WO2022190702A1 - Level shift circuit and electronic device - Google Patents

Level shift circuit and electronic device Download PDF

Info

Publication number
WO2022190702A1
WO2022190702A1 PCT/JP2022/003479 JP2022003479W WO2022190702A1 WO 2022190702 A1 WO2022190702 A1 WO 2022190702A1 JP 2022003479 W JP2022003479 W JP 2022003479W WO 2022190702 A1 WO2022190702 A1 WO 2022190702A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
voltage
shift circuit
voltage level
input signal
Prior art date
Application number
PCT/JP2022/003479
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 宮崎
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023505201A priority Critical patent/JPWO2022190702A1/ja
Publication of WO2022190702A1 publication Critical patent/WO2022190702A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only

Definitions

  • Embodiments according to the present disclosure relate to level shift circuits and electronic devices.
  • the level shift circuit outputs a signal obtained by converting the voltage level of the input signal.
  • the use of a cross-couple configuration is known (see, for example, Patent Document 1).
  • the cross-couple configuration has a problem of increased power consumption because a through current flows at the timing when the voltage level of the input signal changes.
  • the present disclosure provides a level shift circuit and an electronic device capable of reducing power consumption.
  • two transistors of different conductivity types cascoded between two reference voltages having different voltage levels; a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively; and an impedance section for biasing the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
  • the impedance section may be biased based on the voltage level of the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor.
  • the impedance section is provided between the control terminal to which the input signal is supplied via the capacitor and the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor. may be connected.
  • the impedance section may have an impedance equal to or higher than a predetermined value.
  • the two transistors are a first transistor on the first reference voltage side; a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
  • the signal input section supplies the input signal to a first control terminal of the first transistor through the capacitor and supplies the input signal to a second control terminal of the second transistor without the capacitor. death,
  • the impedance section may bias the voltage level of the first control terminal to a predetermined voltage level.
  • Either the high level or the low level of the input signal may be the same as the voltage level of either the first reference voltage or the second reference voltage.
  • the two transistors are a first transistor on the first reference voltage side; a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
  • the signal input section supplies the input signal to a first control terminal of the first transistor via a first capacitor, and the second control terminal of the second transistor via a second capacitor different from the first capacitor. supplying the input signal to a control terminal;
  • the impedance section is a first impedance unit that biases the voltage level of the first control terminal to a predetermined voltage level; and a second impedance section for biasing the voltage level of the second control terminal to a predetermined voltage level.
  • the high level and low level of the input signal may be different from the voltage levels of the first reference voltage and the second reference voltage.
  • the first reference voltage and the second reference voltage may be a positive voltage and a negative voltage, respectively, or may be a negative voltage and a positive voltage, respectively.
  • a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal; a high impedance detection unit that detects that the signal output unit is high impedance; A logic fixer that fixes the voltage level of the output signal to one of the two reference voltages when the signal output section has a high impedance.
  • a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal; a level detection unit that detects the voltage level of at least one of the input signal and the two control terminals; When the voltage level of the input signal and at least one of the two control terminals continues at a high level or a low level for a predetermined period or longer, the voltage level of the output signal is set to either one of the two reference voltages. and a logic fixer that fixes the level.
  • the impedance section may be a transistor whose control terminal is connected to one of the two reference voltages.
  • the impedance unit is a diode, the anode of the diode is electrically connected to the lower voltage side of the two reference voltages; A cathode of the diode may be electrically connected to a higher voltage side of the two reference voltages.
  • the impedance unit is a resistive element
  • the resistance element may have a resistance value corresponding to the operating frequency of the level shift circuit and the capacitance of the capacitor.
  • the resistance element may have a resistance value such that a cutoff frequency of a high-pass filter of the resistance element and the capacitor is lower than an operating frequency of the level shift circuit.
  • It may further include a logic inverting section that supplies the input signal with its high level and low level inverted to each of the two control terminals.
  • the voltage level of the input signal may alternately become high level or low level according to time.
  • a DAC Digital to Analog Converter
  • the level shift circuit is two transistors of different conductivity types cascoded between two reference voltages having different voltage levels; a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively; and an impedance section that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
  • FIG. 2 is a circuit diagram showing an example of the configuration of a first level shift circuit in the first embodiment
  • FIG. 4 is a timing chart showing an example of the operation of the first level shift circuit in the first embodiment
  • 4 is a circuit diagram showing an example of the configuration of a second level shift circuit in the first embodiment
  • FIG. 4 is a timing chart showing an example of the operation of the second level shift circuit in the first embodiment
  • FIG. 4 is a circuit diagram showing an example of a configuration of a first level shift circuit in a comparative example
  • 7 is a timing chart showing an example of the operation of the first level shift circuit in the comparative example
  • It is a circuit diagram showing an example of the configuration of a first level shift circuit in the second embodiment.
  • It is a circuit diagram showing an example of the configuration of a second level shift circuit in the second embodiment.
  • It is a circuit diagram showing an example of the configuration of a first level shift circuit in the third embodiment.
  • FIG. 11 is a circuit diagram showing an example of the configuration of a level shift circuit according to a fourth embodiment
  • FIG. FIG. 11 is a circuit diagram showing an example of the configuration of a level shift circuit according to a fifth embodiment;
  • FIG. 14 is a circuit diagram showing an example of a configuration of a first level shift circuit in a sixth embodiment;
  • FIG. FIG. 14 is a circuit diagram showing an example of a configuration of a first level shift circuit in a seventh embodiment;
  • level shift circuit and an electronic device will be described below with reference to the drawings.
  • the main components of the level shift circuit and the electronic device will be mainly described below, the level shift circuit and the electronic device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
  • FIG. 1 is a block diagram showing an example of the configuration of an electronic device 1 according to the first embodiment.
  • the electronic device 1 is, for example, a multi-bit audio DAC (Digital to Analog Converter).
  • the electronic device 1 includes a signal processing section 10 , a level shift circuit 20 and a DAC 30 .
  • An amplifier 40 and a speaker 50 are also connected to the electronic device 1 .
  • the signal processing unit 10 digitally processes the input audio data.
  • the signal processing unit 10 converts a voice signal (audio signal) into a multi-bit (for example, 192-bit) digital signal.
  • the level shift circuit 20 converts the voltage level range of the input digital signal from the digital power domain to the analog power domain.
  • a power domain is a plurality of regions with different voltage level ranges that are managed separately.
  • Level shift circuit 20 includes a first level shift circuit 21 and a second level shift circuit 22 .
  • the first level shift circuit 21 converts the voltage level of the digital signal on the high voltage side from the reference voltage DVDD to the reference voltage VDDH.
  • the voltage level of reference voltage VDDH is a positive voltage and is higher than the voltage level of reference voltage DVDD. Details of the first level shift circuit 21 will be described later with reference to FIGS. 2 and 3. FIG.
  • the second level shift circuit 22 converts the voltage level of the digital signal on the low voltage side from the ground (reference voltage) GND to the reference voltage VDDM.
  • the voltage level of reference voltage VDDM is a negative voltage and lower than the voltage level of ground GND.
  • the second level shift circuit 22 converts the voltage level in a range different from that of the first level shift circuit 21 , but converts the voltage level in substantially the same manner as the first level shift circuit 21 . Details of the second level shift circuit 22 will be described later with reference to FIGS. 4 and 5.
  • the DAC 30 converts the level-shifted digital signal into an analog signal.
  • the amplifier 40 amplifies the analog signal to drive the speaker 50 .
  • the speaker 50 receives the amplified analog signal and reproduces the sound.
  • FIG. 2 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the first embodiment.
  • the first level shift circuit 21 converts an input signal Din having a voltage level from the reference voltage DVDD to the ground GND into an output signal Dout having a voltage level from the reference voltage VDDH to the ground GND.
  • the first level shift circuit 21 level-shifts the high voltage level of the input signal Din from the reference voltage DVDD to the reference voltage VDDH.
  • the low voltage levels of input signal Din and output signal Dout are common at ground GND.
  • the first level shift circuit 21 includes transistors MN1 and MP1, a capacitor C, a signal input section Ein, a signal output section Eout, a logic inverting element INV, and an impedance section 201.
  • the two transistors MN1 and MP1 are cascode-connected between the reference voltage VDDH and the ground GND. Also, the two transistors MN1 and MP1 have different conductivity types.
  • the transistor MN1 is arranged on the ground GND side.
  • the transistor MN1 is, for example, an N-type MOS (Metal Oxide Semiconductor) transistor.
  • Transistor MP1 is arranged on the reference voltage VDDH side.
  • Transistor MP1 is, for example, a P-type MOS transistor.
  • a capacitor C is connected between the gate of the transistor MN1 and the gate of the transistor MP1.
  • An input signal Din having a high or low voltage level is input to the signal input section Ein.
  • the signal input section Ein supplies an input signal Din through a capacitor C to at least one of the two gates of the two transistors MN1 and MP1. If the input signal Din is a PWM (Pulse Width Modulation) modulated audio signal, the voltage level of the input signal Din alternately becomes high or low at each modulation time.
  • PWM Pulse Width Modulation
  • the signal output unit Eout is connected between two cascode-connected transistors MN1 and MP1, and outputs an output signal Dout.
  • the logic inverting element INV inverts the logic of the inputted input signal Din and outputs it.
  • the logic inverting element INV supplies an input signal Din whose voltage level is inverted between high and low to each of the two gates of the transistors MN1 and MP1.
  • the logic inverting element INV is connected between the signal input Ein, the capacitor C and the gate of the transistor MN1.
  • a logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 with a capacitor C interposed therebetween.
  • the logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MN1 without the capacitor C interposed therebetween.
  • the impedance section 201 is an impedance element. More specifically, the impedance section 201 is a high impedance element having an impedance equal to or higher than a predetermined value.
  • the impedance section 201 is connected between the gate of the transistor MP1, the capacitor C, and the reference voltage VDDH. Impedance unit 201 biases the voltage level of the gate of transistor MP1 based on reference voltage VDDH. More specifically, impedance section 201 biases (clamps) the voltage level of the gate of transistor MP1 to a predetermined voltage level.
  • the impedance unit 201 is, for example, an off transistor (diode-connected transistor) whose gate and source are connected.
  • the impedance unit 201 is a transistor MP2 whose gate is connected to the reference voltage VDDH. Transistor MP2 is, for example, a P-type MOS transistor.
  • FIG. 3 is a timing chart showing an example of the operation of the first level shift circuit 21 in the first embodiment.
  • the voltage level of input signal Din is low and ground GND.
  • the voltage level of the node NA (A in FIG. 3) is the high level obtained by inverting the voltage level of the input signal Din by the logic inverting element INV, and is the reference voltage DVDD.
  • the voltage level of node NB (B in FIG. 3) is high, as is the voltage level of node NA.
  • the voltage level of the node NB is the voltage level Vp2 higher than the reference voltage VDDH by the threshold voltage Vth of the transistor MP2. This is because the voltage level of node NB is clamped by transistor MP2, as will be described later.
  • the voltage level of the node NA is higher than the voltage level Vn1 which is higher than the ground GND by the threshold voltage Vth of the transistor MN1. Therefore, transistor MN1 is on. Also, the voltage level of the node NB is higher than the voltage level Vp1 which is lower than the reference voltage VDDH by the threshold voltage Vth of the transistor MP1. Therefore, transistor MP1 is off. This causes the voltage level of the output signal Dout to be low and ground GND.
  • the voltage level of the input signal Din changes from low to high and reaches the reference voltage DVDD.
  • the voltage level of the node NA becomes low by inverting the voltage level of the input signal Din by the logic inverting element INV, and becomes the ground GND. Due to capacitive coupling, the voltage level of node NB lowers as the voltage level of node NA lowers. Therefore, the voltage level of node NB becomes low.
  • the transistor MN1 When the voltage level of the node NA becomes lower than the voltage level Vn1, the transistor MN1 is turned off. When the voltage level of node NB becomes lower than voltage level Vp1, transistor MP1 is turned on. As a result, the voltage level of the output signal Dout changes from low to high to reach the reference voltage VDDH.
  • the impedance unit 201 biases the voltage level of the gate based on the voltage level of the reference voltage VDDH of the transistor MP1 having the gate to which the input signal Din is supplied via the capacitor C. That is, when the voltage level of input signal Din is low, the high voltage level of node NB (gate voltage of transistor MP1) is constrained (clamped) to voltage level Vp2 by transistor MP2. This makes the voltage level of the node NB lower than the voltage level Vp1 by going low. That is, the transistor MP1 can be turned on. As a result, the voltage level of the output signal Dout can be made high at time t2.
  • the voltage level of the input signal Din changes from high to low to ground GND.
  • the voltage level of the node NA becomes high by inverting the voltage level of the input signal Din by the logic inverting element INV, and becomes the reference voltage DVDD. Due to capacitive coupling, the voltage level of node NB rises as the voltage level of node NA rises. Therefore, the voltage level at node NB goes high and is clamped to voltage level Vp2 as described above. Therefore, as at time t1, the voltage level of the output signal Dout goes low and goes to ground GND.
  • FIG. 4 is a circuit diagram showing an example of the configuration of the second level shift circuit 22 in the first embodiment.
  • the second level shift circuit 22 converts the input signal Din with a voltage level from the reference voltage VDDH to the ground GND into an output signal Dout with a voltage level from the reference voltage VDDH to the reference voltage VDDM.
  • the first level shift circuit 21 level-shifts the low voltage level of the input signal Din from the ground GND to the reference voltage VDDM.
  • the high voltage level of the input signal Din and the output signal Dout is common at the reference voltage VDDH.
  • the logic inverting element INV is connected between the signal input section Ein, the capacitor C and the gate of the transistor MP1.
  • a logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MN1 with a capacitor C interposed therebetween.
  • the logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 without the capacitor C interposed therebetween.
  • the impedance section 201 is connected between the gate of the transistor MN1, the capacitor C, and the reference voltage VDDM. Impedance unit 201 biases the voltage level of the gate of transistor MN1 based on reference voltage VDDM. More specifically, impedance section 201 biases (clamps) the voltage level of the gate of transistor MN1 to a predetermined voltage level.
  • the impedance unit 201 is, for example, an off transistor having a gate and a source connected to each other.
  • Impedance unit 201 is transistor MN2 whose gate is connected to reference voltage VDDM.
  • the transistor MN2 is, for example, an N-type MOS transistor.
  • FIG. 5 is a timing chart showing an example of the operation of the second level shift circuit 22 in the first embodiment.
  • the operation of the second level shift circuit 22 is substantially the same as the operation of the first level shift circuit 21 described with reference to FIG.
  • the low voltage level of node NB (B in FIG. 5) is clamped to a voltage level lower than reference voltage VDDM by the threshold voltage Vth of transistor MN2. As a result, the voltage level of the node NB becomes high, so that the transistor MN1 can be turned on.
  • the transistor MP1 or the transistor MN1 is driven via the capacitor C.
  • the impedance unit 201 biases the gate voltage of the transistor MP1 or the transistor MP2 driven through the capacitor C. FIG. As a result, the voltage level can be converted almost without passing through current. As a result, power consumption can be suppressed.
  • FIG. 6 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the comparative example.
  • the first level shift circuit 21 in the comparative example has a cross-couple configuration.
  • the first level shift circuit 21 includes two cross-coupled P-type MOS transistors (transistors MPa, MPb) and two N-type MOS transistors (transistors MNa, MNb).
  • An input signal Din that has passed through two logic inverting elements INV1 and INV2 is input to the gate of the transistor MNa.
  • An input signal Din that has passed through one logic inverting element INV1 is input to the gate of the transistor MNb.
  • FIG. 7 is a timing chart showing an example of the operation of the first level shift circuit 21 in the comparative example.
  • the voltage level of input signal Din is low.
  • the voltage level at the gate of transistor MNa (FIG. 7A) is low and the voltage level at the gate of transistor MNb (FIG. 7B) is high. Therefore, the transistors MNb and MPa are on, and the transistors MNa and MPb are off.
  • the voltage level of output signal Dout is low.
  • the voltage level of input signal Din changes from low to high.
  • the voltage level at the gate of transistor MNa goes from low to high, and the voltage level at the gate of transistor MNb (B in FIG. 7) goes from high to low.
  • a current Ia flows through the transistors MPa and MNa that are on.
  • the transistor MPa is turned off and the transistor MPb is turned on. This causes the voltage level of the output signal Dout to change from low to high.
  • a through current flows at the timing when the voltage level of the input signal Din changes to high or low (logic). This through current increases the power consumption of the level shift circuit.
  • the gate voltage of transistor MP1 or transistor MN1 is driven by capacitive coupling without using the cross-couple configuration.
  • the number of transistors is three as shown in FIG. 2 or 4, and the number of transistors can be reduced compared to the cross-couple configuration shown in FIG.
  • Patent Document 1 As a method for reducing the through current, for example, as in Patent Document 1, a method of using a current source in the cross-couple part and limiting the through current by the current source has been proposed. However, with this method, it is impossible to completely eliminate the feed-through current component, and the operating frequency is slowed down by limiting the current.
  • the through current can be made almost zero by the capacitor C. Moreover, since current limitation is not performed, the level shift circuit can be operated at higher speed.
  • the effect of reducing power consumption by suppressing through current increases as the number of level shift signals (the number of level shift circuits) increases.
  • the number of level shift circuits the number of level shift circuits
  • 192 level shift circuits corresponding to 192 bits are used.
  • transistors MN1, MP1, MN2, and MP2 are MOS transistors, they are not limited to this, and may be bipolar transistors.
  • the impedance section 201 is not limited to a transistor, and may be another impedance element.
  • FIG. 8 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the second embodiment.
  • 2nd Embodiment differs in the structure of the impedance part 201 compared with 1st Embodiment.
  • the impedance section 201 is, for example, a reverse diode.
  • Impedance section 201 is diode D1.
  • the anode of the diode D1 is electrically connected to the low voltage side (ground GND side), and the cathode of the diode D1 is electrically connected to the high voltage side (reference voltage VDDH side).
  • Diode D1 functions in much the same way as transistor MP2 of FIG. 2 described in the first embodiment. That is, diode D1 clamps the voltage level of the gate of transistor MP1 based on reference voltage VDDH.
  • FIG. 9 is a circuit diagram showing an example of the configuration of the second level shift circuit 22 in the second embodiment.
  • the impedance section 201 is a diode D2.
  • the anode of diode D2 is arranged on the low voltage side and electrically connected to reference voltage VDDM.
  • the cathode of the diode D2 is arranged on the high voltage side and electrically connected to the reference voltage VDDH.
  • Diode D2 functions in much the same way as transistor MN2 of FIG. 4 described in the first embodiment. That is, diode D2 clamps the voltage level of the gate of transistor MN1 based on reference voltage VDDM.
  • FIG. 10 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the third embodiment. 3rd Embodiment differs in the structure of the impedance part 201 compared with 1st Embodiment.
  • the impedance section 201 is, for example, a resistance element R.
  • Resistive element R functions together with capacitor C as a high-pass filter.
  • the lower limit of the cutoff frequency of the high-pass filter is sufficiently lower than the operating frequency.
  • the lower limit of the cut-off frequency of the high-pass filter is preferably, for example, 1/10 of the operating frequency. That is, the resistance value of the resistance element R is set according to the operating frequency of the level shift circuit and the capacitance of the capacitor C, for example, so as to obtain a desired cutoff frequency of the high-pass filter.
  • the resistance element R preferably has a resistance value such that the cutoff frequency of the high-pass filter of the resistance element R and the capacitor C is lower than the operating frequency of the level shift circuit.
  • a change in voltage is usually converted into a current by a capacitor, and this current is converted into a voltage by flowing through a resistive element.
  • the voltage level at the gate of transistor MP1 is biased by the voltage level of reference voltage VDDH and the voltage of resistive element R.
  • the resistance element R which is the impedance section 201, can bias the voltage level of the gate of the transistor MP1.
  • the resistance value of the resistance element R is set, for example, according to the operating frequency of the level shift circuit and the capacitance of the capacitor C so that a desired voltage of the resistance element R can be obtained.
  • the impedance section 201 of the second level shift circuit 22 may also be the resistance element R.
  • FIG. 11 is a circuit diagram showing an example of the configuration of the level shift circuit 20 according to the fourth embodiment. Compared to the first embodiment, the fourth embodiment simultaneously converts the voltage level of the first level shift circuit 21 and the voltage level of the second level shift circuit 22 .
  • the level shift circuit 20 converts the input signal Din at the voltage level from the reference voltage DVDD to the ground GND into the output signal Dout at the voltage level from the reference voltage VDDH to the reference voltage VDDM.
  • the first level shift circuit 21 level-shifts the high voltage level of the input signal Din from the reference voltage DVDD to the reference voltage VDDH, and shifts the low voltage level of the input signal Din from the ground GND to the reference voltage VDDM.
  • the high or low voltage level of the input signal Din is different from the voltage levels of the reference voltages VDDH and VDDM.
  • one of the high voltage level and the low voltage level of the input signal Din is common to one of the high voltage side and the low voltage side of the voltage level of the output signal Dout.
  • the two voltage levels of the output signal Dout are different from the two voltage levels of the input signal Din.
  • the level shift circuit 20 includes capacitors C1 and C2 and impedance units 2011 and 2012.
  • Capacitors C1 and C2 are connected in series between the gate of transistor MP1 and the gate of transistor MN1. Capacitors C1 and C2 are arranged corresponding to the two transistors MP1 and MN1, respectively.
  • the capacitor C1 is connected between the signal input section Ein, the transistor MP1 and the impedance section 2011. Therefore, the logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 via the capacitor C1.
  • Capacitor C1 corresponds to capacitor C described with reference to FIG. 2 of the first embodiment.
  • Capacitor C2 corresponds to capacitor C described with reference to FIG. 4 of the first embodiment.
  • Impedance units 2011 and 2012 bias the voltage levels of the respective gates of the two transistors MP1 and MN1.
  • the impedance section 2011 is connected between the capacitor C1 and the transistor MP1 and the reference voltage VDDH. Impedance section 2011 biases the gate of transistor MP1 to a predetermined voltage level.
  • the impedance section 2011 corresponds to the impedance section 201 described with reference to FIG. 2 of the first embodiment.
  • the impedance section 2012 is connected between the capacitor C2 and the transistor MN1 and the reference voltage VDDM. Impedance section 2012 biases the gate of transistor MN1 to a predetermined voltage level.
  • the impedance section 2012 corresponds to the impedance section 201 described with reference to FIG. 4 of the first embodiment.
  • the capacitors C1 and C2 and the impedance units 2011 and 2012 may be provided on both the transistor MP1 side and the transistor MN1 side.
  • the voltage levels on both the high voltage side and the low voltage side can be level-shifted.
  • audio signals often change in voltage level between a positive voltage and a negative voltage with the ground GND interposed therebetween. Therefore, in the audio signal level shift circuit, level shift is performed in a range between a positive voltage (reference voltage VDDH) and a negative voltage (reference voltage VDDM).
  • FIG. 12 is a circuit diagram showing an example of the configuration of the level shift circuit 20 according to the fifth embodiment.
  • the fifth embodiment differs from the fourth embodiment in the configurations of impedance units 2011 and 2012 .
  • the impedance units 2011 and 2012 are diodes D1 and D2, respectively. Therefore, the fifth embodiment is a combination of the second and fourth embodiments.
  • FIG. 13 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the sixth embodiment.
  • the first level shift circuit 21 further includes a HiZ (high impedance) detection circuit 202 and a logic fixing circuit 203 .
  • a HiZ detection circuit 202 as a high impedance detection section detects that the signal output section Eout is high impedance.
  • a logic fixing circuit 203 as a logic fixing section fixes the logic of the signal output section Eout. That is, the logic fixing circuit 203 fixes the voltage level of the output signal Dout to one of the two reference voltages when the signal output section Eout is in high impedance.
  • the voltage level of the input signal Din is fixed (left) high, the voltage level of the node NB is fixed low. In this case, a leakage current may flow from the reference voltage VDDH through the transistor MP2 to the node NB, and the voltage level of the node NB may rise.
  • transistor MP1 when the voltage level of node NB exceeds voltage level Vp1, transistor MP1 is turned off. Therefore, both the transistors MP1 and MN1 are turned off, and the signal output section Eout becomes high impedance (floating state). When the signal output section Eout becomes high impedance, a through current may flow in the output destination circuit of the first level shift circuit 21 .
  • the HiZ detection circuit 202 detects that the signal output section Eout is in high impedance, and the logic fixing circuit 203 fixes the logic of the output to the voltage level of the reference voltage VDDH. As a result, it is possible to suppress the output from becoming high impedance, and to suppress the through current from flowing in the circuit of the output destination.
  • the second level shift circuit 22 shown in FIG. 4 of the first embodiment may also be provided with the HiZ detection circuit 202 and the logic fixation circuit 203 . If the voltage level of input signal Din is fixed (left) low, the voltage level of node NB is fixed high. In this case, a leakage current may flow from the node NB through the transistor MN2 to the reference voltage VDDM, and the voltage level of the node NB may drop. In this case, since the transistor MN1 is turned off from the on state, the signal output section Eout becomes high impedance. Therefore, the logic fixing circuit 203 fixes the output logic to the voltage level of the reference voltage VDDM. As a result, it is possible to prevent the output from becoming high impedance in the second level shift circuit 22 as well, and it is possible to prevent a through current from flowing in the output destination circuit.
  • FIG. 14 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the seventh embodiment.
  • the seventh embodiment differs from the sixth embodiment in that the HiZ detection circuit 202 acquires the signal of the node NA.
  • a HiZ detection circuit 202 as a level detection unit detects the voltage level of the gate (node NA) of the transistor MN1.
  • the logic fixing circuit 203 fixes the voltage level of the output signal Dout to one of the two reference voltages when the voltage level of the gate of the transistor MN1 is low for a predetermined period or longer.
  • the input signal Din is fixed at high and the voltage levels of the gates of the transistors MN1 and MP1 are fixed at low, whereby the signal output section Eout becomes high impedance. Therefore, the voltage level of the gate of transistor MN1 may be used to determine the logic fixation of logic fixation circuit 203.
  • FIG. 1 the input signal Din is fixed at high and the voltage levels of the gates of the transistors MN1 and MP1 are fixed at low, whereby the signal output section Eout becomes high impedance. Therefore, the voltage level of the gate of transistor MN1 may be used to determine the logic fixation of logic fixation circuit 203.
  • the logic fixing determination is not limited to the voltage level of the gate of the transistor MN1.
  • the HiZ detection circuit 202 may detect, for example, the input signal Din or the voltage level of the gate (node NB) of the transistor MP1.
  • the logic fixing circuit 203 may fix the logic of the signal output section Eout based on, for example, the input signal Din or the voltage level of the gate of the transistor MP1.
  • this technique can take the following structures. (1) two transistors of different conductivity types cascode-connected between two reference voltages having different voltage levels; a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively; and an impedance unit that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
  • the impedance section includes the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor, and the control terminal to which the input signal is supplied via the capacitor;
  • the two transistors are a first transistor on the first reference voltage side; a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
  • the signal input section supplies the input signal to a first control terminal of the first transistor through the capacitor and supplies the input signal to a second control terminal of the second transistor without the capacitor.
  • the level shift circuit according to any one of (1) to (4), wherein the impedance section biases the voltage level of the first control terminal to a predetermined voltage level.
  • the two transistors a first transistor on the first reference voltage side; a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
  • the signal input section supplies the input signal to a first control terminal of the first transistor via a first capacitor, and the second control terminal of the second transistor via a second capacitor different from the first capacitor.
  • the impedance section is a first impedance unit that biases the voltage level of the first control terminal to a predetermined voltage level;
  • a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal; a high impedance detection unit that detects that the signal output unit is high impedance; (1) to (9), further comprising a logic fixing unit that fixes the voltage level of the output signal to one of the two reference voltages when the signal output unit is high impedance.
  • a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal; a level detection unit that detects the voltage level of at least one of the input signal and the two control terminals; When the voltage level of the input signal and at least one of the two control terminals continues at a high level or a low level for a predetermined period or longer, the voltage level of the output signal is set to either one of the two reference voltages.
  • the level shift circuit according to any one of (1) to (9), further comprising a logic fixer that fixes the level.
  • the impedance unit is a diode; the anode of the diode is electrically connected to the lower voltage side of the two reference voltages; The level shift circuit according to any one of (1) to (11), wherein the cathode of the diode is electrically connected to a higher voltage side of the two reference voltages.
  • the impedance unit is a resistive element, The level shift circuit according to any one of (1) to (11), wherein the resistance element has a resistance value corresponding to the operating frequency of the level shift circuit and the capacitance of the capacitor.
  • the level shift circuit according to any one of (1) to (16) wherein the voltage level of the input signal alternates between high level and low level depending on time.
  • a DAC Digital to Analog Converter
  • the level shift circuit is two transistors of different conductivity types cascoded between two reference voltages having different voltage levels; a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively; and an impedance section that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.

Abstract

[Problem] To reduce power consumption. [Solution] This level shift circuit is provided with two transistors of different conductivity types, connected in a cascode connection between two reference voltages having different voltage levels, a signal input unit that supplies, via a capacitor, an input signal having a high or a low voltage level to at least one of two control terminals of each of the two transistors, and an impedance unit that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.

Description

レベルシフト回路及び電子機器Level shift circuit and electronic equipment
 本開示による実施形態は、レベルシフト回路及び電子機器に関する。 Embodiments according to the present disclosure relate to level shift circuits and electronic devices.
 レベルシフト回路は、入力信号の電圧レベルを変換した信号を出力する。レベルシフト回路の構成の一例として、クロスカップル構成を用いることが知られている(例えば、特許文献1参照)。 The level shift circuit outputs a signal obtained by converting the voltage level of the input signal. As an example of the configuration of the level shift circuit, the use of a cross-couple configuration is known (see, for example, Patent Document 1).
特開平4-97616号公報JP-A-4-97616 特開2004-242084号公報JP 2004-242084 A
 しかしながら、クロスカップル構成では、入力信号の電圧レベルが変化するタイミングにおいて貫通電流が流れるため、消費電力が増加するという問題がある。 However, the cross-couple configuration has a problem of increased power consumption because a through current flows at the timing when the voltage level of the input signal changes.
 そこで、本開示では、消費電力を削減することができるレベルシフト回路及び電子機器を提供するものである。 Therefore, the present disclosure provides a level shift circuit and an electronic device capable of reducing power consumption.
 上記の課題を解決するために、本開示によれば、
 異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
 前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
 前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、レベルシフト回路が提供される。
In order to solve the above problems, according to the present disclosure,
two transistors of different conductivity types cascoded between two reference voltages having different voltage levels;
a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
and an impedance section for biasing the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
 前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧の電圧レベルに基づいてバイアスしてもよい。 The impedance section may be biased based on the voltage level of the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor.
 前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子と、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧と、の間に接続されてもよい。 The impedance section is provided between the control terminal to which the input signal is supplied via the capacitor and the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor. may be connected.
 前記インピーダンス部は、所定値以上のインピーダンスを有してもよい。 The impedance section may have an impedance equal to or higher than a predetermined value.
 前記2つのトランジスタは、
 第1基準電圧側の第1トランジスタと、
 前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
 前記信号入力部は、前記キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記キャパシタを介することなく前記第2トランジスタの第2制御端子に前記入力信号を供給し、
 前記インピーダンス部は、前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスしてもよい。
The two transistors are
a first transistor on the first reference voltage side;
a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
The signal input section supplies the input signal to a first control terminal of the first transistor through the capacitor and supplies the input signal to a second control terminal of the second transistor without the capacitor. death,
The impedance section may bias the voltage level of the first control terminal to a predetermined voltage level.
 前記入力信号のハイレベル及びローレベルのいずれか一方は、前記第1基準電圧及び前記第2基準電圧のいずれか一方の電圧レベルと同じであってもよい。 Either the high level or the low level of the input signal may be the same as the voltage level of either the first reference voltage or the second reference voltage.
 前記2つのトランジスタは、
 第1基準電圧側の第1トランジスタと、
 前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
 前記信号入力部は、第1キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記第1キャパシタとは異なる第2キャパシタを介して前記第2トランジスタの第2制御端子に前記入力信号を供給し、
 前記インピーダンス部は、
 前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスする第1インピーダンス部と、
 前記第2制御端子の電圧レベルを、所定の電圧レベルにバイアスする第2インピーダンス部と、を含んでもよい。
The two transistors are
a first transistor on the first reference voltage side;
a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
The signal input section supplies the input signal to a first control terminal of the first transistor via a first capacitor, and the second control terminal of the second transistor via a second capacitor different from the first capacitor. supplying the input signal to a control terminal;
The impedance section is
a first impedance unit that biases the voltage level of the first control terminal to a predetermined voltage level;
and a second impedance section for biasing the voltage level of the second control terminal to a predetermined voltage level.
 前記入力信号のハイレベル及びローレベルのそれぞれは、前記第1基準電圧及び前記第2基準電圧の電圧レベルとは異なっていてもよい。 The high level and low level of the input signal may be different from the voltage levels of the first reference voltage and the second reference voltage.
 前記第1基準電圧及び前記第2基準電圧は、それぞれ正電圧及び負電圧であり、又は、それぞれ負電圧及び正電圧であってもよい。 The first reference voltage and the second reference voltage may be a positive voltage and a negative voltage, respectively, or may be a negative voltage and a positive voltage, respectively.
 カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
 前記信号出力部がハイインピーダンスであることを検出するハイインピーダンス検出部と、
 前記信号出力部がハイインピーダンスである場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備えてもよい。
a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
a high impedance detection unit that detects that the signal output unit is high impedance;
A logic fixer that fixes the voltage level of the output signal to one of the two reference voltages when the signal output section has a high impedance.
 カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
 前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルを検出するレベル検出部と、
 前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルのハイレベル又はローレベルが所定の期間以上継続する場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備えてもよい。
a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
a level detection unit that detects the voltage level of at least one of the input signal and the two control terminals;
When the voltage level of the input signal and at least one of the two control terminals continues at a high level or a low level for a predetermined period or longer, the voltage level of the output signal is set to either one of the two reference voltages. and a logic fixer that fixes the level.
 前記インピーダンス部は、制御端子が前記2つの基準電圧のいずれか一方と接続されるトランジスタであってもよい。 The impedance section may be a transistor whose control terminal is connected to one of the two reference voltages.
 前記インピーダンス部は、ダイオードであり、
 前記ダイオードのアノードは、前記2つの基準電圧のうち低電圧側と電気的に接続され、
 前記ダイオードのカソードは、前記2つの基準電圧のうち高電圧側と電気的に接続されてもよい。
The impedance unit is a diode,
the anode of the diode is electrically connected to the lower voltage side of the two reference voltages;
A cathode of the diode may be electrically connected to a higher voltage side of the two reference voltages.
 前記インピーダンス部は、抵抗素子であり、
 前記抵抗素子は、前記レベルシフト回路の動作周波数、及び、前記キャパシタの静電容量に応じた抵抗値を有してもよい。
The impedance unit is a resistive element,
The resistance element may have a resistance value corresponding to the operating frequency of the level shift circuit and the capacitance of the capacitor.
 前記抵抗素子は、前記抵抗素子及び前記キャパシタのハイパスフィルタのカットオフ周波数が前記レベルシフト回路の動作周波数よりも低くなる抵抗値を有してもよい。 The resistance element may have a resistance value such that a cutoff frequency of a high-pass filter of the resistance element and the capacitor is lower than an operating frequency of the level shift circuit.
 ハイレベルとローレベルとを反転させた前記入力信号を、前記2つの制御端子のそれぞれに供給する論理反転部をさらに備えてもよい。 It may further include a logic inverting section that supplies the input signal with its high level and low level inverted to each of the two control terminals.
 前記入力信号の電圧レベルは、時間に応じて、交互にハイレベル又はローレベルになってもよい。 The voltage level of the input signal may alternately become high level or low level according to time.
 本開示によれば、デジタル信号をアナログ信号に変換するDAC(Digital to Analog Convertor)と、
 入力される前記デジタル信号の電圧レベルの範囲を、前記アナログ信号の電圧レベルの範囲に変換して前記DACに出力するレベルシフト回路と、を備え、
 前記レベルシフト回路は、
 異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
 前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
 前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、電子機器が提供される。
According to the present disclosure, a DAC (Digital to Analog Converter) that converts a digital signal to an analog signal;
a level shift circuit that converts the voltage level range of the input digital signal into the voltage level range of the analog signal and outputs the converted voltage level range to the DAC;
The level shift circuit is
two transistors of different conductivity types cascoded between two reference voltages having different voltage levels;
a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
and an impedance section that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
第1実施形態における電子機器の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of electronic equipment in a 1st embodiment. 第1実施形態における第1レベルシフト回路の構成の一例を示す回路図である。2 is a circuit diagram showing an example of the configuration of a first level shift circuit in the first embodiment; FIG. 第1実施形態における第1レベルシフト回路の動作の一例を示すタイミングチャートである。4 is a timing chart showing an example of the operation of the first level shift circuit in the first embodiment; 第1実施形態における第2レベルシフト回路の構成の一例を示す回路図である。4 is a circuit diagram showing an example of the configuration of a second level shift circuit in the first embodiment; FIG. 第1実施形態における第2レベルシフト回路の動作の一例を示すタイミングチャートである。4 is a timing chart showing an example of the operation of the second level shift circuit in the first embodiment; 比較例における第1レベルシフト回路の構成の一例を示す回路図である。FIG. 4 is a circuit diagram showing an example of a configuration of a first level shift circuit in a comparative example; 比較例における第1レベルシフト回路の動作の一例を示すタイミングチャートである。7 is a timing chart showing an example of the operation of the first level shift circuit in the comparative example; 第2実施形態における第1レベルシフト回路の構成の一例を示す回路図である。It is a circuit diagram showing an example of the configuration of a first level shift circuit in the second embodiment. 第2実施形態における第2レベルシフト回路の構成の一例を示す回路図である。It is a circuit diagram showing an example of the configuration of a second level shift circuit in the second embodiment. 第3実施形態における第1レベルシフト回路の構成の一例を示す回路図である。It is a circuit diagram showing an example of the configuration of a first level shift circuit in the third embodiment. 第4実施形態におけるレベルシフト回路の構成の一例を示す回路図である。FIG. 11 is a circuit diagram showing an example of the configuration of a level shift circuit according to a fourth embodiment; FIG. 第5実施形態におけるレベルシフト回路の構成の一例を示す回路図である。FIG. 11 is a circuit diagram showing an example of the configuration of a level shift circuit according to a fifth embodiment; 第6実施形態における第1レベルシフト回路の構成の一例を示す回路図である。FIG. 14 is a circuit diagram showing an example of a configuration of a first level shift circuit in a sixth embodiment; FIG. 第7実施形態における第1レベルシフト回路の構成の一例を示す回路図である。FIG. 14 is a circuit diagram showing an example of a configuration of a first level shift circuit in a seventh embodiment; FIG.
 以下、図面を参照して、レベルシフト回路及び電子機器の実施形態について説明する。以下では、レベルシフト回路及び電子機器の主要な構成部分を中心に説明するが、レベルシフト回路及び電子機器には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Embodiments of a level shift circuit and an electronic device will be described below with reference to the drawings. Although the main components of the level shift circuit and the electronic device will be mainly described below, the level shift circuit and the electronic device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
(第1実施形態)
 図1は、第1実施形態における電子機器1の構成の一例を示すブロック図である。
(First embodiment)
FIG. 1 is a block diagram showing an example of the configuration of an electronic device 1 according to the first embodiment.
 電子機器1は、例えば、マルチビットオーディオDAC(Digital to Analog Convertor)である。電子機器1は、信号処理部10と、レベルシフト回路20と、DAC30と、を備える。また、電子機器1には、増幅器40と、スピーカ50と、が接続されている。 The electronic device 1 is, for example, a multi-bit audio DAC (Digital to Analog Converter). The electronic device 1 includes a signal processing section 10 , a level shift circuit 20 and a DAC 30 . An amplifier 40 and a speaker 50 are also connected to the electronic device 1 .
 信号処理部10は、入力された音声データをデジタル処理する。信号処理部10は、音声信号(オーディオ信号)をマルチビット(例えば、192bit)のデジタル信号に変換する。 The signal processing unit 10 digitally processes the input audio data. The signal processing unit 10 converts a voice signal (audio signal) into a multi-bit (for example, 192-bit) digital signal.
 レベルシフト回路20は、入力されるデジタル信号の電圧レベルの範囲を、デジタル電源ドメインからアナログ電源ドメインに変換する。電源ドメインは、分割して管理される、電圧レベルの範囲が異なる複数の領域である。レベルシフト回路20は、第1レベルシフト回路21と、第2レベルシフト回路22と、を含む。 The level shift circuit 20 converts the voltage level range of the input digital signal from the digital power domain to the analog power domain. A power domain is a plurality of regions with different voltage level ranges that are managed separately. Level shift circuit 20 includes a first level shift circuit 21 and a second level shift circuit 22 .
 第1レベルシフト回路21は、基準電圧DVDDから基準電圧VDDHに、高電圧側のデジタル信号の電圧レベルを変換する。基準電圧VDDHの電圧レベルは、正電圧であり、基準電圧DVDDの電圧レベルよりも高い。なお、第1レベルシフト回路21の詳細については、図2及び図3を参照して、後で説明する。 The first level shift circuit 21 converts the voltage level of the digital signal on the high voltage side from the reference voltage DVDD to the reference voltage VDDH. The voltage level of reference voltage VDDH is a positive voltage and is higher than the voltage level of reference voltage DVDD. Details of the first level shift circuit 21 will be described later with reference to FIGS. 2 and 3. FIG.
 第2レベルシフト回路22は、グランド(基準電圧)GNDから基準電圧VDDMに、低電圧側のデジタル信号の電圧レベルを変換する。基準電圧VDDMの電圧レベルは、負電圧であり、グランドGNDの電圧レベルよりも低い。第2レベルシフト回路22は、変換する電圧レベルの範囲が第1レベルシフト回路21とは異なるが、第1レベルシフト回路21とほぼ同様の動作で電圧レベルを変換する。なお、第2レベルシフト回路22の詳細については、図4及び図5を参照して、後で説明する。 The second level shift circuit 22 converts the voltage level of the digital signal on the low voltage side from the ground (reference voltage) GND to the reference voltage VDDM. The voltage level of reference voltage VDDM is a negative voltage and lower than the voltage level of ground GND. The second level shift circuit 22 converts the voltage level in a range different from that of the first level shift circuit 21 , but converts the voltage level in substantially the same manner as the first level shift circuit 21 . Details of the second level shift circuit 22 will be described later with reference to FIGS. 4 and 5. FIG.
 DAC30は、レベルシフトされたデジタル信号をアナログ信号に変換する。 The DAC 30 converts the level-shifted digital signal into an analog signal.
 増幅器40は、アナログ信号を増幅してスピーカ50を駆動する。 The amplifier 40 amplifies the analog signal to drive the speaker 50 .
 スピーカ50は、増幅されたアナログ信号を受けて音声を再生する。 The speaker 50 receives the amplified analog signal and reproduces the sound.
 次に、第1レベルシフト回路21の詳細について説明する。 Next, the details of the first level shift circuit 21 will be described.
 図2は、第1実施形態における第1レベルシフト回路21の構成の一例を示す回路図である。第1レベルシフト回路21は、基準電圧DVDDからグランドGNDまでの電圧レベルの入力信号Dinを、基準電圧VDDHからグランドGNDまでの電圧レベルの出力信号Doutに変換する。第1レベルシフト回路21は、入力信号Dinのハイの電圧レベルを基準電圧DVDDから基準電圧VDDHにレベルシフトする。入力信号Dinおよび出力信号Doutのローの電圧レベルは、グランドGNDで共通している。 FIG. 2 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the first embodiment. The first level shift circuit 21 converts an input signal Din having a voltage level from the reference voltage DVDD to the ground GND into an output signal Dout having a voltage level from the reference voltage VDDH to the ground GND. The first level shift circuit 21 level-shifts the high voltage level of the input signal Din from the reference voltage DVDD to the reference voltage VDDH. The low voltage levels of input signal Din and output signal Dout are common at ground GND.
 第1レベルシフト回路21は、トランジスタMN1、MP1と、キャパシタCと、信号入力部Einと、信号出力部Eoutと、論理反転素子INVと、インピーダンス部201と、を備える。 The first level shift circuit 21 includes transistors MN1 and MP1, a capacitor C, a signal input section Ein, a signal output section Eout, a logic inverting element INV, and an impedance section 201.
 2つのトランジスタMN1、MP1は、基準電圧VDDHとグランドGNDとの間で、カスコード接続されている。また、2つのトランジスタMN1、MP1は、互いに導電型が異なる。 The two transistors MN1 and MP1 are cascode-connected between the reference voltage VDDH and the ground GND. Also, the two transistors MN1 and MP1 have different conductivity types.
 トランジスタMN1は、グランドGND側に配置される。トランジスタMN1は、例えば、N型MOS(Metal Oxide Semiconductor)トランジスタである。 The transistor MN1 is arranged on the ground GND side. The transistor MN1 is, for example, an N-type MOS (Metal Oxide Semiconductor) transistor.
 トランジスタMP1は、基準電圧VDDH側に配置される。トランジスタMP1は、例えば、P型MOSトランジスタである。 The transistor MP1 is arranged on the reference voltage VDDH side. Transistor MP1 is, for example, a P-type MOS transistor.
 キャパシタCは、トランジスタMN1のゲートと、トランジスタMP1のゲートと、の間に接続される。 A capacitor C is connected between the gate of the transistor MN1 and the gate of the transistor MP1.
 信号入力部Einは、ハイ又はローの電圧レベルを有する入力信号Dinが入力される。信号入力部Einは、2つのトランジスタMN1、MP1がそれぞれ有する2つのゲートの少なくとも一方に、キャパシタCを介して入力信号Dinを供給する。入力信号Dinの電圧レベルは、PWM(Pulse Width Modulation)変調されたオーディオ信号である場合、変調時間毎に、交互にハイ又はローになる。 An input signal Din having a high or low voltage level is input to the signal input section Ein. The signal input section Ein supplies an input signal Din through a capacitor C to at least one of the two gates of the two transistors MN1 and MP1. If the input signal Din is a PWM (Pulse Width Modulation) modulated audio signal, the voltage level of the input signal Din alternately becomes high or low at each modulation time.
 信号出力部Eoutは、カスコード接続される2つのトランジスタMN1、MP1の間に接続され、出力信号Doutを出力する。 The signal output unit Eout is connected between two cascode-connected transistors MN1 and MP1, and outputs an output signal Dout.
 論理反転素子INVは、入力された入力信号Dinの論理を反転させて出力する。論理反転素子INVは、電圧レベルのハイとローとを反転させた入力信号Dinを、トランジスタMN1、MP1が有する2つのゲートのそれぞれに供給する。論理反転素子INVは、信号入力部Einと、キャパシタC及びトランジスタMN1のゲートと、の間に接続される。論理反転素子INV(信号入力部Ein)は、キャパシタCを間に介して、トランジスタMP1のゲートと接続される。論理反転素子INV(信号入力部Ein)は、キャパシタCを間に介することなく、トランジスタMN1のゲートと接続される。 The logic inverting element INV inverts the logic of the inputted input signal Din and outputs it. The logic inverting element INV supplies an input signal Din whose voltage level is inverted between high and low to each of the two gates of the transistors MN1 and MP1. The logic inverting element INV is connected between the signal input Ein, the capacitor C and the gate of the transistor MN1. A logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 with a capacitor C interposed therebetween. The logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MN1 without the capacitor C interposed therebetween.
 インピーダンス部201は、インピーダンス素子である。より詳細には、インピーダンス部201は、所定値以上のインピーダンスを有する高インピーダンス素子である。インピーダンス部201は、トランジスタMP1のゲート及びキャパシタCと、基準電圧VDDHと、の間に接続される。インピーダンス部201は、基準電圧VDDHに基づいてトランジスタMP1のゲートの電圧レベルをバイアスする。より詳細には、インピーダンス部201は、トランジスタMP1のゲートの電圧レベルを、所定の電圧レベルにバイアス(クランプ)する。インピーダンス部201は、例えば、ゲートとソースとが接続されたオフトランジスタ(ダイオード接続されたトランジスタ)である。インピーダンス部201は、ゲートが基準電圧VDDHと接続されたトランジスタMP2である。トランジスタMP2は、例えば、P型MOSトランジスタである。 The impedance section 201 is an impedance element. More specifically, the impedance section 201 is a high impedance element having an impedance equal to or higher than a predetermined value. The impedance section 201 is connected between the gate of the transistor MP1, the capacitor C, and the reference voltage VDDH. Impedance unit 201 biases the voltage level of the gate of transistor MP1 based on reference voltage VDDH. More specifically, impedance section 201 biases (clamps) the voltage level of the gate of transistor MP1 to a predetermined voltage level. The impedance unit 201 is, for example, an off transistor (diode-connected transistor) whose gate and source are connected. The impedance unit 201 is a transistor MP2 whose gate is connected to the reference voltage VDDH. Transistor MP2 is, for example, a P-type MOS transistor.
 次に、第1レベルシフト回路21の動作について説明する。 Next, the operation of the first level shift circuit 21 will be described.
 図3は、第1実施形態における第1レベルシフト回路21の動作の一例を示すタイミングチャートである。 FIG. 3 is a timing chart showing an example of the operation of the first level shift circuit 21 in the first embodiment.
 まず、初期状態の時刻t1において、入力信号Dinの電圧レベルは、ローであり、グランドGNDである。ノードNAの電圧レベル(図3のA)は、入力信号Dinの電圧レベルが論理反転素子INVにより反転されたハイであり、基準電圧DVDDである。ノードNBの電圧レベル(図3のB)は、ノードNAの電圧レベルと同様にハイである。ノードNBの電圧レベルは、基準電圧VDDHよりもトランジスタMP2の閾値電圧Vthだけ高い電圧レベルVp2である。これは、後で説明するように、トランジスタMP2によってノードNBの電圧レベルがクランプされているためである。 First, at time t1 in the initial state, the voltage level of input signal Din is low and ground GND. The voltage level of the node NA (A in FIG. 3) is the high level obtained by inverting the voltage level of the input signal Din by the logic inverting element INV, and is the reference voltage DVDD. The voltage level of node NB (B in FIG. 3) is high, as is the voltage level of node NA. The voltage level of the node NB is the voltage level Vp2 higher than the reference voltage VDDH by the threshold voltage Vth of the transistor MP2. This is because the voltage level of node NB is clamped by transistor MP2, as will be described later.
 ノードNAの電圧レベルは、グランドGNDよりもトランジスタMN1の閾値電圧Vthだけ高い電圧レベルVn1よりも高い。従って、トランジスタMN1はオン状態である。また、ノードNBの電圧レベルは、基準電圧VDDHよりもトランジスタMP1の閾値電圧Vthだけ低い電圧レベルVp1よりも高い。従って、トランジスタMP1はオフ状態である。これにより、出力信号Doutの電圧レベルは、ローであり、グランドGNDである。 The voltage level of the node NA is higher than the voltage level Vn1 which is higher than the ground GND by the threshold voltage Vth of the transistor MN1. Therefore, transistor MN1 is on. Also, the voltage level of the node NB is higher than the voltage level Vp1 which is lower than the reference voltage VDDH by the threshold voltage Vth of the transistor MP1. Therefore, transistor MP1 is off. This causes the voltage level of the output signal Dout to be low and ground GND.
 次に、時刻t2において、入力信号Dinの電圧レベルは、ローからハイになり、基準電圧DVDDになる。ノードNAの電圧レベルは、入力信号Dinの電圧レベルが論理反転素子INVにより反転されたローになり、グランドGNDになる。ノードNBの電圧レベルは、容量結合により、ノードNAの電圧レベルの低下に伴って低下する。従って、ノードNBの電圧レベルはローになる。 Next, at time t2, the voltage level of the input signal Din changes from low to high and reaches the reference voltage DVDD. The voltage level of the node NA becomes low by inverting the voltage level of the input signal Din by the logic inverting element INV, and becomes the ground GND. Due to capacitive coupling, the voltage level of node NB lowers as the voltage level of node NA lowers. Therefore, the voltage level of node NB becomes low.
 ノードNAの電圧レベルが電圧レベルVn1よりも低くなると、トランジスタMN1はオフ状態になる。ノードNBの電圧レベルが電圧レベルVp1よりも低くなると、トランジスタMP1はオン状態になる。これにより、出力信号Doutの電圧レベルは、ローからハイになり、基準電圧VDDHになる。 When the voltage level of the node NA becomes lower than the voltage level Vn1, the transistor MN1 is turned off. When the voltage level of node NB becomes lower than voltage level Vp1, transistor MP1 is turned on. As a result, the voltage level of the output signal Dout changes from low to high to reach the reference voltage VDDH.
 ここで、インピーダンス部201は、キャパシタCを介して入力信号Dinが供給されるゲートを有するトランジスタMP1の基準電圧VDDHの電圧レベルに基づいて、ゲートの電圧レベルをバイアスする。すなわち、入力信号Dinの電圧レベルがローである場合、ノードNBのハイの電圧レベル(トランジスタMP1のゲート電圧)は、トランジスタMP2により電圧レベルVp2に制約(クランプ)される。これにより、ノードNBの電圧レベルは、ローになることで電圧レベルVp1よりも低くなる。すなわち、トランジスタMP1をオン状態にすることができる。この結果、時刻t2において出力信号Doutの電圧レベルをハイにすることができる。 Here, the impedance unit 201 biases the voltage level of the gate based on the voltage level of the reference voltage VDDH of the transistor MP1 having the gate to which the input signal Din is supplied via the capacitor C. That is, when the voltage level of input signal Din is low, the high voltage level of node NB (gate voltage of transistor MP1) is constrained (clamped) to voltage level Vp2 by transistor MP2. This makes the voltage level of the node NB lower than the voltage level Vp1 by going low. That is, the transistor MP1 can be turned on. As a result, the voltage level of the output signal Dout can be made high at time t2.
 次に、時刻t3において、入力信号Dinの電圧レベルは、ハイからローになり、グランドGNDになる。ノードNAの電圧レベルは、入力信号Dinの電圧レベルが論理反転素子INVにより反転されたハイになり、基準電圧DVDDになる。ノードNBの電圧レベルは、容量結合により、ノードNAの電圧レベルの上昇に伴って上昇する。従って、ノードNBの電圧レベルはハイになり、上記のように電圧レベルVp2にクランプされる。従って、時刻t1と同様に、出力信号Doutの電圧レベルは、ローになり、グランドGNDになる。 Next, at time t3, the voltage level of the input signal Din changes from high to low to ground GND. The voltage level of the node NA becomes high by inverting the voltage level of the input signal Din by the logic inverting element INV, and becomes the reference voltage DVDD. Due to capacitive coupling, the voltage level of node NB rises as the voltage level of node NA rises. Therefore, the voltage level at node NB goes high and is clamped to voltage level Vp2 as described above. Therefore, as at time t1, the voltage level of the output signal Dout goes low and goes to ground GND.
 次に、第2レベルシフト回路22の詳細について説明する。 Next, the details of the second level shift circuit 22 will be described.
 図4は、第1実施形態における第2レベルシフト回路22の構成の一例を示す回路図である。第2レベルシフト回路22は、基準電圧VDDHからグランドGNDまでの電圧レベルの入力信号Dinを、基準電圧VDDHから基準電圧VDDMまでの電圧レベルの出力信号Doutに変換する。第1レベルシフト回路21は、入力信号Dinのローの電圧レベルをグランドGNDから基準電圧VDDMにレベルシフトする。入力信号Dinおよび出力信号Doutのハイの電圧レベルは、基準電圧VDDHで共通している。 FIG. 4 is a circuit diagram showing an example of the configuration of the second level shift circuit 22 in the first embodiment. The second level shift circuit 22 converts the input signal Din with a voltage level from the reference voltage VDDH to the ground GND into an output signal Dout with a voltage level from the reference voltage VDDH to the reference voltage VDDM. The first level shift circuit 21 level-shifts the low voltage level of the input signal Din from the ground GND to the reference voltage VDDM. The high voltage level of the input signal Din and the output signal Dout is common at the reference voltage VDDH.
 論理反転素子INVは、信号入力部Einと、キャパシタC及びトランジスタMP1のゲートと、の間に接続される。論理反転素子INV(信号入力部Ein)は、キャパシタCを間に介して、トランジスタMN1のゲートと接続される。論理反転素子INV(信号入力部Ein)は、キャパシタCを間に介することなく、トランジスタMP1のゲートと接続される。 The logic inverting element INV is connected between the signal input section Ein, the capacitor C and the gate of the transistor MP1. A logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MN1 with a capacitor C interposed therebetween. The logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 without the capacitor C interposed therebetween.
 インピーダンス部201は、トランジスタMN1のゲート及びキャパシタCと、基準電圧VDDMと、の間に接続される。インピーダンス部201は、基準電圧VDDMに基づいて、トランジスタMN1のゲートの電圧レベルをバイアスする。より詳細には、インピーダンス部201は、トランジスタMN1のゲートの電圧レベルを、所定の電圧レベルにバイアス(クランプ)する。インピーダンス部201は、例えば、ゲートとソースとが接続されたオフトランジスタである。インピーダンス部201は、ゲートが基準電圧VDDMと接続されたトランジスタMN2である。トランジスタMN2は、例えば、N型MOSトランジスタである。 The impedance section 201 is connected between the gate of the transistor MN1, the capacitor C, and the reference voltage VDDM. Impedance unit 201 biases the voltage level of the gate of transistor MN1 based on reference voltage VDDM. More specifically, impedance section 201 biases (clamps) the voltage level of the gate of transistor MN1 to a predetermined voltage level. The impedance unit 201 is, for example, an off transistor having a gate and a source connected to each other. Impedance unit 201 is transistor MN2 whose gate is connected to reference voltage VDDM. The transistor MN2 is, for example, an N-type MOS transistor.
 図5は、第1実施形態における第2レベルシフト回路22の動作の一例を示すタイミングチャートである。 FIG. 5 is a timing chart showing an example of the operation of the second level shift circuit 22 in the first embodiment.
 なお、第2レベルシフト回路22の動作は、図3を参照して説明した第1レベルシフト回路21の動作とほぼ同じである。ノードNBのローの電圧レベル(図5のB)は、基準電圧VDDMよりもトランジスタMN2の閾値電圧Vthだけ低い電圧レベルにクランプされる。これにより、ノードNBの電圧レベルがハイになることで、トランジスタMN1をオン状態にすることができる。 The operation of the second level shift circuit 22 is substantially the same as the operation of the first level shift circuit 21 described with reference to FIG. The low voltage level of node NB (B in FIG. 5) is clamped to a voltage level lower than reference voltage VDDM by the threshold voltage Vth of transistor MN2. As a result, the voltage level of the node NB becomes high, so that the transistor MN1 can be turned on.
 以上のように、第1実施形態におけるレベルシフト回路によれば、キャパシタCを介してトランジスタMP1又はトランジスタMN1が駆動する。また、インピーダンス部201は、キャパシタCを介して駆動するトランジスタMP1又はトランジスタMP2のゲート電圧をバイアスする。これにより、貫通電流をほぼ流すことなく、電圧レベルを変換することができる。この結果、消費電力を抑制することができる。 As described above, according to the level shift circuit of the first embodiment, the transistor MP1 or the transistor MN1 is driven via the capacitor C. Also, the impedance unit 201 biases the gate voltage of the transistor MP1 or the transistor MP2 driven through the capacitor C. FIG. As a result, the voltage level can be converted almost without passing through current. As a result, power consumption can be suppressed.
(比較例)
 図6は、比較例における第1レベルシフト回路21の構成の一例を示す回路図である。比較例における第1レベルシフト回路21は、クロスカップル構成を有する。
(Comparative example)
FIG. 6 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the comparative example. The first level shift circuit 21 in the comparative example has a cross-couple configuration.
 図6に示す例では、第1レベルシフト回路21は、クロスカップル構成の2つのP型MOSトランジスタ(トランジスタMPa、MPb)と、2つのN型MOSトランジスタ(トランジスタMNa、MNb)と、を備える。 In the example shown in FIG. 6, the first level shift circuit 21 includes two cross-coupled P-type MOS transistors (transistors MPa, MPb) and two N-type MOS transistors (transistors MNa, MNb).
 トランジスタMNaのゲートには、2つの論理反転素子INV1、INV2を通過した入力信号Dinが入力される。トランジスタMNbのゲートには、1つの論理反転素子INV1を通過した入力信号Dinが入力される。 An input signal Din that has passed through two logic inverting elements INV1 and INV2 is input to the gate of the transistor MNa. An input signal Din that has passed through one logic inverting element INV1 is input to the gate of the transistor MNb.
 図7は、比較例における第1レベルシフト回路21の動作の一例を示すタイミングチャートである。 FIG. 7 is a timing chart showing an example of the operation of the first level shift circuit 21 in the comparative example.
 まず、初期状態の時刻t11において、入力信号Dinの電圧レベルはローである。トランジスタMNaのゲートの電圧レベル(図7のA)はローであり、トランジスタMNbのゲートの電圧レベル(図7のB)の電圧レベルはハイである。従って、トランジスタMNb、MPaはオン状態であり、トランジスタMNa、MPbはオフ状態である。出力信号Doutの電圧レベルは、ローである。 First, at time t11 in the initial state, the voltage level of input signal Din is low. The voltage level at the gate of transistor MNa (FIG. 7A) is low and the voltage level at the gate of transistor MNb (FIG. 7B) is high. Therefore, the transistors MNb and MPa are on, and the transistors MNa and MPb are off. The voltage level of output signal Dout is low.
 次に、時刻t12において、入力信号Dinの電圧レベルがローからハイになる。トランジスタMNaのゲートの電圧レベル(図7のA)はローからハイになり、トランジスタMNbのゲートの電圧レベル(図7のB)の電圧レベルはハイからローになる。これにより、オン状態のトランジスタMPa、MNaを通過する電流Iaが流れる。その後、トランジスタMPaがオフ状態になり、トランジスタMPbがオン状態になる。これにより、出力信号Doutの電圧レベルは、ローからハイになる。 Next, at time t12, the voltage level of input signal Din changes from low to high. The voltage level at the gate of transistor MNa (A in FIG. 7) goes from low to high, and the voltage level at the gate of transistor MNb (B in FIG. 7) goes from high to low. As a result, a current Ia flows through the transistors MPa and MNa that are on. After that, the transistor MPa is turned off and the transistor MPb is turned on. This causes the voltage level of the output signal Dout to change from low to high.
 なお、時刻t13において、入力信号Dinの電圧レベルがハイからローになる場合も、トランジスタMPb、MNbを通過する電流Ibが流れる。 At time t13, even when the voltage level of input signal Din changes from high to low, current Ib flows through transistors MPb and MNb.
 このように、クロスカップル構成では、入力信号Dinの電圧レベルのハイ又はロー(論理)が変化するタイミングにおいて、貫通電流が流れる。この貫通電流により、レベルシフト回路の消費電力が増大してしまう。 Thus, in the cross-couple configuration, a through current flows at the timing when the voltage level of the input signal Din changes to high or low (logic). This through current increases the power consumption of the level shift circuit.
 これに対して、第1実施形態では、クロスカップル構成を用いずに、トランジスタMP1又はトランジスタMN1のゲート電圧を容量結合で駆動する。これにより、貫通電流をほぼ流れないようにすることができる。この結果、消費電力を抑制することができる。また、第1実施形態では、図2又は図4に示すようにトランジスタ数は3個であり、図6に示すクロスカップル構成と比較してトランジスタ数を減らすことができる。 In contrast, in the first embodiment, the gate voltage of transistor MP1 or transistor MN1 is driven by capacitive coupling without using the cross-couple configuration. As a result, it is possible to substantially prevent the through current from flowing. As a result, power consumption can be suppressed. Also, in the first embodiment, the number of transistors is three as shown in FIG. 2 or 4, and the number of transistors can be reduced compared to the cross-couple configuration shown in FIG.
 貫通電流を低減する方法として、例えば、特許文献1のように、クロスカップル部に電流源を用いて貫通電流を電流源で制限する方法が提案されている。しかし、この方法では、貫通電流成分を完全にゼロにすることは不可能であり、かつ、電流制限を行うことによって動作周波数が遅くなってしまう。 As a method for reducing the through current, for example, as in Patent Document 1, a method of using a current source in the cross-couple part and limiting the through current by the current source has been proposed. However, with this method, it is impossible to completely eliminate the feed-through current component, and the operating frequency is slowed down by limiting the current.
 これに対して、第1実施形態では、キャパシタCにより貫通電流をほぼゼロにすることができる。また、電流制限を行わないため、より高速でレベルシフト回路を動作させることができる。 On the other hand, in the first embodiment, the through current can be made almost zero by the capacitor C. Moreover, since current limitation is not performed, the level shift circuit can be operated at higher speed.
 また、貫通電流の抑制による低消費電力化は、レベルシフト信号の数(レベルシフト回路の数)が多くなるほど、影響が大きくなる。例えば、図1に示すようなオーディオ用途のマルチビットオーディオDACでは、192bitに対応する192個のレベルシフト回路が用いられる。 In addition, the effect of reducing power consumption by suppressing through current increases as the number of level shift signals (the number of level shift circuits) increases. For example, in a multi-bit audio DAC for audio use as shown in FIG. 1, 192 level shift circuits corresponding to 192 bits are used.
 なお、トランジスタMN1、MP1、MN2、MP2は、MOSトランジスタであるが、これに限られず、バイポーラトランジスタであってもよい。 Although the transistors MN1, MP1, MN2, and MP2 are MOS transistors, they are not limited to this, and may be bipolar transistors.
 また、インピーダンス部201は、トランジスタに限られず、他のインピーダンス素子であってもよい。 Also, the impedance section 201 is not limited to a transistor, and may be another impedance element.
(第2実施形態)
 図8は、第2実施形態における第1レベルシフト回路21の構成の一例を示す回路図である。第2実施形態は、第1実施形態と比較して、インピーダンス部201の構成が異なっている。
(Second embodiment)
FIG. 8 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 in the second embodiment. 2nd Embodiment differs in the structure of the impedance part 201 compared with 1st Embodiment.
 インピーダンス部201は、例えば、逆向きのダイオードである。インピーダンス部201は、ダイオードD1である。ダイオードD1のアノードは、低電圧側(グランドGND側)と電気的に接続され、ダイオードD1のカソードは、高電圧側(基準電圧VDDH側)と電気的に接続される。ダイオードD1は、第1実施形態で説明した図2のトランジスタMP2とほぼ同様に機能する。すなわち、ダイオードD1は、基準電圧VDDHに基づいて、トランジスタMP1のゲートの電圧レベルをクランプする。 The impedance section 201 is, for example, a reverse diode. Impedance section 201 is diode D1. The anode of the diode D1 is electrically connected to the low voltage side (ground GND side), and the cathode of the diode D1 is electrically connected to the high voltage side (reference voltage VDDH side). Diode D1 functions in much the same way as transistor MP2 of FIG. 2 described in the first embodiment. That is, diode D1 clamps the voltage level of the gate of transistor MP1 based on reference voltage VDDH.
 図9は、第2実施形態における第2レベルシフト回路22の構成の一例を示す回路図である。 FIG. 9 is a circuit diagram showing an example of the configuration of the second level shift circuit 22 in the second embodiment.
 インピーダンス部201は、ダイオードD2である。ダイオードD2のアノードは、低電圧側に配置され、基準電圧VDDMと電気的に接続される。ダイオードD2のカソードは、高電圧側に配置され、基準電圧VDDHと電気的に接続される。ダイオードD2は、第1実施形態で説明した図4のトランジスタMN2とほぼ同様に機能する。すなわち、ダイオードD2は、基準電圧VDDMに基づいて、トランジスタMN1のゲートの電圧レベルをクランプする。 The impedance section 201 is a diode D2. The anode of diode D2 is arranged on the low voltage side and electrically connected to reference voltage VDDM. The cathode of the diode D2 is arranged on the high voltage side and electrically connected to the reference voltage VDDH. Diode D2 functions in much the same way as transistor MN2 of FIG. 4 described in the first embodiment. That is, diode D2 clamps the voltage level of the gate of transistor MN1 based on reference voltage VDDM.
(第3実施形態)
 図10は、第3実施形態における第1レベルシフト回路21の構成の一例を示す回路図である。第3実施形態は、第1実施形態と比較して、インピーダンス部201の構成が異なっている。
(Third embodiment)
FIG. 10 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the third embodiment. 3rd Embodiment differs in the structure of the impedance part 201 compared with 1st Embodiment.
 インピーダンス部201は、例えば、抵抗素子Rである。抵抗素子Rは、キャパシタCとともにハイパスフィルタとして機能する。この場合、ハイパスフィルタのカットオフ周波数の下限が、動作周波数よりも十分低いことが好ましい。ハイパスフィルタのカットオフ周波数の下限は、例えば、動作周波数の10分の1であることが好ましい。すなわち、抵抗素子Rの抵抗値は、例えば、所望のハイパスフィルタのカットオフ周波数が得られるように、レベルシフト回路の動作周波数及びキャパシタCの静電容量に応じて設定される。より詳細には、抵抗素子Rは、抵抗素子R及びキャパシタCのハイパスフィルタのカットオフ周波数がレベルシフト回路の動作周波数よりも低くなる抵抗値を有することが好ましい。 The impedance section 201 is, for example, a resistance element R. Resistive element R functions together with capacitor C as a high-pass filter. In this case, it is preferable that the lower limit of the cutoff frequency of the high-pass filter is sufficiently lower than the operating frequency. The lower limit of the cut-off frequency of the high-pass filter is preferably, for example, 1/10 of the operating frequency. That is, the resistance value of the resistance element R is set according to the operating frequency of the level shift circuit and the capacitance of the capacitor C, for example, so as to obtain a desired cutoff frequency of the high-pass filter. More specifically, the resistance element R preferably has a resistance value such that the cutoff frequency of the high-pass filter of the resistance element R and the capacitor C is lower than the operating frequency of the level shift circuit.
 ハイパスフィルタでは、通常、電圧の変化がキャパシタにより電流に変換され、この電流が抵抗素子に流れることで電圧に変換される。図10において、トランジスタMP1のゲートの電圧レベルは、基準電圧VDDHの電圧レベルと、抵抗素子Rの電圧と、によってバイアスされる。すなわち、インピーダンス部201である抵抗素子Rは、トランジスタMP1のゲートの電圧レベルをバイアスすることができる。抵抗素子Rの抵抗値は、例えば、抵抗素子Rの所望の電圧が得られるように、レベルシフト回路の動作周波数及びキャパシタCの静電容量に応じて設定される。 In a high-pass filter, a change in voltage is usually converted into a current by a capacitor, and this current is converted into a voltage by flowing through a resistive element. 10, the voltage level at the gate of transistor MP1 is biased by the voltage level of reference voltage VDDH and the voltage of resistive element R. In FIG. That is, the resistance element R, which is the impedance section 201, can bias the voltage level of the gate of the transistor MP1. The resistance value of the resistance element R is set, for example, according to the operating frequency of the level shift circuit and the capacitance of the capacitor C so that a desired voltage of the resistance element R can be obtained.
 なお、第2レベルシフト回路22のインピーダンス部201も、抵抗素子Rであってもよい。 Note that the impedance section 201 of the second level shift circuit 22 may also be the resistance element R.
(第4実施形態)
 図11は、第4実施形態におけるレベルシフト回路20の構成の一例を示す回路図である。第4実施形態は、第1実施形態と比較して、第1レベルシフト回路21の電圧レベルの変換、及び、第2レベルシフト回路22の電圧レベルの変換を同時に行う。
(Fourth embodiment)
FIG. 11 is a circuit diagram showing an example of the configuration of the level shift circuit 20 according to the fourth embodiment. Compared to the first embodiment, the fourth embodiment simultaneously converts the voltage level of the first level shift circuit 21 and the voltage level of the second level shift circuit 22 .
 レベルシフト回路20は、基準電圧DVDDからグランドGNDまでの電圧レベルの入力信号Dinを、基準電圧VDDHから基準電圧VDDMまでの電圧レベルの出力信号Doutに変換する。第1レベルシフト回路21は、入力信号Dinのハイの電圧レベルを基準電圧DVDDから基準電圧VDDHにレベルシフトするとともに、入力信号Dinのローの電圧レベルをグランドGNDから基準電圧VDDMにレベルシフトする。入力信号Dinのハイ又はローのそれぞれの電圧レベルは、基準電圧VDDH、VDDMの電圧レベルとは異なっている。 The level shift circuit 20 converts the input signal Din at the voltage level from the reference voltage DVDD to the ground GND into the output signal Dout at the voltage level from the reference voltage VDDH to the reference voltage VDDM. The first level shift circuit 21 level-shifts the high voltage level of the input signal Din from the reference voltage DVDD to the reference voltage VDDH, and shifts the low voltage level of the input signal Din from the ground GND to the reference voltage VDDM. The high or low voltage level of the input signal Din is different from the voltage levels of the reference voltages VDDH and VDDM.
 第1実施形態の図2及び図4では、入力信号Dinの電圧レベルのハイ又はローのうち一方が出力信号Doutの電圧レベルの高電圧側又は低電圧側のうち一方と共通している。これに対して、第4実施形態では、出力信号Doutの2つの電圧レベルのそれぞれは、入力信号Dinの2つの電圧レベルとは異なっている。 2 and 4 of the first embodiment, one of the high voltage level and the low voltage level of the input signal Din is common to one of the high voltage side and the low voltage side of the voltage level of the output signal Dout. In contrast, in the fourth embodiment, the two voltage levels of the output signal Dout are different from the two voltage levels of the input signal Din.
 レベルシフト回路20は、キャパシタC1、C2と、インピーダンス部2011、2012と、を備える。 The level shift circuit 20 includes capacitors C1 and C2 and impedance units 2011 and 2012.
 キャパシタC1、C2は、トランジスタMP1のゲートと、トランジスタMN1のゲート、の間で直列に接続されている。キャパシタC1、C2は、2つのトランジスタMP1、MN1のそれぞれに対応して配置される。 Capacitors C1 and C2 are connected in series between the gate of transistor MP1 and the gate of transistor MN1. Capacitors C1 and C2 are arranged corresponding to the two transistors MP1 and MN1, respectively.
 キャパシタC1は、信号入力部Einと、トランジスタMP1及びインピーダンス部2011と、の間に接続される。従って、論理反転素子INV(信号入力部Ein)は、キャパシタC1を間に介して、トランジスタMP1のゲートと接続される。キャパシタC1は、第1実施形態の図2を参照して説明したキャパシタCに対応する。 The capacitor C1 is connected between the signal input section Ein, the transistor MP1 and the impedance section 2011. Therefore, the logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MP1 via the capacitor C1. Capacitor C1 corresponds to capacitor C described with reference to FIG. 2 of the first embodiment.
 キャパシタC2は、信号入力部Einと、トランジスタMN1およびインピーダンス部2012と、の間に配置される。従って、論理反転素子INV(信号入力部Ein)は、キャパシタC2を間に介して、トランジスタMN1のゲートと接続される。キャパシタC2は、第1実施形態の図4を参照して説明したキャパシタCに対応する。 The capacitor C2 is arranged between the signal input section Ein, the transistor MN1 and the impedance section 2012. Therefore, the logic inverting element INV (signal input section Ein) is connected to the gate of the transistor MN1 via the capacitor C2. Capacitor C2 corresponds to capacitor C described with reference to FIG. 4 of the first embodiment.
 インピーダンス部2011、2012は、2つのトランジスタMP1、MN1のそれぞれのゲートの電圧レベルをバイアスする。 Impedance units 2011 and 2012 bias the voltage levels of the respective gates of the two transistors MP1 and MN1.
 インピーダンス部2011は、キャパシタC1及びトランジスタMP1と、基準電圧VDDHと、の間に接続される。インピーダンス部2011は、トランジスタMP1のゲートを所定の電圧レベルにバイアスする。インピーダンス部2011は、第1実施形態の図2を参照して説明したインピーダンス部201に対応する。 The impedance section 2011 is connected between the capacitor C1 and the transistor MP1 and the reference voltage VDDH. Impedance section 2011 biases the gate of transistor MP1 to a predetermined voltage level. The impedance section 2011 corresponds to the impedance section 201 described with reference to FIG. 2 of the first embodiment.
 インピーダンス部2012は、キャパシタC2及びトランジスタMN1と、基準電圧VDDMと、の間に接続される。インピーダンス部2012は、トランジスタMN1のゲートを所定の電圧レベルにバイアスする。インピーダンス部2012は、第1実施形態の図4を参照して説明したインピーダンス部201に対応する。 The impedance section 2012 is connected between the capacitor C2 and the transistor MN1 and the reference voltage VDDM. Impedance section 2012 biases the gate of transistor MN1 to a predetermined voltage level. The impedance section 2012 corresponds to the impedance section 201 described with reference to FIG. 4 of the first embodiment.
 このように、トランジスタMP1側及びトランジスタMN1側の両方に、キャパシタC1、C2およびインピーダンス部2011、2012が設けられていてもよい。これにより、高電圧側、及び、低電圧側の両方の電圧レベルをレベルシフトすることができる。また、オーディオ信号は、グランドGNDを間に挟むように、正電圧と負電圧との間で電圧レベルが変化する場合が多い。従って、オーディオ信号のレベルシフト回路では、正電圧(基準電圧VDDH)と負電圧(基準電圧VDDM)との間の範囲でレベルシフトが行われる。 In this way, the capacitors C1 and C2 and the impedance units 2011 and 2012 may be provided on both the transistor MP1 side and the transistor MN1 side. As a result, the voltage levels on both the high voltage side and the low voltage side can be level-shifted. In addition, audio signals often change in voltage level between a positive voltage and a negative voltage with the ground GND interposed therebetween. Therefore, in the audio signal level shift circuit, level shift is performed in a range between a positive voltage (reference voltage VDDH) and a negative voltage (reference voltage VDDM).
(第5実施形態)
 図12は、第5実施形態におけるレベルシフト回路20の構成の一例を示す回路図である。第5実施形態は、第4実施形態と比較して、インピーダンス部2011、2012の構成が異なっている。
(Fifth embodiment)
FIG. 12 is a circuit diagram showing an example of the configuration of the level shift circuit 20 according to the fifth embodiment. The fifth embodiment differs from the fourth embodiment in the configurations of impedance units 2011 and 2012 .
 インピーダンス部2011、2012は、それぞれダイオードD1、D2である。従って、第5実施形態は、第2実施形態と第4実施形態との組み合わせである。 The impedance units 2011 and 2012 are diodes D1 and D2, respectively. Therefore, the fifth embodiment is a combination of the second and fourth embodiments.
(第6実施形態)
 図13は、第6実施形態における第1レベルシフト回路21の構成の一例を示す回路図である。
(Sixth embodiment)
FIG. 13 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the sixth embodiment.
 第1レベルシフト回路21は、HiZ(ハイインピーダンス)検出回路202と、論理固定回路203と、をさらに備える。 The first level shift circuit 21 further includes a HiZ (high impedance) detection circuit 202 and a logic fixing circuit 203 .
 ハイインピーダンス検出部としてのHiZ検出回路202は、信号出力部Eoutがハイインピーダンスであることを検出する。 A HiZ detection circuit 202 as a high impedance detection section detects that the signal output section Eout is high impedance.
 論理固定部としての論理固定回路203は、信号出力部Eoutの論理を固定する。すなわち、論理固定回路203は、信号出力部Eoutがハイインピーダンスである場合、出力信号Doutの電圧レベルを、2つの基準電圧のいずれか一方の電圧レベルに固定する。 A logic fixing circuit 203 as a logic fixing section fixes the logic of the signal output section Eout. That is, the logic fixing circuit 203 fixes the voltage level of the output signal Dout to one of the two reference voltages when the signal output section Eout is in high impedance.
 もし、入力信号Dinの電圧レベルがハイで固定(放置)される場合、ノードNBの電圧レベルは、ローに固定される。この場合、基準電圧VDDHからトランジスタMP2を通過してノードNBにリーク電流が流れ、ノードNBの電圧レベルが上昇してしまう可能性がある。図3において、ノードNBの電圧レベルが電圧レベルVp1を超えると、トランジスタMP1がオフ状態になる。従って、トランジスタMP1、MN1の両方がオフ状態になり、信号出力部Eoutがハイインピーダンス(フローティング状態)になる。信号出力部Eoutがハイインピーダンスになると、第1レベルシフト回路21の出力先の回路で貫通電流が流れてしまう可能性がある。 If the voltage level of the input signal Din is fixed (left) high, the voltage level of the node NB is fixed low. In this case, a leakage current may flow from the reference voltage VDDH through the transistor MP2 to the node NB, and the voltage level of the node NB may rise. In FIG. 3, when the voltage level of node NB exceeds voltage level Vp1, transistor MP1 is turned off. Therefore, both the transistors MP1 and MN1 are turned off, and the signal output section Eout becomes high impedance (floating state). When the signal output section Eout becomes high impedance, a through current may flow in the output destination circuit of the first level shift circuit 21 .
 そこで、HiZ検出回路202は、信号出力部Eoutがハイインピーダンスであることを検知し、論理固定回路203は、出力の論理を基準電圧VDDHの電圧レベルに固定する。これにより、出力がハイインピーダンスになることを抑制することができ、出力先の回路で貫通電流が流れることを抑制することができる。 Therefore, the HiZ detection circuit 202 detects that the signal output section Eout is in high impedance, and the logic fixing circuit 203 fixes the logic of the output to the voltage level of the reference voltage VDDH. As a result, it is possible to suppress the output from becoming high impedance, and to suppress the through current from flowing in the circuit of the output destination.
 なお、第1実施形態の図4に示す第2レベルシフト回路22にも、HiZ検出回路202及び論理固定回路203が設けられてもよい。もし、入力信号Dinの電圧レベルがローで固定(放置)される場合、ノードNBの電圧レベルは、ハイに固定される。この場合、ノードNBからトランジスタMN2を通過して基準電圧VDDMにリーク電流が流れ、ノードNBの電圧レベルが低下してしまう可能性がある。この場合、トランジスタMN1がオン状態からオフ状態になってしまうため、信号出力部Eoutがハイインピーダンスになってしまう。そこで、論理固定回路203は、出力の論理を基準電圧VDDMの電圧レベルに固定する。これにより、第2レベルシフト回路22においても、出力がハイインピーダンスになることを抑制することができ、出力先の回路で貫通電流が流れることを抑制することができる。 The second level shift circuit 22 shown in FIG. 4 of the first embodiment may also be provided with the HiZ detection circuit 202 and the logic fixation circuit 203 . If the voltage level of input signal Din is fixed (left) low, the voltage level of node NB is fixed high. In this case, a leakage current may flow from the node NB through the transistor MN2 to the reference voltage VDDM, and the voltage level of the node NB may drop. In this case, since the transistor MN1 is turned off from the on state, the signal output section Eout becomes high impedance. Therefore, the logic fixing circuit 203 fixes the output logic to the voltage level of the reference voltage VDDM. As a result, it is possible to prevent the output from becoming high impedance in the second level shift circuit 22 as well, and it is possible to prevent a through current from flowing in the output destination circuit.
(第7実施形態)
 図14は、第7実施形態における第1レベルシフト回路21の構成の一例を示す回路図である。第7実施形態は、HiZ検出回路202がノードNAの信号を取得する点で、第6実施形態とは異なっている。
(Seventh embodiment)
FIG. 14 is a circuit diagram showing an example of the configuration of the first level shift circuit 21 according to the seventh embodiment. The seventh embodiment differs from the sixth embodiment in that the HiZ detection circuit 202 acquires the signal of the node NA.
 レベル検出部としてのHiZ検出回路202は、トランジスタMN1のゲート(ノードNA)の電圧レベルを検出する。 A HiZ detection circuit 202 as a level detection unit detects the voltage level of the gate (node NA) of the transistor MN1.
 論理固定回路203は、トランジスタMN1のゲートの電圧レベルが所定の期間以上ローである場合、出力信号Doutの電圧レベルを、2つの基準電圧のいずれか一方の電圧レベルに固定する。 The logic fixing circuit 203 fixes the voltage level of the output signal Dout to one of the two reference voltages when the voltage level of the gate of the transistor MN1 is low for a predetermined period or longer.
 第6実施形態において説明したように、入力信号Dinがハイで固定され、トランジスタMN1、MP1のゲートの電圧レベルがローで固定されることにより、信号出力部Eoutがハイインピーダンスになる。従って、トランジスタMN1のゲートの電圧レベルが、論理固定回路203の論理固定の判断に用いられてもよい。 As described in the sixth embodiment, the input signal Din is fixed at high and the voltage levels of the gates of the transistors MN1 and MP1 are fixed at low, whereby the signal output section Eout becomes high impedance. Therefore, the voltage level of the gate of transistor MN1 may be used to determine the logic fixation of logic fixation circuit 203. FIG.
 なお、論理固定の判断は、トランジスタMN1のゲートの電圧レベルに限られない。HiZ検出回路202は、例えば、入力信号Din、又は、トランジスタMP1のゲート(ノードNB)の電圧レベルを検出してもよい。論理固定回路203は、例えば、入力信号Din、又は、トランジスタMP1のゲートの電圧レベルに基づいて、信号出力部Eoutの論理を固定してもよい。 It should be noted that the logic fixing determination is not limited to the voltage level of the gate of the transistor MN1. The HiZ detection circuit 202 may detect, for example, the input signal Din or the voltage level of the gate (node NB) of the transistor MP1. The logic fixing circuit 203 may fix the logic of the signal output section Eout based on, for example, the input signal Din or the voltage level of the gate of the transistor MP1.
 なお、本技術は以下のような構成を取ることができる。
 (1)異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
 前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
 前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、レベルシフト回路。
 (2)前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧の電圧レベルに基づいてバイアスする、(1)に記載のレベルシフト回路。
 (3)前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子と、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧と、の間に接続される、(1)又は(2)に記載のレベルシフト回路。
 (4)前記インピーダンス部は、所定値以上のインピーダンスを有する、(1)乃至(3)のいずれか一項に記載のレベルシフト回路。
 (5)前記2つのトランジスタは、
 第1基準電圧側の第1トランジスタと、
 前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
 前記信号入力部は、前記キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記キャパシタを介することなく前記第2トランジスタの第2制御端子に前記入力信号を供給し、
 前記インピーダンス部は、前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスする、(1)乃至(4)のいずれか一項に記載のレベルシフト回路。
 (6)前記入力信号のハイレベル及びローレベルのいずれか一方は、前記第1基準電圧及び前記第2基準電圧のいずれか一方の電圧レベルと同じである、(5)に記載のレベルシフト回路。
 (7)前記2つのトランジスタは、
 第1基準電圧側の第1トランジスタと、
 前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
 前記信号入力部は、第1キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記第1キャパシタとは異なる第2キャパシタを介して前記第2トランジスタの第2制御端子に前記入力信号を供給し、
 前記インピーダンス部は、
 前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスする第1インピーダンス部と、
 前記第2制御端子の電圧レベルを、所定の電圧レベルにバイアスする第2インピーダンス部と、を含む、(1)乃至(4)のいずれか一項に記載のレベルシフト回路。
 (8)前記入力信号のハイレベル及びローレベルのそれぞれは、前記第1基準電圧及び前記第2基準電圧の電圧レベルとは異なる、(7)に記載のレベルシフト回路。
 (9)前記第1基準電圧及び前記第2基準電圧は、それぞれ正電圧及び負電圧であり、又は、それぞれ負電圧及び正電圧である、(7)又は(8)に記載のレベルシフト回路。
 (10)カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
 前記信号出力部がハイインピーダンスであることを検出するハイインピーダンス検出部と、
 前記信号出力部がハイインピーダンスである場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備える、(1)乃至(9)のいずれか一項に記載のレベルシフト回路。
 (11)カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
 前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルを検出するレベル検出部と、
 前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルのハイレベル又はローレベルが所定の期間以上継続する場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備える、(1)乃至(9)のいずれか一項に記載のレベルシフト回路。
 (12)前記インピーダンス部は、制御端子が前記2つの基準電圧のいずれか一方と接続されるトランジスタである、(1)乃至(11)のいずれか一項に記載のレベルシフト回路。
 (13)前記インピーダンス部は、ダイオードであり、
 前記ダイオードのアノードは、前記2つの基準電圧のうち低電圧側と電気的に接続され、
 前記ダイオードのカソードは、前記2つの基準電圧のうち高電圧側と電気的に接続される、(1)乃至(11)のいずれか一項に記載のレベルシフト回路。
 (14)前記インピーダンス部は、抵抗素子であり、
 前記抵抗素子は、前記レベルシフト回路の動作周波数、及び、前記キャパシタの静電容量に応じた抵抗値を有する、(1)乃至(11)のいずれか一項に記載のレベルシフト回路。
 (15)前記抵抗素子は、前記抵抗素子及び前記キャパシタのハイパスフィルタのカットオフ周波数が前記レベルシフト回路の動作周波数よりも低くなる抵抗値を有する、(14)に記載のレベルシフト回路。
 (16)ハイレベルとローレベルとを反転させた前記入力信号を、前記2つの制御端子のそれぞれに供給する論理反転部をさらに備える、(1)乃至(15)のいずれか一項に記載のレベルシフト回路。
 (17)前記入力信号の電圧レベルは、時間に応じて、交互にハイレベル又はローレベルになる、(1)乃至(16)のいずれか一項に記載のレベルシフト回路。
 (18)デジタル信号をアナログ信号に変換するDAC(Digital to Analog Convertor)と、
 入力される前記デジタル信号の電圧レベルの範囲を、前記アナログ信号の電圧レベルの範囲に変換して前記DACに出力するレベルシフト回路と、を備え、
 前記レベルシフト回路は、
 異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
 前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
 前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、電子機器。
In addition, this technique can take the following structures.
(1) two transistors of different conductivity types cascode-connected between two reference voltages having different voltage levels;
a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
and an impedance unit that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
(2) The level shift circuit according to (1), wherein the impedance section is biased based on the voltage level of the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor.
(3) The impedance section includes the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor, and the control terminal to which the input signal is supplied via the capacitor; The level shift circuit according to (1) or (2), which is connected between.
(4) The level shift circuit according to any one of (1) to (3), wherein the impedance section has an impedance equal to or greater than a predetermined value.
(5) the two transistors are
a first transistor on the first reference voltage side;
a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
The signal input section supplies the input signal to a first control terminal of the first transistor through the capacitor and supplies the input signal to a second control terminal of the second transistor without the capacitor. death,
The level shift circuit according to any one of (1) to (4), wherein the impedance section biases the voltage level of the first control terminal to a predetermined voltage level.
(6) The level shift circuit according to (5), wherein one of the high level and the low level of the input signal is the same as the voltage level of one of the first reference voltage and the second reference voltage. .
(7) the two transistors,
a first transistor on the first reference voltage side;
a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
The signal input section supplies the input signal to a first control terminal of the first transistor via a first capacitor, and the second control terminal of the second transistor via a second capacitor different from the first capacitor. supplying the input signal to a control terminal;
The impedance section is
a first impedance unit that biases the voltage level of the first control terminal to a predetermined voltage level;
A level shift circuit according to any one of (1) to (4), further comprising a second impedance section that biases the voltage level of the second control terminal to a predetermined voltage level.
(8) The level shift circuit according to (7), wherein the high level and low level of the input signal are different from the voltage levels of the first reference voltage and the second reference voltage.
(9) The level shift circuit according to (7) or (8), wherein the first reference voltage and the second reference voltage are a positive voltage and a negative voltage, respectively, or a negative voltage and a positive voltage, respectively.
(10) a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
a high impedance detection unit that detects that the signal output unit is high impedance;
(1) to (9), further comprising a logic fixing unit that fixes the voltage level of the output signal to one of the two reference voltages when the signal output unit is high impedance. A level shift circuit according to any one of the preceding claims.
(11) a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
a level detection unit that detects the voltage level of at least one of the input signal and the two control terminals;
When the voltage level of the input signal and at least one of the two control terminals continues at a high level or a low level for a predetermined period or longer, the voltage level of the output signal is set to either one of the two reference voltages. The level shift circuit according to any one of (1) to (9), further comprising a logic fixer that fixes the level.
(12) The level shift circuit according to any one of (1) to (11), wherein the impedance section is a transistor whose control terminal is connected to one of the two reference voltages.
(13) the impedance unit is a diode;
the anode of the diode is electrically connected to the lower voltage side of the two reference voltages;
The level shift circuit according to any one of (1) to (11), wherein the cathode of the diode is electrically connected to a higher voltage side of the two reference voltages.
(14) the impedance unit is a resistive element,
The level shift circuit according to any one of (1) to (11), wherein the resistance element has a resistance value corresponding to the operating frequency of the level shift circuit and the capacitance of the capacitor.
(15) The level shift circuit according to (14), wherein the resistive element has a resistance value such that a cutoff frequency of a high-pass filter of the resistive element and the capacitor is lower than an operating frequency of the level shift circuit.
(16) The device according to any one of (1) to (15), further comprising a logic inverting unit that supplies the input signal whose high level and low level are inverted to each of the two control terminals. level shift circuit.
(17) The level shift circuit according to any one of (1) to (16), wherein the voltage level of the input signal alternates between high level and low level depending on time.
(18) a DAC (Digital to Analog Converter) that converts a digital signal into an analog signal;
a level shift circuit that converts the voltage level range of the input digital signal into the voltage level range of the analog signal and outputs the converted voltage level range to the DAC;
The level shift circuit is
two transistors of different conductivity types cascoded between two reference voltages having different voltage levels;
a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
and an impedance section that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-described contents. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
1 電子機器、20 レベルシフト回路、21 第1レベルシフト回路、22 第2レベルシフト回路、201 インピーダンス部、2011 インピーダンス部、2012 インピーダンス部、202 HiZ検出回路、203 論理固定回路、C キャパシタ、C1 キャパシタ、C2 キャパシタ、D1 ダイオード、D2 ダイオード、Din 入力信号、Dout 出力信号、Ein 信号入力部、Eout 信号出力部、INV 論理反転素子、MN1 トランジスタ、MN2 トランジスタ、MP1 トランジスタ、MP2 トランジスタ、R 抵抗素子、GND グランド、DVDD 基準電圧、VDDH 基準電圧、VDDM 基準電圧 1 electronic device, 20 level shift circuit, 21 first level shift circuit, 22 second level shift circuit, 201 impedance section, 2011 impedance section, 2012 impedance section, 202 HiZ detection circuit, 203 logic fixed circuit, C capacitor, C1 capacitor , C2 Capacitor, D1 Diode, D2 Diode, Din Input signal, Dout Output signal, Ein Signal input section, Eout Signal output section, INV Inverting element, MN1 Transistor, MN2 Transistor, MP1 Transistor, MP2 Transistor, R Resistive element, GND Ground, DVDD Reference voltage, VDDH Reference voltage, VDDM Reference voltage

Claims (18)

  1.  異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
     前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
     前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、レベルシフト回路。
    two transistors of different conductivity types cascoded between two reference voltages having different voltage levels;
    a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
    and an impedance unit that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
  2.  前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧の電圧レベルに基づいてバイアスする、請求項1に記載のレベルシフト回路。 2. The level shift circuit according to claim 1, wherein said impedance section is biased based on the voltage level of said reference voltage of said transistor having said control terminal to which said input signal is supplied via said capacitor.
  3.  前記インピーダンス部は、前記キャパシタを介して前記入力信号が供給される前記制御端子と、前記キャパシタを介して前記入力信号が供給される前記制御端子を有する前記トランジスタの前記基準電圧と、の間に接続される、請求項1に記載のレベルシフト回路。 The impedance section is provided between the control terminal to which the input signal is supplied via the capacitor and the reference voltage of the transistor having the control terminal to which the input signal is supplied via the capacitor. 2. The level shift circuit of claim 1, connected.
  4.  前記インピーダンス部は、所定値以上のインピーダンスを有する、請求項1に記載のレベルシフト回路。 3. The level shift circuit according to claim 1, wherein said impedance section has an impedance equal to or greater than a predetermined value.
  5.  前記2つのトランジスタは、
     第1基準電圧側の第1トランジスタと、
     前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
     前記信号入力部は、前記キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記キャパシタを介することなく前記第2トランジスタの第2制御端子に前記入力信号を供給し、
     前記インピーダンス部は、前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスする、請求項1に記載のレベルシフト回路。
    The two transistors are
    a first transistor on the first reference voltage side;
    a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
    The signal input section supplies the input signal to a first control terminal of the first transistor through the capacitor and supplies the input signal to a second control terminal of the second transistor without the capacitor. death,
    2. The level shift circuit of claim 1, wherein said impedance section biases the voltage level of said first control terminal to a predetermined voltage level.
  6.  前記入力信号のハイレベル及びローレベルのいずれか一方は、前記第1基準電圧及び前記第2基準電圧のいずれか一方の電圧レベルと同じである、請求項5に記載のレベルシフト回路。 6. The level shift circuit according to claim 5, wherein one of the high level and low level of the input signal is the same as the voltage level of one of the first reference voltage and the second reference voltage.
  7.  前記2つのトランジスタは、
     第1基準電圧側の第1トランジスタと、
     前記第1基準電圧とは異なる電圧レベルを有する第2基準電圧側の第2トランジスタと、を含み、
     前記信号入力部は、第1キャパシタを介して前記第1トランジスタの第1制御端子に前記入力信号を供給するとともに、前記第1キャパシタとは異なる第2キャパシタを介して前記第2トランジスタの第2制御端子に前記入力信号を供給し、
     前記インピーダンス部は、
     前記第1制御端子の電圧レベルを、所定の電圧レベルにバイアスする第1インピーダンス部と、
     前記第2制御端子の電圧レベルを、所定の電圧レベルにバイアスする第2インピーダンス部と、を含む、請求項1に記載のレベルシフト回路。
    The two transistors are
    a first transistor on the first reference voltage side;
    a second transistor on a second reference voltage side having a voltage level different from the first reference voltage;
    The signal input section supplies the input signal to a first control terminal of the first transistor via a first capacitor, and the second control terminal of the second transistor via a second capacitor different from the first capacitor. supplying the input signal to a control terminal;
    The impedance section is
    a first impedance unit that biases the voltage level of the first control terminal to a predetermined voltage level;
    2. The level shifting circuit of claim 1, comprising a second impedance section for biasing the voltage level of the second control terminal to a predetermined voltage level.
  8.  前記入力信号のハイレベル及びローレベルのそれぞれは、前記第1基準電圧及び前記第2基準電圧の電圧レベルとは異なる、請求項7に記載のレベルシフト回路。 8. The level shift circuit according to claim 7, wherein the high level and low level of said input signal are different from the voltage levels of said first reference voltage and said second reference voltage.
  9.  前記第1基準電圧及び前記第2基準電圧は、それぞれ正電圧及び負電圧であり、又は、それぞれ負電圧及び正電圧である、請求項7に記載のレベルシフト回路。 8. The level shift circuit according to claim 7, wherein the first reference voltage and the second reference voltage are a positive voltage and a negative voltage, respectively, or a negative voltage and a positive voltage, respectively.
  10.  カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
     前記信号出力部がハイインピーダンスであることを検出するハイインピーダンス検出部と、
     前記信号出力部がハイインピーダンスである場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備える、請求項1に記載のレベルシフト回路。
    a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
    a high impedance detection unit that detects that the signal output unit is high impedance;
    2. The level shifter according to claim 1, further comprising a logic fixing section that fixes the voltage level of the output signal to one of the two reference voltages when the signal output section has a high impedance. circuit.
  11.  カスコード接続される前記2つのトランジスタの間に接続され、前記入力信号の電圧レベルを変換した出力信号を出力する信号出力部と、
     前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルを検出するレベル検出部と、
     前記入力信号、及び、前記2つの制御端子の少なくとも1つの電圧レベルのハイレベル又はローレベルが所定の期間以上継続する場合、前記出力信号の電圧レベルを前記2つの基準電圧のいずれか一方の電圧レベルに固定する論理固定部と、をさらに備える、請求項1に記載のレベルシフト回路。
    a signal output unit connected between the two cascode-connected transistors for outputting an output signal obtained by converting the voltage level of the input signal;
    a level detection unit that detects the voltage level of at least one of the input signal and the two control terminals;
    When the voltage level of the input signal and at least one of the two control terminals continues at a high level or a low level for a predetermined period or longer, the voltage level of the output signal is set to either one of the two reference voltages. 2. The level shift circuit of claim 1, further comprising a logic fixer that fixes the level.
  12.  前記インピーダンス部は、制御端子が前記2つの基準電圧のいずれか一方と接続されるトランジスタである、請求項1に記載のレベルシフト回路。 3. The level shift circuit according to claim 1, wherein said impedance section is a transistor whose control terminal is connected to one of said two reference voltages.
  13.  前記インピーダンス部は、ダイオードであり、
     前記ダイオードのアノードは、前記2つの基準電圧のうち低電圧側と電気的に接続され、
     前記ダイオードのカソードは、前記2つの基準電圧のうち高電圧側と電気的に接続される、請求項1に記載のレベルシフト回路。
    The impedance unit is a diode,
    the anode of the diode is electrically connected to the lower voltage side of the two reference voltages;
    2. The level shift circuit according to claim 1, wherein the cathode of said diode is electrically connected to the higher voltage side of said two reference voltages.
  14.  前記インピーダンス部は、抵抗素子であり、
     前記抵抗素子は、前記レベルシフト回路の動作周波数、及び、前記キャパシタの静電容量に応じた抵抗値を有する、請求項1に記載のレベルシフト回路。
    The impedance unit is a resistive element,
    2. The level shift circuit according to claim 1, wherein said resistance element has a resistance value corresponding to the operating frequency of said level shift circuit and the capacitance of said capacitor.
  15.  前記抵抗素子は、前記抵抗素子及び前記キャパシタのハイパスフィルタのカットオフ周波数が前記レベルシフト回路の動作周波数よりも低くなる抵抗値を有する、請求項14に記載のレベルシフト回路。 15. The level shift circuit according to claim 14, wherein said resistance element has a resistance value such that a cutoff frequency of a high-pass filter of said resistance element and said capacitor is lower than an operating frequency of said level shift circuit.
  16.  ハイレベルとローレベルとを反転させた前記入力信号を、前記2つの制御端子のそれぞれに供給する論理反転部をさらに備える、請求項1に記載のレベルシフト回路。 2. The level shift circuit according to claim 1, further comprising a logic inverting section that supplies the input signal with its high level and low level inverted to each of said two control terminals.
  17.  前記入力信号の電圧レベルは、時間に応じて、交互にハイレベル又はローレベルになる、請求項1に記載のレベルシフト回路。 3. The level shift circuit according to claim 1, wherein the voltage level of said input signal alternates between high level and low level according to time.
  18.  デジタル信号をアナログ信号に変換するDAC(Digital to Analog Convertor)と、
     入力される前記デジタル信号の電圧レベルの範囲を、前記アナログ信号の電圧レベルの範囲に変換して前記DACに出力するレベルシフト回路と、を備え、
     前記レベルシフト回路は、
     異なる電圧レベルを有する2つの基準電圧の間でカスコード接続され、導電型の異なる2つのトランジスタと、
     前記2つのトランジスタがそれぞれ有する2つの制御端子の少なくとも一方に、ハイレベル又はローレベルの電圧レベルを有する入力信号を、キャパシタを介して供給する信号入力部と、
     前記キャパシタを介して前記入力信号が供給される前記制御端子の電圧レベルを、所定の電圧レベルにバイアスするインピーダンス部と、を備える、電子機器。
    a DAC (Digital to Analog Converter) that converts a digital signal into an analog signal;
    a level shift circuit that converts the voltage level range of the input digital signal into the voltage level range of the analog signal and outputs the converted voltage level range to the DAC;
    The level shift circuit is
    two transistors of different conductivity types cascoded between two reference voltages having different voltage levels;
    a signal input unit that supplies an input signal having a high-level or low-level voltage level through a capacitor to at least one of two control terminals of the two transistors, respectively;
    and an impedance section that biases the voltage level of the control terminal to which the input signal is supplied via the capacitor to a predetermined voltage level.
PCT/JP2022/003479 2021-03-08 2022-01-31 Level shift circuit and electronic device WO2022190702A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505201A JPWO2022190702A1 (en) 2021-03-08 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-036491 2021-03-08
JP2021036491 2021-03-08

Publications (1)

Publication Number Publication Date
WO2022190702A1 true WO2022190702A1 (en) 2022-09-15

Family

ID=83226635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003479 WO2022190702A1 (en) 2021-03-08 2022-01-31 Level shift circuit and electronic device

Country Status (2)

Country Link
JP (1) JPWO2022190702A1 (en)
WO (1) WO2022190702A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55491A (en) * 1979-05-04 1980-01-05 Citizen Watch Co Ltd Electronic watch
JPS6444619A (en) * 1987-08-12 1989-02-17 Seiko Epson Corp Level shift circuit
JPH09172367A (en) * 1995-12-20 1997-06-30 Seiko Epson Corp Level shifter circuit
JP2003110420A (en) * 2001-06-26 2003-04-11 Seiko Epson Corp Level shifter and electro-optical device using the same
JP2009188734A (en) * 2008-02-06 2009-08-20 Nec Electronics Corp Level shift circuit and driver and display device using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55491A (en) * 1979-05-04 1980-01-05 Citizen Watch Co Ltd Electronic watch
JPS6444619A (en) * 1987-08-12 1989-02-17 Seiko Epson Corp Level shift circuit
JPH09172367A (en) * 1995-12-20 1997-06-30 Seiko Epson Corp Level shifter circuit
JP2003110420A (en) * 2001-06-26 2003-04-11 Seiko Epson Corp Level shifter and electro-optical device using the same
JP2009188734A (en) * 2008-02-06 2009-08-20 Nec Electronics Corp Level shift circuit and driver and display device using it

Also Published As

Publication number Publication date
JPWO2022190702A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
KR100791934B1 (en) High amplitude output buffer circuit for high speed system
US7675363B2 (en) Differential amplifier circuit and A/D converter
JP4800781B2 (en) Voltage level shift circuit and semiconductor integrated circuit
JP5431992B2 (en) Transmission gate and semiconductor device
JP5720106B2 (en) Mixer circuit and method for adjusting common voltage of mixer circuit
JP4481314B2 (en) Signal conversion circuit
US6388477B1 (en) Switchable voltage follower and bridge driver using the same
JP2006157648A (en) Sample/hold circuit
JP4928290B2 (en) Differential signal comparator
WO2022190702A1 (en) Level shift circuit and electronic device
US11362669B2 (en) Track and hold circuit
JP2017175368A (en) Level shift circuit
JP2005130164A (en) Semiconductor integrated circuit and level converting circuit
KR100453424B1 (en) Semiconductor integrated circuit
JP2012114610A (en) Electronic circuit
CN108206689B (en) Level shift driving circuit
JP4443889B2 (en) Differential amplifier
TWI789242B (en) Level shift circuit
US9000964B2 (en) Circuit and method for signal conversion
JP2008011051A (en) Differential operational amplifier
JP5298285B2 (en) Receiver circuit
JP4939291B2 (en) Semiconductor circuit
US8963582B2 (en) Signal amplification circuit and method
JP3667616B2 (en) Level conversion circuit
JP2023080748A (en) level shift circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505201

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766669

Country of ref document: EP

Kind code of ref document: A1