WO2022188461A1 - 一种偏滤器第一壁的封闭式v型锐角结构 - Google Patents

一种偏滤器第一壁的封闭式v型锐角结构 Download PDF

Info

Publication number
WO2022188461A1
WO2022188461A1 PCT/CN2021/132947 CN2021132947W WO2022188461A1 WO 2022188461 A1 WO2022188461 A1 WO 2022188461A1 CN 2021132947 W CN2021132947 W CN 2021132947W WO 2022188461 A1 WO2022188461 A1 WO 2022188461A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
layer
plate
cooling water
angle structure
Prior art date
Application number
PCT/CN2021/132947
Other languages
English (en)
French (fr)
Inventor
宋云涛
冯思庆
彭学兵
刘鹏
卯鑫
钱新元
宋伟
Original Assignee
中国科学院合肥物质科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院合肥物质科学研究院 filed Critical 中国科学院合肥物质科学研究院
Priority to EP21876722.6A priority Critical patent/EP4086921B1/en
Publication of WO2022188461A1 publication Critical patent/WO2022188461A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/13First wall; Blanket; Divertor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/057Tokamaks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the invention relates to the application field of divertor engineering technology of a tokamak fusion device, and mainly relates to a closed V-shaped acute angle structure of a first wall of a divertor.
  • the divertor needs to withstand the bombardment of high-energy particles from the core, and a heat load of several MW/m 2 to tens of MW/m 2 will be formed on the surface.
  • the internal cooling water flow is taken away, otherwise the normal operation of the divertor will be affected, and the device may be shut down in serious cases.
  • the first wall of mature divertors mostly adopts a separate structure, as shown in Figure 1, which is divided into inner target plate, inner reflux plate, arch plate, outer reflux plate and outer target plate, such as ITER divertor , the first wall of the divertor of other devices is mostly arranged based on this, such as the EAST divertor.
  • This split structure means that the split ports between the components need to be connected with inlet and outlet water joints (water boxes), and cooling water is used to flow through the components to cool them.
  • the invention optimizes the structure of the first wall of the divertor and makes up for the deficiencies of the prior art.
  • the closed V-shaped acute angle structure of the first wall of the divertor of the present invention eliminates the separation port and avoids the end effect; the target plate and the reflux plate have the same structural parameters, and also have the same structure parameters in the V-shaped acute angle structure area.
  • the same heat exchange capacity can improve the operation safety of the device while satisfying the flexibility adjustment of the plasma configuration.
  • a closed V-shaped acute angle structure of the first wall of the divertor comprising a target plate, a return flow plate and a cooling water pipe;
  • the target plate and the return flow plate are flat plate structures, They all include a tungsten layer, a copper layer, a chromium zirconium copper layer, a stainless steel layer and a stainless steel cover that are connected in sequence.
  • the zirconium-copper layer and the stainless steel layer are processed to form a super-evaporation cooling water channel.
  • the cooling water pipe in and out is connected with the super-evaporation cooling water channel to form a cooling water channel.
  • the target plate and the reflow plate are butt welded to form a closed V-shaped acute angle structure.
  • the plasma strike point is at the target.
  • the flexible adjustment and control between the plate and the return plate meet the flexibility requirements of the plasma configuration.
  • the target plate and the recirculation plate have the same structural form and parameters, have the same heat removal capacity, and simultaneously meet the heat bearing capacity requirements of the striking point region under different plasma configurations.
  • the plasma facing structure is the tungsten layer, the subsequent copper layer is the transition layer, the chromium zirconium copper layer is the heat conduction layer, the stainless steel layer is the structural layer, and the stainless steel cover is the super-evaporation cooling water channel cover.
  • the tungsten layers of the target plate and the recirculation plate are located on the inner side of the V-shaped acute angle structure, and there is an overlapping area between the two at the root of the V-shaped acute angle structure, so as to ensure that the plasma striking point area is completely covered by the tungsten layer, and the plasma can be completely blocked.
  • the stainless steel cover plates of the target plate and the return plate are located on the outside of the V-shaped acute angle structure, and there are inlet and outlet cooling water pipe interfaces at the ends to ensure the maximum cooling of the first wall.
  • the super-evaporation cooling water channel is covered with a chromium-zirconium-copper layer, a stainless steel layer and a stainless-steel cover plate; on the chromium-zirconium-copper side of the V-shaped acute angle structure welding area, the super-evaporation cooling water channel gradually transitions from the pure chromium-zirconium-copper layer to the chromium-zirconium-copper and the chromium-zirconium-copper layer.
  • the mixed layer of stainless steel finally transitions to the pure stainless steel layer; after the stainless steel cover plate and the stainless steel layer are sealed and welded, a complete super-evaporated cooling channel is formed. There are many grooves machined inside the stainless steel layer.
  • the chrome-zirconium-copper layer and the stainless steel layer are pre-formed composite panels through a related process (such as explosive welding), and then grooves are machined inside them.
  • the chrome-zirconium-copper layer provides efficient heat conduction, and the stainless steel layer provides structural strength.
  • the reason for the gradual transition from the chromium zirconium copper layer to the pure stainless steel layer in the welding area of the V-shaped acute angle structure is to avoid the occurrence of welding defects between different materials, and the pure stainless steel layer welding can improve the welding interface between the target plate and the reflow plate. High welding strength.
  • the butt welding between the target plate and the reflow plate includes: butt welding between the stainless steel layers, butt welding between the stainless steel cover plate and the stainless steel layer, butt welding between the cooling water pipe and the stainless steel cover plate, tungsten copper sheet and chromium Butt welding between zirconium copper layers.
  • the above-mentioned butt welds are all formed by one-time integral welding (eg, brazing).
  • the tungsten-copper sheet includes a tungsten layer and a copper layer, which have been pre-compounded by other processes (such as casting).
  • the welding area is the welding interface formed when the stainless steel layers of the target plate and the reflux plate are butt welded, and the welding interface is a convex-concave structure with strict tolerance control.
  • the convex-concave structure is also suitable for the welding interface between the stainless steel cover plate and the stainless steel layer, and the welding interface between the cooling water pipe and the stainless steel cover plate.
  • the purpose of the convex-concave structure is to improve the assembly positioning accuracy and strengthen the welding strength.
  • the closed V-shaped acute angle structure in the present invention avoids the end effect and improves the operation safety of the device; the heat dissipation capacity of the target plate and the return plate is the same, and the plasma striking point can be flexibly adjusted between the target plate and the return plate and control, which satisfies the demand for flexibility of plasma configuration and facilitates the exploration and development of advanced divertor physics research.
  • the closed V-shaped acute angle structure is also more conducive to obtain the operating mode of the radiation divertor, which can effectively reduce the thermal load of the target plate.
  • the internal super-evaporated cooling water channel improves the heat exchange efficiency and greatly increases the heat load capacity.
  • 1 is a schematic diagram of the structure of the first wall of an existing divertor
  • FIG. 2 is a detailed cross-sectional view of the V-shaped acute angle structure of the first wall of the divertor of the present invention
  • Fig. 3 is the exploded schematic diagram of the first wall structure of the divertor of the present invention.
  • FIG. 4 is a schematic diagram of a partial structure of FIG. 2 .
  • a closed V-shaped acute angle structure of the first wall of the divertor including a target plate 8 , a return plate 11 , a stainless steel cooling water pipe 7 and the like.
  • the target plate 8 and the reflow plate 11 are butt welded to form a V-shaped acute angle structure.
  • Both the target plate 8 and the return plate 11 are machined with a super-evaporation cooling water channel 9, and the inlet and outlet cooling water pipes 7 communicate with the super-evaporation cooling water channel 9 to form a cooling water channel system inside the first wall.
  • both the target plate 8 and the reflux plate 11 include a tungsten layer 81 , a copper layer 82 , a chromium zirconium copper layer 83 , a stainless steel layer 84 and stainless steel connected in sequence. cover plate 85.
  • the tungsten layer 81 of the target plate 8 and the recirculation plate 11 is on the inner side of the V-shaped acute angle structure.
  • the chromium zirconium copper layer 83 is carried away by the flowing cooling liquid in the super-evaporated water channel 9 .
  • the super-evaporation cooling water channel 9 is covered with a chromium zirconium copper layer 83, a stainless steel layer 84 and a stainless steel cover plate 85, and the chromium zirconium copper layer 83 and the stainless steel layer 84 are fixedly connected by an explosive welding process, and at the same time, on the side facing the plasma configuration line 1
  • the chromium zirconium copper layer 83 and the stainless steel layer 84 are internally machined with a plurality of grooves, the chromium zirconium copper layer 83 can quickly conduct heat into the cooling liquid in the super-evaporated cooling water channel 9, and the stainless steel layer 84 provides structural strength.
  • the super-evaporation cooling water channel 9 gradually transitions from the pure chromium zirconium copper layer 83 to cover the chromium zirconium copper layer 83 and the stainless steel layer 84, and finally The transition to the pure stainless steel layer 84 ensures the welding between the pure stainless steel layer 84 when the target plate 8 and the reflux plate 11 are welded, so as to avoid welding defects between different materials and improve the welding strength.
  • the welding interface 10 between the stainless steel layers 84 is processed into a mutually matching boss 842 and groove 841 structure (referred to as a convex-concave structure) and the processing accuracy is strictly controlled, which is conducive to precise positioning during welding and assembly and improvement of welding strength.
  • This convex-concave structure is also applicable to the welding between the stainless steel cover plate 85 and the stainless steel layer 84 , and the welding between the cooling water pipe 7 and the stainless steel cover plate 85 .
  • the invention is a closed V-shaped acute angle structure of the first wall of the divertor, the target plate and the recirculation plate have the same heat dissipation capacity, the plasma striking point can be flexibly adjusted and controlled between the target plate and the recirculation plate, and the plasma impact point can be flexibly adjusted and controlled.
  • the flexibility of body shape provides convenience for the exploration and development of advanced divertor physics research.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Plasma Technology (AREA)

Abstract

一种偏滤器第一壁的封闭式V型锐角结构,包括靶板(8)、返流板(11)和冷却水管(7);靶板(8)和返流板(11)为平板型结构,均包括依次相连的钨层(81)、铜层(82)、铬锆铜层(83)、不锈钢层(84)和不锈钢盖板(85),铬锆铜层(83)、不锈钢层(84)及不锈钢盖板(85)组合形成具有超汽化冷却水道(9)的热沉,在热沉内部铬锆铜层(83)和不锈钢层(84)加工出超汽化冷却水道(9),进出的冷却水管(7)与超汽化冷却水道(9)连通,形成冷却水道,靶板(8)与返流板(11)对接焊形成封闭式V型锐角结构,等离子体打击点在靶板(8)和返流板(11)之间灵活调整和控制,满足了等离子体位形灵活性需求。

Description

一种偏滤器第一壁的封闭式V型锐角结构 技术领域
本发明涉及托卡马克聚变装置的偏滤器工程技术应用领域,主要涉及一种偏滤器第一壁的封闭式V型锐角结构。
背景技术
偏滤器作为托卡马克聚变装置内部的核心部件,其第一壁需承受来自芯部高能粒子的轰击,表面会形成几MW/m 2到数十MW/m 2的热负荷,这些能量被其内部的冷却水流带走,否则会影响偏滤器的正常运行,严重的可能会导致装置停机。
目前,成熟的偏滤器第一壁多采用分离式结构形式,如图1所示,具体分为内靶板、内返流板、拱板、外返流板和外靶板,如ITER偏滤器,其他装置的偏滤器第一壁多以此为基础进行布置,如EAST偏滤器。这种分离式结构意味着在各部件之间的分离口处需要用进出的水接头(水盒)连接,再利用冷却水流经各部件以使其冷却。由于靶板与刮削层(等离子体最外层封闭磁面和最外层开放磁面之间区域)相交而承受高热负荷,而等离子体运行时具有位形不稳定性,致使高能粒子很可能会轰击到分离口位置的水接头(水盒),因水接头(水盒)的换热能力较差,此部分的热负荷承载能力相较于靶板常规位置低很多,不足以承受等离子体的轰击产生的热负荷,极易导致端头效应,进而限制了等离子体位形的灵活性调整。
发明内容
本发明从偏滤器第一壁结构上进行了优化,弥补了现有技术的不足。本发明的一种偏滤器第一壁的封闭式V型锐角结构,取消了分离口,避免了端 头效应;靶板和返流板具有同样的结构参数,且在V型锐角结构区域也拥有同等换热能力,在满足等离子体位形灵活性调整的同时可以提高装置运行安全性。
本发明所采用的技术方案如下:一种偏滤器第一壁的封闭式V型锐角结构,包括有靶板、返流板和冷却水管;所述的靶板和返流板为平板型结构,均包括依次相连的钨层、铜层、铬锆铜层、不锈钢层和不锈钢盖板,铬锆铜层、不锈钢层及不锈钢盖板组合形成具有超汽化冷却水道的热沉,在热沉内部铬锆铜层和不锈钢层加工出超汽化冷却水道,进出的冷却水管与超汽化冷却水道连通,形成冷却水道,靶板与返流板对接焊形成封闭式V型锐角结构,等离子体打击点在靶板和返流板之间灵活调整和控制,满足了等离子体位形灵活性需求。
所述的靶板和返流板具有相同结构形式及参数,具有相同的排热能力,同时满足不同等离子体位形下打击点区域热承载能力需求。面对等离子体结构为钨层,其后的铜层为过渡层,铬锆铜层为热传导层,不锈钢层为结构层,不锈钢盖板为超汽化冷却水道盖板。
所述的靶板和返流板的钨层处于V型锐角结构的内侧,且在V型锐角结构根部有二者的重叠区域,以保证等离子体打击点区域全部被钨层所覆盖,等离子体可以被完全拦截。靶板和返流板的不锈钢盖板处于V型锐角结构的外侧,并在端部开有进出冷却水管接口,以保证第一壁得到最大范围冷却。
所述的超汽化冷却水道覆盖铬锆铜层、不锈钢层和不锈钢盖板;在V型锐角结构焊接区域的铬锆铜侧,超汽化冷却水道由纯铬锆铜层逐渐过渡至铬锆铜和不锈钢的混合层,最后过渡至纯不锈钢层;在不锈钢盖板与不锈钢层密封焊接后形成完整的超汽化冷却水道,在面向等离子体位形线的一侧超汽化冷却水道内即铬锆铜层和不锈钢层内部加工有很多凹槽。所述的铬锆铜层和不锈钢层为已通过相关工艺(如爆炸焊)预先成型的复合板,之后在其内部加工凹槽,铬锆铜层提供高效热传导,不锈钢层提供结构强度。在V型锐 角结构焊接区域从铬锆铜层逐渐过渡至纯不锈钢层的原因是避免不同材料间的焊接缺陷发生,且纯不锈钢层焊接可以为靶板和返流板之间的焊接界面获得更高的焊接强度。
所述的靶板与返流板对接焊包括:不锈钢层之间的对接焊、不锈钢盖板与不锈钢层之间的对接焊、冷却水管与不锈钢盖板之间的对接焊、钨铜片与铬锆铜层之间的对接焊。上述的对接焊皆为一次性整体焊接(如钎焊)成型。所述的钨铜片包含钨层和铜层,已通过其他工艺(如铸造)预先复合成型。
所述的焊接区域为靶板和返流板的不锈钢层对接焊时所形成的焊接界面,焊接界面处为严格控制公差的相互匹配的凸凹型结构。所述的凸凹型结构还适用于不锈钢盖板与不锈钢层之间的焊接界面,以及冷却水管与不锈钢盖板之间的焊接界面。凸凹型结构的目的是提高装配定位精度以及加强焊接强度。
有益效果:
本发明中的封闭式V型锐角结构,避免了端头效应,提高装置运行安全性;靶板和返流板排热能力相同,等离子体打击点可以在靶板和返流板之间灵活调整和控制,满足了等离子体位形灵活性需求,为探索开展先进偏滤器物理研究提供便利。同时,封闭式V型锐角结构也更有利于获得辐射偏滤器运行模式,可有效降低靶板热负荷。内部的超汽化冷却水道提高了换热效率,使其热负荷能力大大提高。
附图说明
图1为现有偏滤器第一壁结构示意图;
图2为本发明的偏滤器第一壁V型锐角结构剖视详图;
图3为本发明的偏滤器第一壁结构爆炸示意图;
图4为图2的局部结构示意图。
附图中序号说明:1.等离子体位形线;2.现有偏滤器第一壁靶板;3.现 有偏滤器第一壁冷却水道;4.现有偏滤器第一壁水道连接波纹管;5.现有偏滤器第一壁分离口;6.现有偏滤器拱板;7.冷却水管;8.靶板;81.钨层;82.铜层;83.铬锆铜层;84.不锈钢层;841.不锈钢层凹槽结构;842.不锈钢层凸台结构;85.不锈钢盖板;851.不锈钢盖板凸台结构;9.超汽化冷却水道;10.焊接界面;11.返流板;12.重叠区域。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
如图2所示,根据本发明的实施例,提出一种偏滤器第一壁的封闭式V型锐角结构,包括有靶板8、返流板11和不锈钢冷却水管7等。靶板8与返流板11对接焊形成V型锐角结构。靶板8和返流板11内部皆加工出超汽化冷却水道9,进出冷却水管7与超汽化冷却水道9连通形成第一壁内部的冷却水道系统。
如图3所示,为所述封闭式V型结构的爆炸示意图,靶板8和返流板11都包含依次连接的钨层81、铜层82、铬锆铜层83、不锈钢层84和不锈钢盖板85。靶板8和返流板11的钨层81处于V型锐角结构的内侧,高能粒子在等离子体位形线1所覆盖范围内对钨层81进行轰击,所产生的热量经过渡铜层82传导至铬锆铜层83,并被超汽化水道9中的流动冷却液带走。
超汽化冷却水道9覆盖了铬锆铜层83、不锈钢层84和不锈钢盖板85,铬锆铜层83和不锈钢层84通过爆炸焊工艺固接,同时,在面向等离子体位形线1的一侧铬锆铜层83和不锈钢层84内部加工有多个凹槽,铬锆铜层83可以将热量快速传导至超汽化冷却水道9中的冷却液中,不锈钢层84提供结构强度。
如图4所示,在V型锐角结构焊接区域,在铬锆铜层83一侧,超汽化冷却水道9由纯铬锆铜层83逐渐过渡至覆盖铬锆铜层83及不锈钢层84,最后过渡至纯不锈钢层84,以保证靶板8与返流板11焊接时为纯不锈钢层84之间的焊接,避免不同材料间的焊接缺陷发生,同时提高焊接强度。不锈钢层84之间的焊接界面10加工成相互匹配的凸台842及凹槽841结构(简称凸凹型结构)并严格控制加工精度,利于焊接装配时的精确定位及焊接强度的提高。此凸凹型结构同样适用于不锈钢盖板85与不锈钢层84之间的焊接,以及冷却水管7与不锈钢盖板85之间的焊接。
在V型锐角结构根部,靶板8和返流板11的钨层81在焊接前安装时,在离子体位形线透射方向上存在局部重叠区域12,以保证沿等离子体位形线运行的高能粒子在此处被钨层81完全拦截。
本发明一种偏滤器第一壁的封闭式V型锐角结构,靶板和返流板排热能力相同,等离子体打击点可以在靶板和返流板之间灵活调整和控制,满足了等离子体位形灵活性需求,为探索开展先进偏滤器物理研究提供便利。
尽管上述实施方式对本发明进行了详细的描述,以便于本技术领域的技术人员理解本发明,但本发明不限于具体实施方式范围。对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (8)

  1. 一种偏滤器第一壁的封闭式V型锐角结构,包括有靶板、返流板和冷却水管;靶板和返流板为平板型结构,均包括依次相连的钨层、铜层、铬锆铜层、不锈钢层和不锈钢盖板,铬锆铜层、不锈钢层及不锈钢盖板组合形成具有超汽化冷却水道的热沉,在热沉内部铬锆铜层和不锈钢层加工出超汽化冷却水道,进出的冷却水管与超汽化冷却水道连通,形成冷却水道,其特征在于:所述的靶板与返流板对接焊形成封闭式V型锐角结构,等离子体打击点在靶板和返流板之间灵活调整和控制,满足了等离子体位形灵活性需求。
  2. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:所述的靶板和返流板的各层结构形式及参数相同,换热能力完全一致;面对等离子体结构为钨层,其后的铜层为过渡层,铬锆铜层为热传导层,不锈钢层为结构层,不锈钢盖板为超汽化冷却水道盖板。
  3. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:在封闭式V型锐角结构焊接区域,铬锆铜层与不锈钢层之间的接触界面为曲线面型,在热沉的铬锆铜侧,超汽化冷却水道由铬锆铜层逐渐过渡至铬锆铜及不锈钢的混合层,最后过渡至纯不锈钢层。
  4. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:所述的靶板和返流板的钨层处于V型锐角结构的内侧,且所述的靶板和返流板的钨层在V型锐角结构根部在等离子体位形线透射方向上有重叠区域,以保证等离子体打击点区域全部被钨层所覆盖,以满足等离子体被钨层完全拦截的效果。
  5. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:靶板和返流板的不锈钢盖板处于V型锐角结构的外侧,并在端部 开有进出冷却水管接口,以保证第一壁得到最大范围冷却。
  6. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:所述的靶板和返流板对接焊包括:靶板和返流板的不锈钢层之间的对接焊、不锈钢盖板与不锈钢层之间的对接焊、冷却水管与不锈钢盖板之间的对接焊、钨铜片与铬锆铜层之间的对接焊,上述的对接焊一次性整体焊接成型。
  7. 根据权利要求3所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:所述的焊接区域为靶板和返流板的不锈钢层之间对接焊时所形成的焊接界面,焊接界面为相互匹配的凸凹型结构;所述相互匹配的凸凹型结构是指不锈钢层之间的焊接界面加工成相互匹配的凸台及凹槽结构;所述的不锈钢盖板与不锈钢层之间的焊接界面以及冷却水管与不锈钢盖板之间的焊接界面也加工出凸凹型结构进行对接。
  8. 根据权利要求1所述的一种偏滤器第一壁的封闭式V型锐角结构,其特征在于:在不锈钢盖板与不锈钢层密封焊接后形成完整的超汽化冷却水道,在面向等离子体位形线的一侧超汽化冷却水道内即铬锆铜层和不锈钢层内部加工有多个凹槽,所述的铬锆铜层和不锈钢层为预先成型的复合板,之后在其内部加工凹槽,铬锆铜层提供高效热传导,不锈钢层提供结构强度。
PCT/CN2021/132947 2021-03-09 2021-11-25 一种偏滤器第一壁的封闭式v型锐角结构 WO2022188461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21876722.6A EP4086921B1 (en) 2021-03-09 2021-11-25 Closed v-shaped acute angle structure of diverter first wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110255401.1 2021-03-09
CN202110255401.1A CN112927823B (zh) 2021-03-09 2021-03-09 一种偏滤器第一壁的封闭式v型锐角结构

Publications (1)

Publication Number Publication Date
WO2022188461A1 true WO2022188461A1 (zh) 2022-09-15

Family

ID=76172158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132947 WO2022188461A1 (zh) 2021-03-09 2021-11-25 一种偏滤器第一壁的封闭式v型锐角结构

Country Status (3)

Country Link
EP (1) EP4086921B1 (zh)
CN (1) CN112927823B (zh)
WO (1) WO2022188461A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115527694A (zh) * 2022-11-04 2022-12-27 中国科学院合肥物质科学研究院 一种托卡马克聚变堆水冷偏滤器系统
WO2024131401A1 (zh) * 2022-12-23 2024-06-27 中国科学院合肥物质科学研究院 一种聚变堆偏滤器面对等离子体部件结构及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927823B (zh) * 2021-03-09 2024-01-30 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构
CN113851232B (zh) * 2021-08-25 2024-06-07 中国科学院合肥物质科学研究院 一种便于正面维护的偏滤器结构及其操作方法
CN114038581A (zh) * 2021-10-18 2022-02-11 中国科学院合肥物质科学研究院 一种适用于磁约束核聚变装置的平板型偏滤器靶板及其加工方法
CN117038116B (zh) * 2023-09-25 2024-02-06 中国科学技术大学 一种基于钨和铜界面连接方式的防脱粘偏滤器组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151084A (ja) * 1983-02-18 1984-08-29 株式会社日立製作所 核融合装置
CN104416973A (zh) * 2013-09-06 2015-03-18 核工业西南物理研究院 用于聚变装置高热负荷部件的钨铜模块及其制备方法
CN108615563A (zh) * 2018-04-02 2018-10-02 西安交通大学 聚变装置偏滤器水冷模块及其应用的偏滤器冷却靶板结构
CN110729058A (zh) * 2019-10-14 2020-01-24 南京理工大学 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件
CN112420221A (zh) * 2020-11-10 2021-02-26 中国科学院合肥物质科学研究院 一种便于正面遥操作维护的聚变堆偏滤器结构
CN112927823A (zh) * 2021-03-09 2021-06-08 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06242275A (ja) * 1992-12-25 1994-09-02 Unie Net:Kk 核融合炉用及び核融合実験装置のダイバータ等プラズマ対向壁を用いた熱発電装置
JPH09127278A (ja) * 1995-11-07 1997-05-16 Japan Atom Energy Res Inst 核融合装置用ダイバータ
EP1063871A1 (en) * 1999-06-24 2000-12-27 European Community Divertorfiltering element for a tokamak nuclear fusion reactor, divertor employing the filtering element and tokamak nuclear fusion reactor employing the divertor
JP2001296096A (ja) * 2000-02-09 2001-10-26 Japan Atom Energy Res Inst スクリュウ冷却管
LV14765A (lv) * 2013-09-12 2013-11-20 LATVIJAS UNIVERSITĀTES FIZIKAS INSTITŪTS, LU aģentūra Dzesējams divertora plazmas attīrīšanas modulis
CN107507651B (zh) * 2017-08-15 2019-05-31 中国科学院合肥物质科学研究院 一种适用于托卡马克聚变堆的双冷回路偏滤器结构
CN110739087B (zh) * 2019-10-22 2021-05-28 中国科学院合肥物质科学研究院 一种适用于偏滤器第一壁独立遥操作的盒体开口结构
CN110895974B (zh) * 2019-10-22 2021-06-25 中国科学院合肥物质科学研究院 一种适用于偏滤器第一壁独立遥操作的过渡板结构
CN111477352B (zh) * 2020-04-22 2023-03-10 中国科学院合肥物质科学研究院 一种用于聚变装置偏滤器第一壁相邻冷却通道的u型装置及其装配方法
CN111724915A (zh) * 2020-07-17 2020-09-29 中国科学院合肥物质科学研究院 一种可遥操作维护的托卡马克偏滤器靶板部件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151084A (ja) * 1983-02-18 1984-08-29 株式会社日立製作所 核融合装置
CN104416973A (zh) * 2013-09-06 2015-03-18 核工业西南物理研究院 用于聚变装置高热负荷部件的钨铜模块及其制备方法
CN108615563A (zh) * 2018-04-02 2018-10-02 西安交通大学 聚变装置偏滤器水冷模块及其应用的偏滤器冷却靶板结构
CN110729058A (zh) * 2019-10-14 2020-01-24 南京理工大学 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件
CN112420221A (zh) * 2020-11-10 2021-02-26 中国科学院合肥物质科学研究院 一种便于正面遥操作维护的聚变堆偏滤器结构
CN112927823A (zh) * 2021-03-09 2021-06-08 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PENG XUEBING, YE MINYOU, SONG YUNTAO, MAO XIN, CHEN PEIMING, QIAN XINYUAN: "Engineering conceptual design of CFETR divertor", FUSION ENGINEERING AND DESIGN, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 98-99, 1 October 2015 (2015-10-01), NL , pages 1380 - 1383, XP055939631, ISSN: 0920-3796, DOI: 10.1016/j.fusengdes.2015.01.017 *
See also references of EP4086921A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115527694A (zh) * 2022-11-04 2022-12-27 中国科学院合肥物质科学研究院 一种托卡马克聚变堆水冷偏滤器系统
WO2024131401A1 (zh) * 2022-12-23 2024-06-27 中国科学院合肥物质科学研究院 一种聚变堆偏滤器面对等离子体部件结构及其制备方法

Also Published As

Publication number Publication date
EP4086921A4 (en) 2023-10-18
CN112927823A (zh) 2021-06-08
CN112927823B (zh) 2024-01-30
EP4086921A1 (en) 2022-11-09
EP4086921B1 (en) 2024-10-30

Similar Documents

Publication Publication Date Title
WO2022188461A1 (zh) 一种偏滤器第一壁的封闭式v型锐角结构
WO2017113571A1 (zh) 一体化相变抑制传热换热板结构及其制造方法
JP2011002133A (ja) 高温ガス冷却用熱交換器
CN108615563A (zh) 聚变装置偏滤器水冷模块及其应用的偏滤器冷却靶板结构
CN106091782A (zh) 一种轴向贯通的h型翅片管及其换热管束
CN112420221B (zh) 一种便于正面遥操作维护的聚变堆偏滤器结构
CN108630325A (zh) 一种用于核聚变堆真空室扇区浸泡式的水冷结构
CN109630368A (zh) 大功率附加场磁动力等离子体推力器阳极高效换热结构
CN109269756B (zh) 一种水冷式喷管
CN111724915A (zh) 一种可遥操作维护的托卡马克偏滤器靶板部件
CN108061471B (zh) 一种多单元复合螺旋板式换热器
CN108518882A (zh) 一种液氮循环冷却涡流管高效制冷系统
CN104470190A (zh) 粒子产生靶的冷却装置
WO2024131401A1 (zh) 一种聚变堆偏滤器面对等离子体部件结构及其制备方法
CN110580959B (zh) 钠-空气热交换器
CN111197937A (zh) 一种换热器及其制造方法
CN216250470U (zh) 一种大容量开关的散热装置及大容量开关
CN207422974U (zh) 一种管路扰流器
CN115325862A (zh) 一种用于液态金属与超临界气体的换热器
CN205996361U (zh) 密封式管管焊接机头
CN208644353U (zh) 一种氩弧焊枪
CN210773572U (zh) 一种铜铝合金换热管
US20240136076A1 (en) Plasma-facing component (pfc) of fusion reactor divertor and preparation method thereof
CN113628769B (zh) 一种核电厂用紧凑高效换热设备
CN111630944B (zh) 一种具有分段烧结多孔壁面的火箭推力室

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021876722

Country of ref document: EP

Effective date: 20220411

NENP Non-entry into the national phase

Ref country code: DE