CN111872538B - 一种基于复合纳米粒子强化中间层的ods钢焊接方法 - Google Patents

一种基于复合纳米粒子强化中间层的ods钢焊接方法 Download PDF

Info

Publication number
CN111872538B
CN111872538B CN202010759552.6A CN202010759552A CN111872538B CN 111872538 B CN111872538 B CN 111872538B CN 202010759552 A CN202010759552 A CN 202010759552A CN 111872538 B CN111872538 B CN 111872538B
Authority
CN
China
Prior art keywords
welding
ods
ods steel
welded
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010759552.6A
Other languages
English (en)
Other versions
CN111872538A (zh
Inventor
张广明
周扬民
仪垂杰
吕扬
战胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Qingye Energy Conservation Industry Research Institute Co ltd
Qingdao University of Technology
Original Assignee
Shandong Qingye Energy Conservation Industry Research Institute Co ltd
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Qingye Energy Conservation Industry Research Institute Co ltd, Qingdao University of Technology filed Critical Shandong Qingye Energy Conservation Industry Research Institute Co ltd
Priority to CN202010759552.6A priority Critical patent/CN111872538B/zh
Publication of CN111872538A publication Critical patent/CN111872538A/zh
Application granted granted Critical
Publication of CN111872538B publication Critical patent/CN111872538B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • B23K20/023Thermo-compression bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/14Preventing or minimising gas access, or using protective gases or vacuum during welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/24Preliminary treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon

Abstract

本发明涉及焊接技术领域,具体涉及一种基于复合纳米粒子强化中间层的ODS钢焊接方法。通过在焊接中间层中加入Ta2O5和Y2O3纳米粒子,使两者在中间层形成YTaO4等纳米粒子,最终通过含量控制使在其析出的纳米粒子组成由YTaO4和多余的重新析出的Ta2O5组成,中间层中既存在大于基体密度的粒子,也存在小于基体密度的粒子,在焊接时保证了上侧和下侧都会有纳米粒子存在,进一步提高了焊接处焊接质量。

Description

一种基于复合纳米粒子强化中间层的ODS钢焊接方法
技术领域
本发明属于焊接技术领域,具体涉及一种基于复合纳米粒子强化中间层的ODS钢焊接方法。
背景技术
氧化物弥散强化钢即ODS钢,由于其内部氧化物纳米粒子弥散分布的特点,具有优异的高温力学性能和抗辐照性能,是先进核能系统中结构材料的理想选择。
氧化物弥散强化钢通常采用机械合金化以及热等静压或热挤出等成型工艺制造,材料处于非冶金平衡状态,传统熔化焊接会使合金基体中的氧化物弥散粒子从液体金属中分离并聚集成渣,从根本上破坏氧化物弥散强化钢本身的结构和性能。因此,氧化物弥散强化钢的焊接成为制约其工程应用的关键问题和难点问题。
现有技术中针对氧化物弥散强化钢焊接方法的研究包括了摩擦搅拌焊、固相扩散焊、钎焊以及电磁脉冲焊、真空电子束焊、激光焊等多种高能焊接。由于各种焊接方式的实际应用特点及其焊接接头组织(晶粒和弥散粒子)异于母材组织影响焊接质量的原因,针对氧化物弥散强化钢的焊接还没有找到一种比较理想的焊接方式。比如,摩擦搅拌焊只能焊接厚度较小的板材;过渡液相扩散焊也受限于没有中间层材料的性能。
ODS合金的TLP扩散焊接所面临的中间层晶粒粗大、界面两侧晶粒取向差、界面处存在弥散粒子等问题,制约ODS合金TLP扩散焊接的力学性能,特别是在核反应堆中所必需的高温力学性能。目前为止,与母材成分和结构都趋于一致的ODS-中间层有望改善以上问题。但是ODS-中间层中弥散粒子在TLP扩散焊接过程中又会对熔化区中弥散粒子团聚和长大以及扩散影响区中元素的扩散等问题产生影响。
因此,亟需针对氧化物弥散强化钢提供了一种可以获得优异焊接性能的焊接方法。
发明内容
为了解决上述背景技术中ODS钢在焊接中产生的问题,本发明提供了一种基于复合纳米粒子强化中间层的ODS钢焊接方法。
为实现上述目的,本发明采用以下技术方案:
一种基于复合纳米粒子强化中间层的ODS钢焊接方法,其特征在于:采用过渡液相扩散焊对氧化物弥散强化钢进行焊接;
根据待焊接的ODS钢的成分确定中间层的主体成分,通过添加3wt%B和2wt%Si以及(0.2-0.4)wt%Y2O3纳米粒子和(0.8-1.6)wt%Ta2O5纳米粒子制备复合纳米粒子强化中间层;中间层的制备工艺为:首先采用行星式球磨机进行机械合金化,转速为300转/分,球料比5:1,球磨时间30h,随后采用真空热压炉进行烧结,烧结温度1150℃,保温2h,烧结压力45MPa;通过差热分析测出中间层的液相线温度确定焊接温度,最后通过机加工和机械抛光获得厚度为15-50μm的中间层;
将待焊接的ODS钢进行打磨、清洗、干燥,将中间层进行清洗、干燥,然后按照从上到下依次为待焊接ODS钢、复合纳米粒子强化中间层和待焊接ODS钢的顺序装配;接着采用真空热压烧结炉进行焊接,升温速度为5-10℃/min,焊接温度为1180-1250℃,保温时间为1-2h,压力为5-10MPa,真空度为(2.0-6.0)×10-3Pa,得到焊接后的ODS钢。
进一步地,待焊接的ODS钢的成分为(8-18)wt%Cr,1.2wt%W,0.2wt%V,(0.3-0.5)wt%Ti或(0.4-0.6)wt%Zr,(0.2-0.4)wt%Y2O3,以上原料纯度均为99.9%,C、N含量小于0.1wt%,其余为Fe;制备方法为机械合金化和热等静压成型;
进一步地,复合纳米粒子强化中间层的成分为(8-18)wt%Cr,1.2wt%W,0.2wt%V,3wt%B,2wt%Si,0.08wt%C,(0.2-0.4)wt%Y2O3,(0.8-1.6)wt%Ta2O5,以上原料纯度均为99.9%,其余为Fe;
进一步地,所述清洗为放入丙酮溶液中超声清洗5min~10min,所述干燥为冷风吹干;
本发明的另一方案在于提供以上方法焊接得到的ODS钢;
还提供了该方法焊接得到的ODS钢在第四代核反应堆关键结构材料上的应用。本发明的有益效果如下:
(1)我们发现目前使用的Fe-B-Si合金,若不添加纳米粒子,焊接后该部分强度较差;当添加和基体一样的Y2O3,Y2Ti2O7,Y2TiO5,Y4Zr3O12等纳米粒子,该类纳米粒子密度都小于Fe基体,结果导致中间层熔化后纳米粒子上浮,影响界面处的力学性能,通过深入研究我们加入Ta2O5(密度为8.2,大于7.8)和Y2O3(密度为5.01,小于Fe),并且ODS化的中间层形成YTaO4等纳米粒子(密度介于Y2O3和Ta2O5之间,且小于Fe),最终通过含量控制使在其析出的纳米粒子组成由YTaO4和多余的重新析出的Ta2O5组成。此时,中间层中既存在大于基体密度的粒子,也存在小于基体密度的粒子,这样就可以在焊接时保证上侧和下侧都会有纳米粒子存在,从而保证焊接处焊接质量。
具体实施方式
实施例1
待焊接的氧化物弥散强化钢的成分为9wt%Cr,1.2wt%W,0.2wt%V,0.3wt%Ti,0.2wt%Y2O3,C、N含量小于0.1wt%,其余为Fe,以上原料纯度均为99.9%;制备方法为机械合金化和热等静压成型;
复合纳米粒子强化中间层的成分为9wt%Cr,1.2wt%W,0.2wt%V,3wt%B,2wt%Si,0.08wt%C,0.2wt%Y2O3,0.8wt%Ta2O5,其余为Fe,以上原料纯度均为99.9%;中间层的制备工艺为:首先采用行星式球磨机进行机械合金化,转速为300转/分,球料比5:1,球磨时间30h,随后采用真空热压炉进行烧结,烧结参数为:烧结温度1150℃,保温2h,烧结压力45MPa;最后通过机加工和机械抛光获得厚度为15μm的中间层;
将待焊接的ODS钢进行打磨,然后将待焊接的ODS钢和复合纳米粒子强化中间层分别放入丙酮溶液中超声清洗5min,冷风吹干,按照从上到下依次为待焊接ODS钢、复合纳米粒子强化中间层和待焊接ODS钢的顺序装配;采用真空热压烧结炉进行焊接,升温速度为8℃/min,焊接温度为1180℃,保温时间为1.5h,压力为5MPa,真空度为3.0×10-3Pa,得到焊接后的ODS钢。
实施例2
待焊接的氧化物弥散强化钢的成分为9wt%Cr,1.2wt%W,0.2wt%V,0.3wt%Ti,0.4wt%Y2O3,C、N含量小于0.1wt%,其余为Fe,以上原料纯度均为99.9%;制备方法为机械合金化和热等静压成型;
ODS化的中间层的成分为9wt%Cr,1.2wt%W,0.2wt%V,3wt%B,2wt%Si,0.08wt%C,0.4wt%Y2O3,1.6wt%Ta2O5,其余为Fe,以上原料纯度均为99.9%;中间层的制备工艺为:首先采用行星式球磨机进行机械合金化,转速为300转/分,球料比5:1,球磨时间30h,随后采用真空热压炉进行烧结,烧结参数为:烧结温度1150℃,保温2h,烧结压力45MPa;最后通过机加工和机械抛光获得厚度为15μm的中间层;
将待焊接的ODS钢进行打磨,然后将待焊接的ODS钢和复合纳米粒子强化中间层分别放入丙酮溶液中超声清洗10min,冷风吹干,按照从上到下依次为待焊接ODS钢、复合纳米粒子强化中间层和待焊接ODS钢的顺序装配;采用真空热压烧结炉进行焊接,升温速度为8℃/min,焊接温度为1250℃,保温时间为2h,压力为10MPa,真空度为3.0×10-3Pa,得到焊接后的ODS钢。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种基于复合纳米粒子强化中间层的ODS钢焊接方法,其特征在于,采用过渡液相扩散焊对氧化物弥散强化钢进行焊接;根据待焊接的ODS钢的成分确定中间层的主体成分,通过添加3wt%B和2wt%Si以及0.2-0.4wt%Y2O3纳米粒子和0.8-1.6wt%Ta2O5纳米粒子制备复合纳米粒子强化的ODS化中间层;中间层的制备工艺为:首先采用行星式球磨机进行机械合金化,转速为300转/分,球料比5:1,球磨时间30h,随后采用真空热压炉进行烧结,烧结温度1150℃,保温2h,烧结压力45MPa;最后通过机加工和机械抛光获得厚度为15-50μm的中间层;将待焊接的ODS钢进行打磨、清洗、干燥,将中间层进行清洗、干燥,然后按照从上到下依次为待焊接ODS钢、复合纳米粒子强化中间层和待焊接ODS钢的顺序装配;接着采用真空热压烧结炉进行焊接,升温速度为5-10℃/min,焊接温度为1180-1250℃,保温时间为1-2h,压力为5-10MPa,真空度为2.0×10-3Pa-6.0×10-3Pa,得到焊接后的ODS钢。
2.根据权利要求1所述的方法,其特征在于,待焊接的ODS钢的成分为8-18wt%Cr,1.2wt%W,0.2wt%V,0.3-0.5wt%Ti或0.4-0.6wt%Zr,0.2-0.4wt%Y2O3,以上原料纯度均为99.9%,C、N含量小于0.1wt%,其余为Fe;制备方法为机械合金化和热等静压成型。
3.根据权利要求1所述的方法,其特征在于,复合纳米粒子强化中间层的成分为8-18wt%Cr,1.2wt%W,0.2wt%V,3wt%B,2wt%Si,0.08wt%C,0.2-0.4wt%Y2O3,0.8-1.6wt%Ta2O5,以上原料纯度均为99.9%,其余为Fe。
4.根据权利要求1所述的方法,其特征在于,所述清洗为放入丙酮溶液中超声清洗5min-10min,所述干燥为冷风吹干。
5.一种如权利要求1-4任一项所述的方法得到的ODS钢。
6.根据权利要求5所述的ODS钢在第四代核反应堆关键结构材料上的应用。
CN202010759552.6A 2020-07-31 2020-07-31 一种基于复合纳米粒子强化中间层的ods钢焊接方法 Active CN111872538B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010759552.6A CN111872538B (zh) 2020-07-31 2020-07-31 一种基于复合纳米粒子强化中间层的ods钢焊接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010759552.6A CN111872538B (zh) 2020-07-31 2020-07-31 一种基于复合纳米粒子强化中间层的ods钢焊接方法

Publications (2)

Publication Number Publication Date
CN111872538A CN111872538A (zh) 2020-11-03
CN111872538B true CN111872538B (zh) 2021-12-07

Family

ID=73205930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010759552.6A Active CN111872538B (zh) 2020-07-31 2020-07-31 一种基于复合纳米粒子强化中间层的ods钢焊接方法

Country Status (1)

Country Link
CN (1) CN111872538B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116000431A (zh) * 2022-12-21 2023-04-25 中国核动力研究设计院 一种采用放电等离子扩散焊技术低温快速焊接ods钢的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090887A1 (de) * 1982-04-06 1983-10-12 BBC Aktiengesellschaft Brown, Boveri & Cie. Verfahren zum Diffusionsverbinden hochwarmfester Werkstoffe
JPH06122076A (ja) * 1992-10-12 1994-05-06 Sumitomo Metal Ind Ltd 酸化物分散金属の肉盛溶接方法
CN1475326A (zh) * 2002-08-17 2004-02-18 舱壁玻璃公司 形成氧化物弥散(ods)金属材料的不可拆的材料连接的方法
CN107824995A (zh) * 2017-09-12 2018-03-23 青岛理工大学 一种应用于含铝的氧化物弥散强化铁素体/马氏体钢的焊接方法
CN107962320A (zh) * 2017-12-03 2018-04-27 温州宏丰电工合金股份有限公司 一种应用于扩散焊的铝铜合金表面活性焊剂的制备方法
CN110729058A (zh) * 2019-10-14 2020-01-24 南京理工大学 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090887A1 (de) * 1982-04-06 1983-10-12 BBC Aktiengesellschaft Brown, Boveri & Cie. Verfahren zum Diffusionsverbinden hochwarmfester Werkstoffe
JPH06122076A (ja) * 1992-10-12 1994-05-06 Sumitomo Metal Ind Ltd 酸化物分散金属の肉盛溶接方法
CN1475326A (zh) * 2002-08-17 2004-02-18 舱壁玻璃公司 形成氧化物弥散(ods)金属材料的不可拆的材料连接的方法
CN107824995A (zh) * 2017-09-12 2018-03-23 青岛理工大学 一种应用于含铝的氧化物弥散强化铁素体/马氏体钢的焊接方法
CN107962320A (zh) * 2017-12-03 2018-04-27 温州宏丰电工合金股份有限公司 一种应用于扩散焊的铝铜合金表面活性焊剂的制备方法
CN110729058A (zh) * 2019-10-14 2020-01-24 南京理工大学 一种基于微通道相变冷却的聚变堆偏滤器高热负荷单元部件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Grain refinement of transient liquid phase bonding zone using ODS insert foil;HiroyukiNoto.et al;《Journal of Nuclear Materials》;20131130;第442卷(第1-3期);第S567-S571 *

Also Published As

Publication number Publication date
CN111872538A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2021254480A1 (zh) 镍基高温合金及其制造方法、部件和应用
CN105039857B (zh) 一种氧化物弥散强化铁素体/马氏体钢及制备方法
CN101144159A (zh) 一种纳米/亚微米TiB-TiC增强钛基复合材料(TiB+TiC)/Ti的制备方法
CN102925737B (zh) 一种纳米TiB2颗粒增强金属基复合材料及其制备方法
CN106756164A (zh) 一种高温结构功能一体化B4C/Al中子吸收材料的制备方法
CN111593218B (zh) 一种微纳米颗粒增强铝基复合材料及其制备方法
CN112222413B (zh) 一种梯度结构高熵合金的冷轧复合激光增材制造工艺方法
CN108817734B (zh) 一种金属基纳米复合材料焊丝及其制备方法
CN113579556A (zh) 一种铝合金药芯焊丝及其制备方法
CN111872538B (zh) 一种基于复合纳米粒子强化中间层的ods钢焊接方法
CN101928939B (zh) 一种FenWnC-Co(Y)合金纳米涂层及其制备方法和应用
Zeng et al. Coupling effect of bonding temperature and reduced interlayer thickness on the interface characteristics and quality of the diffusion-bonded joints of Zr alloys
CN113941798A (zh) 高温结构材料用镍基合金钎焊材料及其应用
CN113862499B (zh) 一种双态组织钛基复合材料的加工制造方法
Li et al. Weldability of high entropy alloys: microstructure, mechanical property, and corrosion resistance
McKimpson et al. Joining ODS materials for high-temperature applications
CN112935621A (zh) 石墨烯增强ta1-q345中间层用焊丝及制备方法
CN116275010A (zh) 一种原位氮化物增强3d打印镍基高温合金粉末
CN116551241A (zh) 一种无裂纹铝合金药芯焊丝及其制备方法与应用
CN107824995B (zh) 一种应用于含铝的氧化物弥散强化铁素体/马氏体钢的焊接方法
CN114393209B (zh) 一种核壳结构的钛基复合粉末及其制备方法和应用
CN115449659A (zh) 氧化物弥散强化镍基高温合金及其制备方法和应用
CN113502443B (zh) 一种铍铝合金表面复合强化改性层的制备方法
CN102069295A (zh) 强化层扩散连接制备Fe3Al/Al复合结构的方法
CN114196867B (zh) 高强高导热石墨烯弥散ods钢复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant