WO2022181359A1 - レーザ加工状態の判定方法及び判定装置 - Google Patents

レーザ加工状態の判定方法及び判定装置 Download PDF

Info

Publication number
WO2022181359A1
WO2022181359A1 PCT/JP2022/005378 JP2022005378W WO2022181359A1 WO 2022181359 A1 WO2022181359 A1 WO 2022181359A1 JP 2022005378 W JP2022005378 W JP 2022005378W WO 2022181359 A1 WO2022181359 A1 WO 2022181359A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
focal position
determination
light
feature amount
Prior art date
Application number
PCT/JP2022/005378
Other languages
English (en)
French (fr)
Inventor
和樹 藤原
浩司 船見
出 中井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023502280A priority Critical patent/JPWO2022181359A1/ja
Priority to CN202280016161.2A priority patent/CN116887941A/zh
Publication of WO2022181359A1 publication Critical patent/WO2022181359A1/ja
Priority to US18/234,575 priority patent/US20230390863A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/006Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to using of neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • B23K31/125Weld quality monitoring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present disclosure relates to a method and apparatus for determining a processing state in laser processing for lap welding.
  • Patent Document 1 is applied to a laser welding method for welding by irradiating a laser beam generated in a pulsed form to a work, and for determining the welding state such as good/bad welding of the work, the welding state of laser welding. Discloses the determination method, etc.
  • the intensity of the plasma light and the reflected light emitted from the workpiece during laser welding is detected as the detected light intensity, and the detected light intensity corresponding to one pulse of the laser beam is preset from one cycle.
  • a pulse-by-pulse feature value is extracted for each pulse of laser light based on the detected light intensity in the extraction interval.
  • the pulse-by-pulse feature value the average value of the detected light intensity, the amount of change due to difference processing, the amplitude due to difference processing, and the like are calculated.
  • the method of Patent Document 1 obtains the lower limit value or the upper limit value of the characteristic value for each pulse as an extreme value, compares the extreme value with a predetermined threshold value, and determines the occurrence of welding defects as the welding state of each workpiece. .
  • a method for determining a processing state in laser processing for lap welding is provided. At least one of thermal radiation light, visible light, and reflected light generated at a weld formed on the surface of a workpiece by irradiating the workpiece with laser light using an optical sensor. obtaining a signal indicative of a change in at least one of thermal radiation, visible light, and reflected light during a time interval corresponding to the welding time for each workpiece; and a predetermined interval of the time interval.
  • step of calculating a feature quantity including the slope of a straight line that approximates the signal waveform of the signal includes a step of judging a shift including the distance of the position, and a step of outputting the judged shift of the focal position as a judgment result.
  • the determination model is constructed based on training data that includes associated feature amounts calculated under a situation in which the focal position shift occurs and the focal position shift that has occurred.
  • a processing state determination device in laser processing for lap welding includes an arithmetic circuit and a communication circuit.
  • the communication circuit uses an optical sensor to detect at least one of thermal radiation light, visible light, and reflected light generated at a weld formed on the surface of the workpiece by irradiating the workpiece with the laser beam. receive the signal generated by The signal is a signal that indicates a change in at least one of thermal radiation, visible light, and reflected light in a time interval corresponding to welding time for each workpiece.
  • the arithmetic circuit acquires the signal through the communication circuit, calculates the characteristic amount including the slope of the straight line that approximates the signal waveform of the signal in a predetermined section of the time section, and calculates the judgment model for judging the machining state.
  • a feature amount is input, a deviation of the focal position in the irradiation direction of the laser beam, including distance, is determined as the machining state, and the determined deviation of the focal position is output by the communication circuit as a determination result.
  • the determination model is constructed based on training data that includes associated feature amounts calculated under a situation in which the focal position shift occurs and the focal position shift that has occurred.
  • FIG. 4 is a diagram for explaining signals acquired by the determination device;
  • FIG. 4 is a diagram for explaining processing for calculating a feature amount in a determination device;
  • a diagram for explaining the processing of the judgment model in the judgment device Flowchart exemplifying the training process of the decision model Diagram for explaining the training data of the judgment model
  • the bonding area may decrease due to changes in the processing state, such as the position of the focal point in the irradiation direction of the laser beam deviating from the surface of the workpiece (workpiece), resulting in defective bonding.
  • the processing state such as the position of the focal point in the irradiation direction of the laser beam deviating from the surface of the workpiece (workpiece), resulting in defective bonding.
  • detailed analysis of the processing state is required to investigate the cause of the joint failure. there were.
  • the present disclosure provides a determination method and determination device capable of determining in detail the processing state in laser processing for lap welding.
  • Embodiment 1 As an example of using the determination method and determination device according to the present disclosure, the component of light generated in laser processing for lap welding is detected, a signal based on the detected component is acquired, and the processing state is determined. A determination system for determining is described.
  • FIG. 1 is a diagram showing an overview of a determination system 100 according to this embodiment.
  • the determination system 100 includes a laser processing device 30 that performs laser processing for lap welding, a spectroscopic device 40 for detecting light components, and a determination device 50 .
  • the determination device 50 is an example of a determination device according to the present disclosure.
  • the workpiece 70 for lap welding is made of, for example, a metal, and when irradiated with the laser beam 6, thermal radiation light in the near-infrared region due to temperature rise (also referred to as "thermal radiation") and metal mainly composed of visible light components. A unique luminescence or plasma luminescence is generated. A part of the laser light 6 that does not contribute to processing is reflected as return light.
  • the melted portion 27 which is an example of the welded portion formed in the workpiece 70, generates thermal radiation, visible light, and reflected light. light is generated.
  • These generated lights are collected by the laser processing device 30 and transmitted to the spectroscopic device 40 through the optical fiber 13 connecting the laser processing device 30 and the spectroscopic device 40 .
  • the light transmitted to spectroscopic device 40 is separated into thermal radiation, visible light and reflected light, which are detected by optical sensor 22 of spectroscopic device 40 and converted into signals.
  • the determination device 50 determines the deviation of the focal position F1 of the laser beam 6 and outputs the determination result.
  • the deviation of the focal position F1 is determined by setting the position where the spot diameter of the laser beam 6 becomes the smallest in the vicinity of the surface of the workpiece 70 when the laser beam 6 is irradiated to the workpiece 70 as a reference value "0". It is judged by numerical values including distance (“-” or “+”) in the irradiation direction with respect to the reference.
  • the reference position may be any position on the optical path of the laser beam 6 .
  • the reference position may be near the surface of the workpiece 70 .
  • the reference position may be the focal position when laser processing is performed on one workpiece 70 when laser processing is repeated on a plurality of workpieces 70 .
  • the laser processing apparatus 30 may store the initial focal position and use it as a reference for focal position deviation from the second time onward.
  • FIG. 2 is a diagram illustrating the configuration of the laser processing apparatus 30 of the present embodiment.
  • a laser processing apparatus 30 includes a laser oscillator 1 , a laser transmission fiber 2 , a lens barrel 3 , a collimator lens 4 , condenser lenses 5 and 11 , a first mirror 7 and a second mirror 8 .
  • a laser oscillator 1 supplies light for generating pulsed laser light 6 with a wavelength of about 1070 nanometers (nm), for example.
  • Light supplied from a laser oscillator 1 is amplified while being transmitted by a laser transmission fiber 2, passes through a collimating lens 4 for obtaining a parallel beam, forms laser light 6, and travels through a lens barrel 3. Go straight.
  • the lens barrel 3 constitutes a processing head in the laser processing device 30 .
  • the laser beam 6 is reflected by the first mirror 7 except for a part that passes through it, is condensed by the condensing lens 5, and is fixed on, for example, a scanning table (not shown) by a jig 26 to be processed.
  • Object 70 is irradiated. Thereby, laser processing for lap welding of the workpiece 70 is performed.
  • the wavelength of the laser light 6 is not particularly limited to 1070 nm, and it is preferable to use a wavelength with a high absorption rate of the material.
  • the laser beam 6 When the laser beam 6 is irradiated, thermal radiation from the workpiece 70 , visible light due to plasma emission, and reflected light of the laser beam 6 are generated in the melting portion 27 . These lights are transmitted through the first mirror 7 , reflected by the second mirror 8 , condensed by the condensing lens 11 , and transmitted to the spectral device 40 through the optical fiber 13 . Note that the light partially transmitted through the second mirror 8 may be detected by a camera or a sensor.
  • FIG. 3 is a diagram illustrating the configuration of the spectroscopic apparatus 40 of this embodiment.
  • the spectroscopic device 40 includes a collimating lens 15, a third mirror 16, a fourth mirror 17, a fifth mirror 18, condenser lenses 19, 20 and 21, an optical sensor 22, and a A transmission cable 23 and a controller 24 are provided.
  • the housing 28 prevents miscellaneous light from entering from the outside of the spectroscopic device 40 and prevents light leakage from the inside.
  • the collimator lens 15 converts the light transmitted through the optical fiber 13 from the laser processing device 30 back into parallel light.
  • the third mirror 16 transmits visible light with a wavelength of 400 nm to 700 nm, for example, and reflects other components.
  • the fourth mirror 17 reflects the reflected light of the laser light 6 with a wavelength of about 1070 nm, for example, and transmits other components.
  • the fifth mirror 18 reflects thermal radiation with a wavelength of, for example, 1300 nm to 1550 nm.
  • the light passing through the collimator lens 15 is split into visible light, reflected light, and thermal radiation by the third mirror 16, the fourth mirror 17, and the fifth mirror 18, and condensed by the condensing lenses 19 to 21, respectively. be.
  • arbitrary band-pass filters in the optical paths after the third mirror 16, the fourth mirror 17, and the fifth mirror 18, respectively, it is possible to select the wavelength to be passed.
  • the optical sensor 22 comprises, for example, optical sensors 22a, 22b, 22c, each highly sensitive to different wavelengths.
  • the optical sensors 22a, 22b, and 22c detect visible light, reflected light, and thermal radiation condensed by the condensing lenses 19-21, respectively, and generate electrical signals corresponding to the intensity of the detected light.
  • the optical sensor 22 may be composed of one optical sensor capable of detecting the intensity for each wavelength.
  • the electrical signal generated by the optical sensor 22 is transmitted to the controller 24 via the transmission cable 23.
  • the controller 24 is a hardware controller and controls the overall operation of the spectroscopic device 40 .
  • the controller 24 includes a CPU, a communication circuit, etc., and transmits an electrical signal received from the optical sensor 22 to the determination device 50 .
  • the controller 24 has an A/D converter, for example, and converts analog electrical signals into digital signals (also simply referred to as “signals”).
  • the sampling period for conversion into a digital signal is, for example, a laser beam 6 from the viewpoint of securing a sufficient number of samples to capture the characteristics of the machining process and the tendency of local values of physical quantities in determining the machining state. is preferably 1/100 or less of the time for performing the output control.
  • FIG. 4 is a block diagram illustrating the configuration of the determination device 50 of the present embodiment.
  • the determination device 50 is configured by an information processing device such as a computer, for example.
  • the determination device 50 includes a CPU 51 that performs arithmetic processing, a communication circuit 52 that communicates with other devices, and a storage device 53 that stores data and computer programs.
  • the CPU 51 is an example of an arithmetic circuit of the determination device in this embodiment.
  • the CPU 51 implements a predetermined function including training and execution of the judgment model 57 by executing the control program 56 stored in the storage device 53 .
  • the CPU 51 executes the control program 56 so that the determination device 50 realizes the function of the determination device in the present embodiment.
  • the arithmetic circuit configured as the CPU 51 in this embodiment may be realized by various processors such as an MPU or GPU, or may be configured by one or a plurality of processors.
  • the communication circuit 52 is a communication circuit that performs communication in compliance with standards such as IEEE802.11, 4G, or 5G.
  • the communication circuit 52 may perform wired communication according to a standard such as Ethernet (registered trademark).
  • the communication circuit 52 can be connected to a communication network such as the Internet. Further, the determination device 50 may directly communicate with another device via the communication circuit 52, or may communicate via an access point. Note that the communication circuit 52 may be configured to be able to communicate with other devices without going through a communication network.
  • the communication circuit 52 may include connection terminals such as a USB (registered trademark) terminal and an HDMI (registered trademark) terminal.
  • the storage device 53 is a storage medium for storing computer programs and data necessary for realizing the functions of the determination system 100, and stores a control program 56 executed by the CPU 51 and various data.
  • the storage device 53 stores the judgment model 57 after the judgment model 57 is constructed.
  • the determination model 57 is constructed based on training data including the feature amount calculated under a situation where the focus position F1 of the laser beam 6 is shifted and the deviation of the focus position F1 that has occurred. Details of the judgment model 57 will be described later.
  • the storage device 53 is composed of, for example, a magnetic storage device such as a hard disk drive (HDD), an optical storage device such as an optical disk drive, or a semiconductor storage device such as an SSD.
  • the storage device 53 may include a temporary storage element configured by RAM such as DRAM or SRAM, and may function as an internal memory of the CPU 51 .
  • the determination system 100 configured as described above, for example, as shown in FIG. Detect light.
  • the spectroscopic device 40 transmits to the determination device 50 a signal corresponding to the intensity of the detected thermal radiation, visible light and reflected light.
  • the operation of the determination device 50 in this system 100 will be described below.
  • FIG. 5 is a flowchart illustrating determination processing in the determination device 50 of this embodiment. Each process shown in this flowchart is executed by the CPU 51 of the determination device 50, for example. This flowchart is started, for example, when the user of the determination system 100 or the like inputs a predetermined operation for starting determination processing from an input device connected via the communication circuit 52 .
  • the CPU 51 acquires signals corresponding to thermal radiation, visible light, and reflected light detected by the optical sensor 22 of the spectroscopic device 40 through the communication circuit 52 (S1).
  • FIG. 6 is a diagram for explaining signals acquired by the determination device 50.
  • FIG. (A), (B), and (C) of FIG. 6 show signal waveforms according to the intensity of thermal radiation, visible light, and reflected light, respectively.
  • (D) of FIG. 6 shows the output of the laser beam 6 with which the workpiece 70 is irradiated.
  • the signals in FIGS. 6A-6C correspond to thermal radiation, visible light, and reflected light generated by the laser output.
  • the horizontal axis indicates time
  • the vertical axis indicates signal intensity ((A) to (C) in FIG. 6) or laser output ((D) in FIG. 6).
  • time T1 indicates a time interval corresponding to one pulse of the laser light 6
  • time T2 indicates a time interval of peak output excluding rise and fall of the laser output.
  • step S1 of FIG. 5 the CPU 51 indicates changes in thermal radiation, visible light, and reflected light at time T1 corresponding to the welding time for each workpiece 70, as shown in FIGS. Get the signal.
  • the intensity of thermal radiation, visible light, and reflected light is affected by residual heat after processing, and the end of the signal waveform may be temporally longer than the laser output.
  • a predetermined section T3 which will be described later, it is possible to determine the deviation of the focal position without being affected by residual heat.
  • the CPU 51 calculates the feature amount to be input to the judgment model 57 from the acquired signal (S2).
  • FIG. 7 is a diagram for explaining the processing (S2) for calculating the feature amount in the determination device 50.
  • FIG. FIG. 7(A) shows the time variation of the signal intensity of the signal corresponding to thermal radiation, visible light or reflected light on the same vertical and horizontal axes as in FIGS. 6(A) to 6(C).
  • (B) of FIG. 7 shows a signal waveform obtained by applying smoothing processing to the signal of (A) of FIG.
  • the CPU 51 applies a smoothing filter to the signal of each component as shown in (A) of FIG. generates a signal waveform like
  • (C) of FIG. 7 shows a predetermined section T3 of times T1, T2 and T1 in the signal waveform of (B) of FIG.
  • the CPU 51 sets a straight line Ls that approximates the signal waveform in a predetermined interval T3 as shown in FIG. 7D, and calculates the slope of the straight line Ls as a feature amount.
  • the section T3 is set in advance as a section of 1 to 3 milliseconds from the center 60 of the time T2 corresponding to the peak output of the laser light 6 in the time T1 of one pulse of the laser light 6, for example.
  • the slope of a straight line Ls determined by two points of the smoothed signal waveform that passes through both ends of the section T3 is calculated as the feature amount of the slope.
  • step S2 of FIG. 5 the CPU 51 calculates the gradients of the signal waveforms corresponding to thermal radiation, visible light, and reflected light as feature quantities.
  • thermal radiation and visible light tend to reflect changes in the molten state of the material of the workpiece 70, and by using the slope of the signal waveform for these, it is possible to accurately determine the deviation of the focal position F1.
  • the CPU 51 further calculates signal intensities obtained by performing preprocessing such as normalization on the signals of thermal radiation, visible light, and reflected light as feature amounts.
  • the feature amount of the signal strength is input to the judgment model 57 as, for example, the amplitude of the signal waveform for each sampling period in A/D conversion.
  • the CPU 51 further calculates an integral value of the signal intensity of the signal corresponding to the reflected light as a feature amount.
  • the CPU 51 calculates the integrated value of the signal intensity at time T1, for example.
  • the integrated value of the signal strength may be calculated by integrating the signal strength limited to time T2, section T3, or other time section, which is shorter than time T1, depending on the signal waveform.
  • the reflected light has a smaller variation in signal intensity than the other components, as in the example of FIG. Accordingly, by using the integrated value of the signal intensity of the reflected light, it is possible to accurately reflect the change in the light emission energy due to the deviation of the focal position F1 and perform the determination.
  • the CPU 51 After calculating the feature amount (S2), the CPU 51 inputs the feature amount to the determination model 57 and performs processing (S3) to determine the deviation of the focal position F1. In this embodiment, in the determination model process (S3), the CPU 51 determines a numerical value indicating the relative position of the focal position F1 with respect to the reference position as the deviation of the focal position F1.
  • FIG. 8 is a diagram for explaining the judgment model processing (S3).
  • FIG. 8 shows the signal waveform after smoothing ((A) ), and the positional relationship between the focal position F1 of the laser beam 6 and the workpiece 70 (FIG. 8B).
  • the deviation of the focal position F1 is represented by the same coordinate axes as in FIG.
  • the judgment model processing (S3) is performed by the judgment model 57 learned based on the correspondence relationship between the signal waveform and the focal position F1 as shown in FIG. Knowledge obtained by the inventors of the technology according to the present disclosure will be described below with reference to FIG. 8 regarding the correspondence between the signal waveform and the focal position F1.
  • the slope of the signal waveform is "0".
  • the signal intensity increases compared to the just focus state, while the tilt decreases.
  • the focal position F1 shifts in the negative direction, the signal strength increases and the tilt also increases compared to the just focus state.
  • a small slope means a negative slope (decreasing signal strength over time).
  • a high slope means a positive slope (increasing signal strength over time).
  • the irradiation area of the laser light 6 on the surface of the workpiece 70 increases, and the light emission area in the fusion zone 27 increases.
  • the surface of the workpiece 70 melts and evaporates due to the irradiation of the laser beam 6 at the start of the welding process, forming a cavity (keyhole) on the surface. Heat input from the laser beam 6 is required to form the keyhole. etc. are likely to occur, and it is assumed that the slope of the signal waveform will change.
  • the focal position F1 deviates in the positive direction
  • the total amount of heat applied to the surface and inside of the workpiece 70 is small, and since the focal position F1 exists outside the workpiece 70, the heat can easily escape. Become.
  • the focus position F1 shifts in the negative direction the total amount of heat applied to the surface and inside of the workpiece 70 is large, and since the focus position F1 exists inside the workpiece 70, the heat escapes. become difficult. Therefore, it is considered that if the focal position F1 deviates in the positive direction, the tilt decreases, and if the focal position F1 deviates in the negative direction, the tilt increases.
  • the inventors of the present invention have found that the deviation of the focal position F1 can be detected from a signal corresponding to at least one of thermal radiation, visible light, and reflected light, using characteristic amounts such as the slope of the signal waveform and the signal intensity. guessed to be predictable. Therefore, the inventor constructed the determination model 57 using these feature values and the deviation of the focal position F1 as training data, and performed the determination processing by the determination model 57, as will be described later. According to the judgment model 57 constructed in this way, when the feature amount based on the signal is input, the shift including the distance of the focal position F1 is output (S3).
  • the CPU 51 outputs the determination result of the deviation of the focal position F1 determined by the determination model process (S3) through the communication circuit 52 (S4).
  • the determination result can be received and displayed by, for example, an external information processing device or display device.
  • the determination device 50 may be provided with a display device (for example, a display) that can communicate with the CPU 51, and the determination result may be displayed on the display device.
  • the flowchart of FIG. 5 is repeatedly executed, for example, every time welding is performed for each workpiece 70 .
  • the determination device 50 of the present embodiment acquires the signal generated by the optical sensor 22 of the spectroscopic device 40 (S1), calculates the feature amount from the signal (S2), and calculates the feature amount
  • the deviation of the focus position F1 is determined by the determination model 57 based on (S3).
  • the determination device 50 can determine in detail the deviation of the focal position F1 of the laser beam 6 as the processing state in the laser processing for lap welding.
  • the slope of the signal waveform and/or the integrated value of the signal intensity may be calculated for all of the thermal radiation, the visible light, and the reflected light, or may be calculated for only one.
  • FIG. 9 is a flowchart illustrating training processing of the judgment model 57.
  • FIG. Each process of this flowchart is executed by the CPU 51 of the determination device 50, for example.
  • the CPU 51 acquires training data stored in advance, for example, in the storage device 53 (S11).
  • FIG. 10 is a diagram for explaining the training data D1 of the judgment model 57.
  • the training data D1 includes, for example, the gradients of the signal waveforms of thermal radiation, visible light, and reflected light, the integrated value of the signal intensity of the reflected light, and the signal intensity of these thermal radiation, visible light, and reflected light (not shown). , and the deviation of the focal position F1.
  • the training data D1 is obtained by calculating feature amounts from signals based on thermal radiation, visible light, and reflected light detected by actually performing laser processing under a plurality of conditions in which the shift of the focal position F1 changes, and calculating the focal point at that time. It is constructed by recording in association with the deviation of the position F1.
  • the CPU 51 when the CPU 51 acquires the training data D1 (S1), it performs machine learning using the training data D1 to generate the judgment model 57 (S2).
  • the decision model 57 is generated as a regression model based on, for example, linear regression, Lasso regression, ridge regression, decision tree, random forest, gradient boosting, support vector regression, Gaussian process regression, neural network, k-nearest neighbor method, or the like.
  • the judgment model 57 is generated as a learned model for judging the deviation of the focal position F1 from the feature values based on the signals corresponding to the thermal radiation, visible light, and reflected light detected in the laser processing. be able to.
  • the training process for the determination model 57 may be executed in an information processing device different from the determination device 50 .
  • the determination device 50 may acquire the built determination model by the communication circuit 52, for example, via a communication network.
  • the determination processing provides a method for determining the processing state in laser processing for lap welding.
  • This method uses the optical sensor 22 to detect heat radiation ( a step of detecting at least one of thermal radiation, visible light, and reflected light; A step (S1) of acquiring a signal indicating one change, a step (S2) of calculating a feature amount including the slope of a straight line Ls approximating the signal waveform of the signal in a predetermined section T3 of the time T1; A step (S3) of inputting the calculated feature amount to a judgment model 57 for judging the machining state and judging the displacement including distance of the focal position F1 in the irradiation direction of the laser beam 6 as the machining state, and the judged focal position.
  • the determination model 57 is constructed based on the training data D1 that includes the feature quantity calculated under the situation where the focus position F1 is shifted and the focus position F1 that is shifted in association with each other.
  • a signal based on at least one of thermal radiation, visible light, and reflected light generated and detected by the irradiation of the laser beam 6 is acquired (S1), and the slope of the straight line Ls approximating the signal waveform is obtained. is calculated (S2), and determination is made by the determination model 57 (S3).
  • the processing state is determined by the judgment model 57 constructed using the training data D1 that associates the feature amount such as the slope of the signal waveform with the shift including the distance of the focal position F1 of the laser beam 6 as the processing state. can be determined in detail.
  • the judgment model 57 is calculated from a signal based on at least one of thermal radiation, visible light, and reflected light detected by performing laser processing under each of a plurality of conditions in which the processing state changes. It includes a trained model generated by machine learning (S11-S12) using training data D1 that associates the feature amount obtained and the deviation of the focal position F1 under each condition. As a result, a judgment model 57 for judging the deviation of the focal position F1 as the machining state is obtained from the feature amount based on at least one of the detected thermal radiation, visible light, and reflected light.
  • the focus position shift F1 is determined with reference to a preset position along the overlapping direction in lap welding.
  • the deviation of the focal position F1 includes a numerical value indicating the relative position of the focal position with respect to the reference position. This makes it possible to determine the processing state in laser processing in detail, including how far or near the focus position F1 has shifted in the irradiation direction of the laser beam 6 .
  • the step (S2) of calculating the feature amount includes smoothing the signal waveform of the signal before calculating the feature amount. As a result, it is possible to easily calculate the feature amount of the slope in the signal waveform (see FIG. 6) in which the signal intensity fluctuates finely.
  • the feature quantity includes the signal strength of the signal.
  • the processing state can be determined by the determination model 57 using, for example, the information of the signal waveform corresponding to the time change of the signal intensity as it is.
  • the feature quantity includes the integrated value of the signal intensity of the signal. This makes it possible to easily determine the deviation of the focal position F1 by reflecting the tendency of the signal intensity to increase with the deviation of the focal position F1 over the duration of the laser output.
  • the determination device 50 is an example of a processing state determination device in laser processing for lap welding.
  • the determination device 50 includes a CPU 51 as an example of an arithmetic circuit and a communication circuit 52 .
  • the communication circuit 52 transmits thermal radiation (thermal radiation light) generated in a melted portion 27 (an example of a welded portion) formed on the surface of the workpiece 70 by irradiating the workpiece 70 with the laser beam 6.
  • a signal generated by detecting at least one of light and reflected light by the optical sensor 22 is received.
  • the signal is a signal that indicates changes in at least one of thermal radiation, visible light, and reflected light at time T1 as an example of a time interval corresponding to welding time for each workpiece 70 .
  • the CPU 51 acquires a signal through the communication circuit 52 (S1), calculates a feature amount including the slope of a straight line Ls approximating the signal waveform of the signal in a predetermined section T3 of the time T1 (S2), and calculates the processing state.
  • the calculated feature amount is input to the determination model 57 for determining the deviation of the focal position F1 in the irradiation direction of the laser beam 6, including the distance, as the processing state (S3), and the determined deviation of the focal position F1 is determined.
  • the determination model 57 is constructed based on the training data D1 that includes the feature amount calculated under the situation where the focus position F1 is shifted and the focus position F1 that is shifted in association with each other.
  • the determination device 50 described above it is possible to perform the determination method described above and determine the processing state in laser processing for lap welding in detail.
  • the determination device 50 uses, as feature quantities, the signal intensity of thermal radiation, visible light and reflected light, and the intensity of reflected light in addition to the slope of the signal waveform of the signal corresponding to thermal radiation and visible light.
  • An integral value of signal intensity was calculated (S2).
  • the feature amount is not particularly limited to these, and may be, for example, only the slope of the signal waveform, or may not include either the signal intensity or the integrated value. Alternatively, only the signal intensity of at least one of thermal radiation, visible light, and reflected light may be used as the feature amount.
  • the determination device 50 smoothes the signal waveform before calculating the feature amount of the slope when calculating the feature amount (S2).
  • the slope of a straight line determined by two points at both ends of section T3 may be calculated without smoothing, for example, in the signal waveform before smoothing.
  • the determination device 50 uses two points of the signal waveform that pass through both ends of the section T3 as the gradient of the signal waveform, as shown in FIG.
  • the slope of the straight line Ls determined by is calculated.
  • the slope of the signal waveform may be calculated by, for example, averaging the slopes of a plurality of straight lines that approximate the signal waveform in each section obtained by further dividing the section T3.
  • the determination device 50 calculated the slopes of the signal waveforms of thermal radiation and visible light as feature amounts (S2).
  • the slope feature amount may be calculated based on either thermal radiation or visible light.
  • heat radiation may be used when the material is an aluminum material
  • visible light may be used when the material is a ferrous material, but is limited to this. Instead, it is preferable to select according to the absorptance of the material with respect to the laser wavelength.
  • the deviation of the focal position in the irradiation direction of the laser beam, including the distance is determined. This makes it possible to determine in detail the processing state in laser processing for lap welding.
  • the present disclosure is applicable to a processing state determination system in laser processing for lap welding, and is particularly applicable to a method and apparatus for determining deviation of the focal position of laser light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Quality & Reliability (AREA)
  • Laser Beam Processing (AREA)

Abstract

加工状態の判定方法は、光センサを用いて、レーザ光が被加工物に照射されることで被加工物の表面に形成される溶接部において発生する熱放射光、可視光及び反射光のうち少なくとも1つを検出する工程と、被加工物ごとの溶接時間に対応した時間区間での熱放射光、可視光及び反射光のうち少なくとも1つの変化を示す信号を取得する工程と、時間区間のうち所定の区間において、信号の信号波形を近似する直線の傾きを含む特徴量を算出する工程と、加工状態を判定する判定モデルに算出した特徴量を入力して、加工状態としてレーザ光の照射方向における焦点位置の遠近を含むズレを判定する工程と、判定した焦点位置のズレを判定結果として出力する工程とを含む。判定モデルは、焦点位置のズレが発生している状況下で算出された特徴量と発生した焦点位置のズレとを関連付けて含む訓練データに基づいて構築される。

Description

レーザ加工状態の判定方法及び判定装置
 本開示は、重ね合わせ溶接のためのレーザ加工における加工状態の判定方法、及び判定装置に関する。
 特許文献1は、パルス状に発生するレーザ光をワークに照射して溶接を行うレーザ溶接方法に適用され、ワークにおける溶接の良/不良等の溶接状態を判定するための、レーザ溶接の溶接状態判定方法等を開示している。特許文献1の方法は、レーザ溶接時にワークから放出されるプラズマ光および反射光の強度を検出光強度として検出し、レーザ光の1パルスに対応する検出光強度の1周期のうちから予め設定した抽出区間における検出光強度に基づいてパルス毎特徴値をレーザ光のパルス毎に抽出する。パルス毎特徴値として、検出光強度の平均値、差分処理による変化量、および差分処理による振幅などが算出される。特許文献1の方法は、パルス毎特徴値の下限値または上限値を極値として得て、極値と所定のしきい値とを比較し、ワーク毎の溶接状態として溶接欠陥の発生を判定する。
特開2000-153379号公報
 本開示の一態様によると、重ね合わせ溶接のためのレーザ加工における加工状態の判定方法が提供される。本方法は、光センサを用いて、レーザ光が被加工物に照射されることで被加工物の表面に形成される溶接部において発生する熱放射光、可視光及び反射光のうち、少なくとも1つを検出する工程と、被加工物ごとの溶接時間に対応した時間区間における熱放射光、可視光及び反射光の少なくとも1つの変化を示す信号を取得する工程と、時間区間のうち所定の区間において、信号の信号波形を近似する直線の傾きを含む特徴量を算出する工程と、加工状態を判定する判定モデルに算出した特徴量を入力して、加工状態として、レーザ光の照射方向における焦点位置の遠近を含むズレを判定する工程と、判定した焦点位置のズレを判定結果として出力する工程とを含む。判定モデルは、焦点位置のズレが発生している状況下で算出された特徴量と発生した焦点位置のズレとを関連付けて含む訓練データに基づいて構築される。
 本開示の一態様によると、重ね合わせ溶接のためのレーザ加工における加工状態の判定装置が提供される。判定装置は、演算回路と、通信回路とを備える。通信回路は、レーザ光が被加工物に照射されることで被加工物の表面に形成される溶接部において発生する熱放射光、可視光及び反射光のうち、少なくとも1つを光センサにより検出して生成された信号を受け付ける。当該信号は、被加工物ごとの溶接時間に対応した時間区間における熱放射光、可視光及び反射光の少なくとも1つの変化を示す信号である。演算回路は、通信回路により、信号を取得し、時間区間のうち所定の区間において、信号の信号波形を近似する直線の傾きを含む特徴量を算出し、加工状態を判定する判定モデルに算出した特徴量を入力して、レーザ光の照射方向における焦点位置の遠近を含むズレを加工状態として判定し、判定した焦点位置のズレを判定結果として、通信回路により出力する。判定モデルは、焦点位置のズレが発生している状況下で算出された特徴量と発生した焦点位置のズレとを関連付けて含む訓練データに基づいて構築される。
本開示の実施形態1に係る判定システムの概要を示す図 判定システムにおけるレーザ加工装置の構成を例示する図 判定システムにおける分光装置の構成を例示する図 判定システムにおける判定装置の構成を例示するブロック図 判定装置における判定処理を例示するフローチャート 判定装置において取得される信号を説明するための図 判定装置において特徴量を算出する処理を説明するための図 判定装置における判定モデルの処理を説明するための図 判定モデルの訓練処理を例示するフローチャート 判定モデルの訓練データを説明するための図
 レーザ溶接において、レーザ照射時に、レーザ光の照射方向における焦点の位置が被加工物(ワーク)の表面からずれるといった加工状態の変化により、接合面積が低下して、接合不良を引き起こす場合がある。こうした場合、接合不良の原因究明のために、加工状態の詳細な分析が求められる一方、溶接欠陥の発生を判定する方法では、焦点の位置がどのようにずれたのかといった詳細な判定が困難であった。
 本開示は、重ね合わせ溶接のためのレーザ加工における加工状態を詳細に判定することができる判定方法及び判定装置を提供する。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、発明者は、当業者が本開示を十分に理解するために添付図面および以下の説明を提供するのであって、これらによって特許請求の範囲に記載の主題は限定されることはない。
 (実施形態1)
 実施形態1では、本開示に係る判定方法及び判定装置を用いる一例として、重ね合わせ溶接のためのレーザ加工において発生する光の成分を検出し、検出した成分に基づく信号を取得して、加工状態を判定する判定システムについて説明する。
 1.構成
 実施形態1に係る判定システムについて、図1を用いて説明する。図1は、本実施形態に係る判定システム100の概要を示す図である。
 1-1.システムの概要
 判定システム100は、重ね合わせ溶接のためのレーザ加工を行うレーザ加工装置30と、光の成分を検出するための分光装置40と、判定装置50とを備える。判定装置50は、本開示に係る判定装置の一例である。重ね合わせ溶接の被加工物70は例えば金属からなり、レーザ光6が照射されると温度上昇による近赤外線領域の熱放射光(「熱放射」ともいう)、及び主に可視光成分である金属固有の発光またはプラズマ発光が発生する。また、レーザ光6は、加工に寄与しない一部が戻り光として反射する。このように、レーザ加工装置30から、レーザ光6が被加工物70に照射されると、被加工物70に形成される溶接部の一例である溶融部27において、熱放射、可視光及び反射光が発生する。
 これらの発生した光は、レーザ加工装置30において集光され、レーザ加工装置30と分光装置40を接続する光ファイバ13を通して、分光装置40に伝送される。分光装置40に伝送された光は、熱放射、可視光及び反射光に分光され、分光装置40の光センサ22により検知されて、信号に変換される。判定装置50は、分光装置40から信号を受信すると、レーザ光6の焦点位置F1のズレを判定して、判定結果を出力する。
 焦点位置F1のズレは、レーザ光6を被加工物70に照射する際に、被加工物70の表面近傍においてレーザ光6のスポット径が最小となる位置を基準の値「0」として、その基準に対する照射方向での遠近(「-」または「+」)を含めた数値により判定される。基準の位置は、レーザ光6の光路上のいかなる位置でもよい。例えば、基準の位置は、被加工物70の表面近傍でもよい。基準の位置は、複数の被加工物70のレーザ加工を繰り返す場合に、ある1つの被加工物70のレーザ加工を実施したときの焦点位置でもよい。例えば、レーザ加工装置30は、初回の焦点位置を記憶し、これを2回目以降の焦点位置のズレの基準としてもよい。
 1-2.レーザ加工装置の構成
 図2は、本実施形態のレーザ加工装置30の構成を例示する図である。レーザ加工装置30は、レーザ発振器1と、レーザ伝送用ファイバ2と、鏡筒3と、コリメートレンズ4と、集光レンズ5、11と、第1ミラー7と、第2ミラー8とを備える。
 レーザ発振器1は、例えば波長が約1070ナノメートル(nm)のパルス状のレーザ光6を発生するための光を供給する。レーザ発振器1から供給された光は、レーザ伝送用ファイバ2により伝送される間に増幅され、平行なビームを得るためのコリメートレンズ4を通り、レーザ光6を形成して、鏡筒3内を直進する。鏡筒3は、レーザ加工装置30における加工ヘッドを構成する。
 レーザ光6は、第1ミラー7において透過する一部を除いて反射し、集光レンズ5により集光されて、例えば走査テーブル(図示せず)上に押さえ治具26で固定された被加工物70に照射される。これにより、被加工物70の重ね合わせ溶接のためのレーザ加工が行われる。なお、レーザ光6の波長は特に1070nmに限らず、材料の吸収率が高い波長を用いることが好ましい。
 レーザ光6が照射されると、溶融部27において被加工物70からの熱放射、プラズマ発光による可視光、及びレーザ光6の反射光が発生する。これらの光は、第1ミラー7を透過し、第2ミラー8で反射して、集光レンズ11により集光された後、光ファイバ13を通って分光装置40に伝送される。なお、第2ミラー8において一部透過する光をカメラまたはセンサにより検知してもよい。
 1-3.分光装置の構成
 図3は、本実施形態の分光装置40の構成を例示する図である。分光装置40は、筐体28の内部に、コリメートレンズ15と、第3ミラー16と、第4ミラー17と、第5ミラー18と、集光レンズ19、20、21と、光センサ22と、伝送ケーブル23と、コントローラ24とを備える。筐体28は、分光装置40の外部から雑光が内部に入ることを防ぎ、内部からの光漏れを防止する。
 コリメートレンズ15は、レーザ加工装置30から光ファイバ13を通して伝送された光を平行光に戻す。第3ミラー16は、例えば波長が400nm~700nmの可視光を透過し、それ以外の成分を反射する。第4ミラー17は、例えば波長が約1070nmのレーザ光6の反射光を反射し、それ以外の成分を透過する。第5ミラー18は、例えば波長が1300nm~1550nmの熱放射を反射する。
 コリメートレンズ15を通った光は、第3ミラー16、第4ミラー17、及び第5ミラー18により、可視光、反射光、及び熱放射に分光され、それぞれ集光レンズ19~21により集光される。なお、第3ミラー16、第4ミラー17、及び第5ミラー18の後の光路に、それぞれ任意の帯域通過フィルタを配置することで、通過させる波長を選択可能としてもよい。
 光センサ22は、例えば各々が異なる波長に高い感度を有する光センサ22a、22b、22cを備える。光センサ22a、22b、22cは、それぞれ各集光レンズ19~21により集光された可視光、反射光、及び熱放射を検出して、検出した光の強度に応じた電気信号を生成する。なお、光センサ22は、波長ごとの強度を検出可能な1つの光センサにより構成されてもよい。
 光センサ22により生成された電気信号は、伝送ケーブル23を介してコントローラ24に伝送される。コントローラ24は、ハードウェアコントローラであり、分光装置40全体の動作を統括制御する。コントローラ24は、CPU及び通信回路等を含み、光センサ22から受けとった電気信号を、判定装置50に送信する。コントローラ24は、例えばA/D変換器を備えて、アナログの電気信号をデジタル信号(単に「信号」ともいう)に変換する。なお、デジタル信号に変換する際のサンプリング周期は、加工状態の判定において、加工プロセスの特徴及び物理量の局所的な値の傾向を捉えるために十分なサンプル数を確保する観点から、例えばレーザ光6の出力制御を行う時間の100分の1以下が好ましい。
 1-4.判定装置の構成
 図4は、本実施形態の判定装置50の構成を例示するブロック図である。判定装置50は、例えばコンピュータのような情報処理装置で構成される。判定装置50は、演算の処理を行うCPU51と、他の機器と通信を行うための通信回路52と、データ及びコンピュータプログラムを記憶する記憶装置53とを備える。
 CPU51は、本実施形態における判定装置の演算回路の一例である。CPU51は、記憶装置53に格納された制御プログラム56の実行により、判定モデル57の訓練及び実行を含む所定の機能を実現する。判定装置50は、CPU51が制御プログラム56を実行することで、本実施形態における判定装置としての機能を実現する。なお、本実施形態でCPU51として構成される演算回路は、MPUまたはGPU等の種々のプロセッサで実現されてもよく、1つまたは複数のプロセッサで構成されてもよい。
 通信回路52は、例えばIEEE802.11、4G、または5G等の規格に準拠して通信を行う通信回路である。通信回路52は、例えばイーサネット(登録商標)等の規格に従って有線通信を行ってもよい。通信回路52は、インターネット等の通信ネットワークに接続可能である。また、判定装置50は、通信回路52を介して他の機器と直接通信を行ってもよく、アクセスポイント経由で通信を行ってもよい。なお、通信回路52は、通信ネットワークを介さずに他の機器と通信可能に構成されてもよい。例えば、通信回路52は、USB(登録商標)端子及びHDMI(登録商標)端子等の接続端子を含んでもよい。
 記憶装置53は、判定システム100の機能を実現するために必要なコンピュータプログラム及びデータを記憶する記憶媒体であり、CPU51で実行される制御プログラム56、及び各種のデータを格納している。記憶装置53は、判定モデル57の構築後は判定モデル57を格納する。判定モデル57は、レーザ光6の焦点位置F1のズレが発生している状況下で算出された特徴量と発生した焦点位置F1のズレとを含む訓練データに基づいて構築される。判定モデル57の詳細は後述する。
 記憶装置53は、例えばハードディスクドライブ(HDD)のような磁気記憶装置、光ディスクドライブのような光学的記憶装置またはSSDのような半導体記憶装置で構成される。記憶装置53は、例えばDRAMまたはSRAM等のRAMにより構成される一時的な記憶素子を備えてもよく、CPU51の内部メモリとして機能してもよい。
 2.動作
 以上のように構成される判定システム100において、例えば図1に示すように、分光装置40は、光センサ22により、レーザ光6の照射により溶融部27において発生する熱放射、可視光及び反射光を検出する。分光装置40は、検出した熱放射、可視光及び反射光の強度に応じた信号を判定装置50に送信する。本システム100における判定装置50の動作を、以下に説明する。
 2-1.判定処理
 以下では、判定装置50において、加工状態として焦点位置F1のズレを判定する判定処理について、図5~図8を用いて説明する。
 図5は、本実施形態の判定装置50における判定処理を例示するフローチャートである。本フローチャートに示す各処理は、例えば判定装置50のCPU51により実行される。本フローチャートは、例えば、通信回路52を介して接続された入力装置から、判定システム100のユーザ等により判定処理を開始するための所定の操作が入力されることで開始される。
 まず、CPU51は、通信回路52により、分光装置40の光センサ22で検知された熱放射、可視光及び反射光に対応する信号を取得する(S1)。
 図6は、判定装置50において取得される信号を説明するための図である。図6の(A)、(B)、(C)は、それぞれ熱放射、可視光及び反射光の強度に応じた信号波形を示す。図6の(D)は、被加工物70に照射されたレーザ光6の出力を示す。図6の(A)~(C)の各信号は、当該レーザ出力により発生した熱放射、可視光及び反射光に対応する。図6の(A)~(D)において、横軸は時間を示し、縦軸は信号強度(図6の(A)~(C))またはレーザ出力(図6の(D))を示す。また、時間T1はレーザ光6の1パルスに相当する時間区間を示し、時間T2はレーザ出力の立ち上がりと立下りを除くピーク出力の時間区間を示す。
 ここで、本実施形態のレーザ加工装置30では、レーザ光6の1パルスに相当する時間T1において、被加工物70ごとの溶接が行われる。図5のステップS1においてCPU51は、図6の(A)~(C)に示すように、被加工物70ごとの溶接時間に対応した時間T1における熱放射、可視光及び反射光の変化を示す信号を取得する。ただし、熱放射、可視光及び反射光の強度は、加工後の残熱の影響を受け、信号波形の終端がレーザ出力より時間的に延びることがある。しかしこの場合においても、後述する所定の区間T3を抽出することで、残熱の影響を受けず焦点位置のズレを判定することができる。
 次に、CPU51は、取得した信号から、判定モデル57に入力する特徴量を算出する(S2)。
 図7は、判定装置50において特徴量を算出する処理(S2)を説明するための図である。図7の(A)は、図6の(A)~(C)と同様の縦軸及び横軸において、熱放射、可視光または反射光に対応する信号の信号強度の時間変化を示す。図7の(B)は、図7の(A)の信号にスムージング処理を適用した信号波形を示す。CPU51は、図5のステップS2において、ステップS1で取得した図7の(A)のような各成分の信号に平滑化フィルタを適用して、スムージング処理を行うことで、図7の(B)のような信号波形を生成する。
 図7の(C)は、図7の(B)の信号波形において、時間T1、T2及び時間T1のうちの所定の区間T3を示す。ステップS2において、CPU51は、図7の(D)に示すような所定の区間T3において信号波形を近似する直線Lsを設定して、特徴量として直線Lsの傾きを算出する。区間T3は、レーザ光6の1パルスの時間T1のうち、例えばレーザ光6のピーク出力に対応する時間T2の中心60から1~3ミリ秒の区間として予め設定される。図7の(D)の例では、傾きの特徴量として、区間T3の両端を通るスムージング後の信号波形の2点により定まる直線Lsの傾きが算出される。
 本実施形態では、図5のステップS2において、CPU51は、特徴量として、熱放射、可視光及び反射光に対応する信号波形の傾きを算出する。特に熱放射及び可視光は、被加工物70の材料の溶融状態の変化を反映しやすく、これらについて信号波形の傾きを用いることで、精度良く焦点位置F1のズレを判定し得る。
 また、本実施形態では、図5のステップS2において、CPU51はさらに、熱放射、可視光、及び反射光の信号について、正規化といった前処理を行った信号強度を特徴量として算出する。信号強度の特徴量は、例えば、A/D変換におけるサンプリング周期ごとの信号波形の振幅として、判定モデル57に入力される。
 また、本実施形態のステップS2において、CPU51は、特徴量としてさらに、反射光に対応する信号について信号強度の積分値を算出する。CPU51は、例えば時間T1において信号強度の積分値を算出する。信号強度の積分値は、信号波形に応じて、時間T1よりも短い時間T2、区間T3または他の時間区間に限定して信号強度を積分することで算出されてもよい。反射光は、他の成分と比べて、図6の(C)の例のように信号強度の変動が小さく、また、レーザ光6の出力波形を最も反映すると考えられる。これにより、反射光の信号強度の積分値を用いることで、焦点位置F1のズレによる発光エネルギーの変化を精度良く反映して判定を行い得る。
 特徴量の算出後(S2)、CPU51は、特徴量を判定モデル57に入力して焦点位置F1のズレを判定する処理(S3)を行う。本実施形態では、判定モデルの処理(S3)において、CPU51は、焦点位置F1のズレとして、基準の位置に対する焦点位置F1の相対位置を示す数値を判定する。
 図8は、判定モデルの処理(S3)を説明するための図である。図8は、レーザ光6の焦点位置F1がプラス(+)側、基準の位置である「0」付近、またはマイナス(-)側にある場合のスムージング後の信号波形(図8の(A))、及びレーザ光6の焦点位置F1と被加工物70の位置関係(図8の(B))を示す。図8において、焦点位置F1のズレは、図1と同様の座標軸により表されている。
 判定モデルの処理(S3)は、図8に示すような信号波形と焦点位置F1との対応関係に基づいて学習された判定モデル57により行われる。以下、信号波形と焦点位置F1との対応関係について、図8を用いて本開示における技術の発明者によって得られた知見を説明する。
 焦点位置F1が基準の「0」付近にあるとき、即ち、被加工物70の表面近傍においてレーザ光6のスポット径が最小となるジャストフォーカスの状態であるとき、信号波形の傾きは「0」に近い。焦点位置F1がプラス方向にずれると、ジャストフォーカスの状態と比較して信号強度が増加する一方、傾きは小さくなる。焦点位置F1がマイナス方向にずれると、ジャストフォーカスの状態と比較して信号強度が増加し、傾きも大きくなる。傾きが小さいとは、負の傾き(時間とともに信号強度が減少)を意味する。傾きが大きいとは、正の傾き(時間とともに信号強度が増大)を意味する。
 焦点位置F1がずれると信号強度が増加する要因として、被加工物70の表面におけるレーザ光6の照射面積が増加して、溶融部27での発光面積が増加することが考えられる。また、信号波形の傾きに関して、溶接加工の開始時に、レーザ光6の照射により被加工物70の表面が融解して蒸発することで、当該表面に空洞(キーホール)が形成される。キーホールの形成にはレーザ光6による入熱を要するが、焦点位置F1がずれると、ジャストフォーカスの状態とは異なるタイミングで入熱量が高くなることで、溶融部27から特に熱放射及び可視光等が発生しやすくなり、信号波形の傾きが変化すると想定される。さらに、焦点位置F1がプラス方向にずれると、被加工物70の表面や内部に照射される熱の総量が少なく、また焦点位置F1が被加工物70の外側に存在するため、熱が逃げやすくなる。逆に、焦点位置F1がマイナス方向にずれると、被加工物70の表面や内部に照射される熱の総量は大きく、また焦点位置F1が被加工物70の内側に存在するため、熱が逃げにくくなる。そのため、焦点位置F1がプラス方向にずれると傾きが小さくなり、焦点位置F1がマイナス方向にずれると傾きが大きくなると考えられる。
 本発明者は、上記の知見に基づき、熱放射、可視光及び反射光の少なくとも1つに対応する信号から、信号波形の傾き及び信号強度等の特徴量を用いて、焦点位置F1のズレを予測可能であると推測した。そこで本発明者は、後述するように、これらの特徴量と焦点位置F1のズレとを訓練データとして判定モデル57を構築して、判定モデル57による判定処理を行うこととした。このように構築された判定モデル57によれば、信号に基づく特徴量を入力すると、焦点位置F1の遠近を含むズレが出力される(S3)。
 図5に戻り、CPU51は、判定モデルの処理(S3)により判定された焦点位置F1のズレの判定結果を、通信回路52により出力する(S4)。判定結果は、例えば外部の情報処理装置または表示機器等により受信されて、表示され得る。また、判定装置50がCPU51と通信可能な表示装置(例えばディスプレイ)を備え、表示装置に判定結果を表示させてもよい。
 その後、CPU51は、図5のフローチャートを終了する。図5のフローチャートは、例えば、被加工物70ごとの溶接加工を行う度に繰り返し実行される。
 以上の判定処理によると、本実施形態の判定装置50は、分光装置40の光センサ22により生成された信号を取得して(S1)、信号から特徴量を算出し(S2)、その特徴量に基づいて判定モデル57により焦点位置F1のズレを判定する(S3)。これにより、判定装置50は、重ね合わせ溶接のためのレーザ加工における加工状態として、レーザ光6の焦点位置F1のズレを詳細に判定することができる。
 なお、図5のステップS2において、特徴量として、信号波形の傾き及び/または信号強度の積分値が熱放射、可視光及び反射光の全てについて算出されてもよく、或いは1つについてのみ算出されてもよい。
 2-2.訓練処理
 以下、判定モデル57を構築するための訓練処理について、図9及び図10を用いて説明する。
 図9は、判定モデル57の訓練処理を例示するフローチャートである。本フローチャートの各処理は、例えば判定装置50のCPU51によって実行される。
 まず、CPU51は、例えば記憶装置53に予め格納された訓練データを取得する(S11)。
 図10は、判定モデル57の訓練データD1を説明するための図である。訓練データD1は、例えば熱放射、可視光及び反射光の信号波形の傾き、反射光の信号強度の積分値、及びこれら熱放射、可視光及び反射光の信号強度(図示せず)といった特徴量と、焦点位置F1のズレとを対応付けたデータである。訓練データD1は、焦点位置F1のズレが変化する複数の条件下で実際にレーザ加工を行い検出された熱放射、可視光及び反射光に基づく信号から特徴量を算出して、その際の焦点位置F1のズレと関連付けて記録することで構築される。
 図9に戻り、CPU51は、訓練データD1を取得すると(S1)、訓練データD1を用いて機械学習を行い、判定モデル57を生成する(S2)。判定モデル57は、例えば線形回帰、ラッソ回帰、リッジ回帰、決定木、ランダムフォレスト、勾配ブースティング、サポートベクトル回帰、ガウス過程回帰、ニューラルネットワーク、またはk近傍法等に基づく回帰モデルとして生成される。
 以上の訓練処理によると、レーザ加工において検出された熱放射、可視光及び反射光に対応する信号に基づく特徴量から、焦点位置F1のズレを判定する学習済みモデルとして、判定モデル57を生成することができる。
 なお、判定モデル57の訓練処理は、判定装置50とは別の情報処理装置において実行されてもよい。判定装置50は、例えば通信ネットワークを介して、通信回路52により構築済みの判定モデルを取得してもよい。
 3.効果等
 以上のように、本実施形態において、判定処理(S1~S4)は、重ね合わせ溶接のためのレーザ加工における加工状態の判定方法を提供する。本方法は、光センサ22を用いて、レーザ光6が被加工物70に照射されることで被加工物70の表面に形成される溶融部27(溶接部の一例)において発生する熱放射(熱放射光)、可視光及び反射光のうち、少なくとも1つを検出する工程と、被加工物70ごとの溶接時間に対応した時間T1(時間区間)における熱放射、可視光及び反射光の少なくとも1つの変化を示す信号を取得する工程(S1)と、時間T1のうち所定の区間T3において、当該信号の信号波形を近似する直線Lsの傾きを含む特徴量を算出する工程(S2)と、加工状態を判定する判定モデル57に算出した特徴量を入力して、加工状態として、レーザ光6の照射方向における焦点位置F1の遠近を含むズレを判定する工程(S3)と、判定した焦点位置F1のズレを判定結果として出力する工程(S4)とを含む。判定モデル57は、焦点位置F1のズレが発生している状況下で算出された特徴量と発生した焦点位置F1のズレとを関連付けて含む訓練データD1に基づいて構築される。
 以上の方法によると、レーザ光6の照射により発生して検知された熱放射、可視光及び反射光の少なくとも何れかに基づく信号を取得して(S1)、信号波形を近似する直線Lsの傾きといった特徴量を算出し(S2)、判定モデル57による判定を行う(S3)。これにより、信号波形の傾き等の特徴量と、加工状態としてレーザ光6の焦点位置F1の遠近を含むズレとを関係づけた訓練データD1を用いて構築された判定モデル57により、加工状態を詳細に判定することができる。
 本実施形態において、判定モデル57は、加工状態が変化する複数の条件における各条件のもとでレーザ加工を行って検出された熱放射、可視光及び反射光の少なくとも1つに基づく信号から算出された特徴量と、各条件における焦点位置F1のズレと、を関連付けた訓練データD1を用いた機械学習により生成される(S11~S12)学習済みモデルを含む。これにより、検出された熱放射、可視光及び反射光の少なくとも1つに基づく特徴量から、加工状態として焦点位置F1のズレを判定する判定モデル57が得られる。
 本実施形態において、焦点位置のズレF1は、重ね合わせ溶接における重ね合わせ方向に沿って、予め設定された位置を基準として判定される。焦点位置F1のズレは、基準の位置に対する焦点位置の相対位置を示す数値を含む。これにより、レーザ光6の照射方向において焦点位置F1がどの程度遠くまたは近くずれたのかを含めて、レーザ加工における加工状態を詳細に判定することができる。
 本実施形態において、特徴量を算出する工程(S2)は、特徴量の算出前に、信号の信号波形をスムージングすることを含む。これにより、信号強度が細かく変動する信号波形(図6参照)において、傾きの特徴量を算出しやすくすることができる。
 本実施形態において、特徴量は、信号の信号強度を含む。これにより、例えば信号強度の時間変化に応じた信号波形の情報をそのまま用いて、判定モデル57による加工状態の判定を行うことができる。
 本実施形態において、特徴量は、信号の信号強度の積分値を含む。これにより、レーザ出力が続く時間にわたって焦点位置F1のズレに伴い信号強度が増大する傾向を反映して、焦点位置F1のズレを判定しやすくすることができる。
 本実施形態の判定システム100において、判定装置50は、重ね合わせ溶接のためのレーザ加工における加工状態の判定装置の一例である。判定装置50は、演算回路の一例としてCPU51と、通信回路52とを備える。通信回路52は、レーザ光6が被加工物70に照射されることで被加工物70の表面に形成される溶融部27(溶接部の一例)において発生する熱放射(熱放射光)、可視光及び反射光のうち、少なくとも1つを光センサ22により検出して生成された信号を受け付ける。信号は、被加工物70ごとの溶接時間に対応した時間区間の一例として時間T1における熱放射、可視光及び反射光の少なくとも1つの変化を示す信号である。CPU51は、通信回路52により、信号を取得し(S1)、時間T1のうち所定の区間T3において、信号の信号波形を近似する直線Lsの傾きを含む特徴量を算出し(S2)、加工状態を判定する判定モデル57に算出した特徴量を入力して、レーザ光6の照射方向における焦点位置F1の遠近を含むズレを加工状態として判定し(S3)、判定した焦点位置F1のズレを判定結果として、通信回路52により出力する(S4)。判定モデル57は、焦点位置F1のズレが発生している状況下で算出された特徴量と、発生した焦点位置F1のズレとを関連付けて含む訓練データD1に基づいて構築される。
 以上の判定装置50によると、上述した判定方法を実行して、重ね合わせ溶接のためのレーザ加工における加工状態を詳細に判定することができる。
 (他の実施形態)
 以上のように、本出願において開示する技術の例示として、上記の実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、上記の各実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 上記の実施形態1では、判定装置50は、特徴量として、熱放射及び可視光に対応する信号の信号波形の傾きに加えて、熱放射、可視光及び反射光の信号強度、及び反射光の信号強度の積分値を算出した(S2)。本実施形態において、特徴量は特にこれらに限らず、例えば信号波形の傾きのみでもよく、或いは信号強度及び積分値の何れかが含まれなくてもよい。また、熱放射、可視光、及び反射光のうち、少なくとも1つの信号強度のみが特徴量に用いられてもよい。
 上記の実施形態1では、判定装置50は、特徴量を算出する(S2)際に、信号波形をスムージングしてから傾きの特徴量を算出した。本実施形態では、スムージングを行わずに、例えばスムージング前の信号波形において、区間T3の両端の2点により定まる直線の傾きが算出されてもよい。
 上記の実施形態1では、判定装置50は、特徴量を算出する(S2)際に、図7の(D)のように、信号波形の傾きとして、区間T3の両端を通る信号波形の2点により定まる直線Lsの傾きを算出した。本実施形態では、信号波形の傾きは、例えば区間T3をさらに分割した各区間において信号波形を近似する複数の直線の傾きを平均することで算出されてもよい。
 上記の実施形態1では、判定装置50は、特徴量として、熱放射及び可視光の信号波形の傾きを算出した(S2)。本実施形態において、傾きの特徴量は、熱放射または可視光の何れかに基づいて算出されてもよい。例えば被加工物70の材料に応じて、材料がアルミ材である場合には熱放射を用い、材料が鉄系材料である場合には、可視光を用いてもよいが、これに限定するものではなく、レーザ波長に対する材料の吸収率に応じて選択することが好ましい。
 本開示における判定方法及び判定装置によると、レーザ光の照射方向における焦点位置の遠近を含むズレを判定する。これにより、重ね合わせ溶接のためのレーザ加工における加工状態を詳細に判定することができる。
 本開示は上述した実施形態に限定されるものではなく、種々の変更が可能である。すなわち、当業者が適宜変更した技術的手段を組み合わせて得られる実施形態についても本開示の範疇である。
 本開示は、重ね合わせ溶接のためのレーザ加工における加工状態の判定システムに適用可能であり、特にレーザ光の焦点位置のズレを判定する方法及び装置に適用可能である。
 1 レーザ発振器
 2 レーザ伝送用ファイバ
 3 鏡筒
 4 コリメートレンズ
 5、11 集光レンズ
 6 レーザ光
 7 第1ミラー
 8 第2ミラー
 13 光ファイバ
 15 コリメートレンズ
 16 第3ミラー
 17 第4ミラー
 18 第5ミラー
 19、20、21 集光レンズ
 22 光センサ
 23 伝送ケーブル
 24 コントローラ
 26 押さえ治具
 27 溶融部
 30 レーザ加工装置
 40 分光装置
 50 判定装置
 51 CPU
 52 通信回路
 53 記憶装置
 56 制御プログラム
 57 判定モデル
 70 被加工物
 F1 焦点位置
 D1 訓練データ
 100 判定システム

Claims (12)

  1.  重ね合わせ溶接のためのレーザ加工における加工状態の判定方法であって、
     光センサを用いて、レーザ光が被加工物に照射されることで前記被加工物の表面に形成される溶接部において発生する熱放射光、可視光及び反射光のうち、少なくとも1つを検出する工程と、
     前記被加工物ごとの溶接時間に対応した時間区間における前記熱放射光、前記可視光及び前記反射光の前記少なくとも1つの変化を示す信号を前記光センサから取得する工程と、
     前記時間区間のうち所定の区間において、前記信号の信号波形を近似する直線の傾きを含む特徴量を算出する工程と、
     前記加工状態を判定する判定モデルに算出した前記特徴量を入力して、前記加工状態として、前記レーザ光の照射方向における焦点位置の遠近を含むズレを判定する工程と、
     判定した前記焦点位置のズレを判定結果として出力する工程と、
    を含み、
     前記判定モデルは、前記焦点位置のズレが発生している状況下で算出された前記特徴量と発生した前記焦点位置のズレとを関連付けて含む訓練データに基づいて構築される
    判定方法。
  2.  前記判定モデルは、前記加工状態が変化する複数の条件における各条件のもとで、前記レーザ加工を行って検出された前記熱放射光、前記可視光及び前記反射光の前記少なくとも1つに基づく信号から算出された特徴量と、前記各条件における前記焦点位置のズレと、を関連付けた訓練データを用いた機械学習により生成される学習済みモデルを含む
    請求項1に記載の判定方法。
  3.  前記焦点位置のズレは、前記重ね合わせ溶接における重ね合わせ方向に沿って、予め設定された位置を基準として判定され、
     前記焦点位置のズレは、前記基準の位置に対する前記焦点位置の相対位置を示す数値を含む
    請求項2に記載の判定方法。
  4.  前記特徴量を算出する工程は、前記特徴量の算出前に、前記信号の信号波形をスムージングすることを含む
    請求項1から3のいずれか一項に記載の判定方法。
  5.  前記特徴量は、前記信号の信号強度を含む
    請求項1から4のいずれか一項に記載の判定方法。
  6.  前記特徴量は、前記信号の信号強度の積分値を含む
    請求項1から5のいずれか一項に記載の判定方法。
  7.  重ね合わせ溶接のためのレーザ加工における加工状態の判定装置であって、
     演算回路と、
     レーザ光が被加工物に照射されることで前記被加工物の表面に形成される溶接部において発生する熱放射光、可視光及び反射光のうち、少なくとも1つを光センサにより検出して生成された信号を受け付ける通信回路と、
    を備え、
     前記信号は、前記被加工物ごとの溶接時間に対応した時間区間における前記熱放射光、前記可視光及び前記反射光の前記少なくとも1つの変化を示す信号であり、
     前記演算回路は、
     前記通信回路により、前記信号を取得し、
     前記時間区間のうち所定の区間において、前記信号の信号波形を近似する直線の傾きを含む特徴量を算出し、
     前記加工状態を判定する判定モデルに算出した前記特徴量を入力して、前記レーザ光の照射方向における焦点位置の遠近を含むズレを前記加工状態として判定し、
     判定した前記焦点位置のズレを判定結果として、前記通信回路により出力し、
     前記判定モデルは、前記焦点位置のズレが発生している状況下で算出された前記特徴量と発生した前記焦点位置のズレとを関連付けて含む訓練データに基づいて構築される
    判定装置。
  8.  前記判定モデルは、前記加工状態が変化する複数の条件における各条件のもとで、前記レーザ加工を行って検出された前記熱放射光、前記可視光及び前記反射光の前記少なくとも1つに基づく信号から算出された特徴量と、前記各条件における前記焦点位置のズレと、を関連付けた訓練データを用いた機械学習により生成される学習済みモデルを含む
    請求項7に記載の判定装置。
  9.  前記焦点位置のズレは、前記重ね合わせ溶接における重ね合わせ方向に沿って、予め設定された位置を基準として判定され、
     前記焦点位置のズレは、前記基準の位置に対する前記焦点位置の相対位置を示す数値を含む
    請求項8に記載の判定装置。
  10.  前記演算回路は、前記特徴量の算出前に、前記信号の信号波形をスムージングする処理を行う
    請求項7から9のいずれか一項に記載の判定装置。
  11.  前記特徴量は、前記信号の信号強度を含む
    請求項7から10のいずれか一項に記載の判定装置。
  12.  前記特徴量は、前記信号の信号強度の積分値を含む
    請求項7から11のいずれか一項に記載の判定装置。
PCT/JP2022/005378 2021-02-26 2022-02-10 レーザ加工状態の判定方法及び判定装置 WO2022181359A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023502280A JPWO2022181359A1 (ja) 2021-02-26 2022-02-10
CN202280016161.2A CN116887941A (zh) 2021-02-26 2022-02-10 激光加工状态的判定方法以及判定装置
US18/234,575 US20230390863A1 (en) 2021-02-26 2023-08-16 Laser machining condition determination method and determination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029933 2021-02-26
JP2021029933 2021-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/234,575 Continuation US20230390863A1 (en) 2021-02-26 2023-08-16 Laser machining condition determination method and determination device

Publications (1)

Publication Number Publication Date
WO2022181359A1 true WO2022181359A1 (ja) 2022-09-01

Family

ID=83049187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005378 WO2022181359A1 (ja) 2021-02-26 2022-02-10 レーザ加工状態の判定方法及び判定装置

Country Status (4)

Country Link
US (1) US20230390863A1 (ja)
JP (1) JPWO2022181359A1 (ja)
CN (1) CN116887941A (ja)
WO (1) WO2022181359A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980092A (zh) * 2023-03-20 2023-04-18 宁波吉宁汽车零部件有限公司 一种焊接件检测设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347760A (ja) * 1998-06-03 1999-12-21 Suzuki Motor Corp 溶接レーザの焦点位置検出装置
JP2007044719A (ja) * 2005-08-09 2007-02-22 Mitsubishi Heavy Ind Ltd レーザ加工装置
JP2012071340A (ja) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp レーザ加工装置
JP2013535340A (ja) * 2010-08-16 2013-09-12 ジーエスアイ グループ リミテッド ファイバーレーザのフォーカス最適化方法及び材料加工装置、ファイバーレーザのフォーカス変化の測定方法
US20150224600A1 (en) * 2012-10-22 2015-08-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and Processing Machine for Piercing, Drilling, or Cutting Metal Workpieces

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347760A (ja) * 1998-06-03 1999-12-21 Suzuki Motor Corp 溶接レーザの焦点位置検出装置
JP2007044719A (ja) * 2005-08-09 2007-02-22 Mitsubishi Heavy Ind Ltd レーザ加工装置
JP2013535340A (ja) * 2010-08-16 2013-09-12 ジーエスアイ グループ リミテッド ファイバーレーザのフォーカス最適化方法及び材料加工装置、ファイバーレーザのフォーカス変化の測定方法
JP2012071340A (ja) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp レーザ加工装置
US20150224600A1 (en) * 2012-10-22 2015-08-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Method and Processing Machine for Piercing, Drilling, or Cutting Metal Workpieces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980092A (zh) * 2023-03-20 2023-04-18 宁波吉宁汽车零部件有限公司 一种焊接件检测设备
CN115980092B (zh) * 2023-03-20 2023-06-23 宁波吉宁汽车零部件有限公司 一种焊接件检测设备

Also Published As

Publication number Publication date
US20230390863A1 (en) 2023-12-07
CN116887941A (zh) 2023-10-13
JPWO2022181359A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
US6670574B1 (en) Laser weld monitor
You et al. Review of laser welding monitoring
JP5971533B2 (ja) 溶接方法、溶接装置、及び電池の製造方法
JP2019534788A (ja) 溶接深さを光学的に測定するための方法
JP7506182B2 (ja) レーザ加工プロセスを分析する方法、レーザ加工プロセスを分析するシステム、及びそのようなシステムを備えるレーザ加工システム
US20160151859A1 (en) System and method for controlling the input energy from an energy point source during metal processing
JP6151660B2 (ja) レーザ溶接装置及びレーザ溶接方法
WO2022181359A1 (ja) レーザ加工状態の判定方法及び判定装置
US20210107096A1 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
KR20180091480A (ko) 용접 불량 유형별 검출 시스템 및 방법
JP3184962B2 (ja) レーザ溶接の溶接状態検出方法
CN116157223A (zh) 激光加工装置
WO2022181060A1 (ja) レーザ加工状態の判定方法及び判定装置
Li et al. A modified welding image feature extraction algorithm for rotating arc narrow gap MAG welding
WO2023218701A1 (ja) 加工状態の判定方法及び判定装置
JP2017024046A (ja) レーザ溶接監視装置とレーザ溶接監視方法
JPH0423724B2 (ja)
JP2024530685A (ja) スペクトログラムに基づいてレーザ加工プロセスを分析する方法及びシステム
JP2003010989A (ja) レーザ照射領域監視装置、レーザ照射領域監視方法、レーザ加工装置及びレーザ加工方法
JP2007007698A (ja) レーザ加工ヘッド
JP2023166927A (ja) レーザ加工状態の判定方法及び判定装置
JP7098956B2 (ja) 光学非破壊検査方法及び光学非破壊検査装置
WO2024024579A1 (ja) レーザ溶接モニタリング装置
JP2014222205A (ja) 光学非破壊検査方法及び光学非破壊検査装置
JPH0825072A (ja) レーザ溶接機用の溶接状態監視装置およびその監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023502280

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280016161.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759398

Country of ref document: EP

Kind code of ref document: A1