WO2022182153A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2022182153A1
WO2022182153A1 PCT/KR2022/002695 KR2022002695W WO2022182153A1 WO 2022182153 A1 WO2022182153 A1 WO 2022182153A1 KR 2022002695 W KR2022002695 W KR 2022002695W WO 2022182153 A1 WO2022182153 A1 WO 2022182153A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
organic layer
water
Prior art date
Application number
PCT/KR2022/002695
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김동희
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280008080.8A priority Critical patent/CN116635391A/zh
Priority to US18/265,894 priority patent/US20240114776A1/en
Publication of WO2022182153A1 publication Critical patent/WO2022182153A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/60Naphthoxazoles; Hydrogenated naphthoxazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • Patent Document 0001 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by Formula 1 or Formula 2:
  • Ar is substituted or unsubstituted C 6-60 aryl
  • R 1 to R 6 is a substituent represented by the following formula (3), and the rest are each independently hydrogen or deuterium;
  • L is a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C 2-60 heteroarylene including at least one selected from the group consisting of N, O and S,
  • L 1 and L 2 are each independently a single bond, substituted or unsubstituted C 6-60 arylene, or substituted or unsubstituted C including any one or more selected from the group consisting of N, O and S 2-60 heteroarylene;
  • Ar 1 and Ar 2 are each independently, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2-60 hetero comprising at least one selected from the group consisting of N, O and S aryl,
  • R 5 or R 6 is a substituent represented by Formula 3,
  • L 1 is substituted or unsubstituted C 6-60 arylene
  • Ar 1 is substituted or unsubstituted C 8-60 aryl
  • L 1 is a single bond, or substituted or unsubstituted C 6-60 arylene
  • Ar 1 is C 2-60 including at least one selected from the group consisting of substituted or unsubstituted N, O, and S heteroaryl.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one organic material layer includes a compound represented by Formula 1 or Formula 2 provide the element.
  • the compound represented by Formula 1 or Formula 2 may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by Formula 1 or Formula 2 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 shows an example of an organic light emitting device including a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 7, an electron transport layer 8, and a cathode 4 did it
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an aryl phosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably from 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • the description of the heterocyclic group described above for heteroaryl among heteroarylamines may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the above-described alkenyl groups.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • At least one hydrogen may be substituted with deuterium.
  • Ar is substituted or unsubstituted C 6-12 aryl. More preferably, Ar is phenyl, biphenyl, or naphthyl.
  • L is a single bond, or substituted or unsubstituted C 6-12 arylene. More preferably, L is a single bond, phenylene, biphenyldiyl, terphenyldiyl, naphthylene, or -(phenylene)-(naphthylene)-. More preferably, L is a single bond, 1,4-phenylene, 4,4'-biphenyldiyl, or 2,6-naphthylene.
  • L 1 and L 2 are each independently a single bond, or a substituted or unsubstituted C 6-12 arylene.
  • L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl. More preferably, L 1 and L 2 are each independently a single bond, 1,4-phenylene, or 4,4'-biphenyldiyl.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, naphthylphenyl, phenylnaphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • R 1 to R 4 is a substituent represented by Formula 3, and the rest are each independently hydrogen or deuterium; R 5 and R 6 are each independently hydrogen or deuterium.
  • R 1 to R 4 are each independently hydrogen or deuterium;
  • One of R 5 and R 6 is a substituent represented by Formula 3, and the rest is hydrogen or deuterium.
  • L 1 is phenylene, or biphenyldiyl
  • Ar 1 is biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, or diphenylfluorenyl; or L 1 is a single bond, phenylene, or biphenyldiyl, and Ar 1 is dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • Ar 1 and Ar 2 are each independently terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carba zol-9-yl, or 9-phenyl-9H-carbazolyl.
  • Ar 1 is phenyl
  • Ar 2 is phenyl, biphenyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl
  • Ar 1 is biphenylyl
  • Ar 2 is terphenylyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, 9H-carbazol-9-yl, or 9-phenyl-9H-carbazolyl.
  • L 1 and L 2 are each independently a single bond, phenylene, or biphenyldiyl, more preferably, L 1 and L 2 are each independently, a single bond, 1,4- phenylene, or 4,4'-biphenyldiyl.
  • the present invention provides a method for preparing a compound in which R 1 is Formula 3 in the compound represented by Formula 1, as shown in Scheme 1 below, and the other compounds represented by Formula 1 and the compound represented by Formula 2 It can be prepared in a similar way.
  • X is halogen, preferably bromo, or chloro
  • Y is hydrogen when L is a single bond
  • L is single If it is not a bond, it is -B(OH) 2 .
  • Scheme 1 is an amine substitution reaction or Suzuki coupling reaction, and is preferably performed in the presence of a palladium catalyst and a base, and the reactor for each reaction can be changed as known in the art. The manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by Formula 1 or Formula 2 above.
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 or Formula 2 A light emitting device is provided.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, etc. as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include an emission layer, and the emission layer includes a compound represented by Formula 1 or Formula 2 above.
  • the compound according to the present invention can be used as a dopant in the light emitting layer.
  • the organic layer may include an electron transport layer or an electron injection layer, and the electron transport layer or the electron injection layer includes a compound represented by Formula 1 or Formula 2 above.
  • the electron transport layer, the electron injection layer, or the layer that transports and injects electrons at the same time includes the compound represented by Chemical Formula 1 or Chemical Formula 2 above.
  • the organic layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by Formula 1 or Formula 2 above.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of the organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 or Formula 2 may be included in the emission layer.
  • the compound represented by Formula 1 or Formula 2 may be included in one or more of the hole injection layer, the hole transport layer, the light emitting layer, and the electron transport layer.
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 or Formula 2 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 or Formula 2 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable. It is preferable that the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • HOMO highest occupied molecular orbital
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. do. Specific examples include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer.
  • a compound which prevents movement to a layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metals complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • Compound AB was prepared in the same manner as in Preparation Example 1, except that 1-bromo-4-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AC was prepared in the same manner as in Preparation Example 1, except that 1-bromo-5-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AD was prepared in the same manner as in Preparation Example 1, except that 1-bromo-6-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AE was prepared in the same manner as in Preparation Example 1, except that 1-bromo-7-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AF was prepared in the same manner as in Preparation Example 1, except that 1-bromo-8-chloronaphthalen-2-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound AG was prepared in the same manner as in Preparation Example 1, except that [1,1'-biphenyl]-4-carbonyl chloride was used instead of benzyl chloride.
  • Compound AM was prepared in the same manner as in Preparation Example 1, except that 2-naphthoyl chloride was used instead of benzyl chloride.
  • Compound BA was prepared in the same manner as in Preparation Example 1, except that 2-bromo-3-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BB was prepared in the same manner as in Preparation Example 1, except that 2-bromo-4-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BC was prepared in the same manner as in Preparation Example 1, except that 2-bromo-5-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BD was prepared in the same manner as in Preparation Example 1, except that 2-bromo-6-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BE was prepared in the same manner as in Preparation Example 1, except that 2-bromo-7-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • Compound BF was prepared in the same manner as in Preparation Example 1, except that 2-bromo-8-chloronaphthalen-1-amine was used instead of 1-bromo-3-chloronaphthalen-2-amine.
  • compound BI (10 g, 28.1 mmol), compound amine75 (9.4 g, 28.1 mmol), and sodium tert-butoxide (8.9 g, 42.2 mmol) were added to xylene (200 ml) and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • compound BM (10 g, 30.3 mmol), compound amine89 (12.8 g, 30.3 mmol), and sodium tert-butoxide (9.7 g, 45.5 mmol) were added to xylene (200 ml) and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.4 mmol) was added thereto. After 2 hours, when the reaction was completed, the solvent was removed by cooling to room temperature and reducing the pressure.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following HI-1 compound was formed to a thickness of 1150 ⁇ , but the following A-1 compound was p-doped at a concentration of 1.5% to form a hole injection layer.
  • the following HT-1 compound was vacuum-deposited to form a hole transport layer having a thickness of 800 ⁇ .
  • compound 1 prepared above was vacuum-deposited to form an electron-blocking layer having a thickness of 150 ⁇ . on the electron-suppressing layer.
  • the following RH-1 compound as a host and the following Dp-7 compound as a dopant were vacuum-deposited at a weight ratio of 98:2 to form a red light emitting layer having a thickness of 400 ⁇ .
  • the following HB-1 compound was vacuum-deposited to form a hole blocking layer having a thickness of 30 ⁇ .
  • the following ET-1 compound and the following LiQ compound were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer having a thickness of 300 ⁇ .
  • lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ were sequentially deposited to form a cathode.
  • the deposition rate of organic material was maintained at 0.4-0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2x10 -7
  • an organic light emitting device was manufactured.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compounds shown in Tables 1 to 5 were used instead of Compound 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 1, except that the compound shown in Table 6 was used instead of Compound 1.
  • Compounds C-1 to C-16 in Table 6 were as follows, respectively.
  • the lifetime T95 means the time (hr) required for the luminance to decrease from the initial luminance (6000 nit) to 95%.
  • the lifetime characteristics could be greatly improved while maintaining high efficiency. It can be determined that this is because the compound of the present invention has higher stability for electrons and holes than the compound of Comparative Example. In conclusion, it can be confirmed that when the compound of the present invention is used as the electron suppression layer of the red light emitting layer, the driving voltage, luminous efficiency, and lifespan characteristics of the organic light emitting device can be improved.
  • Substrate 2 Anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2021년 2월 24일자 한국 특허 출원 제10-2021-0024902호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 0001) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1 또는 화학식 2로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2022002695-appb-img-000001
[화학식 2]
Figure PCTKR2022002695-appb-img-000002
상기 화학식 1 및 2에서,
Ar은 치환 또는 비치환된 C6-60 아릴이고,
R1 내지 R6 중 하나는 하기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,
[화학식 3]
Figure PCTKR2022002695-appb-img-000003
상기 화학식 3에서,
L은 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
L1 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
단, R5 또는 R6가 상기 화학식 3으로 표시되는 치환기인 경우,
L1은 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 C8-60 아릴이거나, 또는
L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1 또는 화학식 2로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1 또는 화학식 2로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2022002695-appb-img-000004
또는
Figure PCTKR2022002695-appb-img-000005
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022002695-appb-img-000006
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022002695-appb-img-000007
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022002695-appb-img-000008
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022002695-appb-img-000009
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
상기 화학식 1에서, 하나 이상의 수소는 중수소로 치환될 수 있다.
바람직하게는, Ar은 치환 또는 비치환된 C6-12 아릴이다. 보다 바람직하게는, Ar은 페닐, 비페닐, 또는 나프틸이다.
바람직하게는, L은 단일 결합, 또는 치환 또는 비치환된 C6-12 아릴렌이다. 보다 바람직하게는, L은 단일 결합, 페닐렌, 비페닐디일, 터페닐디일, 나프틸렌, 또는 -(페닐렌)-(나프틸렌)-이다. 보다 바람직하게는, L은 단일 결합, 1,4-페닐렌, 4,4’-비페닐디일, 또는 2,6-나프틸렌이다.
바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 또는 치환 또는 비치환된 C6-12 아릴렌이다. 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일이다. 보다 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 1,4-페닐렌, 또는 4,4’-비페닐디일이다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다.
바람직하게는, R1 내지 R4 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고; R5 및 R6는 각각 독립적으로 수소, 또는 중수소이다.
바람직하게는, R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이고; R5 및 R6 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 수소, 또는 중수소이다. 여기서 바람직하게는, L1은 페닐렌, 또는 비페닐디일이고, Ar1은 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 또는 디페닐플루오레닐이나; 또는 L1은 단일결합, 페닐렌, 또는 비페닐디일이고, Ar1은 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 또는, 바람직하게는, Ar1은 페닐이고, Ar2는 페닐, 비페닐, 터페닐릴, 나프틸, 페난쓰레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이거나; 또는 Ar1은 비페닐릴이고, Ar2는 터페닐릴, 페난쓰레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴이다. 여기서, 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일이고, 보다 바람직하게는, L1 및 L2는 각각 독립적으로, 단일 결합, 1,4-페닐렌, 또는 4,4’-비페닐디일이다.
상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2022002695-appb-img-000010
Figure PCTKR2022002695-appb-img-000011
Figure PCTKR2022002695-appb-img-000012
Figure PCTKR2022002695-appb-img-000013
Figure PCTKR2022002695-appb-img-000014
Figure PCTKR2022002695-appb-img-000015
Figure PCTKR2022002695-appb-img-000016
Figure PCTKR2022002695-appb-img-000017
Figure PCTKR2022002695-appb-img-000018
Figure PCTKR2022002695-appb-img-000019
Figure PCTKR2022002695-appb-img-000020
Figure PCTKR2022002695-appb-img-000021
Figure PCTKR2022002695-appb-img-000022
Figure PCTKR2022002695-appb-img-000023
Figure PCTKR2022002695-appb-img-000024
Figure PCTKR2022002695-appb-img-000025
Figure PCTKR2022002695-appb-img-000026
Figure PCTKR2022002695-appb-img-000027
Figure PCTKR2022002695-appb-img-000028
Figure PCTKR2022002695-appb-img-000029
Figure PCTKR2022002695-appb-img-000030
Figure PCTKR2022002695-appb-img-000031
Figure PCTKR2022002695-appb-img-000032
Figure PCTKR2022002695-appb-img-000033
Figure PCTKR2022002695-appb-img-000034
Figure PCTKR2022002695-appb-img-000035
Figure PCTKR2022002695-appb-img-000036
Figure PCTKR2022002695-appb-img-000037
Figure PCTKR2022002695-appb-img-000038
Figure PCTKR2022002695-appb-img-000039
Figure PCTKR2022002695-appb-img-000040
Figure PCTKR2022002695-appb-img-000041
Figure PCTKR2022002695-appb-img-000042
Figure PCTKR2022002695-appb-img-000043
Figure PCTKR2022002695-appb-img-000044
Figure PCTKR2022002695-appb-img-000045
Figure PCTKR2022002695-appb-img-000046
Figure PCTKR2022002695-appb-img-000047
Figure PCTKR2022002695-appb-img-000048
Figure PCTKR2022002695-appb-img-000049
Figure PCTKR2022002695-appb-img-000050
Figure PCTKR2022002695-appb-img-000051
Figure PCTKR2022002695-appb-img-000052
Figure PCTKR2022002695-appb-img-000053
Figure PCTKR2022002695-appb-img-000054
Figure PCTKR2022002695-appb-img-000055
Figure PCTKR2022002695-appb-img-000056
Figure PCTKR2022002695-appb-img-000057
Figure PCTKR2022002695-appb-img-000058
Figure PCTKR2022002695-appb-img-000059
Figure PCTKR2022002695-appb-img-000060
Figure PCTKR2022002695-appb-img-000061
Figure PCTKR2022002695-appb-img-000062
Figure PCTKR2022002695-appb-img-000063
Figure PCTKR2022002695-appb-img-000064
Figure PCTKR2022002695-appb-img-000065
Figure PCTKR2022002695-appb-img-000066
Figure PCTKR2022002695-appb-img-000067
Figure PCTKR2022002695-appb-img-000068
Figure PCTKR2022002695-appb-img-000069
Figure PCTKR2022002695-appb-img-000070
Figure PCTKR2022002695-appb-img-000071
Figure PCTKR2022002695-appb-img-000072
Figure PCTKR2022002695-appb-img-000073
Figure PCTKR2022002695-appb-img-000074
Figure PCTKR2022002695-appb-img-000075
Figure PCTKR2022002695-appb-img-000076
Figure PCTKR2022002695-appb-img-000077
Figure PCTKR2022002695-appb-img-000078
Figure PCTKR2022002695-appb-img-000079
Figure PCTKR2022002695-appb-img-000080
Figure PCTKR2022002695-appb-img-000081
Figure PCTKR2022002695-appb-img-000082
Figure PCTKR2022002695-appb-img-000083
Figure PCTKR2022002695-appb-img-000084
Figure PCTKR2022002695-appb-img-000085
Figure PCTKR2022002695-appb-img-000086
Figure PCTKR2022002695-appb-img-000087
Figure PCTKR2022002695-appb-img-000088
Figure PCTKR2022002695-appb-img-000089
Figure PCTKR2022002695-appb-img-000090
Figure PCTKR2022002695-appb-img-000091
Figure PCTKR2022002695-appb-img-000092
Figure PCTKR2022002695-appb-img-000093
Figure PCTKR2022002695-appb-img-000094
Figure PCTKR2022002695-appb-img-000095
Figure PCTKR2022002695-appb-img-000096
Figure PCTKR2022002695-appb-img-000097
Figure PCTKR2022002695-appb-img-000098
Figure PCTKR2022002695-appb-img-000099
Figure PCTKR2022002695-appb-img-000100
Figure PCTKR2022002695-appb-img-000101
Figure PCTKR2022002695-appb-img-000102
Figure PCTKR2022002695-appb-img-000103
Figure PCTKR2022002695-appb-img-000104
Figure PCTKR2022002695-appb-img-000105
Figure PCTKR2022002695-appb-img-000106
Figure PCTKR2022002695-appb-img-000107
Figure PCTKR2022002695-appb-img-000108
Figure PCTKR2022002695-appb-img-000109
Figure PCTKR2022002695-appb-img-000110
Figure PCTKR2022002695-appb-img-000111
Figure PCTKR2022002695-appb-img-000112
Figure PCTKR2022002695-appb-img-000113
Figure PCTKR2022002695-appb-img-000114
Figure PCTKR2022002695-appb-img-000115
Figure PCTKR2022002695-appb-img-000116
Figure PCTKR2022002695-appb-img-000117
Figure PCTKR2022002695-appb-img-000118
Figure PCTKR2022002695-appb-img-000119
Figure PCTKR2022002695-appb-img-000120
Figure PCTKR2022002695-appb-img-000121
Figure PCTKR2022002695-appb-img-000122
Figure PCTKR2022002695-appb-img-000123
Figure PCTKR2022002695-appb-img-000124
Figure PCTKR2022002695-appb-img-000125
Figure PCTKR2022002695-appb-img-000126
또한, 본 발명은 하기 반응식 1과 같이, 상기 화학식 1로 표시되는 화합물에서 R1이 화학식 3인 화합물의 제조 방법을 제공하며, 그 외 나머지 화학식 1로 표시되는 화합물 및 화학식 2로 표시되는 화합물도 유사한 방법으로 제조할 수 있다.
[반응식 1]
Figure PCTKR2022002695-appb-img-000127
상기 반응식 1 및 2에서, X 및 Y를 제외한 나머지 정의는 앞서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 브로모, 또는 클로로이고, Y는 L이 단일결합인 경우 수소이고, L이 단일결합이 아닌 경우 -B(OH)2이다. 상기 반응식 1은 아민 치환 반응 또는 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 각 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 본 발명은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 도펀트로 사용할 수 있다.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다.
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(7), 전자수송층(8) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 상기 정공주입층, 정공수송층, 발광층 및 전자수송층 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
상기 화학식 1 또는 2로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예]
제조예 1: 화합물 AA의 제조
Figure PCTKR2022002695-appb-img-000128
질소 분위기에서 1-브로모-3-클로로나프탈렌-2-아민(15 g, 58.5 mmol)와 벤질 클로라이드(9.9 g, 70.2 mmol)를 클로로포름(300 ml)에 넣고 교반하였다. 이 후 피리딘(6.9 g, 87.7 mmol)를 적가하였다. 상온에서 9시간 반응 후 에탄올(600 ml)을 넣고 고체화 하였다. 고체를 여과한 후, 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA_P1를 17 g 제조하였다. (수율 81%, MS: [M+H]+= 360)
질소 분위기에서 화합물 AA_P1(15 g, 41.6 mmol)와 포타슘 카보네이트(17.2 g, 124.8 mmol)를 DMF(150 ml)에 넣고 교반 및 환류하였다. 이 후, 충분히 교반한 후 쿠퍼 아이오다이드(0.1 g, 0.4 mmol)와 1,10-페난쓰롤린 (0.1 g, 0.8 mmol)를 투입하였다. 11시간 반응 후 상온으로 식힌 후, 물(300 ml)에 부어 고체화 하였다. 고체를 여과한 후, 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 AA를 9.6 g 제조하였다. (수율 83%, MS: [M+H]+= 280)
제조예 2: 화합물 AB의 제조
Figure PCTKR2022002695-appb-img-000129
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AB를 제조하였다.
제조예 3: 화합물 AC의 제조
Figure PCTKR2022002695-appb-img-000130
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AC를 제조하였다.
제조예 4: 화합물 AD의 제조
Figure PCTKR2022002695-appb-img-000131
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AD를 제조하였다.
제조예 5: 화합물 AE의 제조
Figure PCTKR2022002695-appb-img-000132
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AE를 제조하였다.
제조예 6: 화합물 AF의 제조
Figure PCTKR2022002695-appb-img-000133
1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AF를 제조하였다.
제조예 7: 화합물 AG의 제조
Figure PCTKR2022002695-appb-img-000134
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AG를 제조하였다.
제조예 8: 화합물 AH의 제조
Figure PCTKR2022002695-appb-img-000135
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AH를 제조하였다.
제조예 9: 화합물 AI의 제조
Figure PCTKR2022002695-appb-img-000136
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AH를 제조하였다.
제조예 10: 화합물 AJ의 제조
Figure PCTKR2022002695-appb-img-000137
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AJ를 제조하였다.
제조예 11: 화합물 AK의 제조
Figure PCTKR2022002695-appb-img-000138
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AK를 제조하였다.
제조예 12: 화합물 AL의 제조
Figure PCTKR2022002695-appb-img-000139
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AL를 제조하였다.
제조예 13: 화합물 AM의 제조
Figure PCTKR2022002695-appb-img-000140
벤질 클로라이드대신 2-나프토일 클로라이드를 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AM를 제조하였다.
제조예 14: 화합물 AN의 제조
Figure PCTKR2022002695-appb-img-000141
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-4-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AN를 제조하였다.
제조예 15: 화합물 AO의 제조
Figure PCTKR2022002695-appb-img-000142
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-5-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AO를 제조하였다.
제조예 16: 화합물 AP의 제조
Figure PCTKR2022002695-appb-img-000143
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-6-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AP를 제조하였다.
제조예 17: 화합물 AQ의 제조
Figure PCTKR2022002695-appb-img-000144
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-7-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AQ를 제조하였다.
제조예 18: 화합물 AR의 제조
Figure PCTKR2022002695-appb-img-000145
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 1-브로모-8-클로로나프탈렌-2-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 AR를 제조하였다.
제조예 19: 화합물 BA의 제조
Figure PCTKR2022002695-appb-img-000146
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BA를 제조하였다.
제조예 20: 화합물 BB의 제조
Figure PCTKR2022002695-appb-img-000147
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BB를 제조하였다.
제조예 21: 화합물 BC의 제조
Figure PCTKR2022002695-appb-img-000148
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BC를 제조하였다.
제조예 22: 화합물 BD의 제조
Figure PCTKR2022002695-appb-img-000149
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BD를 제조하였다.
제조예 23: 화합물 BE의 제조
Figure PCTKR2022002695-appb-img-000150
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BE를 제조하였다.
제조예 24: 화합물 BF의 제조
Figure PCTKR2022002695-appb-img-000151
1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BF를 제조하였다.
제조예 25: 화합물 BG의 제조
Figure PCTKR2022002695-appb-img-000152
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BG를 제조하였다.
제조예 26: 화합물 BH의 제조
Figure PCTKR2022002695-appb-img-000153
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BH를 제조하였다.
제조예 27: 화합물 BI의 제조
Figure PCTKR2022002695-appb-img-000154
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BI를 제조하였다.
제조예 28: 화합물 BJ의 제조
Figure PCTKR2022002695-appb-img-000155
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BJ를 제조하였다.
제조예 29: 화합물 BK의 제조
Figure PCTKR2022002695-appb-img-000156
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BK를 제조하였다.
제조예 30: 화합물 BL의 제조
Figure PCTKR2022002695-appb-img-000157
벤질 클로라이드대신 [1,1'-비페닐]-4-카보닐 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BL를 제조하였다.
제조예 31: 화합물 BM의 제조
Figure PCTKR2022002695-appb-img-000158
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-3-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BM를 제조하였다.
제조예 32: 화합물 BN의 제조
Figure PCTKR2022002695-appb-img-000159
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-4-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BN를 제조하였다.
제조예 33: 화합물 BO의 제조
Figure PCTKR2022002695-appb-img-000160
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-5-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BO를 제조하였다.
제조예 34: 화합물 BP의 제조
Figure PCTKR2022002695-appb-img-000161
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-6-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BP를 제조하였다.
제조예 35: 화합물 BQ의 제조
Figure PCTKR2022002695-appb-img-000162
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-7-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BQ를 제조하였다.
제조예 36: 화합물 BR의 제조
Figure PCTKR2022002695-appb-img-000163
벤질 클로라이드대신 2-나프토일 클로라이드를 사용하고 1-브로모-3-클로로나프탈렌-2-아민 대신 2-브로모-8-클로로나프탈렌-1-아민을 사용한 것을 제외하고는 제조예 1과 동일한 방법으로 화합물 BR를 제조하였다.
[실시예]
실시예 1: 화합물 1의 제조
Figure PCTKR2022002695-appb-img-000164
질소 분위기에서 화합물 AA(10 g, 35.8 mmol), 화합물 amine1(16 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1 16.8 g을 얻었다. (수율 68%, MS: [M+H]+= 691)
실시예 2: 화합물 2의 제조
Figure PCTKR2022002695-appb-img-000165
질소 분위기에서 화합물 AB(10 g, 35.8 mmol), 화합물 amine2(12.9 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2 13.2 g을 얻었다. (수율 61%, MS: [M+H]+= 605)
실시예 3: 화합물 3의 제조
Figure PCTKR2022002695-appb-img-000166
질소 분위기에서 화합물 AC(10 g, 35.8 mmol), 화합물 amine3(16 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 3 17.3 g을 얻었다. (수율 70%, MS: [M+H]+= 691)
실시예 4: 화합물 4의 제조
Figure PCTKR2022002695-appb-img-000167
질소 분위기에서 화합물 AD(10 g, 35.8 mmol), 화합물 amine4(10.6 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 4 12.7 g을 얻었다. (수율 66%, MS: [M+H]+= 539)
실시예 5: 화합물 5의 제조
Figure PCTKR2022002695-appb-img-000168
질소 분위기에서 화합물 AE(10 g, 35.8 mmol), 화합물 amine5(13.3 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 5 13.4 g을 얻었다. (수율 61%, MS: [M+H]+= 615)
실시예 6: 화합물 6의 제조
Figure PCTKR2022002695-appb-img-000169
질소 분위기에서 화합물 AE(10 g, 35.8 mmol), 화합물 amine6(12 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 6 13.4 g을 얻었다. (수율 65%, MS: [M+H]+= 579)
실시예 7: 화합물 7의 제조
Figure PCTKR2022002695-appb-img-000170
질소 분위기에서 화합물 AF(10 g, 35.8 mmol), 화합물 amine7(12.3 g, 35.8 mmol), 소디움 터트-부톡사이드(11.4 g, 53.6 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 7 13.5 g을 얻었다. (수율 64%, MS: [M+H]+= 589)
실시예 8: 화합물 8의 제조
Figure PCTKR2022002695-appb-img-000171
질소 분위기에서 화합물 AA(15 g, 53.6 mmol)와 화합물 amine8(25.6 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 8를 23.9 g 제조하였다. (수율 68%, MS: [M+H]+= 655)
실시예 9: 화합물 9의 제조
Figure PCTKR2022002695-appb-img-000172
질소 분위기에서 화합물 AB(15 g, 53.6 mmol)와 화합물 amine9(29.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 9를 23.9 g 제조하였다. (수율 61%, MS: [M+H]+= 730)
실시예 10: 화합물 10의 제조
Figure PCTKR2022002695-appb-img-000173
질소 분위기에서 화합물 AC(15 g, 53.6 mmol)와 화합물 amine10(29.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 10를 24.2 g 제조하였다. (수율 62%, MS: [M+H]+= 730)
실시예 11: 화합물 11의 제조
Figure PCTKR2022002695-appb-img-000174
질소 분위기에서 화합물 AD(15 g, 53.6 mmol)와 화합물 amine11(24.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 11를 20.9 g 제조하였다. (수율 61%, MS: [M+H]+= 641)
실시예 12: 화합물 12의 제조
Figure PCTKR2022002695-appb-img-000175
질소 분위기에서 화합물 AD(15 g, 53.6 mmol)와 화합물 amine12(30.5 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 12를 25.8 g 제조하였다. (수율 65%, MS: [M+H]+= 741)
실시예 13: 화합물 13의 제조
Figure PCTKR2022002695-appb-img-000176
질소 분위기에서 화합물 AE(15 g, 53.6 mmol)와 화합물 amine13(21.4 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 13를 18.6 g 제조하였다. (수율 60%, MS: [M+H]+= 579)
실시예 14: 화합물 14의 제조
Figure PCTKR2022002695-appb-img-000177
질소 분위기에서 화합물 AE(15 g, 53.6 mmol)와 화합물 amine14(23.4 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 14를 22.1 g 제조하였다. (수율 67%, MS: [M+H]+= 615)
실시예 15: 화합물 15의 제조
Figure PCTKR2022002695-appb-img-000178
질소 분위기에서 화합물 AE(15 g, 53.6 mmol)와 화합물 amine15(29.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 15를 24.2 g 제조하였다. (수율 62%, MS: [M+H]+= 730)
실시예 16: 화합물 16의 제조
Figure PCTKR2022002695-appb-img-000179
질소 분위기에서 화합물 AE(15 g, 53.6 mmol)와 화합물 amine11(24.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 16를 23 g 제조하였다. (수율 67%, MS: [M+H]+= 641)
실시예 17: 화합물 17의 제조
Figure PCTKR2022002695-appb-img-000180
질소 분위기에서 화합물 AF(15 g, 53.6 mmol)와 화합물 amine16(27.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 17를 23.5 g 제조하였다. (수율 63%, MS: [M+H]+= 695)
실시예 18: 화합물 18의 제조
Figure PCTKR2022002695-appb-img-000181
질소 분위기에서 화합물 AA(15 g, 53.6 mmol)와 화합물 amine17(36.2 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 18를 28.5 g 제조하였다. (수율 63%, MS: [M+H]+= 843)
실시예 19: 화합물 19의 제조
Figure PCTKR2022002695-appb-img-000182
질소 분위기에서 화합물 AD(15 g, 53.6 mmol)와 화합물 amine18(24.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 19를 23.3 g 제조하였다. (수율 68%, MS: [M+H]+= 641)
실시예 20: 화합물 20의 제조
Figure PCTKR2022002695-appb-img-000183
질소 분위기에서 화합물 AF(15 g, 53.6 mmol)와 화합물 amine19(34.8 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 20를 27.6 g 제조하였다. (수율 63%, MS: [M+H]+= 817)
실시예 21: 화합물 21의 제조
Figure PCTKR2022002695-appb-img-000184
질소 분위기에서 화합물 AA(15 g, 53.6 mmol)와 화합물 amine20(33.3 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 21를 27.5 g 제조하였다. (수율 65%, MS: [M+H]+= 791)
실시예 22: 화합물 22의 제조
Figure PCTKR2022002695-appb-img-000185
질소 분위기에서 화합물 AD(15 g, 53.6 mmol)와 화합물 amine21(32 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 22를 27.9 g 제조하였다. (수율 68%, MS: [M+H]+= 767)
실시예 23: 화합물 23의 제조
Figure PCTKR2022002695-appb-img-000186
질소 분위기에서 화합물 AE(15 g, 53.6 mmol)와 화합물 amine22(23.4 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 23를 22.4 g 제조하였다. (수율 68%, MS: [M+H]+= 615)
실시예 24: 화합물 24의 제조
Figure PCTKR2022002695-appb-img-000187
질소 분위기에서 화합물 AH(10 g, 28.1 mmol), 화합물 amine23(11.2 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 24 14.1 g을 얻었다. (수율 70%, MS: [M+H]+= 717)
실시예 25: 화합물 25의 제조
Figure PCTKR2022002695-appb-img-000188
질소 분위기에서 화합물 AJ(10 g, 28.1 mmol), 화합물 amine24(12.6 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 25 13.1 g을 얻었다. (수율 61%, MS: [M+H]+= 767)
실시예 26: 화합물 26의 제조
Figure PCTKR2022002695-appb-img-000189
질소 분위기에서 화합물 AJ(10 g, 28.1 mmol), 화합물 amine25(10.4 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 26 11.8 g을 얻었다. (수율 61%, MS: [M+H]+= 691)
실시예 27: 화합물 27의 제조
Figure PCTKR2022002695-appb-img-000190
질소 분위기에서 화합물 AK(10 g, 28.1 mmol), 화합물 amine26(9.8 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 27 11.6 g을 얻었다. (수율 62%, MS: [M+H]+= 669)
실시예 28: 화합물 28의 제조
Figure PCTKR2022002695-appb-img-000191
질소 분위기에서 화합물 AK(15 g, 42.2 mmol)와 화합물 amine27(16.2 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 28를 16.2 g 제조하였다. (수율 60%, MS: [M+H]+= 641)
실시예 29: 화합물 29의 제조
Figure PCTKR2022002695-appb-img-000192
질소 분위기에서 화합물 AI(15 g, 42.2 mmol)와 화합물 amine28(19.5 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 29를 18.1 g 제조하였다. (수율 60%, MS: [M+H]+= 717)
실시예 30: 화합물 30의 제조
Figure PCTKR2022002695-appb-img-000193
질소 분위기에서 화합물 AG(15 g, 42.2 mmol)와 화합물 amine29(25.1 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 30를 22.7 g 제조하였다. (수율 64%, MS: [M+H]+= 843)
실시예 31: 화합물 31의 제조
Figure PCTKR2022002695-appb-img-000194
질소 분위기에서 화합물 AJ(15 g, 42.2 mmol)와 화합물 amine30(22.9 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 31를 22.4 g 제조하였다. (수율 67%, MS: [M+H]+= 793)
실시예 32: 화합물 32의 제조
Figure PCTKR2022002695-appb-img-000195
질소 분위기에서 화합물 AI(15 g, 42.2 mmol)와 화합물 amine31(21.8 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 32를 22.6 g 제조하였다. (수율 70%, MS: [M+H]+= 767)
실시예 33: 화합물 33의 제조
Figure PCTKR2022002695-appb-img-000196
질소 분위기에서 화합물 AL(15 g, 42.2 mmol)와 화합물 amine32(22.9 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 33를 23.4 g 제조하였다. (수율 70%, MS: [M+H]+= 793)
실시예 34: 화합물 34의 제조
Figure PCTKR2022002695-appb-img-000197
질소 분위기에서 화합물 AK(15 g, 42.2 mmol)와 화합물 amine33(25.1 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 34를 21.3 g 제조하였다. (수율 60%, MS: [M+H]+= 843)
실시예 35: 화합물 35의 제조
Figure PCTKR2022002695-appb-img-000198
질소 분위기에서 화합물 AI(15 g, 42.2 mmol)와 화합물 amine34(22.4 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 35를 22.7 g 제조하였다. (수율 69%, MS: [M+H]+= 781)
실시예 36: 화합물 36의 제조
Figure PCTKR2022002695-appb-img-000199
질소 분위기에서 화합물 AH(15 g, 42.2 mmol)와 화합물 amine35(22.8 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 36를 23 g 제조하였다. (수율 69%, MS: [M+H]+= 791)
실시예 37: 화합물 37의 제조
Figure PCTKR2022002695-appb-img-000200
질소 분위기에서 화합물 AQ(10 g, 30.3 mmol), 화합물 amine36(11.1 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 37 13.6 g을 얻었다. (수율 68%, MS: [M+H]+= 659)
실시예 38: 화합물 38의 제조
Figure PCTKR2022002695-appb-img-000201
질소 분위기에서 화합물 AO(10 g, 30.3 mmol), 화합물 amine37(13.6 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 38 14.4 g을 얻었다. (수율 64%, MS: [M+H]+= 741)
실시예 39: 화합물 39의 제조
Figure PCTKR2022002695-appb-img-000202
질소 분위기에서 화합물 AQ(10 g, 30.3 mmol), 화합물 amine38(10.2 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 39 12 g을 얻었다. (수율 63%, MS: [M+H]+= 629)
실시예 40: 화합물 40의 제조
Figure PCTKR2022002695-appb-img-000203
질소 분위기에서 화합물 AQ(15 g, 45.5 mmol)와 화합물 amine27(17.4 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 40를 18.4 g 제조하였다. (수율 66%, MS: [M+H]+= 615)
실시예 41: 화합물 41의 제조
Figure PCTKR2022002695-appb-img-000204
질소 분위기에서 화합물 AN(15 g, 45.5 mmol)와 화합물 amine39(24.7 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 41를 20.9 g 제조하였다. (수율 60%, MS: [M+H]+= 767)
실시예 42: 화합물 42의 제조
Figure PCTKR2022002695-appb-img-000205
질소 분위기에서 화합물 AR(15 g, 45.5 mmol)와 화합물 amine40(21.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 42를 20.7 g 제조하였다. (수율 66%, MS: [M+H]+= 691)
실시예 43: 화합물 43의 제조
Figure PCTKR2022002695-appb-img-000206
질소 분위기에서 화합물 AP(15 g, 45.5 mmol)와 화합물 amine41(27.8 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 43를 26.1 g 제조하였다. (수율 69%, MS: [M+H]+= 831)
실시예 44: 화합물 44의 제조
Figure PCTKR2022002695-appb-img-000207
질소 분위기에서 화합물 AQ(15 g, 45.5 mmol)와 화합물 amine42(23.5 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 44를 22.9 g 제조하였다. (수율 68%, MS: [M+H]+= 741)
실시예 45: 화합물 45의 제조
Figure PCTKR2022002695-appb-img-000208
질소 분위기에서 화합물 AN(15 g, 45.5 mmol)와 화합물 amine43(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 45를 26 g 제조하였다. (수율 70%, MS: [M+H]+= 817)
실시예 46: 화합물 46의 제조
Figure PCTKR2022002695-appb-img-000209
질소 분위기에서 화합물 AQ(15 g, 45.5 mmol)와 화합물 amine44(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 46를 22.3 g 제조하였다. (수율 60%, MS: [M+H]+= 817)
실시예 47: 화합물 47의 제조
Figure PCTKR2022002695-appb-img-000210
질소 분위기에서 화합물 AQ(15 g, 43.4 mmol)와 화합물 amine45(25.8 g, 45.5 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18 g, 130.1 mmol)를 물(54 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 47를 19.5 g 제조하였다. (수율 54%, MS: [M+H]+= 833)
실시예 48: 화합물 48의 제조
Figure PCTKR2022002695-appb-img-000211
질소 분위기에서 화합물 AP(15 g, 45.5 mmol)와 화합물 amine46(23.5 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 48를 20.2 g 제조하였다. (수율 60%, MS: [M+H]+= 741)
실시예 49: 화합물 49의 제조
Figure PCTKR2022002695-appb-img-000212
질소 분위기에서 화합물 AN(15 g, 45.5 mmol)와 화합물 amine47(23.5 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 49를 21.5 g 제조하였다. (수율 64%, MS: [M+H]+= 741)
실시예 50: 화합물 50의 제조
Figure PCTKR2022002695-appb-img-000213
질소 분위기에서 화합물 BA(10 g, 30.3 mmol), 화합물 amine48(12.1 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 50 11.8 g을 얻었다. (수율 61%, MS: [M+H]+= 641)
실시예 51: 화합물 51의 제조
Figure PCTKR2022002695-appb-img-000214
질소 분위기에서 화합물 BA(10 g, 30.3 mmol), 화합물 amine49(11.3 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 51 11.7 g을 얻었다. (수율 63%, MS: [M+H]+= 615)
실시예 52: 화합물 52의 제조
Figure PCTKR2022002695-appb-img-000215
질소 분위기에서 화합물 BB(10 g, 30.3 mmol), 화합물 amine50(12.9 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 52 14 g을 얻었다. (수율 69%, MS: [M+H]+= 668)
실시예 53: 화합물 53의 제조
Figure PCTKR2022002695-appb-img-000216
질소 분위기에서 화합물 BC(10 g, 30.3 mmol), 화합물 amine51(14 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 53 12.8 g을 얻었다. (수율 60%, MS: [M+H]+= 704)
실시예 54: 화합물 54의 제조
Figure PCTKR2022002695-appb-img-000217
질소 분위기에서 화합물 BD(10 g, 30.3 mmol), 화합물 amine52(13.6 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 54 12.6 g을 얻었다. (수율 60%, MS: [M+H]+= 691)
실시예 55: 화합물 55의 제조
Figure PCTKR2022002695-appb-img-000218
질소 분위기에서 화합물 BE(10 g, 30.3 mmol), 화합물 amine53(12.1 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 55 13.2 g을 얻었다. (수율 68%, MS: [M+H]+= 641)
실시예 56: 화합물 56의 제조
Figure PCTKR2022002695-appb-img-000219
질소 분위기에서 화합물 BA(15 g, 53.6 mmol)와 화합물 amine54(27.1 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 56를 21.9 g 제조하였다. (수율 60%, MS: [M+H]+= 681)
실시예 57: 화합물 57의 제조
Figure PCTKR2022002695-appb-img-000220
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine55(26.5 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 57를 23 g 제조하였다. (수율 64%, MS: [M+H]+= 671)
실시예 58: 화합물 58의 제조
Figure PCTKR2022002695-appb-img-000221
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine56(24.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 58를 22.7 g 제조하였다. (수율 66%, MS: [M+H]+= 641)
실시예 59: 화합물 59의 제조
Figure PCTKR2022002695-appb-img-000222
질소 분위기에서 화합물 BE(15 g, 53.6 mmol)와 화합물 amine57(22.3 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 59를 22.3 g 제조하였다. (수율 70%, MS: [M+H]+= 595)
실시예 60: 화합물 60의 제조
Figure PCTKR2022002695-appb-img-000223
질소 분위기에서 화합물 BF(15 g, 53.6 mmol)와 화합물 amine58(32.7 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 60를 25.5 g 제조하였다. (수율 61%, MS: [M+H]+= 780)
실시예 61: 화합물 61의 제조
Figure PCTKR2022002695-appb-img-000224
질소 분위기에서 화합물 BE(15 g, 53.6 mmol)와 화합물 amine59(36.2 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 61를 31.6 g 제조하였다. (수율 70%, MS: [M+H]+= 843)
실시예 62: 화합물 62의 제조
Figure PCTKR2022002695-appb-img-000225
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine60(29.9 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 62를 26.2 g 제조하였다. (수율 67%, MS: [M+H]+= 730)
실시예 63: 화합물 63의 제조
Figure PCTKR2022002695-appb-img-000226
질소 분위기에서 화합물 BD(15 g, 53.6 mmol)와 화합물 amine61(27.7 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 63를 22.2 g 제조하였다. (수율 60%, MS: [M+H]+= 691)
실시예 64: 화합물 64의 제조
Figure PCTKR2022002695-appb-img-000227
질소 분위기에서 화합물 BE(15 g, 53.6 mmol)와 화합물 amine62(23.4 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 64를 21.1 g 제조하였다. (수율 64%, MS: [M+H]+= 615)
실시예 65: 화합물 65의 제조
Figure PCTKR2022002695-appb-img-000228
질소 분위기에서 화합물 BD(15 g, 53.6 mmol)와 화합물 amine63(22.8 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 65를 21.7 g 제조하였다. (수율 67%, MS: [M+H]+= 605)
실시예 66: 화합물 66의 제조
Figure PCTKR2022002695-appb-img-000229
질소 분위기에서 화합물 BF(15 g, 53.6 mmol)와 화합물 amine64(31.6 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 66를 26.9 g 제조하였다. (수율 66%, MS: [M+H]+= 760)
실시예 67: 화합물 67의 제조
Figure PCTKR2022002695-appb-img-000230
질소 분위기에서 화합물 BB(15 g, 53.6 mmol)와 화합물 amine65(32 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 67를 27.1 g 제조하였다. (수율 66%, MS: [M+H]+= 767)
실시예 68: 화합물 68의 제조
Figure PCTKR2022002695-appb-img-000231
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine66(32 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 68를 19.8 g 제조하였다. (수율 65%, MS: [M+H]+= 569)
실시예 69: 화합물 69의 제조
Figure PCTKR2022002695-appb-img-000232
질소 분위기에서 화합물 BB(15 g, 53.6 mmol)와 화합물 amine67(29.1 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 69를 26.5 g 제조하였다. (수율 69%, MS: [M+H]+= 717)
실시예 70: 화합물 70의 제조
Figure PCTKR2022002695-appb-img-000233
질소 분위기에서 화합물 BF(15 g, 53.6 mmol)와 화합물 amine68(30.5 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 70를 25 g 제조하였다. (수율 63%, MS: [M+H]+= 741)
실시예 71: 화합물 71의 제조
Figure PCTKR2022002695-appb-img-000234
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine69(26.2 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 71를 22.1 g 제조하였다. (수율 62%, MS: [M+H]+= 665)
실시예 72: 화합물 72의 제조
Figure PCTKR2022002695-appb-img-000235
질소 분위기에서 화합물 BF(15 g, 53.6 mmol)와 화합물 amine70(23.4 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 72를 21.7 g 제조하였다. (수율 66%, MS: [M+H]+= 615)
실시예 73: 화합물 73의 제조
Figure PCTKR2022002695-appb-img-000236
질소 분위기에서 화합물 BE(15 g, 53.6 mmol)와 화합물 amine71(32 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 73를 25.5 g 제조하였다. (수율 62%, MS: [M+H]+= 767)
실시예 74: 화합물 74의 제조
Figure PCTKR2022002695-appb-img-000237
질소 분위기에서 화합물 BD(15 g, 53.6 mmol)와 화합물 amine72(36.2 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 74를 30.7 g 제조하였다. (수율 68%, MS: [M+H]+= 843)
실시예 75: 화합물 75의 제조
Figure PCTKR2022002695-appb-img-000238
질소 분위기에서 화합물 BC(15 g, 53.6 mmol)와 화합물 amine73(39.1 g, 56.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(22.2 g, 160.9 mmol)를 물(67 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.6 g, 1.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 75를 29.7 g 제조하였다. (수율 62%, MS: [M+H]+= 893)
실시예 76: 화합물 76의 제조
Figure PCTKR2022002695-appb-img-000239
질소 분위기에서 화합물 BG(10 g, 28.1 mmol), 화합물 amine74(10.4 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 76 12.6 g을 얻었다. (수율 65%, MS: [M+H]+= 691)
실시예 77: 화합물 77의 제조
Figure PCTKR2022002695-appb-img-000240
질소 분위기에서 화합물 BI(10 g, 28.1 mmol), 화합물 amine75(9.4 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 77 11 g을 얻었다. (수율 60%, MS: [M+H]+= 655)
실시예 78: 화합물 78의 제조
Figure PCTKR2022002695-appb-img-000241
질소 분위기에서 화합물 BJ(10 g, 28.1 mmol), 화합물 amine76(10.4 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 78 11.8 g을 얻었다. (수율 61%, MS: [M+H]+= 691)
실시예 79: 화합물 79의 제조
Figure PCTKR2022002695-appb-img-000242
질소 분위기에서 화합물 BK(10 g, 28.1 mmol), 화합물 amine77(11.8 g, 28.1 mmol), 소디움 터트-부톡사이드(8.9 g, 42.2 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.1 g, 0.2 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 79 13.1 g을 얻었다. (수율 63%, MS: [M+H]+= 741)
실시예 80: 화합물 80의 제조
Figure PCTKR2022002695-appb-img-000243
질소 분위기에서 화합물 BJ(15 g, 42.2 mmol)와 화합물 amine78(16.2 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 80를 18.1 g 제조하였다. (수율 67%, MS: [M+H]+= 641)
실시예 81: 화합물 81의 제조
Figure PCTKR2022002695-appb-img-000244
질소 분위기에서 화합물 BG(15 g, 42.2 mmol)와 화합물 amine79(21.8 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 81를 19.7 g 제조하였다. (수율 61%, MS: [M+H]+= 767)
실시예 82: 화합물 82의 제조
Figure PCTKR2022002695-appb-img-000245
질소 분위기에서 화합물 BI(15 g, 42.2 mmol)와 화합물 amine80(26.3 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 82를 24.9 g 제조하였다. (수율 68%, MS: [M+H]+= 869)
실시예 83: 화합물 83의 제조
Figure PCTKR2022002695-appb-img-000246
질소 분위기에서 화합물 BH(15 g, 42.2 mmol)와 화합물 amine81(20.2 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 83를 19.7 g 제조하였다. (수율 64%, MS: [M+H]+= 731)
실시예 84: 화합물 84의 제조
Figure PCTKR2022002695-appb-img-000247
질소 분위기에서 화합물 BG(15 g, 42.2 mmol)와 화합물 amine82(21.8 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 84를 20 g 제조하였다. (수율 62%, MS: [M+H]+= 767)
실시예 85: 화합물 85의 제조
Figure PCTKR2022002695-appb-img-000248
질소 분위기에서 화합물 BL(15 g, 42.2 mmol)와 화합물 amine83(22.9 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 85를 20 g 제조하였다. (수율 60%, MS: [M+H]+= 793)
실시예 86: 화합물 86의 제조
Figure PCTKR2022002695-appb-img-000249
질소 분위기에서 화합물 BG(15 g, 42.2 mmol)와 화합물 amine84(23.5 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 86를 23.5 g 제조하였다. (수율 69%, MS: [M+H]+= 807)
실시예 87: 화합물 87의 제조
Figure PCTKR2022002695-appb-img-000250
질소 분위기에서 화합물 BI(15 g, 42.2 mmol)와 화합물 amine85(22.4 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 87를 22.7 g 제조하였다. (수율 69%, MS: [M+H]+= 781)
실시예 88: 화합물 88의 제조
Figure PCTKR2022002695-appb-img-000251
질소 분위기에서 화합물 BJ(15 g, 42.2 mmol)와 화합물 amine86(20.6 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 88를 20.6 g 제조하였다. (수율 66%, MS: [M+H]+= 741)
실시예 89: 화합물 89의 제조
Figure PCTKR2022002695-appb-img-000252
질소 분위기에서 화합물 BI(15 g, 42.2 mmol)와 화합물 amine87(22.4 g, 44.3 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(17.5 g, 126.5 mmol)를 물(52 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 89를 20.4 g 제조하였다. (수율 62%, MS: [M+H]+= 781)
실시예 90: 화합물 90의 제조
Figure PCTKR2022002695-appb-img-000253
질소 분위기에서 화합물 BN(10 g, 30.3 mmol), 화합물 amine88(11.3 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 90 13.3 g을 얻었다. (수율 66%, MS: [M+H]+= 665)
실시예 91: 화합물 91의 제조
Figure PCTKR2022002695-appb-img-000254
질소 분위기에서 화합물 BM(10 g, 30.3 mmol), 화합물 amine89(12.8 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 2시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 91 13.4 g을 얻었다. (수율 62%, MS: [M+H]+= 715)
실시예 92: 화합물 92의 제조
Figure PCTKR2022002695-appb-img-000255
질소 분위기에서 화합물 BP(10 g, 30.3 mmol), 화합물 amine90(12.1 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 92 13.8 g을 얻었다. (수율 66%, MS: [M+H]+= 691)
실시예 93: 화합물 93의 제조
Figure PCTKR2022002695-appb-img-000256
질소 분위기에서 화합물 BQ(10 g, 30.3 mmol), 화합물 amine91(12.1 g, 30.3 mmol), 소디움 터트-부톡사이드(9.7 g, 45.5 mmol)을 자일렌(200 ml)에 넣고 교반 및 환류했다. 이 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.2 g, 0.4 mmol)을 투입했다. 3시간 후 반응이 종결 되면 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수 황산 마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 93 13.4 g을 얻었다. (수율 64%, MS: [M+H]+= 691)
실시예 94: 화합물 94의 제조
Figure PCTKR2022002695-appb-img-000257
질소 분위기에서 화합물 BP(15 g, 45.5 mmol)와 화합물 amine92(25.6 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 94를 21.8 g 제조하였다. (수율 61%, MS: [M+H]+= 785)
실시예 95: 화합물 95의 제조
Figure PCTKR2022002695-appb-img-000258
질소 분위기에서 화합물 BN(15 g, 45.5 mmol)와 화합물 amine93(26 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 95를 24.6 g 제조하였다. (수율 68%, MS: [M+H]+= 795)
실시예 96: 화합물 96의 제조
Figure PCTKR2022002695-appb-img-000259
질소 분위기에서 화합물 BP(15 g, 45.5 mmol)와 화합물 amine94(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 96를 25.6 g 제조하였다. (수율 69%, MS: [M+H]+= 817)
실시예 97: 화합물 97의 제조
Figure PCTKR2022002695-appb-img-000260
질소 분위기에서 화합물 BN(15 g, 45.5 mmol)와 화합물 amine95(30.7 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 97를 25.2 g 제조하였다. (수율 62%, MS: [M+H]+= 893)
실시예 98: 화합물 98의 제조
Figure PCTKR2022002695-appb-img-000261
질소 분위기에서 화합물 BR(15 g, 45.5 mmol)와 화합물 amine96(21.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 98를 20.1 g 제조하였다. (수율 64%, MS: [M+H]+= 691)
실시예 99: 화합물 99의 제조
Figure PCTKR2022002695-appb-img-000262
질소 분위기에 서 화합물 BP(15 g, 45.5 mmol)와 화합물 amine97(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 99를 23 g 제조하였다. (수율 62%, MS: [M+H]+= 817)
실시예 100: 화합물 100의 제조
Figure PCTKR2022002695-appb-img-000263
질소 분위기에서 화합물 BB(15 g, 45.5 mmol)와 화합물 amine98(24.7 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 100를 22.3 g 제조하였다. (수율 64%, MS: [M+H]+= 767)
실시예 101: 화합물 101의 제조
Figure PCTKR2022002695-appb-img-000264
질소 분위기에서 화합물 BP(15 g, 45.5 mmol)와 화합물 amine99(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 101를 22.3 g 제조하였다. (수율 60%, MS: [M+H]+= 817)
실시예 102: 화합물 102의 제조
Figure PCTKR2022002695-appb-img-000265
질소 분위기에서 화합물 BM(15 g, 45.5 mmol)와 화합물 amine100(25.9 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 102를 21.6 g 제조하였다. (수율 60%, MS: [M+H]+= 791)
실시예 103: 화합물 103의 제조
Figure PCTKR2022002695-appb-img-000266
질소 분위기에서 화합물 BO(15 g, 45.5 mmol)와 화합물 amine101(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 103를 26 g 제조하였다. (수율 70%, MS: [M+H]+= 817)
실시예 104: 화합물 104의 제조
Figure PCTKR2022002695-appb-img-000267
질소 분위기에서 화합물 BO(15 g, 45.5 mmol)와 화합물 amine102(24.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 104를 22.6 g 제조하였다. (수율 63%, MS: [M+H]+= 791)
실시예 105: 화합물 105의 제조
Figure PCTKR2022002695-appb-img-000268
질소 분위기에서 화합물 BN(15 g, 45.5 mmol)와 화합물 amine103(27.1 g, 47.8 mmol)를 THF(300 ml)에 넣고 교반 및 환류하였다. 이 후 포타슘 카보네이트(18.9 g, 136.5 mmol)를 물(57 ml)에 녹여 투입하고 충분히 교반한 후 비스(트리-터트-부틸포스핀)팔라듐(0)(0.5 g, 1.0 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수 황산 마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 105를 23.7 g 제조하였다. (수율 69%, MS: [M+H]+= 755)
[실험예]
실험예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에, 하기 HI-1 화합물을 1150Å의 두께로 형성하되 하기 A-1 화합물을 1.5% 농도로 p-doping하여 정공주입층을 형성하였다. 상기 정공주입층 위에, 하기 HT-1 화합물을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에, 앞서 제조한 화합물 1을 진공 증착하여 막 두께 150 Å의 전자억제층을 형성하였다. 상기 전자억제층 위에. 호스트로 하기 RH-1 화합물 및 도판트로 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 막 두께 400 Å의 적색 발광층을 형성하였다. 상기 발광층 위에, 하기 HB-1 화합물을 진공 증착하여 막 두께 30 Å의 정공저지층을 형성하였다. 상기 정공저지층 위에, 하기 ET-1 화합물과 하기 LiQ 화합물을 2:1의 중량비로 진공 증착하여 막 두께 300Å의 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에, 순차적으로 12Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2022002695-appb-img-000269
상기의 과정에서 유기물의 증착 속도는 0.4~0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 ~ 5x10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실험예 2 내지 105
화합물 1 대신 하기 표 1 내지 5에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교실험예 1 내지 16
화합물 1 대신 하기 표 6에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실험예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 6에서 화합물 C-1 내지 C-16은 각각 하기와 같았다.
Figure PCTKR2022002695-appb-img-000270
상기 실험예 및 비교실험예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2)하고 그 결과를 하기 표 1 내지 6에 나타냈다. 수명 T95는 휘도가 초기 휘도(6000 nit)에서 95%로 감소되는데 소요되는 시간(hr)을 의미한다.
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실험예 1 화합물 1 3.83 19.65 192 적색
실험예 2 화합물 2 3.78 19.30 193 적색
실험예 3 화합물 3 3.92 19.55 195 적색
실험예 4 화합물 4 3.83 18.97 221 적색
실험예 5 화합물 5 3.78 19.20 214 적색
실험예 6 화합물 6 3.73 18.80 222 적색
실험예 7 화합물 7 3.82 19.16 193 적색
실험예 8 화합물 8 3.80 19.37 190 적색
실험예 9 화합물 9 3.84 19.43 195 적색
실험예 10 화합물 10 3.88 19.80 180 적색
실험예 11 화합물 11 3.97 20.27 234 적색
실험예 12 화합물 12 3.88 21.83 237 적색
실험예 13 화합물 13 3.62 20.83 239 적색
실험예 14 화합물 14 3.69 22.16 236 적색
실험예 15 화합물 15 3.73 21.47 234 적색
실험예 16 화합물 16 3.70 19.75 230 적색
실험예 17 화합물 17 3.92 21.33 241 적색
실험예 18 화합물 18 3.88 20.85 239 적색
실험예 19 화합물 19 3.91 22.20 240 적색
실험예 20 화합물 20 3.98 21.88 241 적색
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실험예 21 화합물 21 3.76 18.77 211 적색
실험예 22 화합물 22 3.82 19.12 229 적색
실험예 23 화합물 23 3.70 19.10 234 적색
실험예 24 화합물 24 3.75 19.28 230 적색
실험예 25 화합물 25 3.70 18.64 233 적색
실험예 26 화합물 26 3.74 18.71 227 적색
실험예 27 화합물 27 3.82 19.04 232 적색
실험예 28 화합물 28 3.73 18.82 228 적색
실험예 29 화합물 29 3.76 19.07 217 적색
실험예 30 화합물 30 3.76 18.95 222 적색
실험예 31 화합물 31 3.88 19.27 192 적색
실험예 32 화합물 32 3.86 19.61 190 적색
실험예 33 화합물 33 3.82 19.29 191 적색
실험예 34 화합물 34 3.72 18.75 218 적색
실험예 35 화합물 35 3.90 19.17 193 적색
실험예 36 화합물 36 3.80 19.14 185 적색
실험예 37 화합물 37 3.68 18.58 227 적색
실험예 38 화합물 38 3.90 19.21 194 적색
실험예 39 화합물 39 3.77 19.25 215 적색
실험예 40 화합물 40 3.62 19.54 232 적색
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실험예 41 화합물 41 3.67 18.39 213 적색
실험예 42 화합물 42 3.66 18.62 208 적색
실험예 43 화합물 43 3.69 18.46 199 적색
실험예 44 화합물 44 3.63 18.65 191 적색
실험예 45 화합물 45 3.69 18.29 204 적색
실험예 46 화합물 46 3.71 20.97 235 적색
실험예 47 화합물 47 3.66 18.56 198 적색
실험예 48 화합물 48 3.63 18.41 195 적색
실험예 49 화합물 49 3.71 18.64 213 적색
실험예 50 화합물 50 3.70 18.70 209 적색
실험예 51 화합물 51 3.90 19.33 183 적색
실험예 52 화합물 52 3.87 19.27 192 적색
실험예 53 화합물 53 3.79 19.66 184 적색
실험예 54 화합물 54 3.85 19.49 182 적색
실험예 55 화합물 55 3.76 18.79 225 적색
실험예 56 화합물 56 3.87 19.62 180 적색
실험예 57 화합물 57 3.77 19.76 191 적색
실험예 58 화합물 58 3.77 19.76 186 적색
실험예 59 화합물 59 3.70 20.80 244 적색
실험예 60 화합물 60 3.83 19.40 195 적색
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실험예 61 화합물 61 3.73 19.13 229 적색
실험예 62 화합물 62 3.71 18.93 230 적색
실험예 63 화합물 63 3.73 18.83 222 적색
실험예 64 화합물 64 3.72 20.63 242 적색
실험예 65 화합물 65 3.74 19.13 226 적색
실험예 66 화합물 66 3.68 19.28 228 적색
실험예 67 화합물 67 3.72 19.21 225 적색
실험예 68 화합물 68 3.73 19.20 227 적색
실험예 69 화합물 69 3.76 18.69 228 적색
실험예 70 화합물 70 3.76 18.55 218 적색
실험예 71 화합물 71 3.98 20.33 233 적색
실험예 72 화합물 72 3.92 19.52 232 적색
실험예 73 화합물 73 3.98 19.91 229 적색
실험예 74 화합물 74 3.97 21.15 242 적색
실험예 75 화합물 75 3.89 19.55 231 적색
실험예 76 화합물 76 3.95 20.12 246 적색
실험예 77 화합물 77 3.89 22.10 247 적색
실험예 78 화합물 78 3.95 20.63 248 적색
실험예 79 화합물 79 3.65 22.23 234 적색
실험예 80 화합물 80 3.88 20.57 233 적색
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실험예 81 화합물 81 3.64 19.69 241 적색
실험예 82 화합물 82 3.70 21.03 243 적색
실험예 83 화합물 83 3.73 19.67 228 적색
실험예 84 화합물 84 3.63 21.06 248 적색
실험예 85 화합물 85 3.74 22.06 229 적색
실험예 86 화합물 86 3.63 19.53 241 적색
실험예 87 화합물 87 3.65 20.37 242 적색
실험예 88 화합물 88 3.62 21.25 244 적색
실험예 89 화합물 89 3.64 22.04 236 적색
실험예 90 화합물 90 3.71 22.11 230 적색
실험예 91 화합물 91 3.63 18.49 195 적색
실험예 92 화합물 92 3.63 18.36 209 적색
실험예 93 화합물 93 3.72 19.72 245 적색
실험예 94 화합물 94 3.69 18.68 196 적색
실험예 95 화합물 95 3.70 18.30 201 적색
실험예 96 화합물 96 3.70 18.04 212 적색
실험예 97 화합물 97 3.65 18.36 209 적색
실험예 98 화합물 98 3.74 18.29 198 적색
실험예 99 화합물 99 3.69 18.28 196 적색
실험예 100 화합물 100 3.64 18.63 208 적색
실험예 101 화합물 101 3.90 19.46 186 적색
실험예 102 화합물 102 3.90 19.37 183 적색
실험예 103 화합물 103 3.91 19.65 192 적색
실험예 104 화합물 104 3.88 19.62 192 적색
실험예 105 화합물 105 3.93 19.29 188 적색
전자억제층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교실험예 1 화합물 C-1 4.11 17.13 165 적색
비교실험예 2 화합물 C-2 4.07 17.17 168 적색
비교실험예 3 화합물 C-3 4.06 17.29 150 적색
비교실험예 4 화합물 C-4 4.26 16.17 93 적색
비교실험예 5 화합물 C-5 4.22 15.29 99 적색
비교실험예 6 화합물 C-6 4.29 15.31 109 적색
비교실험예 7 화합물 C-7 4.11 17.16 158 적색
비교실험예 8 화합물 C-8 4.07 17.15 161 적색
비교실험예 9 화합물 C-9 4.11 16.95 167 적색
비교실험예 10 화합물 C-10 4.12 17.09 168 적색
비교실험예 11 화합물 C-11 4.28 15.22 103 적색
비교실험예 12 화합물 C-12 4.27 16.00 96 적색
비교실험예 13 화합물 C-13 4.31 15.45 101 적색
비교실험예 14 화합물 C-14 4.13 16.74 107 적색
비교실험예 15 화합물 C-15 4.07 16.96 138 적색
비교실험예 16 화합물 C-16 4.06 16.44 123 적색
실험예 1 내지 105 및 비교실험예 1 내지 16에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1의 결과를 얻었다. 상기 실험예 1의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다. 비교실험예 1 내지 16은 화합물 1 대신 C-1 내지 C-16을 사용하여 유기 발광 소자를 제조하였다. 상기 표 1의 결과를 보면 본 발명의 화합물이 전자억제층으로 사용했을 때 비교예 물질에 비해서 구동 전압이 크게 낮아졌으며, 효율 측면에도 상승을 한 것으로 보아 호스트에서 적색 도판트로 에너지 전달이 잘 이뤄진다는 것을 알 수 있었다. 또한 높은 효율을 유지하면서도 수명 특성을 크게 개선 시킬 수 있는 것을 알 수 있었다. 이것은 결국 비교예 화합물 보다 본 발명의 화합물이 전자와 정공에 대한 안정도가 높기 때문이라 판단할 수 있다. 결론적으로 본 발명의 화합물을 적색 발광층의 전자 억제층으로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인할 수 있다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 발광층 8: 전자수송층

Claims (12)

  1. 하기 화학식 1 또는 2로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2022002695-appb-img-000271
    [화학식 2]
    Figure PCTKR2022002695-appb-img-000272
    상기 화학식 1 및 2에서,
    Ar은 치환 또는 비치환된 C6-60 아릴이고,
    R1 내지 R6 중 하나는 하기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,
    [화학식 3]
    Figure PCTKR2022002695-appb-img-000273
    상기 화학식 3에서,
    L은 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
    L1 및 L2는 각각 독립적으로, 단일 결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    단, R5 또는 R6가 상기 화학식 3으로 표시되는 치환기인 경우,
    L1은 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 C8-60 아릴이거나, 또는
    L1은 단일 결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고, Ar1은 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이다.
  2. 제1항에 있어서,
    Ar은 페닐, 비페닐, 또는 나프틸인,
    화합물.
  3. 제1항에 있어서,
    L은 단일 결합, 페닐렌, 비페닐디일, 터페닐디일, 나프틸렌, 또는 -(페닐렌)-(나프틸렌)-인,
    화합물.
  4. 제1항에 있어서,
    L1 및 L2는 각각 독립적으로, 단일 결합, 페닐렌, 또는 비페닐디일인,
    화합물.
  5. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 나프틸페닐, 페닐나프틸, 페난쓰레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴인,
    화합물.
  6. 제1항에 있어서,
    R1 내지 R4 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 각각 독립적으로 수소, 또는 중수소이고,
    R5 및 R6는 각각 독립적으로 수소, 또는 중수소인,
    화합물.
  7. 제1항에 있어서,
    R1 내지 R4는 각각 독립적으로 수소, 또는 중수소이고,
    R5 및 R6 중 하나는 상기 화학식 3으로 표시되는 치환기이고, 나머지는 수소, 또는 중수소인,
    화합물.
  8. 제7항에 있어서,
    L1은 페닐렌, 또는 비페닐디일이고,
    Ar1은 비페닐릴, 터페닐릴, 나프틸, 페난쓰레닐, 디메틸플루오레닐, 또는 디페닐플루오레닐인,
    화합물.
  9. 제7항에 있어서,
    L1은 단일결합, 페닐렌, 또는 비페닐디일이고,
    Ar1은 디벤조퓨라닐, 디벤조티오페닐, 9H-카바졸-9-일, 또는 9-페닐-9H-카바졸릴인,
    화합물.
  10. 제1항에 있어서,
    상기 화학식 1 또는 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2022002695-appb-img-000274
    Figure PCTKR2022002695-appb-img-000275
    Figure PCTKR2022002695-appb-img-000276
    Figure PCTKR2022002695-appb-img-000277
    Figure PCTKR2022002695-appb-img-000278
    Figure PCTKR2022002695-appb-img-000279
    Figure PCTKR2022002695-appb-img-000280
    Figure PCTKR2022002695-appb-img-000281
    Figure PCTKR2022002695-appb-img-000282
    Figure PCTKR2022002695-appb-img-000283
    Figure PCTKR2022002695-appb-img-000284
    Figure PCTKR2022002695-appb-img-000285
    Figure PCTKR2022002695-appb-img-000286
    Figure PCTKR2022002695-appb-img-000287
    Figure PCTKR2022002695-appb-img-000288
    Figure PCTKR2022002695-appb-img-000289
    Figure PCTKR2022002695-appb-img-000290
    Figure PCTKR2022002695-appb-img-000291
    Figure PCTKR2022002695-appb-img-000292
    Figure PCTKR2022002695-appb-img-000293
    Figure PCTKR2022002695-appb-img-000294
    Figure PCTKR2022002695-appb-img-000295
    Figure PCTKR2022002695-appb-img-000296
    Figure PCTKR2022002695-appb-img-000297
    Figure PCTKR2022002695-appb-img-000298
    Figure PCTKR2022002695-appb-img-000299
    Figure PCTKR2022002695-appb-img-000300
    Figure PCTKR2022002695-appb-img-000301
    Figure PCTKR2022002695-appb-img-000302
    Figure PCTKR2022002695-appb-img-000303
    Figure PCTKR2022002695-appb-img-000304
    Figure PCTKR2022002695-appb-img-000305
    Figure PCTKR2022002695-appb-img-000306
    Figure PCTKR2022002695-appb-img-000307
    Figure PCTKR2022002695-appb-img-000308
    Figure PCTKR2022002695-appb-img-000309
    Figure PCTKR2022002695-appb-img-000310
    Figure PCTKR2022002695-appb-img-000311
    Figure PCTKR2022002695-appb-img-000312
    Figure PCTKR2022002695-appb-img-000313
    Figure PCTKR2022002695-appb-img-000314
    Figure PCTKR2022002695-appb-img-000315
    Figure PCTKR2022002695-appb-img-000316
    Figure PCTKR2022002695-appb-img-000317
    Figure PCTKR2022002695-appb-img-000318
    Figure PCTKR2022002695-appb-img-000319
    Figure PCTKR2022002695-appb-img-000320
    Figure PCTKR2022002695-appb-img-000321
    Figure PCTKR2022002695-appb-img-000322
    Figure PCTKR2022002695-appb-img-000323
    Figure PCTKR2022002695-appb-img-000324
    Figure PCTKR2022002695-appb-img-000325
    Figure PCTKR2022002695-appb-img-000326
    Figure PCTKR2022002695-appb-img-000327
    Figure PCTKR2022002695-appb-img-000328
    Figure PCTKR2022002695-appb-img-000329
    Figure PCTKR2022002695-appb-img-000330
    Figure PCTKR2022002695-appb-img-000331
    Figure PCTKR2022002695-appb-img-000332
    Figure PCTKR2022002695-appb-img-000333
    Figure PCTKR2022002695-appb-img-000334
    Figure PCTKR2022002695-appb-img-000335
    Figure PCTKR2022002695-appb-img-000336
    Figure PCTKR2022002695-appb-img-000337
    Figure PCTKR2022002695-appb-img-000338
    Figure PCTKR2022002695-appb-img-000339
    Figure PCTKR2022002695-appb-img-000340
    Figure PCTKR2022002695-appb-img-000341
    Figure PCTKR2022002695-appb-img-000342
    Figure PCTKR2022002695-appb-img-000343
    Figure PCTKR2022002695-appb-img-000344
    Figure PCTKR2022002695-appb-img-000345
    Figure PCTKR2022002695-appb-img-000346
    Figure PCTKR2022002695-appb-img-000347
    Figure PCTKR2022002695-appb-img-000348
    Figure PCTKR2022002695-appb-img-000349
    Figure PCTKR2022002695-appb-img-000350
    Figure PCTKR2022002695-appb-img-000351
    Figure PCTKR2022002695-appb-img-000352
    Figure PCTKR2022002695-appb-img-000353
    Figure PCTKR2022002695-appb-img-000354
    Figure PCTKR2022002695-appb-img-000355
    Figure PCTKR2022002695-appb-img-000356
    Figure PCTKR2022002695-appb-img-000357
    Figure PCTKR2022002695-appb-img-000358
    Figure PCTKR2022002695-appb-img-000359
    Figure PCTKR2022002695-appb-img-000360
    Figure PCTKR2022002695-appb-img-000361
    Figure PCTKR2022002695-appb-img-000362
    Figure PCTKR2022002695-appb-img-000363
    Figure PCTKR2022002695-appb-img-000364
    Figure PCTKR2022002695-appb-img-000365
    Figure PCTKR2022002695-appb-img-000366
    Figure PCTKR2022002695-appb-img-000367
    Figure PCTKR2022002695-appb-img-000368
    Figure PCTKR2022002695-appb-img-000369
    Figure PCTKR2022002695-appb-img-000370
    Figure PCTKR2022002695-appb-img-000371
    Figure PCTKR2022002695-appb-img-000372
    Figure PCTKR2022002695-appb-img-000373
    Figure PCTKR2022002695-appb-img-000374
    Figure PCTKR2022002695-appb-img-000375
    Figure PCTKR2022002695-appb-img-000376
    Figure PCTKR2022002695-appb-img-000377
    Figure PCTKR2022002695-appb-img-000378
    Figure PCTKR2022002695-appb-img-000379
    Figure PCTKR2022002695-appb-img-000380
    Figure PCTKR2022002695-appb-img-000381
    Figure PCTKR2022002695-appb-img-000382
    Figure PCTKR2022002695-appb-img-000383
    Figure PCTKR2022002695-appb-img-000384
    Figure PCTKR2022002695-appb-img-000385
    Figure PCTKR2022002695-appb-img-000386
    Figure PCTKR2022002695-appb-img-000387
    Figure PCTKR2022002695-appb-img-000388
    Figure PCTKR2022002695-appb-img-000389
    Figure PCTKR2022002695-appb-img-000390
  11. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제10항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  12. 제11항에 있어서,
    상기 화합물을 포함하는 유기물층은 전자억제층인,
    유기 발광 소자.
PCT/KR2022/002695 2021-02-24 2022-02-24 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2022182153A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280008080.8A CN116635391A (zh) 2021-02-24 2022-02-24 新的化合物和包含其的有机发光器件
US18/265,894 US20240114776A1 (en) 2021-02-24 2022-02-24 Compound and organic light emitting device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210024902 2021-02-24
KR10-2021-0024902 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022182153A1 true WO2022182153A1 (ko) 2022-09-01

Family

ID=83049490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/002695 WO2022182153A1 (ko) 2021-02-24 2022-02-24 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (4)

Country Link
US (1) US20240114776A1 (ko)
KR (1) KR20220121214A (ko)
CN (1) CN116635391A (ko)
WO (1) WO2022182153A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136033A (ko) * 2014-05-26 2015-12-04 주식회사 엘지화학 함질소 헤테로환 화합물 및 이를 이용한 유기 전자 소자
WO2017030283A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20180099487A (ko) * 2017-02-27 2018-09-05 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
CN110734431A (zh) * 2019-11-18 2020-01-31 烟台九目化学股份有限公司 一种含有三嗪结构的恶唑类化合物及其应用
CN112341449A (zh) * 2020-11-10 2021-02-09 长春海谱润斯科技股份有限公司 一种含螺芴的三芳胺类有机化合物及其有机发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
KR102424910B1 (ko) * 2019-07-24 2022-07-25 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136033A (ko) * 2014-05-26 2015-12-04 주식회사 엘지화학 함질소 헤테로환 화합물 및 이를 이용한 유기 전자 소자
WO2017030283A1 (en) * 2015-08-19 2017-02-23 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent device comprising the same
KR20180099487A (ko) * 2017-02-27 2018-09-05 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
CN110734431A (zh) * 2019-11-18 2020-01-31 烟台九目化学股份有限公司 一种含有三嗪结构的恶唑类化合物及其应用
CN112341449A (zh) * 2020-11-10 2021-02-09 长春海谱润斯科技股份有限公司 一种含螺芴的三芳胺类有机化合物及其有机发光器件

Also Published As

Publication number Publication date
CN116635391A (zh) 2023-08-22
KR20220121214A (ko) 2022-08-31
US20240114776A1 (en) 2024-04-04

Similar Documents

Publication Publication Date Title
WO2022015084A1 (ko) 유기 발광 소자
WO2022025714A1 (ko) 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2021261977A1 (ko) 유기 발광 소자
WO2022019536A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021230714A1 (ko) 유기 발광 소자
WO2022231389A1 (ko) 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2021230715A1 (ko) 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022019535A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020189984A1 (ko) 유기 발광 소자
WO2022182153A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022182152A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022131757A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022177288A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022177287A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2023085670A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22760069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18265894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280008080.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22760069

Country of ref document: EP

Kind code of ref document: A1