CN110729058A - 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件 - Google Patents

一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件 Download PDF

Info

Publication number
CN110729058A
CN110729058A CN201910972473.0A CN201910972473A CN110729058A CN 110729058 A CN110729058 A CN 110729058A CN 201910972473 A CN201910972473 A CN 201910972473A CN 110729058 A CN110729058 A CN 110729058A
Authority
CN
China
Prior art keywords
microchannel
layer
heat sink
pfm
divertor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910972473.0A
Other languages
English (en)
Inventor
陈雪梅
鲁铭翔
胡定华
李强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201910972473.0A priority Critical patent/CN110729058A/zh
Publication of CN110729058A publication Critical patent/CN110729058A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • G21B1/057Tokamaks
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/13First wall; Blanket; Divertor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma Technology (AREA)

Abstract

本发明属于聚变反应堆散热领域,具体涉及一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件。单元部件为偏滤器靶板的热负荷部分,单元部件包括依次设置的面向等离子体材料PFM层,过渡材料层和微通道冷却热沉层,微通道冷却热沉层设有微通道结构和进出口,微通道结构的水力直径为0.1‑10mm。过渡材料分别焊接PFM和微通道冷却热沉,用于缓和PFM和热沉材料由于高温等离子体辐照后变形不同而产生的应力集中;本发明集微尺度效应和沸腾传热特性于一体,具有较高的换热能力、良好的均温性、较小的工质需求量等优点;与传统的穿管式直冷管结构部件相比,本发明的单元部件能够及时有效地转移出沉积在偏滤器靶板表面的热负荷,稳态热承载能力高达20MW/m2

Description

一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件
技术领域
本发明属于聚变反应堆散热领域,具体涉及一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件。
背景技术
随着世界经济的发展,以化石能源为代表的常规能源已逐渐无法满足需要,而受控核聚变能作为一种安全性高、储量丰富、环境优越性好的理想清洁能源。在主流的可控核聚变方案中,基于磁约束托卡马克(Tokamak)是最有希望实现可控热核聚变反应的装置,国际热核聚变实验反应堆(ITER)、先进超导托卡马克实验装置(EAST)和中国聚变工程实验堆(CFETR)都采用的是磁约束核聚变的方式。
托卡马克装置在边界位置会发生高温等离子体与第一壁之间强烈的相互作用,造成第一壁材料的腐蚀与伤损并产生大量杂质。偏滤器在热核反应堆中起到排除来自聚变等离子体的热流、粒子流和氦灰的作用,以及有效地屏蔽来自器壁的杂质,减少对中心等离子体的污染。未来聚变堆对偏滤器提出了更高的热负荷能力要求,其稳态运行时,要求沉积在偏滤器靶板表面的热流密度高达20MW/m2。而传统的穿管式直冷管,在一系列的块体PFM中间开圆孔,再将作为热沉的铜合金冷却管道穿过,工质在流经管道时,与壁面发生换热,带走大量的热量。但因其比表面积较小,在只能满足10MW/m2以下热流密度的散热需求。面对如此高的热负荷,偏滤器须具有快速移除热量的能力,如果不能解决稳态20MW/m2以上的热控需求,会使得偏滤器靶板表面发生融化,热沉变形,以及界面连接处出现裂纹等后果,将严重危害核聚变实验装置的安全运行。
发明内容
本发明的目的在于提供一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件。
实现本发明目的的技术解决方案为:
一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件,所述单元部件为偏滤器靶板的热负荷部分,所述单元部件包括依次设置的面向等离子体材料PFM层,过渡材料层和微通道冷却热沉层,所述微通道冷却热沉层设有微通道结构和进出口,所述微通道结构的水力直径为0.1-10mm。
进一步的,所述面向等离子体材料PFM层的厚度为0.1-10mm,材料为W合金。
进一步的,所述过渡材料层厚度为0.1-5mm,材料为无氧Cu。
进一步的,所述微通道冷却热沉层的厚度为1-12mm,材料为CuCrZr或ODS Cu中的任何一种。
进一步的,所述微通道结构的形状为平行矩形排列、正交网络结构、树枝分形结构、螺旋环绕结构中的任一种。
进一步的,所述微通道结构的加工方法为线切割加工。
进一步的,所述过渡材料层两侧分别与面向等离子体材料PFM层和微通道冷却热沉层焊接。
进一步的,所述焊接为热等静压焊接、真空扩散焊接、电子束焊接、烧结熔渗法、超高压通电烧结、放电等离子体烧结中的任一种。
进一步的,所述微通道冷却热沉层的进出口位置设置为侧进侧出或下进下出任一种。
本发明与现有技术相比,其显著优点在于:
(1)本发明基于微通道相变冷却技术,集微尺度效应与沸腾换热特性于一体,与其他冷却技术相比,具有较大的表面积与体积比和较强的换热能力;
(2)本发明在面向等离子体材料PFM和冷却热沉之间加入无氧Cu进行过渡,有效缓和了交界面的热应力;
(3)本发明采用热等静压焊接、真空扩散焊接、电子束焊接、烧结熔渗法、超高压通电烧结、放电等离子体烧结中的任一种进行层与层之间的连接,保证层与层之间的连接强度。
附图说明
图1为本发明聚变堆偏滤器高热负荷单元部件的结构示意图。
附图标记说明:
1-面向等离子体材料PFM层,2-过渡材料层,3-微通道冷却热沉层。
具体实施方式
如图1所示,本发明提供了一种基于微通道相变冷却技术的聚变堆偏滤器高热负荷单元部件。偏滤器部件采用溅射值较低且熔点较高的钨(W)作为面向等离子体材料(Plasma Facing Material,PFM),采用导热性能较好的ODS Cu或CuCrZr作为热沉材料(Heat Sink Material)。由于W和ODS Cu(CuCrZr)的热膨胀系数具有很大的差异,直接造成在制备和服役过程中两者界面产生巨大的热应力,进而导致裂纹的产生。为了有效降低W和ODS Cu(CuCrZr)界面的热应力,在二者之间采用无氧Cu作为过渡材料。以满足稳态20MW/m2以上的热控需求。
一种基于微通道相变冷却技术的聚变堆偏滤器高热负荷单元部件由面向等离子体材料PFM层1、过渡材料层2和微通道冷却热沉层3结构组成。具有优异延展性的无氧铜作为过渡材料层2的过渡材料,分别焊接PFM层1和微通道冷却热沉层3,用于缓和PFM和热沉材料由于高温等离子体辐照后变形不同而产生的应力集中。
微通道相变冷却技术集微尺度效应和沸腾传热特性于一体,可以有效解决高热流密度散热问题。
所述面向等离子体材料PFM层1的厚度为0.1-10mm,优选为2mm,材料为W或增强W合金中的任一种。
所述过渡材料层2厚度为0.1-5mm,优选为1mm,材料为无氧Cu。
所述微通道冷却热沉层3厚度为1-12mm,优选为12mm,材料为CuCrZr或ODS Cu中的任何一种。
所述微通道冷却热沉层3所加工的微通道结构的水力直径为0.1-10mm,优选为0.47mm。所述微通道结构加工方法为线切割加工。
所述微通道冷却热沉层3加工的微通道分布形状为平行矩形排列、正交网络结构、树枝分形结构、螺旋环绕结构等结构中的任一种。
所述微通道冷却热沉层3的进出口位置设置为侧进侧出或下进下出中任一种。
所述无氧铜分别焊接PFM和微通道冷却热沉方法为热等静压焊接、真空扩散焊接、电子束焊接、烧结熔渗法、超高压通电烧结、放电等离子体烧结中的任一种。
工作原理:工质从进口流入,在流经微通道冷却热沉时,与微通道壁面进行对流换热,发生过冷流动沸腾现象,带走大量的热量,随后,气态与液态的工质一起从出口流出。
本发明提出的微通道相变冷却技术,其集微尺度效应和沸腾传热特性于一体,具有较高的换热能力、良好的均温性、较小的工质需求量等优点。与传统的穿管式直冷管结构部件相比,本发明提出的偏滤器高热负荷单元部件能够及时有效地转移出沉积在偏滤器靶板表面的热负荷,稳态热承载能力可高达20MW/m2。

Claims (9)

1.一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件,其特征在于,所述单元部件为偏滤器靶板的热负荷部分,所述单元部件包括依次设置的面向等离子体材料PFM层(1),过渡材料层(2)和微通道冷却热沉层(3),所述微通道冷却热沉层(3)设有微通道结构和进出口,所述微通道结构的水力直径为0.1-10mm。
2.根据权利要求1所述的单元部件,其特征在于,所述面向等离子体材料PFM层(1)的厚度为0.1-10mm,材料为W合金。
3.根据权利要求1所述的单元部件,其特征在于,所述过渡材料层(2)厚度为0.1-5mm,材料为无氧Cu。
4.根据权利要求1所述的单元部件,其特征在于,所述微通道冷却热沉层(3)的厚度为1-12mm,材料为CuCrZr或ODS Cu中的任何一种。
5.根据权利要求1所述的单元部件,其特征在于,所述微通道结构的形状为平行矩形排列、正交网络结构、树枝分形结构、螺旋环绕结构中的任一种。
6.根据权利要求5所述的单元部件,其特征在于,所述微通道结构的加工方法为线切割加工。
7.根据权利要求1所述的单元部件,其特征在于,所述过渡材料层(2)两侧分别与面向等离子体材料PFM层(1)和微通道冷却热沉层(3)焊接。
8.根据权利要求7所述的单元部件,其特征在于,所述焊接为热等静压焊接、真空扩散焊接、电子束焊接、烧结熔渗法、超高压通电烧结、放电等离子体烧结中的任一种。
9.根据权利要求1所述的单元部件,其特征在于,所述微通道冷却热沉层的进出口位置设置为侧进侧出或下进下出任一种。
CN201910972473.0A 2019-10-14 2019-10-14 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件 Pending CN110729058A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910972473.0A CN110729058A (zh) 2019-10-14 2019-10-14 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910972473.0A CN110729058A (zh) 2019-10-14 2019-10-14 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件

Publications (1)

Publication Number Publication Date
CN110729058A true CN110729058A (zh) 2020-01-24

Family

ID=69221094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910972473.0A Pending CN110729058A (zh) 2019-10-14 2019-10-14 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件

Country Status (1)

Country Link
CN (1) CN110729058A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872538A (zh) * 2020-07-31 2020-11-03 青岛理工大学 一种基于复合纳米粒子强化中间层的ods钢焊接方法
CN112927823A (zh) * 2021-03-09 2021-06-08 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111872538A (zh) * 2020-07-31 2020-11-03 青岛理工大学 一种基于复合纳米粒子强化中间层的ods钢焊接方法
CN111872538B (zh) * 2020-07-31 2021-12-07 青岛理工大学 一种基于复合纳米粒子强化中间层的ods钢焊接方法
CN112927823A (zh) * 2021-03-09 2021-06-08 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构
WO2022188461A1 (zh) * 2021-03-09 2022-09-15 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构
CN112927823B (zh) * 2021-03-09 2024-01-30 中国科学院合肥物质科学研究院 一种偏滤器第一壁的封闭式v型锐角结构

Similar Documents

Publication Publication Date Title
CN108615563B (zh) 聚变装置偏滤器水冷模块及其应用的偏滤器冷却靶板结构
CN105551530B (zh) 一种基于高温熔盐冷却的聚变堆钨偏滤器结构
CN1538462A (zh) 聚变反应堆的层状构件
CN110729058A (zh) 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件
CN107910075B (zh) 一种用于聚变装置内的新型均匀流动液态锂限制器结构
CN113385895A (zh) 一种高稳定铌基超导加速腔及其制备方法
CN107705823A (zh) 一种适用于磁约束核聚变装置第一壁的冷却结构
CN102922815A (zh) 水冷却平板层状CuCrZr/OFHC-Cu/CVD-W面向等离子体部件及其制作方法
Yang et al. Development of the flowing liquid lithium limiter for EAST tokamak
Tian et al. Numerical analysis of heat transfer and flow field for CFETR divertor
Chen et al. Preliminary design and performance study of EAST liquid lithium limiter based on CPS
CN207489479U (zh) 一种适用于磁约束核聚变装置第一壁的冷却结构
CN115440395A (zh) 一种适用于聚变堆强磁场和高热流环境下低熔点金属管内流动排热结构
Zhang et al. Design and thermal-hydraulic analysis for CFETR divertor OVT in consideration of RH compatibility
CN115188498A (zh) 一种适用于托卡马克装置的极向布置的平板限制器结构
CN113488202A (zh) 一种快速移能聚变堆偏滤器水冷钨靶模块及冷却靶板结构
Mou et al. Manufacturing and testing of flat-type divertor mockup with advanced materials
CN110428912B (zh) 含有金刚石的第一壁材料及其制备方法
Vertkov et al. The concept of lithium based plasma facing elements for steady state fusion tokamak-reactor and its experimental validation
CN210952463U (zh) 一种高温梯级相变蓄热装置
Piskarev et al. Fabrication and thermal tests of SS/Cu bimetal plate for the use in the concept of flowing liquid lithium layer in tokamak limiters and divertors
Evtikhin et al. Design, calculation and experimental studies for liquid metal system main parameters in support of the liquid lithium fusion reactor
JPH0882688A (ja) 核融合炉の増殖ブランケット
Lan et al. Research progress on composite heat transfer enhancement technology of phase change heat storage system
Lu et al. The Development and Application of Microchannel Heat Sink on W/Cu Flat-Type Mock-Up

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination