶セル40をそれぞれ別個に用意する場合と比較して、コストを削減することができる。したがって、帯電極の延出方向が異なる2種類の液晶セルを用意することで、上記の液晶セル10乃至40を重ねた液晶デバイス1を構成することができる。
 加えて、第1液晶セル10と第2液晶セル20と第3液晶セル30と第4液晶セル40とが互いに接着された際にも、各液晶セルの第1透明基板同士で見た場合又は第2透明基板同士で見た場合に互いに完全に重畳する電極が存在しないため、モアレを抑制することができる。
 ここで、図5及び図6を参照しながら、第1液晶セル10における光学作用について説明する。なお、図5及び図6においては、第1透明基板S11の近傍の液晶分子LM1などの説明に必要な構成のみを図示している。また、図5及び図6においては、光源からの光は図4とは異なり第1透明基板S11側から入射している。
 図5は、液晶層LC1に電界が形成されていないオフ状態(OFF)の第1液晶セル10を模式的に示す図である。
 オフ状態の液晶層LC1においては、液晶分子LM1は、初期配向の状態を維持している。このようなオフ状態では、液晶層LC1は、ほぼ均一な屈折率分布を有している。このため、第1液晶セル10への入射光である偏光成分POL1は、ほとんど屈折(あるいは拡散)されることなく液晶層LC1を透過する。
 なお、図3に示す如く、液晶セルにおいて上下透明基板間で液晶分子の初期配向方向が90°で交差している。したがって、液晶層の液晶分子は、第1透明基板板側ではX方向に配向されているものの、第2透明基板側に向かうにつれて徐々にその向きをX方向からY方向に変化させ、第2基板側ではY方向に配向される。かかる液晶層の配向の変化に応じて偏光成分の向きが変化する。より具体的には、X方向に偏光軸を有する偏光成分は、液晶層を通過する過程でその偏光軸をY方向に変化させる。他方、Y方向に偏光軸を有する偏光成分は、液晶層を通過する過程でその偏光軸をY方向からX方向に変化させる。したがって、これら互いに直交する偏光成分で見た場合、液晶セルを通過する過程でその偏光軸が入れ替わる。以下ではかかる偏光軸の向きを変化させる作用を旋光と称する場合がある。
 図6は、液晶層LC1に電界が形成されたオン状態(ON)の第1液晶セル10を模式的に示す図である。
 オン状態では、第1帯電極E11Aと第2帯電極E11Bとの間に電位差が生じることで、液晶層LC1に電界が形成される。例えば、液晶層LC1が正の誘電率異方性を有している場合、液晶分子LM1は、その長軸が電界に沿うように隣接電極間で凸円弧状に配向する。但し、第1帯電極E11Aと第2帯電極E11Bとの間の電界が及ぶ範囲は、主として液晶層LC1の厚さの約1/2の範囲である。このため、図6に示すように、液晶層LC1のうち、第1透明基板S11に近接する範囲において、液晶分子LM1が基板に対してほぼ垂直に配向した領域、液晶分子LM1が基板に対して斜め方向に配向した領域、液晶分子LM1が基板に対してほぼ水平に配向した領域などが形成される。
 液晶分子LM1は、屈折率異方性Δnを有している。このため、オン状態の液晶層LC1は、液晶分子LM1の配向状態に応じた屈折率分布、あるいは、リタデーション分布を有する。ここでのリタデーションとは、液晶層LC1の厚さをdとしたとき、Δn・dで表されるものである。
 なお、本実施例においては、液晶層としてポジ型の液晶を採用しているが、配向方向等を考慮することでネガ型の液晶を採用することも可能である。
 このようなオン状態では、偏光成分POL1は、液晶層LC1を透過する際に、液晶層LC1の屈折率分布の影響を受けて拡散される。より具体的には、X方向の偏光軸を有する偏光成分が当該液晶層の屈折率分布の影響を受けてX方向に拡散し、Y方向に旋光する。他方、Y方向の偏光軸を有する偏光成分は当該屈折率分布の影響を受けず、拡散せずにX方向に旋光のみして液晶層を通過する。
 なお、図6では、第1帯電極E11Aと第2帯電極E11Bとの間の電位差によって電界を形成する場合について説明したが、第1液晶セル10で入射光を拡散する場合には、第3帯電極E21Aと第4帯電極E21Bとの間の電位差による電界も形成することが望ましい。これにより、第1透明基板S11の近傍の液晶分子のみならず、第2透明基板S21の近傍の液晶分子の配向状態も制御され、液晶層LC1に所定の屈折率分布が形成される。
 より具体的には、第2透明基板側の液晶層も屈折率分布を有することにより、液晶層を通過する過程でY方向に旋光した偏光成分が拡散する。すなわち、第1透明基板側で拡散された偏光成分が第2透明基板側でさらにY方向に拡散され、液晶セルから出射される。他方、液晶層を通過する過程でX方向に旋光した偏光成分は、屈折率分布の影響を受けることなく液晶セルから出射される。
 なお、かかる偏光成分の拡散や旋光は、第2液晶セルでも生じる。すなわち、光源から出射されるX方向の偏光軸を有する偏光成分は、第1液晶を通過することによって偏光軸をX方向からY方向に変化させ、さらに第2液晶を通過することによって偏光軸をY方向からX方向に変化させる。また、この過程で当該偏光成分と平行な液晶分子が屈折率分布を有している場合は、当該屈折率分布に従って当該偏光成分は拡散する。同様に、光源から出射されるY方向の偏光軸を有する偏光成分は、第1液晶を通過することによって偏光軸をY方向からX方向に変化させ、さらに第2液晶を通過することによって偏光軸をX方向からY方向に変化させる。また、この過程で当該偏光成分と平行な液晶分子が屈折率分布を有している場合は、当該屈折率分布に従って当該偏光成分は拡散する。第3液晶セル及び第4液晶セルにおいても同じ現象が生じるが、これらは第1液晶セル及び第2液晶セルを90度回転させたものであるので、拡散作用を及ぼす偏光成分が入れ替わる。
 すなわち、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40が積層された構成において、例えば、第1液晶セル10及び第4液晶セル40は、主としてp偏光である偏光成分POL1を散乱(拡散)するように構成され、第2液晶セル20及び第3液晶セル30は、主としてs偏光である偏光成分POL2を散乱(拡散)するように構成される。
 上述したように、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40の各々は、同一方向に延出した電極を含まないように構成されている。このため、各々の液晶セルの液晶層は、オン状態において、互いに異なる屈折率分布を形成する。これにより、各液晶セルを透過した光の干渉作用が軽減され、モアレを抑制することができる。
  ≪実施例1-1’≫ 
 図7は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は90°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は0°の方向である。
 第2液晶セル20において、配向処理方向AD12は0°の方向であり、配向処理方向AD22は90°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は91°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は1°の方向である。
 第3液晶セル30において、配向処理方向AD13は90°の方向であり、配向処理方向AD23は180°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。
 第4液晶セル40において、配向処理方向AD14は90°の方向であり、配向処理方向AD24は180°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は91°の方向である。
 第1液晶セル10をX-Y平面において反時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20をX-Y平面において反時計回りに90°回転させることで、第4液晶セル40として利用することができる。
  ≪実施例1-2≫ 
 図8は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は90°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は0°の方向である。
 第2液晶セル20において、配向処理方向AD12は0°の方向であり、配向処理方向AD22は90°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は89°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は-1°の方向である。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。
 第4液晶セル40において、配向処理方向AD14は-90°の方向であり、配向処理方向AD24は0°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は-1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は89°の方向である。
 第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。
  ≪実施例1-3≫ 
 図9は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は89°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は-1°の方向である。
 第2液晶セル20において、配向処理方向AD12は0°の方向であり、配向処理方向AD22は90°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は91°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は1°の方向である。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は-1°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は89°の方向である。
 第4液晶セル40において、配向処理方向AD14は-90°の方向であり、配向処理方向AD24は0°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は91°の方向である。
 第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。
  ≪実施例1-3’≫ 
 図10は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は89°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は-1°の方向である。
 第2液晶セル20においては、第1透明基板S12が第1液晶セル10と対向し、第2透明基板S22が第3液晶セル30と対向している。配向処理方向AD12は-90°の方向であり、配向処理方向AD22は180°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は1°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は91°の方向である。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は-1°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は89°の方向である。
 第4液晶セル40においては、第1透明基板S14が第3液晶セル30と対向している。配向処理方向AD14は180°の方向であり、配向処理方向AD24は90°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は91°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は1°の方向である。
 第1液晶セル10をX-Y平面において時計回りに90°回転させ、且つ、表裏を反転させることで、第2液晶セル20として利用することができる。また、第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。さらに、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。つまり、1種類の液晶セルを用意することで、上記の液晶セル10乃至40を重ねた液晶デバイス1を構成することができる。
 上記の実施例1-1~1-3’では、各液晶セルの一方の配向膜の配向処理方向は第1方向Xに平行(つまり、0°の方向または180°の方向)であり、他方の配向膜の配向処理方向は第2方向Yに平行(つまり、90°の方向または-90°の方向)である。第1液晶セル10及び第2液晶セル20については、第1帯電極の延出方向は第1方向Xと直交または90°以外の角度で交差し、第3帯電極の延出方向は第2方向Yと直交または90°以外の角度で交差している。なお、直交または90°以外の角度での交差とは、平面視における両者の交差角が0°より大きく、90°以下であることを意味するものであり、非平行と同義である。
 上記の実施例1-1、1-1’、1-2では、第1液晶セル10の第1帯電極E11Aの延出方向は第2方向Yに平行であり、第3帯電極E21Aの延出方向は第1方向Xに平行である。また、第2液晶セル20の第1帯電極E12Aの延出方向は第2方向Yと90°以外の角度で交差し、第3帯電極E22Aの延出方向は第1方向Xと90°以外の角度で交差している。
 また、第1液晶セル10の第1帯電極E11Aの延出方向はこの第1帯電極E11Aを覆う第1配向膜の配向処理方向AD11と直交し、第2液晶セル20の第1帯電極E12Aの延出方向はこの第1帯電極E12Aを覆う第1配向膜の配向処理方向AD12と90°以外の角度で交差している。
 上記の実施例1-3、1-3’では、第1液晶セル10の第1帯電極E11Aの延出方向、及び、第2液晶セル20の第1帯電極E12Aの延出方向は、いずれも第2方向Yと90°以外の角度で交差している。また、第1液晶セル10の第3帯電極E21Aの延出方向、及び、第3帯電極E22Aの延出方向は、いずれも第1方向Xと90°以外の角度で交差している。
 また、第1液晶セル10の第1帯電極E11Aの延出方向はこの第1帯電極E11Aを覆う第1配向膜の配向処理方向AD11と90°以外の角度で交差し、また、第2液晶セル20の第1帯電極E12Aの延出方向はこの第1帯電極E12Aを覆う第1配向膜の配向処理方向AD12と90°以外の角度で交差している。
  ≪実施例2-1≫ 
 図11は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は90°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は0°の方向である。
 第2液晶セル20において、配向処理方向AD12は1°の方向であり、配向処理方向AD22は91°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は91°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は1°の方向である。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。
 第4液晶セル40において、配向処理方向AD14は-89°の方向であり、配向処理方向AD24は1°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は91°の方向である。
 第1液晶セル10及び第3液晶セル30は90°回転対称であり、第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20及び第4液晶セル40は90°回転対称であり、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。
  ≪実施例2-2≫ 
 図12は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は0°の方向であり、配向処理方向AD21は90°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は90°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は0°の方向である。
 第2液晶セル20において、配向処理方向AD12は-1°の方向であり、配向処理方向AD22は89°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は89°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は-1°の方向である。
 第3液晶セル30において、配向処理方向AD13は-90°の方向であり、配向処理方向AD23は0°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は0°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は90°の方向である。
 第4液晶セル40において、配向処理方向AD14は-91°の方向であり、配向処理方向AD24は-1°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は-1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は89°の方向である。
 第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。
  ≪実施例2-3≫ 
 図13は、液晶デバイス1を構成する各帯電極の延出方向の他の例を示す図である。
 第1液晶セル10において、配向処理方向AD11は-1°の方向であり、配向処理方向AD21は89°の方向である。第1帯電極E11A及び第2帯電極E11Bの延出方向は89°の方向であり、第3帯電極E21A及び第4帯電極E21Bの延出方向は-1°の方向である。
 第2液晶セル20において、配向処理方向AD12は1°の方向であり、配向処理方向AD22は91°の方向であり、第1帯電極E12A及び第2帯電極E12Bの延出方向は91°の方向であり、第3帯電極E22A及び第4帯電極E22Bの延出方向は1°の方向である。
 第3液晶セル30において、配向処理方向AD13は-91°の方向であり、配向処理方向AD23は-1°の方向であり、第1帯電極E13A及び第2帯電極E13Bの延出方向は-1°の方向であり、第3帯電極E23A及び第4帯電極E23Bの延出方向は89°の方向である。
 第4液晶セル40において、配向処理方向AD14は-89°の方向であり、配向処理方向AD24は1°の方向であり、第1帯電極E14A及び第2帯電極E14Bの延出方向は1°の方向であり、第3帯電極E24A及び第4帯電極E24Bの延出方向は91°の方向である。
 第1液晶セル10をX-Y平面において時計回りに90°回転させることで、第3液晶セル30として利用することができる。また、第2液晶セル20をX-Y平面において時計回りに90°回転させることで、第4液晶セル40として利用することができる。
 上記の実施例2-1~2-3では、各液晶セルの第1帯電極の延出方向はこの第1帯電極を覆う第1配向膜の配向処理方向と直交し、また、第3帯電極の延出方向はこの第3帯電極を覆う第2配向膜の配向処理方向と直交している。
 上記の実施例2-1、2-2では、第1液晶セル10の第1帯電極E11Aの延出方向は第2方向Yに平行であり、第3帯電極E21Aの延出方向は第1方向Xに平行である。また、第2液晶セル20の第1帯電極E12Aの延出方向は第2方向Yと90°以外の角度で交差し、第3帯電極E22Aの延出方向は第1方向Xと90°以外の角度で交差している。
 また、第1液晶セル10における第1配向膜の配向処理方向AD11は第1方向Xに平行であり、第2配向膜の配向処理方向AD21は第2方向Yに平行である。また、第2液晶セル20における第1配向膜の配向処理方向AD12は第1方向Xと90°以外の角度で交差し、第2配向膜の配向処理方向AD22は第2方向Yと90°以外の角度で交差している。
 上記の実施例2-3では、第1液晶セル10の第1帯電極E11Aの延出方向、及び、第2液晶セル20の第1帯電極E12Aの延出方向は、いずれも第2方向Yと90°以外の角度で交差している。また、第1液晶セル10の第3帯電極E21Aの延出方向、及び、第3帯電極E22Aの延出方向は、いずれも第1方向Xと90°以外の角度で交差している。
 また、第1液晶セル10における第1配向膜の配向処理方向AD11、及び、第2液晶セル20における第1配向膜の配向処理方向AD12は、第1方向Xと90°以外の角度で交差している。第1液晶セル10における第2配向膜の配向処理方向AD21、及び、第2液晶セル20における第2配向膜の配向処理方向AD22は、第2方向Yと90°以外の角度で交差している。
 以上の各実施例で説明した液晶デバイス1は、4つの液晶セルを備え、そのうちの2つの液晶セルによってp偏光を散乱し、他の2つの液晶セルによってs偏光を散乱するように構成されている。但し、液晶デバイス1は、p偏光を散乱する1つの液晶セルと、s偏光を散乱する1つの液晶セルと、で構成されてもよい。この場合、例えば、上記の各実施例において、第1液晶セル10及び第2液晶セル20の組合せ、第3液晶セル30及び第4液晶セル40の組合せ、第1液晶セル10及び第4液晶セル40の組合せ、第2液晶セル20及び第3液晶セル30の組合せが適用可能である。
 上記した本実施形態によれば、モアレを抑制することが可能な液晶デバイスを提供することができる。
 以上、本発明の実施形態として説明した液晶デバイスを基にして、当業者が適宜設計変更して実施し得る全ての液晶デバイスも、本発明の要旨を包含する限り、本発明の範囲に属する。
 本発明の思想の範疇において、当業者であれば、各種の変形例に想到し得るものであり、それら変形例についても本発明の範囲に属するものと解される。例えば、上述の実施形態に対して、当業者が適宜、構成要素の追加、削除、もしくは設計変更を行ったもの、または、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。
 また、上述の実施形態において述べた態様によりもたらされる他の作用効果について、本明細書の記載から明らかなもの、または当業者において適宜想到し得るものについては、当然に本発明によりもたらされるものと解される。
 1…液晶デバイス LS…光源
 10…第1液晶セル S11…第1透明基板 E11A…第1帯電極、E11B…第2帯電極 S21…第2透明基板 E21A…第3帯電極、E21B…第4帯電極 LC1…第1液晶層
 20…第2液晶セル S12…第1透明基板 E12A…第1帯電極、E12B…第2帯電極 S22…第2透明基板 E22A…第3帯電極、E22B…第4帯電極 LC2…第2液晶層
 30…第3液晶セル S13…第1透明基板 E13A…第1帯電極、E13B…第2帯電極 S23…第2透明基板 E23A…第3帯電極、E23B…第4帯電極 LC3…第3液晶層
 40…第4液晶セル S14…第1透明基板 E14A…第1帯電極、E14B…第2帯電極 S24…第2透明基板 E24A…第3帯電極、E24B…第4帯電極 LC4…第4液晶層

Claims (11)

  1.  第1液晶セルと、
     前記第1液晶セルに重なった第2液晶セルと、を備え、
     前記第1液晶セル及び前記第2液晶セルの各々は、
     第1透明基板と、
     第1配向膜と、
     前記第1透明基板と前記第1配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加されるように構成された第1帯電極及び第2帯電極と、
     第2透明基板と、
     第2配向膜と、
     前記第2透明基板と前記第2配向膜との間に位置し、間隔を置いて配置され、互いに異なる電圧が印加されるように構成された第3帯電極及び第4帯電極と、
     前記第1配向膜と前記第2配向膜との間に位置する液晶層と、を備え、
     前記第1液晶セルにおける前記第1帯電極及び前記第2帯電極の延出方向は、前記第2液晶セルにおける前記第1帯電極及び前記第2帯電極の延出方向とは異なり、
     前記第1液晶セル及び前記第2液晶セルの各々において、前記第1帯電極及び前記第2帯電極の延出方向は、平面視で、前記第3帯電極及び前記第4帯電極の延出方向と直交している、液晶デバイス。
  2.  前記第1液晶セル及び前記第2液晶セルの各々において、前記第1透明基板の一辺を基準とし、前記一辺に直交する方向を第1方向とし、前記一辺に平行な方向を第2方向としたとき、
     前記第1配向膜の配向処理方向は、前記第1方向に平行であり、
     前記第2配向膜の配向処理方向は、前記第2方向に平行であり、
     前記第1帯電極の延出方向は、前記第1方向と交差し、
     前記第3帯電極の延出方向は、前記第2方向と交差している、請求項1に記載の液晶デバイス。
  3.  前記第1液晶セルにおいて、前記第1帯電極の延出方向は、前記第1配向膜の配向処理方向と直交し、
     前記第2液晶セルにおいて、前記第1帯電極の延出方向は、前記第1配向膜の配向処理方向と90°以外の角度で交差している、請求項2に記載の液晶デバイス。
  4.  前記第1液晶セル及び前記第2液晶セルの各々において、前記第1帯電極の延出方向は、前記第1配向膜の配向処理方向と90°以外の角度で交差している、請求項2に記載の液晶デバイス。
  5.  前記第1液晶セル及び前記第2液晶セルの各々において、前記第1透明基板の一辺を基準とし、前記一辺に直交する方向を第1方向とし、前記一辺に平行な方向を第2方向としたとき、
     前記第1帯電極の延出方向は、前記第1配向膜の配向処理方向と直交し、
     前記第3帯電極の延出方向は、前記第2配向膜の配向処理方向と直交している、請求項1に記載の液晶デバイス。
  6.  前記第1液晶セルにおいて、前記第1配向膜の配向処理方向は前記第1方向に平行であり、前記第2配向膜の配向処理方向は前記第2方向に平行であり、
     前記第2液晶セルにおいて、前記第1配向膜の配向処理方向は前記第1方向と90°以外の角度で交差し、前記第2配向膜の配向処理方向は前記第2方向と90°以外の角度で交差している、請求項5に記載の液晶デバイス。
  7.  前記第1液晶セル及び前記第2液晶セルの各々において、前記第1配向膜の配向処理方向は前記第1方向と90°以外の角度で交差し、前記第2配向膜の配向処理方向は前記第2方向と90°以外の角度で交差している、請求項5に記載の液晶デバイス。
  8.  前記第1液晶セルの前記第1帯電極の延出方向は、前記第2方向に平行である、請求項2または5に記載の液晶デバイス。
  9.  前記第1液晶セルの前記第1帯電極の延出方向、及び、前記第2液晶セルの前記第1帯電極の延出方向は、いずれも前記第2方向とは90°以外の角度で交差している、請求項2または5に記載の液晶デバイス。
  10.  さらに、前記第2液晶セルに重なった第3液晶セルと、
     前記第3液晶セルに重なった第4液晶セルと、を備え、
     前記第3液晶セル及び前記第4液晶セルの各々は、
     前記第1帯電極、前記第2帯電極、前記第3帯電極、及び、前記第4帯電極を備え、
     前記第1液晶セルの前記第1帯電極及び前記第2帯電極、及び、前記第3液晶セルの前記第1帯電極及び前記第2帯電極は、平面視において、90°回転対称であり、
     前記第2液晶セルの前記第1帯電極及び前記第2帯電極、及び、前記第4液晶セルの前記第1帯電極及び前記第2帯電極は、平面視において、90°回転対称である、請求項2または5に記載の液晶デバイス。
  11.  前記第1液晶セル、前記第2液晶セル、前記第3液晶セル、及び、前記第4液晶セルの各々は、それぞれ正方形状に形成され、同等のサイズを有している、請求項10に記載の液晶デバイス。
PCT/JP2022/005860 2021-03-12 2022-02-15 液晶デバイス WO2022190785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023505244A JPWO2022190785A1 (ja) 2021-03-12 2022-02-15
CN202280019406.7A CN116997848A (zh) 2021-03-12 2022-02-15 液晶设备
EP22766750.8A EP4307035A1 (en) 2021-03-12 2022-02-15 Liquid crystal device
US18/367,116 US12078891B2 (en) 2021-03-12 2023-09-12 Liquid crystal device
US18/750,455 US20240337878A1 (en) 2021-03-12 2024-06-21 Liquid crystal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040606 2021-03-12
JP2021040606 2021-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/367,116 Continuation US12078891B2 (en) 2021-03-12 2023-09-12 Liquid crystal device

Publications (1)

Publication Number Publication Date
WO2022190785A1 true WO2022190785A1 (ja) 2022-09-15

Family

ID=83227658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005860 WO2022190785A1 (ja) 2021-03-12 2022-02-15 液晶デバイス

Country Status (5)

Country Link
US (2) US12078891B2 (ja)
EP (1) EP4307035A1 (ja)
JP (1) JPWO2022190785A1 (ja)
CN (1) CN116997848A (ja)
WO (1) WO2022190785A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7505107B2 (ja) * 2021-03-12 2024-06-24 株式会社ジャパンディスプレイ 液晶デバイス
CN117836706A (zh) * 2021-08-23 2024-04-05 株式会社日本显示器 液晶光控制元件以及照明装置
WO2023074106A1 (ja) * 2021-11-01 2023-05-04 株式会社ジャパンディスプレイ 光学素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525388A (ja) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーム成形デバイス
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
US20160252782A1 (en) * 2014-03-12 2016-09-01 Boe Technology Group Co., Ltd. Liquid crystal lens and display device
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
US20200050076A1 (en) * 2017-04-20 2020-02-13 Lensvector Inc. Lc beam broadening device with improved beam symmetry

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126607B2 (en) 2015-09-12 2018-11-13 Lensvector Inc. Liquid crystal beam control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010525388A (ja) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ビーム成形デバイス
JP2010230887A (ja) 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
US20160252782A1 (en) * 2014-03-12 2016-09-01 Boe Technology Group Co., Ltd. Liquid crystal lens and display device
US20190025657A1 (en) * 2015-09-12 2019-01-24 Lensvector Inc. Liquid crystal beam control device
US20200050076A1 (en) * 2017-04-20 2020-02-13 Lensvector Inc. Lc beam broadening device with improved beam symmetry

Also Published As

Publication number Publication date
US20240337878A1 (en) 2024-10-10
US20230418108A1 (en) 2023-12-28
EP4307035A1 (en) 2024-01-17
JPWO2022190785A1 (ja) 2022-09-15
CN116997848A (zh) 2023-11-03
US12078891B2 (en) 2024-09-03

Similar Documents

Publication Publication Date Title
WO2022190785A1 (ja) 液晶デバイス
WO2022190786A1 (ja) 液晶デバイス
WO2022190926A1 (ja) 液晶デバイス
US11586078B2 (en) Liquid crystal device
US20230375883A1 (en) Liquid crystal light control device
JP7558783B2 (ja) 液晶デバイス
US11934082B2 (en) Light control device and illumination device
JP2024107464A (ja) 光学素子
JP2024152906A (ja) 液晶光制御装置
US20230375159A1 (en) Optical element and lighting device
US11754904B2 (en) Light control device and illumination device
WO2023026833A1 (ja) 液晶光制御素子及び照明装置
WO2023074106A1 (ja) 光学素子
WO2024034293A1 (ja) 光学装置
US12044934B2 (en) Optical element
US20240310679A1 (en) Optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505244

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280019406.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022766750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766750

Country of ref document: EP

Effective date: 20231012