WO2022190635A1 - 搬送ユニット、搬送方法、搬送プログラム - Google Patents

搬送ユニット、搬送方法、搬送プログラム Download PDF

Info

Publication number
WO2022190635A1
WO2022190635A1 PCT/JP2022/001368 JP2022001368W WO2022190635A1 WO 2022190635 A1 WO2022190635 A1 WO 2022190635A1 JP 2022001368 W JP2022001368 W JP 2022001368W WO 2022190635 A1 WO2022190635 A1 WO 2022190635A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
load
carriage
unit
determination unit
Prior art date
Application number
PCT/JP2022/001368
Other languages
English (en)
French (fr)
Inventor
紅花 井上
政宏 木下
昭宏 石井
充典 杉浦
良治 清水
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022190635A1 publication Critical patent/WO2022190635A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar

Definitions

  • the present invention relates to a transport unit, a transport method, and a transport program for transporting a load placed on a transport platform.
  • a forklift is widely used as a transport device that lifts and transports a load placed on a carrier such as a pallet together with the carrier.
  • Some forklifts are equipped with an object detection device that detects surrounding objects (see, for example, Patent Document 1).
  • an object detection device detects the position of an object (such as an obstacle or a wall) that hinders the movement of a forklift by processing images captured by a stereo camera.
  • the forklift main controller performs deceleration processing based on the detection results of the object detection device.
  • a forklift such as a carriage and a load.
  • the carriage has a receiving portion into which the fork is inserted and removed.
  • it is difficult to detect the receiving part from the processed image by distinguishing it from the shape or pattern given to an object having an external shape similar to that of the carriage, and as a result, there are cases where the object to be conveyed cannot be identified. be.
  • an object of the present invention is to improve the accuracy with which an object to be conveyed is identified from objects existing around the conveying apparatus, thereby supporting the operation control of the conveying apparatus.
  • a transport unit includes a transport device and a distance measuring device.
  • the conveying device has a conveyability determination unit and conveys the load placed on the conveying table.
  • the distance measuring device measures the distance to the object according to the amount of reflection of the electromagnetic waves irradiated to the object within the space in which the transport device can travel.
  • the transport availability determination unit includes a distance information acquisition unit, a determination unit, and a condition determination unit.
  • the distance information acquisition unit acquires distance information to the object according to the amount of reflection of electromagnetic waves irradiated from the lighting device to the object.
  • the determination unit determines the state of the load when the object is a carrier on which the load is placed, based on the distance information to the object acquired by the distance information acquisition unit.
  • the condition determination unit determines whether a transportability condition, which is a condition for permitting the transport device to transport the load, is met, based on the state of the load determined by the determination unit.
  • the transport device holds and lifts the transport table.
  • Conveyance includes only lifting and lowering without horizontal movement of the carriage.
  • the conveying apparatus includes a self-propelled type having a power source for moving the main body (vehicle body) and a non-self-propelled type having no such power source.
  • the non-self-propelled conveying device includes, for example, a power lifter, a conveying robot (manipulator), etc., and may be configured to be pushable by hand.
  • Self-propelled transport devices include, for example, forklifts and the like.
  • Self-propelled transport equipment includes those composed of manned vehicles equipped with parts (steering, levers, pedals, etc.) for human operation, and AGV (Automatic Guided Vehicle), It also includes an automatic transport machine, such as an AMR (Autonomous Mobile Robot), which is composed of an automatically driving vehicle that can run without a human driving operation.
  • AGV Automatic Guided Vehicle
  • AMR Autonomous Mobile Robot
  • a mechanism for holding and raising/lowering the carriage such as an arm portion
  • the transport table is a loading platform on which a load is placed and transported together with the load by a transport device, and may be made of any material such as wood or resin.
  • the carriage has, for example, a receiving portion such as a hole or a recess into which an arm member of a carriage such as a forklift is inserted.
  • the carriage includes, for example, flat pallets, sheet pallets, and the like.
  • Electromagnetic waves emitted from lighting equipment include, for example, light in a broad sense (ultraviolet light, visible light, infrared light), ⁇ (gamma) rays with shorter wavelengths than light, X-rays, microwaves with longer wavelengths than light, and broadcasting Including radio waves (short wave, medium wave, long wave), ultrasonic waves, elastic waves, quantum waves, etc.
  • the distance information acquisition unit may be configured to detect reflection of electromagnetic waves to calculate distance information, or may be configured to acquire distance information from a distance sensor or the like provided as an external device, for example. good.
  • the distance information to the object according to the amount of reflection of the electromagnetic waves is referred to. Therefore, it becomes easy to distinguish between the shape provided on the carriage and the shape or pattern given to an object having an outer shape similar to that of the carriage, thereby improving the identification accuracy of the object to be conveyed. Further, based on the distance information to the cargo and the distance information to the carrier, it is possible to distinguish and identify the carrier and the cargo from the object to be conveyed, and it is also possible to determine the state of the cargo. become.
  • the condition determination unit determines whether or not the cargo can be transported by the transport device based on the condition of the cargo. As a result, since the state of the cargo is determined with high accuracy, it is possible to suppress the occurrence of problems such as collapse of the cargo during transportation when it is determined that the cargo can be transported.
  • the determination unit may determine the relative position of the load with respect to the carrier as the state of the load.
  • the portability condition may include a position condition that the relative position is positioned within a predetermined reference area.
  • the determination unit may determine the posture of the load with respect to the carriage as the state of the load.
  • the transportability condition may include an attitude condition that the attitude of the load with respect to the platform is within a predetermined reference range.
  • the determination unit may determine the shape of the cargo as the state of the cargo.
  • the transportability condition may include a shape condition that the shape of the load is within a predetermined reference range.
  • the determination unit may determine the height of the load as the state of the load.
  • the transportable condition may include a height condition that the height is within a predetermined reference height.
  • the transport device may further include an arm member that is inserted into the receiving portion of the transport platform, and a transport control section that controls the operation of the arm member.
  • the transport control unit may control the operation of the arm member based on the state of the load determined by the determination unit.
  • the distance measuring device may include an illumination device that irradiates an object with electromagnetic waves, and a light receiving unit that detects the amount of reflection of the electromagnetic waves emitted from the illumination device.
  • the distance measuring device may further include a control unit that adjusts the irradiation amount of the electromagnetic wave from the illumination device and the exposure time for the light receiving unit to detect the reflection amount of the electromagnetic wave.
  • the control unit by adjusting the exposure time by the control unit, it is possible to irradiate the electromagnetic wave and receive the reflected electromagnetic wave with an appropriate exposure time according to the distance to the object.
  • the exposure time appropriately to obtain binarized data, it is possible to accurately determine whether it is a carriage or not, the state of the load, etc., using the distance information. can.
  • the controller may adjust the exposure time according to the distance to the object.
  • the control unit shortens the exposure time when the distance to the object is short, and lengthens the exposure time when the distance to the object is long. It is possible to irradiate the electromagnetic wave and receive the reflected electromagnetic wave with an appropriate exposure time.
  • the electromagnetic waves may be infrared. Accordingly, by acquiring the distance information calculated according to the amount of reflected infrared rays, it is possible to accurately determine whether or not the object is the carriage even when the carriage operation is carried out in a dark place, for example.
  • the determination unit may determine whether the object is the carriage based on the distance information.
  • the object to be measured in order to determine whether or not the object to be measured is a carriage using the distance information to the object to be measured, for example, a black pattern or the like is written on the side surface of the object placed on the floor.
  • a black pattern or the like is written on the side surface of the object placed on the floor.
  • Even in the case where the transport table is transported by the transport device it is possible to detect the presence or absence of the characteristics of the transport table transported by the transport device (for example, a hole into which the arm part of the transport device is inserted, or a receiving portion such as a recess) using the distance information. . As a result, it is possible to accurately determine whether or not the detected object is the carriage.
  • the carrier may have a receiving portion into which the arm member of the carrier is inserted.
  • the determination unit may determine whether or not the object is the carriage based on at least one of the presence/absence, size, and position of the receiving unit, using the distance information.
  • the receiving part is detected using the distance information, and the determining part determines whether or not the object is the carriage according to the detection result of the presence or absence, size, position, etc. of the receiving part. Since the receiving part is one of the main characteristic parts of the carriage, it is possible to accurately determine whether or not the object is the carriage.
  • the carrier may have a receiving portion into which the arm member of the carrier is inserted.
  • the determination unit determines whether the target object is a single carriage, a carriage on which a load is placed, or an object other than a carriage according to at least one of the presence, size, and position of the receiving part. You may determine that it is either.
  • the receiving part is one of the main characteristic parts of the carriage. (loaded, not carriage) can be accurately determined.
  • the determination unit may detect the floor surface on which the object is placed, using the distance information, and detect an object having a height above the floor surface as a candidate for the carriage. Accordingly, it is possible to accurately detect the carrier candidate based on the detected height from the floor surface.
  • the determination unit may set the outer shape of the object detected as the candidate of the carriage based on the distance information.
  • the determination unit may set the outer shape using binarized data obtained based on distance information or brightness information of a captured image of the object. Thereby, the outer shape of the object can be set using binarized data obtained based on the distance information or the brightness information of the image of the object.
  • the exposure time for receiving the electromagnetic wave emitted from the illumination device may be adjusted.
  • the exposure time for irradiating and receiving electromagnetic waves emitted from the illumination device is adjusted to obtain properly binarized data. , the outline of the object can be set accurately.
  • the determination unit may set a detection surface on which the receiving portion is assumed to be formed, based on the set outline. Thereby, it is possible to set the detection surface where the receiving part is supposed to be located from the set outline.
  • the determination unit may determine whether or not it is a carriage according to depth information of the receiving unit on the detection surface.
  • the determination unit may determine the state of the load by detecting the position of the load in the substantially horizontal direction, which exists on the same axis coordinates as the detection plane of the object assumed to be the carriage.
  • the position, size, bias, etc. of the load can be determined by detecting the position in the substantially horizontal direction of the load existing on the same axis coordinates as the detection surface of the object assumed to be the carrier. can.
  • the determination unit may determine the state of the load by detecting the orientation of the load with respect to the detection surface of the object assumed to be the carrier. Accordingly, by detecting the orientation of the load with respect to the detection surface of the object assumed to be the carriage, it is possible to determine the orientation of the carriage with respect to the carriage, the state of bias, and the like.
  • the transportation availability determination unit may further include a storage unit that stores detection data of the carriage determined by the determination unit to be the carriage.
  • a conveying device that conveys a load placed on a conveying platform, and a reflection amount of an electromagnetic wave irradiated to an object within a space in which the conveying device can travel, and a distance measuring device for measuring a distance to an object.
  • the transport method includes a distance information acquisition step, a determination step, and a transport availability determination step.
  • the distance information acquiring step distance information to the object is acquired according to the amount of reflection of the electromagnetic waves irradiated from the lighting device to the object.
  • the determination step based on the distance information to the object acquired in the distance information acquisition step, if the object is a carrier on which the load is placed, the state of the load is determined.
  • the transport availability determination step based on the state of the load determined in the determination step, it is determined whether the transportability condition, which is a condition for permitting the transport device to transport the load, is satisfied.
  • a transport program according to one aspect of the present invention causes a computer to execute the above transport method.
  • the method and program described above have technical features corresponding to those of the transport unit described above. Therefore, when it is determined that the cargo can be transported based on the accurately determined state of the cargo, it is possible to suppress the occurrence of problems such as collapse of the cargo during transportation.
  • the motion control of a conveying apparatus can be assisted by improving the precision which identifies a conveying target object from the object which exists in the circumference
  • FIG. 2 is a diagram showing a transport unit and a transport table to be transported according to an embodiment of the present invention
  • 2(a) is a perspective view showing a carrier that is carried by the forklift in FIG. 1
  • FIG. (b) is a perspective view showing another example of the carrier
  • FIG. 2 is a control block diagram of the transport unit in FIG. 1
  • FIG. 2 is a view for explaining the principle of calculating the distance to an object by the TOF method using the distance measuring device of FIG. 1
  • FIG. 4 is a diagram showing a carriage table stored in a storage unit included in the carriage possibility determination device of FIG. 3
  • 4 is a flow chart showing the flow of processing of a transport feasibility determination method by the transport feasibility determination apparatus of FIG.
  • FIG. 1 4 is a flow chart showing the flow of processing of a transport feasibility determination method by the transport feasibility determination apparatus of FIG. 1 ;
  • (a), (b), (c) is a schematic diagram explaining the detection process of a conveyance stand.
  • 11A is a perspective view showing a plane defined in the flowchart of FIG. 10 and an object without depth information (hole) on the plane;
  • FIG. 11B is a perspective view showing a plane defined in the flowchart of FIG. 10 and an object having depth information (holes) on the plane;
  • FIG. 2 is a flow chart showing the flow of processing of a transport state detection method by the transport propriety determination device of FIG. 1;
  • (a) is a front view showing the size in the x-axis direction of the detection surface of the transportability determination device.
  • FIG. 4B is a plan view showing the detection direction of the transport state detection unit;
  • FIG. (c) is a plan view showing the positional relationship between the detection direction of the transport possibility determination device and the transport table.
  • FIG. 2 is a plan view showing the positional relationship between a carrier and a load placed thereon;
  • 4 is a flow chart showing the flow of processing of a method for determining whether or not transportation is possible according to the present embodiment.
  • FIG. 4 is a conceptual diagram for explaining detection of a carriage in a darkroom;
  • a transportability determination device 10 transportability determination unit
  • a forklift (transportation device) 20 having the transportability determination device 10
  • a rangefinder 1 mounted on the forklift 20 and these rangefinders 1 1 to 13, the transport unit 100 including the forklift 20 will be described below.
  • the transport unit 100 includes a distance measuring device 1 and a forklift 20, as shown in FIGS.
  • a forklift (conveying device) 20 holds and raises and lowers a conveying table 30 on which a load 31 is placed. Further, the forklift 20 moves the raised platform 30 to a desired position.
  • the forklift 20 of the present embodiment is, for example, a “manned type” operated by a driver who gets on the forklift. The driving operation is assisted based on the results of the detection of the carriage 30 and the state of the load 31 on the carriage 30 by the transport feasibility determination device 10 .
  • the forklift 20 may be an automatic transport device that does not require driving operation by the driver. In this case, automatic operation is performed based on the results of the detection of the carriage 30 and the state of the load 31 on the carriage 30 by the transfer feasibility determination device 10 .
  • the forklift 20 includes a vehicle body portion 21, four wheels 22a and 22b, a driving portion 23, an arm portion (fork) 24, a transport possibility determination device 10 (see FIG. 3), a transport control portion 25 (see FIG. 3), and a travel actuator 26. (see FIG. 3), a braking device 27 (see FIG. 3), and a lift actuator 28 (see FIG. 3).
  • the vehicle body 21 has a driver's seat provided with operation members (not shown) operated by the driver, such as an accelerator pedal, a steering handle, a brake pedal, and an operation lever.
  • the vehicle body portion 21 accommodates driving sources such as an engine and a motor for traveling.
  • Two wheels 22 a and 22 b are provided on the front and rear sides of the vehicle body portion 21 .
  • the front wheels 22a are driving wheels and the rear wheels 22b are steering wheels.
  • the front wheels 22a are driven to rotate by the travel actuator 26, and the rear wheels 22b are steered, so that the forklift 20 (body portion 21) can travel and turn.
  • the driving portion 23 is provided in front of the vehicle body portion 21 .
  • the drive unit 23 drives the arm unit 24 in the vertical direction or the tilt direction according to the operation of the control lever by the driver.
  • the arm portion 24 is inserted into a hole (receiving portion) 30 b or the like provided in the carriage 30 to support the carriage 30 .
  • the drive unit 23 includes elevating actuators such as masts, sprockets, chains, and hydraulic cylinders.
  • the arm portions 24 are, for example, two claw-shaped members extending forward.
  • the driving portion 23 drives the arm portion 24 upward, so that the carriage 30 is supported by the arm portion 24 and lifted.
  • the carriage 30 moves to a desired position.
  • the transportability determination device 10 is provided in the forklift 20 and is connected to the distance measuring device 1 attached to the upper portion of the drive section 23 so as to be communicable.
  • the communication between the transfer feasibility determination device 10 and the distance measuring device 1 may be wired communication or wireless communication.
  • the transportability determination device 10 Based on the distance information received from the distance measuring device 1, the transportability determination device 10 detects the carriage 30 transported by the forklift 20, and determines the state (position, range, height, balance, etc.). Further, the transportability determination device 10 determines whether the transportability is determined according to the state of the cargo.
  • the transportation control unit 25 is a controller that controls transportation of the forklift 20, and as shown in FIG. 3, has a traveling control unit 25a and an arm control unit 25b.
  • the travel control unit 25a controls the output of a driving source such as an engine or a motor so that the vehicle speed of the forklift 20 becomes a target speed.
  • the arm control section 25b controls the elevation of the arm section 24 according to the amount of operation of an operating lever (not shown) installed in the driver's seat provided in the vehicle body section 21 . Further, the arm control unit 25b automatically adjusts the distance between the two arms 24 in accordance with the detected position of the hole 30b of the carriage 30 according to the detection result of the carriage 30, which will be described later.
  • the forklift 20 may be controlled. Therefore, the forklift 20 may include a spacing adjustment mechanism that adjusts the spacing of the arm portions 24 . In addition, the forklift 20 may be provided with a telescopic adjustment mechanism that independently adjusts the amount of extension and retraction of the left and right arms.
  • the travel actuator 26 is configured to include a drive source for travel and drive transmission means for transmitting the output of the drive source to the drive-side wheels 22a.
  • the braking device 27 is provided to reduce the vehicle speed of the running forklift 20 or to stop it. The braking device 27 applies braking force to the wheels 22a according to the amount of operation of the brake pedal provided at the driver's seat.
  • the elevation actuator 28 is provided in the drive section 23 and includes, for example, hydraulic cylinders such as lift cylinders and tilt cylinders. The hydraulic cylinder changes the angle of the arm portion 24 in the tilt direction or moves the position of the arm portion 24 up and down according to the amount of operation of an operation lever (not shown) installed in the driver's seat.
  • Transport availability determination device 10 As shown in FIG. 3, the transportability determination device 10 includes a distance information acquisition unit 18, a storage unit 15, a control unit (determination unit, condition determination unit) 13, a carriage information acquisition unit 16, and a load state. and an acquisition unit 17 .
  • the distance information acquisition unit 18 acquires distance information measured by the distance measurement unit 14 of the distance measurement device 1 from the distance measurement device 1 .
  • the storage unit 15 stores various programs for controlling the operation of the transport possibility determination device 10, and registers information about the features (for example, the size, the position of the hole 30b, etc.) of the transport table 30 detected as the transport table 30.
  • a carriage database (DB) 15a is stored.
  • the storage unit 15 also stores load information including the type, shape, size, and the like of the detected load 31 placed on the carriage 30, and the form of the load 31 on the carriage 30 (position, orientation, posture, shape, height, etc.).
  • the carriage DB 15a stores a carriage table (see FIG. 5) including information such as the external dimensions of the object determined as the carriage 30 and the type of receiving portion (hole or recess). Thus, the carriage DB 15a is referred to when determining which type of carriage the detected object is.
  • the control unit 13 determines whether or not the object is the carriage 30 based on the characteristics of the object, which will be described later. is appropriate. Further, the control unit 13 determines whether or not the cargo 31 can be transported according to the state of the cargo 31 .
  • the carriage information acquisition unit 16 acquires object information necessary for determining whether or not the object, which will be described later, is the carriage 30 . Specifically, the carriage information acquisition unit 16 acquires information such as the size (width, height, etc.) of an object assumed to be the carriage 30, the presence or absence of a receiving part (hole, recess, etc.), and the position thereof. get.
  • the load state acquisition unit 17 detects the state of the load 31 placed on the object determined to be the carrier 30 . As shown in FIG. 3, the load state acquisition unit 17 has a position information acquisition unit 17a, a posture information acquisition unit 17b, a shape information acquisition unit 17c, and a height information acquisition unit 17d.
  • the position information acquisition unit 17 a detects the position of the load 31 on the object determined to be the carrier 30 .
  • the orientation information acquisition unit 17b detects the orientation of the load 31 with respect to the object determined to be the carriage 30 .
  • the shape information acquisition unit 17c detects information on the shape (external shape, etc.) of the load 31 on the object determined to be the carrier 30 .
  • the height information acquisition unit 17d detects height information of the load 31 on the object determined to be the carriage 30 . It should be noted that the position, orientation, Information such as the shape and height is used in the process of determining whether or not the object can be transported, which will be described later.
  • the carriage 30 is a pallet made of resin, and as shown in FIG.
  • the main body 30a is, for example, a pallet made of reusable resin such as PP (polypropylene), and has an upper surface on which the load 31 is placed, four side surfaces, and a bottom surface. Four side surfaces of the main body portion 30a are formed with holes 30b into which the arm portions 24 of the forklift 20 can be inserted.
  • Two holes (receiving portions) 30b are provided on each of the four side surfaces of the body portion 30a, and the two arm portions 24 of the forklift 20 are inserted therein.
  • the holes 30b into which the arm portions 24 of the forklift 20 are inserted may be provided on all four side surfaces of the main body portion 30a, or may be provided only on a set of two opposing side surfaces. , or may be provided on only one surface.
  • the carrier 30 carried by the forklift 20 may be the carriage 130 .
  • the arm portion 24 of the forklift 20 is inserted between the floor surface FL and the upper surface forming the recess 130b, and is conveyed so as to support the recess 130b from below. Platform 130 can be lifted.
  • the distance measuring device 1 includes an illumination section (illumination device) 11, a light receiving section 12, a control section 1a, and a distance measuring section .
  • the illumination unit (illumination device) 11 has, for example, an LED, and irradiates an object such as the carrier 30 or the load 31 with light L1 having a desired wavelength.
  • the illumination unit 11 is provided with a projection lens (not shown) that guides the light L1 emitted from the LED toward the object.
  • the light receiving unit 12 includes, for example, a light receiving lens and an imaging device. The light-receiving lens is provided to receive reflected light emitted from the illumination unit 11 to the object and reflected by the object, and guide the light to the imaging device.
  • the imaging element has a plurality of pixels, and each of the plurality of pixels receives the reflected light received by the light receiving lens, and transmits an electric signal photoelectrically converted to the control unit 13 .
  • An electric signal corresponding to the amount of reflected light received by the image sensor is used by the control unit 13 to calculate distance information.
  • the control unit 1a reads various control programs stored in the storage unit 15, and controls the illumination unit 11 that irradiates the target with light. More specifically, the control unit 1a controls the illumination unit 11 so as to irradiate the optimum light according to the distance to the object irradiated with the light, the properties of the object such as the shape, color, and the like.
  • control unit 1a adjusts the exposure time of the light receiving unit 12 for detecting the amount of light emitted from the illumination unit 11 and the amount of reflection of the light emitted from the illumination unit 11, for example, according to the distance to the object. .
  • control unit 13 adjusts the exposure times of the illumination unit 11 and the light receiving unit 12 depending on whether or not binarized data (to be described later) can be obtained.
  • the control unit 1a adjusts to shorten the exposure time when the distance to the object is short, and adjusts to lengthen the exposure time when the distance to the object is long. do.
  • the distance measurement unit 14 calculates distance information to the object for each pixel based on the electrical signal corresponding to each pixel received from the image sensor included in the light receiving unit 12 . Calculation of distance information to an object by the distance measuring unit 14 of this embodiment will be described below with reference to FIG. That is, in the present embodiment, a so-called TOF (Time of Flight) method is used, and the distance measurement unit 14 detects a projected wave of a constant frequency such as a sine wave or a rectangular wave emitted from the illumination unit 11 and an AM-modulated constant frequency. The distance to the object is calculated based on the phase difference ⁇ (see FIG. 4) between the light received by the imaging device included in the unit 12 and the received wave.
  • TOF Time of Flight
  • phase difference ⁇ is represented by the following relational expression (1).
  • a conversion formula from the phase difference ⁇ to the distance D is given by the following relational expression (2).
  • D (c/(2 ⁇ f LED )) ⁇ ( ⁇ /2 ⁇ )+D OFFSET (2)
  • c is the speed of light ( ⁇ 3 ⁇ 10 8 m/s)
  • f LED is the modulation frequency of the LED projection wave
  • D OFFSET is the distance offset.
  • z ⁇ is the mounting angle of the light receiving unit 12 (imaging device) with respect to the floor FL
  • the distance measuring device 1 3D shape information (outer shape Pv, plane Ps, depth information Pp) of the object (object P) assumed to be the detected carriage 30, 3D shape information (outer shape Pv, receiving part type Ps), 3D shape information of the target (Q) assumed to be the cargo 31 (outer shape Qv, plane Qs, features Qp such as unevenness), initially set exposure time Inti of the light receiving unit 12 (imaging device), light receiving unit 12, defined as the center point S (Sx/2) of the light receiving section 12 (see FIGS. 8A and 8B).
  • the x-axis is the direction perpendicular to the traveling direction (horizontal direction)
  • the y-axis is the longitudinal direction (the traveling direction of the forklift 20)
  • the z-axis is the height direction (vertical direction) from the floor FL.
  • the exposure times of the illumination unit 11 (illumination device) and the light receiving unit 12 (imaging device) of the distance measuring device 1 are set to initial setting values.
  • step S12 using the distance information measured (acquired) by the distance measuring unit 14 using the above-described TOF method, a three-dimensional (3D ) information is obtained.
  • step S15 binarized data is acquired based on the information PX of the object P (distance or brightness information).
  • the binary data to be acquired is preferably acquired based on brightness information rather than distance information from the viewpoint that it can be stably acquired regardless of resolution.
  • step S16 it is determined whether or not the binarized data has been properly acquired, that is, whether or not the edge of the object P (and object Q) has been detected.
  • the process proceeds to step S17.
  • step S20 the exposure time Inti of the illumination unit 11 (illumination device) and the light receiving unit 12 (imaging device).
  • step S17 Pvx (outer shape of object P) is defined using the binarized data because it was determined in step S16 that the binarized data was properly acquired.
  • step S18 a plane Psx (surface information of the object P) within the range of the outer shape Pvx of the object P is defined from the distance information corresponding to each pixel of the image sensor acquired by the TOF method.
  • the side surface portion of the object P where the receiving portion such as the hole 30b may be formed is defined as the plane Psx.
  • step S19 it is determined whether or not the plane Psx has been acquired. If the plane Psx has been acquired, the process proceeds to the flowchart shown in FIG. device) and the light receiving unit 12 (imaging device) are adjusted, and the process returns to step S18 again.
  • step S20 since it was determined in step S16 that the binarized data was not properly acquired, the exposure time Inti is adjusted based on the brightness information acquired by the light receiving unit 12 (imaging device). .
  • the exposure time is adjusted to be shorter.
  • the exposure time is adjusted to be longer.
  • step S21 a plane Psz having the same z-coordinate as the base Psx of the carriage 30 is defined, and a space formed by a plane including the plane Psx and a plane including the plane Psz is defined as a side.
  • Z-coordinate information is obtained while scanning from Px in the y-axis direction (see FIGS. 8B and 8C).
  • step S22 it is determined whether or not the z-axis information (height) is constant in the x-axis direction or the y-axis direction.
  • the process proceeds to step S28.
  • step S23 since it was determined in step S22 that the z-axis information (height) on the base Px is constant, the object P is not irregularly shaped, and there is a possibility that it is the carriage 30 on which the load 31 is not placed. is tentatively determined as a certain object.
  • step S24 depth information Ppx of the object P is defined from the plane Psx. At this time, the exposure time may be adjusted, or the forklift 20 may be moved, so that the depth information Ppx representing holes and recesses can be easily obtained.
  • step S25 it is determined from the depth information Ppx whether or not there is a depth within the plane Psx, that is, whether or not there is a receiving portion such as the hole 30b within the plane Psx.
  • the TOF method is adopted, and the distance information corresponding to each pixel of the imaging device is measured (obtained) by the distance measuring unit 14 of the distance measuring device 1. .
  • FIG. 9(a) an object P having a black pattern on the side surface and an object P having a hole 30b having depth information formed in the side surface as shown in FIG. 9(b). can be discerned based on the obtained distance information.
  • step S26 if it is determined that the plane Psx has a depth, that is, a receiving portion such as a hole 30b (see FIG. 9B), the process proceeds to step S26, and there is no depth (receiving portion such as a hole 30b) (see FIG. 9B). 9(b)), the process proceeds to step S27.
  • step S26 since it was determined in step S25 that the depth (hole 30b) exists within the plane Psx, it is determined that the object P is the carriage 30 having the receiving portion (hole 30b) based on the depth information Ppx. . Then, a carriage table (see FIG. 5) is created in which information such as the outer shape, size, type of receiving portion (hole, recess), etc. of the carriage 30 is registered.
  • step S27 since it was determined in step S25 that there is no depth (the hole 30b) (they are substantially flat), the object P does not have a receiving portion for inserting the arm portion 24 of the forklift 20, and is transported. It is determined that it is not the platform 30, and the process is terminated.
  • step S28 it was determined in step S22 that the z-axis information (height) on the base Px is not constant in the x-axis direction or the y-axis direction. , or is provisionally determined to be an odd-shaped object that is not a carriage.
  • step S29 the object P tentatively determined in step S28 is matched with the carriage 30 registered in the carriage table by referring to the carriage DB 15a. That is, in step S29, a part of the object P (particularly, the lower part) is matched to determine whether or not the outer shape, size, hole position, etc. of the carriage 30 already registered in the carriage table match.
  • step S30 it is determined whether or not the object P includes the carriage 30 according to whether or not part of the object P matches the registered carriage 30 as a result of matching in step S29. be done.
  • the process proceeds to step S26, the information of the carriage 30 is registered in the carriage table, and the process ends.
  • step S26 the information of the carriage 30 is registered in the carriage table, and the process ends.
  • part of the object P does not match the registered carriage 30 as a result of matching, it is determined that the object P is not the carriage 30, and the process ends.
  • the front surface of the object P as seen from the light receiving unit 12 Py is defined, and the length of the front surface Py in the x-axis direction is Px.
  • Qy be the plane Qy of the object Q having the y coordinate closest to the front Py of the object P
  • Qx be the length of the plane Qy in the x-axis direction (see FIG. 8A).
  • step S31 it is determined whether or not the three-dimensional shape information (outer shape Qv and plane Qs) of the object Q assumed to be the cargo 31 distinguished from the object P determined to be the carriage 30 has been acquired.
  • the process proceeds to step S32.
  • the adjustment of the exposure time Inti is repeated until the time Inti is adjusted, the process returns to step S31, and the outline Qv and the plane Qs are obtained.
  • step S32 depth information Qpx of the object Q is defined from the plane Qy of the object Q placed on the upper surface of the object P detected as the carrier 30.
  • FIG. At this time, adjustment of the exposure time of the illumination unit 11 (illumination device) and the light receiving unit 12, movement of the forklift 20, and the like may be performed so that the depth information of the object Q can be easily acquired.
  • the depth information of the object Q similarly to the object P, the depth information of the object Q can be obtained by using the distance information obtained by the TOF method and obtained in each pixel of the image sensor.
  • step S33 in order to detect how the object Q is placed on the object P, the base Px of the plane Psx of the object P and the base Qx of the plane Qy of the object Q are calculated (Fig. 8(a)).
  • the base Px and the base Qx are the object P determined to be the carriage 30 and the load 31 placed on its upper surface using the information of the carriage 30 registered in the carriage table. is calculated after separating the object Q assumed to be .
  • the front face Py of the object P is defined from the outline Pvx and the plane Psx of the object P, and the length of the base Px of the front face Py in the x-axis direction is calculated.
  • the length Qx of the plane Qy in the x-axis direction is calculated.
  • the height Qz of the object Q is the maximum size of the plane Qy in the z-axis direction.
  • step S33 the outer shape of the object Q is calculated from the length of the base Qx of the object Q and the height Qz.
  • the outline shape is calculated, for example, as a contour line, an area surrounded by the contour line, or a perimeter of the contour line.
  • step S34 the base Px of the object P and the base Qx of the object Q calculated in step S33 are compared, and how the object Q is positioned on the object P is detected.
  • step S35 in order to determine the state of the load 31 placed on the upper surface of the carriage 30, first, the state of the object P detected as the carriage 30 facing the light receiving unit 12 (imaging device) is directly facing. (Angle ⁇ 1) is confirmed.
  • the angle ⁇ 1 is the plane Sy of the light receiving unit 12 and its length Sx in the x-axis direction as shown in FIGS. is calculated as an angle indicating the position (orientation) of the front face Py of the object P detected as .
  • PT PU
  • step S36 an angle ⁇ 2 shown in FIG. 12 is calculated in order to detect how the object Q (cargo 31) is placed on the upper surface of the object P (carriage 30). Specifically, the center point Px/2 of the base Px of the front face Py of the object P, the center point Qx/2 of the base Qx of the plane Qy of the object Q, the point P(x, y), the point Q(x, y ), and the intersection point of the center line of the object P passing through the point P and the center line of the object Q passing through the point Q is the point R. ).
  • RP RQ
  • step S ⁇ b>40 based on the state of the load 31 , it is determined whether or not the transportability condition, which is the condition for permitting the transport of the load 31 by the forklift 20 , is met.
  • the transportability condition is composed of, for example, four conditions of position condition, posture condition, shape condition and height condition. If all four conditions are met, the portability condition is met. If at least one of the four conditions is not met, the portability condition is not met.
  • step S40 determination processing of success/failure of the position condition (S41), determination processing of success/failure of the posture condition (S42), determination processing of success/failure of the shape condition (S43), and determination processing of success/failure of the height condition (S44) are performed.
  • the position condition of step S41 is a condition that the relative position of the object Q (load 31) with respect to the object P (transport table 30) calculated in step S34 is located within a predetermined reference area. A reference area is set in the central portion of the carriage 30 . The position condition is satisfied when the object Q is within the reference area. If the object Q is outside the reference area, the position condition is not satisfied, and the portability condition is not satisfied.
  • the attitude condition in step S42 is a condition that the attitude of the object Q (load 31) with respect to the object P (transport table 30) calculated in step S36 is within a predetermined reference range.
  • the reference range is, for example, a range in which ⁇ 2 is approximately 0° to ⁇ 20°.
  • the attitude condition is established when the attitude of the object Q is within the reference range. If the posture is out of the reference range, the posture condition is not satisfied and the portability condition is not satisfied.
  • the shape condition in step S43 is a condition that the shape of the object Q (cargo 31) calculated in step S33 matches a predetermined reference shape.
  • the calculated shape is pattern-matched with a predetermined reference shape. If the pattern matching determines that the calculated shape matches the reference shape, the shape condition is met. When it is determined that the calculated shape is different from the reference shape, the shape condition is not satisfied and the portability condition is not satisfied.
  • the height condition of step S44 is a condition that the height of the object Q (load 31) calculated in step S33 is equal to or less than a predetermined reference height. If the height of the object Q is equal to or less than the reference height, the height condition is satisfied. If the height of the object Q exceeds the reference height, the height condition is not satisfied and the portability condition is not satisfied. Here, if the transportability condition is not satisfied, the process proceeds to step S45. When the portability condition is satisfied, the process proceeds to step S51.
  • step S45 since even one of the conditions in steps S41 to S44 is not satisfied, transportation of the carriage 30 and the load 31 to be measured is prohibited.
  • the transport control unit 25 receives a prohibition command from the transport feasibility determination device 10 and suppresses the operation for transport. Further, if the forklift 20 or the work site is provided with a device that displays or outputs an alarm, an alarm indicating that the condition of the load 31 is not appropriate may be generated. As a result, the worker can be urged to properly correct the state of the cargo.
  • step S51 since all the conditions of steps S41 to S44 are satisfied, transportation of the carriage 30 and the load 31 to be measured is permitted.
  • the transport control unit 25 receives a permission command from the transport possibility determination device 10, and controls the operation for transport (S52).
  • the forklift 20 approaches the carriage 30 so that the arm portion 24 faces the surface of the carriage 30 in which the holes 30b are formed.
  • the gap between the pair of arm portions 24 is adjusted, and the height of the pair of arm portions 24 is adjusted.
  • the amount of extension of each of the pair of arms 24 is adjusted based on the positional conditions and posture conditions calculated in steps S34 and S35. Then, the forklift 20 travels toward the carriage 30 so that the arm portion 24 is received in the hole 30b. The arm portion 24 is raised while being inserted into the hole 30b, and the carrier 30 and the cargo 31 are supported by the arm portion 24 and lifted. By moving the forklift 20 in this state, the carrier 30 and the load 31 can be moved to desired positions.
  • transport by the forklift 20 is prohibited when it is determined that the position or posture of the load 31 is biased with respect to the carriage 30 . Therefore, the worker does not need to monitor the posture of the load 31, and the forklift 20 can stably transport the load 31.
  • the amount of expansion and contraction of the arm is adjusted based on the position and posture of the load 31 . Therefore, even if the center of gravity of the carriage 30 and the load 31 is shifted from the center of the carriage 30, the carriage 30 and the load 31 can be stably lifted.
  • the transport unit 100 of the present embodiment is a device for detecting the transport platform 30 transported by the forklift 20 with the load 31 placed thereon, and includes a distance measuring section 14 and a control section 13 .
  • the distance measurement unit 14 measures the distance to the object according to the amount of reflection of the light emitted from the illumination unit 11 to the object.
  • the control unit 13 determines whether or not the object is the carriage 30 based on the distance information to the object measured by the distance measuring unit 14 .
  • the characteristics of the carrier 30 conveyed by the forklift 20 (for example, the arm portion 24 of the forklift 20 is inserted) It is possible to detect the presence or absence of a receiving portion such as a hole 30b, etc., to be inserted using the distance information. As a result, it is possible to accurately determine whether the detected object is the carriage 30 or not.
  • the transport unit 100 of the present embodiment is a device that detects the state of the load 31 on the transport table 30 that is transported by the forklift 20 with the load 31 placed thereon. I have.
  • the distance measurement unit 14 measures the distance to the object according to the amount of reflection of the light emitted from the illumination unit 11 to the object.
  • the control unit 13 determines the state of the load 31 on the carriage 30 based on the distance information to the object measured by the distance measuring unit 14 .
  • the state of the load 31 on the carriage 30, such as the position, orientation, size, and deviation of the load 31 (object Q) on the object P detected as the carriage 30, can be determined using the distance information. can be easily detected. As a result, it is possible to accurately determine whether the detected state of the cargo 31 on the carrier 30 is suitable for transportation.
  • the control unit 13 determines whether the transportability condition, which is the condition for permitting the transport of the load by the forklift 20, is established based on the determination result of the load state. As a result, the state of the load 31 on the carriage 30 can be determined with high accuracy before transportation is started. By permitting , it is possible to suppress the occurrence of problems such as collapse of cargo during transportation.
  • the present invention may be implemented as a program that causes a computer to execute the transportability determination method described above.
  • This program is stored in a memory (storage unit) installed in the transport feasibility determination device, and the CPU reads the transport program stored in the memory and causes the hardware to execute each step. More specifically, the same effect as described above can be obtained by causing the CPU to read the transport program and execute the above-described distance information acquisition step, determination step, and condition determination step.
  • the present invention may be implemented as a recording medium storing a transport program.
  • At least one of the above four conditions may be set as a condition for whether or not the above four conditions can be transported, depending on the type and size of the cargo to be transported, the form and capacity of the transport device, etc.
  • the decision as to whether or not the transport is possible may be made according to conditions other than the above four conditions or other conditions that are set in addition to the above four conditions.
  • the electromagnetic waves irradiated from the irradiation device to the target object include, in addition to broadly defined light (ultraviolet light and visible light), ⁇ (gamma) rays with shorter wavelengths than light, X-rays, and Other electromagnetic waves such as microwaves, radio waves for broadcasting (short, medium, and long waves), ultrasonic waves, elastic waves, and quantum waves may be used.
  • the transport availability determination device of the present invention may be mounted on other transport devices such as transport robots such as AGVs (Automatic Guided Vehicles) and AMRs (Autonomous Mobile Robots).
  • the transportability determination device of the present invention may be mounted on a non-traveling transporting device in addition to being mounted on a self-propelled transporting device.
  • the carriage database includes a carriage table (see FIG. 5) in which information about the characteristics (size, shape, etc.) of the carriage 30 is registered in the carriage determination device 10. 15a has been described.
  • the present invention is not limited to this.
  • storage means such as an externally provided server may be used as the storage unit that stores the carriage database.
  • the transport table 30 made of resin is detected by the transport propriety determination device 10 of the present invention.
  • the present invention is not limited to this.
  • the material of the carriage is not limited to resin, and may be wood, metal, rubber, or other material other than resin.
  • distance measuring device 1a control unit 10 transport feasibility determination device (transport feasibility determination unit) 11 lighting unit (lighting device) 12 light receiving unit 13 control unit (determination unit, condition determination unit) 14 distance measuring unit 15 storage unit 15a carriage database (carriage DB) 16 carriage information acquisition unit 17 load state acquisition unit 17a position information acquisition unit 17b posture information acquisition unit 17c shape information acquisition unit 17d height information acquisition unit 18 distance information acquisition unit 20 forklift (conveyor) 21 Vehicle body parts 22a, 22b Wheels 23 Driving part 24 Arm part 25 Transfer control part 25a Traveling control part 25b Arm control part 26 Traveling actuator 27 Braking device 28 Elevating actuator 30 Carrier 30a Body part 30b Hole (receiving part) 31 cargo 100 transport unit 130 transport platform 130a main body 130b recess (receiving portion) FL Floor surface IR Infrared rays (electromagnetic waves) L1 light (electromagnetic waves) P object Q object

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

搬送ユニット(100)は、フォークリフト(20)および測距装置(1)を備える。フォークリフト(20)は、搬送可否判定装置(10)を有し、搬送台(30)に載せられた積み荷(31)を搬送する。測距装置(1)は、フォークリフト(20)が走行可能な空間内で対象物に対して照射された光の反射量に応じて、対象物までの距離を計測する。搬送可否判定装置(10)は、測距装置(1)から取得した距離情報に基づいて対象物が積み荷(31)を載せた搬送台(30)である場合に当該積み荷(31)の状態を判定した結果に基づいて、フォークリフト(20)が積み荷(31)を搬送することを許可する条件である可搬条件の成否を判定する。

Description

搬送ユニット、搬送方法、搬送プログラム
 本発明は、搬送台に載せられた積み荷を搬送する搬送ユニット、搬送方法および搬送プログラムに関する。
 フォークリフトは、パレットのような搬送台に載せられた積み荷を、搬送台ごと持ち上げて運搬する搬送装置として、広く用いられている。
 フォークリフトの中には、周囲に存在する物体を検出する物体検出装置を搭載したものがある(例えば、特許文献1を参照)。
 特許文献1では、物体検出装置が、ステレオカメラで撮像された画像を処理することで、フォークリフトの進行の妨げとなる物体(例えば、障害物や壁など)の位置を検出する。
 フォークリフトのメインコントローラは、このような物体との衝突を回避するため、物体検出装置の検出結果に基づいて減速処理を行う。
特開2020-57258号公報
 しかし、画像処理によれば、搬送台および積み荷のようにフォークリフトで搬送されるべき搬送対象物を識別することが難しい。
 例えば、搬送台は、フォークが抜き挿しされる受け部を有している。しかし、処理された画像から、この受け部を、搬送台と類似した外形を有する物体に付与されている形状あるいは模様と区別して検出することが難しく、その結果として搬送対象物を識別できない場合がある。
 このため、物体検出装置の検出結果に基づいて、フォークリフトの安全走行に関連する処理を実行可能であっても、フォークリフトによる搬送に関連する処理を実行することは困難であった。
 そこで、本発明は、搬送装置の周囲に存在する物体から搬送対象物を識別する精度を向上することにより、搬送装置の動作制御を支援することを目的としている。
 本発明の一形態に係る搬送ユニットは、搬送装置および測距装置を備える。搬送装置は、搬送可否判定部を有し、搬送台に載せられた積み荷を搬送する。測距装置は、搬送装置が走行可能な空間内で対象物に対して照射された電磁波の反射量に応じて、対象物までの距離を計測する。搬送可否判定部は、距離情報取得部、判定部、および条件判定部を備える。距離情報取得部は、照明装置から対象物に対して照射された電磁波の反射量に応じて対象物までの距離情報を取得する。判定部は、距離情報取得部において取得された対象物までの距離情報に基づいて、対象物が積み荷を載せた搬送台である場合に当該積み荷の状態を判定する。条件判定部は、判定部において判定された積み荷の状態に基づいて、搬送装置が積み荷を搬送することを許可する条件である可搬条件の成否を判定する。
 ここで、搬送装置は、搬送台を保持して昇降させる。「搬送」には、搬送台の水平移動を伴わない昇降のみも含まれる。搬送装置は、本体(車体)を移動させる動力源を有する自走式も、そのような動力源を持たない非自走式も含まれる。
 非自走式の搬送装置は、例えば、パワーリフタや搬送用ロボット(マニピュレータ)等を含み、手押し可能に構成されていてもよい。自走式の搬送装置は、例えば、フォークリフト等を含む。自走式の搬送装置には、人間が運転操作を行うための部材(ステアリング、レバー、ペダル等)を備えた有人式車両で構成されているものを含み、また、AGV(Automatic Guided Vehicle)やAMR(Autonomous Mobile Robot)のように、人間が運転操作を行わなくとも走行可能な自動運転車両で構成された自動搬送機も含まれる。
 すなわち、例えば、アーム部のように搬送台を保持して昇降させるための機構が、有人式車両の本体に取り付けられていてもよく、無人式車両の本体に取り付けられていてもよい。
 搬送台は、積み荷が載せられ、搬送装置によって積み荷とともに搬送される荷役台であり、木製、樹脂製等、素材は問わない。搬送台は、例えば、フォークリフト等の搬送装置のアーム部材が挿入される穴、凹部等の受け部を有している。搬送台は、例えば、平パレットやシートパレット等を含む。
 照明装置から照射される電磁波は、例えば、広義の光(紫外光・可視光・赤外光)、光よりも波長の短いγ(ガンマ)線、X線、光より波長の長いマイクロ波や放送用の電波(短波、中波、長波)、超音波、弾性波、量子波等を含む。
 なお、距離情報取得部は、電磁波の反射を検出して距離情報を算出する構成であってもよいし、例えば、外部装置として設けられた距離センサ等から距離情報を取得する構成であってもよい。
 上記構成によれば、この電磁波の反射量に応じた対象物までの距離情報が参照される。したがって、搬送台に設けられた形状と、搬送台と類似した外形を有する物体に付与されている形状あるいは模様との区別が容易になり、搬送対象物の識別精度が向上する。
 また、積み荷までの距離情報と搬送台までの距離情報とに基づいて、搬送対象物から、搬送台と積み荷とを区別して識別することも可能となり、また、積み荷の状態を判定することも可能になる。
 条件判定部は、この積み荷の状態に基づいて、搬送装置による積み荷の搬送可否を判定する。
 これにより、積み荷の状態が精度よく判定されているので、搬送可能と判定された場合に搬送中の荷崩れ等の不具合が発生するのを抑制することができる。
 判定部は、積み荷の状態として、積み荷の搬送台に対する相対位置を判定してもよい。可搬条件には、相対位置が、予め定められた基準領域内に位置付けられているという位置条件が含まれてもよい。
 上記構成によれば、積み荷の搬送台に対する相対位置が基準領域内に位置付けられているときに、搬送装置による搬送が許可される。逆に、積み荷が搬送台に対して偏って配置されているような場合、搬送が禁止される。したがって、作業員が相対位置を監視する必要なく、搬送装置が、積み荷を安定して搬送することができる。
 判定部は、積み荷の状態として、積み荷の搬送台に対する姿勢を判定してもよい。可搬条件には、積み荷の搬送台に対する姿勢が、予め定められた基準範囲内にあるという姿勢条件が含まれてもよい。
 上記構成によれば、積み荷の搬送台に対する姿勢が基準範囲内にあるときに、搬送装置による搬送が許可される。逆に、積み荷が搬送台に対して偏って配置されているような場合、搬送が禁止される。したがって、作業員が姿勢を監視する必要なく、搬送装置が、積み荷を安定して搬送することができる。
 判定部は、積み荷の状態として、積み荷の形状を判定してもよい。可搬条件には、積み荷の形状が、予め定められた基準範囲内にあるという形状条件が含まれてもよい。
 上記構成によれば、積み荷の形状が基準範囲内にあるときに、搬送装置による搬送が許可される。逆に、積み荷の形状が想定範囲外の形状である場合、搬送が禁止される。したがって、作業員が形状を監視する必要なく、搬送装置が、積み荷を安定して搬送することができる。
 判定部は、積み荷の状態として、積み荷の高さを判定してもよい。可搬条件には、高さが、予め定められた基準高さ以内であるという高さ条件が含まれてもよい。
 上記構成によれば、積み荷の高さが基準高さ以内であるときに、搬送装置による搬送が許可される。逆に、積み荷が基準高さを超えている場合、搬送が禁止される。したがって、作業員が高さを監視する必要なく、搬送装置が、積み荷を安定して搬送することができる。
 搬送装置が、搬送台の受け部に挿入されるアーム部材と、アーム部材の動作を制御する搬送制御部と、をさらに有してもよい。条件判定部において可搬条件が成立したと判定されると、搬送制御部が、判定部において判定された積み荷の状態に基づいてアーム部材の動作を制御してもよい。
 これにより、可搬条件の成立時に積み荷が搬送され、可搬条件の非成立時には積み荷が搬送されない。可搬条件の成立時には、積み荷の状態に基づいてアーム部材の動作が制御される。このため、搬送装置が安定して積み荷を搬送することができる。
 測距装置が対象物に対して電磁波を照射する照明装置と、照明装置から照射された電磁波の反射量を検出する受光部と、を有してもよい。
 これにより、照明装置から照射された電磁波の対象物からの反射を受光部が検出することで、反射量に応じて対象物までの距離情報を算出(取得)することができる。よって、算出された距離情報に応じて、搬送台であるか否かや、積み荷の状態等を正確に判定することができる。
 測距装置が、照明装置からの電磁波の照射量および受光部が電磁波の反射量を検出するための露光時間を調整する制御部を、さらに備えていてもよい。
 これにより、制御部によって露光時間が調整されることで、対象物までの距離に応じて適正な露光時間で電磁波を照射・電磁波の反射を受光することができる。また、2値化処理されたデータを得るために適正な露光時間に調整されることで、距離情報を用いて、搬送台であるか否かや、積み荷の状態等を正確に判定することができる。
 制御部は、対象物までの距離に応じて、露光時間を調整してもよい。
 これにより、制御部が、例えば、対象物までの距離が近い場合には露光時間を短くし、対象物までの距離が遠い場合には露光時間を長くすることで、対象物までの距離に応じて適正な露光時間で電磁波を照射・電磁波の反射を受光することができる。
 電磁波は、赤外線であってもよい。
 これにより、赤外線の反射量に応じて算出される距離情報を取得することで、例えば、暗所で搬送作業を実施する場合でも、搬送台であるか否かを正確に判定することができる。
 判定部は、距離情報に基づいて、対象物が搬送台であるか否かを判定してもよい。
 上記構成によれば、測定対象物までの距離情報を用いて対象物が搬送台であるか否かを判定するため、例えば、床面に置かれた対象物の側面に黒い絵柄等が記載されている場合でも、搬送装置によって搬送される搬送台の特徴(例えば、搬送装置のアーム部等が挿入される穴、凹部等の受け部)の有無を、距離情報を用いて検出することができる。この結果、検出された物体が搬送台であるか否かを正確に判定することができる。
 搬送台は、搬送装置のアーム部材が挿入される受け部を有していてもよい。判定部は、距離情報を用いて、受け部の有無、大きさ、位置の少なくとも1つに応じて、対象物が搬送台であるか否かを判定してもよい。
 上記構成では、受け部が距離情報を用いて検出され、判定部が、受け部の有無、大きさ、位置等の検出結果に応じて、対象物が搬送台であるか否かを判定する。受け部は、搬送台の主要な特徴部分の一つであるので、対象物が搬送台であるか否かを精度よく判定することができる。
 搬送台は、搬送装置のアーム部材が挿入される受け部を有していてもよい。判定部は、距離情報を用いて、受け部の有無、大きさ、位置の少なくとも1つに応じて、対象物が、単独の搬送台、積み荷が載せられた搬送台、搬送台以外の物体のいずれかであることを判定してもよい。
 上記のとおり、受け部は、搬送台の主要な特徴部分の一つであるので、判定部は、受け部の有無、大きさ、位置等の検出結果に応じて、搬送台の状態(単体、積み荷あり、搬送台ではない)を正確に判定することができる。
 判定部は、距離情報を用いて、対象物が置かれた床面を検出し、床面から高さを有する物体を搬送台の候補として検出してもよい。
 これにより、検出された床面からの高さに基づいて、搬送体の候補を精度よく検出することができる。
 判定部は、搬送台の候補として検出された物体について、距離情報に基づいて、その外形を設定してもよい。
 距離情報が参照されるので、搬送台の候補として検出された物体の外形を正確に設定することができる。
 判定部は、距離情報または対象物を撮像した画像の明暗情報に基づいて得られる2値化処理されたデータを用いて、外形を設定してもよい。
 これにより、対象物の外形を、距離情報または対象物を撮像した画像の明暗情報に基づいて得られる2値化処理されたデータを用いて設定することができる。
 判定部において2値化処理されたデータが得られない場合には、照明装置から照射された電磁波照射・を受光する露光時間が調整されてもよい。
 これにより、2値化処理されたデータが得られない場合には、照明装置から照射された電磁波を照射・受光する露光時間が調整されることで、適正に2値化処理されたデータを得て、対象物の外形を正確に設定することができる。
 判定部は、設定された外形に基づいて、受け部が形成されていると想定される検出面を設定してもよい。
 これにより、設定された外形から、受け部があると思われる検出面を設定することができる。
 判定部は、検出面における受け部の奥行情報に応じて、搬送台であるか否かを判定してもよい。
 これにより、取得された距離情報を用いて、検出面における奥行の有無を検出することで、対象物が受け部を有する搬送台であるか否かを正確に判定することができる。
 判定部は、搬送台と想定される物体の検出面と同じ軸座標上に存在する積み荷の略水平方向における位置を検出して、積み荷の状態を判定してもよい。
 これにより、搬送台と想定される物体の検出面と同じ軸座標上に存在する積み荷の略水平方向における位置を検出することで、積み荷の位置、大きさ、偏り等の状態を判定することができる。
 判定部は、搬送台と想定される物体の検出面に対する積み荷の向きを検出して、積み荷の状態を判定してもよい。
 これにより、搬送台と想定される物体の検出面に対する積み荷の向きを検出することで、搬送台に対する積み荷の向き、偏り等の状態を判定することができる。
 搬送可否判定部が、判定部において搬送台であると判定された搬送台の検出データを保存する記憶部を、さらに備えていてもよい。
 これにより、搬送台として判定された搬送台のデータ(外形、大きさ、受け部の位置等)を記憶部に登録していくことで、例えば、その後、搬送台と搬送台上に載置された積み荷との境界を認識して、積み荷のバランス等を判定することができる。
 本発明の一形態に係る搬送方法は、搬送台に載せられた積み荷を搬送する搬送装置と、搬送装置が走行可能な空間内で対象物に対して照射された電磁波の反射量に応じて、対象物までの距離を計測する測距装置と、を備える搬送ユニットによって実施される搬送方法である。搬送方法は、距離情報取得ステップ、判定ステップ、および、搬送可否判定ステップを備える。距離情報取得ステップでは、照明装置から対象物に対して照射された電磁波の反射量に応じて前記対象物までの距離情報を取得する。判定ステップでは、距離情報取得ステップにおいて取得された対象物までの距離情報に基づいて、対象物が積み荷を載せた搬送台である場合に当該積み荷の状態を判定する。搬送可否判定ステップでは、判定ステップにおいて判定された積み荷の状態に基づいて、搬送装置が積み荷を搬送することを許可する条件である可搬条件の成否を判定する。
 本発明の一形態に係る搬送プログラムは、上記の搬送方法をコンピュータに実行させる。
 上記の方法およびプログラムは、上記の搬送ユニットの技術的特徴と対応する技術的特徴を具備している。
 したがって、精度よく判定された積み荷の状態に基づいて搬送可能と判定された場合には、搬送中の荷崩れ等の不具合が発生するのを抑制することができる。
(発明の効果)
 本発明によれば、搬送装置の周囲に存在する物体から搬送対象物を識別する精度を向上することにより、搬送装置の動作制御を支援することができる。
本発明の一実施形態に係る搬送ユニットと搬送対象である搬送台を示す図。 (a)は、図1のフォークリフトによって搬送される搬送台を示す斜視図。(b)は、搬送台の他の例を示す斜視図。 図1の搬送ユニットの制御ブロック図。 図1の測距装置による対象物までの距離をTOF方式で算出する原理を説明する図。 図3の搬送可否判定装置に含まれる記憶部に保存される搬送台テーブルを示す図。 図1の搬送可否判定装置による搬送可否判定方法の処理の流れを示すフローチャート。 図1の搬送可否判定装置による搬送可否判定方法の処理の流れを示すフローチャート。 (a),(b),(c)は、搬送台の検出工程について説明する模式図。 (a)は、図10のフローチャートにおいて定義された平面とその平面における奥行情報(穴)がない物体を示す斜視図。(b)は、図10のフローチャートにおいて定義された平面とその平面における奥行情報(穴)がある物体を示す斜視図。 図1の搬送可否判定装置による搬送状態検出方法の処理の流れを示すフローチャート。 (a)は、搬送可否判定装置の検出面のx軸方向のサイズを示す正面図。(b)は、搬送状態検出部の検出方向を示す平面図。(c)は、搬送可否判定装置の検出方向と搬送台との位置関係を示す平面図。 搬送台とその上に載置された積み荷との位置関係を示す平面図。 本実施形態に係る搬送可否判定方法の処理の流れを示すフローチャート。 暗室での搬送台の検出について説明する概念図。
 本発明の実施形態に係る搬送可否判定装置10(搬送可否判定部)、搬送可否判定装置10を有するフォークリフト(搬送装置)20、フォークリフト20に搭載される測距装置1、並びにこれら測距装置1およびフォークリフト20を備えた搬送ユニット100について、図1から図13を用いて説明すれば以下の通りである。
 搬送ユニット100は、図1および図3に示すように、測距装置1と、フォークリフト20とを備えている。
(1)フォークリフト20
 フォークリフト(搬送装置)20は、図1に示すように、積み荷31が載せられた搬送台30を保持して昇降させる。更に、フォークリフト20は、持ち上げた搬送台30を所望の位置まで移動させる。
 本実施形態のフォークリフト20は、一例として、乗車した運転者により操作される「有人式」である。搬送可否判定装置10における搬送台30の検出および搬送台30上の積み荷31の状態の検出結果に基づいて、運転操作がアシストされる。
 なお、フォークリフト20は、運転者による運転操作が不要な自動運転が自動搬送装置であってもよい。この場合、搬送可否判定装置10における搬送台30の検出および搬送台30上の積み荷31の状態の検出結果に基づいて、自動運転が行われる。
 フォークリフト20は、車体部21、4つの車輪22a,22b、駆動部23、アーム部(フォーク)24、搬送可否判定装置10(図3参照)、搬送制御部25(図3参照)、走行アクチュエータ26(図3参照)、制動装置27(図3参照)、および昇降アクチュエータ28(図3参照)を備えている。
 車体部21は、アクセルペダル、ステアリングハンドル、ブレーキペダルおよび操作レバー等の運転者により操作される操作部材(図示せず)が設けられた運転席を有している。車体部21は、エンジンやモータ等の走行用の駆動源を収納する。
 車輪22a,22bは、車体部21の前後に2輪ずつ設けられている。例えば、前の車輪22aが駆動輪であり、後の車輪22bが操舵輪である。前の車輪22aが走行アクチュエータ26により回転駆動され、後の車輪22bが操舵されることで、フォークリフト20(車体部21)は、走行および旋回することができる。
 駆動部23は、車体部21の前方に設けられている。駆動部23は、運転者による操作レバーの操作に応じて、アーム部24を上下方向あるいはチルト方向において駆動する。アーム部24は、搬送台30に設けられた穴(受け部)30b等に挿入され、搬送台30を支持する。駆動部23は、例えば、マスト、スプロケット、チェーン、油圧シリンダ等の昇降アクチュエータを含む。アーム部24は、例えば、前方に向かって延伸する2つの爪状部材である。
 アーム部24が穴30bに挿入された状態で駆動部23がアーム部24を上方に駆動することで、搬送台30がアーム部24により支持されて持ち上げられる。この状態で車体部21が走行することで、搬送台30が所望の位置まで移動する。
 搬送可否判定装置10は、図1および図3に示すように、フォークリフト20に設けられており、駆動部23の上部に取り付けられた測距装置1と通信可能に接続されている。
 なお、搬送可否判定装置10と測距装置1との間の通信は、有線通信であってもよいし、無線通信であってもよい。
 搬送可否判定装置10は、測距装置1から受信した距離情報に基づいて、フォークリフト20によって搬送される搬送台30を検出するとともに、搬送台30上に載置された積み荷31の状態(位置、範囲、高さ、バランス等)を検出する。更に、搬送可否判定装置10は、積み荷の状態に応じて搬送可否を判定する。
 なお、搬送可否判定装置10の詳細な構成については、後段にて詳述する。
 搬送制御部25は、フォークリフト20の搬送制御を行うコントローラであって、図3に示すように、走行制御部25aと、アーム制御部25bとを有している。
 走行制御部25aは、フォークリフト20の車速が目標速度になるように、エンジンやモータ等の駆動源の出力を制御する。アーム制御部25bは、車体部21に設けられた運転席に設置された操作レバー(図示せず)の操作量に応じて、アーム部24の昇降を制御する。また、アーム制御部25bは、後述する搬送台30の検出結果に応じて、検出された搬送台30の穴30bの位置に合わせて2本のアーム部24の間隔を自動的に調整するように制御してもよい。そのため、フォークリフト20は、アーム部24の間隔を調整する間隔調整機構を備えていてもよい。また、フォークリフト20は、左右でアーム部の伸縮量を独立して調整する伸縮調整機構を備えていてもよい。
 走行アクチュエータ26は、走行用の駆動源と、駆動源の出力を駆動側の車輪22aに伝達する駆動伝達手段とを含むように構成されている。
 制動装置27は、走行中のフォークリフト20の車速を低下させたり、停止させたりするために設けられている。制動装置27は、運転席に設けられたブレーキペダルの操作量に応じたブレーキ力を、車輪22aに対して付与する。
 昇降アクチュエータ28は、駆動部23に設けられ、例えば、リフトシリンダ、チルトシリンダ等の油圧シリンダを含んでいる。油圧シリンダは、運転席に設置された操作レバー(図示せず)の操作量に応じて、アーム部24のチルト方向における角度を変化させたり、アーム部24の位置を上下に移動させたりする。
 (1-1)搬送可否判定装置10
 搬送可否判定装置10は、図3に示すように、距離情報取得部18と、記憶部15と、制御部(判定部、条件判定部)13と、搬送台情報取得部16と、積載物状態取得部17とを備えている。
 距離情報取得部18は、測距装置1の距離測定部14において測定された距離情報を、測距装置1から取得する。
 記憶部15は、搬送可否判定装置10の動作を制御する各種プログラムを保存するとともに、搬送台30として検出された搬送台30の特徴(例えば、サイズ、穴30bの位置等)に関する情報が登録された搬送台データベース(DB)15aを保存している。また、記憶部15は、検出された搬送台30上に載置された積み荷31の種類、形状、大きさ等を含む積み荷情報、積み荷31の搬送台30上における形態(位置、向き、姿勢、形状、高さ等)の情報を保存する。
 搬送台DB15aは、搬送台30として判定された対象物の外形寸法、受け部のタイプ(穴または凹部)等の情報を含む搬送台テーブル(図5参照)が保存されている。これにより、搬送台DB15aは、検出された対象物がどのタイプの搬送台であるかを判定する際に参照される。
 制御部13は、後述する対象物の特徴に基づいて、対象物が搬送台30であるか否かの判定を行うとともに、搬送台30として判定された搬送台30上に載置された積み荷31の積載状態が適正であるか否かの判定を行う。また、制御部13は、積み荷31の状態に応じて搬送可否の判定を行う。
 搬送台情報取得部16は、後述する対象物が搬送台30であるか否かを判定するために必要な対象物の情報を取得する。具体的には、搬送台情報取得部16は、搬送台30であると想定される対象物のサイズ(幅、高さ等)、受け部(穴、凹部等)の有無および位置等の情報を取得する。
 積載物状態取得部17は、搬送台30と判定された対象物の上に載置された積み荷31の状態を検出する。積載物状態取得部17は、図3に示すように、位置情報取得部17aと、姿勢情報取得部17bと、形状情報取得部17cと、高さ情報取得部17dとを有している。
 位置情報取得部17aは、搬送台30と判定された対象物上における積み荷31の位置を検出する。
 姿勢情報取得部17bは、搬送台30と判定された対象物に対する積み荷31の向きを検出する。
 形状情報取得部17cは、搬送台30と判定された対象物上の積み荷31の形状(外形等)の情報を検出する。
 高さ情報取得部17dは、搬送台30と判定された対象物上の積み荷31の高さの情報を検出する。
 なお、積載物状態取得部17(位置情報取得部17a、姿勢情報取得部17b、形状情報取得部17c、高さ情報取得部17d)において検出された搬送台30上における積み荷31の位置、向き、形状、高さ等の情報は、後述する搬送可否判定の処理において利用される。
(2)搬送台30
 ここで、本実施形態のフォークリフト20によって搬送される搬送台30について、図2(a)および図2(b)を用いて説明する。
 搬送台30は、樹脂製のパレットであって、図2(a)に示すように、本体部30aと、穴(受け部)30bとを有している。
 本体部30aは、例えば、再利用可能なPP(ポリプロピレン)等の樹脂製のパレットであって、積み荷31が載置される上面と、4つの側面と、底面とを有している。
 本体部30aの4つの側面には、それぞれ、フォークリフト20のアーム部24が挿入可能な穴30bが形成されている。
 穴(受け部)30bは、本体部30aの4つの側面にそれぞれ2つずつ設けられており、フォークリフト20の2本のアーム部24が挿入される。
 なお、フォークリフト20のアーム部24が挿入される穴30bは、例えば、本体部30aの4つの側面の全てに設けられていてもよいし、対向する1組の2つの側面のみに設けられていてもよいし、1つの面のみに設けられていてもよい。
 フォークリフト20によって搬送される搬送台30の種類としては、図2(b)に示すように、アーム部24が挿入される穴30bの代わりに、凹部130bが本体部130aの両側面に設けられた搬送台130であってもよい。
 この場合には、フォークリフト20のアーム部24は、穴30bへ挿入される代わりに、床面FLと凹部130bを形成する上面との間に挿入され、下方から凹部130bを支持するように、搬送台130を持ち上げることができる。
(3)測距装置1
 測距装置1は、図3に示すように、照明部(照明装置)11と、受光部12と、制御部1aと、距離測定部14とを備えている。
 照明部(照明装置)11は、例えば、LEDを有しており、搬送台30や積み荷31等の対象物に対して所望の波長を有する光L1を照射する。なお、照明部11には、LEDから照射された光L1を対象物の方向へ導く投光レンズ(図示せず)が設けられている。
 受光部12は、例えば、受光レンズと撮像素子等を含んでいる。
 受光レンズは、照明部11から対象物に対して照射され、対象物において反射した反射光を受光して、撮像素子へと導くために設けられている。
 撮像素子は、複数の画素を有しており、受光レンズにおいて受光された反射光を、複数の画素のそれぞれにおいて受光して、光電変換した電気信号を制御部13へと送信する。また、撮像素子において検出される反射光の受光量に対応する電気信号は、制御部13において距離情報の算出に用いられる。
 制御部1aは、記憶部15に保存された各種制御プログラムを読み込んで、対象物に対して光を照射する照明部11を制御する。より詳細には、制御部1aは、光が照射される対象物までの距離、形状、色等の対象物の性質等に応じて最適な光を照射するように、照明部11を制御する。
 また、制御部1aは、例えば、対象物までの距離に応じて、照明部11の照射光、照明部11から照射された光の反射量を検出するための受光部12の露光時間を調整する。あるいは、制御部13は、後述する2値化データの取得の可否に応じて、照明部11および受光部12の露光時間を調整する。
 具体的には、制御部1aは、対象物までの距離が近い場合には、露光時間を短くするように調整し、対象物までの距離が遠い場合には、露光時間を長くするように調整する。
 距離測定部14は、受光部12に含まれる撮像素子から受信した各画素に対応する電気信号に基づいて、各画素ごとに、対象物までの距離情報を算出する。
 ここで、本実施形態の距離測定部14による対象物までの距離情報の算出について、図4を用いて説明すれば以下の通りである。
 すなわち、本実施形態では、いわゆるTOF(Time of Flight)方式を用いて、距離測定部14が、照明部11から照射された正弦波や矩形波などAM変調された一定周波数の投光波と、受光部12に含まれる撮像素子において受光した光の受光波との位相差Φ(図4参照)に基づいて、対象物までの距離を算出する。
 ここで、位相差Φは、以下の関係式(1)によって示される。
   Φ=atan(y/x) ・・・・・(1)
(x=a2-a0,y=a3-a1、a0~a3は、受光波を90度間隔で4回サンプリングしたポイントにおける振幅)
 そして、位相差Φから距離Dへの変換式は、以下の関係式(2)によって示される。
    D=(c/(2×fLED))×(Φ/2π)+DOFFSET ・・・・・(2)
(cは、光速(≒3×10m/s)、fLEDは、LEDの投光波の変調周波数、DOFFSETは、距離オフセット。)
 これにより、距離測定部14は、照明部11から照射された光の反射光を受光して、その位相差を比較することで、光速cを用いて、対象物までの距離を容易に算出することができる。
 <搬送台検出方法>
 本実施形態の搬送方法では、まず、図6および図7に示すフローチャートに従って、距離測定部14において測定された対象物までの距離情報を用いて、検出された対象物が搬送台30であるか否かを判定する。
 ここで、床面FL(z=0)からの相対的な受光部12(撮像素子)の取付位置をzs、床面FLに対する受光部12(撮像素子)の取付角度zθ、測距装置1によって検出された搬送台30と想定される対象物(物体P)の3D形状情報(外形Pv、平面Ps、奥行き情報Pp)、図5に示す搬送台テーブルの3D形状情報(外形Pv、受け部タイプPs)、積み荷31と想定される対象物(Q)の3D形状情報(外形Qv、平面Qs、凹凸等の特徴Qp)、受光部12(撮像素子)の初期設定された露光時間Inti、受光部12の平面Sy面、受光部12の中心点S(Sx/2)と定義される(図8(a)および図8(b)参照)。
 なお、x軸を進行方向に直交する方向(水平方向)、y軸を長手方向(フォークリフト20の進行方向)、z軸を床面FLからの高さ方向(鉛直方向)とする。
 図6に示すように、ステップS11では、測距装置1の照明部11(照明装置)および受光部12(撮像素子)の露光時間が、初期設定値にセットされる。
 次に、ステップS12では、上述したTOF方式を採用して距離測定部14において測定(取得)される距離情報を用いて、搬送可否判定装置10が搭載されたフォークリフト20の前方の3次元(3D)情報が取得される。
 なお、ここでは、測距装置1の照明部11から照射される光が、フォークリフト20の前方へ照射される場合について説明する。
 次に、ステップS13では、ステップS12において取得された3次元情報と、受光部12(撮像素子)の取付位置zsおよび取付角度zθから、床面FL(z=0)が定義される。
 なお、ここで取得される3次元情報の範囲は、受光部12の撮像素子の性能(画角等)に応じて決まる。
 次に、ステップS14では、床面FL(z=0)に対してz>0となる物体P、つまり、床面FLから高さのある物体が検出される。
 次に、ステップS15では、物体Pの情報PX(距離または明暗の情報)に基づいて、2値化データが取得される。
 なお、取得される2値化データとしては、分解能に依らずに安定的に取得できるという観点から、距離情報よりも明暗情報に基づいて取得されることが好ましい。
 次に、ステップS16では、適正に2値化データが取得されたか否か、つまり、物体P(および物体Q)のエッジを検出できたか否かが判定される。ここで、適正に2値化データが取得されていれば、ステップS17へ進む。一方、適正に2値化データが取得されていなければ、ステップS20へ進み、照明部11(照明装置)および受光部12(撮像素子)の露光時間Intiが調整される。
 次に、ステップS17では、ステップS16において適正に2値化データが取得されたと判定されたため、2値化データを用いてPvx(物体Pの外形)が定義される。
 次に、ステップS18では、TOF方式で取得された撮像素子の各画素に対応する距離情報から、物体Pの外形Pvxの範囲内にある平面Psx(物体Pの面情報)が定義される。
 なお、本実施形態では、穴30b等の受け部が形成されている可能性がある物体Pの側面部分が、平面Psxとして定義される。
 次に、ステップS19では、平面Psxが取得されたか否かが判定され、取得されていれば、図7に示すフローチャートへ進み、取得されていなければ、ステップS20と同様に、照明部11(照明装置)および受光部12(撮像素子)の露光時間Intiが調整されて、再度、ステップS18へ戻る。
 ここで、ステップS20では、ステップS16において適正に2値化データが取得されていないと判定されたため、受光部12(撮像素子)において取得された明暗情報に基づいて、露光時間Intiが調整される。
 例えば、物体Pの情報PXの明度が高い場合には、サチレーションが発生しているおそれがあるため、露光時間が短くなる方向に調整される。一方、物体Pの情報PXの明度が低い場合には、撮像素子に十分な光量が検出できていないおそれがあるため、露光時間が長くなる方向に調整される。
 続いて、図7に示すように、ステップS21では、搬送台30の底辺Psxとz座標を同じくする面Pszを定義し、面Psxを含む面と面Pszを含む面により形成される空間を辺Pxからy軸方向に走査しながらz座標情報を取得する(図8(b)および図8(c)参照)。
 次に、ステップS22では、z軸情報(高さ)はx軸方向あるいはy軸方向において一定であるか否かが判定される。ここで、図8(b)に示すように、z軸情報(高さ)が一定であると判定されると、ステップS23へ進み、図8(c)に示すように、z軸情報(高さ)が一定ではないと判定されるとステップS28へ進む。
 次に、ステップS23では、ステップS22において底辺Px上のz軸情報(高さ)は一定であると判定されたため、物体Pは、異形ではなく、積み荷31が乗っていない搬送台30の可能性がある物体として仮判定される。
 次に、ステップS24では、平面Psxから物体Pの奥行情報Ppxが定義される。
 なお、このとき、穴や凹部を意味する奥行情報Ppxが得やすいように、露光時間が調整されてもよいし、フォークリフト20が移動してもよい。
 次に、ステップS25では、奥行情報Ppxから平面Psx内に奥行があるか否か、つまり、平面Psx内における穴30b等の受け部の有無が判定される。
 ここで、本実施形態の搬送ユニット100では、上述したようにTOF方式を採用して、測距装置1の距離測定部14において撮像素子の各画素に対応する距離情報が測定(取得)される。このため、図9(a)に示すように、側面に黒い絵柄が付された物体Pと、図9(b)に示すように、側面に奥行情報を持つ穴30bが形成された物体Pとを、取得された距離情報に基づいて見分けることができる。
 ここで、平面Psx内に奥行、つまり穴30b等の受け部がある(図9(b)参照)と判定されると、ステップS26へ進み、奥行(穴30b等の受け部)がない(図9(b)参照)と判定されると、ステップS27へ進む。
 次に、ステップS26では、ステップS25において平面Psx内に奥行(穴30b)があると判定されたため、奥行情報Ppxに基づいて物体Pが受け部(穴30b)を有する搬送台30と判定される。そして、その搬送台30の外形、サイズ、受け部のタイプ(穴、凹部)等の情報が登録された搬送台テーブル(図5参照)が作成される。
 次に、ステップS27では、ステップS25において奥行(穴30b)がない(ほぼ平面である)と判定されたため、その物体Pは、フォークリフト20のアーム部24を挿入するための受け部がなく、搬送台30ではないと判定されて処理を終了する。
 一方、ステップS28では、ステップS22において底辺Px上のz軸情報(高さ)はx軸方向あるいはy軸方向において一定ではないと判定されたため、物体Pは、積み荷31が乗っている搬送台30、あるいは搬送台ではない異形の物体であるとして仮判定される。
 次に、ステップS29では、ステップS28において仮判定された物体Pについて、搬送台DB15aを参照して、搬送台テーブルに登録された搬送台30とマッチングを行う。
 すなわち、ステップS29では、物体Pの一部(特に、下部)が、搬送台テーブルに登録済みの搬送台30の外形、サイズ、穴の位置等が一致するか否かをマッチングする。
 次に、ステップS30では、ステップS29におけるマッチングの結果、物体Pの一部が、登録済みの搬送台30と一致するか否かに応じて、物体Pが搬送台30を含むか否かが判定される。
 ここで、登録済みの搬送台30と一致すると判定されると、ステップS26へ進み、搬送台30の情報が搬送台テーブルに登録されて処理を終了する。
 一方、マッチングの結果、物体Pの一部が、登録済みの搬送台30と一致しないと判定された場合には、物体Pは搬送台30ではないと判定され、そのまま処理を終了する。
 <搬送状態検出方法>
 本実施形態の搬送状態検出方法では、図10に示すフローチャートに従って、以上のような搬送台検出処理によって検出された搬送台30上に載置された積み荷31の状態の適否を判定する。
 まず、ステップS30において搬送台30と判定された物体Pと積み荷31としてその上面に載置された物体Qとについて、物体Pの外形Pvxおよび平面Psxから、受光部12から見て物体Pの正面Pyが定義され、正面Pyの面のx軸方向における長さをPxとする。そして、物体Pの正面Pyに最も近いy座標を有する物体Qの平面Qyとし、平面Qyのx軸方向における長さをQxととする(図8(a)参照)。
 まず、ステップS31では、搬送台30と判定された物体Pと区別される積み荷31と想定される物体Qについて、3次元形状情報(外形Qvおよび平面Qs)が取得されたか否かを判定する。
 ここで、外形Qvおよび平面Qsが取得された場合には、ステップS32へ進み、取得されていない場合には、ステップS20において、照明部11(照明装置)および受光部12(撮像素子)の露光時間Intiが調整されて、再度、ステップS31へ戻り、外形Qvおよび平面Qsが取得されるまで、露光時間Intiの調整が繰り返される。
 次に、ステップS32では、搬送台30として検出された物体Pの上面に載置された物体Qの平面Qyから、物体Qの奥行情報Qpxが定義される。
 このとき、物体Qの奥行情報が取得しやすいように、照明部11(照明装置)および受光部12の露光時間の調整、フォークリフト20の移動等が行われてもよい。
 これにより、物体Pと同様に、物体Qについても、TOF方式によって取得され撮像素子の各画素において得られた距離情報を用いて、物体Qの奥行情報を得ることができる。
 次に、ステップS33では、物体P上に物体Qがどのように載置されているかを検出するために、物体Pの平面Psxの底辺Pxおよび物体Qの平面Qyの底辺Qxを算出する(図8(a)参照)。
 ここで、底辺Pxおよび底辺Qxは、上述したように、搬送台テーブルに登録された搬送台30の情報を用いて、搬送台30と判定された物体Pと、その上面に載置され積み荷31と想定される物体Qとを分離した後で算出される。
 そして、物体Pの外形Pvxおよび平面Psxから物体Pの正面Pyが定義され、正面Pyのx軸方向における底辺Pxの長さが算出される。
 また、物体Pの正面Pyに最も近いy座標を有する物体Qの平面Qyとすると、平面Qyのx軸方向における長さQxが算出される。
 なお、物体Qの高さQzは、平面Qyのz軸方向における大きさの最大値とする。
 そして、このステップS33では、物体Qの底辺Qxの長さと高さQzとから、物体Qの外形形状が算出される。外形形状は、例えば、輪郭線、輪郭線で囲まれた領域の面積、あるいは輪郭線の周長として算出される。
 次に、ステップS34では、ステップS33において算出された物体Pの底辺Pxと物体Qの底辺Qxとを比較し、物体P上に物体Qがどのように位置しているかを検出する。
 具体的には、例えば、物体Pの上面から物体Qがはみ出していないかを、物体Pのx軸情報(Px)と物体Qのx軸情報(Qx)とを用いて検出する。
 次に、ステップS35では、搬送台30の上面に載置された積み荷31の状態を判定するために、まず、受光部12(撮像素子)に対する搬送台30として検出された物体Pの正対状態(角度θ1)を確認する。
 ここで、角度θ1は、図11(a)から図11(c)に示すように、受光部12の平面Sy、そのx軸方向における長さSxとすると、受光部12から見て搬送台30として検出された物体Pの正面Pyがどの位置(向き)にあるかを示す角度として算出される。
 具体的には、角度θ1は、受光部12と物体Pとの間の距離(y軸方向における距離)と、受光部12と物体Pとの正対関係とを用いて、図11(c)に示すように、物体Pの底辺Pxの延長線上に点T、Sxと平行でy座標=ypの線上に点Uを置くと、以下の関係式(1)によって算出される。
    PT・PU=|PT||PU|cosθ1 ・・・・・(1)(太字はベクトル)
 この関係式(1)により、受光部12に対する物体P(搬送台30)の角度θ2を算出することができる。
 次に、ステップS36では、物体P(搬送台30)の上面に物体Q(積み荷31)がどのように載っているかを検出するために、図12に示す角度θ2が算出される。
 具体的には、物体Pの正面Pyの底辺Pxの中心点Px/2、物体Qの平面Qyの底辺Qxの中心点Qx/2、それぞれ点P(x,y)、点Q(x,y)、点Pを通る物体Pの中心線、点Qを通る物体Qの中心線の交点を点Rとすると、物体P上における物体Qの積載状態を示す角度θ2は、以下の関係式(2)によって算出される。
    RP・RQ=|RP||RQ|cosθ2 ・・・・・(2)(太字はベクトル)
 この関係式(2)により、物体P(搬送台30)の上面に載置された物体Q(積み荷31)の角度θ2を算出することで、積み荷31が搬送台30上において、適正な範囲、向き、位置に載置されているかを判定することができる。
 この結果、例えば、搬送台30上の積み荷31の状態が搬送には適さないと判定されると、搬送を停止し、積み荷31の位置を修正する等の対応を採ることができる。
 <搬送可否検出方法>
 本実施形態の搬送方法では、図13に示すフローチャートに従って、以上のような搬送状態検出処理によって検出された積み荷31の状態に基づいて、搬送可否の判定を行う。
 まず、ステップS40において、積み荷31の状態に基づいて、フォークリフト20が積み荷31を搬送することを許可する条件である可搬条件の成否を判定する。
 本実施形態では、可搬条件が、例えば、位置条件、姿勢条件、形状条件および高さ条件の4つの条件で構成される。4つの条件が全て成立すると、可搬条件が成立する。4つの条件の少なくともいずれか1つが非成立であると、可搬条件が非成立となる。
 よって、ステップS40には、位置条件の成否の判定処理(S41)、姿勢条件の成否の判定処理(S42)、形状条件の成否の判定処理(S43)および高さ条件の成否の判定処理(S44)の4つの判定処理が含まれる。
 ステップS41の位置条件とは、ステップS34で算出された物体Q(積み荷31)の物体P(搬送台30)に対する相対位置が、予め定められた基準領域内に位置するという条件である。基準領域は、搬送台30の中央部に設定される。物体Qが基準領域内にあると位置条件が成立する。物体Qが基準領域外にあると位置条件が非成立となり、可搬条件が非成立となる。
 ステップS42の姿勢条件とは、ステップS36で算出された物体Q(積み荷31)の物体P(搬送台30)に対する姿勢が、予め定められた基準範囲内にあるという条件である。基準範囲は、例えば、θ2が0°~±20°程度の範囲である。物体Qの姿勢が基準範囲内にあると姿勢条件が成立する。姿勢が基準範囲外であると姿勢条件が非成立となり、可搬条件が非成立となる。
 ステップS43の形状条件とは、ステップS33で算出された物体Q(積み荷31)の形状が、予め定められた基準形状と一致するという条件である。例えば、算出された形状について、予め定められた基準形状とパターンマッチングが行われる。パターンマッチングの結果、算出された形状が基準形状と一致と判定された場合には、形状条件が成立する。算出された形状が基準形状と異なると判定された場合には、形状条件が非成立となり、可搬条件が非成立となる。
 ステップS44の高さ条件とは、ステップS33で算出された物体Q(積み荷31)の高さが、予め定められた基準高さ以下であるという条件である。物体Qの高さが基準高さ以下であれば、高さ条件が成立する。物体Qの高さが基準高さを超えていてれば、高さ条件が非成立となり、可搬条件が非成立となる。
 ここで、可搬条件が非成立であれば、ステップS45に進む。可搬条件が成立すると、ステップS51に進む。
 次に、ステップS45では、ステップS41からステップS44のいずれか1つでも条件を満たさなかったため、計測対象の搬送台30および積み荷31の搬送が禁止される。搬送制御部25は、搬送可否判定装置10から禁止の指令を受け、搬送のための動作を抑制する。また、フォークリフト20または作業現場に、警報を表示または音声出力する装置が設けられている場合には、積み荷31の状態が適正でない旨を示す警報が発生されてもよい。これにより、作業員に積み荷の状態を適正に直す作業を促すことができる。
 一方、ステップS51では、ステップS41からステップS44の全ての条件を満たしていたため、計測対象の搬送台30および積み荷31の搬送が許容される。搬送制御部25は、搬送可否判定装置10から許可の指令を受け、搬送のための動作を制御する(S52)。
 例えば、フォークリフト20は、アーム部24が搬送台30の穴30bが形成された面と正対するように、搬送台30に近づいていく。このとき、ステップS26で登録された搬送台30の穴30bの形状に基づいて、一対のアーム部24の間隔が調整され、一対のアーム部24の高さが調整される。
 更に、ステップS34およびS35で算出された位置条件および姿勢条件に基づいて、一対のアーム部24のそれぞれの伸長量が調整される。そして、アーム部24が穴30bで受容されるように、フォークリフト20が搬送台30に向かって走行する。
 アーム部24が穴30bに挿入された状態で上昇し、搬送台30および積み荷31がアーム部24によって支持され、且つ持ち上げる。この状態で、フォークリフト20が移動することで、搬送台30および積み荷31を所望の位置へ移動させることができる。
 本実施形態の搬送可否判定方法においては、積み荷31の位置または姿勢が、搬送台30に対して偏って配置されていると判定された場合には、フォークリフト20による搬送が禁止される。したがって、作業員が積み荷31の姿勢を監視する必要はなく、フォークリフト20が、積み荷31を安定して搬送することができる。
 積み荷31の位置および姿勢に基づいて、アーム部の伸縮量が調整される。このため、搬送台30および積み荷31の重心位置が搬送台30の中心からズレた位置にあっても、安定して搬送台30および積み荷31を持ち上げることが可能になる。
 更に、この方法においては、積み荷31の形状が想定範囲外である、あるいは、積み荷31の高さが基準高さを超える場合に、搬送が禁止される。適正に積まれた積み荷31のみが搬送の対象となり、安定して搬送台30および積み荷31を搬送することができる。
 <主な特徴1>
 本実施形態の搬送ユニット100は、積み荷31を載せた状態でフォークリフト20によって搬送される搬送台30を検出する装置であって、距離測定部14と、制御部13と、を備えている。距離測定部14は、照明部11から対象物に対して照射された光の反射量に応じて対象物までの距離を測定する。制御部13は、距離測定部14において測定された対象物までの距離情報に基づいて、対象物が搬送台30であるか否かを判定する。
 これにより、例えば、床面FLに置かれた対象物の側面に黒い絵柄等が記載されている場合でも、フォークリフト20によって搬送される搬送台30の特徴(例えば、フォークリフト20のアーム部24が挿入される穴30b等の受け部)の有無を、距離情報を用いて検出することができる。
 この結果、検出された物体が搬送台30であるか否かを正確に判定することができる。
 <主な特徴2>
 本実施形態の搬送ユニット100は、積み荷31を載せた状態でフォークリフト20によって搬送される搬送台30上の積み荷31の状態を検出する装置であって、距離測定部14と、制御部13とを備えている。距離測定部14は、照明部11から対象物に対して照射された光の反射量に応じて対象物までの距離を測定する。制御部13は、距離測定部14において測定された対象物までの距離情報に基づいて、搬送台30上における積み荷31の状態を判定する。
 これにより、例えば、搬送台30として検出された物体P上にある積み荷31(物体Q)の位置、向き、大きさ、偏り等の搬送台30上における積み荷31の状態を、距離情報を用いて容易に検出することができる。
 この結果、検出された搬送台30上における積み荷31の状態が搬送に適しているか否かを正確に判定することができる。
 <主な特徴3>
 本実施形態の搬送ユニット100では、制御部13が、積み荷の状態の判定結果に基づいて、フォークリフト20が積み荷を搬送することを許可する条件である可搬条件の成否を判定する。
 これにより、搬送が開始される前に、搬送台30上における積み荷31の状態を精度よく判定することができるため、その判定結果に基づいて、搬送可能と判定された場合に、フォークリフト20による搬送を許可することで、搬送中の荷崩れ等の不具合が発生するのを抑制することができる。
 [他の実施形態]
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
 (A)
 上記実施形態では、搬送ユニットおよび搬送方法として、本発明を実現した例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、上述した搬送可否判定方法をコンピュータに実行させるプログラムとして本発明を実現してもよい。
 このプログラムは、搬送可否判定装置に搭載されたメモリ(記憶部)に保存されており、CPUがメモリに保存された搬送プログラムを読み込んで、ハードウェアに各ステップを実行させる。より具体的には、CPUが搬送プログラムを読み込んで、上述した距離情報取得ステップと、判定ステップと、条件判定ステップとを実行することで、上記と同様の効果を得ることができる。
 また、本発明は、搬送プログラムを保存した記録媒体として実現されてもよい。
 (B)
 上記実施形態では、搬送可否の判定を行う際に、搬送台30上における積み荷31の位置、姿勢、形状、高さという4つの条件を満たすか否かに応じて判定が行われる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、搬送対象となる積み荷の種類や大きさ、搬送装置の形態、能力等に応じて、上記4つの条件の中の少なくとも1つを搬送可否の条件として設定されていてもよいし、上記4つの条件以外あるいは上記4つの条件に加えて設定される他の条件に応じて、搬送可否の判定が行われてもよい。
 (C)
 上記実施形態では、照明部11から対象物に対して照射される電磁波として、広義の光が用いられた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、照明装置から対象物に対して照射される光として、赤外光IRを用いた場合には、図14に示すように、暗室内における搬送作業を行う場合でも、搬送可否判定装置10によって、赤外光IRの反射を検出して対象物までの距離情報を得ることで、搬送台30の検出および搬送台30上における積み荷31の状態の検出が可能になるという、上記と同様の効果を得ることができる。
 (D)
 上記実施形態では、検出された物体Pが搬送台30であるか否かの判定を、受け部(穴30b)の有無によって行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、受け部の有無に加えて、受け部の大きさや位置等の他の要素を加えて、搬送台であるか否かを判定してもよい。
 (E)
 上記実施形態では、対象物に対して照射された光L1の反射量を検出して、距離情報を算出する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、装置外に設けられたTOFセンサにおいて算出された対象物までの距離情報を取得して、搬送台の検出、搬送状態の検出を実施してもよい。
 (F)
 上記実施形態では、照明部11から対象物に対して照射される電磁波として、広義の光が用いられる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、照射装置から対象物に対して照射される電磁波としては、広義の光(紫外光・可視光)以外に、光よりも波長の短いγ(ガンマ)線、X線、光より波長の長いマイクロ波や放送用の電波(短波、中波、長波)、超音波、弾性波、量子波等の他の電磁波であってもよい。
 (G)
 上記実施形態では、搬送可否判定装置10が搭載される搬送装置として、フォークリフト20が用いられる例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、本発明の搬送可否判定装置は、AGV(Automatic Guided Vehicle)、AMR(Autonomous Mobile Robot)等の搬送用ロボット等、他の搬送装置に搭載されていてもよい。
 また、本発明の搬送可否判定装置は、自走式の搬送装置に搭載される以外に、非走行型の搬送装置に搭載されていてもよい。
 (H)
 上記実施形態では、図3に示すように、搬送可否判定装置10内に、搬送台30の特徴(サイズ、形状等)に関する情報が登録された搬送台テーブル(図5参照)を含む搬送台データベース15aを保存する記憶部15が設けられている例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、搬送台データベースを保存する記憶部として、外部に設けられたサーバ等の他の記憶手段が用いられてもよい。
 (I)
 上記実施形態では、本発明の搬送可否判定装置10によって樹脂製の搬送台30が検出される例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、搬送台の材質としては、樹脂に限らず、木製であってもよいし、金属製、ゴム製等、樹脂以外の材料によって製造されていてもよい。
 (J)
 上記実施形態では、フォークリフト20等の搬送装置の前方に向かって照射された光の反射を検出して、搬送装置の前方における搬送台30等の検出を行う例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
 例えば、搬送装置の後方や側方に向かって照射された光の反射を検出して、搬送装置の後方や側方における搬送台等の検出を行う構成であってもよい。
 1   測距装置
 1a  制御部
10   搬送可否判定装置(搬送可否判定部)
11   照明部(照明装置)
12   受光部
13   制御部(判定部、条件判定部)
14   距離測定部
15   記憶部
15a  搬送台データベース(搬送台DB)
16   搬送台情報取得部
17   積載物状態取得部
17a  位置情報取得部
17b  姿勢情報取得部
17c  形状情報取得部
17d  高さ情報取得部
18   距離情報取得部
20   フォークリフト(搬送装置)
21   車体部
22a,22b 車輪
23   駆動部
24   アーム部
25   搬送制御部
25a  走行制御部
25b  アーム制御部
26   走行アクチュエータ
27   制動装置
28   昇降アクチュエータ
30   搬送台
30a  本体部
30b  穴(受け部)
31   積み荷
100  搬送ユニット
130  搬送台
130a 本体部
130b 凹部(受け部)
FL   床面
IR   赤外線(電磁波)
L1   光(電磁波)
 P   物体
 Q   物体

Claims (24)

  1.  搬送可否判定部を有し、搬送台に載せられた積み荷を搬送する搬送装置と、
     前記搬送装置が走行可能な空間内で対象物に対して照射された電磁波の反射量に応じて、前記対象物までの距離を計測する測距装置と、
    を備え、
     前記搬送可否判定部が、
      前記測距装置から距離情報を取得する距離情報取得部と、
      前記距離情報取得部において取得された前記対象物までの距離情報に基づいて、前記対象物が前記積み荷が載せられた前記搬送台である場合に当該積み荷の状態を判定する判定部と、
      前記判定部において判定された前記積み荷の前記状態に基づいて、前記搬送装置が前記積み荷を搬送することを許可する条件である可搬条件の成否を判定する条件判定部と、
    を有する、搬送ユニット。
  2.  前記判定部は、前記積み荷の前記状態として、前記積み荷の前記搬送台に対する相対位置を判定し、
     前記可搬条件には、前記相対位置が、予め定められた基準領域内に位置付けられているという位置条件が含まれる、
    請求項1に記載の搬送ユニット。
  3.  前記判定部は、前記積み荷の前記状態として、前記積み荷の前記搬送台に対する姿勢を判定し、
     前記可搬条件には、前記積み荷の前記搬送台に対する姿勢が、予め定められた基準範囲内にあるという姿勢条件が含まれる、
    請求項1または2に記載の搬送ユニット。
  4.  前記判定部は、前記積み荷の前記状態として、前記積み荷の形状を判定し、
     前記可搬条件には、前記積み荷の前記形状が、予め定められた基準範囲内にあるという形状条件が含まれる、
    請求項1から3のいずれか1項に記載の搬送ユニット。
  5.  前記判定部は、前記積み荷の前記状態として、前記積み荷の高さを判定し、
     前記可搬条件には、前記高さが、予め定められた基準高さ以内であるという高さ条件が含まれる、
    請求項1から4のいずれか1項に記載の搬送ユニット。
  6.  前記搬送装置が、
      前記搬送台の受け部に挿入されるアーム部材と、
      前記アーム部材の動作を制御する搬送制御部と、をさらに有し、
     前記搬送制御部は、前記条件判定部において前記可搬条件が成立したと判定されると、前記判定部において判定された前記積み荷の前記状態に基づいて前記アーム部材の動作を制御する、
    請求項1から5のいずれか1項に記載の搬送ユニット。
  7.  前記測距装置が、
      前記対象物に対して前記電磁波を照射する照明装置と、
      前記照明装置から照射された前記電磁波の反射量を検出する受光部と、
    を有する、
    請求項1から5のいずれか1項に記載の搬送ユニット。
  8.  前記測距装置が、
      前記照明装置からの前記電磁波の照射量および前記受光部が前記電磁波の反射量を検出するための露光時間を調整する制御部を、さらに備えている、
    請求項7に記載の搬送ユニット。
  9.  前記制御部は、前記対象物までの距離に応じて、前記露光時間を調整する、
    請求項8に記載の搬送ユニット。
  10.  前記電磁波は、赤外線である、
    請求項1から9のいずれか1項に記載の搬送ユニット。
  11.  前記判定部は、前記距離情報に基づいて、前記対象物が前記搬送台であるか否かを判定する、
    請求項1から10のいずれか1項に記載の搬送ユニット。
  12.  前記搬送台は、前記搬送装置のアーム部材が挿入される受け部を有しており、
     前記判定部は、前記距離情報を用いて、前記受け部の有無、大きさ、位置の少なくとも1つに応じて、前記対象物が前記搬送台であるか否かを判定する、
    請求項11に記載の搬送ユニット。
  13.  前記搬送台は、前記搬送装置のアーム部材が挿入される受け部を有しており、
     前記判定部は、前記距離情報を用いて、前記受け部の有無、大きさ、位置の少なくとも1つに応じて、前記対象物が、単独の前記搬送台、前記積み荷が載せられた前記搬送台、前記搬送台以外の物体のいずれかであることを判定する、
    請求項11または12に記載の搬送ユニット。
  14.  前記判定部は、前記距離情報を用いて、前記対象物が置かれた床面を検出し、前記床面から高さを有する物体を、前記搬送台の候補として検出する、
    請求項11から13のいずれか1項に記載の搬送ユニット。
  15.  前記判定部は、前記搬送台の候補として検出された物体について、前記距離情報に基づいて、その外形を設定する、
    請求項14に記載の搬送ユニット。
  16.  前記判定部は、前記距離情報または前記対象物を撮像した画像の明暗情報に基づいて得られる2値化処理されたデータを用いて、前記外形を設定する、
    請求項15に記載の搬送ユニット。
  17.  前記判定部において前記2値化処理されたデータが得られない場合には、前記照明装置から照射された前記電磁波を照射・受光する露光時間が調整される、
    請求項15または16に記載の搬送ユニット。
  18.  前記判定部は、設定された前記外形に基づいて、前記受け部が形成されていると想定される検出面を設定する、
    請求項15から17のいずれか1項に記載の搬送ユニット。
  19.  前記判定部は、前記検出面における前記受け部の奥行情報に応じて、前記搬送台であるか否かを判定する、
    請求項18に記載の搬送ユニット。
  20.  前記判定部は、前記搬送台と想定される前記物体の前記検出面と同じ軸座標上に存在する前記積み荷の略水平方向における位置を検出して、前記積み荷の状態を判定する、
    請求項18または19に記載の搬送ユニット。
  21.  前記判定部は、前記搬送台と想定される前記物体の前記検出面に対する前記積み荷の向きを検出して、前記積み荷の状態を判定する、
    請求項18から20のいずれか1項に記載の搬送ユニット。
  22.  前記搬送可否判定部が、前記判定部において前記搬送台であると判定された前記搬送台の検出データを保存する記憶部を、さらに有している、
    請求項11から21のいずれか1項に記載の搬送ユニット。
  23.  搬送台に載せられた積み荷を搬送する搬送装置と、
     前記搬送装置が走行可能な空間内で対象物に対して照射された電磁波の反射量に応じて、前記対象物までの距離を計測する測距装置と、
    を備える搬送ユニットによって実施される搬送方法であって、
     前記測距装置から距離情報を取得する距離情報取得ステップと、
     前記距離情報取得ステップにおいて取得された前記対象物までの距離情報に基づいて、前記対象物が前記積み荷を載せた前記搬送台である場合に当該積み荷の状態を判定する判定ステップと、
     前記判定ステップにおいて判定された前記積み荷の前記状態に基づいて、前記搬送装置が前記積み荷を搬送することを許可する条件である可搬条件の成否を判定する搬送可否判定ステップと、
    を備える、搬送方法。
  24.  請求項23に記載の搬送方法を前記搬送装置内のコンピュータに実行させる、
    搬送プログラム。
PCT/JP2022/001368 2021-03-12 2022-01-17 搬送ユニット、搬送方法、搬送プログラム WO2022190635A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040705 2021-03-12
JP2021040705A JP2022140064A (ja) 2021-03-12 2021-03-12 搬送ユニット、搬送方法、搬送プログラム

Publications (1)

Publication Number Publication Date
WO2022190635A1 true WO2022190635A1 (ja) 2022-09-15

Family

ID=83226535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001368 WO2022190635A1 (ja) 2021-03-12 2022-01-17 搬送ユニット、搬送方法、搬送プログラム

Country Status (2)

Country Link
JP (1) JP2022140064A (ja)
WO (1) WO2022190635A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230903A (ja) * 2012-04-27 2013-11-14 Hitachi Ltd フォークリフト
JP2016210586A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 フォークリフト
JP2018158779A (ja) * 2017-03-22 2018-10-11 日本電気株式会社 車載装置、荷役機、制御回路、制御方法、及びプログラム
CN109607105A (zh) * 2018-12-17 2019-04-12 张家港康得新光电材料有限公司 一种取货系统、方法、装置及存储介质
JP2019156641A (ja) * 2018-03-08 2019-09-19 コニカミノルタ株式会社 フォークリフト用の画像処理装置、および制御プログラム
JP2021098596A (ja) * 2019-12-23 2021-07-01 日鉄ソリューションズ株式会社 情報処理装置、情報処理方法、及びプログラム
JP2021170233A (ja) * 2020-04-15 2021-10-28 矢崎エナジーシステム株式会社 車載器、稼働管理装置、運転支援システム、及び運転支援プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230903A (ja) * 2012-04-27 2013-11-14 Hitachi Ltd フォークリフト
JP2016210586A (ja) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 フォークリフト
JP2018158779A (ja) * 2017-03-22 2018-10-11 日本電気株式会社 車載装置、荷役機、制御回路、制御方法、及びプログラム
JP2019156641A (ja) * 2018-03-08 2019-09-19 コニカミノルタ株式会社 フォークリフト用の画像処理装置、および制御プログラム
CN109607105A (zh) * 2018-12-17 2019-04-12 张家港康得新光电材料有限公司 一种取货系统、方法、装置及存储介质
JP2021098596A (ja) * 2019-12-23 2021-07-01 日鉄ソリューションズ株式会社 情報処理装置、情報処理方法、及びプログラム
JP2021170233A (ja) * 2020-04-15 2021-10-28 矢崎エナジーシステム株式会社 車載器、稼働管理装置、運転支援システム、及び運転支援プログラム

Also Published As

Publication number Publication date
JP2022140064A (ja) 2022-09-26

Similar Documents

Publication Publication Date Title
JP2006528122A (ja) フォークリフトの荷物支持手段上の可動センサ装置
CN103030063B (zh) 用于确定集装箱吊架用的目标位置的方法和集装箱吊架
WO2016181733A1 (ja) フォークリフト
US11797011B2 (en) Traveling control system for transport vehicle and traveling control method for transport vehicle
US11970378B2 (en) Warehouse inspection system
WO2022190634A1 (ja) 搬送可否判定装置、測距装置、搬送ユニット、搬送可否判定方法、搬送可否判定プログラム
KR20200012298A (ko) 오토 포지셔닝 기술을 이용한 무인이송대차
CN113387302A (zh) 运算装置、移动控制系统、控制装置、移动体、运算方法以及计算机可读取的存储介质
CN111606205B (zh) 包括参考标记的集装箱起重机
JP2018188299A (ja) コンテナターミナルシステムとその制御方法
EP3995925B1 (en) Autonomous mobile robot, transporter, autonomous mobile robot control method, and transporter control method
WO2022190635A1 (ja) 搬送ユニット、搬送方法、搬送プログラム
JP4750957B2 (ja) コンテナ荷役用クレーンのコンテナ或いはコンテナ搬送用車両の位置・姿勢検出システム。
JP7363705B2 (ja) 荷役システム
WO2022190628A1 (ja) 搬送台検出装置およびこれを備えた搬送台検出システム、搬送台検出方法、搬送台検出プログラム
WO2022190629A1 (ja) 搬送状態検出装置およびこれを備えた搬送状態検出システム、搬送状態検出方法および搬送状態検出プログラム
US20240134047A1 (en) Transport possibility determination device, distance measurement device, transport unit, transport possibility determination method, and transport possibility determination program
US20230135740A1 (en) Distance measurement device, and mounting orientation sensing method and mounting orientation sensing program for same
JPH03252707A (ja) 視覚付無人車
SE542067C2 (en) System and method for determining a first steering angle of a forklift truck
KR20210130651A (ko) 물품 반송 설비
WO2020059842A1 (ja) コンテナクレーン装置及びコンテナクレーン装置の制御方法
JP2019127373A (ja) クレーン作業エリア登録装置
JP2017224136A (ja) 移動体及び移動体用の障害物検出装置
US20230140321A1 (en) Distance measurement system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766603

Country of ref document: EP

Kind code of ref document: A1