WO2022188113A1 - 一种绿色量子点发光器件、其制作方法及显示装置 - Google Patents

一种绿色量子点发光器件、其制作方法及显示装置 Download PDF

Info

Publication number
WO2022188113A1
WO2022188113A1 PCT/CN2021/080313 CN2021080313W WO2022188113A1 WO 2022188113 A1 WO2022188113 A1 WO 2022188113A1 CN 2021080313 W CN2021080313 W CN 2021080313W WO 2022188113 A1 WO2022188113 A1 WO 2022188113A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
quantum dot
dot light
layer
emitting device
Prior art date
Application number
PCT/CN2021/080313
Other languages
English (en)
French (fr)
Inventor
李东
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to DE112021001458.7T priority Critical patent/DE112021001458T5/de
Priority to CN202180000457.0A priority patent/CN115336025A/zh
Priority to PCT/CN2021/080313 priority patent/WO2022188113A1/zh
Priority to US17/756,178 priority patent/US20240164187A1/en
Publication of WO2022188113A1 publication Critical patent/WO2022188113A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a green quantum dot light-emitting device, a manufacturing method thereof, and a display device.
  • Quantum Dot As a new type of luminescent material, Quantum Dot (QD) has the advantages of high light color purity, high luminescence quantum efficiency, adjustable luminescence color, and long service life. hot spot. Therefore, the quantum dot light-emitting diode (Quantum Dot Light Emitting Diodes, QLED) with quantum dot material as the light-emitting layer has become the main research direction of new display devices.
  • QLED Quantum Dot Light Emitting Diodes
  • a green quantum dot light-emitting device includes: a first cathode and a first anode disposed opposite to each other, a green quantum dot light-emitting layer located between the first cathode and the first anode, located at the a first electron transport layer between the first cathode and the green quantum dot light-emitting layer, and a first hole transport layer between the green quantum dot light-emitting layer and the first anode;
  • the material of the first electron transport layer includes an oxide containing Zn, the thickness of the first electron transport layer is 10nm-40nm, and the thickness of the first hole transport layer is 26nm-39nm.
  • the first cathode includes a reflective film layer, and the first anode includes a semi-transparent and semi-reflective film layer; or, the first cathode includes a semi-transparent film layer A semi-reflective film layer, the first anode includes a reflective film layer.
  • the green quantum dot light-emitting device is a top emission structure.
  • the green quantum dot light-emitting device is an inverted structure, and the green quantum dot light-emitting device further comprises a structure located on the first cathode facing away from the green light.
  • the substrate on one side of the quantum dot light-emitting layer.
  • the thickness of the first electron transport layer is 30 nm, and the thickness of the first hole transport layer is 30 nm.
  • x 0.15.
  • the material of the first hole transport layer includes an organic material or an inorganic material
  • the organic material includes polyvinylcarbazole, poly(9) ,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) or N,N'-diphenyl-N,N'-bis(3-methylbenzene)-( 1,1'-biphenyl)-4,4'-diamine, 4,4',4"-tris(carbazol-9-yl)triphenylamine or N,N'-diphenyl-N,N '-bis(1-naphthyl)-1,1'-biphenyl-4-4'-diamine, the inorganic material including NiOx or VOx.
  • the first hole transport layer includes a first sub-hole transport layer and a second sub-hole transport layer arranged in layers, and the first hole transport layer A sub-hole transport layer is close to the green quantum dot light-emitting layer, the second sub-hole transport layer is far away from the green quantum dot light-emitting layer, and the HOMO energy level of the first sub-hole transport layer is lower than that of the first sub-hole transport layer.
  • the HOMO level of the binary hole transport layer is the binary hole transport layer.
  • the HOMO energy level of the first sub-hole transport layer is -5.5eV ⁇ -6.2eV
  • the second sub-hole transport layer The HOMO energy level is -5.3eV ⁇ -5.0eV.
  • the material of the first sub-hole transport layer is 4,4',4"-tris(carbazol-9-yl)triphenylamine
  • the material of the second sub-hole transport layer is N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4-4'-diamine .
  • the thickness of the first sub-hole transport layer is 4 nm-15 nm, and the thickness of the second sub-hole transport layer is 20 nm-35 nm .
  • the green quantum dot light-emitting device provided in the embodiment of the present disclosure further includes a first hole injection layer located between the first hole transport layer and the first anode, and the first hole injection layer is located between the first hole transport layer and the first anode.
  • the thickness of the hole injection layer is 1 nm-10 nm.
  • the thickness of the first hole injection layer is 5 nm.
  • the first cathode includes a metal layer and a transparent conductive layer arranged in a stacked layer, and the material of the metal layer includes Al, Ag, Ti or Mo , the thickness of the metal layer is 60nm-150nm, the material of the transparent conductive layer is indium tin oxide, fluorine-doped SnO 2 or a conductive polymer, and the thickness of the transparent conductive layer is 5nm-50nm.
  • the material of the first anode includes Al, Ag or Mg/Ag alloy, and the thickness of the first anode is 10 nm-20 nm; or
  • the material of the first anode includes indium tin oxide, indium zinc oxide, zinc gallium oxide or indium gallium zinc oxide, and the thickness of the first anode is 40nm-200nm.
  • the thickness of the green quantum dot light-emitting layer is 10 nm-40 nm.
  • the material of the green quantum dot light-emitting layer includes CdS, CdSe, ZnSe, InP, PbS, CsPbCl 3 , CsPbBr 3 , CsPbI 3 , CdS/ ZnS, CdSe/ZnSe, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, CsPbCl 3 /ZnS, CsPbBr 3 /ZnS or CsPhI 3 /ZnS.
  • the green quantum dot light-emitting device provided in the embodiment of the present disclosure further includes a light extraction layer located on the side of the second electrode away from the green quantum dot light-emitting layer, and the material of the light extraction layer is: Organic material, the thickness of the light extraction layer is 60nm-130nm.
  • an embodiment of the present disclosure also provides a display device, including a red quantum dot light-emitting device, a green quantum dot light-emitting device, and a blue quantum dot light-emitting device, wherein the green quantum dot light-emitting device is any of the above green quantum dot light-emitting device.
  • the red quantum dot light-emitting device includes: a second cathode and a second anode arranged opposite to each other, located between the second cathode and the second anode a red quantum dot light-emitting layer, a second electron transport layer between the second cathode and the red quantum dot light-emitting layer, and a second electron transport layer between the red quantum dot light-emitting layer and the second anode hole transport layer.
  • the blue quantum dot light-emitting device includes: a third cathode and a third anode arranged opposite to each other, located between the third cathode and the third anode a blue quantum dot light-emitting layer between the third cathode and the blue quantum dot light-emitting layer, a third electron transport layer between the blue quantum dot light-emitting layer and the third anode the third hole transport layer in between.
  • the sum of the thicknesses of the second electron transport layer and the second hole transport layer, the thickness of the first electron transport layer and the first hole gradually decreases.
  • the thicknesses of the second electron transport layer, the first electron transport layer, and the third electron transport layer gradually decrease; and/or
  • the thicknesses of the second hole transport layer, the first hole transport layer, and the third hole transport layer gradually decrease.
  • the thickness of the second electron transport layer is 35 nm-60 nm, and the thickness of the second hole transport layer is 35 nm-65 nm.
  • the thickness of the second electron transport layer is 37.5nm-42.5nm, and the thickness of the second hole transport layer is 42.5nm-47.5nm.
  • the thickness of the third electron transport layer is 10 nm-30 nm, and the thickness of the third hole transport layer is 10 nm-30 nm.
  • the thickness of the third electron transport layer is 15 nm-25 nm, and the thickness of the third hole transport layer is 10 nm-20 nm.
  • the red quantum dot light-emitting device, the blue quantum dot light-emitting device and the green quantum dot light-emitting device have the same structure.
  • the electron transport layer and/or hole transport in the red quantum dot light-emitting device, the green quantum dot light-emitting device and the blue quantum dot light-emitting device is the same.
  • an embodiment of the present disclosure also provides a method for fabricating the above-mentioned green quantum dot light-emitting device, including:
  • the material of the first electron transport layer includes an oxide containing Zn, the thickness of the first electron transport layer is 10nm-40nm, and the thickness of the first hole transport layer is 26nm-39nm.
  • a first cathode and a first anode arranged opposite to each other are fabricated, a light-emitting layer located between the first cathode and the first anode is fabricated, and a light-emitting layer located between the first cathode and the first anode is fabricated.
  • a first electron transport layer between the first cathode and the green quantum dot light-emitting layer, and a first hole transport layer between the green quantum dot light-emitting layer and the first anode specifically:
  • a first anode is formed on the side of the first hole transport layer facing away from the substrate.
  • the method further includes: fabricating a first hole injection layer between the first hole transport layer and the first anode.
  • FIG. 1 is a schematic diagram of light output corresponding to a bottom emission structure
  • FIG. 2 is a schematic diagram of light output corresponding to a top emission structure
  • FIG. 3 is a schematic structural diagram of a green quantum dot light-emitting device with an inverted structure according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the light exit angle distribution corresponding to different first electron transport layers
  • FIG. 5 is a schematic diagram of light exit angle distributions corresponding to different first hole transport layers
  • FIG. 6 is a schematic structural diagram of another green quantum dot light-emitting device with an inverted structure provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram showing the comparison of electron injection performance and hole injection performance of green quantum dot materials when the materials of the first electron transport layer are ZnO and Zn 0.85 Mg 0.15 O according to an embodiment of the present disclosure
  • 8A is a schematic diagram of the current efficiency of a bottom-emitting green quantum dot light-emitting device using ZnO as the first electron transport layer material;
  • 8B is a schematic diagram of the current efficiency of a top-emitting green quantum dot light-emitting device using ZnO as the first electron transport layer material;
  • 9A is a schematic diagram of the current efficiency of a bottom-emitting green quantum dot light-emitting device using Zn 0.85 Mg 0.15 O as the first electron transport layer material;
  • 9B is a schematic diagram of the current efficiency of a top-emitting green quantum dot light-emitting device using Zn 0.85 Mg 0.15 O as the first electron transport layer material;
  • FIG. 10 is a schematic structural diagram of another green quantum dot light-emitting device with an inverted structure according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of yet another green quantum dot light-emitting device with an inverted structure according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram illustrating the simulation of the effect of the thickness of the light extraction layer on the luminous brightness of the green quantum dot light-emitting device according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram comparing the light-emitting angle distribution of the inverted bottom-emitting green quantum dot light-emitting device in the prior art and the optimized inverted top-emitting green quantum dot light-emitting device provided by the embodiment of the present disclosure;
  • FIG. 14 is a schematic structural diagram of a red quantum dot light-emitting device with an inverted structure according to an embodiment of the present disclosure
  • FIG. 15 is a schematic diagram illustrating the simulation of the light emission intensity corresponding to the electron transport layer and the hole transport layer of the red quantum dot light-emitting device of FIG. 14 with different thicknesses;
  • 16 is a schematic structural diagram of a blue quantum dot light-emitting device with an inverted structure according to an embodiment of the present disclosure
  • FIG. 17 is a schematic diagram illustrating the simulation of the light emission intensity corresponding to the electron transport layer and the hole transport layer of the blue quantum dot light-emitting device of FIG. 16 with different thicknesses;
  • 19 is a schematic structural diagram of a green quantum dot light-emitting device with an upright structure provided by an embodiment of the present disclosure
  • FIG. 20 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of still another display device according to an embodiment of the present disclosure.
  • AQLED active electro-quantum dot light-emitting display products
  • the electron injection of red and green quantum dot materials is generally better than hole injection, and electrons dominate the number of carriers, while the electrons of blue quantum dot materials Injection is weaker than hole injection, and the carriers in the device are very unbalanced, which becomes a bottleneck restricting the further improvement of the efficiency and stability of QLED devices.
  • the unbalanced carrier injection in the device will affect the Displays the light emitting angle and intensity of the product.
  • FIG. 1 A QLED device structure that can be implemented is shown in FIG. 1, which can include a top electrode 01 and a bottom electrode 02 arranged oppositely, and a light-emitting functional layer (not shown) located between the top electrode 01 and the bottom electrode 02, wherein the top electrode 01 completely reflects the light, and the bottom electrode 02 is a transparent film layer, which can almost completely transmit the light.
  • Part of the light emitted by the light-emitting functional layer is approximately directly emitted from the bottom electrode 02, and the other part is approximately directly emitted after being reflected by the top electrode 01.
  • This bottom emission structure can directly examine the carrier injection balance of the device.
  • a QLED device structure that can be implemented can be, for example, as shown in FIG. 2 , the bottom electrode 02 (eg: Ag/ITO) has the function of reflecting light, while the top electrode 01 (eg: thin Ag) has transflective properties, and the light-emitting layer After the light emitted by 03 passes through the top electrode 01, part of it is emitted and part of it is reflected.
  • This QLED device structure can be regarded as a Fabry-Perot cavity, that is, the emitter is located at the bottom mirror (bottom electrode) formed by the bottom electrode and the top The electrodes are formed between the top semi-transparent mirror (top electrode). In such cavities, two types of interference can be found: (1) interference between directly emitted light and light reflected from a bottom mirror with the same wave vector (wide-angle interference) and (2) multiple bottom and top mirrors Interference between sub-reflected lights (multi-beam interference).
  • the emitted irradiance can be expressed as:
  • is the emission wavelength
  • is the emission angle in air
  • T t is the transmittance of the top electrode
  • R t is the reflectivity of the top electrode
  • R b is the reflectivity of the bottom electrode
  • ⁇ ' EML is determined by Snell
  • the corresponding light propagation angle in the organic layer governed by Moore's law, is the phase shift at the bottom electrode
  • n( ⁇ ) is the refractive index of the material versus wavelength
  • I 0 ( ⁇ ) is the intrinsic PL spectral intensity of the radiating molecules
  • d' is their distance from the highly reflective mirror.
  • phase shift of light after one cycle in the cavity is given by:
  • Equation (2) is the phase shift at the bottom electrode, is the phase shift at the top electrode, n i '( ⁇ ) and d i ' are the refractive indices and thicknesses from the light-emitting molecule to the high-reflecting mirror layer, ni ( ⁇ ) and d i are the refractive indices of all layers in the cavity and thickness. Equations (2) and (3) represent two kinds of interference, wide-angle interference and multi-beam interference, respectively.
  • the resonance condition should be time to be determined. If resonance conditions are reached, constructive interference occurs, resulting in enhanced emission. It can be easily seen from the equation that the resonance condition is related to the emission wavelength of the emitter, the optical length of the cavity (thickness of each layer), the refractive index of each layer, and the position of the emitter in the cavity relative to the mirror and semi-transparent mirror. and the launch angle. If the resonance condition is not reached, the emission of the microcavity is suppressed.
  • the realization of stronger vertical emission in the QLED device is mainly related to the thickness and refractive index of each film layer.
  • the rate range is fixed, so to achieve stronger vertical emission in QLED devices, we need to optimize the thickness of the film layers in QLED devices.
  • an embodiment of the present disclosure provides a green quantum dot light-emitting device, as shown in FIG. 3 , comprising: a first cathode 1 and a first anode 2 arranged opposite to each other, located between the first cathode 1 and the first anode 2
  • the green quantum dot light-emitting layer 3 between the two, the first electron transport layer 4 between the first cathode 1 and the green quantum dot light-emitting layer 3, and the first space between the green quantum dot light-emitting layer 3 and the first anode 2 hole transport layer 5;
  • the material of the first electron transport layer 4 includes an oxide containing Zn, the thickness of the first electron transport layer 4 is 10 nm-40 nm, and the thickness of the first hole transport layer 5 is 26 nm-39 nm.
  • the first cathode 1 includes an opaque film layer, and the first anode 2 includes a semi-transparent and semi-reflective film layer; or, the first cathode 1 includes The semi-transparent and semi-reflective film layer, the first anode 2 includes an opaque film layer.
  • an optical cavity effect can be generated in the first cathode 1 and the first anode 2, thereby adjusting the light-emitting angle of the green quantum dot light-emitting device.
  • the first cathode 1 includes a reflective film layer, and the first anode 2 includes a transflective film layer; or, the first cathode 1 includes a transflective film layer.
  • a Fabry-Perot cavity resonance can be better formed between the first cathode 1 and the first anode 2, thereby better regulating the light-emitting angle of the green quantum dot light-emitting device.
  • the material of the semi-transparent and semi-reflective film layer may include Al, Ag or Mg/Ag alloy, and the thickness may be 10 nm-20 nm; or the material of the semi-transparent and semi-reflective film layer may include indium tin oxide, indium Zinc gallium or indium gallium zinc oxide, the thickness of the first anode is 40nm-200nm.
  • the material of the reflective layer may include Al, Ag, Ti or Mo, more preferably Ag; the thickness of the reflective layer is preferably 60nm-150nm.
  • the refractive index of each film layer will affect the light-emitting effect of the green quantum-dot light-emitting device, for example, the light-emitting angle.
  • the refractive index of the green quantum dots is 1.7-2 in the visible light range, and the range adopted in the embodiment of the present disclosure is 1.78-1.94; the refractive index of the first electron transport layer is 1.2-1.6 in the visible light range, the present disclosure
  • the range used in the embodiment is 1.25-1.51; the refractive index of the first hole transport layer is 1.8-2.2 in the visible light range, and the range used in the embodiment of the present disclosure is 1.9-2.1;
  • the refractive index of the first hole injection layer is The visible light range is 1.7-2.2, and the range adopted by the embodiment of the present disclosure is 1.8-2.
  • the light-emitting angle distributions of the inverted top-emitting green quantum dot light-emitting devices corresponding to the first electron transport layer and the first hole transport layer with different thicknesses are calculated.
  • the simulation results are shown in Figure 4 and Figure 5.
  • the first cathode 1 includes a reflective film layer
  • the first anode 2 includes a semi-transparent and semi-reflective film layer
  • the device emits light from the side of the first anode 2 .
  • Figure 4 shows the corresponding simulation results of the first electron transport layer (represented by ET) with different thicknesses, and the thickness of the first hole transport layer is 30 nm;
  • Figure 5 is the corresponding simulation result of the first hole transport layer (represented by HT) of different thicknesses
  • the thickness of the first electron transport layer is 30nm;
  • the distance from each point in the curves in Figure 4 and Figure 5 to the origin represents the light intensity I at this angle, and its coordinates are represented by (I cos ⁇ , I sin ⁇ ) , the angle between the line connecting this point and the origin and the X axis is the light exit angle ⁇ .
  • Figures 4 and 5 illustrate the first electron transport layer (represented by ET) and the first hole transport layer (represented by HT) respectively.
  • the thickness of the first electron transport layer (represented by ET) and the thickness of the first hole transport layer (represented by HT) are inverted top-emitting green quantum dots at 10nm-40nm, respectively.
  • the light-emitting angle distribution of the light-emitting device is narrowed, and the light-emitting intensity is concentrated on the front side of the screen (normal direction).
  • the thickness of the first hole transport layer (represented by HT) is preferably 26 nm-39 nm.
  • the material of the first electron transport layer 4 is an oxide including Zn
  • the thickness of the first electron transport layer 4 is preferably 10nm-40nm
  • the first hole transport layer The thickness of 5 is preferably 26nm-39nm.
  • the quantum dot light-emitting device can be either a top-emitting structure or a bottom-emitting structure. The difference between the two is whether the light-emitting direction of the device is emitting through the substrate or emitting light in the direction away from the substrate. For the bottom emission structure, the light-emitting direction of the device is emitted through the substrate.
  • the electrode (bottom electrode) close to the substrate includes a transparent film layer or a semi-transparent and semi-reflective film layer, which allows light to pass through, and is opposite to the substrate and the bottom.
  • the electrode on the same side of the electrode and away from the substrate (top electrode) comprises an opaque film layer (preferably, a reflective film layer).
  • the light-emitting direction of the device is away from the substrate.
  • the electrode (bottom electrode) close to the substrate includes an opaque film layer (preferably, a reflective film layer); the opposite substrate and the bottom electrode are on the same side and
  • the electrode away from the substrate (top electrode) includes a transparent film or a transflective film that allows light to pass through.
  • the top emission structure is easier to prepare due to the need to set an electrode structure including a semi-transparent and semi-reflective film layer. Therefore, in addition to considering the aperture ratio factor, the process difficulty is also Considerations for preferred top emission for quantum dot light-emitting devices.
  • the quantum dot light-emitting device can be an upright structure or an inverted structure.
  • the upright structure is to sequentially form a first cathode, a first electron transport layer, and a light-emitting layer on the substrate.
  • the first hole transport layer, the first hole injection layer and the first anode, the inverted structure is to form the first anode, the first hole injection layer, the first hole transport layer, the light-emitting layer, the first Electron transport layer and first cathode; for the inverted structure, the hole transport layer and hole injection layer can be deposited by evaporation of various small molecular materials.
  • the inverted structure has a larger choice of materials scope. This is because in the upright quantum dot light-emitting device, since the hole injection and hole transport layers are formed first, and then the quantum dot light-emitting layer and the first electron transport layer are formed on the surface, the solvent of the quantum dot light-emitting layer may damage the front film and This leads to a large number of interface defects, resulting in a decrease in the efficiency of quantum dot light-emitting devices. Therefore, in the upright device, it is difficult to deposit various small molecular materials on the hole transport layer and hole injection layer by evaporation, and the effect may be poor. For the above reasons, the choice of materials in the inverted structure is wider.
  • the green quantum dot light-emitting device provided by the embodiment of the present disclosure is preferably a top emission structure. More preferably, the green quantum dot light-emitting device provided by the embodiment of the present disclosure is preferably an inverted structure, and the green quantum dot light-emitting device further includes a substrate 100 on the side of the first cathode 1 facing away from the light-emitting layer 3 .
  • the substrate 100 can be a glass substrate, or a flexible substrate, such as polyethylene terephthalate (PET), etc., and can also be other materials known in the art that can be used as a substrate for a green quantum dot light-emitting device.
  • PET polyethylene terephthalate
  • the green quantum dot light-emitting device may also be a positive bottom emission structure, a positive top emission structure or an inverted bottom emission structure.
  • the thickness of the first electron transport layer 4 in the embodiment of the present disclosure is preferably 10 nm-40 nm. In actual production, when a certain thickness within this range is selected, there may be an error of ⁇ 2 nm. When the thickness of the first electron transport layer 4 is made to be 30nm, due to process errors, the actual thickness of the first electron transport layer 4 may be 28nm or 32nm; the thickness of the first hole transport layer 5 is preferably 26nm-39nm , when selecting a certain thickness within this range, there may be an error of ⁇ 2nm. For example, when the thickness of the first hole transport layer 5 is designed to be 30nm, due to process errors, the first hole transport layer actually produced may be The thickness of layer 5 is 28 nm or 32 nm.
  • the thickness of the first electron transport layer 4 is more preferably, for example, 12 nm-39 nm, 14 nm-38 nm, 16 nm -37nm, 18nm-36nm, 20nm-35nm, 22nm-35nm, 25nm-35nm, 28nm-32nm, 29nm-31nm, more preferably 30nm;
  • the thickness of the first hole transport layer 5 is more preferably, for example, 26nm-38nm, 27nm-37nm, 28nm-36nm, 29nm-35nm, 29nm-34nm, 29nm-33nm, 29nm-32nm, 29nm-31nm, more preferably 30nm.
  • the optimal light-emitting angle of the green quantum dot light-emitting angle of the green quantum dot light-emitting is more preferably, for example, 12 nm-39 nm, 14 nm-38 nm, 16
  • the thickness of the green quantum dot light-emitting layer 3 is preferably 10 nm-40 nm, more preferably 15 nm-35 nm, More preferably, the thickness is 20nm-30nm.
  • the thickness of the green quantum dot light-emitting layer 3 used in the simulation experiments performed in the embodiments of the present disclosure is 20nm-30nm.
  • the materials of the green quantum dot light-emitting layer 3 include but are not limited to CdS, CdSe, ZnSe, InP, PbS , CsPbCl 3 , CsPbBr 3 , CsPbI 3 , CdS/ZnS, CdSe/ZnSe, CdSe/ZnS, ZnSe, InP/ZnS, PbS/ZnS, CsPbCl 3 /ZnS, CsPbBr 3 /ZnS or CsPhI 3 /ZnS and other quantum dot materials .
  • holes and electrons are injected from the first anode and the first cathode, respectively, and reach the light-emitting layer of the quantum dot after charge transport.
  • the conduction band and valence band of the quantum dot capture electrons and holes, respectively, and emit light by recombination.
  • the wavelength range of the green quantum dot material is 510nm-550nm, and the commonly used green light wavelength range is 520nm-535nm.
  • Zn 1-x Mg x O is used as the material of the first electron transport layer 4 , wherein the value of x can be arbitrarily adjusted in the range of 0 to 1 to obtain different band gap widths and energy level positions
  • the structure of the first electron transport layer 5, and the ratio of Zn and Mg can be freely adjusted according to the electron injection barrier required by different light-emitting layers 3, so that the first electron transport layer 4 and the light-emitting layer 3 match each other, thereby improving the green Luminous efficiency of quantum dot light-emitting devices.
  • the electron injection performance and hole injection performance of the green quantum dot material are compared, as shown in Figure 7, the dotted line represents the current density of hole injection, In Fig. 7, Zn 0.85 Mg 0.15 O is represented by ZnMgO. It can be seen that when ZnO is used as the first electron transport layer, its electron injection is much more than hole injection; and when ZnMgO is used as the first electron transport layer, its electron injection Less than hole injection, but closer.
  • FIG. 8A is a schematic diagram of the current efficiency test result of an inverted bottom emission green quantum dot light-emitting device using ZnO as the first electron transport layer material.
  • the first The material of the cathode is ITO (for example, 10nm thickness)
  • the material of the first anode is opaque Ag (for example, 80nm thickness)
  • the thickness of the first hole transport layer is 30nm
  • the refractive index of the first hole transport layer is 1.9-2.1
  • the refractive index of the first electron transport layer is 1.25-1.51
  • the thickness of the green quantum dot light-emitting layer is 20nm-30nm
  • the refractive index of the green quantum dot light-emitting layer is 1.78-1.94
  • the thickness of the first hole injection layer is 5nm
  • the refractive index of the first hole injection layer is 1.8-2
  • FIG. 8B is a schematic diagram of the current efficiency test result of an inverted top-emitting green quantum dot light-emitting device using ZnO as the material of the first electron transport layer.
  • the material of the first cathode is It is ITO (for example, 10nm thickness), an opaque reflective layer (for example, 100nm thickness) is added to the outside of the first cathode, the material of the first anode is thin translucent Ag (for example, 15nm thickness), and the thickness of the first hole transport layer is 30nm, the refractive index of the first hole transport layer is 1.9-2.1, the refractive index of the first electron transport layer is 1.25-1.51, the thickness of the green quantum dot light-emitting layer is 20nm-30nm, and the refractive index of the green quantum dot light-emitting layer is 1.78-1.94, the thickness of the first hole injection layer is 5nm, the refractive index of the first hole injection layer is 1.8-2, the top emission green corresponding to the first electron transport layer (30nm, 50nm, 70nm) of different thicknesses is tested Current efficiency of quantum dot light-emitting
  • the device reaches the maximum current efficiency. That is, when top emission, the optimal thickness of ZnO is 70 nm; when top emission, the optimal thickness of ZnO is 30 nm. Therefore, when ZnO is used as the material of the first electron transport layer, the thickness of the first electron transport layer corresponding to the best current efficiency corresponding to the bottom emission structure and the best current efficiency corresponding to the top emission structure are not within the same range. This shows that when the inverted top-emitting device reaches the maximum current efficiency, its electron/hole injection balance is not optimized.
  • FIG. 9A shows the bottom emission green quantum dot light-emitting device using Zn 0.85 Mg 0.15 O as the first electron transport layer material.
  • FIG. 9B is a schematic diagram of the current efficiency of the top-emitting green quantum dot light-emitting device using Zn 0.85 Mg 0.15 O as the material of the first electron transport layer
  • Zn 0.85 Mg 0.15 O is shown in FIG. 9A and FIG. ZnO is doped with Mg.
  • the doping concentration of Mg increases, the mobility of the first electron transport layer decreases.
  • the required thickness of the first electron transport layer is It can be thinner. It can be seen from FIG. 9A and FIG. 9B that if you want to achieve the best current efficiency, that is, the electron/hole injection reaches or is close to the equilibrium state, the thickness of the first electron transport layer is required to be thinner, and the bottom emission structure corresponds to
  • the optimal thickness of Zn 0.85 Mg 0.15 O is 35 nm; when the top emission structure reaches the maximum current efficiency, the corresponding optimal thickness of Zn 0.85 Mg 0.15 O is still 35 nm, so the optimal first electron transport layer corresponding to the bottom emission structure has a thickness of 35 nm. The thickness is the same as that of the optimal first electron transport layer corresponding to the top emission structure.
  • the material of the first electron transport layer 4 is more preferably Zn 0.85 Mg 0.15 O.
  • Zn 0.85 Mg 0.15 O has higher electron mobility
  • Zn 0.85 Mg 0.15 O is used as the material of the first electron transport layer 4 , which is more conducive to the efficient injection of electrons from the first cathode 1 into the light-emitting layer 3 , Moreover, leakage of holes to adjacent layers can be prevented, and the charge recombination efficiency is improved.
  • the material Zn 1-x Mg x O of the first electron transport layer 4 provided in the embodiment of the present disclosure is described by taking Mg as an example for description.
  • other metal materials can also be doped, as long as they can be adjusted by adjusting The ratio of Zn to the doped metal material can make the first electron transport layer 4 and the light-emitting layer 3 match each other, thereby improving the light-emitting efficiency of the green quantum dot light-emitting device.
  • the material of the first hole transport layer 5 may be an organic material or an inorganic material.
  • the organic material includes but is not limited to polyvinylcarbazole (PVK), poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-di Aniline) (TFB), N,N'-diphenyl-N,N'-bis(3-methylbenzene)-(1,1'-biphenyl)-4,4'-diamine (TPD) , 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA) or N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1' - Biphenyl-4-4'--
  • the first hole transport layer 5 includes a first sub-hole transport layer 52 and a second sub-hole transport layer 52 arranged in layers.
  • the hole transport layer 52, the first sub-hole transport layer 51 is close to the light-emitting layer 3
  • the second sub-hole transport layer 52 is far from the light-emitting layer 3
  • the HOMO energy level of the first sub-hole transport layer 51 is smaller than the second sub-hole transport layer 51 HOMO level of layer 52.
  • the HOMO energy level of the interface between the first sub-hole transport layer 51 and the light-emitting layer 3 is closer, which is conducive to the injection of holes from the first hole transport layer 5 into the light-emitting layer 3 , the carriers in the light-emitting layer 3 can be effectively balanced, and the light-emitting efficiency and lifespan of the green quantum dot light-emitting device can be improved.
  • the HOMO energy level of the first sub-hole transport layer 51 is preferably -5.5eV ⁇ -6.2eV, and the energy The energy level is close to the energy level of the light-emitting layer 3, which is beneficial to hole injection; the HOMO energy level of the second sub-hole transport layer 52 is preferably -5.3eV ⁇ -5.0eV.
  • the material of the first sub-hole transport layer 51 may include 4,4',4"-tris(carbazol-9-yl)triphenylamine, abbreviated as TCTA, and the HOMO energy level of TCTA is -5.7 eV;
  • the second The material of the sub-hole transport layer 52 may include N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4-4'-diamine, abbreviated as NPB , the HOMO level of NPB is -5.4 eV.
  • the orbital with the highest energy level of the occupied electron is called the highest occupied orbital, which is represented by HOMO.
  • the thickness of the first sub-hole transport layer 51 is preferably 4 nm-15 nm, more preferably 4 nm-10 nm, and more preferably 4 nm-10 nm. It is further preferably 5 nm; the first sub-hole transport layer 51 plays the role of reducing the potential barrier between the light-emitting layer and the second sub-hole transport layer 52, that is, it is equivalent to a transition layer, so that the Holes are more easily transported to the light-emitting layer.
  • the film layer is discontinuous. If the thickness of the first sub-hole transport layer 51 is too thick (for example, greater than 15 nm) ), hinders hole transport; the thickness of the second sub-hole transport layer 52 is preferably 20nm-35nm, more preferably 20nm-30nm, still more preferably 25nm.
  • the second sub-hole transport layer 52 is mainly the material of the first hole transport layer, and has high mobility, so the thickness is correspondingly thicker.
  • the first hole injection layer 6 located between the first hole transport layer 5 and the first anode 2 , and the thickness of the first hole injection layer 6 is preferably 1 nm. -10 nm, more preferably, for example, 3 nm-8 nm, 4 nm-6 nm, still more preferably 5 nm, the first hole injection layer 6 can make injection of holes easier.
  • the first hole transport layer 5 transfers holes from the first anode 2, but the energy level of the commonly used hole transport material does not match the energy level of the first anode material, so the first hole injection layer is introduced 6. If the thickness of the first hole injection layer 6 is less than 1 nm, the film layer is discontinuous; if it is greater than 10 nm, the film layer is too thick and blocks hole transport. Holes are injected into the first hole transport layer from the first anode, which is beneficial to the transport of holes.
  • the material of the first hole injection layer 6 includes, but is not limited to, any one of PEDOT:PSS, MoOx, NiOx, CuOx, and HAT-CN.
  • HAT-CN The full English name of HAT-CN is 2,3,6,7,10,11-Hexaazatriphenylenehexacabonitrile.
  • the first cathode 1 may include a metal layer 11 and a transparent conductive layer 12 arranged in a stacked layer, and the transparent conductive layer 12 and The film layer to be fabricated later has better contact; specifically, the material of the metal layer 11 preferably includes Al, Ag, Ti or Mo, more preferably Ag; the thickness of the metal layer 11 is preferably 60nm-150nm, more preferably, for example, 70nm -130nm, 80nm-120nm, 90nm-110nm, the thickness of the metal layer 11 used in the embodiment of the present disclosure is 80nm, which can sufficiently reflect light; the material of the transparent conductive layer 12 is preferably indium tin oxide (ITO), fluorine-doped SnO 2 ( FTO) or conductive polymer, more preferably ITO; the thickness of the transparent conductive layer 12 is preferably 5nm
  • the material of the first anode 2 may include Al, Ag or Mg/Ag alloy, the thickness of the first anode 2 is preferably 10nm-20nm, more preferably, for example, 11nm-18nm, 12nm-15nm; if the thickness of the first anode 2 is too thin (for example, less than 10nm), the film layer is discontinuous and the conductivity is poor. The thickness of the first anode 2 is too thick (for example, greater than 20 nm), and the transmittance is poor;
  • the material of the first anode 2 may also include indium tin oxide (ITO), indium zinc oxide (IZO), zinc gallium oxide (GZO) or indium gallium zinc oxide (IGZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • GZO zinc gallium oxide
  • IGZO indium gallium zinc oxide
  • the thickness of the first anode 2 is preferably, for example, 40nm- 200nm, 50nm-150nm, 60nm-120nm, 70nm-100nm, 80nm-90nm, more preferably 80nm. Since the material of the first anode 2 is a transparent material, it does not affect the transmittance, so the thickness is correspondingly thicker, so that the conductivity is better.
  • the material of the first anode 2 preferably includes Al, Ag or Mg/Ag alloy, because when the material of the first anode 2 includes indium tin oxide (ITO), indium zinc oxide (IZO), oxide When using zinc gallium (GZO) or indium gallium zinc oxide (IGZO), a sputtering process is required, and the sputtering process temperature is high, which may damage the front film layer of the first anode 2, and the material of the first anode 2 is Al, Ag Or Mg/Ag alloy, the vapor deposition process can be used, which does not require high temperature and will not damage the front film layer of the first anode 2 .
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • IGZO indium gallium zinc oxide
  • the material of the light extraction layer 7 is an organic material with a large refractive index (for example, a refractive index of 1.4-2.0) and a small light absorption coefficient, which is conducive to improving green quantum dots.
  • the luminous efficiency of the light-emitting device; the embodiment of the present disclosure simulates the influence of the thickness of the light extraction layer 7 on the luminous brightness of the device.
  • the thickness of the light extraction layer 7 is preferably 60nm-130nm, the device Therefore, the thickness of the light extraction layer 7 provided in the embodiment of the present disclosure is preferably 60nm-130nm, more preferably, for example, 70nm-120nm, 80nm-100nm, 90nm-100nm, the light extraction layer used in the embodiment of the present disclosure 7 has a thickness of 80 nm.
  • the substrate provided by the embodiments of the present disclosure includes a base substrate, a driving circuit between the base substrate and the first cathode, and structures such as a passivation layer and a flat layer between the driving circuit and the first cathode.
  • FIG. 13 is a schematic diagram comparing the light-emitting angle distribution of the inverted bottom-emitting green quantum dot light-emitting device in the prior art and the optimized inverted top-emitting green quantum dot light-emitting device provided by the embodiment of the present disclosure. It can be seen that after the thickness optimization of each film layer in the green quantum dot light-emitting device and the selection of Zn 0.85 Mg 0.15 O as the material of the first electron transport layer, that is, after the light output optimization adjustment, the top emission device provided by the embodiment of the present disclosure has the best light output The angle is the top light output, that is, the light output angle is narrower, especially suitable for small-sized screens such as mobile phones.
  • the embodiment of the present disclosure also provides a red quantum dot light-emitting device, the red quantum dot light-emitting device includes an upright structure and an inverted structure, and the light emitting manner of the red quantum dot light-emitting device includes top emission and bottom emission.
  • the red quantum dot light emitting device is an inverted top emission structure.
  • the red quantum dot light-emitting device is taken as an example of an inverted top-emission structure.
  • the red quantum dot light-emitting device includes: a second cathode 11 and a second anode 16 arranged opposite to each other, located at the second cathode 11 and the first
  • the red quantum dot light-emitting layer 13 between the two anodes 16, the second electron transport layer 12 between the second cathode 11 and the red quantum dot light-emitting layer 13, and the red quantum dot light-emitting layer 13 and the second anode 16 The second hole transport layer 14 and the second hole injection layer 15 located between the second anode 16 and the second hole transport layer 14 .
  • the second cathode 11 includes a reflective film layer
  • the second anode 16 includes a transflective film layer
  • the device emits light from the side of the second anode 16 .
  • the reflective film layer is an opaque film layer and can reflect light.
  • the material of the second electron transport layer 12 includes an oxide containing Zn, and the material of the second electron transport layer 12 is the same as that of the aforementioned first electron transport layer 4 .
  • the inventors of this case simulated the luminous intensity in the normal direction of the red quantum dot device with the second electron transport layer 12 and the second hole transport layer 14 with different thicknesses, as shown in FIG. 15 .
  • the abscissa is the thickness of the second electron transport layer 12 (represented by ET.d)
  • the ordinate is the thickness of the second hole transport layer 14 (represented by HT.d)
  • the left bar is the luminous intensity
  • the thickness of the ET When the thickness of HT is 35.0nm-60.0nm, when the thickness of HT is 35.0nm-65.0nm, the current efficiency in the normal direction of the red quantum dot device can be greater than 2E19a.u., that is, the luminous intensity in the normal direction is stronger. Therefore, in the red quantum dot light-emitting device provided by the embodiment of the present disclosure, the thickness of the second electron transport layer 12 is 35 nm-60 nm, and the thickness of the second hole transport layer 14 is 35 nm-65 n
  • the thickness of the second electron transport layer is preferably 37.5nm- 42.5nm, the thickness of the second hole transport layer is preferably 42.5nm-47.5nm.
  • the red quantum dot light-emitting device and the green quantum dot light-emitting device may have the same structure, for example, the red quantum dot light-emitting device, and the green quantum dot light-emitting device are both inverted top emission devices or inverted bottom emission devices in the display device device, or positive top-emitting device, positive bottom-emitting device.
  • the material components of the electron transport layer and/or the hole transport layer in the red quantum dot light-emitting device and the green quantum dot light-emitting device may be the same, for example: for the electron transport layer, it includes the same metal element formed For oxides, the difference lies in the different molar ratios of metal elements; for the hole transport layer, it includes a mixture of the same substance, and the difference lies in the different ratios of substances.
  • the embodiments of the present disclosure also provide a blue quantum dot light-emitting device, the blue quantum dot light-emitting device includes an upright structure and an inverted structure, and the light emitting manner of the blue quantum dot light-emitting device includes top emission and bottom emission.
  • the blue quantum dot light emitting device is an inverted top emission structure.
  • the blue quantum dot light-emitting device is taken as an example of an inverted top emission structure.
  • the blue quantum dot light-emitting device includes: a third cathode 21 and a third anode 26 arranged opposite to each other, located in the third The blue quantum dot light-emitting layer 23 between the cathode 21 and the third anode 26, the third electron transport layer 22 between the third cathode 21 and the blue quantum dot light-emitting layer 23, and the The third hole transport layer 24 between the blue quantum dot light-emitting layer 23 and the third anode 26 , and the third hole injection layer 25 between the third anode 26 and the third hole transport layer 24 ;
  • the third cathode 21 includes a reflective film layer
  • the third anode 26 includes a transflective film layer
  • the device emits light from the third anode 26 side.
  • the reflective film layer is an opaque film layer and can reflect light.
  • the material of the third electron transport layer 22 includes an oxide containing Zn. Specifically, the material of the third electron transport layer 22 is the same as that of the first electron transport layer.
  • the inventors of this case simulated the luminous intensity in the normal direction of the blue quantum dot device with the third electron transport layer 22 and the third hole transport layer 24 with different thicknesses, as shown in FIG. 17 .
  • the abscissa is the thickness of the third electron transport layer 22 (represented by ET.d)
  • the ordinate is the thickness of the third hole transport layer 24 (represented by HT.d)
  • the bar on the left is the luminous intensity
  • the thickness is 10nm-30nm
  • the thickness of HT is 10nm-30nm
  • the luminescence intensity in the normal direction of the red quantum dot device can be greater than 2500cd/m 2 , that is, the luminescence intensity in the normal direction is stronger. Therefore, in the blue quantum dot light-emitting device provided by the embodiment of the present disclosure, the thickness of the third electron transport layer 22 is 10 nm-30 nm, and the thickness of the third hole transport layer 24 is 10 nm-30 nm.
  • the thickness of the third electron transport layer 22 is preferably 15 nm- 25 nm, and the thickness of the third hole transport layer 24 is preferably 10 nm-20 nm.
  • the wavelength range of the red quantum dot material is 610nm-645nm, and the commonly used red light wavelength range is 620nm-635nm; the wavelength range of the blue quantum dot material is 440nm-490nm, and the commonly used blue light wavelength range is 450nm-470nm .
  • the blue quantum dot light-emitting device and the green quantum dot light-emitting device may have the same structure, for example, the blue quantum dot light-emitting device, and the green quantum dot light-emitting device are both inverted top-emitting devices in the display device, or inverted Bottom emitting device, or positive top emitting device, positive bottom emitting device.
  • the material components of the electron transport layer and/or the hole transport layer in the blue quantum dot light-emitting device and the green quantum dot light-emitting device may be the same, for example: for the electron transport layer, it includes the same metal element to form The difference is that the molar ratio of metal elements is different; for the hole transport layer, it includes a mixture of the same substance, and the difference is that the ratio of substance mixing is different.
  • an embodiment of the present disclosure also provides a method for fabricating the above-mentioned green quantum dot light-emitting device, including:
  • the first cathode and the first anode arranged oppositely are made, the light-emitting layer between the first cathode and the first anode is made, the first electron transport layer between the first cathode and the light-emitting layer is made, and the light-emitting layer and the light-emitting layer are made.
  • a first hole transport layer between the first anodes wherein,
  • the material of the first electron transport layer includes oxide containing Zn, the thickness of the first electron transport layer is 10nm-40nm, and the thickness of the first hole transport layer is 26nm-39nm.
  • the material for fabricating the first electron transport layer is an oxide including Zn
  • the thickness of the first electron transport layer is preferably 10nm-40nm
  • the first hole The thickness of the transport layer is preferably 26nm-39nm.
  • a first cathode and a first anode arranged opposite to each other are fabricated, a light-emitting layer located between the first cathode and the first anode is fabricated, and a first cathode and a first anode are fabricated.
  • the first electron transport layer between the light-emitting layers and the first hole transport layer between the light-emitting layer and the first anode are fabricated, as shown in FIG. 18 , which can be specifically:
  • the method may further include: fabricating a first hole injection layer between the first hole transport layer and the first anode.
  • each film layer in the above-mentioned manufacturing method of the green quantum dot light-emitting device for the preferred thickness and material selection of each film layer in the above-mentioned manufacturing method of the green quantum dot light-emitting device, reference may be made to the relevant description in the aforementioned green quantum dot light-emitting device, which will not be repeated here.
  • each film layer in the light-emitting device includes but are not limited to spin coating, evaporation, chemical vapor deposition, physical vapor deposition, magnetron sputtering, inkjet printing, electrospray printing one or more of the laws, etc.
  • the embodiments of the present disclosure mainly take a light-emitting device with an inverted structure as an example to describe the light-emitting device and its fabrication method in detail.
  • the embodiment of the present disclosure is also applicable to a green quantum dot light-emitting device with an upright structure and its fabrication.
  • the structure of the green quantum dot light-emitting device of the upright structure is shown in FIG. 19 , including the first anode 2 , the first hole injection layer 6 , the first hole transport layer 5 , the light-emitting layer and the light-emitting layer, which are sequentially stacked on the substrate 100 . 3.
  • the first electron transport layer 4 and the first cathode 1 are sequentially stacked on the substrate 100 .
  • the fabrication methods of the red quantum dot light-emitting device and the blue quantum dot light-emitting device are the same as the fabrication method of the green quantum dot light-emitting device, which will not be repeated here.
  • an embodiment of the present disclosure also provides a display device, which may include a red quantum dot light-emitting device 200, a green quantum dot light-emitting device 300 and a blue quantum dot light-emitting device 400, wherein the red quantum dot light-emitting device 200.
  • a display device which may include a red quantum dot light-emitting device 200, a green quantum dot light-emitting device 300 and a blue quantum dot light-emitting device 400, wherein the red quantum dot light-emitting device 200.
  • a display device which may include a red quantum dot light-emitting device 200, a green quantum dot light-emitting device 300 and a blue quantum dot light-emitting device 400, wherein the red quantum dot light-emitting device 200.
  • the structures of the red quantum dot light-emitting device 200 , the blue quantum dot light-emitting device 400 and the green quantum dot light-emitting device 300 can be The same, for example, the red quantum dot light-emitting device 200, the blue quantum dot light-emitting device 400, and the green quantum dot light-emitting device 300 in the display device are all inverted top emission structures, or inverted bottom emission structures, or upright top emission structures or upright One of the bottom emission structures.
  • the quantum dot light-emitting device in FIG. 20 is an inverted top emission structure
  • the quantum dot light-emitting device in FIG. 21 is a positive top emission structure.
  • the material components of the electron transport layer and/or hole transport layer in the red quantum dot light-emitting device 200, the blue quantum dot light-emitting device 400, and the green quantum dot light-emitting device 300 may be the same, for example, for the electron transport layer Said, it includes oxides formed by the same metal element, the difference is that the molar ratio of the metal element is different; for the hole transport layer, it includes a mixture of the same material, the difference is that the material is mixed in different ratios.
  • the first anode 2 , the second anode 16 and the third anode 26 may be structures arranged on the whole surface; as shown in FIG. 21 , the first cathode 1 , the second cathode 11 and the third cathode 21 may be structures arranged on the entire surface.
  • the difference between the blue quantum dot light-emitting device 400 , the red quantum dot light-emitting device 200 and the green quantum dot light-emitting device 300 is that
  • the emission colors of the quantum dots are different, and the thickness of the electron transport layer and/or the hole transport layer may be different from each other, and the materials and thicknesses of the remaining film layers are the same.
  • the red quantum dot light-emitting device 200 may include: a second cathode 11 and a second anode 16 arranged opposite to each other, located in the second cathode 11 and the second anode 16 .
  • the materials of the electron transport layer may each include oxides containing Zn.
  • the blue quantum dot light-emitting device 400 may include: a third cathode 21 and a third anode 26 disposed opposite to each other, located in The blue quantum dot light-emitting layer 23 between the third cathode 21 and the third anode 26, the third electron transport layer 22 between the third cathode 21 and the blue quantum dot light-emitting layer 23 , and the third hole transport layer 24 located between the blue quantum dot light-emitting layer 23 and the third anode 26 , and the third hole transport layer 24 located between the third anode 26 and the third hole transport layer 24
  • the hole injection layer 25; the material of the third electron transport layer 22 and the material of the first electron transport layer may both include oxides containing Zn.
  • the sum of the thicknesses of the second electron transport layer 12 and the second hole transport layer 14 , the thickness of the first electron transport layer 4 and the The sum of the thicknesses of one hole transport layer 5, the sum of the thicknesses of the third electron transport layer 22 and the third hole transport layer 24 may be set to gradually decrease.
  • the second electron transport layer 12 , the first electron transport layer 4 , and the third electron transport layer 22 gradually decreases in thickness;
  • the thicknesses of the second hole transport layer 14 , the first hole transport layer 5 , and the third hole transport layer 24 gradually decrease.
  • the 20 and 21 of the present invention show that the thicknesses of the second electron transport layer 12, the first electron transport layer 4, and the third electron transport layer 22 gradually decrease, and the thicknesses of the second hole transport layer 14 and the first hole transport layer 22 are gradually reduced. 5.
  • the thickness of the third hole transport layer 24 is gradually reduced as an example.
  • the thickness of the second electron transport layer 12 is 35 nm-60 nm, and the thickness of the second hole transport layer 14 is 35 nm-65 nm.
  • the thickness of the second electron transport layer is preferably 37.5nm-42.5nm
  • the thickness of the second hole transport layer is preferably 42.5nm-47.5nm.
  • the thickness of the third electron transport layer 22 is 10 nm-30 nm
  • the thickness of the third hole transport layer 24 is 10 nm-30 nm.
  • the thickness of the third electron transport layer 22 is preferably 15nm-25nm
  • the thickness of the third hole transport layer 24 is preferably 10nm-20nm.
  • the wavelength range of the red quantum dot material is 610nm-645nm, and the commonly used red light wavelength range is 620nm-635nm; the wavelength range of the blue quantum dot material is 440nm-490nm, and the commonly used blue light wavelength range is 450nm-470nm .
  • the above-mentioned display device provided by the embodiments of the present disclosure may further include a pixel definition layer 500 , and the pixel definition layer 500 has pixel openings exposing a plurality of light-emitting regions.
  • the above-mentioned display device may further include other film layers well known to those skilled in the art, which will not be described in detail here.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present invention. Since the principle of solving the problem of the display device is similar to the aforementioned green quantum dot light-emitting device, the implementation of the display device can refer to the aforementioned implementation of the green quantum dot light-emitting device, and the repetition will not be repeated.
  • the material for the first electron transport layer is made of an oxide including Zn, and the thickness of the first electron transport layer is preferably 10nm-40nm, The thickness of the first hole transport layer is preferably 26nm-39nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例公开了一种绿色量子点发光器件、其制作方法及显示装置,包括:相对设置的第一阴极和第一阳极,位于第一阴极和第一阳极之间的绿色量子点发光层,位于第一阴极和绿色量子点发光层之间的第一电子传输层,以及位于绿色量子点发光层和第一阳极之间的第一空穴传输层;其中,第一电子传输层的材料包括含有Zn的氧化物,第一电子传输层的厚度为10nm-40nm,第一空穴传输层的厚度为26nm-39nm。

Description

一种绿色量子点发光器件、其制作方法及显示装置 技术领域
本公开涉及显示技术领域,特别涉及一种绿色量子点发光器件、其制作方法及显示装置。
背景技术
量子点(Quantum Dot,简称QD)作为新型的发光材料,具有光色纯度高、发光量子效率高、发光颜色可调、使用寿命长等优点,已成为目前新型发光二级管中发光材料的研究热点。因此,以量子点材料作为发光层的量子点发光二极管(Quantum Dot Light EmittingDiodes,简称QLED)成为了目前新型显示器件研究的主要方向。
发明内容
本公开实施例提供的一种绿色量子点发光器件,包括:相对设置的第一阴极和第一阳极,位于所述第一阴极和所述第一阳极之间的绿色量子点发光层,位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层;其中,
所述第一电子传输层的材料包括含有Zn的氧化物,所述第一电子传输层的厚度为10nm-40nm,所述第一空穴传输层的厚度为26nm-39nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一阴极包括反射膜层,所述第一阳极包括半透半反膜层;或者,第一阴极包括半透半反膜层,所述第一阳极包括反射膜层。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述绿色量子点发光器件为顶发射结构。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述绿色 量子点发光器件为倒置结构,所述绿色量子点发光器件还包括位于所述第一阴极背向所述绿色量子点发光层一侧的基底。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一电子传输层的厚度为30nm,所述第一空穴传输层的厚度为30nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一电子传输层的材料为Zn 1-xMg xO,其中x=0~0.2。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,x=0.15。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一空穴传输层的材料包括有机材料或无机材料,所述有机材料包括聚乙烯基咔唑、聚(9,9-二辛基芴-alt-N-(4-仲丁基苯基)-二苯胺)或N,N’-二苯基-N,N’-二(3-甲基苯)-(1,1’-联苯基)-4,4’-二胺、4,4',4”-三(咔唑-9-基)三苯胺或N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺,所述无机材料包括NiOx或VOx。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一空穴传输层包括层叠设置的第一子空穴传输层和第二子空穴传输层,所述第一子空穴传输层靠近所述绿色量子点发光层,所述第二子空穴传输层远离所述绿色量子点发光层,所述第一子空穴传输层的HOMO能级小于所述第二子空穴传输层的HOMO能级。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一子空穴传输层的HOMO能级为-5.5eV~-6.2eV,所述第二子空穴传输层的HOMO能级为-5.3eV~-5.0eV。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一子空穴传输层的材料为4,4',4”-三(咔唑-9-基)三苯胺,所述第二子空穴传输层的材料为N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一子空穴传输层的厚度为4nm-15nm,所述第二子空穴传输层的厚度为20nm-35nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,还包括位 于所述第一空穴传输层和所述第一阳极之间的第一空穴注入层,所述第一空穴注入层的厚度为1nm-10nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一空穴注入层的厚度为5nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一阴极包括叠层设置的金属层和透明导电层,所述金属层的材料包括Al、Ag、Ti或Mo,所述金属层的厚度为60nm-150nm,所述透明导电层的材料为氧化铟锡、掺杂氟的SnO 2或导电聚合物,所述透明导电层的厚度为5nm-50nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述第一阳极的材料包括Al、Ag或Mg/Ag合金,所述第一阳极的厚度为10nm-20nm;或
所述第一阳极的材料包括氧化铟锡、氧化铟锌、氧化锌镓或氧化铟镓锌,所述第一阳极的厚度为40nm-200nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述绿色量子点发光层的厚度为10nm-40nm。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,所述绿色量子点发光层的材料包括CdS、CdSe、ZnSe、InP、PbS、CsPbCl 3、CsPbBr 3、CsPbI 3、CdS/ZnS、CdSe/ZnSe、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、CsPbCl 3/ZnS、CsPbBr 3/ZnS或CsPhI 3/ZnS。
可选地,在本公开实施例提供的上述绿色量子点发光器件中,还包括位于所述第二电极远离所述绿色量子点发光层一侧的光取出层,所述光取出层的材料为有机材料,所述光取出层的厚度为60nm-130nm。
相应地,本公开实施例还提供了一种显示装置,包括红色量子点发光器件、绿色量子点发光器件和蓝色量子点发光器件,其中所述绿色量子点发光器件为上述任一项所述的绿色量子点发光器件。
可选地,在本公开实施例提供的上述显示装置中,所述红色量子点发光器件包括:相对设置的第二阴极和第二阳极,位于所述第二阴极和所述第二 阳极之间的红色量子点发光层,位于所述第二阴极和所述红色量子点发光层之间的第二电子传输层,以及位于所述红色量子点发光层和所述第二阳极之间的第二空穴传输层。
可选地,在本公开实施例提供的上述显示装置中,所述蓝色量子点发光器件包括:相对设置的第三阴极和第三阳极,位于所述第三阴极和所述第三阳极之间的蓝色量子点发光层,位于所述第三阴极和所述蓝色量子点发光层之间的第三电子传输层,以及位于所述蓝色量子点发光层和所述第三阳极之间的第三空穴传输层。
可选地,在本公开实施例提供的上述显示装置中,所述第二电子传输层和所述第二空穴传输层的厚度之和、所述第一电子传输层和所述第一空穴传输层的厚度之和、所述第三电子传输层和所述第三空穴传输层的厚度之和逐渐减小。
可选地,在本公开实施例提供的上述显示装置中,所述第二电子传输层、所述第一电子传输层、所述第三电子传输层的厚度逐渐减小;和/或
所述第二空穴传输层、所述第一空穴传输层、所述第三空穴传输层的厚度逐渐减小。
可选地,在本公开实施例提供的上述显示装置中,所述第二电子传输层的厚度为35nm-60nm,所述第二空穴传输层的厚度为35nm-65nm。
可选地,在本公开实施例提供的上述显示装置中,所述第二电子传输层的厚度为37.5nm-42.5nm,所述第二空穴传输层的厚度为42.5nm-47.5nm。
可选地,在本公开实施例提供的上述显示装置中,所述第三电子传输层的厚度为10nm-30nm,所述第三空穴传输层的厚度为10nm-30nm。
可选地,在本公开实施例提供的上述显示装置中,所述第三电子传输层的厚度为15nm-25nm,所述第三空穴传输层的厚度为10nm-20nm。
可选地,在本公开实施例提供的上述显示装置中,所述红色量子点发光器件、所述蓝色量子点发光器件与所述绿色量子点发光器件的结构相同。
可选地,在本公开实施例提供的上述显示装置中,所述红色量子点发光 器件、所述绿色量子点发光器件和所述蓝色量子点发光器件中电子传输层和/或空穴传输层材料组分相同。
相应地,本公开实施例还提供了一种上述绿色量子点发光器件的制作方法,包括:
制作相对设置的第一阴极和第一阳极,制作位于所述第一阴极和所述第一阳极之间的发光层,制作位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及制作位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层;其中,
所述第一电子传输层的材料包括含有Zn的氧化物,所述第一电子传输层的厚度为10nm-40nm,所述第一空穴传输层的厚度为26nm-39nm。
可选地,在本公开实施例提供的上述制作方法中,制作相对设置的第一阴极和第一阳极,制作位于所述第一阴极和所述第一阳极之间的发光层,制作位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及制作位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层,具体为:
在基底上制作所述第一阴极;
在所述第一阴极背离所述基底的一侧制作第一电子传输层;
在所述第一电子传输层背离所述基底的一侧制作发光层;
在所述绿色量子点发光层背离所述基底的一侧制作第一空穴传输层;
在所述第一空穴传输层背离所述基底的一侧制作第一阳极。
可选地,在本公开实施例提供的上述制作方法中,还包括:在所述第一空穴传输层和所述第一阳极之间制作第一空穴注入层。
附图说明
图1为一种底发射结构对应的出光示意图;
图2为一种顶发射结构对应的出光示意图;
图3为本公开实施例提供的一种倒置结构的绿色量子点发光器件的结构 示意图;
图4为不同第一电子传输层对应的出光角度分布示意图;
图5为不同第一空穴传输层对应的出光角度分布示意图;
图6为本公开实施例提供的又一种倒置结构的绿色量子点发光器件的结构示意图;
图7为本公开实施例对第一电子传输层的材料为ZnO和Zn 0.85Mg 0.15O时对绿色量子点材料的电子注入性能与空穴注入性能对比示意图;
图8A为采用ZnO作为第一电子传输层材料的底发射绿色量子点发光器件的电流效率示意图;
图8B为采用ZnO作为第一电子传输层材料的顶发射绿色量子点发光器件的电流效率示意图;
图9A为采用Zn 0.85Mg 0.15O作为第一电子传输层材料的底发射绿色量子点发光器件的电流效率示意图;
图9B为采用Zn 0.85Mg 0.15O作为第一电子传输层材料的顶发射绿色量子点发光器件的电流效率示意图;
图10为本公开实施例提供的又一种倒置结构的绿色量子点发光器件的结构示意图;
图11为本公开实施例提供的又一种倒置结构的绿色量子点发光器件的结构示意图;
图12为本公开实施例对光取出层厚度对绿色量子点发光器件发光亮度的影响模拟示意图;
图13为对现有技术中倒置底发射绿色量子点发光器件和本公开实施例提供的优化后的倒置顶发射绿色量子点发光器件出光角度分布示意图对比图;
图14为本公开实施例提供的一种倒置结构的红色量子点发光器件的结构示意图;
图15为图14中红色量子点发光器件的不同厚度的电子传输层和空穴传输层对应的出光强度模拟示意图;
图16为本公开实施例提供的一种倒置结构的蓝色量子点发光器件的结构示意图;
图17为图16中蓝色量子点发光器件的不同厚度的电子传输层和空穴传输层对应的出光强度模拟示意图;
图18为本公开实施例提供的一种绿色量子点发光器件的制作方法流程图;
图19为本公开实施例提供的正置结构的绿色量子点发光器件的结构示意图;
图20为本公开实施例提供的一种显示装置的结构示意图;
图21为本公开实施例提供的又一种显示装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。并且在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元 件或具有相同或类似功能的元件。
目前,主动式电致量子点发光显示产品(AMQLED)由于其在宽色域、高寿命等方面的潜在优势也得到了越来越广泛的关注,其研究日益深入,量子效率不断提升,基本达到产业化的水平,进一步采用新的工艺和技术来实现其产业化已成为未来的趋势。但是无论是正置还是倒置器件,载流子平衡都是影响器件效率的因素。
在QLED器件结构中,由于能级位置、迁移率等原因,红、绿量子点材料的电子注入普遍优于空穴注入,电子在载流子数目中占据优势,而蓝色量子点材料的电子注入弱于空穴注入,器件中载流子十分不平衡,成为限制QLED器件效率和稳定性进一步提高的瓶颈,特别是对于小尺寸显示产品来说,器件中载流子注入不平衡,会影响显示产品的出光角度及强度。
目前对QLED研究较多的是底发射结构,在高分辨率显示产品对高分辨率的需求,要求QLED器件采用顶发射结构,顶发射结构可以提高开口率。
一种可以实施的QLED器件结构如图1所示,可以包括相对设置的顶电极01和底电极02以及位于顶电极01和底电极02之间的发光功能层(未示出),其中顶电极01对光线完全反射,底电极02为透明膜层,可以对光线近似于完全透过。发光功能层发出的光,一部分从底电极02近似于直接出射,另一部分被顶电极01反射后近似于直接出射,这种底发射结构可以较为直接地考察器件的载流子注入平衡。
一种可以实施的QLED器件结构可以例如图2所示,底电极02(例如:Ag/ITO)具有反射光的作用,而顶电极01(例如:薄Ag)具有半透半反性质,发光层03发出的光经过顶电极01后,部分出射,部分被反射,可以把这种QLED器件结构看作法布里-珀罗腔,即发射体位于底电极形成的底反射镜(底电极)和顶电极形成的顶半透明镜(顶电极)之间。在这种腔中,可以发现两种类型的干涉:(1)直接发射的光与具有相同波矢的底镜反射的光之间的干涉(广角干涉)和(2)底镜和顶镜多次反射的光之间的干涉(多光束干涉)。
在空腔模型中,发射的辐照度可以表示为:
Figure PCTCN2021080313-appb-000001
式中,λ是发射波长,θ是空气中的发射角,T t是顶电极的透射率,R t是顶电极的反射率,R b是底电极的反射率,θ' EML是由斯奈尔定律控制的有机层中相应的光传播角,
Figure PCTCN2021080313-appb-000002
是底电极处的相移,n(λ)是材料的折射率与波长的关系,
Figure PCTCN2021080313-appb-000003
是一个周期后的相移,I 0(λ)是辐射分子的本征PL光谱强度,d'是它们到高反射镜的距离。
此外,光在腔中一个周期后的相移由下式给出:
Figure PCTCN2021080313-appb-000004
Figure PCTCN2021080313-appb-000005
式中,
Figure PCTCN2021080313-appb-000006
是底电极处的相移,
Figure PCTCN2021080313-appb-000007
是顶电极处的相移,n i'(λ)和d i'是从发光分子到高反射镜层的折射率和厚度,n i(λ)和d i是腔中所有层的折射率和厚度。式(2)和式(3)分别表示广角干涉和多波束干涉两种干涉。
共振条件应在
Figure PCTCN2021080313-appb-000008
时确定。如果达到共振条件,就会产生相长干涉,从而导致发射增强。从方程中可以很容易看出,共振条件与发射器的发射波长、腔的光学长度(各膜层厚度)、各膜层折射率、发射器在腔中相对于反射镜和半透明镜的位置以及发射角有关。如果未达到共振条件,微腔的发射被抑制。
从上述方程中,我们也可以通过方程(4)计算出与发射角I(θ)相关的辐照度强度,只要给出本征PL光谱强度I 0(λ)、腔的光学长度以及发光位置到反射底电极的距离。
I(θ)=∑ iI(λ i,θ)       (4)
综上,根据上述公式可以看出,对于图2所示的顶发射QLED器件,QLED器件中实现更强垂直发射主要跟各膜层的厚度和折射率有关,由于QLED器件中各膜层的折射率范围是固定的,因此要想在QLED器件中实现更强垂直发射, 我们需要优化QLED器件中膜层的厚度。
有鉴于此,本公开实施例提供了一种绿色量子点发光器件,如图3所示,包括:相对设置的第一阴极1和第一阳极2,位于第一阴极1和第一阳极2之间的绿色量子点发光层3,位于第一阴极1和绿色量子点发光层3之间的第一电子传输层4,以及位于绿色量子点发光层3和第一阳极2之间的第一空穴传输层5;其中,
第一电子传输层4的材料包括含有Zn的氧化物,第一电子传输层4的厚度为10nm-40nm,第一空穴传输层5的厚度为26nm-39nm。
在一个具体实施例中,在本公开实施例提供的上述绿色量子点发光器件中,第一阴极1包括不透明膜层,第一阳极2包括半透半反膜层;或者,第一阴极1包括半透半反膜层,第一阳极2包括不透明膜层。这样设置,可以在第一阴极1和第一阳极2产生光学腔效应,从而调控绿色量子点发光器件的出光角度。
优选地,在本公开实施例提供的上述绿色量子点发光器件中,第一阴极1包括反射膜层,第一阳极2包括半透半反膜层;或者,第一阴极1包括半透半反膜层,第一阳极2包括反射膜层;其中,反射膜层为不透明膜层,并且可以对光线进行反射。这样设置,可以更好地在第一阴极1和第一阳极2形成法布里-珀罗腔共振,从而更好地调控绿色量子点发光器件的出光角度。在具体实施时,半透半反膜层的材料可以包括Al、Ag或Mg/Ag合金,厚度可以为10nm-20nm;或者半透半反膜层的材料包括氧化铟锡、氧化铟锌、氧化锌镓或氧化铟镓锌,所述第一阳极的厚度为40nm-200nm。在具体实施时,反光层的材料可以包括Al、Ag、Ti或Mo,更优选为Ag;反光层的厚度优选为60nm-150nm。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,各膜层的折射率会影响该绿色量子点发光器件的出光效果,例如影响出光角度。可选地,绿色量子点的折射率在可见光范围内是1.7-2,本公开实施例采用的范围是1.78-1.94;第一电子传输层的折射率在可见光范围内是1.2-1.6,本公 开实施例采用的范围是1.25-1.51;第一空穴传输层的折射率在可见光范围内是1.8-2.2,本公开实施例采用的范围是1.9-2.1;第一空穴注入层的折射率在可见光范围内是1.7-2.2,本公开实施例采用的范围是1.8-2。
本公开实施例基于本公开实施例采用的这些膜层的折射率,对不同厚度的第一电子传输层和第一空穴传输层对应的倒置顶发射绿色量子点发光器件的出光角度分布进行了模拟,模拟结果如图4和图5所示。对于倒置顶发射绿色量子点发光器件来说,第一阴极1包括反射膜层,第一阳极2包括半透半反膜层,器件从第一阳极2一侧出光。图4为不同厚度的第一电子传输层(ET表示)对应的模拟结果,第一空穴传输层的厚度采用的是30nm;图5为不同厚度的第一空穴传输层(HT表示)对应的模拟结果,第一电子传输层的厚度采用的是30nm;图4和图5中曲线中每一点到原点的距离代表这个角度下的出光强度I,其坐标用(I cosθ,I sinθ)表示,该点与原点的连线与X轴的夹角即为出光角度θ,图4和图5分别示意出了第一电子传输层(ET表示)和第一空穴传输层(HT表示)分别为10nm-90nm时对应的出光角度分布结果,可以看出,第一电子传输层(ET表示)和第一空穴传输层(HT表示)的厚度分别在10nm-40nm时倒置顶发射绿色量子点发光器件的出光角度分布缩窄,出光强度集中在屏幕正面(法线方向)。更优选的,本公开实施例为了进一步得到出光强度集中在屏幕正面的绿色量子点发光器件,优选第一空穴传输层(HT表示)的厚度为26nm-39nm。
因此本公开实施例提供的上述绿色量子点发光器件,第一电子传输层4的材料采用包括含有Zn的氧化物,第一电子传输层4的厚度优选为10nm-40nm,第一空穴传输层5的厚度优选为26nm-39nm,本公开通过优化第一电子传输层4和第一空穴传输层5的厚度,提高绿色量子点发光器件的电流效率,提高绿色量子点发光器件正面出光强度,出光角分布缩窄,出光强度集中在屏幕正面(法线方向)。
量子点发光器件可以为顶发射结构,也可以为底发射结构,二者区别在于器件的出光方向是穿过基底发射还是背离基底的方向出光。对于底发射结 构来说,器件的出光方向为穿过基底发射,具体地,靠近基底的电极(底电极)包括透明膜层或者半透半反膜层,可以让光线透过,相对基板与底电极同侧且远离基底的电极(顶电极)包括不透明膜层(优选地,为反射膜层)。对于顶发射结构来说,器件的出光方向为背离基底方向出光,具体地,靠近基底的电极(底电极)包括不透明膜层(优选地,为反射膜层);相对基板与底电极同侧且远离基底的电极(顶电极)包括透明膜层或者半透半反膜层,可以让光线透过。在设计具有光学腔(例如,F-P腔)的量子点发光器件时,由于需要设置包括半透半反膜层的电极结构,顶发射结构更容易制备,因此除考虑开口率因素以外,工艺难度也是量子点发光器件优选顶发射的考虑因素。
量子点发光器件可以为正置结构,也可以为倒置结构,二者区别在于膜层制作顺序不同,具体为:正置结构是在基底上依次形成第一阴极、第一电子传输层、发光层、第一空穴传输层、第一空穴注入层和第一阳极,倒置结构是在基底上依次形成第一阳极、第一空穴注入层、第一空穴传输层、发光层、第一电子传输层和第一阴极;对于倒置结构来说,空穴传输层和空穴注入层可以采用蒸镀方式沉积各种小分子材料,相比于正置结构,倒置结构有更大的材料选择范围。这是因为正置量子点发光器件,由于先形成空穴注入和空穴传输层,再在表面形成量子点发光层和第一电子传输层,量子点发光层的溶剂可能会破坏前膜层以及导致出现大量的界面缺陷,导致量子点发光器件的效率降低,因此在正置器件中,空穴传输层和空穴注入层采用蒸镀方式沉积各种小分子材料的工艺难度较大,效果可能较差。由于以上原因,倒置结构中材料可选择的范围更广。
因此,在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图6所示,本公开实施例提供的绿色量子点发光器件优选为顶发射结构。更优选的,本公开实施例提供的绿色量子点发光器件优选为倒置结构,该绿色量子点发光器件还包括位于第一阴极1背向发光层3一侧的基底100。该基底100可以是玻璃基底,或者是柔性基底,如聚对苯二甲酸乙二醇酯(PET) 等,还可以是本领域所熟知的可以作为绿色量子点发光器件基底的其他材料。本领域技术人员可以理解的是,绿色量子点发光器件也可以是正置底发射结构、正置顶发射结构或者倒置底发射结构。
需要说明的是,本公开实施例中的第一电子传输层4的厚度优选为10nm-40nm,在实际制作时,在选择该范围内的某一厚度时,可以存在±2nm的误差,例如设计将第一电子传输层4的厚度制作为30nm时,由于工艺误差,可能实际制作得到的第一电子传输层4的厚度为28nm或32nm;第一空穴传输层5的厚度优选为26nm-39nm,在选择该范围内的某一厚度时,可以存在±2nm的误差,例如设计将第一空穴传输层5的厚度制作为30nm时,由于工艺误差,可能实际制作得到的第一空穴传输层5的厚度为28nm或32nm。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图3和图6所示,第一电子传输层4的厚度更优选为例如12nm-39nm、14nm-38nm、16nm-37nm、18nm-36nm、20nm-35nm、22nm-35nm、25nm-35nm、28nm-32nm、29nm-31nm,更进一步优选为30nm;第一空穴传输层5的厚度更优选为例如26nm-38nm、27nm-37nm、28nm-36nm、29nm-35nm、29nm-34nm、29nm-33nm、29nm-32nm、29nm-31nm,更进一步优选为30nm。这样本公开实施例提供的绿色量子点发光器件的最佳出光角度为顶部出光(沿法线方向),且出光强度较强。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图3和图6所示,绿色量子点发光层3的厚度优选为10nm-40nm,进一步优选为15nm-35nm,更优选为20nm-30nm,本公开实施例进行的模拟实验采用的绿色量子点发光层3的厚度为20nm-30nm,可以得到出光强度集中在屏幕正面的绿色量子点发光器件。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图3和图6所示,绿色量子点发光层3的材料包括但不限于CdS、CdSe、ZnSe、InP、PbS、CsPbCl 3、CsPbBr 3、CsPbI 3、CdS/ZnS、CdSe/ZnSe、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、CsPbCl 3/ZnS、CsPbBr 3/ZnS或CsPhI 3/ZnS等量子 点材料。更优选为CdSe或InP。在本公开中,空穴和电子分别从第一阳极和第一阴极注入,经过电荷传输后到达量子点发光层,量子点的导带和价带分别俘获电子和空穴,并复合发光。
具体地,绿色量子点材料发光的波长范围为510nm-550nm,常用的绿光波长范围为520nm-535nm。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图3和图6所示,第一电子传输层4的材料优选为Zn 1-xMg xO,其中x=0~0.2,Zn 1-xMg xO表示Zn与Mg的摩尔比为1-x:x。本公开的绿色量子点发光器件,以Zn 1-xMg xO作为第一电子传输层4的材料,其中x的值可以在0~1区间进行任意调节,得到不同带隙宽度和能级位置的第一电子传输层5结构,并且可以根据不同的发光层3所需要的电子注入势垒,自由调节Zn和Mg的比例,使得第一电子传输层4与发光层3相互匹配,从而提高绿色量子点发光器件的发光效率。
具体地,当x=0时,第一电子传输层4的材料为ZnO,当x>0时,例如x=0.15,第一电子传输层4的材料为Zn 0.85Mg 0.15O,本公开实施例对第一电子传输层4的材料为ZnO和Zn 0.85Mg 0.15O时对绿色量子点材料的电子注入性能与空穴注入性能进行对比,如图7所示,虚线表示空穴注入的电流密度,图7中以ZnMgO示意Zn 0.85Mg 0.15O,可以看出,采用ZnO作为第一电子传输层时,其电子注入比空穴注入多许多;而采用ZnMgO作为第一电子传输层时,其电子注入比空穴注入少,但二者更加接近。
具体地,如图8A所示,图8A为采用ZnO作为第一电子传输层材料的倒置底发射绿色量子点发光器件的电流效率测试结果示意图,该倒置底发射绿色量子点发光器件中,第一阴极的材料为ITO(例如10nm厚度),第一阳极的材料为不透明的Ag(例如80nm厚度),第一空穴传输层的厚度为30nm,第一空穴传输层的折射率为1.9-2.1,第一电子传输层的折射率为1.25-1.51,绿色量子点发光层的厚度为20nm-30nm,绿色量子点发光层的折射率为1.78-1.94,第一空穴注入层的厚度为5nm,第一空穴注入层的折射率为1.8-2, 测试不同厚度的第一电子传输层(30nm、50nm、70nm)对应的底发射绿色量子点发光器件的电流效率,电流效率越大,载流子注入越平衡,可以看出,若想达到最佳电流效率,即电子/空穴注入达到或接近平衡状态,所需第一电子传输层的厚度需要较厚(70nm)。如图8B所示,图8B为采用ZnO作为第一电子传输层材料的倒置顶发射绿色量子点发光器件的电流效率测试结果示意图,该倒置顶发射绿色量子点发光器件中,第一阴极的材料为ITO(例如10nm厚度),第一阴极的外侧增加不透明反光层(例如100nm厚度),第一阳极的材料为薄的半透明的Ag(例如15nm厚度),第一空穴传输层的厚度为30nm,第一空穴传输层的折射率为1.9-2.1,第一电子传输层的折射率为1.25-1.51,绿色量子点发光层的厚度为20nm-30nm,绿色量子点发光层的折射率为1.78-1.94,第一空穴注入层的厚度为5nm,第一空穴注入层的折射率为1.8-2,测试不同厚度的第一电子传输层(30nm、50nm、70nm)对应的顶发射绿色量子点发光器件的电流效率。可以看出,第一电子传输层厚度为30nm是时,器件达到最大电流效率。即顶发射时,ZnO厚度最优为70nm;顶发射时,ZnO厚度最优为30nm。因此采用ZnO作为第一电子传输层的材料时,获得底发射结构对应的最佳电流效率和顶发射结构对应的最佳电流效率所对应的第一电子传输层的厚度不在同一范围内。这说明在倒置顶发射器件达到最大电流效率时,其电子/空穴注入平衡并未达到最优化程度。
若本公开采用Zn 0.85Mg 0.15O作为第一电子传输层,如图9A和图9B所示,图9A为采用Zn 0.85Mg 0.15O作为第一电子传输层材料的底发射绿色量子点发光器件的电流效率示意图,图9B为采用Zn 0.85Mg 0.15O作为第一电子传输层材料的顶发射绿色量子点发光器件的电流效率示意图,图9A和图9B中以ZnMgO示意Zn 0.85Mg 0.15O,即在ZnO中掺杂Mg,当Mg的掺杂浓度增加时,第一电子传输层的迁移率降低,为了保持单位时间到达发光层的电子数量不发生明显变化,所需第一电子传输层的厚度就可以较薄,从图9A和图9B可以看出,若想达到最佳电流效率,即电子/空穴注入达到或接近平衡状态,所需第一电子传输层的厚度较薄,底发射结构对应的Zn 0.85Mg 0.15O厚度最优为35nm;而 顶发射结构达到最大电流效率时,对应的Zn 0.85Mg 0.15O厚度最优依然为35nm,因此底发射结构对应的最佳第一电子传输层的厚度与顶发射结构对应的最佳第一电子传输层的厚度相同。采用Zn 0.85Mg 0.15O作为第一电子传输层的材料时,可以获得性能较佳的绿色量子点发光器件。
综上,本公开实施例优选x=0.15,即第一电子传输层4的材料更优选为Zn 0.85Mg 0.15O。在本公开中,Zn 0.85Mg 0.15O具有较高的电子迁移率,以Zn 0.85Mg 0.15O做为第一电子传输层4的材料,更有利于电子从第一阴极1有效注入发光层3,而且还能防止空穴向相邻层的泄漏,提高了电荷复合效率。
需要说明的是,本公开实施例提供的第一电子传输层4的材料Zn 1-xMg xO是以掺杂Mg为例进行说明的,当然也可以掺杂其它金属材料,只要能够通过调节Zn和掺杂的金属材料的比例,使得第一电子传输层4与发光层3相互匹配,从而提高绿色量子点发光器件的发光效率均可。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图6所示,第一空穴传输层5的材料可以为有机材料或无机材料,当第一空穴传输层5的材料采用有机材料时,该有机材料包括但不限于聚乙烯基咔唑(PVK)、聚(9,9-二辛基芴-alt-N-(4-仲丁基苯基)-二苯胺)(TFB)、N,N’-二苯基-N,N’-二(3-甲基苯)-(1,1’-联苯基)-4,4’-二胺(TPD)、4,4',4”-三(咔唑-9-基)三苯胺(TCTA)或N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺(NPB),当第一空穴传输层5的材料采用无机材料时,该无机材料包括但不限于NiOx或VOx。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图10所示,第一空穴传输层5包括层叠设置的第一子空穴传输层52和第二子空穴传输层52,第一子空穴传输层51靠近发光层3,第二子空穴传输层52远离发光层3,第一子空穴传输层51的HOMO能级小于第二子空穴传输层52的HOMO能级。这样相比于第二传输层52,第一子空穴传输层51与发光层3界面的HOMO能级更加接近,有利于空穴由第一空穴传输层5向发光层3之中的注入,可以有效的平衡发光层3中的载流子,提高绿色量子点发光器 件的发光效率和寿命。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图10所示,第一子空穴传输层51的HOMO能级优选为-5.5eV~-6.2eV,该能级与发光层3的能级接近,有利于空穴注入;第二子空穴传输层52的HOMO能级优选为-5.3eV~-5.0eV。具体地,第一子空穴传输层51的材料可以包括4,4',4”-三(咔唑-9-基)三苯胺,简称TCTA,TCTA的HOMO能级为-5.7eV;第二子空穴传输层52的材料可以包括N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺,简称NPB,NPB的HOMO能级为-5.4eV。
需要说明的是,已占有电子的能级最高的轨道称为最高已占轨道,用HOMO表示。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图10所示,第一子空穴传输层51的厚度优选为4nm-15nm,更优选为4nm-10nm,更进一步优选为5nm;第一子空穴传输层51起到降低发光层和第二子空穴传输层52之间势垒的作用,即相当于过渡层,使得第二子空穴传输层52的空穴更容易向发光层传输,如果第一子空穴传输层51的厚度太薄(例如小于4nm),膜层不连续,如果第一子空穴传输层51的厚度太厚(例如大于15nm),阻碍空穴传输;第二子空穴传输层52的厚度优选为20nm-35nm,更优选为20nm-30nm,更进一步优选为25nm。第二子空穴传输层52为主要第一空穴传输层材料,迁移率较高,因此厚度相应较厚。
在具体实施时,由于空穴由第一阳极(例如Ag)注入第一空穴传输层较为困难,为了使空穴更加容易注入,在本公开实施例提供的上述绿色量子点发光器件中,如图3、图6、和图10所示,还包括位于第一空穴传输层5和第一阳极2之间的第一空穴注入层6,第一空穴注入层6的厚度优选为1nm-10nm,更优选为例如3nm-8nm、4nm-6nm,更进一步优选为5nm,第一空穴注入层6可以使空穴更加容易注入。在本公开中,第一空穴传输层5是从第一阳极2传递空穴的,但是常用的空穴传输材料能级和第一阳极材料能级不匹配,因此引入第一空穴注入层6,若第一空穴注入层6的厚度小于1nm, 膜层不连续,若大于10nm,膜层太厚,阻挡空穴传输,因此通过合理设计第一空穴注入层6的厚度,将空穴由第一阳极注入第一空穴传输层,有利于空穴的传输。
在具体实施时,第一空穴注入层6的材料包括但不限于PEDOT:PSS、MoOx、NiOx、CuOx、HAT-CN中的任一种。HAT-CN的英文全称为2,3,6,7,10,11-Hexaazatriphenylenehexacabonitrile。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图11所示,第一阴极1可以包括叠层设置的金属层11和透明导电层12,透明导电层12与后续制作的膜层的接触性较好;具体地,金属层11的材料优选包括Al、Ag、Ti或Mo,更优选为Ag;金属层11的厚度优选为60nm-150nm,更优选为例如70nm-130nm、80nm-120nm、90nm-110nm,本公开实施例采用的金属层11厚度为80nm,可以足够反光;透明导电层12的材料优选为氧化铟锡(ITO)、掺杂氟的SnO 2(FTO)或导电聚合物,更优选为ITO;透明导电层12的厚度优选为5nm-50nm,更优选为例如6nm-40nm、7nm-30nm、8nm-20nm、8nm-10nm,只要在保证成膜均匀的情况下透明导电层12越薄越好,保证透明导电层12完全覆盖住金属层11即可,本公开实施例采用的透明导电层12的厚度为10nm。当然,第一阴极1材料还可以是本领域所熟知的其他可作为第一阴极的材料。
在具体实施时,在本公开实施例提供的上述绿色量子点发光器件中,如图3、图6、图10和图11所示,第一阳极2的材料可以包括Al、Ag或Mg/Ag合金,第一阳极2的厚度优选为10nm-20nm,更优选例如为11nm-18nm、12nm-15nm;如果第一阳极2的厚度太薄(例如小于10nm),膜层不连续,导电性差,如果第一阳极2的厚度太厚(例如大于20nm),透过率较差;
或第一阳极2的材料也可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌镓(GZO)或氧化铟镓锌(IGZO),第一阳极2的厚度优选例如为40nm-200nm、50nm-150nm、60nm-120nm、70nm-100nm、80nm-90nm,更优选为80nm。由于第一阳极2的材料为透明材料,不影响透过率,因此厚度相 应的较厚,这样导电性较好。
具体地,本公开实施例优选第一阳极2的材料包括Al、Ag或Mg/Ag合金,这是因为当第一阳极2的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锌镓(GZO)或氧化铟镓锌(IGZO)时、需要采用溅射工艺,溅射工艺温度较高,可能破坏第一阳极2的前膜层,而第一阳极2的材料为Al、Ag或Mg/Ag合金时,可以采用蒸镀的工艺,无需高温,不会破坏第一阳极2的前膜层。
在具体实施时,为了进一步提高绿色量子点发光器件的出光效率,在本公开实施例提供的上述绿色量子点发光器件中,如图6、图10和图11所示,还包括位于第二电极远离发光层一侧的光取出层7(capping layer),光取出层7的材料为折射率较大(例如折射率为1.4-2.0)、吸光系数较小的有机材料,有利于提高绿色量子点发光器件的发光效率;本公开实施例对光取出层7厚度对器件发光亮度的影响进行了模拟,如图12所示,可以看出,光取出层7的厚度优选为60nm-130nm时,器件的发光效率较佳,因此本公开实施例提供的光取出层7的厚度优选为60nm-130nm,更优选例如为70nm-120nm、80nm-100nm、90nm-100nm,本公开实施例采用的光取出层7的厚度为80nm。
具体地,本公开实施例提供的基底包括衬底基板、位于衬底基板与第一阴极之间的驱动电路以及位于驱动电路和第一阴极之间的钝化层、平坦层等结构。
具体地,如图13所示,图13为对现有技术中倒置底发射绿色量子点发光器件和本公开实施例提供的优化后的倒置顶发射绿色量子点发光器件出光角度分布示意图对比,可以看出,经过对绿色量子点发光器件中各膜层的厚度优化以及第一电子传输层材料选择Zn 0.85Mg 0.15O后,即出光优化调节后,本公开实施例提供的顶发射器件最佳出光角度为顶部出光,即出光角度更窄,特别适用于手机等小尺寸屏幕。
本公开实施例还提供了一种红色量子点发光器件,红色量子点发光器件包括正置结构和倒置结构,红色量子点发光器件的出光方式包括顶发射和底 发射。优选地,基于与绿色量子点发光器件相同的理由,红色量子点发光器件为倒置顶发射结构。如图14所示,图14中以红色量子点发光器件为倒置顶发射结构为例,红色量子点发光器件包括:相对设置的第二阴极11和第二阳极16,位于第二阴极11和第二阳极16之间的红色量子点发光层13,位于第二阴极11和红色量子点发光层13之间的第二电子传输层12,以及位于红色量子点发光层13和第二阳极16之间的第二空穴传输层14,以及位于第二阳极16和第二空穴传输层14之间的第二空穴注入层15。
具体地,第二阴极11包括反射膜层,第二阳极16包括半透半反膜层,器件从第二阳极16一侧出光。其中,反射膜层为不透明膜层,并且可以对光线进行反射。
具体地,第二电子传输层12的材料包括含有Zn的氧化物,第二电子传输层12的材料与前述第一电子传输层4的材料相同。
针对图14所示的结构,本案的发明人针对不同厚度的第二电子传输层12和第二空穴传输层14的红色量子点器件法线方向的发光强度进行了模拟,如图15所示,横坐标为第二电子传输层12的厚度(ET.d表示),纵坐标为第二空穴传输层14的厚度(HT.d表示),左侧条形为发光强度,在ET的厚度为35.0nm-60.0nm时,HT的厚度为35.0nm-65.0nm时,红色量子点器件法线方向的电流效率可以大于2E19a.u.,即在法线方向的发光强度较强。因此本公开实施例提供的红色量子点发光器件中,第二电子传输层12的厚度为35nm-60nm,第二空穴传输层14的厚度为35nm-65nm。
在具体实施时,为了进一步提高红色量子点发光器件法线方向的发光强度,在本公开实施例提供的上述显示装置中,如图15所示,第二电子传输层的厚度优选为37.5nm-42.5nm,第二空穴传输层的厚度优选为42.5nm-47.5nm。
在具体实施时,红色量子点发光器件与前述绿色量子点发光器件的结构可以相同,例如红色量子点发光器件、与绿色量子点发光器件在显示装置中均为倒置顶发射器件、或倒置底发射器件、或正置顶发射器件、正置底发射器件。
在具体实施时,红色量子点发光器件、绿色量子点发光器件中电子传输层和/或空穴传输层材料组分可以相同,例如:对于电子传输层来说,其包括了相同金属元素形成的氧化物,区别在于金属元素的摩尔比不同;对于空穴传输层来说,其包括了相同物质组成的混合物,区别在于物质混合的比例不同。
本公开实施例还提供了一种蓝色量子点发光器件,蓝色量子点发光器件包括正置结构和倒置结构,蓝色量子点发光器件的出光方式包括顶发射和底发射。优选地,基于与绿色量子点发光器件相同的理由,蓝色量子点发光器件为倒置顶发射结构。如图16所示,图16中以蓝色量子点发光器件为倒置顶发射结构为例,蓝色量子点发光器件包括:相对设置的第三阴极21和第三阳极26,位于所述第三阴极21和所述第三阳极26之间的蓝色量子点发光层23,位于所述第三阴极21和所述蓝色量子点发光层23之间的第三电子传输层22,以及位于所述蓝色量子点发光层23和所述第三阳极26之间的第三空穴传输层24,以及位于第三阳极26和第三空穴传输层24之间的第三空穴注入层25;
具体地,第三阴极21包括反射膜层,第三阳极26包括半透半反膜层,器件从第三阳极26一侧出光。其中,反射膜层为不透明膜层,并且可以对光线进行反射。
具体地,所述第三电子传输层22的材料包括含有Zn的氧化物。具体地,第三电子传输层22的材料与第一电子传输层的材料相同。
针对图16所示的结构,本案的发明人针对不同厚度的第三电子传输层22和第三空穴传输层24的蓝色量子点器件法线方向的发光强度进行了模拟,如图17所示,横坐标为第三电子传输层22的厚度(ET.d表示),纵坐标为第三空穴传输层24的厚度(HT.d表示),左侧条形为发光强度,在ET的厚度为10nm-30nm时,HT的厚度为10nm-30nm时,红色量子点器件法线方向的发光强度可以大于2500cd/m 2,即在法线方向的发光强度较强。因此本公开实施例提供的蓝色量子点发光器件中,第三电子传输层22的厚度为10nm-30nm,第三空穴传输层24的厚度为10nm-30nm。
在具体实施时,为了进一步提高红色量子点发光器件法线方向的发光强度,在本公开实施例提供的上述显示装置中,如图17所示,第三电子传输层22的厚度优选为15nm-25nm,第三空穴传输层24的厚度优选为10nm-20nm。
具体地,红色量子点材料发光的波长范围为610nm-645nm,常用的红光波长范围为620nm-635nm;蓝色量子点材料发光的波长范围为440nm-490nm,常用的蓝光波长范围为450nm-470nm。
在具体实施时,蓝色量子点发光器件与前述绿色量子点发光器件的结构可以相同,例如蓝色量子点发光器件、与绿色量子点发光器件在显示装置中均为倒置顶发射器件、或倒置底发射器件、或正置顶发射器件、正置底发射器件。
在具体实施时,蓝色量子点发光器件、绿色量子点发光器件中电子传输层和/或空穴传输层材料组分可以相同,例如:对于电子传输层来说,其包括了相同金属元素形成的氧化物,区别在于金属元素的摩尔比不同;对于空穴传输层来说,其包括了相同物质组成的混合物,区别在于物质混合的比例不同。
基于同一发明构思,本公开实施例还提供了一种上述绿色量子点发光器件的制作方法,包括:
制作相对设置的第一阴极和第一阳极,制作位于第一阴极和第一阳极之间的发光层,制作位于第一阴极和发光层之间的第一电子传输层,以及制作位于发光层和第一阳极之间的第一空穴传输层;其中,
第一电子传输层的材料包括含有Zn的氧化物,第一电子传输层的厚度为10nm-40nm,第一空穴传输层的厚度为26nm-39nm。
本公开实施例提供的上述绿色量子点发光器件的制作方法,通过制作第一电子传输层的材料采用包括含有Zn的氧化物,第一电子传输层的厚度优选为10nm-40nm,第一空穴传输层的厚度优选为26nm-39nm,本公开通过优化第一电子传输层和第一空穴传输层的厚度,提高绿色量子点发光器件的电流效率,提高绿色量子点发光器件正面出光强度,出光角分布缩窄,出光强度 集中在屏幕正面(法线方向)。
在具体实施时,在本公开实施例提供的上述制作方法中,制作相对设置的第一阴极和第一阳极,制作位于第一阴极和第一阳极之间的发光层,制作位于第一阴极和发光层之间的第一电子传输层,以及制作位于发光层和第一阳极之间的第一空穴传输层,如图18所示,具体可以为:
S1801、在基底上制作第一阴极;
S1802、在第一阴极背离基底的一侧制作第一电子传输层;
S1803、在第一电子传输层背离基底的一侧制作发光层;
S1804、在发光层背离基底的一侧制作第一空穴传输层;
S1805、在第一空穴传输层背离基底的一侧制作第一阳极。
在具体实施时,在本公开实施例提供的上述制作方法中,还可以包括:在第一空穴传输层和第一阳极之间制作第一空穴注入层。
需要说明的是,上述绿色量子点发光器件的制作方法中各膜层的优选厚度及材料选择可以参见前述一种绿色量子点发光器件中相关描述,在此不做赘述。
具体地,上述导致发光器件中各膜层的制作方法包括但不限于旋涂法、蒸镀法、化学气相沉积法、物理气相沉积法、磁控溅射法、喷墨打印法、电喷印法等中的一种或多种。
需要说明的是,本公开实施例主要以倒置结构的发光器件为例对导致发光器件及其制作方法进行详细说明,当然本公开实施例也适用于正置结构的绿色量子点发光器件及其制作方法,正置结构的绿色量子点发光器件结构如图19所示,包括在基底100上依次层叠设置的第一阳极2、第一空穴注入层6、第一空穴传输层5、发光层3、第一电子传输层4和第一阴极1。
具体地,红色量子点发光器件和蓝色量子点发光器件的制作方法与绿色量子点发光器件的制作方法相同,在此不做赘述。
基于同一发明构思,本公开实施例还提供了一种显示装置,该显示装置可以包括红色量子点发光器件200、绿色量子点发光器件300和蓝色量子点发 光器件400,其中红色量子点发光器件200、绿色量子点发光器件300和蓝色量子点发光器件400其中之一或组合为本公开实施例提供的上述红色量子点发光器件、绿色量子点发光器件和蓝色量子点发光器件。
在具体实施时,在本公开实施例提供的上述显示装置中,如图20和图21所示,红色量子点发光器件200、蓝色量子点发光器件400与绿色量子点发光器件300的结构可以相同,例如红色量子点发光器件200、蓝色量子点发光器400、与绿色量子点发光器件300在显示装置中均为倒置顶发射结构、或倒置底发射结构、或正置顶发射结构或正置底发射结构中的一种。如图20和图21所示,图20中的量子点发光器件为倒置顶发射结构,图21中的量子点发光器件为正置顶发射结构。
在具体实施时,红色量子点发光器件200、蓝色量子点发光器件400、绿色量子点发光器件300中电子传输层和/或空穴传输层材料组分可以相同,例如:对于电子传输层来说,其包括了相同金属元素形成的氧化物,区别在于金属元素的摩尔比不同;对于空穴传输层来说,其包括了相同物质组成的混合物,区别在于物质混合的比例不同。
在具体实施时,在本公开实施例提供的上述显示装置中,如图20所示,第一阳极2、第二阳极16和第三阳极26可以为整面设置的结构;如图21所示,第一阴极1、第二阴极11和第三阴极21可以为整面设置的结构。
在具体实施时,在本公开实施例提供的上述显示装置中,如图20和图21所示,蓝色量子点发光器件400、红色量子点发光器件200与绿色量子点发光器件300的区别在于量子点发光颜色不同,以及电子传输层和/或空穴传输层的厚度可以互不相同,其余膜层的材料和厚度相同。
在具体实施时,在本公开实施例提供的上述显示装置中,如图16和图17所示,红色量子点发光器件200可以包括:相对设置的第二阴极11和第二阳极16,位于第二阴极11和第二阳极16之间的红色量子点发光层13,位于第二阴极11和红色量子点发光层13之间的第二电子传输层12,以及位于红色量子点发光层13和第二阳极16之间的第二空穴传输层14,以及位于第二阳极16和第 二空穴传输层14之间的第二空穴注入层15;第二电子传输层12的材料与第一电子传输层的材料可以均包括包含Zn的氧化物。
在具体实施时,在本公开实施例提供的上述显示装置中,如图16和图17所示,蓝色量子点发光器件400可以包括:相对设置的第三阴极21和第三阳极26,位于所述第三阴极21和所述第三阳极26之间的蓝色量子点发光层23,位于所述第三阴极21和所述蓝色量子点发光层23之间的第三电子传输层22,以及位于所述蓝色量子点发光层23和所述第三阳极26之间的第三空穴传输层24,以及位于第三阳极26和第三空穴传输层24之间的第三空穴注入层25;第三电子传输层22的材料与第一电子传输层的材料可以均包括包含Zn的氧化物。
在具体实施时,由于红、绿、蓝量子点材料对应的发光波长不同,前述空腔模型中I(λ,θ)是随着波长变化的,因此在波长变化时,可以通过调整顶电极和底电极之间的距离以达到出光效果最好。因此,在本公开实施例提供的上述显示装置中,如图20和图21所示,第二电子传输层12和第二空穴传输层14的厚度之和、第一电子传输层4和第一空穴传输层5的厚度之和、第三电子传输层22和第三空穴传输层24的厚度之和可以设置为逐渐减小。
在一种可能的实施方式中,在本公开实施例提供的上述显示装置中,如图20和图21所示,第二电子传输层12、第一电子传输层4、第三电子传输层22的厚度逐渐减小;和/或
第二空穴传输层14、第一空穴传输层5、第三空穴传输层24的厚度逐渐减小。
本发明图20和图21是以第二电子传输层12、第一电子传输层4、第三电子传输层22的厚度逐渐减小,且第二空穴传输层14、第一空穴传输层5、第三空穴传输层24的厚度逐渐减小为例。
在一种可能的实施方式中,在本公开实施例提供的所述显示装置中,第二电子传输层12的厚度为35nm-60nm,第二空穴传输层14的厚度为35nm-65nm。
在一种可能的实施方式中,为了进一步提高红色量子点发光器件法线方向的发光强度,在本公开实施例提供的上述显示装置中,第二电子传输层的 厚度优选为37.5nm-42.5nm,第二空穴传输层的厚度优选为42.5nm-47.5nm。
在一种可能的实施方式中,在本公开实施例提供的所述显示装置中,第三电子传输层22的厚度为10nm-30nm,第三空穴传输层24的厚度为10nm-30nm。
在一种可能的实施方式中,为了进一步提高蓝色量子点发光器件法线方向的发光强度,在本公开实施例提供的上述显示装置中,第三电子传输层22的厚度优选为15nm-25nm,第三空穴传输层24的厚度优选为10nm-20nm。
具体地,红色量子点材料发光的波长范围为610nm-645nm,常用的红光波长范围为620nm-635nm;蓝色量子点材料发光的波长范围为440nm-490nm,常用的蓝光波长范围为450nm-470nm。
在具体实施时,在本公开实施例提供的上述显示装置中,如图20和图21所示,还可以包括像素定义层500,像素定义层500具有露出多个发光区域的像素开口。
在具体实施时,本公开实施例提供的上述显示装置还可以包括本领域技术人员熟知的其他膜层,在此不做详述。
该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本发明的限制。由于该显示装置解决问题的原理与前述一种绿色量子点发光器件相似,因此该显示装置的实施可以参见前述绿色量子点发光器件的实施,重复之处不再赘述。
本公开实施例提供的上述绿色量子点发光器件、其制作方法及显示装置,通过制作第一电子传输层的材料采用包括含有Zn的氧化物,第一电子传输层的厚度优选为10nm-40nm,第一空穴传输层的厚度优选为26nm-39nm,本公开通过优化第一电子传输层和第一空穴传输层的厚度,提高绿色量子点发光器件的电流效率,提高绿色量子点发光器件正面出光强度,出光角分布缩窄,出光强度集中在屏幕正面(法线方向)。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了 基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (33)

  1. 一种绿色量子点发光器件,其中,包括:相对设置的第一阴极和第一阳极,位于所述第一阴极和所述第一阳极之间的绿色量子点发光层,位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层;其中,
    所述第一电子传输层的材料包括含有Zn的氧化物,所述第一电子传输层的厚度为10nm-40nm,所述第一空穴传输层的厚度为26nm-39nm。
  2. 如权利要求1所述的绿色量子点发光器件,其中,所述第一阴极包括反射膜层,所述第一阳极包括半透半反膜层;或者,
    第一阴极包括半透半反膜层,所述第一阳极包括反射膜层。
  3. 如权利要求1所述的绿色量子点发光器件,其中,所述绿色量子点发光器件为顶发射结构。
  4. 如权利要求3所述的绿色量子点发光器件,其中,所述绿色量子点发光器件为倒置结构,所述绿色量子点发光器件还包括位于所述第一阴极背向所述绿色量子点发光层一侧的基底。
  5. 如权利要求1所述的绿色量子点发光器件,其中,所述第一电子传输层的厚度为30nm,所述第一空穴传输层的厚度为30nm。
  6. 如权利要求1所述的绿色量子点发光器件,其中,所述第一电子传输层的材料为Zn 1-xMg xO,其中x=0~0.2。
  7. 如权利要求6所述的绿色量子点发光器件,其中,x=0.15。
  8. 如权利要求1所述的绿色量子点发光器件,其中,所述第一空穴传输层的材料包括有机材料或无机材料,所述有机材料包括聚乙烯基咔唑、聚(9,9-二辛基芴-alt-N-(4-仲丁基苯基)-二苯胺)、N,N’-二苯基-N,N’-二(3-甲基苯)-(1,1’-联苯基)-4,4’-二胺、4,4',4”-三(咔唑-9-基)三苯胺或N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺,所述无机材料包括NiOx或VOx。
  9. 如权利要求1所述的绿色量子点发光器件,其中,所述第一空穴传输 层包括层叠设置的第一子空穴传输层和第二子空穴传输层,所述第一子空穴传输层靠近所述绿色量子点发光层,所述第二子空穴传输层远离所述绿色量子点发光层,所述第一子空穴传输层的HOMO能级小于所述第二子空穴传输层的HOMO能级。
  10. 如权利要求9所述的绿色量子点发光器件,其中,所述第一子空穴传输层的HOMO能级为-5.5eV~-6.2eV,所述第二子空穴传输层的HOMO能级为-5.3eV~-5.0eV。
  11. 如权利要求10所述的绿色量子点发光器件,其中,所述第一子空穴传输层的材料为4,4',4”-三(咔唑-9-基)三苯胺,所述第二子空穴传输层的材料为N,N'-二苯基-N,N'-二(1-萘基)-1,1'-联苯-4-4'-二胺。
  12. 如权利要求10所述的绿色量子点发光器件,其中,所述第一子空穴传输层的厚度为4nm-15nm,所述第二子空穴传输层的厚度为20nm-35nm。
  13. 如权利要求1所述的绿色量子点发光器件,其中,还包括位于所述第一空穴传输层和所述第一阳极之间的第一空穴注入层,所述第一空穴注入层的厚度为1nm-10nm。
  14. 如权利要求13所述的绿色量子点发光器件,其中,所述第一空穴注入层的厚度为5nm。
  15. 如权利要求1所述的绿色量子点发光器件,其中,所述第一阴极包括叠层设置的金属层和透明导电层,所述金属层的材料包括Al、Ag、Ti或Mo,所述金属层的厚度为60nm-150nm,所述透明导电层的材料为氧化铟锡、掺杂氟的SnO 2或导电聚合物,所述透明导电层的厚度为5nm-50nm。
  16. 如权利要求1所述的绿色量子点发光器件,其中,所述第一阳极的材料包括Al、Ag或Mg/Ag合金,所述第一阳极的厚度为10nm-20nm;或
    所述第一阳极的材料包括氧化铟锡、氧化铟锌、氧化锌镓或氧化铟镓锌,所述第一阳极的厚度为40nm-200nm。
  17. 如权利要求1所述的绿色量子点发光器件,其中,所述绿色量子点发光层的厚度为10nm-40nm。
  18. 如权利要求1所述的绿色量子点发光器件,其中,所述绿色量子点发光层的材料包括CdS、CdSe、ZnSe、InP、PbS、CsPbCl 3、CsPbBr 3、CsPbI 3、CdS/ZnS、CdSe/ZnSe、CdSe/ZnS、ZnSe、InP/ZnS、PbS/ZnS、CsPbCl 3/ZnS、CsPbBr 3/ZnS或CsPhI 3/ZnS。
  19. 如权利要求1-17任一项所述的绿色量子点发光器件,其中,还包括位于所述第二电极远离所述绿色量子点发光层一侧的光取出层,所述光取出层的材料为有机材料,所述光取出层的厚度为60nm-130nm。
  20. 一种显示装置,其中,包括红色量子点发光器件、绿色量子点发光器件和蓝色量子点发光器件,其中所述绿色量子点发光器件为如权利要求1-19任一项所述的绿色量子点发光器件。
  21. 如权利要求20所述的显示装置,其中,所述红色量子点发光器件包括:相对设置的第二阴极和第二阳极,位于所述第二阴极和所述第二阳极之间的红色量子点发光层,位于所述第二阴极和所述红色量子点发光层之间的第二电子传输层,以及位于所述红色量子点发光层和所述第二阳极之间的第二空穴传输层。
  22. 如权利要求21所述的显示装置,其中,所述蓝色量子点发光器件包括:相对设置的第三阴极和第三阳极,位于所述第三阴极和所述第三阳极之间的蓝色量子点发光层,位于所述第三阴极和所述蓝色量子点发光层之间的第三电子传输层,以及位于所述蓝色量子点发光层和所述第三阳极之间的第三空穴传输层。
  23. 如权利要求22所述的显示装置,其中,所述第二电子传输层和所述第二空穴传输层的厚度之和、所述第一电子传输层和所述第一空穴传输层的厚度之和、所述第三电子传输层和所述第三空穴传输层的厚度之和逐渐减小。
  24. 如权利要求22所述的显示装置,其中,所述第二电子传输层、所述第一电子传输层、所述第三电子传输层的厚度逐渐减小;和/或
    所述第二空穴传输层、所述第一空穴传输层、所述第三空穴传输层的厚度逐渐减小。
  25. 如权利要求21所述的显示装置,其中,所述第二电子传输层的厚度为35nm-60nm,所述第二空穴传输层的厚度为35nm-65nm。
  26. 如权利要求21所述的显示装置,其中,所述第二电子传输层的厚度为37.5nm-42.5nm,所述第二空穴传输层的厚度为42.5nm-47.5nm。
  27. 如权利要求22所述的显示装置,其中,所述第三电子传输层的厚度为10nm-30nm,所述第三空穴传输层的厚度为10nm-30nm。
  28. 如权利要求22所述的显示装置,其中,所述第三电子传输层的厚度为15nm-25nm,所述第三空穴传输层的厚度为10nm-20nm。
  29. 如权利要求20所述的显示装置,其中,所述红色量子点发光器件、所述蓝色量子点发光器件与所述绿色量子点发光器件的结构相同。
  30. 如权利要求20所述的显示装置,其中,所述红色量子点发光器件、所述绿色量子点发光器件和所述蓝色量子点发光器件中电子传输层和/或空穴传输层材料组分相同。
  31. 一种如权利要求1-19任一项所述的绿色量子点发光器件的制作方法,其中,包括:
    制作相对设置的第一阴极和第一阳极,制作位于所述第一阴极和所述第一阳极之间的发光层,制作位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及制作位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层;其中,
    所述第一电子传输层的材料包括含有Zn的氧化物,所述第一电子传输层的厚度为10nm-40nm,所述第一空穴传输层的厚度为26nm-39nm。
  32. 如权利要求31所述的制作方法,其中,制作相对设置的第一阴极和第一阳极,制作位于所述第一阴极和所述第一阳极之间的发光层,制作位于所述第一阴极和所述绿色量子点发光层之间的第一电子传输层,以及制作位于所述绿色量子点发光层和所述第一阳极之间的第一空穴传输层,具体为:
    在基底上制作所述第一阴极;
    在所述第一阴极背离所述基底的一侧制作第一电子传输层;
    在所述第一电子传输层背离所述基底的一侧制作发光层;
    在所述绿色量子点发光层背离所述基底的一侧制作第一空穴传输层;
    在所述第一空穴传输层背离所述基底的一侧制作第一阳极。
  33. 如权利要求31或32所述的制作方法,其中,还包括:在所述第一空穴传输层和所述第一阳极之间制作第一空穴注入层。
PCT/CN2021/080313 2021-03-11 2021-03-11 一种绿色量子点发光器件、其制作方法及显示装置 WO2022188113A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021001458.7T DE112021001458T5 (de) 2021-03-11 2021-03-11 Grünes quantenpunkt-leuchtbauelement, verfahren zur herstellung derselben und anzeigevorrichtung
CN202180000457.0A CN115336025A (zh) 2021-03-11 2021-03-11 一种绿色量子点发光器件、其制作方法及显示装置
PCT/CN2021/080313 WO2022188113A1 (zh) 2021-03-11 2021-03-11 一种绿色量子点发光器件、其制作方法及显示装置
US17/756,178 US20240164187A1 (en) 2021-03-11 2021-03-11 Green quantum dot light emitting device, method for manufacturing the same, and display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080313 WO2022188113A1 (zh) 2021-03-11 2021-03-11 一种绿色量子点发光器件、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2022188113A1 true WO2022188113A1 (zh) 2022-09-15

Family

ID=83227256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080313 WO2022188113A1 (zh) 2021-03-11 2021-03-11 一种绿色量子点发光器件、其制作方法及显示装置

Country Status (4)

Country Link
US (1) US20240164187A1 (zh)
CN (1) CN115336025A (zh)
DE (1) DE112021001458T5 (zh)
WO (1) WO2022188113A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN104091895A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 有机发光二极管基板及其制作方法、显示装置
CN105261707A (zh) * 2015-09-08 2016-01-20 河南大学 一种新型量子点发光器件
CN108735905A (zh) * 2017-04-20 2018-11-02 Tcl集团股份有限公司 一种qled器件及制备方法
CN109994502A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种显示器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN104091895A (zh) * 2014-06-30 2014-10-08 京东方科技集团股份有限公司 有机发光二极管基板及其制作方法、显示装置
CN105261707A (zh) * 2015-09-08 2016-01-20 河南大学 一种新型量子点发光器件
CN108735905A (zh) * 2017-04-20 2018-11-02 Tcl集团股份有限公司 一种qled器件及制备方法
CN109994502A (zh) * 2017-12-29 2019-07-09 Tcl集团股份有限公司 一种显示器件及其制备方法

Also Published As

Publication number Publication date
CN115336025A (zh) 2022-11-11
US20240164187A1 (en) 2024-05-16
DE112021001458T5 (de) 2022-12-22

Similar Documents

Publication Publication Date Title
US10225907B2 (en) Light emitting device having at least two quantum dot light emitting layers and fabricating method thereof
US7710026B2 (en) LED device having improved output and contrast
US11637150B2 (en) Organic light-emitting diode display substrate and display device
KR101596875B1 (ko) 광 공진기를 갖는 유기 발광 다이오드 및 그의 제조 방법
US10522787B1 (en) High efficiency quantum dot LED structure
US20080048561A1 (en) Organic light emitting diode
US10367162B1 (en) Light-emitting device including optical cavity with low angular colour shift
US10600980B1 (en) Quantum dot light-emitting diode (LED) with roughened electrode
WO2016123916A1 (zh) 一种显示基板及其制备方法和一种显示设备
WO2016188041A1 (zh) 一种电致发光器件及其制备方法、显示基板、显示装置
US20060244371A1 (en) OLED device having improved lifetime and output
CN108878665B (zh) 有机电致发光器件及其制备方法、显示装置
WO2022188113A1 (zh) 一种绿色量子点发光器件、其制作方法及显示装置
CN114864839B (zh) 显示基板及显示装置
WO2021136119A1 (zh) 一种量子点发光二极管及其制备方法
CN114883508A (zh) 显示基板及显示装置
WO2024040464A1 (zh) 一种显示基板、其制作方法及显示装置
CN113948656B (zh) 一种晶体管及其制备方法
CN113948657B (zh) 一种晶体管及其制备方法
WO2023205922A1 (zh) 量子点发光二极管及其制备方法和显示面板
WO2024000483A1 (zh) 显示面板、显示面板的制备方法和显示装置
WO2022252052A1 (zh) 量子点发光二极管及其制备方法、显示装置
WO2023245436A1 (zh) 一种蓝色顶发射量子点发光器件及显示装置
WO2022143765A1 (zh) 一种显示器件及其像素点亮控制方法
WO2022261870A1 (zh) 显示面板和显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17756178

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929591

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.01.2024)