WO2022186238A1 - サンプリング装置、及び細胞培養システム - Google Patents

サンプリング装置、及び細胞培養システム Download PDF

Info

Publication number
WO2022186238A1
WO2022186238A1 PCT/JP2022/008731 JP2022008731W WO2022186238A1 WO 2022186238 A1 WO2022186238 A1 WO 2022186238A1 JP 2022008731 W JP2022008731 W JP 2022008731W WO 2022186238 A1 WO2022186238 A1 WO 2022186238A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
sampling
pump
path
culture
Prior art date
Application number
PCT/JP2022/008731
Other languages
English (en)
French (fr)
Inventor
五十嵐政嗣
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to CN202280008917.9A priority Critical patent/CN116783278A/zh
Priority to EP22763292.4A priority patent/EP4303296A1/en
Priority to JP2023503884A priority patent/JPWO2022186238A1/ja
Publication of WO2022186238A1 publication Critical patent/WO2022186238A1/ja
Priority to US18/206,464 priority patent/US20230313108A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/10Perfusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/34Internal compartments or partitions

Definitions

  • the present invention relates to a sampling device for collecting liquid samples from a culture device for culturing cells, and a cell culture system.
  • US Pat. No. 9,442,047 discloses a sampling device with a sampling path for taking a liquid sample from a culture device.
  • the sampling device includes an introduction pump that draws a sample from a sample introduction path connected to the culture device to the sampling path, and a detection section that is provided downstream of the sampling path.
  • the detection unit detects the components contained in the sample and the amount (concentration) of the components.
  • This type of culture device may be configured with a plurality of reactors, which are culture vessels, in order to make cell culture more efficient.
  • the culture apparatus can culture cells in each reactor by seeding cells, supplying medium, and the like to each of the reactors.
  • the culture conditions may be slightly different between the reactors. Therefore, when a sample detection system is constructed by connecting a sampling device to a culture device, even if a sample flowing out from an unspecified reactor is detected, the culture state of each reactor cannot be accurately grasped.
  • the sampling device is configured to detect samples for each of a plurality of reactors, the number of times of sampling and the amount of samples will increase significantly, and the efficiency of sampling will decrease.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a sampling device and a cell culture system that can more efficiently detect samples from multiple reactors.
  • a first aspect of the present invention is a sampling device for collecting a liquid sample from a culture device having a plurality of reactors for culturing cells based on medium flow, wherein the sample is a circulating sampling path, a detector provided in the sampling path, a sample introduction path connecting between the sampling path on the upstream side of the detection part and the culture apparatus, and the sample in the sample introduction path and a control section for operating the pump, and a temporary storage section provided in the sample introduction path and capable of temporarily storing the sample, the temporary storage section being the pump
  • a joint sample is formed by combining the plurality of samples, and the joint sample is discharged to the sampling path.
  • a second aspect of the present invention is a cell culture system for collecting liquid samples from a culture unit having a plurality of reactors for culturing cells based on medium flow
  • the culturing unit sequentially supplies culture media to the plurality of reactors, includes a sampling path through which the sample flows, a detection unit provided in the sampling path, the sampling path upstream of the detection unit, and the a sample introduction path connecting with a culture section; a pump for circulating the sample through the sample introduction path; and a control section for operating the pump.
  • the temporary storage portion has a temporary storage portion in which the samples for each of the plurality of reactors are sequentially flowed under the operation of the pump, so that the plurality of samples are combined into a joint sample. , discharges the joint sample into the sampling path.
  • the above sampling device and cell culture system can more efficiently detect samples for multiple reactors.
  • FIG. 4 is an explanatory diagram schematically showing the route of medium during cell culture.
  • FIG. 4 is an explanatory diagram schematically showing routes through which samples flow out from a plurality of reactors; It is an explanatory view showing a course of a sampling device roughly.
  • It is a flow chart which shows the sampling method of a sampling device. 4 is a flow chart showing a sampling process; It is explanatory drawing which shows operation
  • FIG. 5 is an explanatory diagram showing the operation of a joint sample outflow process; FIG.
  • FIG. 11 is an explanatory diagram schematically showing the route of the sampling device according to the first modified example
  • FIG. 10A is a flow chart showing the sampling process of the sampling device according to the first modification.
  • FIG. 10B is a flow chart showing the culturing process of the culturing device.
  • FIG. 11 is an explanatory diagram schematically showing a route of a sampling device according to a second modified example;
  • a sampling device 60 is applied to a cell culture system 10 for culturing living cells in regenerative medicine.
  • the sampling device 60 samples the medium during cell culture by the cell culture system 10 to measure the state of the medium.
  • the cell culture system 10 supplies culture medium and oxygen to the reactor 12, which is a cell culture vessel, and removes lactic acid, carbon dioxide, etc. (unused culture medium, including oxygen) generated during cell culture from the reactor 12. Ejecting allows the cell culture to continue over a long period of time.
  • Cells in a living body are not particularly limited, but include, for example, cells contained in blood (T cells, etc.), stem cells (ES cells, iPS cells, mesenchymal stem cells, etc.).
  • the medium may also be selected appropriately according to the cells of the living body.
  • a buffered salt solution (Balanced Salt Solution: BSS) is used as a basic solution, and various amino acids, vitamins, serum, etc. are added. I can give you something.
  • the cell culture system 10 includes a culture device 11 (cultivation section) in which a plurality of reactors 12 are set to actually culture cells, and a sampling device 60 (sampling section) that collects liquid samples from the culture device 11 during culture. and have In other words, the cell culture system 10 circulates the culture medium for each of the plurality of reactors 12 and cultures the cells in each reactor 12, so that the culture period is not greatly changed, and the culture by one reactor 12 is several times longer. It is configured to obtain the number of cells.
  • FIG. 1 shows the culture apparatus 11 having five reactors 12, the number of reactors 12 provided in the culture apparatus 11 is not particularly limited. Further, the cell culture system 10 may have a configuration in which a plurality of culture devices 11 are connected to one sampling device 60 .
  • the cell culture system 10 in which the culturing unit and the sampling unit are configured separately is exemplified, but the cell culturing system 10 is a device in which the culturing unit and the sampling unit are integrated (integrated). may be
  • the culture device 11 includes a culture medium storage unit 14 storing culture medium, a distribution channel 16 provided between the reactor 12 and the culture medium storage unit 14, a plurality of medical bags 18 connected to the distribution channel 16, and discharged from the distribution channel 16. It has a waste liquid part 20 for storing the liquid to be discharged.
  • a hard tank capable of storing a large amount of culture medium is applied to the culture medium reservoir 14 .
  • the flow channel 16 is composed of a plurality of tubes 22 , which are connected to each of the plurality of reactors 12 , the medium storage section 14 , the plurality of medical bags 18 and the waste liquid section 20 .
  • the plurality of medical bags 18 include, for example, a cell fluid bag 18A that stores a liquid containing cells (cell fluid), a cleaning fluid bag 18B that stores a cleaning fluid, a stripping fluid bag 18C that stores a stripping fluid, and a collection of cultured cells.
  • a recovery bag (not shown) is provided.
  • the cleaning liquid is the liquid used when priming the reactor 12 and the flow path 16 .
  • Examples of the washing solution include buffers such as PBS (Phosphate Buffered Salts) and TBS (Tris-Buffered Saline), and physiological saline.
  • the detachment liquid is a liquid that detaches the cells cultured by the culture treatment.
  • the stripping solution for example, trypsin or EDTA solution can be applied.
  • the distribution path 16 is set to pass through the flow path control mechanism section 24 of the culture device 11 .
  • the flow path control mechanism section 24 has a housing 26 that accommodates part of the distribution path 16 .
  • the flow path control mechanism 24 also includes a clamp 28 that opens and closes a predetermined tube 22, a pump 30 that circulates the liquid in the tube 22, and a control circuit 32 that controls the operation of the clamp 28 and the pump 30. It is provided in body 26 (see FIG. 2).
  • a plurality of reactors 12 are accommodated within the housing 26 of the flow path control mechanism section 24 .
  • the reactor 12 includes a plurality of (for example, 10,000 or more) hollow fibers 34 and a case 36 that accommodates the plurality of hollow fibers 34 .
  • Each hollow fiber 34 has a lumen (not shown), and cells are seeded on the inner circumferential surface that constitutes the lumen.
  • each hollow fiber 34 has a plurality of pores (not shown) that communicate between the outside and the lumen, and each pore does not allow cells or proteins to pass through, but allows solutions and low-molecular-weight substances to pass through. .
  • a medium or the like is supplied to the cells seeded on the inner peripheral surface of the hollow fiber 34 through the lumen or the pore.
  • IC intracapillary
  • EC extra capillary
  • the case 36 has a first IC terminal 36a and a second IC terminal 36b communicating with the inner cavity of the hollow fiber 34, and a first EC terminal 36c and a second EC terminal 36d communicating with the space outside the hollow fiber 34 in the case 36. and a tube 22 is connected to each terminal.
  • the distribution channel 16 has a medium delivery route 40 connected to the medium reservoir 14, and an IC route 42 (internal route) and an EC route 44 (external route) branched from the medium delivery route 40.
  • the IC route 42 is a route for supplying liquid to the lumen of the hollow fiber 34 .
  • the EC route 44 is a route for supplying liquid into the case 36 outside the hollow fibers 34 .
  • the IC route 42 has an IC circulation circuit 42a capable of circulating liquid between the reactor 12 and an IC supply circuit 42b capable of circulating the liquid from the medium delivery route 40 to the IC circulation circuit 42a.
  • the IC circulation circuit 42 a is connected to the first IC terminal 36 a and the second IC terminal 36 b of the reactor 12 and has an IC circulation pump 30 a that circulates the liquid in the lumen of the hollow fiber 34 .
  • An IC waste liquid circuit 46 for discharging the culture medium to the waste liquid section 20 is connected downstream of the reactor 12 in the IC circulation circuit 42a.
  • the IC supply circuit 42b is provided with an IC supply pump 30b for circulating the liquid from the medium delivery route 40 to the IC circulation circuit 42a.
  • the EC route 44 has an EC circulation circuit 44a capable of circulating liquid between the reactor 12 and an EC supply circuit 44b capable of circulating the liquid from the medium delivery route 40 to the EC circulation circuit 44a.
  • the EC circulation circuit 44 a is connected to the first EC terminal 36 c and the second EC terminal 36 d of the reactor 12 and has an EC circulation pump 30 c that circulates liquid outside the hollow fibers 34 .
  • a gas exchanger 52 is provided upstream of the reactor 12 in the EC circulation circuit 44a. The gas exchanger 52 discharges carbon dioxide mixed in the culture medium, and at the same time, removes predetermined gas components (for example, nitrogen N 2 : 75%, oxygen O 2 : 20%, carbon dioxide CO 2 : 5%). Mix into medium.
  • An EC waste liquid circuit 48 for discharging the culture medium to the waste liquid section 20 is connected downstream of the reactor 12 in the EC circulation circuit 44a.
  • the EC supply circuit 44b is provided with an EC supply pump 30d that circulates liquid from the culture medium delivery route 40 to the EC circulation circuit 44a.
  • the IC supply circuit 42b on the upstream side of the IC supply pump 30b or the EC supply circuit 44b on the upstream side of the EC supply pump 30d includes a plurality of A plurality of medical bags 18 (cell fluid bag 18A, cleaning fluid bag 18B, stripping fluid bag 18C) are connected via tubes 22 .
  • the medical bag 18 may be exchanged for a collection bag or the like using an aseptic joining device that sterilizes and joins the bag depending on the application.
  • the sampling device 60 is connected to a position (between the reactor 12 and the EC waste liquid circuit 48) in the vicinity of the downstream side (the second EC terminal 36d) of the reactor 12 in the EC circulation circuit 44a of the culture device 11. Therefore, the EC circulation circuit 44a is connected to one end of a sample outflow path 54 for outflowing a medium, which is a liquid sample.
  • a culture apparatus side connector 56 is provided at the other end of the sample outflow path 54 .
  • the incubation device-side connector 56 is configured to be mutually connectable with the sampling device-side connector 132 of the sampling device 60 .
  • the sampling device 60 may be connected to the downstream side (the second IC terminal 36b) of the reactor 12 of the IC circulation circuit 42a via the sample outflow path 54.
  • the cell culture system 10 includes multiple IC circulation circuits 42 a and EC circulation circuits 44 a corresponding to multiple (five) reactors 12 . That is, the liquid is circulated through another reactor 12 at a branch point X between the IC supply pump 30b and the IC circulation circuit 42a and a branch point Y between the EC supply pump 30d and the EC circulation circuit 44a. Another IC circulation circuit 42a and EC circulation circuit 44a are connected in parallel. An EC supply circuit 44b between the branch point Y and each EC circulation circuit 44a is provided with a supply clamp 29 for switching between supply and stop of medium supply to each EC circulation circuit 44a.
  • the five reactors 12 in FIG. 3 are hereinafter referred to as reactors 12A to 12E in order from top to bottom.
  • the supply clamps 29 provided in each EC supply circuit 44b are referred to as supply clamps 29A to 29E corresponding to the respective reactors 12A to 12E.
  • the culture apparatus 11 rotates the EC supply pump 30d, opens any one of the supply clamps 29A to 29E, and closes the other four.
  • the culture medium is supplied to the EC circulation circuit 44a in which the supply clamp 29 is open, and the culture medium circulates through the reactor 12 as it circulates within the EC circulation circuit 44a.
  • the culture apparatus 11 has a plurality of IC circulation circuits 42a corresponding to the reactors 12A to 12E.
  • Each IC supply circuit 42b connected to each of the plurality of IC circulation circuits 42a is also provided with a supply clamp (not shown) for selectively circulating the culture medium.
  • the sample outflow path 54 branches from the branch point Z and connects to each EC circulation circuit 44a.
  • a sterile filter 58 is provided in the sample outflow path 54 from the branch point Z to the culture apparatus side connector 56 .
  • the sterile filter 58 maintains the sterile state of the culture medium flowing on the side of the culture apparatus 11 (the side of the EC circulation circuit 44a).
  • the sampling device 60 collects medium samples from one or more culture devices 11 and detects the components contained in the samples and the amounts (concentrations) of the components.
  • the sampling device 60 includes a sampling kit 62 having a sampling path 64 through which a sample is collected, a plurality of mechanism units 66 in which the sampling kit 62 is detachably set, and a controller 68 that controls the operation of the plurality of mechanism units 66.
  • the sampling kit 62 is a disposable item, and the plurality of mechanical units 66 are reusable items.
  • the sampling kit 62 includes, in addition to the sampling path 64, a washing liquid storage section 70, a standard liquid storage section 72, a waste liquid storage section 74, and a detection section 75 (first detection section 76, second detection section 80).
  • the sampling path 64 is composed of a flexible tube having an appropriate thickness through which the sample can flow.
  • the cleaning liquid storage section 70 is connected to a branch point 65 to which one end of the sampling path 64 is connected via a cleaning liquid branch path 71 , and the standard liquid storage section 72 is connected to this branch point 65 via a standard liquid branch path 73 . connected.
  • the other end of the sampling path 64 is connected to the waste liquid storage section 74 .
  • the cleaning liquid containing portion 70 and the standard liquid containing portion 72 are formed in a bag shape (medical bag) from a soft resin material such as polyvinyl chloride or polyolefin.
  • the cleaning liquid storage section 70 and the standard liquid storage section 72 are not particularly limited as long as they can store liquid.
  • the waste liquid storage unit 74 shares the tank of the waste liquid unit 20 of the culture device 11, but is not limited to this, and a medical bag or the like may be applied.
  • a cleaning liquid is stored in the cleaning liquid storage section 70 .
  • the washing liquid is not particularly limited, and for example, the buffer solution, physiological saline, etc. mentioned as the washing liquid for the washing liquid bag 18B of the culture device 11 may be used as appropriate.
  • the standard liquid storage section 72 stores the standard liquid.
  • the standard solution is a liquid for calibrating the first detection unit 76 and the second detection unit 80, and is a liquid in which the pH value, the glucose value (glucose concentration), and the lactic acid value (lactic acid concentration) are set to specified values. .
  • the first detection section 76 and the second detection section 80 are provided in series and separated from each other in the middle of the sampling path 64 .
  • the detection unit 75 is not limited to a structure in which the first detection unit 76 and the second detection unit 80 are separated, and may have a structure in which the first detection unit 76 and the second detection unit 80 are integrated. A separate structure is also possible.
  • the first detection section 76 is a tubular member having a plurality of first element sections 78 that come into contact with the sample (wet liquid) in the flow path in the sampling path 64 .
  • the plurality of first element units 78 include a PH chip 78a for measuring the PH in the sample, an O2 chip 78b for measuring the O2 concentration in the sample, and a CO2 concentration in the sample. and a CO2 chip 78c for measuring .
  • the PH chip 78a reacts with H + and OH ⁇ to develop color.
  • the O2 chip 78b changes color in response to O2 .
  • the CO2 chip 78c changes color in response to CO2 .
  • the second detection unit 80 is a tubular member having a plurality of second element units 82 in contact with (wetted with) the sample in the flow path in the sampling path 64, and is downstream of the first detection unit 76 (waste liquid storage unit). 74) side.
  • the plurality of second element units 82 are biosensors that react an enzyme with a circulating sample and detect a current change or the like.
  • the plurality of second element units 82 include a glucose chip 82a for measuring the glucose concentration in the sample and a lactic acid chip 82b for measuring the lactic acid concentration in the sample.
  • the glucose chip 82a is electrically connected to a glucose terminal 83a protruding outside the cylindrical member.
  • the lactic acid chip 82b is electrically connected to a lactic acid terminal 83b protruding outside the cylindrical member.
  • the sampling kit 62 also includes a connection part 84 between the branch point 65 of the sampling path 64 and the first detection unit 76 to which one or more sample introduction paths 130 described later can be connected.
  • the connection part 84 is, for example, a member integrally formed with a plurality of branch ports having a valve (not shown) that closes when the sample introduction path 130 is not attached and opens when the sample introduction path 130 is attached (FIG. 4).
  • the connecting portion 84 is indicated by a two-dot chain line for the sake of convenience).
  • the connection part 84 can be a port that can connect the sample introduction path 130 while ensuring the sterility of the sampling path 64 .
  • a portion of the sampling kit 62 described above is set in a main mechanism section 90, which is one of the plurality of mechanism sections 66, as shown in FIG.
  • the main mechanism section 90 includes a main mechanism section side pump 92 and a plurality of clamps 94 for opening and closing flow paths in each path (tube) in a housing 91 .
  • a controller 68 for controlling the sampling device 60 may also be provided in the main mechanism section 90 .
  • a main unit 96 of the sampling device 60 is constructed by setting the sampling kit 62 in the main mechanism section 90 .
  • a sampling path 64 extending between the branch point 65 and the connecting portion 84 is arranged in the main mechanism section side pump 92 .
  • the main-mechanism-side pump 92 has a circular hooked portion on which the sampling path 64 can be wrapped around, and rotates as if squeezing the sampling path 64 (tube) that wraps around, thereby of fluid (liquid, air, etc.)
  • the plurality of clamps 94 includes a cleaning liquid clamp 94 a that opens and closes the cleaning liquid branch channel 71 , a standard liquid clamp 94 b that opens and closes the standard liquid branch channel 73 , and a sampling clamp between the second detection unit 80 and the waste liquid storage unit 74 . and a waste liquid clamp 94c that opens and closes the path 64.
  • the first sensor unit 111 is constructed by setting the first detection unit 76 of the sampling kit 62 in the first measuring device 110 that is one of the plurality of mechanism units 66 .
  • the first measuring device 110 has a holder 112 that accommodates the first detection section 76 and a measurement body section 114 that is fixed to the holder 112 and optically measures the plurality of first element sections 78 .
  • the measurement main unit 114 is arranged to face the PH chip 78a, the O2 chip 78b, and the CO2 chip 78c in a state in which the first detection unit 76 is held by the holder 112. 116b, with CO2 detector 116c. Under the control of the controller 68, the measurement main unit 114 emits measurement light having a wavelength corresponding to the characteristics of each first element unit 78, and receives excitation light generated by excitation of each first element unit 78. , and transmits its detection signal to the controller 68 .
  • the second detection section 80 of the sampling kit 62 is configured in the second sensor unit 121 by being set in the second measuring device 120 which is one of the plurality of mechanism sections 66 .
  • the second measuring device 120 has a case 122 capable of accommodating the second detection unit 80, and an enzyme detector (not shown) electrically connected to the glucose terminal 83a and the lactic acid terminal 83b.
  • the enzyme detector detects a current value from each of the glucose chip 82a and the lactic acid chip 82b, and transmits a detection signal based on the current value to the controller 68.
  • a sample introduction path 130 is connected to the connection portion 84 of the sampling kit 62 (sampling path 64) in order to introduce samples to be measured by the first sensor unit 111 and the second sensor unit 121.
  • the sample introduction path 130 is composed of a flexible tube having an appropriate thickness through which the sample can flow.
  • the sample introduction path 130 has, at one end, a sampling device side connector 132 for connecting to the culture device side connector 56 (see also FIGS. 2 and 3).
  • a plug (not shown) that can be attached to and detached from the connection portion 84 is provided at the other end of the sample introduction path 130 .
  • a point where the sample introduction path 130 is connected to the sampling path 64 is hereinafter referred to as a connection point 134 .
  • a temporary reservoir 136 is provided in the sample introduction path 130 between the sampling device side connector 132 and the plug (connection point 134).
  • the temporary storage part 136 temporarily stores the sample that has flowed out of the culture device 11 and then allows the sample to flow out toward the sampling path 64 .
  • the temporary reservoir 136 is applied with a medical bag that is softer than the sample introduction path 130 and is hung on a stand 98 fixed on the housing 91 of the main unit 96 .
  • the temporary storage section 136 may be configured by a rigid container.
  • the sample introduction path 130 includes an upstream line 137 provided between the sampling device side connector 132 and the temporary reservoir 136, and a downstream line 138 provided between the temporary reservoir 136 and the plug.
  • the upstream line 137 and the downstream line 138 are connected to the lower side of the temporary reservoir 136 in the gravitational direction while the temporary reservoir 136 is suspended from the stand 98 .
  • a part of the sample introduction path 130 is detachably set in an introduction mechanism section 140, which is one of the plurality of mechanism sections 66, thereby constructing an introduction unit 148 of the sampling device 60.
  • the introduction mechanism section 140 includes an upstream pump 142 , an introduction pump 144 , and a downstream clamp 146 inside a housing 141 .
  • the introduction mechanism section 140 may be configured to include a sensor (not shown) that detects pressure and air bubbles in the channel of the sample introduction path 130 .
  • the introduction unit 148 allows a part of the sample introduction path 130, the upstream pump 142, the introduction pump 144, and the downstream clamp 146 to be handled integrally with each other.
  • a sample introduction path 130 (downstream line 138 ) extending short from the introduction unit 148 is connected to a connection portion 84 on the housing 91 .
  • the upstream pump 142 is arranged in the upstream line 137 (that is, between the culture device 11 and the temporary reservoir 136) in the introduction unit 148.
  • An inlet pump 144 and a downstream clamp 146 are positioned in the inlet unit 148 in the downstream line 138 (ie, between the sampling path 64 and the temporary reservoir 136).
  • the upstream pump 142 and the introduction pump 144 have a circular hooked portion on which the sample introduction path 130 can be wrapped around, and rotate to squeeze the sample introduction path 130 (tube) that is wrapped around. By doing so, the internal fluid is circulated.
  • the downstream clamp 146 switches between stopping and stopping the flow of the sample from the temporary reservoir 136 to the sampling path 64 by opening and closing the downstream line 138 .
  • the controller 68 (control unit) is a computer having one or more processors, memories, input/output interfaces and electronic circuits (not shown).
  • the controller 68 controls the entire sampling device 60 by causing the processor to execute programs stored in the memory.
  • the controller 68 is configured to be capable of mutual information communication with the control circuit 32 of the culture device 11, and controls the culture device 11 and the sampling device 60 in conjunction with each other.
  • the controller 68 may be a control device integrated with the control circuit 32 of the culture device 11 .
  • the sampling device 60 is basically configured as described above, and the sampling method of the sampling device 60 will be described below with reference to FIG.
  • the sampling method sequentially carries out a preparation process, a priming process, a sampling process, a washing process and a calibration process.
  • step S1 the user of the cell culture system 10 sets (mounts) the sampling kit 62 to the main mechanism section 90 to form the main unit 96, as shown in FIG.
  • the user sets the first detection section 76 exposed from the housing 91 to the first measuring instrument 110 to construct the first sensor unit 111, and attaches the second detection section 80 that is also exposed to the first sensor unit 111. 2 to construct a second sensor unit 121.
  • first sensor unit 111 and second sensor unit 121 are hung on a stand 98 .
  • the user sets the sample introduction path 130 to the introduction mechanism section 140 to form an introduction unit 148 . After that, the user connects the sampling device side connector 132 of the sample introduction path 130 exposed from the introduction unit 148 to the incubation device side connector 56 and connects the plug of the sample introduction path 130 to the connection portion 84 .
  • the controller 68 opens the cleaning liquid clamp 94a and the waste liquid clamp 94c, closes the standard liquid clamp 94b, and rotates the main mechanism side pump 92. .
  • the cleaning liquid in the cleaning liquid storage section 70 passes through the first detection section 76 and the second detection section 80 and is discharged to the waste liquid storage section 74 .
  • the controller 68 guides the sample from the culture device 11 to the detection section 75. At this time, as shown in FIG. 6, the controller 68 sequentially performs a temporary storage step and a joint sample discharge step.
  • the temporary storage step is a step of collectively storing the samples flowing out from the reactors 12A to 12E in the temporary storage section 136.
  • the controller 68 acquires information on the rotation of the EC supply pump 30d of the culture apparatus 11 and the opening of each of the supply clamps 29A to 29E, and the upstream side during the opening of each of the supply clamps 29A to 29E. Rotate the pump 142 .
  • the upstream pump 142 operates at the same rotational speed and for the same time (predetermined period) while each of the supply clamps 29A-29E is open.
  • the temporary storage section 136 stores the same amount of each sample of each reactor 12A to 12E.
  • the controller 68 acquires information on rotation of the EC supply pump 30d and opening of the supply clamp 29A from the control circuit 32 of the culture apparatus 11 (step S3-1). After that, the controller 68 rotates the upstream pump 142 for a predetermined period while keeping the downstream clamp 146 closed (step S3-2). Also, at this time, the controller 68 stops the operation of the introduction pump 144 (the same applies hereinafter until the end of the temporary storage step). As a result, the sample flowing out from the reactor 12A is stored in the temporary storage section 136 via the upstream line 137, as shown in FIG.
  • the controller 68 rotates the upstream pump 142 to circulate the sample at a flow rate of, for example, 10 mL/min.
  • the predetermined period for operating the upstream pump 142 is set within a range of about 5 seconds to 15 seconds, although it depends on the period during which the supply clamp 29A is opened. As a result, for example, when the upstream pump 142 is rotated for 6 seconds, 1 mL of the sample in the reactor 12A is stored in the temporary storage section 136 .
  • the controller 68 acquires information on rotation of the EC supply pump 30d and opening of the supply clamp 29B from the control circuit 32 of the culture apparatus 11 (step S3-3). After that, the controller 68 rotates the upstream pump 142 for a predetermined period (the same period as the sampling period of the reactor 12A) while keeping the downstream clamp 146 closed (step S3-4). As a result, the sample of the reactor 12B is stored in the temporary reservoir 136 in the same amount as the sample of the reactor 12A.
  • the controller 68 acquires information on the rotation of the EC supply pump 30d and the opening of the supply clamp 29C from the control circuit 32 of the culture apparatus 11 (step S3-5). After that, the controller 68 rotates the upstream pump 142 for a predetermined period (the same period as the sampling period of the reactor 12A) while keeping the downstream clamp 146 closed (step S3-6). As a result, the sample of the reactor 12C is stored in the temporary reservoir 136 in the same amount as the sample of the reactor 12A.
  • the controller 68 acquires information on the rotation of the EC supply pump 30d and the opening of the supply clamp 29D from the control circuit 32 of the culture apparatus 11 (step S3-7). After that, the controller 68 rotates the upstream pump 142 for a predetermined period (the same period as the sampling period of the reactor 12A) while keeping the downstream clamp 146 closed (step S3-8). As a result, the sample of the reactor 12D is stored in the temporary storage section 136 in the same amount as the sample of the reactor 12A.
  • the controller 68 acquires information on the rotation of the EC supply pump 30d and the opening of the supply clamp 29E from the control circuit 32 of the culture apparatus 11 (step S3-9). After that, the controller 68 rotates the upstream pump 142 for a predetermined period (the same period as the sampling period of the reactor 12A) while keeping the downstream clamp 146 closed (step S3-10). As a result, the sample of the reactor 12E is stored in the temporary reservoir 136 in the same amount as the sample of the reactor 12A.
  • the temporary storage unit 136 is in a state of storing a joint sample, which is a combination of the samples of the reactors 12A to 12E.
  • the joint sample is obtained by averaging the samples of the entire culture apparatus 11 by inflowing the same amount of each sample to each of the reactors 12A to 12E, and can be said to indicate the culture state of the culture apparatus 11.
  • the sampling device 60 supplies the joint sample in the temporary storage section 136 to the sampling path 64 in the next joint sample outflow process.
  • the controller 68 opens the downstream clamp 146 and rotates the introduction pump 144 (step S3-11).
  • the controller 68 also stops the operation of the upstream pump 142 .
  • the controller 68 closes the cleaning liquid clamp 94a and the standard liquid clamp 94b, opens the waste liquid clamp 94c, and stops the main mechanism side pump 92 and the upstream side pump 142 from rotating.
  • the introduction pump 144 rotates, the joint sample in the temporary reservoir 136 flows out to the downstream line 138 of the sample introduction path 130 at a flow rate of, for example, 10 mL/min.
  • the combined sample flows from the downstream line 138 into the connection portion 84 (connection point 134) of the sampling path 64, flows through the first detection section 76 and the second detection section 80 in order, and is discharged to the waste liquid storage section 74. be done.
  • the plurality of first element units 78 (PH chip 78a, O2 chip 78b, CO2 chip 78c) of the first detection unit 76 come into contact with the combined sample to detect PH and O2 . , CO 2 content.
  • the first measuring device 110 optically measures each first element unit 78 and transmits the detection result to the controller 68 .
  • the controller 68 that has received the detection result displays the measured values (PH value, concentration of O 2 , concentration of CO 2 ) on the monitor 100 of the main mechanism section 90 by performing appropriate processing.
  • the plurality of second element units 82 (glucose chip 82a, lactic acid chip 82b) of the second detection unit 80 are brought into contact with the combined sample to determine the content of glucose and lactic acid.
  • Each current value is detected by the second measuring device 120 .
  • Second measuring device 120 transmits each detection result to controller 68 .
  • the controller 68 that has received the detection results displays the measured values (glucose concentration, lactic acid concentration) on the monitor 100 by performing appropriate processing.
  • the controller 68 determines whether or not the cell culture in the culture device 11 has ended (step S4 in FIG. 5). If the cell culture has not ended (step S4: NO), the washing step (step S5 in FIG. 5) is performed. In the cleaning process, the controller 68 supplies the cleaning liquid in the cleaning liquid storage section 70 to the sampling path 64 to remove the joint sample adhering to the plurality of first element sections 78 and the plurality of second element sections 82 .
  • the sampling device 60 performs a calibration process (step S6 in FIG. 5) as necessary.
  • the controller 68 supplies the standard solution in the standard solution container 72 to the sampling path 64 to calibrate the second sensor unit 121 (second measuring device 120).
  • the user also sets the first measuring device 110 in the calibration device 118 (see FIG. 1) to calibrate the first measuring device 110 .
  • step S4 when the controller 68 determines that the cell culture has ended (step S4: YES), the operation flow of the sampling device 60 ends.
  • the sampling device 60 is not limited to the above, and various methods can be adopted. Some other modifications of the sampling device 60 will be described below.
  • the sampling device 60A according to the first modification is configured to store each sample of each reactor 12 in the temporary storage section 136 without acquiring information on opening of each supply clamp 29A to 29E from the culture device 11.
  • the configuration of the sampling device 60A may be the same as the configuration of the sampling device 60 described above.
  • the culture apparatus 11 opens one of the supply clamps 29A to 29E and closes the other four while the EC supply pump 30d is rotating. This operation is performed for the same period in the order of the reactors 12A to 12E. As a result, the culture apparatus 11 can sequentially and intermittently supply the culture medium to the EC circulation circuits 44a of the reactors 12A to 12E. In addition, the culture apparatus 11 operates to open one of the supply clamps of the IC supply circuits 42b and close the other four while the IC supply pump 30b is rotating. 12E in order of the same period. As a result, the culture apparatus 11 can sequentially and intermittently supply the culture medium to the EC circulation circuits 44a of the reactors 12A to 12E.
  • the controller 68 of the sampling device 60 operates the upstream pump 142 for a period (hereinafter referred to as one cycle period) that is the sum of all open periods of the supply clamps 29A to 29E.
  • one cycle period a period that is the sum of all open periods of the supply clamps 29A to 29E.
  • the opening time of each of the supply clamps 29A to 29E of the culture device 11 is 6 seconds
  • the culture medium is supplied once from the EC supply circuit 44b to each of the reactors 12A to 12E (EC circulation circuit 44a) in 30 seconds.
  • the controller 68 sets the period of one cycle (30 seconds) during which each of the supply clamps 29A to 29E is opened once as one cycle period.
  • the controller 68 rotates the upstream pump 142 for one cycle period at an appropriate timing when it is considered necessary to sample the culture medium in the culture process of supplying and circulating the culture medium in the culture apparatus 11 .
  • the flow rate of each sample due to the rotation of the upstream pump 142 is set to a value that allows the combined sample of the target storage amount to be stored in the temporary storage section 136 .
  • the upstream pump 142 is rotated so that the flow rate becomes 10 mL/min.
  • the sampling device 60 can operate the upstream pump 142 for one cycle period so that each reactor 12A Identical volumes of samples of ⁇ 12E can be taken. For example, even if the timing for starting the rotation of the upstream pump 142 is three seconds later than the timing for opening the supply clamp 29A, the supply clamp 29A is opened in the second half of one cycle period, and the supply clamps 29A to 29E as a whole are closed. Each sample can be stored in the temporary storage unit 136 only for an open period in which it is opened once.
  • the sampling device 60A according to the first modified example is basically configured as described above.
  • 60 A of this sampling apparatus implements the process flow shown to FIG. 10A in a sampling process (step S3 in FIG. 5). That is, when the temporary storage process is started, the controller 68 rotates the upstream pump 142 for one cycle while keeping the downstream clamp 146 closed (step S3-21).
  • the sampling device 60A is not limited to rotating the upstream pump 142 only for one cycle period, but continuously or intermittently performs one cycle period twice or more (a times or more: a is a natural number). may be configured.
  • the sampling device 60A can store a sufficient amount of combined sample in the temporary storage section 136, even if the supply speed of the culture medium to each of the reactors 12A to 12E is slow, for example.
  • the culture apparatus 11 (control circuit 32) rotates the EC supply pump 30d, opens the supply clamp 29A for a predetermined open period, The clamps 29B to 29E are closed for the same period as the open period (step S101). Thereby, the culture medium is supplied to the EC circulation circuit 44a of the reactor 12A. Likewise, the culture apparatus 11 rotates the EC supply pump 30d, opens the supply clamp 29B for a predetermined open period, and closes the other supply clamps 29A, 29C to 29E for the same period as the open period. (step S102).
  • the culture apparatus 11 rotates the EC supply pump 30d, opens the supply clamp 29C for a predetermined open period, and closes the other supply clamps 29A, 29B, 29D, and 29E for the same period as the open period. (step S103).
  • the culture apparatus 11 rotates the EC supply pump 30d, opens the supply clamp 29D for a predetermined open period, and closes the other supply clamps 29A to 29C and 29E for the same period as the open period (step S104).
  • the culture apparatus 11 rotates the EC supply pump 30d, opens the supply clamp 29E for a predetermined open period, and closes the other supply clamps 29A to 29D for the same period as the open period (step S105). ).
  • the culture apparatus 11 determines the end of the culture process (step S106), returns to step S101 when continuing the culture process (step S106: NO), and repeats the same flow.
  • the culturing apparatus 11 performs the next process (recovering process of recovering the cells of the reactors 12A to 12E).
  • the sampling device 60A rotates the upstream pump 142 for one cycle of supplying the culture medium to the reactors 12A to 12E, thereby temporarily extracting each sample from the reactors 12A to 12E from the culture device 11.
  • the same amount is stored in the storage unit 136 at a time. That is, the temporary storage unit 136 stores a joint sample obtained by averaging each sample.
  • the controller 68 opens the downstream clamp 146 and rotates the introduction pump 144 (step S3-22). Further, the controller 68 closes the cleaning liquid clamp 94a and the standard liquid clamp 94b, opens the waste liquid clamp 94c, and stops the rotation of the main mechanism side pump 92 and the upstream side pump 142.
  • FIG. As a result, the joint sample in the temporary storage section 136 flows out to the downstream line 138 of the sample introduction path 130, flows through the connection portion 84 of the sampling path 64, the first detection section 76, and the second detection section 80 in order, and is discharged. It is discharged to the storage section 74 .
  • the sampling device 60A performs the operation of the upstream pump 142 for one cycle period, so that the temporary storage portion can be At 136 a joint sample can be stored where each sample is averaged.
  • the period during which the supply clamps 29A to 29E are opened by the culturing device 11 basically does not fluctuate, if one cycle period is initially set by the controller 68 of the sampling device 60, during the culturing process of the culturing device 11 Periodic sampling can be done multiple times.
  • the sampling device 60B differs from the sampling devices 60, 60A described above. It should be noted that the introduction pump 144 is provided in the downstream line 138 in the same manner as the sampling devices 60 and 60A described above.
  • the temporary storage part 136 is applied with a flexible medical bag that swells with the inflow of the sample and dents (flattens) with the outflow of the sample.
  • One end of the upstream line 137 is connected to the lower side in the gravitational direction of the temporary reservoir 136 held by the main unit 96 or the introduction unit 148 .
  • one end of the downstream line 138 is connected to the upper side in the gravitational direction of the temporary reservoir 136 held by the main unit 96 or the introduction unit 148 .
  • negative pressure is applied to the upstream line 137 by rotating the introduction pump 144 with the upstream clamp 150 opened by the controller 68 in the temporary storage step. That is, the controller 68 causes the samples of the reactors 12A to 12E to flow into the temporary storage section 136 by rotating the introduction pump 144 for one cycle period in the same manner as the sampling device 60A, thereby storing the joint sample. be able to.
  • the sampling device 60B applies negative pressure to the temporary reservoir 136 and the downstream line 138 by rotating the introduction pump 144 with the upstream clamp 150 closed in the joint sample outflow process.
  • the combined sample in the temporary storage section 136 flows through the connection portion 84 of the sampling path 64 , the first detection section 76 and the second detection section 80 in order and is discharged to the waste liquid storage section 74 .
  • each sample of each of the reactors 12A to 12E can be stored in the temporary storage section 136 under the operation of the introduction pump 144. . Therefore, the configuration of the introduction unit 148 is further simplified, the cost is reduced, and the introduction unit 148 can be handled more easily.
  • the sampling device 60B can also cause the sample of the culture device 11 to flow into the temporary reservoir 136 regardless of the operation of the introduction pump 144 .
  • the culture apparatus 11 closes each clamp 28 provided in each of the IC waste liquid circuit 46 and the EC waste liquid circuit 48 (see FIG. 2).
  • the medium (waste liquid) of each reactor 12A to 12E flows out from the EC circulation circuit 44a to the sample introduction path 130.
  • the sampling device 60B can store the combined sample in the temporary storage section 136 simply by opening the upstream clamp 150 while the introduction pump 144 is not rotating.
  • the sampling device 60B adjusts the opening period of the upstream clamp 150 according to the rotation speed of the EC supply pump 30d. should be properly controlled.
  • a first aspect of the present invention is a sampling apparatus 60, 60A, 60B for collecting liquid samples from a culture apparatus 11 having a plurality of reactors 12 for culturing cells based on medium circulation, wherein A sample introduction path 130 connecting the path 64, a detection section 75 provided in the sampling path 64, the sampling path 64 on the upstream side of the detection section 75, and the culture apparatus 11, and a sample is introduced into the sample introduction path 130.
  • a temporary reservoir that is provided in the sample introduction path 130 and is capable of temporarily storing the sample. 136 , and the samples for each of the plurality of reactors 12 are sequentially supplied to the temporary reservoir 136 under the operation of the pump, so that the plurality of samples are combined into a joint sample, and the joint sample is discharged to the sampling path 64 . do.
  • the sampling devices 60, 60A, and 60B collectively store the samples for each of the plurality of reactors 12 in the temporary storage unit 136, and flow out the combined sample to the sampling path 64. samples can be detected more efficiently. As a result, the sampling devices 60, 60A, and 60B can reduce the number of times of sampling and the amount of samples, and satisfactorily monitor the culture state of the entire culture device 11 (the entirety of the plurality of reactors 12).
  • the culture apparatus 11 includes a plurality of medium supply channels (EC supply circuits 44b) connected to each of the plurality of reactors 12, and a plurality of supply clamps 29 for opening and closing each of the plurality of supply channels.
  • the control unit (controller 68) operates the pumps (upstream pump 142, introduction pump 144) based on acquisition of opening information of one of the plurality of supply clamps 29 from the culture apparatus 11. is operated for a predetermined period.
  • the sampling device 60 can store the same amount of samples for each of the plurality of reactors 12 in the temporary storage unit 136, and more reliably obtain a joint sample in which each sample is averaged.
  • the culture apparatus 11 includes a plurality of medium supply channels (EC supply circuits 44b) connected to each of the plurality of reactors 12, and a plurality of supply clamps 29 for opening and closing each of the plurality of supply channels.
  • the controller (controller 68) operates the pumps (upstream pump 142, introduction pump 144) for one cycle period, which is the sum of all the open periods of the plurality of supply clamps 29.
  • the sampling device 60A can easily obtain a joint sample in which each sample is averaged without acquiring the opening information of the supply clamp 29 from the culture device 11 .
  • control unit performs one cycle period for operating the pumps (upstream pump 142, introduction pump 144) twice or more. This allows the sampling device 60A to store a sufficient amount of joint sample in the temporary storage section 136.
  • the pump is the upstream pump 142 provided in the sample introduction path 130 between the culture apparatus 11 and the temporary reservoir 136.
  • the upstream pump 142 is operated in the temporary storage step of causing the sample to flow into the portion 136 , and the operation of the upstream pump 142 is stopped in the joint sample outflow step of flowing the combined sample from the temporary storage portion 136 to the sampling path 64 .
  • the sampling device 60 can stably store each sample for each of the plurality of reactors 12 in the temporary storage section 136 in the temporary storage step.
  • the sample introduction path 130 has a downstream clamp 146 that opens and closes the sample introduction path 130 between the sampling path 64 and the temporary storage part 136, and the controller (controller 68) controls the downstream side in the temporary storage process. Closing the clamp 146 and opening the downstream clamp 146 in a combined sample flow step.
  • the sampling devices 60 and 60A can prevent the sample from flowing out of the temporary storage section 136 during the temporary storage step.
  • the sample introduction path 130 includes an introduction pump 144 between the sampling path 64 and the temporary storage section 136, and the control section (controller 68) stops the operation of the introduction pump 144 in the temporary storage step, In the sample discharge step, the introduction pump 144 is operated to discharge the combined sample to the sampling path 64 . This allows the sampling devices 60 and 60A to smoothly introduce the joint sample into the sampling path 64 in the joint sample discharge step.
  • the pump is an introduction pump 144 provided in the sample introduction path 130 between the sampling path 64 and the temporary storage section 136, and the controller (controller 68) temporarily stores the sample for each of the plurality of reactors 12.
  • the introduction pump 144 is operated in the temporary storage step of flowing into the portion 136
  • the introduction pump 144 is operated in the joint sample outflow step of flowing out the joint sample from the temporary storage portion 136 to the sampling path 64 .
  • the sampling device 60B applies a negative pressure to the sample introduction path 130 on the upstream side of the introduction pump 144 under the operation of the introduction pump 144 in the temporary storage step, thereby temporarily storing samples for each of the plurality of reactors 12. It can lead to reservoir 136 .
  • the cost of the sampling device 60B can be reduced by omitting the upstream pump 142 .
  • the sample introduction path 130 has an upstream clamp 150 for opening and closing the sample introduction path 130 between the culture device 11 and the temporary storage section 136, and the controller (controller 68) controls the upstream side in the temporary storage step. Open the clamp 150 and close the upstream clamp 150 in a combined sample flow step.
  • the sampling device 60B can store the samples for each of the plurality of reactors 12 in the temporary storage section 136 in the temporary storage step, and introduce the joint sample into the sampling path 64 in the joint sample discharge step.
  • a second aspect of the present invention is a cell culture system 10 for collecting liquid samples from a culture unit (culture device 11) having a plurality of reactors 12 for culturing cells based on medium flow, wherein the culture unit supplies culture medium to a plurality of reactors 12 in order, and includes a sampling path 64 through which samples flow, a detection unit 75 provided in the sampling path 64, the sampling path 64 on the upstream side of the detection unit 75, and a culture unit.
  • a sample introduction path 130 connecting between the A temporary reservoir 136 is provided in the sample introduction path 130 and can temporarily store the sample.
  • a joint sample is formed by combining a plurality of samples, and the joint sample flows out to the sampling path 64 . Thereby, the cell culture system 10 can more efficiently detect samples for each of the multiple reactors 12 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

細胞培養システム(10)は、リアクタ(12)を複数有する培養装置(11)と、培養装置(11)から液体のサンプルを採取するサンプリング装置(60)と、を備える。サンプリング装置(60)は、サンプル導入経路(130)に設けられ、サンプルを一時的に貯留可能な一時貯留部(136)を有する。一時貯留部(136)は、上流側ポンプ(142)の動作下に複数のリアクタ(12)毎のサンプルが順に流入されることで、複数のサンプルを合わせた合同サンプルとし、サンプリング経路(64)に当該合同サンプルを流出する。

Description

サンプリング装置、及び細胞培養システム
 本発明は、細胞を培養する培養装置の液体のサンプルを採取するサンプリング装置、及び細胞培養システムに関する。
 例えば、米国特許第9442047号明細書には、培養装置から液体のサンプルを採取するサンプリング経路を備えたサンプリング装置が開示されている。サンプリング装置は、培養装置に接続されたサンプル導入経路からサンプリング経路にサンプルを引き込む導入用ポンプと、サンプリング経路の下流側に設けられた検出部とを備える。検出部は、サンプルの含有成分や成分量(濃度)を検出する。
 この種の培養装置は、細胞の培養を効率化するために、培養容器であるリアクタを複数備えた構成でもよい。つまり、培養装置は、複数のリアクタの各々に対して細胞の播種、培地の供給等を行うことで、各リアクタにおいて細胞を培養することができる。
 ところで、複数のリアクタは、培地の流通状態が多少異なる等の要因により、各リアクタ間で培養状態が若干違うことがある。そのため、サンプリング装置を培養装置に接続してサンプルを検出するシステムを構築した場合に、不特定のリアクタから流出したサンプルを検出しても、各リアクタの培養状態を正確に把握できない。
 その一方で、サンプリング装置は、複数のリアクタ毎のサンプルをそれぞれ検出する構成とすると、サンプリング回数やサンプル量が大幅に増加してしまい、サンプリングの効率性が低下することになる。
 本発明は、上記の実情を鑑みたものであり、複数のリアクタ毎のサンプルをより効率的に検出することができるサンプリング装置、及び細胞培養システムを提供することを目的とする。
 前記の目的を達成するために、本発明の第1の態様は、培地の流通に基づいて細胞を培養するリアクタを複数有する培養装置から液体のサンプルを採取するサンプリング装置であって、前記サンプルが流通するサンプリング経路と、前記サンプリング経路に設けられた検出部と、前記検出部よりも上流側の前記サンプリング経路と前記培養装置との間を接続するサンプル導入経路と、前記サンプル導入経路に前記サンプルを流通させるポンプと、前記ポンプを動作させる制御部と、を備え、前記サンプル導入経路に設けられ、前記サンプルを一時的に貯留可能な一時貯留部を有し、前記一時貯留部は、前記ポンプの動作下に複数の前記リアクタ毎の前記サンプルが順に流入されることで、複数の前記サンプルを合わせた合同サンプルとし、前記サンプリング経路に当該合同サンプルを流出する。
 また前記の目的を達成するために、本発明の第2の態様は、培地の流通に基づいて細胞を培養するリアクタを複数有する培養部から液体のサンプルを採取する細胞培養システムであって、前記培養部は、複数の前記リアクタに対して培地を順に供給し、前記サンプルが流通するサンプリング経路と、前記サンプリング経路に設けられた検出部と、前記検出部よりも上流側の前記サンプリング経路と前記培養部との間を接続するサンプル導入経路と、前記サンプル導入経路に前記サンプルを流通させるポンプと、前記ポンプを動作させる制御部と、を備え、前記サンプル導入経路に設けられ、前記サンプルを一時的に貯留可能な一時貯留部を有し、前記一時貯留部は、前記ポンプの動作下に複数の前記リアクタ毎の前記サンプルが順に流入されることで、複数の前記サンプルを合わせた合同サンプルとし、前記サンプリング経路に当該合同サンプルを流出する。
 上記のサンプリング装置、及び細胞培養システムは、複数のリアクタ毎のサンプルをより効率的に検出することができる。
本発明の一実施形態に係るサンプリング装置が適用される細胞培養システムの全体構成を概略的に示す斜視図である。 細胞培養時における培地の経路を概略的に示す説明図である。 複数のリアクタからサンプルを流出する経路を概略的に示す説明図である。 サンプリング装置の経路を概略的に示す説明図である。 サンプリング装置のサンプリング方法を示すフローチャートである。 サンプリング工程を示すフローチャートである。 一時貯留工程の動作を示す説明図である。 合同サンプル流出工程の動作を示す説明図である。 第1変形例に係るサンプリング装置の経路を概略的に示す説明図である。 図10Aは、第1変形例に係るサンプリング装置のサンプリング工程を示すフローチャートである。図10Bは、培養装置の培養工程を示すフローチャートである。 第2変形例に係るサンプリング装置の経路を概略的に示す説明図である。
 以下、本発明について好適な実施形態を挙げ、添付の図面を参照して詳細に説明する。
 本発明の一実施形態に係るサンプリング装置60は、図1に示すように、再生医療において生体の細胞を培養する細胞培養システム10に適用される。サンプリング装置60は、細胞培養システム10による細胞の培養中に培地をサンプリングして、培地の状態を測定する。例えば、細胞培養システム10は、細胞の培養容器であるリアクタ12に培地や酸素を供給しつつ、細胞培養中に生じた乳酸や二酸化炭素等(未使用の培地、酸素を含む)をリアクタ12から排出することで、長期間にわたって細胞培養を継続する。
 生体の細胞は、特に限定されるものではないが、例えば、血液に含まれる細胞(T細胞等)、幹細胞(ES細胞、iPS細胞、間葉系幹細胞等)があげられる。培地も、生体の細胞に応じて適切なものが選択されればよく、例えば、緩衝塩類溶液(Balanced Salt Solution:BSS)を基本溶液として、種々のアミノ酸、ビタミン類及び血清等を加えて調製されたものがあげられる。
 細胞培養システム10は、複数のリアクタ12がセットされて実際に細胞の培養を行う培養装置11(培養部)と、培養中に培養装置11から液体のサンプルを採取するサンプリング装置60(サンプリング部)と、を有する。すなわち、細胞培養システム10は、複数のリアクタ12毎に培地を流通して各リアクタ12で細胞を培養することで、培養期間を大きく変えることなく、1つのリアクタ12による培養に対して数倍の細胞数を得る構成としている。なお、図1中では、リアクタ12を5つ備えた培養装置11を図示しているが、培養装置11に設けられるリアクタ12の数は特に限定されないことは勿論である。また、細胞培養システム10は、1つのサンプリング装置60に対して複数の培養装置11を接続した構成でもよい。また本実施形態では、培養部とサンプリング部とを別体に構成した細胞培養システム10を例示しているが、細胞培養システム10は、培養部とサンプリング部とを統合した(一体化した)装置であってもよい。
 培養装置11は、培地を貯留した培地貯留部14、リアクタ12と培地貯留部14の間に設けられる流通経路16、流通経路16に接続される複数の医療用バッグ18、及び流通経路16から排出される液体を貯留する廃液部20を有する。
 培地貯留部14は、培地を多量に貯留することができる硬質なタンクが適用される。流通経路16は、複数のチューブ22によって構成され、複数のチューブ22は、複数のリアクタ12、培地貯留部14、複数の医療用バッグ18、廃液部20の各々に接続される。
 複数の医療用バッグ18としては、例えば、細胞を含む液体(細胞液)を貯留した細胞液バッグ18A、洗浄液を貯留した洗浄液バッグ18B、剥離液を貯留した剥離液バッグ18C、培養した細胞を回収する図示しない回収バッグがあげられる。洗浄液は、リアクタ12及び流通経路16のプライミング時に使用する液体である。この洗浄液としては、例えば、PBS(Phosphate Buffered Salts)、TBS(Tris-Buffered Saline)等の緩衝液、又は生理食塩水があげられる。また剥離液は、培養処理により培養された細胞を剥離する液体である。剥離液としては、例えば、トリプシン、EDTA液を適用することができる。
 細胞培養システム10の構築時に、流通経路16は、培養装置11の流路制御機構部24を通るようにセットされる。流路制御機構部24は、流通経路16の一部を収容する筐体26を有する。また、流路制御機構部24は、所定のチューブ22を開閉するクランプ28と、チューブ22内の液体を流通させるポンプ30と、クランプ28及びポンプ30の動作を制御する制御回路32と、を筐体26内に備える(図2参照)。
 複数のリアクタ12は、この流路制御機構部24の筐体26内に収容される。リアクタ12は、複数(例えば、1万本以上)の中空糸34と、複数の中空糸34を収容するケース36と、を備える。各中空糸34は、図示しない内腔を有し、内腔を構成する内周面に細胞が播種される。また各中空糸34は、外側と内腔との間を連通する図示しない複数の細孔を有し、各細孔は、細胞やタンパク質を透過させずに、溶液や低分子の物質を透過させる。中空糸34の内周面に播種された細胞には、内腔又は細孔を介して培地等が供給される。以下、主に中空糸34の内腔に液体を流通する構成をIC(intra capillary)ともいい、主に中空糸34の外側に液体を流通する構成をEC(extra capillary)ともいう。
 ケース36は、中空糸34の内腔に連通している第1IC端子36a、第2IC端子36b、ケース36内で中空糸34の外側の空間に連通している第1EC端子36c、第2EC端子36dを備え、各端子にチューブ22が接続される。
 以下、図2を参照して、1つのリアクタ12と培地貯留部14との間の流通経路16、及び流路制御機構部24の構成について具体的に説明していく。流通経路16は、培地貯留部14に接続される培地送出ルート40と、培地送出ルート40から分岐したIC用ルート42(内部用ルート)及びEC用ルート44(外部用ルート)と、を有する。IC用ルート42は、中空糸34の内腔に液体を供給する経路である。EC用ルート44は、中空糸34の外側のケース36内に液体を供給する経路である。
 IC用ルート42は、リアクタ12との間で液体を循環可能なIC循環回路42aと、培地送出ルート40からIC循環回路42aまで液体を流通可能なIC供給回路42bと、を有する。IC循環回路42aは、リアクタ12の第1IC端子36a、第2IC端子36bに接続され、また中空糸34の内腔に液体を流通させるIC循環用ポンプ30aを備える。IC循環回路42aにおいてリアクタ12よりも下流側には、培地を廃液部20に排出するIC廃液回路46が接続されている。一方、IC供給回路42bには、培地送出ルート40からIC循環回路42aに液体を流通させるIC供給用ポンプ30bが設けられている。
 一方、EC用ルート44は、リアクタ12との間で液体を循環可能なEC循環回路44aと、培地送出ルート40からEC循環回路44aまで液体を流通可能なEC供給回路44bとを有する。EC循環回路44aは、リアクタ12の第1EC端子36c及び第2EC端子36dに接続され、また中空糸34の外側に液体を循環させるEC循環用ポンプ30cを備える。EC循環回路44aにおいてリアクタ12よりも上流側には、ガス交換器52が設けられている。ガス交換器52は、培地に混入している二酸化炭素を排出する一方で、所定のガス成分(例えば、窒素N:75%、酸素O:20%、二酸化炭素CO:5%)を培地に混合する。EC循環回路44aにおいてリアクタ12よりも下流側には、培地を廃液部20に排出するEC廃液回路48が接続されている。EC供給回路44bには、培地送出ルート40からEC循環回路44aに液体を流通させるEC供給用ポンプ30dが設けられている。
 また図示は省略するが、IC供給用ポンプ30bよりも上流側のIC供給回路42b、又はEC供給用ポンプ30dよりも上流側のEC供給回路44bには、培地貯留部14の他に、複数のチューブ22を介して複数の医療用バッグ18(細胞液バッグ18A、洗浄液バッグ18B、剥離液バッグ18C)が接続されている。なお、これらの医療用バッグ18は、用途に応じてバッグを無菌にして接合する無菌接合装置を用いて回収バッグ等と交換してもよい。
 そして、サンプリング装置60は、培養装置11のEC循環回路44aにおいてリアクタ12の下流(第2EC端子36d)側の近傍位置(リアクタ12とEC廃液回路48の間)に接続される。このため、EC循環回路44aには、液体のサンプルである培地を流出するサンプル流出経路54の一端が接続されている。サンプル流出経路54の他端には、培養装置側コネクタ56が設けられている。培養装置側コネクタ56は、サンプリング装置60のサンプリング装置側コネクタ132との間で相互に接続可能に構成される。なお、サンプリング装置60は、サンプル流出経路54を介して、IC循環回路42aのリアクタ12の下流(第2IC端子36b)側に接続されてもよい。
 そして、図2及び図3に示すように、細胞培養システム10は、複数(5つ)のリアクタ12に対応して、IC循環回路42a、EC循環回路44aを複数備えている。つまり、IC供給用ポンプ30bとIC循環回路42aとの間の分岐点X、及びEC供給用ポンプ30dとEC循環回路44aとの間の分岐点Yに、別のリアクタ12に液体を循環させる図示しない別のIC循環回路42a、EC循環回路44aが並列接続される。分岐点Yと各EC循環回路44aとの間のEC供給回路44bには、各EC循環回路44aに対する培地の供給及び供給停止を切り替える供給用クランプ29がそれぞれ設けられている。
 以下、図3中の5つのリアクタ12について上から下に向かって順にリアクタ12A~リアクタ12Eという。また、各EC供給回路44bに設けられる供給用クランプ29を、各リアクタ12A~12Eに対応して供給用クランプ29A~29Eという。培養装置11は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29A~29Eのうちいずれか1つを開放し、他の4つを閉塞する。これにより、供給用クランプ29が開放されているEC循環回路44aに培地が供給され、EC循環回路44a内での循環に伴ってリアクタ12に培地が流通する。なお、図示は省略しているが、培養装置11は、各リアクタ12A~12Eに対応して複数のIC循環回路42aを有する。そして、複数のIC循環回路42aの各々に接続される各IC供給回路42bにも、培地を選択的に流通させるための供給用クランプ(不図示)がそれぞれ設けられている。
 サンプル流出経路54は、複数のリアクタ12の各々に接続するために、分岐点Zを基点に分岐して各EC循環回路44aに接続している。分岐点Zから培養装置側コネクタ56のサンプル流出経路54には、無菌フィルタ58が設けられている。無菌フィルタ58は、培養装置11側(EC循環回路44a側)を流通する培地の無菌状態を維持する。
 次に、サンプリング装置60の構成について、図4を参照して説明する。サンプリング装置60は、1以上の培養装置11から培地のサンプルを採取し、サンプルの含有成分や成分量(濃度)を検出する。サンプリング装置60は、サンプルが採取されるサンプリング経路64を有するサンプリングキット62と、サンプリングキット62が離脱可能にセットされる複数の機構部66と、複数の機構部66の動作を制御するコントローラ68とを備える。サンプリングキット62は、使い捨てのディスポーザブル品であり、複数の機構部66は、再利用可能なリユース品である。
 サンプリングキット62は、サンプリング経路64の他に、洗浄液収容部70、標準液収容部72、廃液収容部74及び検出部75(第1検出部76、第2検出部80)を備える。サンプリング経路64は、サンプルを流通可能な適宜の太さを有する可撓性チューブにより構成される。洗浄液収容部70は、サンプリング経路64の一端が接続される分岐点65に洗浄液分枝路71を介して接続され、標準液収容部72は、この分岐点65に標準液分枝路73を介して接続される。廃液収容部74には、サンプリング経路64の他端が接続される。
 洗浄液収容部70及び標準液収容部72は、例えば、ポリ塩化ビニル、ポリオレフィンのような軟質樹脂材料により袋状(医療用バッグ)に形成されたものである。ただし、洗浄液収容部70及び標準液収容部72は、液体が収容可能なものであれば特に限定されない。廃液収容部74は、培養装置11の廃液部20のタンクを共用しているが、これに限定されず、医療用バッグ等を適用してよい。
 洗浄液収容部70には洗浄液が収容されている。洗浄液は、特に限定されず、例えば、培養装置11の洗浄液バッグ18Bの洗浄液としてあげた緩衝液、生理食塩水等を適宜採用してよい。
 標準液収容部72は標準液が収容されている。標準液は、第1検出部76及び第2検出部80を校正するための液体であり、PH値、グルコース値(グルコース濃度)、乳酸値(乳酸濃度)が規定値に設定された液体である。
 第1検出部76及び第2検出部80は、サンプリング経路64の途中位置において互いに直列且つ離間して設けられている。なお、検出部75は、第1検出部76と第2検出部80とに分かれた構造に限定されず、第1検出部76と第2検出部80が一体化した構造でもよく、3以上に分かれた構造でもよい。
 第1検出部76は、サンプルに接触(接液)する複数の第1素子部78を、サンプリング経路64内の流路に有する筒部材である。例えば、複数の第1素子部78としては、サンプル中のPHを測定するためのPH用チップ78a、サンプル中のO濃度を測定するためのO用チップ78bと、サンプル中のCO濃度を測定するためのCO用チップ78cとがあげられる。PH用チップ78aは、H、OHに反応して呈色する。O用チップ78bは、Oに反応して呈色する。CO用チップ78cは、COに反応して呈色する。
 第2検出部80は、サンプルに接触(接液)する複数の第2素子部82を、サンプリング経路64内の流路に有する筒部材であり、第1検出部76よりも下流(廃液収容部74)側に設けられる。例えば、複数の第2素子部82は、流通するサンプルに酵素を反応させてその電流変化等を検出するバイオセンサである。複数の第2素子部82としては、サンプル中のグルコース濃度を測定するグルコース用チップ82aと、サンプル中の乳酸濃度を測定する乳酸用チップ82bとがあげられる。グルコース用チップ82aは、筒部材の外部に突出するグルコース用端子83aに電気的に接続されている。乳酸用チップ82bは、筒部材の外部に突出する乳酸用端子83bに電気的に接続されている。
 また、サンプリングキット62は、サンプリング経路64の分岐点65と第1検出部76との間に、後記のサンプル導入経路130を1以上接続可能な接続部位84を備える。接続部位84は、例えば、サンプル導入経路130の非装着時に閉塞する一方で、サンプル導入経路130の装着に伴い開放する弁(不図示)を有する分岐ポートを複数一体成形した部材である(図4中では、接続部位84を便宜的に二点鎖線で囲った範囲で示す)。或いは、接続部位84は、サンプリング経路64の無菌性を確保した状態で、サンプル導入経路130を接続可能なポートを適用することができる。
 以上のサンプリングキット62の一部は、図4に示すように、複数の機構部66の1つであるメイン機構部90にセットされる。メイン機構部90は、メイン機構部側ポンプ92と、各経路(チューブ)内の流路を開閉する複数のクランプ94とを筐体91内に備える。なお図示は省略するが、サンプリング装置60を制御するコントローラ68もメイン機構部90に設けられるとよい。サンプリングキット62がメイン機構部90にセットされることで、サンプリング装置60のメインユニット96が構築される。
 メイン機構部側ポンプ92には、分岐点65と接続部位84との間を延在するサンプリング経路64が配置される。メイン機構部側ポンプ92は、サンプリング経路64が回り込むように巻き掛け可能な円形状の被巻掛部を有し、回り込んでいるサンプリング経路64(チューブ)をしごくように回転することで、内部の流体(液体、空気等)を流通させる。
 複数のクランプ94は、洗浄液分枝路71を開閉する洗浄液用クランプ94aと、標準液分枝路73を開閉する標準液用クランプ94bと、第2検出部80と廃液収容部74の間のサンプリング経路64を開閉する廃液用クランプ94cと、を含む。
 また、サンプリングキット62の第1検出部76は、複数の機構部66の1つである第1測定器110にセットされることで第1センサユニット111が構築される。第1測定器110は、上記の第1検出部76を収容するホルダ112と、ホルダ112に固定され、複数の第1素子部78を光学測定する測定本体部114とを有する。
 測定本体部114は、ホルダ112に対する第1検出部76の保持状態で、PH用チップ78a、O用チップ78b、CO用チップ78cに対向するように、PH検出器116a、O検出器116b、CO検出器116cを有する。測定本体部114は、コントローラ68の制御下に、各第1素子部78の特性に応じた波長の測定光を出射して、各第1素子部78の励起から生じる励起光を受光することで、その検出信号をコントローラ68に送信する。
 さらに、サンプリングキット62の第2検出部80は、複数の機構部66の1つである第2測定器120にセットされることで、第2センサユニット121に構築される。第2測定器120は、第2検出部80を収容可能なケース122と、グルコース用端子83a、乳酸用端子83bに電気的に接続する図示しない酵素用検出器とを有する。酵素用検出器は、グルコース用チップ82a及び乳酸用チップ82bの各々から電流値を検出し、電流値に基づく検出信号をコントローラ68に送信する。
 そして、第1センサユニット111と第2センサユニット121にて測定を行うサンプルを導入するために、サンプリングキット62(サンプリング経路64)の接続部位84には、サンプル導入経路130が接続される。サンプル導入経路130は、サンプリング経路64と同様に、サンプルを流通可能な適宜な太さを有する可撓性チューブによって構成されている。
 サンプル導入経路130は、上記の培養装置側コネクタ56に接続するためのサンプリング装置側コネクタ132を一端に有する(図2、図3も参照)。また、サンプル導入経路130の他端には、接続部位84に着脱可能なプラグ(不図示)が設けられている。以下、サンプル導入経路130がサンプリング経路64に接続される箇所を接続点134という。
 また、サンプリング装置側コネクタ132とプラグ(接続点134)の間のサンプル導入経路130には、一時貯留部136が設けられている。一時貯留部136は、培養装置11から流出したサンプルを一時的に貯留した後に、サンプリング経路64に向けて流出させる。例えば、一時貯留部136は、サンプル導入経路130よりも軟質な医療用バッグが適用され、メインユニット96の筐体91上に固定されたスタンド98に吊るされる。なお、一時貯留部136は、硬質な容器により構成されてもよい。
 サンプル導入経路130は、サンプリング装置側コネクタ132と一時貯留部136の間に設けられる上流側ライン137と、一時貯留部136とプラグの間に設けられる下流側ライン138と、を含む。一時貯留部136がスタンド98に吊るされた状態で、上流側ライン137及び下流側ライン138は一時貯留部136の重力方向下側に接続される。
 サンプル導入経路130の一部は、複数の機構部66の1つである導入機構部140に着脱自在にセットされることで、サンプリング装置60の導入ユニット148が構築される。導入機構部140は、上流側ポンプ142と、導入用ポンプ144と、下流側クランプ146と、を筐体141内に備える。さらに、導入機構部140は、サンプル導入経路130の流路内の圧力や気泡を検出するセンサ(不図示)を含む構成でもよい。
 導入ユニット148は、サンプル導入経路130の一部、上流側ポンプ142、導入用ポンプ144、下流側クランプ146を、相互に一体的に取り扱い可能にしている。導入ユニット148から短く延在するサンプル導入経路130(下流側ライン138)が、筐体91上の接続部位84に接続される。
 上流側ポンプ142は、導入ユニット148において上流側ライン137(すなわち、培養装置11と一時貯留部136との間)に配置される。導入用ポンプ144及び下流側クランプ146は、導入ユニット148において下流側ライン138(すなわち、サンプリング経路64と一時貯留部136との間)に配置される。上流側ポンプ142及び導入用ポンプ144は、サンプル導入経路130が回り込むように巻き掛け可能な円形状の被巻掛部を有し、回り込んでいるサンプル導入経路130(チューブ)をしごくように回転することで、内部の流体を流通させる。下流側クランプ146は、下流側ライン138を開閉することで、一時貯留部136からサンプリング経路64へのサンプルの流出及び流出停止を切り替える。
 コントローラ68(制御部)は、図示しない1以上のプロセッサ、メモリ、入出力インターフェース及び電子回路を有するコンピュータである。コントローラ68は、メモリに記憶されたプログラムをプロセッサが実行することで、サンプリング装置60全体を制御する。また本実施形態において、コントローラ68は、培養装置11の制御回路32と相互に情報通信可能に構成され、培養装置11とサンプリング装置60を連動した制御を行う。なお、コントローラ68は、培養装置11の制御回路32と一体化した制御装置でもよい。
 本実施形態に係るサンプリング装置60は、基本的には以上のように構成されるものであり、以下、サンプリング装置60のサンプリング方法について、図5を参照して説明する。サンプリング方法は、準備工程、プライミング工程、サンプリング工程、洗浄工程及び校正工程を順次実施する。
 まず、準備工程(ステップS1)において、図4に示すように、細胞培養システム10のユーザは、サンプリングキット62をメイン機構部90にセット(装着)してメインユニット96を形成する。その後、ユーザは、筐体91から露出している第1検出部76を第1測定器110にセットして第1センサユニット111を構築すると共に、同じく露出している第2検出部80を第2測定器120にセットして第2センサユニット121を構築する。これら第1センサユニット111、第2センサユニット121は、スタンド98に吊るされる。
 さらに、ユーザは、サンプル導入経路130を導入機構部140にセットして導入ユニット148を形成する。その後、ユーザは、導入ユニット148から露出しているサンプル導入経路130のサンプリング装置側コネクタ132を培養装置側コネクタ56に接続すると共に、サンプル導入経路130のプラグを接続部位84に接続する。
 続いて、プライミング工程(図5のステップS2)において、コントローラ68は、洗浄液用クランプ94a及び廃液用クランプ94cを開く一方で、標準液用クランプ94bを閉じて、メイン機構部側ポンプ92を回転させる。これにより、洗浄液収容部70の洗浄液が、第1検出部76及び第2検出部80を通過して廃液収容部74に排出される。
 次に、サンプリング工程(図5のステップS3)において、コントローラ68は、培養装置11から検出部75にサンプルを導く。この際、図6に示すように、コントローラ68は、一時貯留工程、合同サンプル流出工程を順次実施する。
 一時貯留工程は、各リアクタ12A~12Eから流出する各サンプルを一時貯留部136にまとめて貯留する工程である。本実施形態において、コントローラ68は、培養装置11のEC供給用ポンプ30dの回転、及び各供給用クランプ29A~29Eの開放の情報を取得し、各供給用クランプ29A~29Eの開放中に上流側ポンプ142を回転させる。上流側ポンプ142は、各供給用クランプ29A~29Eの開放中に、同じ回転速度且つ同じ時間(所定期間)動作する。これにより、一時貯留部136には、各リアクタ12A~12Eの各サンプルが同量ずつ貯留される。
 具体的には、コントローラ68は、一時貯留工程の開始後に、培養装置11の制御回路32からEC供給用ポンプ30dの回転及び供給用クランプ29Aの開放の情報を取得する(ステップS3-1)。その後、コントローラ68は、下流側クランプ146を閉塞したまま、上流側ポンプ142を所定期間回転させる(ステップS3-2)。またこの際、コントローラ68は、導入用ポンプ144の動作を停止する(以下、一時貯留工程の終了まで同様である)。これにより、図7に示すように、リアクタ12Aから流出したサンプルが、上流側ライン137を介して一時貯留部136に貯留される。
 コントローラ68は、上流側ポンプ142を回転することで、例えば、10mL/minの流速でサンプルを流通させる。上流側ポンプ142を動作させる所定期間は、供給用クランプ29Aの開放期間にもよるが、5秒~15秒程度の範囲に設定する。これにより例えば、上流側ポンプ142を6秒回転させた場合には、リアクタ12Aのサンプルが一時貯留部136に1mL貯留される。
 次に、コントローラ68は、培養装置11の制御回路32からEC供給用ポンプ30dの回転及び供給用クランプ29Bの開放の情報を取得する(ステップS3-3)。その後、コントローラ68は、下流側クランプ146を閉塞したまま、上流側ポンプ142を所定期間(リアクタ12Aのサンプルの取得期間と同じ期間)回転させる(ステップS3-4)。これにより、一時貯留部136には、リアクタ12Aのサンプルの貯留量と同量だけリアクタ12Bのサンプルが貯留される。
 次に、コントローラ68は、培養装置11の制御回路32からEC供給用ポンプ30dの回転及び供給用クランプ29Cの開放の情報を取得する(ステップS3-5)。その後、コントローラ68は、下流側クランプ146を閉塞したまま、上流側ポンプ142を所定期間(リアクタ12Aのサンプルの取得期間と同じ期間)回転させる(ステップS3-6)。これにより、一時貯留部136には、リアクタ12Aのサンプルの貯留量と同量だけリアクタ12Cのサンプルが貯留される。
 次に、コントローラ68は、培養装置11の制御回路32からEC供給用ポンプ30dの回転及び供給用クランプ29Dの開放の情報を取得する(ステップS3-7)。その後、コントローラ68は、下流側クランプ146を閉塞したまま、上流側ポンプ142を所定期間(リアクタ12Aのサンプルの取得期間と同じ期間)回転させる(ステップS3-8)。これにより、一時貯留部136には、リアクタ12Aのサンプルの貯留量と同量だけリアクタ12Dのサンプルが貯留される。
 次に、コントローラ68は、培養装置11の制御回路32からEC供給用ポンプ30dの回転及び供給用クランプ29Eの開放の情報を取得する(ステップS3-9)。その後、コントローラ68は、下流側クランプ146を閉塞したまま、上流側ポンプ142を所定期間(リアクタ12Aのサンプルの取得期間と同じ期間)回転させる(ステップS3-10)。これにより、一時貯留部136には、リアクタ12Aのサンプルの貯留量と同量だけリアクタ12Eのサンプルが貯留される。
 以上のステップS3-1~S3-10の実施により、一時貯留部136には、各リアクタ12A~12Eの各サンプルを合せた合同サンプルが貯留された状態となる。合同サンプルは、各リアクタ12A~12Eの各サンプルが同量だけ流入されることで、一の培養装置11全体のサンプルを平均化したものとなり、培養装置11の培養状態を示していると言える。
 一時貯留工程後に、サンプリング装置60は、次の合同サンプル流出工程において、一時貯留部136の合同サンプルをサンプリング経路64に供給する。この際、コントローラ68は、下流側クランプ146を開放し、導入用ポンプ144を回転させる(ステップS3-11)。またこの際、コントローラ68は、上流側ポンプ142の動作を停止する。図8に示すように、コントローラ68は、洗浄液用クランプ94a及び標準液用クランプ94bを閉じる一方で、廃液用クランプ94cを開き、メイン機構部側ポンプ92及び上流側ポンプ142を回転停止にする。導入用ポンプ144の回転に伴い、一時貯留部136の合同サンプルは、例えば10mL/minの流速でサンプル導入経路130の下流側ライン138に流出する。これにより、合同サンプルが、下流側ライン138からサンプリング経路64の接続部位84(接続点134)に流入し、第1検出部76及び第2検出部80を順に流通して廃液収容部74に排出される。
 合同サンプルの通過時に、第1検出部76の複数の第1素子部78(PH用チップ78a、O用チップ78b、CO用チップ78c)は、合同サンプルに接触して、PH、O、COの各々の含有量に応じて呈色する。第1測定器110は、各第1素子部78に対して光学測定を行い、その検出結果をコントローラ68に送信する。検出結果を受信したコントローラ68は、適宜の処理を行うことで、メイン機構部90のモニタ100に測定値(PH値、Oの濃度、COの濃度)を表示する。
 同様に合同サンプルの通過時に、第2検出部80の複数の第2素子部82(グルコース用チップ82a、乳酸用チップ82b)は、合同サンプルに接触して、グルコース、乳酸の含有量に応じた各電流値を第2測定器120において検出する。第2測定器120は、各検出結果をコントローラ68に送信する。検出結果を受信したコントローラ68は、適宜の処理を行うことで、モニタ100に測定値(グルコースの濃度、乳酸の濃度)を表示する。
 サンプリング工程後、コントローラ68は、培養装置11の細胞培養が終了したか否かを判定する(図5のステップS4)。細胞培養が終了していない場合(ステップS4:NO)には、洗浄工程(図5のステップS5)を行う。洗浄工程において、コントローラ68は、洗浄液収容部70の洗浄液をサンプリング経路64に供給することで、複数の第1素子部78及び複数の第2素子部82に付着していた合同サンプルを除去する。
 また、サンプリング装置60は、必要に応じて校正工程(図5のステップS6)を行う。校正工程において、コントローラ68は、標準液収容部72の標準液をサンプリング経路64に供給することで、第2センサユニット121(第2測定器120)の校正を行う。また、ユーザは、第1測定器110をキャリブレーション装置118(図1参照)にセットすることで、第1測定器110の校正を行う。
 洗浄工程(又は校正工程)が終了すると、コントローラ68は、ステップS3に戻って、以降の工程を順次実施する。一方、ステップS4において、コントローラ68は、細胞培養が終了したと判定した場合(ステップS4:YES)、サンプリング装置60の動作フローを終了する。
 なお、サンプリング装置60は上記に限定されず、種々の方法を採用し得る。以下、サンプリング装置60の他の変形例について幾つか説明する。
 第1変形例に係るサンプリング装置60Aは、培養装置11から各供給用クランプ29A~29Eの開放の情報を取得せずに、各リアクタ12の各サンプルを一時貯留部136に貯留する構成としている。なお、サンプリング装置60Aの構成は、上記のサンプリング装置60の構成と同一でよい。
 具体的には図9に示すように、培養装置11は、EC供給用ポンプ30dを回転した状態で、各供給用クランプ29A~29Eのうちいずれか1つを開放し、他の4つを閉塞する動作を、リアクタ12A~12Eの順に同一期間ずつ実施する。これにより、培養装置11は、各リアクタ12A~12Eの各EC循環回路44aに対して順次且つ間欠的に培地を供給することができる。また、培養装置11は、IC供給用ポンプ30bを回転した状態で、各IC供給回路42bの各供給用クランプのうちいずれか1つを開放し、他の4つを閉塞する動作を、リアクタ12A~12Eの順に同一期間ずつ実施する。これにより、培養装置11は、各リアクタ12A~12Eの各EC循環回路44aに対して順次且つ間欠的に培地を供給することができる。
 一方、サンプリング装置60のコントローラ68は、各供給用クランプ29A~29Eの開放期間を全て合計した期間(以下、1サイクル期間という)だけ上流側ポンプ142を動作させる。例えば、培養装置11の各供給用クランプ29A~29Eの開放時間が6秒である場合は、30秒間で、各リアクタ12A~12E(EC循環回路44a)にEC供給回路44bから培地が1度供給されることになる。コントローラ68は、各供給用クランプ29A~29Eの開放が1度行われる1サイクルの時間(30秒間)を、1サイクル期間に設定する。そして、コントローラ68は、培養装置11の培地を供給及び循環させる培養工程において、培地のサンプリングが必要と考えられる適宜のタイミングで、上流側ポンプ142を1サイクル期間だけ回転させる。上流側ポンプ142の回転による各サンプルの流速は、目的の貯留量の合同サンプルが一時貯留部136に貯留可能な値に設定する。一例として、1サイクル期間が30秒間の場合で、一時貯留部136に5mLの合同サンプルを貯留する場合には、流速が10mL/minとなるように上流側ポンプ142を回転させる。
 ここで、サンプリング装置60は、上流側ポンプ142の回転開始タイミングが各供給用クランプ29A~29Eの開放タイミングに一致しなくても、上流側ポンプ142を1サイクル期間動作させれば、各リアクタ12A~12Eのサンプルを同一量採取できる。例えば、上流側ポンプ142の回転開始タイミングが供給用クランプ29Aの開放タイミングより3秒遅かったとしても、1サイクル期間の後半に供給用クランプ29Aが開放し、全体としては供給用クランプ29A~29Eが1度開放する開放期間だけ一時貯留部136に各サンプルを貯留することができる。
 第1変形例に係るサンプリング装置60Aは、基本的には以上のように構成される。このサンプリング装置60Aは、サンプリング工程(図5中のステップS3)において、図10Aに示す処理フローを実施する。すなわち、コントローラ68は、一時貯留工程を開始すると、下流側クランプ146を閉塞したまま、上流側ポンプ142を1サイクル期間回転させる(ステップS3-21)。なお、サンプリング装置60Aは、上流側ポンプ142の回転を1サイクル期間だけ実施することに限定されず、1サイクル期間を2回以上(a回以上:aは自然数)連続的又は断続的に実施する構成でもよい。これにより、サンプリング装置60Aは、例えば、各リアクタ12A~12Eに対する培地の供給速度が遅い場合でも、充分な量の合同サンプルを一時貯留部136に貯留することができる。
 図10Bに示すように、一時貯留工程中に、培養装置11(制御回路32)は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29Aを所定の開放期間だけ開放し、他の供給用クランプ29B~29Eを開放期間と同じ期間だけ閉塞する(ステップS101)。これにより、リアクタ12AのEC循環回路44aに培地が供給される。以下同様に、培養装置11は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29Bを所定の開放期間だけ開放し、他の供給用クランプ29A、29C~29Eを開放期間と同じ期間だけ閉塞する(ステップS102)。また、培養装置11は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29Cを所定の開放期間だけ開放し、他の供給用クランプ29A、29B、29D、29Eを開放期間と同じ期間だけ閉塞する(ステップS103)。また、培養装置11は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29Dを所定の開放期間だけ開放し、他の供給用クランプ29A~29C、29Eを開放期間と同じ期間だけ閉塞する(ステップS104)。また、培養装置11は、EC供給用ポンプ30dを回転しつつ、供給用クランプ29Eを所定の開放期間だけ開放し、他の供給用クランプ29A~29Dを開放期間と同じ期間だけ閉塞する(ステップS105)。これにより、各リアクタ12B~12EのEC循環回路44aに培地が順次供給される。最後に、培養装置11は、培養工程の終了を判定し(ステップS106)、培養工程を継続する場合(ステップS106:NO)にはステップS101に戻り、以下同様のフローを繰り返す。培養工程の終了を判定する場合(ステップS106:YES)、培養装置11は、次の工程(各リアクタ12A~12Eの細胞を回収する回収工程)を実施する。
 図9に示すように、サンプリング装置60Aは、各リアクタ12A~12Eに培地を供給する1サイクル期間にわたって上流側ポンプ142を回転することで、各リアクタ12A~12Eの各サンプルを培養装置11から一時貯留部136に同量ずつ貯留する。すなわち、一時貯留部136には、各サンプルが平均化された合同サンプルが貯留される。
 一時貯留工程後に、コントローラ68は、下流側クランプ146を開放すると共に、導入用ポンプ144を回転させる(ステップS3-22)。また、コントローラ68は、洗浄液用クランプ94a及び標準液用クランプ94bを閉じる一方で、廃液用クランプ94cを開き、メイン機構部側ポンプ92及び上流側ポンプ142を回転停止にする。これにより、一時貯留部136の合同サンプルは、サンプル導入経路130の下流側ライン138に流出し、サンプリング経路64の接続部位84、第1検出部76及び第2検出部80を順に流通して廃液収容部74に排出される。
 以上のように、サンプリング装置60Aは、上流側ポンプ142の動作を1サイクル期間実施することで、培養装置11から各供給用クランプ29A~29Eの開放の情報を取得しなくても、一時貯留部136に各サンプルが平均化した合同サンプルを貯留できる。特に、培養装置11による供給用クランプ29A~29Eの開放期間は、基本的に変動しないため、サンプリング装置60のコントローラ68にて1サイクル期間を初期設定しておけば、培養装置11の培養工程中に定期的なサンプリングを複数回行うことができる。
 第2変形例に係るサンプリング装置60Bは、図11に示すように、上流側ポンプ142及び下流側クランプ146を備えずに、上流側ライン137に上流側クランプ150を備えた構成としている点で、上記のサンプリング装置60、60Aとは異なる。なお、導入用ポンプ144については、上記のサンプリング装置60、60Aと同様に、下流側ライン138に設けられる。
 また、一時貯留部136は、サンプルの流入により膨らむ一方で、サンプルの流出により凹む(平らになる)可撓性の医療用バッグが適用される。そして、上流側ライン137の一端部は、メインユニット96又は導入ユニット148に保持された一時貯留部136の重力方向下側に連結されている。逆に、下流側ライン138の一端部は、メインユニット96又は導入ユニット148に保持された一時貯留部136の重力方向上側に連結されている。
 このように構成されたサンプリング装置60Bは、一時貯留工程において、コントローラ68により上流側クランプ150を開放した状態で導入用ポンプ144を回転させることで、上流側ライン137に陰圧をかける。つまり、コントローラ68は、サンプリング装置60Aと同様に、導入用ポンプ144を1サイクル期間回転させることで、各リアクタ12A~12Eの各サンプルを一時貯留部136に流入させていき、合同サンプルを貯留することができる。
 また、サンプリング装置60Bは、合同サンプル流出工程において、上流側クランプ150を閉塞した状態で、導入用ポンプ144を回転させることで、一時貯留部136及び下流側ライン138に陰圧をかける。これにより、一時貯留部136の合同サンプルが、サンプリング経路64の接続部位84、第1検出部76及び第2検出部80を順に流通して廃液収容部74に排出される。
 このように、サンプリング装置60Bは、上流側ポンプ142を省いた構成とすることでも、導入用ポンプ144の動作下に、各リアクタ12A~12Eの各サンプルを一時貯留部136に貯留することができる。従って、導入ユニット148の構成が一層簡素化して、コストダウンが図られると共に、導入ユニット148をより容易に取り扱うことが可能となる。
 また、サンプリング装置60Bは、導入用ポンプ144の動作によらず、培養装置11のサンプルを一時貯留部136に流入させることもできる。具体的には、培養装置11は、IC廃液回路46及びEC廃液回路48に各々設けられた各クランプ28を閉塞する(図2参照)。これにより、各リアクタ12A~12Eの培地(廃液)が、EC循環回路44aからサンプル導入経路130に流出するようになる。つまり、サンプリング装置60Bは、導入用ポンプ144の回転停止状態で、上流側クランプ150を開放するだけでも一時貯留部136に合同サンプルを貯留することかできる。この際、サンプル導入経路130に流出するサンプルの流速がEC供給用ポンプ30dの回転速度に依存するため、サンプリング装置60Bは、EC供給用ポンプ30dの回転速度に応じて上流側クランプ150の開放期間を適切に制御すればよい。
 上記の実施形態から把握し得る技術的思想及び効果について以下に記載する。
 本発明の第1の態様は、培地の流通に基づいて細胞を培養するリアクタ12を複数有する培養装置11から液体のサンプルを採取するサンプリング装置60、60A、60Bであって、サンプルが流通するサンプリング経路64と、サンプリング経路64に設けられた検出部75と、検出部75よりも上流側のサンプリング経路64と培養装置11との間を接続するサンプル導入経路130と、サンプル導入経路130にサンプルを流通させるポンプ(上流側ポンプ142、導入用ポンプ144)と、ポンプを動作させる制御部(コントローラ68)と、を備え、サンプル導入経路130に設けられ、サンプルを一時的に貯留可能な一時貯留部136を有し、一時貯留部136は、ポンプの動作下に複数のリアクタ12毎のサンプルが順に流入されることで、複数のサンプルを合わせた合同サンプルとし、サンプリング経路64に当該合同サンプルを流出する。
 上記によれば、サンプリング装置60、60A、60Bは、一時貯留部136にて複数のリアクタ12毎のサンプルをまとめて貯留して、サンプリング経路64に合同サンプルを流出するため、複数のリアクタ12毎のサンプルをより効率的に検出することができる。これにより、サンプリング装置60、60A、60Bは、サンプリング回数やサンプル量を低減しつつ、培養装置11全体(複数のリアクタ12全体)の培養状態を良好に監視することが可能となる。
 また、培養装置11は、複数のリアクタ12の各々に接続される培地供給用の供給経路(EC供給回路44b)を複数備えると共に、複数の供給経路の各々を開閉する供給用クランプ29を複数備え、制御部(コントローラ68)は、複数の供給用クランプ29のうちいずれかの供給用クランプ29の開放情報を培養装置11から取得することに基づき、ポンプ(上流側ポンプ142、導入用ポンプ144)を所定期間動作させる。これにより、サンプリング装置60は、複数のリアクタ12毎のサンプルを同量ずつ一時貯留部136に貯留することが可能となり、各サンプルが平均化した合同サンプルをより確実に得ることができる。
 また、培養装置11は、複数のリアクタ12の各々に接続される培地供給用の供給経路(EC供給回路44b)を複数備えると共に、複数の供給経路の各々を開閉する供給用クランプ29を複数備え、制御部(コントローラ68)は、複数の供給用クランプ29の全ての開放期間を合計した1サイクル期間にわたってポンプ(上流側ポンプ142、導入用ポンプ144)を動作させる。これにより、サンプリング装置60Aは、培養装置11から供給用クランプ29の開放情報を取得せずに、各サンプルが平均化した合同サンプルを簡単に得ることができる。
 また、制御部(コントローラ68)は、ポンプ(上流側ポンプ142、導入用ポンプ144)を動作させる1サイクル期間を2回以上実施する。これにより、サンプリング装置60Aは、充分な量の合同サンプルを一時貯留部136に貯留することができる。
 また、ポンプは、培養装置11と一時貯留部136との間のサンプル導入経路130に設けられた上流側ポンプ142であり、制御部(コントローラ68)は、複数のリアクタ12毎のサンプルを一時貯留部136に流入させる一時貯留工程において上流側ポンプ142を動作させ、一時貯留部136からサンプリング経路64に合同サンプルを流出する合同サンプル流出工程において上流側ポンプ142の動作を停止する。これにより、サンプリング装置60は、一時貯留工程において複数のリアクタ12毎の各サンプルを一時貯留部136に安定的に貯留することができる。
 また、サンプル導入経路130は、サンプリング経路64と一時貯留部136との間に、サンプル導入経路130を開閉する下流側クランプ146を有し、制御部(コントローラ68)は、一時貯留工程において下流側クランプ146を閉塞し、合同サンプル流出工程において下流側クランプ146を開放する。これにより、サンプリング装置60、60Aは、一時貯留工程において一時貯留部136からのサンプルの流出を防ぐことができる。
 また、サンプル導入経路130は、サンプリング経路64と一時貯留部136との間に導入用ポンプ144を備え、制御部(コントローラ68)は、一時貯留工程において導入用ポンプ144の動作を停止し、合同サンプル流出工程において導入用ポンプ144を動作させてサンプリング経路64に合同サンプルを流出する。これにより、サンプリング装置60、60Aは、合同サンプル流出工程においてサンプリング経路64に合同サンプルをスムーズに導入することができる。
 また、ポンプは、サンプリング経路64と一時貯留部136との間のサンプル導入経路130に設けられた導入用ポンプ144であり、制御部(コントローラ68)は、複数のリアクタ12毎のサンプルを一時貯留部136に流入させる一時貯留工程において導入用ポンプ144を動作させると共に、一時貯留部136からサンプリング経路64に合同サンプルを流出する合同サンプル流出工程において導入用ポンプ144を動作させる。これにより、サンプリング装置60Bは、一時貯留工程において導入用ポンプ144の動作下に導入用ポンプ144よりも上流側のサンプル導入経路130に陰圧をかけることで、複数のリアクタ12毎のサンプルを一時貯留部136に導くことができる。さらに、サンプリング装置60Bは、上流側ポンプ142を省くことでコストダウンが図られる。
 また、サンプル導入経路130は、培養装置11と一時貯留部136との間に、サンプル導入経路130を開閉する上流側クランプ150を有し、制御部(コントローラ68)は、一時貯留工程において上流側クランプ150を開放し、合同サンプル流出工程において上流側クランプ150を閉塞する。これにより、サンプリング装置60Bは、一時貯留工程において複数のリアクタ12毎のサンプルを一時貯留部136に貯留していき、合同サンプル流出工程においてサンプリング経路64に合同サンプルを導入することができる。
 また、本発明の第2の態様は、培地の流通に基づいて細胞を培養するリアクタ12を複数有する培養部(培養装置11)から液体のサンプルを採取する細胞培養システム10であって、培養部は、複数のリアクタ12に対して培地を順に供給し、サンプルが流通するサンプリング経路64と、サンプリング経路64に設けられた検出部75と、検出部75よりも上流側のサンプリング経路64と培養部との間を接続するサンプル導入経路130と、サンプル導入経路130にサンプルを流通させるポンプ(上流側ポンプ142、導入用ポンプ144)と、ポンプを動作させる制御部(コントローラ68)と、を備え、サンプル導入経路130に設けられ、サンプルを一時的に貯留可能な一時貯留部136を有し、一時貯留部136は、ポンプの動作下に複数のリアクタ12毎のサンプルが順に流入されることで、複数のサンプルを合わせた合同サンプルとし、サンプリング経路64に当該合同サンプルを流出する。これにより、細胞培養システム10は、複数のリアクタ12毎のサンプルをより効率的に検出することができる。

Claims (10)

  1.  培地の流通に基づいて細胞を培養するリアクタを複数有する培養装置から液体のサンプルを採取するサンプリング装置であって、
     前記サンプルが流通するサンプリング経路と、
     前記サンプリング経路に設けられた検出部と、
     前記検出部よりも上流側の前記サンプリング経路と前記培養装置との間を接続するサンプル導入経路と、
     前記サンプル導入経路に前記サンプルを流通させるポンプと、
     前記ポンプを動作させる制御部と、を備え、
     前記サンプル導入経路に設けられ、前記サンプルを一時的に貯留可能な一時貯留部を有し、
     前記一時貯留部は、前記ポンプの動作下に複数の前記リアクタ毎の前記サンプルが順に流入されることで、複数の前記サンプルを合わせた合同サンプルとし、前記サンプリング経路に当該合同サンプルを流出する
     サンプリング装置。
  2.  請求項1記載のサンプリング装置において、
     前記培養装置は、複数の前記リアクタの各々に接続される培地供給用の供給経路を複数備えると共に、複数の前記供給経路の各々を開閉する供給用クランプを複数備え、
     前記制御部は、複数の前記供給用クランプのうちいずれかの前記供給用クランプの開放情報を前記培養装置から取得することに基づき、前記ポンプを所定期間動作させる
     サンプリング装置。
  3.  請求項1記載のサンプリング装置において、
     前記培養装置は、複数の前記リアクタの各々に接続される培地供給用の供給経路を複数備えると共に、複数の前記供給経路の各々を開閉する供給用クランプを複数備え、
     前記制御部は、複数の前記供給用クランプの全ての開放期間を合計した1サイクル期間にわたって前記ポンプを動作させる
     サンプリング装置。
  4.  請求項3記載のサンプリング装置において、
     前記制御部は、前記ポンプを動作させる前記1サイクル期間を2回以上実施する
     サンプリング装置。
  5.  請求項1~4のいずれか1項に記載のサンプリング装置において、
     前記ポンプは、前記培養装置と前記一時貯留部との間の前記サンプル導入経路に設けられた上流側ポンプであり、
     前記制御部は、複数の前記リアクタ毎の前記サンプルを前記一時貯留部に流入させる一時貯留工程において前記上流側ポンプを動作させ、前記一時貯留部から前記サンプリング経路に前記合同サンプルを流出する合同サンプル流出工程において前記上流側ポンプの動作を停止する
     サンプリング装置。
  6.  請求項5記載のサンプリング装置において、
     前記サンプル導入経路は、前記サンプリング経路と前記一時貯留部との間に、前記サンプル導入経路を開閉する下流側クランプを有し、
     前記制御部は、前記一時貯留工程において前記下流側クランプを閉塞し、前記合同サンプル流出工程において前記下流側クランプを開放する
     サンプリング装置。
  7.  請求項5又は6記載のサンプリング装置において、
     前記サンプル導入経路は、前記サンプリング経路と前記一時貯留部との間に導入用ポンプを備え、
     前記制御部は、前記一時貯留工程において前記導入用ポンプの動作を停止し、前記合同サンプル流出工程において前記導入用ポンプを動作させて前記サンプリング経路に前記合同サンプルを流出する
     サンプリング装置。
  8.  請求項1~4のいずれか1項に記載のサンプリング装置において、
     前記ポンプは、前記サンプリング経路と前記一時貯留部との間の前記サンプル導入経路に設けられた導入用ポンプであり、
     前記制御部は、複数の前記リアクタ毎の前記サンプルを前記一時貯留部に流入させる一時貯留工程において前記導入用ポンプを動作させると共に、前記一時貯留部から前記サンプリング経路に前記合同サンプルを流出する合同サンプル流出工程において前記導入用ポンプを動作させる
     サンプリング装置。
  9.  請求項8記載のサンプリング装置において、
     前記サンプル導入経路は、前記培養装置と前記一時貯留部との間に、前記サンプル導入経路を開閉する上流側クランプを有し、
     前記制御部は、前記一時貯留工程において前記上流側クランプを開放し、前記合同サンプル流出工程において前記上流側クランプを閉塞する
     サンプリング装置。
  10.  培地の流通に基づいて細胞を培養するリアクタを複数有する培養部から液体のサンプルを採取する細胞培養システムであって、
     前記培養部は、複数の前記リアクタに対して培地を順に供給し、
     前記サンプルが流通するサンプリング経路と、
     前記サンプリング経路に設けられた検出部と、
     前記検出部よりも上流側の前記サンプリング経路と前記培養部との間を接続するサンプル導入経路と、
     前記サンプル導入経路に前記サンプルを流通させるポンプと、
     前記ポンプを動作させる制御部と、を備え、
     前記サンプル導入経路に設けられ、前記サンプルを一時的に貯留可能な一時貯留部を有し、
     前記一時貯留部は、前記ポンプの動作下に複数の前記リアクタ毎の前記サンプルが順に流入されることで、複数の前記サンプルを合わせた合同サンプルとし、前記サンプリング経路に当該合同サンプルを流出する
     細胞培養システム。
PCT/JP2022/008731 2021-03-03 2022-03-02 サンプリング装置、及び細胞培養システム WO2022186238A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280008917.9A CN116783278A (zh) 2021-03-03 2022-03-02 采样装置及细胞培养系统
EP22763292.4A EP4303296A1 (en) 2021-03-03 2022-03-02 Sampling device and cell culture system
JP2023503884A JPWO2022186238A1 (ja) 2021-03-03 2022-03-02
US18/206,464 US20230313108A1 (en) 2021-03-03 2023-06-06 Sampling Device And Cell Culture System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033629 2021-03-03
JP2021-033629 2021-03-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/206,464 Continuation US20230313108A1 (en) 2021-03-03 2023-06-06 Sampling Device And Cell Culture System

Publications (1)

Publication Number Publication Date
WO2022186238A1 true WO2022186238A1 (ja) 2022-09-09

Family

ID=83154398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008731 WO2022186238A1 (ja) 2021-03-03 2022-03-02 サンプリング装置、及び細胞培養システム

Country Status (5)

Country Link
US (1) US20230313108A1 (ja)
EP (1) EP4303296A1 (ja)
JP (1) JPWO2022186238A1 (ja)
CN (1) CN116783278A (ja)
WO (1) WO2022186238A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511541U (ja) * 1978-07-10 1980-01-24
US20140033834A1 (en) * 2008-03-25 2014-02-06 Flownamics Analytical Instruments, Inc. Segmented Online Sampling Apparatus And Method Of Use
US20140087413A1 (en) * 2011-05-06 2014-03-27 Bend Research, Inc. Automatic aseptic sampling valve for sampling from enclosed containers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511541U (ja) * 1978-07-10 1980-01-24
US20140033834A1 (en) * 2008-03-25 2014-02-06 Flownamics Analytical Instruments, Inc. Segmented Online Sampling Apparatus And Method Of Use
US9442047B2 (en) 2008-03-25 2016-09-13 Flownamics Analytical Instruments, Inc. Segmented online sampling apparatus and method of use
US20140087413A1 (en) * 2011-05-06 2014-03-27 Bend Research, Inc. Automatic aseptic sampling valve for sampling from enclosed containers

Also Published As

Publication number Publication date
EP4303296A1 (en) 2024-01-10
CN116783278A (zh) 2023-09-19
US20230313108A1 (en) 2023-10-05
JPWO2022186238A1 (ja) 2022-09-09

Similar Documents

Publication Publication Date Title
US5902253A (en) Apparatus for analyzing body fluids
JP6998444B2 (ja) 血液凝固検査システムおよび血液凝固検査システムの制御方法
ES2972580T3 (es) Diagnóstico de sensor de medición de la concentración del dializado
JP2006130306A (ja) 生体成分測定ユニット、生体成分測定ユニット包装体、医療支援器具キット及び医療支援器具キット包装体
WO2022186238A1 (ja) サンプリング装置、及び細胞培養システム
WO2021024881A1 (en) Biological component treatment system, biological component treatment device, and cell culturing method
WO2021054280A1 (en) Sensor calibration method and biological component treatment system
WO2022186239A1 (ja) サンプリング装置、及び細胞培養システム
JP7569709B2 (ja) サンプリング方法、及びサンプリング装置
WO2022186240A1 (ja) サンプリング方法
WO2022186237A1 (ja) サンプリング装置、及び細胞培養システム
JP2023512397A (ja) 細胞培養システム、センサキット及び酵素センサの寿命判定方法
US20200132667A1 (en) Measuring cartridge for measuring a liquid sample
JP7527994B2 (ja) サンプリングシステム
WO2022168726A1 (ja) サンプリング方法
JPH03131240A (ja) 体外循環用モニタリング装置
JP2024533006A (ja) 細胞培養デバイス及び細胞培養システム
WO2022168727A1 (ja) サンプリング方法
JP2022118373A (ja) サンプリングシステム及びサンプリング方法
WO2022168725A1 (ja) サンプリングシステム及びサンプリング方法
JPH0643074A (ja) 分析装置に選択的に装入するための装置
US20230357699A1 (en) Cell Culture System
US20230323262A1 (en) Cell Culturing System
US20230313115A1 (en) Cell Culturing System
JP2024500604A (ja) 細胞培養システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503884

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280008917.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022763292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022763292

Country of ref document: EP

Effective date: 20231002