WO2022181175A1 - 情報処理装置、情報処理方法、プログラム、表示システム - Google Patents

情報処理装置、情報処理方法、プログラム、表示システム Download PDF

Info

Publication number
WO2022181175A1
WO2022181175A1 PCT/JP2022/003043 JP2022003043W WO2022181175A1 WO 2022181175 A1 WO2022181175 A1 WO 2022181175A1 JP 2022003043 W JP2022003043 W JP 2022003043W WO 2022181175 A1 WO2022181175 A1 WO 2022181175A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
viewpoint
camera
rotation center
information
Prior art date
Application number
PCT/JP2022/003043
Other languages
English (en)
French (fr)
Inventor
翔 小倉
義博 吉岡
圭一 吉岡
潤 吉川
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to EP22759217.7A priority Critical patent/EP4300950A4/en
Priority to US18/272,489 priority patent/US20240314279A1/en
Publication of WO2022181175A1 publication Critical patent/WO2022181175A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/90Arrangement of cameras or camera modules, e.g. multiple cameras in TV studios or sports stadiums
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • H04N13/117Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/21Server components or server architectures
    • H04N21/218Source of audio or video content, e.g. local disk arrays
    • H04N21/21805Source of audio or video content, e.g. local disk arrays enabling multiple viewpoints, e.g. using a plurality of cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/65Transmission of management data between client and server
    • H04N21/658Transmission by the client directed to the server
    • H04N21/6587Control parameters, e.g. trick play commands, viewpoint selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/816Monomedia components thereof involving special video data, e.g 3D video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources

Definitions

  • the present technology relates to an information processing device, its method, program, and display system, and more particularly to a processing technology related to a free-viewpoint image that allows a captured subject to be viewed from any viewpoint in a three-dimensional space.
  • Patent Literature 1 discloses a technique for generating a camera path that can be said to be a locus of movement of a viewpoint.
  • Free-viewpoint images are also useful as broadcast content, and are used, for example, as replay images for sports broadcasts.
  • a clip of several seconds such as a shot scene is created from images recorded in real time and broadcast as a replay image.
  • a “clip” refers to an image of a certain scene created by extracting or further processing the recorded image.
  • This technology was created in view of the above circumstances, and aims to speed up the work of creating free-viewpoint images.
  • the information processing apparatus displays a rotation center indicating the position of the viewpoint rotation center of the free viewpoint image on the target space captured image, which is an image obtained by capturing a real space for which the free viewpoint image is to be generated. It is provided with a display control unit that performs control for displaying the position information.
  • a space for which a free viewpoint image is generated means a real space in which an object that is a subject of the free viewpoint image exists. According to the above configuration, it is possible to visualize and display the viewpoint rotation center position of the free viewpoint image on the captured image that captures the real space for which the free viewpoint image is generated.
  • FIG. 1 is a block diagram of a system configuration of an embodiment of the present technology
  • FIG. FIG. 4 is an explanatory diagram of an example of camera arrangement for generating a free viewpoint image according to the embodiment
  • 1 is a block diagram of a hardware configuration of an information processing apparatus according to an embodiment
  • FIG. FIG. 4 is an explanatory diagram of functions of an image creation controller according to the embodiment
  • FIG. 4 is an explanatory diagram of functions of the free viewpoint image server of the embodiment
  • FIG. 4 is an explanatory diagram of viewpoints in a free viewpoint image according to the embodiment
  • FIG. 10 is an explanatory diagram of an overview of a camera path designation screen in the embodiment
  • FIG. 10 is an explanatory diagram of an overview of a creation operation screen in the embodiment
  • FIG. 4 is an explanatory diagram of an output clip according to the embodiment
  • FIG. FIG. 10 is an explanatory diagram of an output clip including a still image FV clip according to the embodiment
  • FIG. FIG. 4 is an explanatory diagram of an output clip including a moving image FV clip according to the embodiment
  • FIG. FIG. 10 is an explanatory diagram of an example image of an output clip according to the embodiment
  • FIG. 4 is an explanatory diagram of a work procedure for clip creation according to the embodiment
  • FIG. 10 is an explanatory diagram of a work procedure for camera variation detection according to the embodiment
  • FIG. 10 is a diagram showing an example of an image captured by an imaging device corresponding to a start viewpoint and an end viewpoint of a free viewpoint image
  • FIG. 10 is an image diagram of image clipping;
  • FIG. 10 is an image diagram of image clipping; FIG.
  • FIG. 11 is a diagram showing an example of an initial screen of a generation operation screen;
  • FIG. 11 is a diagram illustrating an example of a generation operation screen after scene designation;
  • FIG. 11 is a diagram illustrating an example of a generation operation screen when a camera path is designated from the camera path list display section;
  • FIG. 10 is a diagram for explaining an example of specifying the position of the viewpoint rotation center by operating the rotation center position information in the camera path window;
  • FIG. 11 is a diagram for explaining an example of specifying the position of the viewpoint rotation center by operating the rotation center position information in the camera path window.
  • FIG. 11 is a diagram illustrating a GUI for adjusting the depth of the arc of the viewpoint movement trajectory;
  • FIG. 11 is a diagram showing an example of an initial screen of a generation operation screen;
  • FIG. 11 is a diagram illustrating an example of a generation operation screen after scene designation;
  • FIG. 11 is a diagram illustrating an example of a generation operation screen when a camera path is designated from the camera
  • FIG. 10 is an explanatory diagram for specifying the height position of the viewpoint rotation center; Similarly, it is an explanatory diagram for specifying the height position of the viewpoint rotation center.
  • FIG. 10 is a diagram for explaining an operation example of specifying the position of the viewpoint rotation center (positioning in the horizontal direction);
  • FIG. 10 is a diagram for explaining an operation example for specifying an image frame for clipping; Similarly, it is a figure for demonstrating the operation example for image frame designation
  • FIG. 11 is an explanatory diagram of a modification of specifying the size of a cropped image frame;
  • FIG. 11 is a diagram illustrating an example of a generation operation screen when designation of a viewpoint rotation center and an image frame is completed;
  • FIG. 10 is a diagram showing an example of a generation operation screen corresponding to 2FV;
  • FIG. 12 is a diagram showing a display example when a second FV clip is specified on the generation operation screen corresponding to 2FV;
  • FIG. 4 is an explanatory diagram of how a subject looks in a clipped image;
  • FIG. 10 is a diagram showing an example of transition of clipping positions in an FV clip;
  • FIG. 11 is a diagram showing another example of transition of clipping positions in an FV clip;
  • 6 is a flowchart showing an example of a processing procedure for realizing a method of generating a free viewpoint image as an embodiment;
  • FIG. 10 is a diagram schematically showing processing sharing of image generation illustrated in the embodiment;
  • FIG. 10 is a diagram schematically showing another example of image generation processing sharing;
  • FIG. 10 is a diagram schematically showing still another example of image generation processing sharing;
  • FIG. 1 shows a configuration example of an image processing system according to an embodiment of the present technology.
  • the image processing system includes an image creation controller 1, a free-viewpoint image server 2, a video server 3, a plurality of (for example, four) video servers 4A, 4B, 4C, and 4D, a NAS (Network Attached Storage) 5, a switcher 6, and an image converter. It has a unit 7 , a utility server 8 , and a plurality of (for example, 16) imaging devices 10 .
  • the term “camera” refers to the imaging device 10 .
  • “camera arrangement” means the arrangement of a plurality of imaging devices 10 .
  • video server 4 when the video servers 4A, 4B, 4C, and 4D are collectively referred to without particular distinction, they are described as "video server 4".
  • captured images for example, image data V1 to V16
  • a free viewpoint image corresponding to an image viewed from an arbitrary viewpoint in a three-dimensional space is generated, and a free viewpoint image is generated. You can create output clips that contain images.
  • connection state of each part is indicated by solid lines, broken lines, and double lines.
  • a solid line indicates connection of SDI (Serial Digital Interface), which is an interface standard for connecting broadcasting equipment such as cameras and switchers, and is compatible with, for example, 4K.
  • Image data is mainly transmitted and received between devices via SDI wiring.
  • a double line indicates a connection of a communication standard for building a computer network, such as 10 Gigabit Ethernet.
  • the image creation controller 1, the free-viewpoint image server 2, the video servers 3, 4A, 4B, 4C, 4D, the NAS 5, and the utility server 8 are connected via a computer network so that they can exchange image data and various control signals with each other. be done.
  • a dashed line between the video servers 3 and 4 indicates a state in which the video servers 3 and 4 equipped with an inter-server file sharing function are connected by, for example, a 10G network.
  • each video server can preview and transmit materials in other video servers. That is, a system using a plurality of video servers is constructed so as to realize efficient highlight editing and transmission.
  • Each image pickup device 10 is configured as a digital camera device having an image pickup device such as a CCD (Charge Coupled Devices) sensor or a CMOS (Complementary Metal-Oxide-Semiconductor) sensor. V16).
  • each imaging device 10 obtains a captured image as a moving image.
  • each image capturing device 10 captures an image of a game such as basketball, soccer, or golf being played, and is arranged in a predetermined position at a predetermined orientation in the stadium where the game is held.
  • the number of imaging devices 10 is 16, but the number of imaging devices 10 should be at least two or more to enable generation of free-viewpoint images.
  • FIG. 2 shows an example of arrangement of the imaging devices 10 around a basketball court.
  • is the imaging device 10 .
  • this is an example of the camera arrangement when it is desired to focus on the vicinity of the goal on the left side of the drawing.
  • the arrangement and number of cameras are examples, and should be set according to the content and purpose of shooting and broadcasting.
  • the scene for which the free viewpoint image is generated is not limited to the scene of the basketball game, and there are various scenes.
  • the image creation controller 1 is configured by an information processing device. This image creation controller 1 can be realized using, for example, a dedicated work station, a general-purpose personal computer, a mobile terminal device, or the like.
  • the image creation controller 1 controls/manages the operations of the video servers 3 and 4 and processes for clip creation.
  • the image creation controller 1 is assumed to be a device that can be operated by the operator OP1.
  • the operator OP1 for example, selects the content of the clip and instructs creation.
  • the free-viewpoint image server 2 is configured as an information processing device that actually creates a free-viewpoint image (FV (Free View) clip, which will be described later) in accordance with an instruction or the like from the image creation controller 1 .
  • This free-viewpoint image server 2 can also be realized using, for example, a dedicated workstation, a general-purpose personal computer, a mobile terminal device, or the like.
  • the free viewpoint image server 2 is assumed to be a device that can be operated by the operator OP2.
  • the operator OP2 performs work related to, for example, creating an FV clip as a free-viewpoint image. Specifically, the operator OP2 performs a camera path designation operation (selection operation) for generating a free viewpoint image. In this example, the operator OP2 also creates a camera path.
  • the camera path information is information that includes at least information indicating the movement trajectory of the viewpoint in the free viewpoint image. For example, when creating an FV clip that changes the viewpoint position, line-of-sight direction, and angle of view (focal length) for a subject for which a 3D model has been generated, the movement trajectory of the viewpoint and the line-of-sight direction
  • the parameters necessary for determining the mode of change and the mode of change of the angle of view are camera path information.
  • the configuration and processing of the image creation controller 1 and the free viewpoint image server 2 will be described in detail later. Further, although the operators OP1 and OP2 are assumed to operate, for example, the image creation controller 1 and the free-viewpoint image server 2 may be arranged side by side and operated by one operator.
  • Each of the video servers 3 and 4 is an image recording device, and includes a data recording unit such as an SSD (Solid State Drive) or HDD (Hard Disk Drive), and a control unit that controls data recording and reproduction for the data recording unit.
  • a data recording unit such as an SSD (Solid State Drive) or HDD (Hard Disk Drive)
  • HDD Hard Disk Drive
  • Each of the video servers 4A, 4B, 4C, and 4D is capable of receiving, for example, four systems of input, and simultaneously records the captured images of the four imaging devices 10, respectively.
  • the video server 4A records image data V1, V2, V3 and V4.
  • the video server 4B records the image data V5, V6, V7 and V8.
  • the video server 4C records the image data V9, V10, V11, V12.
  • the video server 4D records the image data V13, V14, V15 and V16.
  • the video servers 4A, 4B, 4C, and 4D are assumed to constantly record, for example, during sports games to be broadcast.
  • the video server 3 is directly connected to the image creation controller 1, for example, and is capable of, for example, two systems of input and two systems of output. Image data Vp and Vq are shown as inputs of two systems. As the image data Vp and Vq, images captured by any two imaging devices 10 (any two of the image data V1 to V16) can be selected. Of course, it may be an image captured by another imaging device.
  • the image data Vp and Vq can be displayed on the display by the image creation controller 1 as a monitor image.
  • the operator OP1 can confirm the situation of the scene being shot/recorded for broadcasting, for example, from the image data Vp and Vq input to the video server 3 .
  • the image creation controller 1 since the video servers 3 and 4 are connected in a file-sharing state, the image creation controller 1 also monitors the captured images of the imaging devices 10 recorded in the video servers 4A, 4B, 4C, and 4D. and the operator OP1 can check them sequentially.
  • the image captured by each imaging device 10 is attached with a time code, and frame synchronization can be achieved in the processing in the video servers 3, 4A, 4B, 4C, and 4D.
  • the NAS 5 is a storage device placed on the network, and is composed of, for example, SSDs and HDDs. In the case of this example, when some frames of the image data V1, V2, . , a device for storing for processing in the free viewpoint image server 2 and storing created free viewpoint images.
  • the switcher 6 is a device that inputs images output via the video server 3 and selects the main line image PGMout that is finally selected and broadcast. For example, a broadcast director or the like performs necessary operations.
  • the image conversion unit 7 performs, for example, resolution conversion and synthesis of image data by the imaging device 10 , generates a monitoring image of the camera arrangement, and supplies it to the utility server 8 .
  • 16-system image data V1 to V16
  • V1 to V16 are 4K images
  • HD images are arranged in tiles, and are supplied to the utility server 8 as 4-system images.
  • the utility server 8 is a computer device capable of various related processes, but in this example, it is a device that performs camera movement detection processing especially for calibration.
  • the utility server 8 monitors image data from the image conversion unit 7 and detects camera movement.
  • Camera movement refers to movement of any of the arrangement positions of the imaging devices 10 arranged as shown in FIG. 2, for example.
  • Information on the arrangement position of the imaging device 10 is an important factor in generating a free-viewpoint image, and if the arrangement position changes, it is necessary to set parameters again. Therefore, camera movement is monitored.
  • the image creation controller 1, the free viewpoint image server 2, the video servers 3 and 4, and the utility server 8 in the above configuration can be implemented as an information processing device 70 having the configuration shown in FIG. 3, for example.
  • the CPU 71 of the information processing device 70 executes various processes according to programs stored in the ROM 72 or programs loaded from the storage unit 79 to the RAM 73 .
  • the RAM 73 also appropriately stores data necessary for the CPU 71 to execute various processes.
  • the CPU 71 , ROM 72 and RAM 73 are interconnected via a bus 74 .
  • An input/output interface 75 is also connected to this bus 74 .
  • the input/output interface 75 is connected to an input section 76 including operators and operating devices.
  • an input section 76 including operators and operating devices.
  • various operators and operation devices such as a keyboard, mouse, key, dial, touch panel, touch pad, remote controller, etc. are assumed.
  • a user's operation is detected by the input unit 76 , and a signal corresponding to the input operation is interpreted by the CPU 71 .
  • the input/output interface 75 is also connected integrally or separately with a display unit 77 such as an LCD (Liquid Crystal Display) or an organic EL (Electro-Luminescence) panel, and an audio output unit 78 such as a speaker.
  • the display unit 77 is a display unit that performs various displays, and is configured by, for example, a display device provided in the housing of the information processing device 70, a separate display device connected to the information processing device 70, or the like.
  • the display unit 77 displays images for various types of image processing, moving images to be processed, etc. on the display screen based on instructions from the CPU 71 . Further, the display unit 77 displays various operation menus, icons, messages, etc., ie, as a GUI (Graphical User Interface), based on instructions from the CPU 71 .
  • GUI Graphic User Interface
  • the input/output interface 75 may be connected to a storage unit 79 made up of a hard disk, a solid-state memory, etc., and a communication unit 80 made up of a modem or the like.
  • the communication unit 80 performs communication processing via a transmission line such as the Internet, and communication by wired/wireless communication with various devices, bus communication, and the like.
  • a drive 82 is also connected to the input/output interface 75 as required, and a removable recording medium 81 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory is appropriately loaded.
  • Data files such as image files MF and various computer programs can be read from the removable recording medium 81 by the drive 82 .
  • the read data file is stored in the storage unit 79 , and the image and sound contained in the data file are output by the display unit 77 and the sound output unit 78 .
  • Computer programs and the like read from the removable recording medium 81 are installed in the storage unit 79 as required.
  • software can be installed via network communication by the communication unit 80 or via the removable recording medium 81.
  • the software may be stored in advance in the ROM 72, the storage unit 79, or the like.
  • FIG. 4 shows the section identification processing unit 21, the target image transmission control unit 22, and the output image generation unit 23 as functions formed in the CPU 71 of the information processing device 70 that serves as the image creation controller 1.
  • FIG. 4 shows the section identification processing unit 21, the target image transmission control unit 22, and the output image generation unit 23 as functions formed in the CPU 71 of the information processing device 70 that serves as the image creation controller 1.
  • the section identification processing unit 21 performs processing for identifying a generation target image section for generating a free-viewpoint image for a plurality of captured images (image data V1 to V16) simultaneously captured by a plurality of imaging devices 10 .
  • image data V1 to V16 image data
  • the operator OP1 performs an operation to select a scene to be replayed within an image
  • the time code for that scene, particularly for the section of the scene to be the free-viewpoint image (image section to be generated) is specified. , and notifies the free viewpoint image server 2 of the time code.
  • the generation target image section refers to a frame section that is actually used as a free viewpoint image.
  • the one frame is a generation target image section.
  • the in point (start point)/out point (end point) for the free viewpoint image has the same time code.
  • the multiple frames are the generation target image section.
  • the in-point/out-point for the free viewpoint image will be different time codes.
  • the target image transmission control unit 22 transmits the image data of the generation target image section in each of the plurality of imaging devices 10, that is, one or a plurality of frames of the image data V1 to V16 to the free viewpoint image server 2 for generating the free viewpoint image. It controls transmission as image data to be used. Specifically, control is performed to transfer the image data as the generation target image section from the video servers 4A, 4B, 4C, and 4D to the NAS 5.
  • the output image generation unit 23 generates an output image (output clip) including the free viewpoint image (FV clip) generated and received by the free viewpoint image server 2 .
  • the image generation controller 1 causes the FV clip, which is a virtual image generated by the free viewpoint image server 2, to be added to the FV clip, which is a virtual image generated by the free viewpoint image server 2, by processing the output image generation unit 23, the previous clip, which is the actual moving image at the previous time point, and the subsequent clip.
  • the post-clip which is the actual moving image at the time point, is combined on the time axis to form an output clip. That is, the front clip + FV clip + rear clip is set as one output clip.
  • the previous clip+FV clip may be set as one output clip.
  • the FV clip+after clip may be set as one output clip.
  • an output clip of only the FV clip may be generated without combining the front clip and the rear clip.
  • the image production controller 1 generates an output clip including the FV clip and outputs it to the switcher 6 so that it can be used for broadcasting.
  • FIG. 5 shows the target image acquisition unit 31, the image generation processing unit 32, the transmission control unit 33, and the camera path generation processing unit 34 as functions formed in the CPU 71 of the information processing device 70 serving as the free viewpoint image server 2. ing.
  • the target image acquisition unit 31 acquires image data of a generation target image section for which a free viewpoint image is to be generated, in each of a plurality of captured images (image data V1 to V16) captured simultaneously by a plurality of imaging devices 10. process. That is, the image creation controller 1 transmits image data of one frame or a plurality of frames specified by the in-point/out-point of the generation target image section specified by the function of the section specifying processing unit 21 from the video servers 4A, 4B, 4C, and 4D to the NAS 5. so that it can be used to generate a free-viewpoint image.
  • the target image acquisition unit 31 acquires image data of one frame or a plurality of frames of the generation target image section for all of the image data V1 to V16.
  • the reason why the image data of the generation target image section is obtained for all the image data V1 to V16 is to generate a high-quality free-viewpoint image.
  • a finer 3D model can be generated. can be generated to generate a high-quality free-viewpoint image. Therefore, for example, when 16 imaging devices 10 are arranged, the image data of the generation target image section is acquired for all the image data (V1 to V16) of the 16 imaging devices 10 .
  • the image generation processing unit 32 has a function of generating a free viewpoint image, that is, an FV clip in this example, using the image data acquired by the target image acquisition unit 31 .
  • the image generation processing unit 32 performs modeling processing including 3D model generation and object analysis, and processing such as rendering for generating a free viewpoint image that is a two-dimensional image from the 3D model.
  • 3D model generation refers to representing a subject in a three-dimensional space (that is, from a two-dimensional image This is a process of generating 3D model data in which the three-dimensional structure of the subject is restored.
  • the 3D model data includes data representing a subject in a three-dimensional coordinate system (X, Y, Z).
  • Subject analysis analyzes the position, orientation, and posture of a subject as a person (athlete) based on 3D model data. Specifically, estimation of the position of the subject, generation of a simple model of the subject, estimation of the orientation of the subject, and the like are performed. Then, a free viewpoint image is generated based on the 3D model data and subject analysis information. For example, for a 3D model in which a player, who is a subject, is stationary, a free viewpoint image is generated in which the viewpoint is moved.
  • the subject analysis described above is a kind of image recognition processing for recognizing an object captured in an image.
  • FIG. 6A shows an image of a free viewpoint image in which a subject is captured from a desired viewpoint set on a three-dimensional space.
  • the free viewpoint image in this case, the subject S1 is viewed substantially from the front and the subject S2 is viewed substantially from the rear.
  • FIG. 6B shows an image of a virtual viewpoint image when the position of the viewpoint is changed in the direction of arrow C in FIG. 6A and the viewpoint is set such that the subject S1 is viewed substantially from behind.
  • the free-viewpoint image of FIG. 6B the subject S2 is viewed substantially from the front, and the subject S3 and the basketball goal, which were not displayed in FIG. 6A, are displayed. For example, from the state of FIG.
  • the viewpoint is gradually moved in the direction of arrow C, and an image of about 1 to 2 seconds is generated as a free viewpoint image (FV clip) so as to reach the state of FIG. 6B.
  • FV clip free viewpoint image
  • the time length of the FV clip as a free viewpoint image and the trajectory of viewpoint movement can be considered in various ways.
  • the free viewpoint image server 2 (CPU 71) of this example has functions as a display processing section 32a and an operation reception section 32b as part of the functions of the image generation processing section 32.
  • FIG. The display processing unit 32a performs display processing of a generation operation screen Gg for receiving designation operations of camera path information used for generating a free-viewpoint image, designation of a viewpoint rotation center position described later, instructions for generating a free-viewpoint image, and the like.
  • the operation reception unit 32b functions to receive an operation on the preset screen Gs. Details of the camera path related to the free viewpoint image and the generation operation screen Gg will be explained later.
  • the free viewpoint image server 2 in this example also has a function as a camera path editing processing unit 32c as a part of the image generation processing unit 32, but the function as the camera path editing processing unit 32c will be explained later. explain.
  • the transmission control unit 33 controls transmission of the free viewpoint image (FV clip) generated by the image generation processing unit 32 to the image creation controller 1 via the NAS 5 .
  • the transmission control unit 33 controls so that the accompanying information for generating the output image is also transmitted to the image creation controller 1 .
  • Accompanying information is assumed to be information specifying the images of the previous clip and the subsequent clip. That is, it is information that designates which image among the image data V1 to V16 is used to create the front clip and the rear clip. Information designating the time length of the previous clip and the subsequent clip is also assumed as the accompanying information.
  • the camera path generation processing unit 34 performs processing related to generation of camera path information used for generating a free viewpoint image.
  • a free-viewpoint image a plurality of candidate camera paths are created (preset) in advance in order to correspond to various scenes.
  • a software program for creating camera paths is installed in the free-viewpoint image server 2 of this example in order to enable such pre-creation of camera paths.
  • the camera path generation processing unit 34 is a function realized by this software program, and performs camera path generation processing based on the user's operation input.
  • the camera path generation processing section 34 has a function as a display processing section 34a.
  • the display processing unit 34a performs display processing of a preset screen Gs, which will be described later, in order to accept various operation inputs for camera path creation by the user (operator OP2 in this example).
  • a scene window 41, a scene list display section 42, a camera path window 43, a camera path list display section 44, a target space image display section 45, and a transmission window 46 are arranged on the generation operation screen Gg shown in FIG.
  • the scene window 41 for example, an image of the generation target image section is displayed on the monitor so that the operator OP2 can confirm the content of the scene for which the free viewpoint image is to be generated.
  • the scene list display section 42 displays, for example, a list of scenes designated as generation target image sections. The operator OP2 can select a scene to be displayed on the scene window 41 by using the scene list display section 42.
  • the camera path window 43 displays the position of the imaging device 10 arranged, information indicating the designated camera path, and the like.
  • the camera path information is at least information indicating the movement trajectory of the viewpoint in the free viewpoint image.
  • information indicating at least the movement trajectory of the viewpoint is displayed as a display of the camera path.
  • the camera path list display section 44 displays a list of information on various camera paths created and stored in advance.
  • the operator OP2 can select and designate a camera path to be used for FV clip generation from among the camera paths displayed in the camera path list display section 44 .
  • a target space captured image is displayed on the target space image display unit 45 .
  • the target space captured image means an image obtained by capturing a real space as a free viewpoint image generation target.
  • an image captured by at least one of the imaging devices 10 that obtain a plurality of captured images used for generating a free viewpoint image can be cited.
  • the target space captured image is an image captured by the imaging device 10 serving as the start camera and an image captured by the imaging device 10 serving as the end camera.
  • the start camera means a camera with the same viewpoint as the start viewpoint of the free viewpoint image
  • the end camera means the camera with the same viewpoint as the end viewpoint of the free viewpoint image.
  • the target space image display unit 45 displays rotation center position information indicating the position of the viewpoint rotation center of the free viewpoint image on the target space captured image, and allows the user to specify the position of the viewpoint rotation center. It is possible to do
  • 2FV means that after the first FV clip, an image (moving image) captured by the imaging device 10, which is the ending viewpoint of the first FV clip, is inserted, and then a second FV clip is inserted with the ending viewpoint as the starting viewpoint.
  • the first FV clip moves the viewpoint from the player's right side viewpoint to the front viewpoint for the top (top of swing) scene, for example.
  • the subsequent captured image is a moving image (actual captured image) capturing the top scene to the impact scene from the front viewpoint
  • the second FV clip is the impact scene.
  • an FV clip that moves the viewpoint with the front viewpoint as the starting viewpoint and the like.
  • the camera that is the end viewpoint of the first FV clip and the camera that is the start viewpoint of the second FV clip are the same.
  • a camera that becomes the end viewpoint of the first FV clip and the start viewpoint of the second FV clip in this way is called a "transit camera”.
  • An output clip including only one FV clip is called "1FV".
  • the preset screen Gs includes a path name input section 65 for inputting a name to be assigned to the camera path information, and an FV number selection section for selecting 1FV (1FreeView) or 2FV (2FreeView).
  • 66 start camera (StartCamera), end camera (EndCamera) for FV clip, camera selection unit 67 for selecting transit camera in case of 2FV, rotation direction selection unit 68 for selecting rotation direction of viewpoint, OK A button B1 and a cancel button B2 are provided.
  • the viewpoint it is possible to specify in which direction the viewpoint should be moved from the viewpoint of the start camera to the viewpoint of the end camera when, for example, a plurality of imaging devices 10 are arranged in an annular shape. is.
  • the rotation direction selection unit 68 is illustrated when 2FV is selected. ) and the viewpoint rotation direction from the transit camera to the end camera (viewpoint rotation direction for the second FV clip).
  • 1FV only a display for selecting the rotation direction of the viewpoint from at least the start camera to the end camera should be displayed in the rotation direction selection unit 68 .
  • Arbitrary characters and numbers can be entered in the path name input section 65 .
  • the user selects 1 FV or 2 FVs in the FV number selection unit 66, and in the case of 1 FV, the camera selection unit 67 selects which camera is used for imaging. A selection is made as to whether the device 10 is to be used.
  • the camera selection is an example in which the numbers of all candidate cameras (the numbers of the imaging devices 10) are displayed and a camera to be selected from among them is specified, but the GUI for camera selection is limited to this. Other examples are also conceivable, such as direct input of numbers or designation of numbers by Up and Down keys.
  • the user selects which imaging device 10 to use as the start camera, transit camera, and end camera in the camera selection unit 67 . Further, the user performs selection operation of the viewpoint rotation direction in the rotation direction selection section 68 as necessary.
  • the user can instruct the free viewpoint image server 2 to set the camera path information by operating the OK button B1.
  • the free viewpoint image server 2 (camera path generation processing unit 34) obtains the numbers of the imaging devices 10 selected as the start camera and the end camera (in the case of 2FV, the number of the transit camera ), information on the direction of rotation of the viewpoint from the start camera to the end camera (in the case of 2FV, information on the direction of rotation from the start camera to the transit camera and from the transit camera to the end camera), and the name input to the path name input section 65 information and stored in a predetermined storage device (for example, the storage unit 79 in FIG. 3).
  • a predetermined storage device for example, the storage unit 79 in FIG. 3
  • the cancel button B2 is a button for canceling the creation of the camera path information, and when the cancel button B2 is operated, the free viewpoint image server 2 (display processing unit 34a) performs processing such as closing the preset screen Gs, for example. Predetermined corresponding processing is executed.
  • FIG. 9 shows a state in which a front clip, an FV clip, and a rear clip are connected as an example of an output clip. This corresponds to an example of 1FV described above.
  • the previous clip is an actual moving image in the section from time code TC1 to TC2 in certain image data Vx among image data V1 to image data V16.
  • the post clip is an actual moving image in a section from time code TC5 to TC6 in certain image data Vy among image data V1 to image data V16. It is generally assumed that the image data Vx is the image data of the imaging device 10 at the start of the viewpoint movement by the FV clip, and the image data Vy is the image data of the imaging device 10 at the end of the viewpoint movement by the FV clip.
  • the front clip is a video of time length t1
  • the FV clip is a free viewpoint image of time length t2
  • the rear clip is a video of time length t3.
  • the playback time length of the entire output clip is t1+t2+t3.
  • a 5-second output clip may include a 1.5-second moving image, a 2-second free viewpoint image, a 1.5-second moving image, and the like.
  • Fig. 10 shows the still image FV clip with reference to the frame of the moving image.
  • the timecodes TC1 and TC2 of the previous clip are the timecodes of the frames F1 and F81
  • the time codes TC5 and TC6 of the subsequent clips are the time codes of frames F83 and F166. In other words, this is the case of generating a free viewpoint image in which the viewpoint moves with respect to the one-frame still image of the frame F82.
  • the moving image FV clip is as shown in FIG.
  • the time codes TC1 and TC2 of the previous clip are the time codes of frames F1 and F101
  • the time codes of frames F102 and F302 are the time codes TC3 and TC4 in FIG.
  • the time codes TC5 and TC6 of the subsequent clips are the time codes of frames F303 and F503. That is, this is the case of generating a free viewpoint image in which the viewpoint moves for a moving image of a plurality of frames from frame F102 to frame F302.
  • the generation target image section determined by the image generation controller 1 is a one-frame section of frame F82 when generating the still image FV clip of FIG. This is a section of multiple frames from F102 to frame 302. FIG.
  • FIG. 12 shows an example of the image content of the output clip in the example of the still image FV clip of FIG.
  • the previous clip is the actual moving image from frame F1 to frame F81.
  • the FV clip is a virtual image in which the viewpoint is moved in the scene of frame F82.
  • the post clip is the actual moving image from frame F83 to frame F166.
  • an output clip containing the FV clip is generated in this way and used as the image to be broadcast.
  • Clip creation processing An example of output clip creation processing performed in the image processing system of FIG. 1 will be described below. The description will focus mainly on the processing of the image generation controller 1 and the free viewpoint image server 2 . First, the flow of processing including the operations of operators OP1 and OP2 will be described with reference to FIG. Note that the processing by the operator OP1 in FIG. 13 collectively shows the GUI processing of the image creation controller 1 and the operator's operation. Also, the processing of the operator OP2 collectively shows the GUI processing of the free-viewpoint image server 2 and the operator's operation.
  • Step S1 Scene Selection
  • the operator OP1 selects a scene to be used as an FV clip.
  • the operator OP1 searches for a scene to be used as an FV clip while monitoring captured images displayed on the display unit 77 of the image creation controller 1 side.
  • a generation target image section of one frame or a plurality of frames is selected.
  • the information of this generation target image section is transmitted to the free viewpoint image server 2, and is made recognizable by the operator OP2 through the GUI on the display section 77 of the free viewpoint image server 2 side.
  • Step S2 Instruction to Transfer Scene Image
  • the operator OP2 instructs to transfer the image of the corresponding scene in accordance with the designation of the generation target image section.
  • the free-viewpoint image server 2 transmits to the image creation controller 1 a transfer request for the image data in the sections of time codes TC3 and TC4.
  • Step S3 Synchronous Extraction
  • the image creation controller 1 controls the video servers 4A, 4B, 4C, and 4D, and extracts each of the 16 systems of image data from image data V1 to image data V16. , time codes TC3 and TC4 are extracted.
  • Step S4 Transfer to NAS Then, the image creation controller 1 causes the NAS 5 to transfer all the data of the sections of the time codes TC3 and TC4 of the image data V1 to V16.
  • Step S5 Thumbnail display
  • Step S6 Scene Check
  • the operator OP2 checks the scene contents of the sections indicated by the time codes TC3 and TC4 on the operation screen Gg generated by the free viewpoint image server 2.
  • FIG. Step S7 Camera path selection The operator OP2 selects (specifies) a camera path considered appropriate on the generation operation screen Gg according to the scene content.
  • Step S8 Execution of Generation After selecting the camera path, the operator OP2 performs an operation to generate and execute the FV clip.
  • Step S9 Modeling The free-viewpoint image server 2 uses frame data in the sections of the time codes TC3 and TC4 in each of the image data V1 to V16, and parameters such as the layout position of each imaging device 10 input in advance. Then, the 3D model of the object is generated, the object is analyzed, and the like.
  • Step S10 Rendering The free viewpoint image server 2 generates a free viewpoint image based on the 3D model data and subject analysis information. At this time, the free viewpoint image is generated so that the viewpoint is moved based on the camera path selected in step S7.
  • Step S11 Transfer The free viewpoint image server 2 transfers the generated FV clip to the image creation controller 1 . At this time, it is possible to transmit not only the FV clip but also designation information of the front clip and the rear clip and designation information of the time length of the front clip and the rear clip as accompanying information.
  • Step S12 Quality Confirmation Incidentally, on the side of the free viewpoint image server 2, the quality can be confirmed by the operator OP2 prior to or after the transfer in step S11. That is, the free viewpoint image server 2 reproduces and displays the generated FV clip on the generation operation screen Gg so that the operator OP2 can confirm it. Depending on the circumstances, it is possible for the operator OP2 to re-generate the FV clip without executing the transfer.
  • Step S13 Playlist Generation
  • the image creation controller 1 generates an output clip using the transmitted FV clip.
  • one or both of the front clip and the rear clip are combined with the FV clip on the time axis to generate the output clip.
  • This output clip may be generated as stream data in which each frame as a front clip, each frame virtually generated as an FV clip, and each frame as a rear clip are actually linked in time series. In this processing example, they are virtually linked as a playlist. That is, the play list is generated such that the FV clip is reproduced following the reproduction of the frame section as the previous clip, and then the frame section as the subsequent clip is reproduced. To make it possible to reproduce an output clip without generating stream data.
  • Step S14 Quality Confirmation Using the GUI on the image creation controller 1 side, playback is performed based on the playlist, and the operator OP1 confirms the contents of the output clip.
  • Step S15 Reproduction Instruction The operator OP1 instructs reproduction by a predetermined operation in response to the quality confirmation.
  • the image creation controller 1 recognizes the input of the reproduction instruction.
  • Step S16 Playback The image creation controller 1 supplies the output clip to the switcher 6 in response to the playback instruction. This makes it possible to broadcast the output clip.
  • the change of the camera referred to here means that at least one of the position and the imaging direction of the camera changes.
  • FIG. 14 shows the processing procedure in the same format as in FIG. 13, the utility server 8 is also operated by the operator OP2.
  • Step S30 HD Output
  • the image creation controller 1 controls to output the image data from the video servers 4A, 4B, 4C, and 4D to the image conversion section 7 for camera fluctuation detection.
  • the images from the video servers 4A, 4B, 4C, and 4D, ie, the images of the 16 imaging devices 10, are resolution-converted by the image converter 7 and supplied to the utility server 8.
  • FIG. 1
  • Step S31 Background Generation
  • the utility server 8 generates a background image based on the supplied image. Since the background image is an image that does not change unless there is a change in the camera, a background image excluding subjects such as athletes is generated for 16 systems of image data (V1 to V16).
  • Step S32 Confirmation of difference
  • the background image is displayed on the GUI, so that the operator OP2 can confirm the change in the image.
  • Step S33 Automatic Detection of Fluctuation By comparing the background images at each point in time, the fluctuation of the camera can be automatically detected.
  • Step S34 Detection of Camera Fluctuation As a result of step S33 or step S32, fluctuation of a certain imaging device 10 is detected.
  • Step S35 Image Acquisition Calibration is required in response to detection of a change in the imaging device 10 . Therefore, the utility server 8 requests the image creation controller 1 for the image data after the change.
  • Step S36 Clip Extraction The image creation controller 1 controls the video servers 4A, 4B, 4C, and 4D in response to an image acquisition request from the utility server 8 to extract clips from the image data V1 to V16.
  • Step S37 Transfer to NAS
  • the image creation controller 1 controls the video servers 4A, 4B, 4C, and 4D to transfer the image data extracted as clips to the NAS 5.
  • Step S38 Modification of Feature Points
  • the utility server 8 can refer to and display the image after the camera is changed.
  • the operator OP2 performs operations necessary for calibration such as correction of feature points.
  • Step S39: Re-calibration The utility server 8 re-executes calibration for 3D model generation using the image data (V1 to V16) after camera movement.
  • Step S40 Reacquisition of background After calibration, the utility server 8 makes a reacquisition request for the image data for the background image in response to the operation of the operator OP2.
  • Step S41 Clip Extraction
  • the image creation controller 1 controls the video servers 4A, 4B, 4C, and 4D in response to an image acquisition request from the utility server 8 to execute clip extraction for the image data V1 to V16.
  • Step S42 Transfer to NAS
  • the image creation controller 1 controls the video servers 4A, 4B, 4C, and 4D to transfer the image data extracted as clips to the NAS 5.
  • FIG. - Step S43 Background generation
  • the utility server 8 generates a background image using the image data transferred to the NAS 5 . This is used, for example, as a background image that serves as a reference for subsequent camera fluctuation detection.
  • a fixed camera that is, a camera whose position and orientation are fixed is used as the imaging device 10 for obtaining a captured image for generating a free-viewpoint image
  • a specific player whose position and orientation are fixed is used. It cannot be guaranteed that the subject of interest, etc., is positioned at the center of the image frame.
  • FIG. 15A and 15B show examples of images captured by the imaging device 10 corresponding to the start viewpoint and the end viewpoint of the free viewpoint image.
  • FIG. An example of an image captured by the imaging device 10 that is the ending viewpoint is shown.
  • a scene of a golf tee shot is exemplified.
  • the position and orientation of the imaging device 10 are fixed.
  • the subject of interest cannot be captured in the center of the image frame.
  • the rotation center of the viewpoint is set at the center of the image frame (the position in the three-dimensional space) and the viewpoint is moved, an unnatural free viewpoint image may result. .
  • an operation for designating the position of the center of viewpoint rotation is accepted. For example, by designating the position of the viewpoint rotation center as the position of the subject of interest, it is possible to obtain a free viewpoint image in which the viewpoint moves around the position of the subject of interest.
  • the free viewpoint image is generated as an image cut out (cut out) from the original size image to a smaller size image. do.
  • FIG. 16A and 16B are image diagrams of image clipping.
  • FIG. 16 illustrates clipping from the image shown in FIG. 15A
  • FIG. 16B illustrates clipping from the image shown in FIG. 15B.
  • the original size is 4k size
  • the image size of the free viewpoint image is FHD (Full HD) size.
  • the subject of interest can be positioned close to the center of the image frame in the free-viewpoint image. It is possible to position.
  • FIG. 17 to 29 show examples of screens corresponding to the aforementioned 1FV as examples of the generation operation screen Gg.
  • FIG. 17 shows an example of an initial screen of the generation operation screen Gg.
  • the scene window 41, the scene list display section 42, the camera path window 43, the camera path list display section 44, the target space image display section 45, and the transmission window 46 are arranged on the generation operation screen Gg.
  • the scene window 41 is a display area in which the image of the generation target image section described above is displayed on the monitor, so that the user (operator OP2 in this example) can confirm the content of the scene in which the free viewpoint image is to be generated.
  • no image is displayed in the scene window 41 because no image is specified for the generation target image section.
  • the scene list display section 42 displays, for example, a list of scenes designated as generation target image sections.
  • the user can specify a scene for which a free viewpoint image is to be generated from the list of scenes displayed on the scene list display section 42 .
  • FIG. 18 illustrates the generated operation screen Gg after scene designation.
  • the scene window 41 displays images captured by each imaging device 10 in the specified scene. This allows the user to easily understand in what composition each imaging device 10 captures the subject of interest on the generation operation screen Gg.
  • the camera path list display section 44 displays a list of camera path information that has been created and stored in advance. Specifically, in this example, a list of information on camera paths preset by the user through the preset screen Gs (FIG. 8) is displayed. In creating a free viewpoint image, the user performs an operation of designating a desired camera path from among the camera paths displayed in the camera path list display section 44 . In the drawing, there is only one camera path preset, and only one camera path information is displayed in the camera path list display section 44 .
  • FIG. 19 illustrates the generation operation screen Gg when a camera path is designated from the camera path list display section 44.
  • a camera path is designated in the camera path list display section 44
  • information is displayed in the camera path window 43 according to the information of the designated camera path.
  • start camera position information 51 that indicates the position of the start camera
  • end camera position information 52 that indicates the position of the end camera
  • viewpoint movement that is information that indicates the movement trajectory of the viewpoint in the free viewpoint image.
  • Trajectory information 53 and rotation center position information 54 which is information indicating the position of the viewpoint rotation center of the free viewpoint image, are displayed.
  • the rotation center position information 54 is displayed at a position indicating a predetermined initial position.
  • a camera path when specified in the camera path list display section 44, in the scene window 41, it corresponds to the start camera based on the information of the number of the start camera and the end camera included in the information of the specified camera path.
  • the captured image of the imaging device 10 and the captured image of the imaging device 10 corresponding to the end camera are marked with a start camera mark (for example, "S" mark) and an end camera mark (for example, "E” mark).
  • the target space image display section 45 displays the start camera and the end camera based on the number information of the start camera and the end camera included in the information of the designated camera path.
  • the captured image of the image capturing device 10 corresponding to the end camera and the captured image of the image capturing device 10 corresponding to the end camera are displayed as the target space captured image.
  • the target space image display unit 45 is provided with a start camera image display area 56 for displaying the image captured by the start camera and an end camera image display area 57 for displaying the image captured by the end camera.
  • the captured image of the imaging device 10 corresponding to the start camera and the captured image of the imaging device 10 corresponding to the end camera are displayed in corresponding regions among these regions.
  • image frame information 58 is information indicating the image frame of the generated FV clip
  • the rotation center position information 59 is information indicating the position of the viewpoint rotation center of the FV clip.
  • image frame information 58 and the rotation center position information 59 displayed in the start camera image display area 56 are denoted as image frame information 58e and rotation center position information 59e, respectively.
  • the rotation center position information 59 displayed on the target space image display section 45 is also displayed at a predetermined initial position immediately after the camera path is specified, similarly to the rotation center position information 54 described above. becomes.
  • FIG. 20 shows an example in which the initial position substantially matches the position of the subject of interest, the initial position does not necessarily match the position of the subject of interest.
  • the specifiable range information Ap is information indicating the specifiable range of the viewpoint rotation center position of the FV clip.
  • the range in which the viewpoint rotation center can be set is predetermined as the specifiable range.
  • the specifiable range is set as a range calculated in advance by the user based on the number and layout of the imaging devices 10 actually arranged.
  • the specifiable range of the viewpoint rotation center may be adjustable based on a user operation.
  • the specifiable range information Ap may be calculated by a computer device based on the number of imaging devices 10 actually arranged and the arrangement mode.
  • the position of the viewpoint rotation center can be specified by operating the rotation center position information 59s and 59e in the target space image display section 45 as will be described later.
  • the rotation center position can also be specified by operating the rotation center position information 54 displayed in the camera path window 43 .
  • the position of the viewpoint rotation center is designated by an operation of moving the rotation center position information 54 by a drag-and-drop operation or the like, as shown as the transition from FIG. 20 to FIG. is allowed.
  • the designation of the position of the viewpoint rotation center is limited to within the specifiable range indicated by the above-described specifiable range information Ap.
  • the operation receiving unit 32b in the free viewpoint image server 2 receives only the position specifying operation of the viewpoint rotation center within the specifiable range as a valid position specifying operation.
  • the camera path window 43 it is also possible to edit the preset camera path information. Specifically, in the camera path window 43 of this example, it is possible to adjust the depth of the arc (the diameter of the arc) of the movement trajectory of the viewpoint of the FV clip. Editing of the preset information as adjustment of the arc depth is realized by the above-described camera path editing processing section 32c (see FIG. 5).
  • FIG. 22 illustrates a GUI for adjusting the arc depth of the viewpoint movement trajectory.
  • the adjustment of the depth of the arc of the viewpoint movement trajectory is performed by operating the viewpoint movement trajectory information 53, specifically, by adjusting the line indicating the arc as the viewpoint movement trajectory information 53, as shown, for example, as the transition from FIG. 22A to FIG. 22B. It is performed as an operation to move the center part of the by drag & drop operation etc.
  • FIG. 22B when an operation is performed to move the central portion of the viewpoint movement trajectory information 53 in the convex direction of the arc, it becomes an instruction to deepen the arc (decrease the radius of curvature).
  • an operation is performed to move the central portion of the viewpoint movement trajectory information 53 in a direction opposite to the convex direction of the arc, this is an instruction to decrease the depth of the arc (increase the radius of curvature).
  • GUI for adjusting the shape of the viewpoint movement trajectory is not limited to the above example.
  • Other modes such as designating the depth of the arc by operation or designating the depth of the arc (for example, the numerical value of the radius of curvature) by operating the Up button or the Down button, can also be adopted.
  • FIGS. 23 to 25 are explanatory diagrams of the operation of designating the viewpoint rotation center position in the target space image display unit 45 and the GUI.
  • the operation on the start camera side will be described below as an example of the operation and GUI, the operation and GUI on the end camera side are the same.
  • the rotation center position information 59 visually has a substantially cylindrical outer shape.
  • the rotation center position information 59 includes information indicating the height of the viewpoint rotation center. Specifically, as shown in FIG. 23A, center height information indicating the height position of the viewpoint rotation center. Ha is displayed as part of the rotation center position information 59 .
  • the center height information Ha is substantially disk-shaped.
  • an operation of selecting the center height information Ha in the rotation center position information 59 is performed by a click operation or the like. Then, as shown in FIG. 23B, the display mode of the center height information Ha changes, such as changing the display color of the center height information Ha. This allows the user to understand that the mode has changed to the height position designation mode of the viewpoint rotation center. By making a transition to the height position specification mode in this way, it is possible to move the center height information Ha in the vertical direction as shown in FIG. 24, for example. By such a movement operation of the center height information Ha, it is possible to specify the height position of the viewpoint rotation center (in other words, the elevation/depression angle of the free viewpoint image).
  • FIG. 25 is a diagram for explaining an operation example of position specification of the viewpoint rotation center (position specification in the horizontal direction).
  • the operation of specifying the horizontal position of the viewpoint rotation center is an operation of moving the rotation center position information 59 by a drag-and-drop operation or the like.
  • an operation of selecting the outer edge of the rotation center position information 59 is performed by a click operation or the like (see FIG. 25A).
  • the display mode of the outer edge portion of the rotation center position information 59 changes, for example, the display color of the outer edge portion changes. This allows the user to understand that the mode has been changed to the horizontal position designation mode of the viewpoint rotation center.
  • shifting to the horizontal position specification mode in this way, it becomes possible to move the rotation center position information 59 in the horizontal direction, and to specify the horizontal position of the viewpoint rotation center.
  • 26 and 27 are diagrams for explaining an operation example for specifying an image frame for clipping.
  • the example of the image frame specification operation and GUI will be described as a representative example of the start camera side, but the operation and GUI are the same for the end camera side as well.
  • the image frame information 58 is information indicating a rectangular line indicating the outer edge of the image frame and information indicating the vertical center line and horizontal center line of the image frame.
  • the image frame information 58 is displayed as a frame having the same size as the original image size immediately after the camera path is specified in the camera path list display section 44 .
  • the outer edge of the image frame is selected by a click operation or the like.
  • the display mode of the outer edge of the image frame changes, for example, the display color of the outer edge of the image frame changes. This allows the user to understand that the mode has been changed to the image frame size designation mode.
  • the outer edge of the image frame can be changed to the size of the outer edge of the image frame, that is, by performing an operation of moving the outer edge of the image frame information 58 by a drag & drop operation or the like. It becomes possible to change the size of the image frame itself, and to specify the cutout size.
  • FIG. 27 is a diagram for explaining an operation example of specifying the position of an image frame.
  • an operation is performed to select an intersection of the vertical center line and the horizontal center line of the image frame (that is, the center portion of the image frame) by a click operation or the like.
  • the display mode of the vertical center line and horizontal center line of the image frame changes, such as the display color of the vertical center line and horizontal center line changing (at this time, the outer edge of the image frame changes).
  • the display mode returns to the original state) so that the user can understand that the mode has changed to the image frame position designation mode.
  • the size specification of the clipped image frame for example, as shown in FIG. It is also conceivable to provide 60s, 60e. In this case, for example, the size can be specified by moving the slider by dragging and dropping. Alternatively, it is conceivable to provide operation units that enable size designation with an Up button and a Down button, such as size designation operation units 61s and 61e in the drawing. In this case, the image frame size is enlarged according to the operation of the Up button, and the image frame size is reduced according to the operation of the Down button.
  • the rotation center position information 59s based on the rotation center position information 59s, the rotation center position information 59e, and the image frame information 58s, 58e displayed in the start camera image display area 56 and the end camera image display area 57, for each of the start camera and the end camera, It is possible to individually set the position of the viewpoint rotation center (including the height position in this example) and the position and size of the cropped image frame (that is, set different positions and sizes).
  • FIG. 29 shows the generation operation screen Gg when the designation of the viewpoint rotation center position by the rotation center position information 54 and the rotation center position information 59 and the designation of the position and size of the cropped image frame by the image frame information 58 are completed. exemplified.
  • the user When the user has completed specifying the viewpoint rotation center position and the clipped image frame position and size, the user operates the export button B3 provided on the generation operation screen Gg to generate the FV clip. (image generation processing unit 32).
  • the image generation processing unit 32 In response to the operation of the export button B3, the image generation processing unit 32 generates an FV clip based on the designated viewpoint rotation center position and information on the position and size of the clipped image frame. As described above, the generated FV clip is transmitted to the image creation controller 1 via the NAS 5 by the transmission control section 33 .
  • the transmission control unit 33 performs control to transmit information on the clipping position and size specified by the image frame information 58 to the image creation controller 1 .
  • the image creation controller 1 performs clipping processing for each of the front clip and the back clip according to the information on the clipping position and size thus transmitted.
  • the viewpoint rotation center positions of the start camera and the end camera can be specified independently by the rotation center position information 59s and 59e. It is also possible to specify only to In that case, the display processing unit 32a performs display control of the rotation center position information 59s and 59e such that when one of the rotation center position information 59s and 59e is moved, the other is also moved.
  • FIG. 30 shows an example of the generation operation screen Gg' corresponding to 2FV.
  • an FV designation operation section 62 for enabling designation of the first FV clip and the second FV clip is provided in the camera path list display section 44.
  • the camera path list display section 44 displays a list of camera path information generated for 2FV on the preset screen Gs described above.
  • the target space image display section 45 is provided with a transit camera image display area 57' between the start camera image display area 56 and the end camera image display area 57 as correspondence to 2FV. be done.
  • FIG. 30 illustrates the generation operation screen Gg′ when “1” representing the first FV clip is specified in the FV specification operation section 62.
  • the target space image display section 45 an image captured by the imaging device 10 as the starting camera is displayed in the starting camera image display area 56, and an image captured by the imaging device 10 as the transit camera is displayed in the transit camera image display area 57'.
  • image frame information 58t and rotation center position information 59t are displayed as image frame information 58 and rotation center position information 59, respectively. It is possible to specify the position and size of the cropped image frame for the camera and the viewpoint rotation center position.
  • the user can specify the viewpoint rotation center position and the position and size of the cropped image frame for each of the first and second FV clips in the case of 2FV.
  • the transit camera image display area 57' in the target space image display section 45 for the generation operation screen Gg' corresponding to 2FV. If at least two image display areas are provided, by switching the display according to the specified state of each of the first and second FV clips, the first and second FV clips can be displayed for each start camera and end camera. It is possible to specify the viewpoint rotation center position, the position and size of the cropped image frame.
  • the front clip and the rear clip linked to the FV clip are images cut out from the image data V according to the image frame information 58s and 58e described above.
  • FIG. 32 is an explanatory diagram of how the subject looks in the clipped image.
  • FIG. 32A schematically shows how a subject looks in an image clipped from an image captured by a real camera (imaging device 10) as a front clip or a back clip.
  • an FV clip connected to the front clip and the rear clip that is, an image of a virtual camera that captures the 3D model from a predetermined viewpoint, as shown by the broken line in FIG.
  • FIG. be different. That is, even if a virtual camera whose angle of view is centered at the center of the clipping range in the front clip or the back clip is set, the image from the virtual camera cannot capture the subject in the same way as the clipped image.
  • each frame image forming the FV clip is also a clipped image. That is, as an image of the virtual camera that captures the 3D model from the corresponding viewpoint, an image of the original size (4k size in this example) is first generated in the same way as the front clip and the rear clip, and then a clipped image is generated ( See Figure 32C). Specifically, for example, the image of the starting viewpoint of the FV clip, that is, the image of the starting camera that has the same viewpoint as the previous clip, is the original size (4k size in this example) with the same angle of view and imaging direction as the imaging device 10 of the previous clip. ) is generated, the image is cut out at the image frame position and size specified by the image frame information 58s.
  • an image of the original size with the same angle of view and imaging direction as the imaging device 10 of the later clip is generated.
  • the image is cut out at the image frame position and size specified by the image frame information 58e.
  • an image of the original size is generated as an image of a virtual camera that captures the 3D model from the corresponding viewpoint. It is generated by clipping in the image frame of the corresponding position and size.
  • center clipping the clipping in which the center of the original size image and the center of the clipped image frame coincide will be abbreviated as "center clipping".
  • center clipping can reduce the processing load compared to the cutout in which the center of the original size image and the center of the cutout image frame do not match. can be reduced.
  • FIG. 33 is an explanatory diagram of the transition of the clipping position during the FV clip.
  • the starting camera in the FV clip has the same viewpoint as that of the imaging device 10 in the previous clip, and the position of the cropped image frame is the position specified by the image frame information 58s.
  • the center position of the cropped image frame is gradually moved from the position specified by the starting camera (in the figure, the upper left dashed line in the image frame) to the center position of the original size image.
  • the position of the cut-out image frame is moved closer to the center position of the original size image as described above, there is a possibility that the subject of interest will be framed out of the cut-out image frame in the middle of the FV. Therefore, in the present embodiment, when the position of the clipped image frame is changed, the position of the viewpoint rotation center is also gradually changed.
  • the viewpoint in each frame in the FV clip is determined as a predetermined viewpoint. Therefore, by changing the position of the viewpoint rotation center, it is possible to change the line-of-sight direction from the viewpoint, thereby preventing the subject of interest from being out of the frame due to the transition of the position of the cropped image frame. can be prevented.
  • FIG. 33 when the position of the clipping image frame specified by the start camera is shifted to the position of the clipping image frame specified by the end camera, center clipping is naturally performed in the middle of the FV.
  • An example is shown.
  • FIG. 34 even if the position of the clipping image frame specified by the start camera is changed to the position of the clipping image frame specified by the end camera, the center clipping occurs during the FV. is not done in some cases.
  • the position of the clipping image frame specified by the start camera is the upper left portion within the image frame of the original size image
  • the position of the clipping image frame specified by the end camera is the position of the original size image.
  • the center will be extracted. There will be no interval.
  • the center even in cases where the center clipping is not performed even if the position of the clipping image frame is shifted from the position specified by the start camera toward the specified position by the end camera, the center The position of the cutout image frame is changed so that the section in which the cutout is performed is obtained.
  • transition of the position of the cutout image frame was explained as the transition of the cutout image frame in FV, but the size of the cutout image frame can also be changed. Specifically, when the size of the clipping image frame specified by the start camera and the size of the clipping image frame specified by the end camera are different, the size of the clipping image frame specified by the start camera is changed to the size specified by the end camera. The size of the clipped image frame is gradually changed.
  • the transition of the position of the cropped image frame in the FV is not limited to passing through the center cropped position.
  • the position of the clipping image frame is transitioned from the position of the clipping image frame specified by the start camera to the position of the clipping image frame specified by the end camera without going through the center clipping position. It is also possible to let
  • the position of the clipping image frame specified by the start camera may match the position of the clipping image frame specified by the end camera. In that case, it is possible not to change the position of the cropped image frame during FV.
  • FIG. 35 An example of a processing procedure for realizing the free-viewpoint image generation method as the embodiment described above will be described with reference to the flowchart of FIG. 35 . Specifically, it is a processing procedure example for realizing the function of the image generation processing unit 32 including the display processing unit 32a, the operation reception unit 32b, and the camera path editing processing unit 33c.
  • the processing shown in FIG. 35 is executed by the CPU 71 in the free viewpoint image server 2 based on a program stored in the storage unit 79 or the like.
  • step S101 the CPU 71 waits for an instruction to display the generation operation screen Gg. For example, it waits for an instruction to start up a software program for FV clip generation installed in the free viewpoint image server 2 .
  • the CPU 71 proceeds to step S102 and performs display processing of the generated operation screen Gg. That is, a process for displaying the initial screen (see FIG. 17) of the generated operation screen Gg on the screen of the display unit 77 is performed.
  • step S103 the CPU 71 waits for scene designation. That is, it waits for a scene specifying operation on the scene list display section 42 . If a scene has been designated, the CPU 71 proceeds to step S104 and performs processing for displaying an image corresponding to the designated scene on the scene window 41 . That is, processing is performed to display the captured image (image data V) of each imaging device 10 in the designated scene in the scene window 41 (see FIG. 18).
  • step S105 following step S104 the CPU 71 waits for camera path designation. In other words, it waits for an operation for designating camera path information in the camera path list display section 44 .
  • the CPU 71 performs display update processing according to the camera path specified in step S106. That is, as described above with reference to FIG. display of the "S" mark of and the "E” mark of the end camera, the image captured by the start camera in the start camera image display area 56 and the end camera image display area 57 in the target space image display section 45, and the image captured by the end camera.
  • a process of updating the display contents of the generation operation screen Gg is performed so that the image frame information 58s and 58e, the rotation center position information 59s and 59e, and the specifiable range information Ap are respectively displayed.
  • step S108 following step S106 the CPU 71 executes display update processing according to the screen operation. Specifically, display update processing according to an operation on the rotation center position information 54 in the camera path window 43 described with reference to FIGS. Display update processing according to the operation, furthermore, the image frame information 58s and 58e and the rotation center position information 59s and 59e (including the center height information Ha) described with reference to FIGS. Performs display update processing, etc. Note that, as described above, regarding the position specifying operation of the viewpoint rotation center based on the rotation center position information 54 and the rotation center position information 59s and 59e, only specifying operations within the specifiable range indicated by the specifiable range information Ap are performed. Accept it as a valid specified operation.
  • step S108 the CPU 71 determines whether or not an image generation execution instruction has been issued. That is, it determines whether or not an FV clip generation execution instruction has been operated. Specifically, in this example, it is a process of determining whether or not the export button B3 has been operated. If there is no image generation execution instruction, the CPU 71 returns to step S107 and performs display update processing according to the screen operation.
  • step S109 the CPU 71 proceeds to step S109 and performs FV clip generation processing. That is, based on the viewpoint rotation center position of each of the start camera and the end camera designated by the screen operation in step S107, the position and size of the clipped image frame, and the viewpoint movement trajectory information indicated by the designated camera path information. FV clip generation processing is executed. Note that the specific method of generating the FV clip in this embodiment has already been described with reference to FIGS. 32 to 34, so redundant description will be avoided.
  • the CPU 71 ends the series of processes shown in FIG. 35 in response to executing the process of step S109.
  • the embodiment is not limited to the specific examples described above, and various modifications can be made.
  • the free-viewpoint image server 2 generates a free-viewpoint image including clipping
  • the image creation controller 1 clips a front clip and a back clip
  • the front clip after clipping and the post clip and the free viewpoint image (with clipping) obtained from the free viewpoint image server 2 are output to the switcher 6 as obtained clips.
  • the method of sharing the processing is not limited to this method.
  • the image creation controller 1 creates a front clip and a back clip without clipping
  • the free-viewpoint image server 2 creates a free-viewpoint image with clipping and the front clip obtained from the image creation controller 1 .
  • the image creation controller 1 acquires the clipped front and back clips and the free viewpoint image from the free viewpoint image server 2 and outputs them to the switcher 6 as output clips.
  • the free-viewpoint image server 2 performs image clipping for all of the front clip, the rear clip, and the free-viewpoint image. Distortion addition processing (processing for bringing the image of the virtual camera closer to the image of the real camera) can be performed with high accuracy.
  • FIG. 38 it is also possible to employ a technique in which a clipping unit 9 is provided in the rear stage of the image generation controller 1, and this clipping unit 9 clips all of the front clip, the rear clip, and the free viewpoint image. can.
  • the image generation controller 1 and the free viewpoint image server 2 do not cut out the front clip, the rear clip, and the free viewpoint image, respectively.
  • the image creation controller 1 and the free-viewpoint image server 2 do not need clipping processing. It has the advantage of being reusable.
  • the position of the viewpoint rotation center is designated by the user's operation on the rotation center position information (54, 59).
  • the image generation processing unit 32 performs processing for recognizing a subject of interest (for example, a specific subject such as a specific athlete) from within the target space captured image.
  • the start camera it is conceivable to perform image recognition processing for recognizing a subject of interest for each of the image captured by the first camera and the image captured by the end camera, and determine the position of the viewpoint rotation center at the position where the subject of interest exists.
  • the position of the viewpoint rotation center determined based on the result of the image recognition processing may be used as it is for generating the free viewpoint image, or the position of the viewpoint rotation center may be used in the start camera image display area 56 and the end camera image display area 57 . It may be displayed as a candidate position.
  • the position and size of the cropped image frame can also be determined based on the result of image recognition processing on the captured image of the target space.
  • the image generation processing unit 32 (display processing unit 32a) performs image recognition processing for recognizing the subject of interest for each of the image captured by the start camera and the image captured by the end camera, and extracts a clipped image based on the position and size of the subject of interest. It is conceivable to determine the frame.
  • the information of the clipped image frame determined based on the result of the image recognition processing in this way may be used as it is, for example, for generating the free viewpoint image, or the clipped image may be displayed in the start camera image display area 56 and the end camera image display area 57 . It may be displayed as a frame candidate.
  • the plurality of imaging devices 10 used for free-viewpoint image generation are fixed cameras, but some of the imaging devices 10 may be hand-held cameras. In that case, it is conceivable to display the camera position on the generation operation screen Gg and update the camera position information used for FV clip generation using the position information and direction information of the hand-held camera.
  • the shape of the rotation center position information 59 is substantially cylindrical is exemplified, but the shape of the rotation center position information 59 can be, for example, a quadrangular prism shape, a spherical shape, a rod shape, or the like. is not limited to Also, the center height information Ha for designating the height of the viewpoint rotation center is not limited to the exemplified shape, and the height position may be designated by a slider or the like.
  • the position of the center of rotation of the viewpoint and the position of the cropped image frame can be adjusted individually. It is also conceivable to shift to an operation mode. For example, a mode in which the centers of the rotation center position information 59 and the image frame information 58 are aligned when double-clicked, and the rotation center position information 59 and the image frame information 58 move in conjunction with a movement instruction operation in that state. can be considered.
  • the device that performs display processing of the preset screen Gs and receives operation input for camera path generation and the device that performs display processing of the generated operation screen Gg and receives operation input for free viewpoint image generation are:
  • a common device as the free viewpoint image server 2
  • the target space captured image may be an image captured by a camera at the same viewpoint as an intermediate viewpoint in the FV, instead of the captured image by the start camera or the end camera.
  • the target space captured image is not limited to an image captured by a camera with the same viewpoint as the viewpoint in the FV, and may be an image obtained by capturing the real space for which the free viewpoint image is generated. .
  • the information processing apparatus (free-viewpoint image server 2) of the embodiment displays a free-viewpoint image on a target-space captured image, which is an image obtained by capturing a real space for which a free-viewpoint image is to be generated. It includes a display control unit (display processing unit 32a) that performs control for displaying rotation center position information (59) indicating the position of the viewpoint rotation center.
  • a display control unit display processing unit 32a
  • rotation center position information 59
  • the rotation center position information includes information indicating the height of the viewpoint rotation center. This makes it easier for the user to imagine the height position of the viewpoint rotation center of the free viewpoint image, that is, the elevation/depression angle of the free viewpoint image. Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • the display control unit performs control for displaying information (designable range information Ap) indicating the designable range of the viewpoint rotation center on the target space captured image. This makes it easier for the user to visualize the specifiable range of the viewpoint rotation center in light of the target space captured image. Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • the information processing apparatus of the embodiment includes an operation reception unit (32b) that receives an operation on the rotation center position information displayed on the display unit (77). Only the position designation operation of the viewpoint rotation center is accepted as a valid position designation operation. This prevents the viewpoint rotation center from being set at a position that makes it impossible to generate a free viewpoint image properly. Therefore, the free viewpoint image can be appropriately performed.
  • the display control unit performs control for displaying information (image frame information 58) indicating the image frame of the free viewpoint image on the target space captured image.
  • the target space captured image is a camera having the same viewpoint as the starting viewpoint of the free viewpoint image among the plurality of cameras for obtaining the captured images of the multiple viewpoints used for generating the free viewpoint image. It is an image captured by at least one of the start camera and the end camera having the same viewpoint as the end viewpoint of the free viewpoint image.
  • the composition at the starting viewpoint and the ending viewpoint of the free viewpoint image is an important composition that influences the quality of the free viewpoint image. For this reason, by using the target space captured images as the images captured by the start camera and the end camera as described above and displaying the rotation center position information on the target space captured images, it is possible to determine what kind of composition the free viewpoint image is. It becomes easy for the user to imagine whether the image will be Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • the target space captured images are the captured image of the start camera and the captured image of the end camera.
  • the composition at the start and end viewpoints of the free viewpoint image is an important composition that affects the performance of the free viewpoint image.
  • the rotation center position information By displaying the rotation center position information on the captured image, the user can more easily imagine what kind of composition the free viewpoint image will be. Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • As a free viewpoint image there is free run in addition to time freeze. (For example, you want to shift the viewpoint rotation center that was aligned with the position of the subject of interest at the start to the position of the subject of interest at the end). be suitable.
  • the start camera and the end camera are determined based on the camera path information.
  • the camera path information can be created in advance as preset information. By determining the start camera and end camera according to the camera path information as preset information, the camera path can be created on the spot when specifying the viewpoint rotation center. You don't have to do a create operation. Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • the display control unit determines the rotation center position information based on the result of image recognition processing on the target space captured image. For example, when generating a free-viewpoint image focusing on a specific subject such as a specific player, the specific subject is recognized by image recognition processing, and rotation center position information is determined at a position corresponding to the recognized subject. etc. can be considered. Therefore, it is possible to reduce the operational burden on the user when determining the position of the viewpoint rotation center, and to speed up the creation work of the free viewpoint image.
  • the display control unit determines the image frame based on the result of image recognition processing on the captured image of the target space. For example, when generating a free-viewpoint image focusing on a specific subject such as a specific player, the specific subject may be recognized by image recognition processing, and an image frame containing the recognized subject may be determined. Therefore, it is possible to reduce the operation burden on the user in determining the image frame of the free viewpoint image, and to speed up the creation work of the free viewpoint image.
  • an operation reception unit (32b) that receives an operation on the rotation center position information displayed on the display unit, and a viewpoint rotation center set based on the operation received by the operation reception unit.
  • an image generation unit (image generation processing unit 32) that generates a free viewpoint image based on the information.
  • the display control unit performs control to display the information of the camera path indicated by the camera path information on the display unit (see the camera path window 43).
  • the user is presented not only with the object space captured image and the rotation center position information, but also with the information of the camera path indicated by the camera path information (at least the information indicating the locus of movement of the viewpoint). Therefore, it becomes easier for the user to imagine what kind of composition the free-viewpoint image will be, and it is possible to speed up the creation work of the free-viewpoint image.
  • the display control unit performs control so that the rotation center position information is displayed in the display area of the camera path information. This makes it easier for the user to imagine the relationship between the viewpoint movement trajectory indicated by the camera path information and the position of the viewpoint rotation center. Further, when the rotation center position information is operated on the target space captured image, it is possible to link the rotation center position information in the display area of the camera path. Therefore, it becomes easier for the user to imagine what kind of composition the free-viewpoint image will be, and it is possible to speed up the creation work of the free-viewpoint image.
  • the information processing apparatus includes an operation reception unit (32b) that receives an operation for camera path information as an operation for adjusting the shape of the viewpoint movement trajectory indicated by the camera path information. This makes it possible to easily edit an existing camera path by operating the camera path on the display screen. Therefore, it is possible to speed up the creation work of the free viewpoint image.
  • the information processing apparatus displays the viewpoint rotation center of the free viewpoint image on the target space captured image, which is an image obtained by capturing an image of the real space that is the target for generating the free viewpoint image.
  • An information processing method for performing control for displaying rotation center position information indicating a position According to such an information processing method, it is possible to obtain the same actions and effects as those of the information processing apparatus of the above-described embodiment.
  • the processing by the image generation processing unit 32 (for example, the display processing unit 32a, etc.) described with reference to FIG.
  • the program of the embodiment is a program that can be read by a computer device, and a free-viewpoint image is generated on a target-space-captured image, which is an image obtained by capturing a real space for which a free-viewpoint image is to be generated.
  • the function as the display processing unit 32a described above can be realized in the device as the information processing device 70.
  • the program as described above can be recorded in advance in a HDD as a recording medium built in equipment such as a computer device, or in a ROM or the like in a microcomputer having a CPU.
  • flexible discs CD-ROMs (Compact Disc Read Only Memory), MO (Magneto Optical) discs, DVDs (Digital Versatile Discs), Blu-ray discs (Blu-ray Discs (registered trademark)), magnetic discs, semiconductor memories, It can be temporarily or permanently stored (recorded) in a removable recording medium such as a memory card.
  • Such removable recording media can be provided as so-called package software.
  • a program from a removable recording medium to a personal computer or the like, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • Such a program is suitable for wide provision of the display processing unit 32a of the embodiment.
  • a program is suitable for wide provision of the display processing unit 32a of the embodiment.
  • a personal computer a portable information processing device, a mobile phone, a game device, a video device, a PDA (Personal Digital Assistant), etc.
  • the personal computer, etc. is processed as the display processing unit 32a of the present disclosure.
  • the display system as an embodiment includes a display unit (the display unit 77 of the free-viewpoint image server 2) capable of displaying an image, and a real space for which a free-viewpoint image is to be generated by the display unit.
  • a display control unit (display processing unit 32a) that performs control for displaying rotation center position information indicating the position of the viewpoint rotation center of the free viewpoint image on the target space captured image that is the image to be captured.
  • This technology> can also adopt the following configuration.
  • An information processing device having a display control unit that performs (2) The information processing apparatus according to (1), wherein the rotation center position information includes information indicating a height of the viewpoint rotation center.
  • An operation reception unit that receives an operation for the rotation center position information displayed on the display unit, The information processing apparatus according to (3), wherein the operation accepting unit accepts only a position specifying operation of the viewpoint rotation center within the specifiable range as a valid position specifying operation.
  • the information processing apparatus according to any one of (1) to (4), wherein the display control unit performs control for displaying information indicating an image frame of the free viewpoint image on the target space captured image.
  • the target space captured image is a starting camera having the same viewpoint as the starting viewpoint of the free viewpoint image, among a plurality of cameras for obtaining the captured images of multiple viewpoints used for generating the free viewpoint image.
  • the information processing apparatus according to any one of (1) to (5), wherein the image is captured by at least one of an end camera having the same viewpoint as the end viewpoint. (7) The information processing apparatus according to (6), wherein the target space captured image is an image captured by the start camera and an image captured by the end camera. (8) The information processing apparatus according to (6) or (7), wherein the start camera and the end camera are determined based on camera path information. (9) The information processing apparatus according to any one of (1) to (8), wherein the display control unit determines the rotation center position information based on a result of image recognition processing on the target space captured image. (10) The information processing apparatus according to (5), wherein the display control unit determines the image frame based on a result of image recognition processing on the target space captured image.
  • an operation reception unit that receives an operation for the rotation center position information displayed on the display unit;
  • the information according to any one of (1) to (10) above, further comprising: an image generating unit that generates a free viewpoint image based on the information about the viewpoint rotation center set based on the operation received by the operation receiving unit. processing equipment.
  • the display control unit performs control to display information of the camera path indicated by the camera path information on the display unit.
  • the information processing apparatus according to any one of (1) to (11) above.
  • the information processing apparatus according to any one of (1) to (11) above.
  • the information processing apparatus according to (12), wherein the display control unit performs control such that the rotation center position information is displayed in the display area of the camera path information.
  • the information processing apparatus according to any one of (12) and (13) above, further comprising an operation reception unit that receives an operation on the camera path information as a shape adjustment operation of the viewpoint movement trajectory indicated by the camera path information.
  • the information processing device displays rotation center position information indicating the position of the viewpoint rotation center of the free viewpoint image on the target space captured image, which is an image obtained by capturing the real space for which the free viewpoint image is to be generated. information processing method.
  • a program readable by a computer device which indicates the position of the viewpoint rotation center of the free viewpoint image on a target space captured image, which is an image obtained by capturing a real space for which the free viewpoint image is to be generated.
  • a display unit capable of displaying images;
  • the display unit displays rotation center position information indicating the position of the viewpoint rotation center of the free viewpoint image on the target space captured image, which is an image obtained by capturing the real space for which the free viewpoint image is generated.
  • a display control unit that performs control for displaying a display system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

本技術に係る情報処理装置は、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部を備えている。

Description

情報処理装置、情報処理方法、プログラム、表示システム
 本技術は、情報処理装置とその方法、プログラム、及び表示システムに関し、特に撮像された被写体を三次元空間上の任意の視点から見ることのできる自由視点画像に係る処理の技術に関する。
 撮像された被写体を三次元空間上で表した三次元情報に基づき、三次元空間上の任意視点から見ることのできる画像に相当する自由視点画像(自由視点映像、仮想視点画像(映像)などとも呼ばれる)を生成する技術が知られている。
 関連する従来技術については下記特許文献1を挙げることができる。特許文献1には視点の移動軌跡といえるカメラパスの生成に関する技術が開示されている。
WO2018/030206号公報
 自由視点画像は放送コンテンツとしても有用であり、例えばスポーツ中継のリプレイ画像としても用いられている。例えばサッカーやバスケットボールの放送などにおいて、リアルタイムで録画した画像の中からシュートシーン等の数秒のクリップを作成し、リプレイ画像として放送する。なお、本開示において「クリップ」とは、録画した画像の中から抽出したり、さらに加工したりして作成される或るシーンの画像のことを指す。
 ところで、放送現場において、特に生中継の場合には、オペレータに対し迅速にリプレイのためのクリップを作成し、放送することが求められる。例えば或るプレイの10数秒後にリプレイを放送したいといった要望もある。このような要望は、自由視点画像を含むクリップの作成についても同様であり、従って、自由視点画像の作成作業を迅速に行うことが求められている。
 本技術は上記事情に鑑み為されたものであり、自由視点画像の作成作業の迅速化を図ることを目的とする。
 本技術に係る情報処理装置は、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部を備えたものである。
 自由視点画像の生成対象とされる空間とは、自由視点画像の被写体となる物体が存在する実空間を意味する。上記構成によれば、そのような自由視点画像の生成対象とされる実空間を捉えた撮像画像上において、自由視点画像の視点回転中心位置を視覚化して表示することが可能となる。
本技術の実施形態のシステム構成のブロック図である。 実施形態の自由視点画像生成のためのカメラ配置例の説明図である。 実施形態の情報処理装置のハードウエア構成のブロック図である。 実施形態の画像作成コントローラの機能の説明図である。 実施形態の自由視点画像サーバの機能の説明図である。 実施形態の自由視点画像における視点の説明図である。 実施形態におけるカメラパス指定画面の概要の説明図である。 実施形態における作成操作画面の概要の説明図である。 実施形態の出力クリップの説明図である。 実施形態の静止画FVクリップを含む出力クリップの説明図である。 実施形態の動画FVクリップを含む出力クリップの説明図である。 実施形態の出力クリップの画像例の説明図である。 実施形態のクリップ作成の作業手順の説明図である。 実施形態のカメラ変動検出の作業手順の説明図である。 自由視点画像の開始視点、終了視点それぞれに対応する撮像装置の撮像画像の例を示した図である。 画像切り出しのイメージ図である。 生成操作画面の初期画面の例を示した図である。 シーン指定後の生成操作画面の様子を例示した図である。 カメラパスリスト表示部からカメラパスが指定された場合の生成操作画面の様子を例示した図である。 カメラパスウインドウにおける回転中心位置情報の操作による視点回転中心の位置指定の例を説明するための図である。 同じく、カメラパスウインドウにおける回転中心位置情報の操作による視点回転中心の位置指定の例を説明するための図である。 視点移動軌跡の円弧の深さの調整のためのGUIを例示した図である。 視点回転中心の高さ位置の指定についての説明図である。 同じく、視点回転中心の高さ位置の指定についての説明図である。 視点回転中心の位置指定(水平方向での位置指定)の操作例を説明するための図である。 切り出しの画枠指定のための操作例を説明するための図である。 同じく、切り出しの画枠指定のための操作例を説明するための図である。 切り出し画枠のサイズ指定についての変形例の説明図である。 視点回転中心や画枠の指定が完了した際の生成操作画面の様子を例示した図である。 2FVに対応した生成操作画面の一例を示した図である。 2FVに対応した生成操作画面について第二のFVクリップが指定された場合の表示例を示した図である。 切り出し画像における被写体の見え方についての説明図である。 FVクリップ中における切り出し位置の遷移の例を示した図である。 FVクリップ中における切り出し位置の遷移の別例を示した図である。 実施形態としての自由視点画像の生成手法を実現するための処理手順例を示したフローチャートである。 実施形態で例示した画像生成の処理分担を模式的に示した図である。 画像生成の処理分担の他の例を模式的に示した図である。 画像生成の処理分担のさらに他の例を模式的に示した図である。
 以下、実施の形態を次の順序で説明する。
<1.システム構成>
<2.画像作成コントローラ及び自由視点画像サーバの構成>
<3.GUIの概要>
<4.自由視点画像を含むクリップ>
<5.クリップ作成処理>
<6.カメラ変動検出>
<7.自由視点画像作成のためのGUI>
<8.実施形態の自由視点画像生成について>
<9.処理手順>
<10.変形例>
<11.実施形態のまとめ>
<12.本技術>
<1.システム構成>
 図1に、本技術に係る実施の形態の画像処理システムの構成例を示す。
 画像処理システムは、画像作成コントローラ1、自由視点画像サーバ2、ビデオサーバ3、複数(例えば4台)のビデオサーバ4A,4B,4C,4D、NAS(Network Attached Storage)5、スイッチャー6、画像変換部7、ユーティリティサーバ8、複数(例えば16台)の撮像装置10を有する。
 なお以降、「カメラ」という用語は撮像装置10を指す。例えば「カメラ配置」とは複数の撮像装置10の配置を意味する。
 また、ビデオサーバ4A,4B,4C,4Dを特に区別せずに総称するときは「ビデオサーバ4」と表記する。
 この画像処理システムでは、複数の撮像装置10から取得される撮像画像(例えば画像データV1からV16)に基づき、三次元空間上の任意視点から見える画像に相当する自由視点画像を生成し、自由視点画像を含む出力クリップを作成することができる。
 図1においては、各部の接続状態を実線、破線、二重線で示している。
 実線は、カメラやスイッチャーなどの放送機器間を接続するインタフェース規格であるSDI(Serial Digital Interface)の接続を示し、例えば4K対応としている。各機器間はSDI配線により主に画像データの送受信が行われる。
 二重線は、例えば10ギガビット・イーサネットなどの、コンピュータネットワークを構築する通信規格の接続を示している。画像作成コントローラ1、自由視点画像サーバ2、ビデオサーバ3、4A,4B,4C,4D、NAS5、ユーティリティサーバ8はコンピュータネットワークで接続されることで、互いに画像データや各種制御信号の送受信が可能とされる。
 ビデオサーバ3、4間の破線は、サーバ間ファイル共有機能を搭載したビデオサーバ3、4を例えば10Gネットワークで接続した状態を示している。これによりビデオサーバ3、及びビデオサーバ4A,4B,4C,4Dの間では、各ビデオサーバが他のビデオサーバ内の素材のプレビューや送出が可能となる。即ち複数のビデオサーバを使用したシステムが構築され、効率的なハイライト編集・送出を実現できるようにされている。
 各撮像装置10は、例えばCCD(Charge Coupled Devices)センサやCMOS(Complementary Metal-Oxide-Semiconductor)センサ等による撮像素子を有したデジタルカメラ装置として構成され、デジタルデータとしての撮像画像(画像データV1からV16)を得る。本例では、各撮像装置10は動画としての撮像画像を得る。
 各撮像装置10は、本例ではバスケットボールやサッカー、ゴルフ等の競技が行われている様子を撮像するものとされ、それぞれが競技の開催される競技会場における所定位置において所定の向きに配置されている。本例では、撮像装置10の数は16台としているが、自由視点画像の生成を可能とする上では撮像装置10の数は少なくとも2以上あればよい。撮像装置10の台数を多くし、対象とする被写体をより多くの角度から撮像することで、被写体の三次元復元の精度向上が図られ、仮想視点画像の画質向上を図ることができる。
 図2に、バスケットボールのコートの周囲における撮像装置10の配置例を示している。○が撮像装置10であるとする。例えば図面で左側のゴール近傍を重点的に撮りたい場合のカメラ配置例である。もちろんカメラ配置や数は一例であり、撮影や放送の内容、目的に応じて設定されるべきものである。
 また、自由視点画像の生成対象とされるシーンはバスケットボール競技のシーンに限定されるものではなく、多種多様なものである。
 画像作成コントローラ1は、情報処理装置により構成される。この画像作成コントローラ1は、例えば専用のワークステーションや、汎用のパーソナルコンピュータ、モバイル端末装置等を利用して実現することができる。
 画像作成コントローラ1は、ビデオサーバ3、4の制御/動作管理や、クリップ作成のための処理を行う。
 一例として、画像作成コントローラ1はオペレータOP1が操作可能な装置とする。オペレータOP1は、例えばクリップ内容の選択や作成の指示等を行う。
 自由視点画像サーバ2は、画像作成コントローラ1の指示等に応じて、実際に自由視点画像(後述するFV(Free View)クリップ)を作成する処理を行う情報処理装置として構成される。この自由視点画像サーバ2も、例えば専用のワークステーションや、汎用のパーソナルコンピュータ、モバイル端末装置等を利用して実現することができる。
 一例として、自由視点画像サーバ2はオペレータOP2が操作可能な装置とする。オペレータOP2は、例えば自由視点画像としてのFVクリップの作成に係る作業を行う。具体的に、オペレータOP2は、自由視点画像の生成のためのカメラパスの指定操作(選択操作)などを行う。また、本例においてオペレータOP2は、カメラパスの作成作業も行う。
 ここで、カメラパスの情報とは、自由視点画像における視点の移動軌跡を示す情報を少なくとも含んだ情報である。例えば、3Dモデルを生成した被写体に対して、視点の位置や視線方向、及び画角(焦点距離)を変化させていくようなFVクリップを作成する場合に、その視点の移動軌跡や視線方向の変化態様、画角の変化態様を定めるのに必要なパラメータが、カメラパスの情報とされる。
 画像作成コントローラ1と自由視点画像サーバ2の構成や処理について詳しくは後述する。また、オペレータOP1,OP2が操作を行うものとするが、例えば画像作成コントローラ1と自由視点画像サーバ2が並べて配置され、一人のオペレータによって操作されるようにしてもよい。
 ビデオサーバ3、4は、それぞれ画像記録装置とされ、例えばSSD(Solid State Drive)やHDD(Hard Disk Drive)等のデータ記録部と、該データ記録部についてデータの記録再生制御を行う制御部とを備える。
 ビデオサーバ4A,4B,4C,4Dは、それぞれ例えば4系統の入力が可能とされて、それぞれ4台の撮像装置10の撮像画像を同時に記録する。
 例えばビデオサーバ4Aは、画像データV1,V2,V3,V4の記録を行う。ビデオサーバ4Bは、画像データV5,V6,V7,V8の記録を行う。ビデオサーバ4Cは、画像データV9,V10,V11,V12の記録を行う。ビデオサーバ4Dは、画像データV13,V14,V15,V16の記録を行う。
 これにより、16台の撮像装置10の撮像画像が全て同時に記録される状態となる。
 ビデオサーバ4A,4B,4C,4Dは、例えば放送対象のスポーツの試合中などに、常時録画を行うものとされる。
 ビデオサーバ3は、例えば画像作成コントローラ1に直接接続され、例えば2系統の入力と2系統の出力が可能とされる。2系統の入力として画像データVp,Vqを示している。画像データVp,Vqとしては、いずれかの2台の撮像装置10の撮像画像(画像データV1からV16の内のいずれか2つ)を選択することが可能である。もちろん他の撮像装置の撮像画像であってもよい。
 画像データVp,Vqについては、モニタ画像として画像作成コントローラ1がディスプレイに表示させることができる。オペレータOP1は、ビデオサーバ3に入力された画像データVp,Vqにより、例えば放送のために撮影・収録しているシーンの状況を確認することができる。
 また、ビデオサーバ3、4はファイル共有状態に接続されているため、画像作成コントローラ1は、ビデオサーバ4A,4B,4C,4Dに記録している各撮像装置10の撮像画像についてもモニタ表示させることができ、オペレータOP1が逐次確認できるようにされる。
 なお本例において、各撮像装置10による撮像画像にはタイムコードが付され、ビデオサーバ3,4A,4B,4C,4Dにおける処理においてフレーム同期をとることが可能とされている。
 NAS5はネットワーク上に配置されたストレージデバイスであり、例えばSSDやHDD等で構成される。本例の場合、NAS5は、ビデオサーバ4A,4B,4C,4Dに録画された画像データV1、V2・・・V16について一部のフレームが自由視点画像の生成のために転送されてきたときに、自由視点画像サーバ2における処理のために記憶したり、作成された自由視点画像を記憶したりするデバイスとされる。
 スイッチャー6は、ビデオサーバ3を介して出力される画像を入力し、最終的に選択して放送する本線画像PGMoutを選択する機器である。例えば放送のディレクター等が必要な操作を行う。
 画像変換部7は、例えば撮像装置10による画像データの解像度変換及び合成を行い、カメラ配置のモニタリング画像を生成してユーティリティサーバ8に供給する。例えば4K画像とされる16系統の画像データ(V1からV16)を、HD画像に解像度変換した上でタイル状に配置した4系統の画像とし、ユーティリティサーバ8に供給する等である。
 ユーティリティサーバ8は、各種の関連処理が可能なコンピュータ装置であるが、本例の場合、特にキャリブレーション用のカメラ移動の検出処理を行う装置としている。例えばユーティリティサーバ8は、画像変換部7からの画像データを監視してカメラ移動を検出する。カメラ移動とは、例えば図2のように配置された撮像装置10のいずれかの配置位置の移動のことである。撮像装置10の配置位置の情報は自由視点画像の生成に重要な要素であり、配置位置が変化したらパラメータ設定のやり直しが必要になる。そのためカメラ移動の監視が行われる。
<2.画像作成コントローラ及び自由視点画像サーバの構成>
 以上の構成における画像作成コントローラ1、自由視点画像サーバ2、ビデオサーバ3、4、ユーティリティサーバ8は、例えば図3に示す構成を備えた情報処理装置70として実現できる。
 図3において、情報処理装置70のCPU71は、ROM72に記憶されているプログラム、または記憶部79からRAM73にロードされたプログラムに従って各種の処理を実行する。RAM73にはまた、CPU71が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU71、ROM72、およびRAM73は、バス74を介して相互に接続されている。このバス74にはまた、入出力インタフェース75も接続されている。
 入出力インタフェース75には、操作子や操作デバイスよりなる入力部76が接続される。
 例えば入力部76としては、キーボード、マウス、キー、ダイヤル、タッチパネル、タッチパッド、リモートコントローラ等の各種の操作子や操作デバイスが想定される。
 入力部76によりユーザの操作が検知され、入力された操作に応じた信号はCPU71によって解釈される。
 また入出力インタフェース75には、LCD(Liquid Crystal Display)或いは有機EL(Electro-Luminescence)パネルなどよりなる表示部77や、スピーカなどよりなる音声出力部78が一体又は別体として接続される。
 表示部77は各種表示を行う表示部であり、例えば情報処理装置70の筐体に設けられるディスプレイデバイスや、情報処理装置70に接続される別体のディスプレイデバイス等により構成される。
 表示部77は、CPU71の指示に基づいて表示画面上に各種の画像処理のための画像や処理対象の動画等の表示を実行する。また表示部77はCPU71の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を行う。
 入出力インタフェース75には、ハードディスクや固体メモリなどより構成される記憶部79や、モデムなどより構成される通信部80が接続される場合もある。
 通信部80は、インターネット等の伝送路を介しての通信処理や、各種機器との有線/無線通信、バス通信などによる通信を行う。
 入出力インタフェース75にはまた、必要に応じてドライブ82が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブル記録媒体81が適宜装着される。
 ドライブ82により、リムーバブル記録媒体81からは画像ファイルMF等のデータファイルや、各種のコンピュータプログラムなどを読み出すことができる。読み出されたデータファイルは記憶部79に記憶されたり、データファイルに含まれる画像や音声が表示部77や音声出力部78で出力されたりする。またリムーバブル記録媒体81から読み出されたコンピュータプログラム等は必要に応じて記憶部79にインストールされる。
 この情報処理装置70では、ソフトウエアを、通信部80によるネットワーク通信やリムーバブル記録媒体81を介してインストールすることができる。或いは当該ソフトウエアは予めROM72や記憶部79等に記憶されていてもよい。
 このような情報処理装置70を用いて画像作成コントローラ1や自由視点画像サーバ2を実現する場合、例えばソフトウエアにより、図4,図5のような処理機能がCPU71において実現されるようにする。
 図4は、画像作成コントローラ1となる情報処理装置70のCPU71において形成される機能として、区間特定処理部21、対象画像送信制御部22、出力画像生成部23を示している。
 区間特定処理部21は、複数の撮像装置10により同時に撮像された複数の撮像画像(画像データV1からV16)について、自由視点画像の生成対象とする生成対象画像区間を特定する処理を行う。例えばオペレータOP1が画像内でリプレイ再生させたいシーンを選択する操作を行うことに応じて、そのシーン、特には自由視点画像とするシーンの区間(生成対象画像区間)についてのタイムコードを特定したり、当該タイムコードを自由視点画像サーバ2に通知したりする処理を行う。
 ここで生成対象画像区間とは、実際に自由視点画像とするフレーム区間をいう。動画内のある1フレームについて自由視点画像を生成する場合は、その1フレームが生成対象画像区間となる。この場合、自由視点画像のためのイン点(開始点)/アウト点(終了点)は同じタイムコードとなる。
  また動画内の複数フレームの区間について自由視点画像を生成する場合は、その複数フレームが生成対象画像区間となる。この場合、自由視点画像のためのイン点/アウト点は異なるタイムコードとなる。
 なお、クリップの構造については後述するが、生成対象画像区間のイン点/アウト点は、最終的に生成する出力クリップとしてのイン点/アウト点とは異なることが想定される。後述する前クリップや後クリップが結合されるためである。
 対象画像送信制御部22は、複数の撮像装置10のそれぞれにおける生成対象画像区間の画像データ、即ち画像データV1からV16についての1又は複数フレームを、自由視点画像サーバ2における自由視点画像の生成に用いる画像データとして送信させる制御を行う。具体的には生成対象画像区間としての画像データを、ビデオサーバ4A,4B,4C,4DからNAS5に転送させる制御を行う。
 出力画像生成部23は、自由視点画像サーバ2が生成し、受信した自由視点画像(FVクリップ)を含む出力画像(出力クリップ)を生成する処理を行う。
 例えば画像作成コントローラ1は、出力画像生成部23の処理により、自由視点画像サーバ2が生成した仮想的な画像であるFVクリップに、その前の時点の実際の動画である前クリップと、後の時点の実際の動画である後クリップを時間軸上で結合させて出力クリップとする。即ち、前クリップ+FVクリップ+後クリップを1つの出力クリップとする。
 もちろん、前クリップ+FVクリップを1つの出力クリップとしてもよい。
 或いは、FVクリップ+後クリップを1つの出力クリップとしてもよい。
 さらには、前クリップや後クリップを結合せずにFVクリップのみの出力クリップを生成してもよい。
 いずれにしても画像作成コントローラ1は、FVクリップを含む出力クリップを生成してスイッチャー6に出力し、放送に用いることができるようにする。
 図5は、自由視点画像サーバ2となる情報処理装置70のCPU71において形成される機能として、対象画像取得部31、画像生成処理部32、送信制御部33、及びカメラパス生成処理部34を示している。
 対象画像取得部31は、複数の撮像装置10により同時に撮像された複数の撮像画像(画像データV1からV16)のそれぞれにおける、自由視点画像の生成対象とされた生成対象画像区間の画像データを取得する処理を行う。即ち画像作成コントローラ1が区間特定処理部21の機能により特定した生成対象画像区間のイン点/アウト点で指定される1フレーム又は複数フレームの画像データをビデオサーバ4A,4B,4C,4DからNAS5を介して取得して、自由視点画像の生成に用いることができるようにする。
 例えば対象画像取得部31は、画像データV1からV16の全てについて、生成対象画像区間の1フレーム又は複数フレームの画像データを取得する。画像データV1からV16の全てについて生成対象画像区間の画像データを取得するのは、高品質な自由視点画像の生成のためである。上述のように少なくとも2以上の撮像装置10の撮像画像を用いれば自由視点画像の生成は可能であるが、撮像装置10の数(即ち視点の数)を多くすることにより、より精細な3Dモデルを生成して高品質な自由視点画像の生成が可能になる。そのため、例えば16台の撮像装置10を配置した場合は、16台の撮像装置10の画像データ(V1からV16)の全てについて、生成対象画像区間の画像データを取得することが行われる。
 画像生成処理部32は、対象画像取得部31が取得した画像データを用いて自由視点画像、即ち本例の場合のFVクリップを生成する機能である。
 例えば画像生成処理部32は、3Dモデル生成、被写体解析を含むモデリング処理や、3Dモデルから2次元画像である自由視点画像を生成するレンダリング等の処理を行う。
 3Dモデル生成とは、各撮像装置10による撮像画像と、例えばユーティリティサーバ8等から入力した撮像装置10ごとのカメラパラメータとに基づいて、被写体を三次元空間上で表した(つまり二次元画像から被写体の三次元構造を復元した)3Dモデルデータを生成する処理である。具体的に、3Dモデルデータは、被写体を(X,Y,Z)による三次元座標系で表したデータを含む。
 被写体解析は、3Dモデルデータに基づき、人物(選手)としての被写体について位置や向き、姿勢についての解析を行う。具体的には、被写体の位置の推定、被写体の簡易モデルの生成、被写体の向きの推定などを行う。
 そして3Dモデルデータと被写体解析情報とに基づき自由視点画像を生成する。例えば被写体である選手が静止した状態の3Dモデルに対して、視点を動かしていくような自由視点画像の生成を行う。
 なお、上記の被写体解析は、画像内に捉えられた物体を認識する画像認識処理の一種である。
 図6を参照して自由視点画像の視点について述べておく。
 図6Aでは、三次元空間上に設定した所要の視点から被写体を捉えた自由視点画像のイメージを示している。この場合の自由視点画像では、被写体S1が略正面視され、被写体S2が略背面視されている。
 図6Bでは、視点の位置を図6Aの矢印C方向に変化させ、被写体S1を略背面視する視点が設定された場合の仮想視点画像のイメージを示している。この図6Bの自由視点画像では、被写体S2が略正面視され、また図6Aでは映し出されていなかった被写体S3やバスケットゴールが映し出されている。
 例えば図6Aの状態から、矢印Cの方向に徐々に視点を移動させ、図6Bの状態に至るような1秒から2秒程度の画像が自由視点画像(FVクリップ)として生成されることになる。もちろん自由視点画像としてのFVクリップの時間長や、視点移動の軌跡は多様に考えられる。
 ここで、本例の自由視点画像サーバ2(CPU71)は、画像生成処理部32の一部機能として、表示処理部32a、及び操作受付部32bとしての機能を有している。
 表示処理部32aは、自由視点画像の生成に用いるカメラパス情報の指定操作や後述する視点回転中心位置の指定、自由視点画像の生成実行指示等を受け付ける生成操作画面Ggの表示処理を行う。
 また、操作受付部32bは、プリセット画面Gsでの操作を受け付ける機能となる。
 なお、自由視点画像に係るカメラパスや、生成操作画面Ggの詳細については後に改めて説明する。
 また、本例における自由視点画像サーバ2は、画像生成処理部32の一部機能として、カメラパス編集処理部32cとしての機能も有するが、このカメラパス編集処理部32cとしての機能についても後に改めて説明する。
 送信制御部33は、画像生成処理部32で生成した自由視点画像(FVクリップ)を、NAS5を介して画像作成コントローラ1に送信する制御を行う。この場合、送信制御部33は、出力画像生成のための付随情報も画像作成コントローラ1に送信するように制御する。付随情報とは、前クリップや後クリップの画像を指定する情報が想定される。即ち、画像データV1からV16のいずれの画像を用いて前クリップや後クリップを作成するかを指定する情報である。また付随情報として前クリップや後クリップの時間長を指定する情報も想定される。
 カメラパス生成処理部34は、自由視点画像の生成に用いるカメラパス情報の生成に係る処理を行う。自由視点画像の作成にあたっては、様々なシーンに対応するために複数の候補となるカメラパスを事前に作成(プリセット)しておくことになる。このようなカメラパスの事前作成を可能とするために、本例の自由視点画像サーバ2には、カメラパス作成用のソフトウエアプログラムがインストールされている。カメラパス生成処理部34は、このソフトウエアプログラムにより実現される機能であり、ユーザの操作入力に基づいてカメラパスの生成処理を行う。
 カメラパス生成処理部34は、表示処理部34aとしての機能を有する。表示処理部34aは、ユーザ(本例ではオペレータOP2)によるカメラパス作成のための各種操作入力の受け付けを可能とするべく、後述するプリセット画面Gsの表示処理を行う。
<3.GUIの概要>
 図7及び図8を参照し、自由視点画像の作成に用いられる生成操作画面Gg、及びカメラパスの作成に用いられるプリセット画面Gsの概要について説明しておく。本例において、これら生成操作画面Gg、プリセット画面Gsは、例えば自由視点画像サーバ2における表示部77に表示され、オペレータOP2による確認や操作が可能とされている。
 図7に示す生成操作画面Ggには、シーンウインドウ41、シーンリスト表示部42、カメラパスウインドウ43、カメラパスリスト表示部44、対象空間画像表示部45、及び送信ウインドウ46が配置される。
 シーンウインドウ41において、例えば生成対象画像区間の画像のモニタ表示が行われ、オペレータOP2が自由視点画像を生成するシーンの内容を確認できるようにされる。
 シーンリスト表示部42には、例えば生成対象画像区間に指定されたシーンのリストが表示される。オペレータOP2はシーンウインドウ41に表示させるシーンをシーンリスト表示部42で選択できる。
 カメラパスウインドウ43には、配置されている撮像装置10の位置や、指定されているカメラパスを示す情報などが表示される。
 前述のようにカメラパスの情報とは、少なくとも自由視点画像における視点の移動軌跡を示す情報である。
 カメラパスウインドウ43には、カメラパスの表示として、少なくとも視点の移動軌跡を視覚化して示す情報が表示される。
 カメラパスリスト表示部44には、予め作成されて記憶されている各種のカメラパスの情報が一覧表示される。オペレータOP2は、カメラパスリスト表示部44に表示されているカメラパスのうちで、FVクリップ生成に用いるカメラパスを選択し指定することが できる。
 対象空間画像表示部45には、対象空間撮像画像が表示される。対象空間撮像画像とは、自由視点画像の生成対象とする実空間を撮像して得られる画像を意味する。具体例としては、自由視点画像の生成に用いられる複数の撮像画像を得る撮像装置10のうち少なくとも何れかによる撮像画像を挙げることができる。
 以下の説明では、対象空間撮像画像は、開始カメラとなる撮像装置10の撮像画像、終了カメラとなる撮像装置10の撮像画像である例とする。開始カメラとは、自由視点画像の開始視点と同一視点のカメラ、終了カメラとは、自由視点画像の終了視点と同一視点のカメラをそれぞれ意味する。
 後述するように、この対象空間画像表示部45では、対象空間撮像画像上に自由視点画像の視点回転中心の位置を示す回転中心位置情報が表示され、ユーザが視点回転中心の位置の指定操作を行うことが可能とされる。
 送信ウインドウ46には、作成したFVクリップを画像作成コントローラ1に送信することに関する情報が表示される。
 続いて、図8のプリセット画面Gsについて説明する。
 ここでは、カメラパス情報を事前に作成しておくためのプリセット画面Gsとして、2FVの生成に対応したプリセット画面Gsを例示している。
 2FVとは、第一のFVクリップの後に、第一のFVクリップの終了視点となる撮像装置10による撮像画像(動画像)が挿入され、その後に、該終了視点を開始視点とする第二のFVクリップが挿入されたクリップを意味する。具体的に、2FVの例としては、例えば、ゴルフスイングのシーンであれば、第一のFVクリップが例えばトップ(トップオブスイング)のシーンについて選手の右側方の視点から正面の視点まで視点を移動させるFVクリップとされ、その後の撮像画像が、該正面の視点によりトップのシーンからインパクトのシーンまでを捉えた動画像(実際の撮像画像)とされ、第二のFVクリップが、インパクトのシーンについて、該正面の視点を開始視点として視点を移動させるFVクリップとされるもの等を挙げることができる。
 2FVでは、第一のFVクリップの終了視点となるカメラと、第二のFVクリップの開始視点となるカメラが一致するものである。このように第一のFVクリップの終了視点、及び第二のFVクリップの開始視点となるカメラは、「トランジットカメラ(Transit Camera)」と呼ばれている。
 なお、出力クリップに1つのFVクリップのみを含むものは「1FV」と呼ばれる。
 図8に示すように、プリセット画面Gsには、カメラパス情報に付すべき名称を入力するためのパス名入力部65、1FV(1FreeView)又は2FV(2FreeView)の選択を行うためのFV数選択部66、FVクリップについての開始カメラ(StartCamera)、終了カメラ(EndCamera)、2FVの場合におけるトランジットカメラを選択するためのカメラ選択部67、視点の回転方向を選択するための回転方向選択部68、OKボタンB1、キャンセルボタンB2が設けられている。
 図中では、FV数選択部66において2FVが選択された場合の画面を例示しているが、1FVが選択された場合、カメラ選択部67には少なくとも開始カメラと終了カメラを選択するための表示のみが行われればよい。
 視点の回転方向については、例えば複数の撮像装置10が円環状に配置される場合等において、開始カメラの視点から終了カメラの視点まで何れの方向に視点を移動させるべきかを指定可能とするものである。
 図中では、2FVが選択された場合の回転方向選択部68を例示しており、この場合の回転方向選択部68では、開始カメラからトランジットカメラまでの視点の回転方向(つまり第一のFVクリップについての視点の回転方向)、トランジットカメラから終了カメラまでの視点の回転方向(第二のFVクリップについての視点の回転方向)をそれぞれ選択可能とされる。
 1FVが選択された場合、回転方向選択部68には、少なくとも開始カメラから終了カメラまでの視点の回転方向を選択するための表示のみが行われればよい。
 パス名入力部65には、任意の文字や数字を入力可能とされる。
 この場合のカメラパス情報の作成において、ユーザは、FV数選択部66において1FV又は2FVの選択を行い、1FVの場合であれば、カメラ選択部67において、開始カメラ、終了カメラをそれぞれ何れの撮像装置10とするかの選択を行う。図中では、カメラの選択は、候補となる全てのカメラの番号(撮像装置10の番号)を表示してそのうちから選択するカメラを指定させる例としているが、カメラ選択のGUIはこれに限定されるものではなく、例えば番号を直接入力させるものやUp、Downキーにより番号を指定させるもの等他の例も考えられる。
 2FVの場合、ユーザはカメラ選択部67において開始カメラ、トランジットカメラ、終了カメラをそれぞれ何れの撮像装置10とするかの選択を行う。
 またユーザは、必要に応じて、回転方向選択部68において視点回転方向の選択操作を行う。
 ユーザは、OKボタンB1を操作することで、自由視点画像サーバ2に対しカメラパス情報の設定指示を行うことができる。
 自由視点画像サーバ2(カメラパス生成処理部34)は、OKボタンB1が操作されたことに応じ、開始カメラ、終了カメラとして選択された撮像装置10の番号(2FVの場合はさらにトランジットカメラの番号)、開始カメラから終了カメラへの視点の回転方向の情報(2FVの場合は開始カメラからトランジットカメラ、トランジットカメラから終了カメラそれぞれの回転方向の情報)、及びパス名入力部65に入力された名称情報とを対応づけて所定の記憶装置(例えば、図3の記憶部79等)に記憶する処理を行う。
 キャンセルボタンB2は、カメラパス情報の作成をキャンセルするためのボタンであり、キャンセルボタンB2が操作された場合、自由視点画像サーバ2(表示処理部34a)は、例えばプリセット画面Gsを閉じる処理等の所定の対応処理を実行する。
<4.自由視点画像を含むクリップ>
 続いて、自由視点画像としてのFVクリップを含む出力クリップについて説明する。
 図9は、出力クリップの一例として、前クリップ、FVクリップ、後クリップを連結して構成されている状態を示している。これは、前述した1FVの一例に相当するものである。
 例えば前クリップは、画像データV1から画像データV16のうちの或る画像データVxにおけるタイムコードTC1からTC2の区間の実際の動画である。
 また後クリップは、画像データV1から画像データV16のうちの或る画像データVyにおけるタイムコードTC5からTC6の区間の実際の動画である。
 画像データVxは、FVクリップによる視点移動開始時点の撮像装置10の画像データで、画像データVyは、FVクリップによる視点移動終了時点の撮像装置10の画像データであることが通常想定される。
 そしてこの例では、前クリップは、時間長t1の動画、FVクリップは時間長t2の自由視点画像、後クリップは時間長t3の動画としている。出力クリップ全体の再生時間長はt1+t2+t3となる。例えば5秒間の出力クリップとして、1.5秒の動画、2秒の自由視点画像、1.5秒の動画、などというような構成が考えられる。
 ここで、FVクリップについては、タイムコードTC3からTC4の区間として示しているが、これは実際の動画のフレーム数に相当することもあれば、相当しないこともある。
 即ちFVクリップとしては、動画の時刻を止めた状態で視点を移動させる場合(TC3=TC4となる場合)と、動画の時刻を止めずに視点を移動させる場合(TC3≠TC4となる場合)があるためである。
  説明上、動画の時刻を止めた状態で視点を移動させる場合(「タイムフリーズ」と呼ばれる)のFVクリップを「静止画FVクリップ」、動画の時刻を止めずに視点を移動させる場合(「フリーラン」と呼ばれる)のFVクリップを「動画FVクリップ」と呼ぶこととする。
 静止画FVクリップを動画のフレームを基準にして示すと図10のようになる。この例の場合、前クリップのタイムコードTC1、TC2は、フレームF1、F81のタイムコードとなり、続くフレームF82のタイムコードが、図9のタイムコードTC3=TC4となる。そして後クリップのタイムコードTC5、TC6は、フレームF83、F166のタイムコードとなる。
 つまり、フレームF82の1フレームの静止画に対して、視点が移動するような自由視点画像を生成する場合である。
 一方、動画FVクリップについては図11のようになる。この例の場合、前クリップのタイムコードTC1、TC2は、フレームF1、F101のタイムコードとなり、フレームF102、F302のタイムコードが、図9のタイムコードTC3、TC4となる。そして後クリップのタイムコードTC5、TC6は、フレームF303、F503のタイムコードとなる。
 つまり、フレームF102からフレーム302までの複数フレームの区間の動画に対して、視点が移動するような自由視点画像を生成する場合である。
 従って画像作成コントローラ1が決定する生成対象画像区間とは、図10の静止画FVクリップを作成する場合は、フレームF82の1フレームの区間となり、図11の動画FVクリップを作成する場合は、フレームF102からフレーム302までの複数フレームの区間となる。
 図10の静止画FVクリップの例で、出力クリップの画像内容の例を図12に示す。
 図12において、前クリップはフレームF1からフレームF81までの実際の動画である。FVクリップではフレームF82の場面において視点を移動させた仮想的な画像となる。後クリップはフレームF83からフレームF166までの実際の動画である。
 例えばこのようにFVクリップを含む出力クリップが生成され、放送する画像として使用される。
<5.クリップ作成処理>
 以下、図1の画像処理システムにおいて行われる出力クリップ作成の処理例を説明する。主に画像作成コントローラ1と自由視点画像サーバ2の処理に注目して説明する。
 まず図13でオペレータOP1、OP2の操作を含めた処理の流れを説明する。なお図13におけるオペレータOP1の処理は、画像作成コントローラ1のGUI処理とオペレータ操作をまとめて示している。またオペレータOP2の処理は、自由視点画像サーバ2のGUI処理とオペレータ操作をまとめて示している。
・ステップS1:シーン選択
 出力クリップを作成する際は、まずオペレータOP1がFVクリップとするシーンの選択を行うことになる。例えばオペレータOP1は、画像作成コントローラ1側の表示部77に表示される撮像画像をモニタリングしながら、FVクリップとしたい場面を探す。そして1フレーム又は複数フレームの生成対象画像区間を選択する。
 この生成対象画像区間の情報は自由視点画像サーバ2に伝えられ、自由視点画像サーバ2側の表示部77でのGUIによりオペレータOP2が認識できるようにされる。
 生成対象画像区間の情報とは、具体的には図9のタイムコードTC3,TC4の情報となる。上述のように静止画FVクリップの場合はタイムコードTC3=TC4となる。
・ステップS2:シーン画像転送指示
 オペレータOP2は、生成対象画像区間の指定に応じて、該当のシーンの画像の転送指示の操作を行う。この操作に応じて自由視点画像サーバ2が、画像作成コントローラ1に対してタイムコードTC3、TC4の区間の画像データの転送要求を送信する。
・ステップS3:同期抽出
 画像データの転送要求に応じて画像作成コントローラ1は、ビデオサーバ4A,4B,4C,4Dを制御し、画像データV1から画像データV16までの16系統の画像データのそれぞれについて、タイムコードTC3、TC4の区間の抽出を実行させる。
・ステップS4:NAS転送
 そして画像作成コントローラ1は画像データV1から画像データV16の全てのタイムコードTC3、TC4の区間のデータをNAS5に転送させる。
・ステップS5:サムネイル表示
 自由視点画像サーバ2ではNAS5に転送されたタイムコードTC3、TC4の区間の画像データV1から画像データV16についてのサムネイルを表示させる。
・ステップS6:シーンチェック
 オペレータOP2は、自由視点画像サーバ2による生成操作画面GgによりタイムコードTC3,TC4で示される区間のシーン内容を確認する。
・ステップS7:カメラパス選択
 オペレータOP2は、シーン内容に応じて、生成操作画面Ggで適切と考えるカメラパスを選択(指定)する。
・ステップS8:生成実行
 オペレータOP2は、カメラパス選択を行った後、FVクリップの生成実行の操作を行う。
・ステップS9:モデリング
 自由視点画像サーバ2は、画像データV1からV16のそれぞれにおけるタイムコードTC3、TC4の区間のフレームのデータ、及び予め入力されていた各撮像装置10の配置位置等のパラメータを用いて、被写体の3Dモデルの生成や、被写体解析等を行う。
・ステップS10:レンダリング
 自由視点画像サーバ2は、3Dモデルデータと被写体解析情報とに基づき自由視点画像を生成する。このとき、ステップS7で選択されたカメラパスに基づく視点移動が行われるように自由視点画像を生成する。
・ステップS11:転送
 自由視点画像サーバ2は、生成したFVクリップを画像作成コントローラ1に転送する。このとき、FVクリップだけでなく、付随情報として前クリップ、後クリップの指定情報や、前クリップ、後クリップの時間長の指定情報も送信できる。
・ステップS12:クオリティ確認
 なお自由視点画像サーバ2側では、ステップS11の転送に先立って、或いは転送後に、オペレータOP2によるクオリティ確認を行うことができる。即ち自由視点画像サーバ2は、生成したFVクリップを生成操作画面Ggで再生表示させオペレータOP2が確認できるようにする。場合によっては、オペレータOP2が転送を実行させずに、FVクリップの生成をやり直すといったことも可能とすることができる。
 ステップS13:プレイリスト生成
 画像作成コントローラ1は、送信されてきたFVクリップを用いて出力クリップを生成する。この場合、FVクリップに前クリップ、後クリップの一方又は両方を時間軸上で結合させて出力クリップを生成する。
 この出力クリップは、前クリップとしての各フレームと、FVクリップとしての仮想的に生成した各フレームと、後クリップとしての各フレームを実際に時系列に連結したストリームデータとして生成してもよいが、この処理例では、プレイリストとして仮想的に連結することとしている。
 即ち前クリップとしてのフレーム区間の再生に続いて、FVクリップが再生され、そのあとで後クリップとしてのフレーム区間が再生されるように、プレイリストを生成することで、出力クリップとしての実際に連結したストリームデータを生成しなくとも、出力クリップの再生が可能となるようにする。
 ステップS14:クオリティ確認
 画像作成コントローラ1側のGUIにより、プレイリストに基づく再生を行い、オペレータOP1が出力クリップの内容を確認する。
 ステップS15:再生指示
 オペレータOP1は、クオリティ確認に応じて、所定の操作により再生指示を行う。画像作成コントローラ1は再生指示の入力を認識する。
 ステップS16:再生
 再生指示に応じて画像作成コントローラ1は、出力クリップをスイッチャー6に供給する。これにより出力クリップの放送が実行可能となる。
<6.カメラ変動検出>
 自由視点画像の生成のためには、画像データV1、V2・・・V16を用いて3Dモデルを生成することから、各撮像装置10の位置情報を含むパラメータが重要となる。
 例えば、放送の途中で或る撮像装置10の位置が移動されたり、パン方向やチルト方向等に撮像方向が変化されたりした場合には、それに応じたパラメータのキャリブレーションが必要になる。そのため、図1の画像処理システムでは、ユーティリティサーバ8によりカメラの変動検出が行われるようにしている。ここで言うカメラの変動とは、カメラの位置、撮像方向の少なくとも何れかが変化することを意味する。
 図14により、カメラの変動検出の際の画像作成コントローラ1とユーティリティサーバ8の処理手順を説明する。なお図14は図13と同様の形式で処理手順を示しているが、ユーティリティサーバ8についてもオペレータOP2が操作を行う例としている。
・ステップS30:HD出力
 画像作成コントローラ1は、カメラ変動検出のため、ビデオサーバ4A,4B,4C,4Dから画像データを画像変換部7に出力させるように制御する。ビデオサーバ4A,4B,4C,4Dからの画像、即ち16台の撮像装置10の画像は、画像変換部7で解像度変換されてユーティリティサーバ8に供給される。
・ステップS31:背景生成
 ユーティリティサーバ8では、供給された画像に基づいて背景画像を生成する。背景画像は、カメラに変動がなければ変化しない画像であるため、例えば選手等の被写体を除いた背景画像を、16系統の画像データ(V1からV16)について生成する。
・ステップS32:差分確認
 背景画像はGUI表示されることで、オペレータOP2は画像の変化を確認できる。
・ステップS33:変動自動検出
 各時点の背景画像を比較処理することで、カメラの変動を自動検出することもできる。
・ステップS34:カメラ変動検出
 上記のステップS33又はステップS32の結果として、或る撮像装置10の変動が検出される。
・ステップS35:画像取得
 撮像装置10の変動が検出されたことに応じてキャリブレーションが必要になる。そこでユーティリティサーバ8は、変動後の状態の画像データを画像作成コントローラ1に要求する。
・ステップS36:クリップ抽出
 画像作成コントローラ1は、ユーティリティサーバ8からの画像取得の要求に応じて、ビデオサーバ4A,4B,4C,4Dを制御し、画像データV1からV16についてのクリップ抽出を実行させる。
・ステップS37:NAS転送
 画像作成コントローラ1は、ビデオサーバ4A,4B,4C,4Dに対してクリップとして抽出した画像データをNAS5に転送させる制御を行う。
・ステップS38:特徴点修正
 NAS5への転送により、ユーティリティサーバ8は、カメラ変動後の状態の画像を参照し、また表示させることができる。オペレータOP2は特徴点修正などのキャリブレーションに必要な操作を行う。
・ステップS39:再キャリブレーション
 ユーティリティサーバ8は、カメラ変動後の状態の画像データ(V1からV16)を用いて、3Dモデル生成のためのキャリブレーションを再実行する。
・ステップS40:背景再取得
 キャリブレーション後にオペレータOP2の操作に応じて、ユーティリティサーバ8は背景画像のための画像データの再取得要求を行う。
・ステップS41:クリップ抽出
 画像作成コントローラ1は、ユーティリティサーバ8からの画像取得の要求に応じて、ビデオサーバ4A,4B,4C,4Dを制御し、画像データV1からV16についてのクリップ抽出を実行させる。
・ステップS42:NAS転送
 画像作成コントローラ1は、ビデオサーバ4A,4B,4C,4Dに対してクリップとして抽出した画像データをNAS5に転送させる制御を行う。
・ステップS43:背景生成
 ユーティリティサーバ8はNAS5に転送された画像データを用いて背景画像を生成する。これは、例えば以降のカメラ変動検出の基準となる背景画像とされる。
 例えば以上の手順のようにカメラ変動検出やキャリブレーションが行われることで、例えば放送中に撮像装置10の位置や撮像方向が変化されたような場合にも、それに対応してパラメータが修正されるため、精度のよいFVクリップを継続して生成することができる。
<7.自由視点画像作成のためのGUI>
 ここで、自由視点画像を生成するための撮像画像を得る撮像装置10として、固定カメラ、すなわち位置や向きが固定されたカメラが用いられる場合には、自由視点画像で主に捉えたい特定の選手等の注目被写体が画枠の中心に来ることを保証できず、注目被写体の位置とは異なる位置を視点回転中心として視点の回転が行われてしまい、不自然な自由視点画像となってしまう虞がある。
 図15は、自由視点画像の開始視点、終了視点それぞれに対応する撮像装置10の撮像画像の例を示しており、図15Aは開始視点となる撮像装置10の撮像画像の例を、図15Bは終了視点となる撮像装置10の撮像画像の例を示している。
 ここではゴルフのティーショットのシーンを例示しているが、この場合にはティーグラウンド上の何れの位置に注目被写体としての選手が立つかが定かではないため、撮像装置10の位置や向きが固定であると、画枠の中心に注目被写体を捉えることができない虞がある。この場合において、仮に、画枠の中心となる位置(三次元空間上の位置)に視点の回転中心を設定して視点移動が行われてしまうと、不自然な自由視点画像となる虞がある。
 そこで本実施形態では、自由視点画像の生成にあたり、視点回転中心の位置の指定操作を受け付けるようにする。例えば、注目被写体の位置に視点回転中心の位置を指定することで、注目被写体の位置を中心に視点が移動する自由視点画像を得ることができる。
 また、本例では、自由視点画像としては、撮像装置10の撮像画像の画像サイズを元サイズとしたときに、元サイズの画像からより小サイズの画像に切り出した(カットアウトした)画像として生成する。
 図16は、画像切り出しのイメージ図であり、図16では図15Aに示した画像からの切り出しを、図16Bでは図15Bに示した画像からの切り出しをそれぞれ例示している。
 本例では、上記した元サイズは4kサイズであり、自由視点画像の画像サイズはFHD(Full HD)サイズであるとする。
 上記のような切り出しを行うことで、元サイズの画像では注目被写体が画枠中心から大きく外れた位置に捉えられていたとしても、自由視点画像においては、注目被写体を画枠中心に近い位置に位置させることが可能となる。
 上記の前提を踏まえ、図17から図29を参照して自由視点画像作成のためのGUIの例について説明する。なお、図17から図29では、生成操作画面Ggの例として、前述した1FVに対応する画面の例を示す。
 図17は、生成操作画面Ggの初期画面の例を示している。
 前述もしたように、生成操作画面Ggには、シーンウインドウ41、シーンリスト表示部42、カメラパスウインドウ43、カメラパスリスト表示部44、対象空間画像表示部45、及び送信ウインドウ46が配置される。
 シーンウインドウ41は、上述した生成対象画像区間の画像のモニタ表示が行われる表示領域であり、ユーザ(本例ではオペレータOP2)が自由視点画像を生成するシーンの内容を確認できるようにされている。初期画面では、生成対象画像区間の画像指定は行われていないため、シーンウインドウ41における画像表示は行われていない。
 シーンリスト表示部42には、例えば生成対象画像区間に指定されたシーンのリストが表示される。ユーザは、シーンリスト表示部42に表示されたシーンのリストから、自由視点画像の生成対象とするシーンを指定することができる。
 図18は、シーン指定後の生成操作画面Ggの様子を例示している。
 シーンリスト表示部42でのシーン指定が行われることで、シーンウインドウ41には、指定されたシーンにおける各撮像装置10の撮像画像が表示される。これによりユーザは、生成操作画面Ggにおいて、各撮像装置10がそれぞれどのような構図で注目被写体を捉えているかを容易に把握することができる。
 生成操作画面Ggにおいて、カメラパスリスト表示部44には、予め作成されて記憶されているカメラパスの情報がリスト表示される。具体的に本例では、前述したプリセット画面Gs(図8)を通じてユーザがプリセットしたカメラパスの情報がリスト表示されるものである。
 自由視点画像を作成する上で、ユーザは、カメラパスリスト表示部44に表示されたカメラパスのうちから所望のカメラパスを指定する操作を行う。なお、図中では、カメラパスのプリセットが1つのみとされ、カメラパスリスト表示部44には1つのカメラパスの情報のみが表示されている例としている。
 図19は、カメラパスリスト表示部44からカメラパスが指定された場合の生成操作画面Ggの様子を例示している。
 カメラパスリスト表示部44においてカメラパスが指定されると、カメラパスウインドウ43において、指定されたカメラパスの情報に従った情報表示が行われる。具体的には、開始カメラの位置を示す情報である開始カメラ位置情報51、終了カメラの位置を示す情報である終了カメラ位置情報52、自由視点画像における視点の移動軌跡を示す情報である視点移動軌跡情報53、及び自由視点画像の視点回転中心の位置を示す情報である回転中心位置情報54が表示される。
 ここで、カメラパスリスト表示部44においてカメラパスが指定された直後の状態では、回転中心位置情報54は、所定の初期位置を示す位置に表示される。
 また、カメラパスリスト表示部44においてカメラパスが指定されると、シーンウインドウ41においては、指定されたカメラパスの情報に含まれる開始カメラ、終了カメラの番号の情報に基づき、開始カメラに該当する撮像装置10の撮像画像、終了カメラに該当する撮像装置10の撮像画像に開始カメラのマーク(例えば「S」のマーク)、終了カメラのマーク(例えば「E」のマーク)が付される。
 さらに、カメラパスリスト表示部44においてカメラパスが指定されると、対象空間画像表示部45においては、指定されたカメラパスの情報に含まれる開始カメラ、終了カメラの番号の情報に基づき、開始カメラに該当する撮像装置10の撮像画像、終了カメラに該当する撮像装置10の撮像画像が、対象空間撮像画像として表示される。
 具体的に、対象空間画像表示部45には、開始カメラの撮像画像を表示するための開始カメラ画像表示領域56と、終了カメラの撮像画像を表示するための終了カメラ画像表示領域57とが設けられ、開始カメラに該当する撮像装置10の撮像画像、終了カメラに該当する撮像装置10の撮像画像は、これら領域のうち該当する領域にそれぞれ表示される。
 ここで、開始カメラ画像表示領域56、終了カメラ画像表示領域57においては、対象空間撮像画像上に、それぞれ画枠情報58、回転中心位置情報59、及び指定可能範囲情報Apが表示される。
 画枠情報58は、生成するFVクリップの画枠を示す情報であり、回転中心位置情報59は、FVクリップの視点回転中心の位置を示す情報である。
 ここで、開始カメラ画像表示領域56に表示する画枠情報58、回転中心位置情報59について、終了カメラ画像表示領域57に表示する同情報と区別する場合には、図示のように画枠情報58s、回転中心位置情報59sと表記する。また、終了カメラ画像表示領域57に表示する画枠情報58、回転中心位置情報59については、それぞれ画枠情報58e、回転中心位置情報59eと表記する。
 なお、対象空間画像表示部45に表示される回転中心位置情報59についても、前述した回転中心位置情報54と同様に、カメラパスが指定された直後の状態では所定の初期位置に表示されるものとなる。図20では、該初期位置が注目被写体の位置に略一致している例を示しているが、勿論、該初期位置が注目被写体の位置に必ずしも一致するものではない。
 指定可能範囲情報Apは、FVクリップの視点回転中心位置を指定可能な範囲を示す情報である。
 ここで、視点回転中心を広大な範囲で指定可能としようとすると、自由視点画像生成に用いる3Dモデルを生成すべき範囲が広大となってしまい、非常に多くの撮像装置10を用意することが必要となったり、処理負担が過剰となったりする等の虞がある。そのため、本実施形態では、視点回転中心を設定可能な範囲を、指定可能範囲として予め定めるものとしている。
 本例では、この指定可能範囲は、実際に配置された撮像装置10の台数や配置態様に基づいてユーザが事前に算出した範囲として設定されている。
 なお、視点回転中心の指定可能範囲は、ユーザ操作に基づき調整可能としてもよい。また、指定可能範囲情報Apについては、実際に配置された撮像装置10の台数や配置態様に基づいてコンピュータ装置が算出するものであってもよい。
 本実施形態において、視点回転中心の位置の指定は、後述もするように対象空間画像表示部45における回転中心位置情報59s、59eに対する操作によって行うことが可能とされるが、本例では、視点回転中心の位置の指定は、カメラパスウインドウ43に表示された回転中心位置情報54に対する操作によっても行うことが可能とされる。
 具体的には、図20から図21の遷移として示すような、回転中心位置情報54をドラッグ&ドロップ(drag-and-drop)操作等により移動させる操作によって、視点回転中心の位置指定を行うことが可能とされる。
 本例では、上記のように回転中心位置情報54を移動させる操作が行われると、図20から図21の遷移として示すように、対象空間画像表示部45における回転中心位置情報59s、59eもこれに連動して移動する。このように対象空間画像表示部45における回転中心位置情報59s、59eが連動して動くことで、カメラパスウインドウ43における位置指定操作であっても、対象空間撮像画像上の回転中心位置情報59s、59eが動くことにより、視点回転中心位置がどの位置であるかをユーザに容易にイメージさせることができる。
 カメラパスウインドウ43における回転中心位置情報54に対する操作で視点回転中心の位置を指定する場合は、開始カメラ、終了カメラの視点回転中心の位置は、カメラパスウインドウ43内で指定された位置としての同一の位置となる。
 本例では、視点回転中心の位置の指定は、上述した指定可能範囲情報Apが示す指定可能範囲内に限られる。
 具体的に、自由視点画像サーバ2において操作受付部32b(図5参照)は、指定可能範囲内における視点回転中心の位置指定操作のみを有効な位置指定操作として受け付ける。
 一例としては、回転中心位置情報54の移動範囲を指定可能範囲内のみに制限することが考えられる。例えば、指定可能範囲外へ移動させようとしても、回転中心位置情報54が指定可能範囲の端部に位置された時点で回転中心位置情報54の移動を停止させるような挙動とすることが考えられる。
 或いは、回転中心位置情報54の指定可能範囲外への移動は許容するが、所定時間後に回転中心位置情報54を指定可能範囲内に戻すとった挙動とすることも考えられる。
 なお、このように指定可能範囲内における視点回転中心の位置指定操作のみを有効な位置指定操作として受け付けることは、後述する回転中心位置情報59s、59eを用いた位置指定操作についても同様である。
 カメラパスウインドウ43においては、プリセットのカメラパス情報の編集を行うことも可能とされる。具体的に、本例のカメラパスウインドウ43においては、FVクリップの視点の移動軌跡の円弧の深さ(円弧の径)を調整することが可能とされる。
 このような円弧の深さの調整としてのプリセット情報の編集は、前述したカメラパス編集処理部32c(図5参照)により実現されるものである。
 図22は、視点移動軌跡の円弧の深さの調整のためのGUIを例示している。
 視点移動軌跡の円弧の深さの調整は、例えば図22Aから図22Bへの遷移として示すように、視点移動軌跡情報53に対する操作、具体的には、視点移動軌跡情報53としての円弧を示す線の中央部をドラッグ&ドロップ操作等により移動させる操作として行う。図22Bに示すように、視点移動軌跡情報53の中央部を円弧の凸方向に移動させる操作を行うと円弧の深さを深くする(曲率半径を小さくする)ことの指示となる。逆に、視点移動軌跡情報53の中央部を円弧の凸方向とは逆方向に移動させる操作を行うと円弧の深さを浅くする(曲率半径を大きくする)ことの指示となる。
 なお、視点移動軌跡の形状を調整するためのGUIとしては上記例に限定されるものではなく、例えば円弧の深さの例で言えば、視点移動軌跡情報53とは別途に配置したスライダーを動かす操作で円弧の深さを指定したり、UpボタンやDownボタンの操作で円弧の深さ(例えば曲率半径の数値)を指定したりする等の他の態様を採用することもできる。
 図23から図25は、対象空間画像表示部45における視点回転中心位置の指定操作及びGUIについての説明図である。なお、以下では操作やGUIの例として開始カメラ側の操作を代表して説明するが、終了カメラ側についても操作やGUIは同様となる。
 図23及び図24は、視点回転中心の高さ位置の指定についての説明図である。
 先ず、本例において回転中心位置情報59は、視覚的には略円筒状の外形形状を有している。
 本例では、回転中心位置情報59は、視点回転中心の高さを示す情報を含むものであり、具体的には、図23Aに示すように視点回転中心の高さ位置を示す中心高さ情報Haが回転中心位置情報59の一部情報として表示される。本例では、回転中心位置情報59の外形形状が略円筒状とされることに伴い、中心高さ情報Haは略円盤状の形状とされている。
 視点回転中心の高さ位置の指定を行う場合は、回転中心位置情報59における中心高さ情報Haをクリック操作等により選択する操作を行う。すると、図23Bに示すように、中心高さ情報Haの表示色が変わる等、中心高さ情報Haの表示態様が変化する。これにより、ユーザに対し視点回転中心の高さ位置の指定モードに遷移したことを把握させることができる。
 このように高さ位置の指定モードに遷移することで、中心高さ情報Haを例えば図24に例示するように上下方向に移動させることが可能となる。このような中心高さ情報Haの移動操作により、視点回転中心の高さ位置(換言すれば、自由視点画像の仰俯角)の指定を行うことができる。
 図25は、視点回転中心の位置指定(水平方向での位置指定)の操作例を説明するための図である。
 視点回転中心の水平方向の位置指定操作は、回転中心位置情報59のドラッグ&ドロップ操作等により移動させる操作となる。視点回転中心の水平方向位置の指定を行う場合には、回転中心位置情報59の外縁部をクリック操作等により選択する操作を行う(図25A参照)。すると、図25Bに示すように、回転中心位置情報59の外縁部の表示色が変化する等、該外縁部の表示態様が変化する。これにより、ユーザに対し視点回転中心の水平方向位置の指定モードに遷移したことを把握させることができる。
 このように水平方向位置の指定モードに遷移することで、回転中心位置情報59を水平方向に移動させることが可能となり、視点回転中心の水平方向位置の指定を行うことが可能となる。
 図26及び図27は、切り出しの画枠指定のための操作例を説明するための図である。
 なお、以下では画枠指定の操作やGUIの例についても開始カメラ側の例を代表して説明するが、終了カメラ側についても操作やGUIは同様である。
 本例では、画枠情報58は、画枠の外縁を示す四角形状の線と、画枠の縦中心線及び横中心線を示す情報とされている。
 本例において、画枠情報58は、カメラパスリスト表示部44でカメラパスが指定された直後の段階では、元画像サイズと同サイズの枠として表示されている。
 画枠のサイズを指定する場合には、図26Aに示すように、画枠の外縁部をクリック操作等により選択する。すると、画枠の外縁部の表示色が変化する等、該外縁部の表示態様が変化する。これにより、ユーザに対し画枠のサイズ指定モードに遷移したことを把握させることができる。
 このようにサイズ指定モードに遷移することで、画枠情報58の外縁部をドラッグ&ドロップ操作等で移動させる操作を行うことで、図26Bに示すように、画枠の外縁部のサイズ、つまり画枠自体のサイズを変化させることが可能となり、切り出しサイズの指定を行うことが可能となる。
 図27は、画枠の位置指定の操作例を説明するための図である。
 画枠の位置を指定する場合には、図27Aに示すように、画枠の縦中心線と横中心線との交差部分(つまり画枠の中心部分)をクリック操作等により選択する操作を行う。すると、図27Bに示すように、画枠の縦中心線及び横中心線の表示色が変化する等、これら縦中心線及び横中心線の表示態様が変化(このとき、画枠の外縁部の表示態様は元に戻る)して、ユーザに対し画枠の位置の指定モードに遷移したことを把握させることができる。
 このように画枠の位置指定モードに遷移することで、画枠情報58をドラッグ&ドロップ操作等で移動させる操作を行うことで、画枠の位置を指定することが可能となる。すなわち、元サイズの画像からの切り出し位置の指定を行うことができる。
 なお、切り出し画枠のサイズ指定については、例えば図28に例示するように、対象空間画像表示部45において開始カメラ画像表示領域56、終了カメラ画像表示領域57ごとにサイズ指定のためのスライダー操作部60s、60eを設けることも考えられる。この場合は、例えばスライダーをドラッグ&ドロップ操作等で移動させる操作を行うことで、サイズの指定を可能とする。
 或いは、図中のサイズ指定操作部61s、61eとして例示するような、Upボタン及びDownボタンによりサイズの指定を可能とする操作部を設けることも考えられる。この場合は、Upボタンの操作に応じて画枠サイズを拡大し、Downボタンの操作に応じて画枠サイズを縮小する。
 本例では、開始カメラ画像表示領域56、終了カメラ画像表示領域57に表示された回転中心位置情報59s、回転中心位置情報59e、画枠情報58s、58eにより、開始カメラ、終了カメラのそれぞれについて、視点回転中心の位置(本例では高さ位置を含む)と、切り出し画枠の位置及びサイズを個別に設定する(つまり異なる位置やサイズに設定する)ことが可能とされている。
 図29は、回転中心位置情報54や回転中心位置情報59による視点回転中心位置の指定と、画枠情報58による切り出し画枠の位置及びサイズの指定が完了した際の生成操作画面Ggの様子を例示している。
 ユーザは、視点回転中心位置、切り出し画枠の位置及びサイズの指定が完了した場合には、生成操作画面Ggに設けられたエクスポートボタンB3を操作することでFVクリップの生成を自由視点画像サーバ2(画像生成処理部32)に指示することができる。
 画像生成処理部32は、エクスポートボタンB3が操作されたことに応じて、指定された視点回転中心位置と、切り出し画枠の位置及びサイズの情報に基づいてFVクリップの生成を行う。
前述のように、生成されたFVクリップは、送信制御部33によりNAS5を介して画像作成コントローラ1に送信される。
ここで、本実施形態では、FVクリップの前後にはそれぞれ前クリップ、後クリップが連結されることになるため、対象空間画像表示部45における画枠情報58による画枠の位置及びサイズの指定、すなわち切り出しの位置及びサイズの指定は、前クリップ、後クリップについての切り出しの位置及びサイズの指定にもなる。
 本例において、送信制御部33は、画枠情報58により指定された切り出しの位置及びサイズの情報を画像作成コントローラ1に送信する制御を行う。
 画像作成コントローラ1では、このように送信された切り出しの位置及びサイズの情報に従って、前クリップ、後クリップそれぞれの切り出し処理を行う。
 なお、上記では、開始カメラ、終了カメラの視点回転中心位置を回転中心位置情報59s、59eによりそれぞれ独立して指定可能な例としたが、開始カメラと終了カメラとで視点回転中心位置を同一位置にのみ指定可能とすることもできる。
その場合、表示処理部32aは、回転中心位置情報59s、59eのうち一方を移動させると、他方も連動して移動するように、回転中心位置情報59s、59eの表示制御を行うようにする。
 また、上記では、1FVに対応した生成操作画面Ggを説明したが、上記により説明したカメラパス情報の指定や視点回転中心位置、切り出し画枠の位置及びサイズの指定に係るGUIは2FVの場合にも適用可能である。
 図30は、2FVに対応した生成操作画面Gg’の一例を示している。
 例えば図30に示すように、2FVに対応する場合には、カメラパスリスト表示部44において、第一のFVクリップと第二のFVクリップとの指定を可能とするためのFV指定操作部62を設ける。2FVの場合、カメラパスリスト表示部44には、前述したプリセット画面Gsにおいて2FV用に生成されたカメラパス情報がリスト表示される。
 また、生成操作画面Gg’において、対象空間画像表示部45には、2FVへの対応として、開始カメラ画像表示領域56と終了カメラ画像表示領域57との間にトランジットカメラ画像表示領域57’が設けられる。
 図30では、FV指定操作部62において、第一のFVクリップを表す「1」が指定された場合の生成操作画面Gg’の様子を例示しているが、この場合、対象空間画像表示部45においては、開始カメラ画像表示領域56に開始カメラとしての撮像装置10による撮像画像が表示され、トランジットカメラ画像表示領域57’にはトランジットカメラとしての撮像装置10による撮像画像が表示される。トランジットカメラ画像表示領域57’には、画枠情報58、回転中心位置情報59として、それぞれ画枠情報58t、回転中心位置情報59tが表示され、これら画枠情報58t、回転中心位置情報59tによってトランジットカメラについての切り出し画枠の位置及びサイズ、視点回転中心位置の指定を行うことが可能とされる。
 一方、FV指定操作部62において第二のFVクリップを表す「2」が指定された場合には、図31に例示するように、対象空間画像表示部45において、トランジットカメラ画像表示領域57’にトランジットカメラとしての撮像装置10による撮像画像が表示され、終了カメラ画像表示領域57に終了カメラとしての撮像装置10による撮像画像が表示される。なお確認のため述べておくと、第二のFVクリップの場合、トランジットカメラ画像表示領域57’には、第二のFVクリップについて指定されたシーン(時刻)におけるトランジットカメラの撮像画像が表示される。
 例えば上記のような生成操作画面Gg’により、ユーザは2FVの場合における第一、第二のFVクリップそれぞれについて視点回転中心位置や切り出し画枠の位置及びサイズの指定を行うことができる。
 なお、2FVに対応する生成操作画面Gg’について、対象空間画像表示部45にトランジットカメラ画像表示領域57’を設けることは必須ではない。少なくとも2つの画像表示領域が設けられていれば、第一、第二のFVクリップのそれぞれの指定状態で表示切り替えを行うことで、これら第一、第二のFVクリップについて開始カメラ、終了カメラごとの視点回転中心位置、切り出し画枠の位置及びサイズの指定を行わせることが可能である。
<8.実施形態の自由視点画像生成について>
 続いて、実施形態における自由視点画像生成について説明する。
 本実施形態では、FVクリップに連結される前クリップ、後クリップは、前述した画枠情報58s、58eに従って画像データVから切り出された画像とされる。
 図32は、切り出し画像における被写体の見え方についての説明図である。
 図32Aは、前クリップ又は後クリップとしての、実カメラ(撮像装置10)による撮像画像から切り出された画像における被写体の見え方を模式的に表している。
 前クリップや後クリップと連結されるFVクリップ、すなわち3Dモデルを所定の視点から捉える仮想カメラの画像としては、図32Bの破線で示すように、前クリップや後クリップでの切り出し範囲の被写体を正面から捉えた画像とすることが考えられるが、図32Aと対比して分かるように、このような仮想カメラを設定したのでは、被写体の見え方は、前クリップや後クリップでの被写体の見え方と異なってしまう。すなわち、前クリップや後クリップでの切り出し範囲の中心を画角中心とする仮想カメラを設定しても、該仮想カメラによる画像では、切り出し画像と同じ見え方で被写体を捉えることはできない。
 そこで、本実施形態では、FVクリップを構成する各フレーム画像についても切り出し画像とする。すなわち、該当する視点から3Dモデルを捉える仮想カメラの画像として、前クリップや後クリップと同様に先ずは元サイズ(本例では4kサイズ)の画像を生成し、そこからの切り出し画像として生成する(図32C参照)。具体的に、例えばFVクリップの開始視点の画像、すなわち前クリップと同視点となる開始カメラの画像については、前クリップの撮像装置10と同じ画角及び撮像方向による元サイズ(本例では4kサイズ)の画像を生成した上で、該画像に対し、画枠情報58sで指定された画枠位置及びサイズでの画像切り出しを行って生成する。また、終了視点の画像、すなわち後クリップと同視点となる終了カメラの画像については、後クリップの撮像装置10と同じ画角及び撮像方向による元サイズの画像を生成した上で、該画像に対し、画枠情報58eで指定された画枠位置及びサイズでの画像切り出しを行って生成する。
 FVクリップにおける開始視点直後のフレームから終了視点直前のフレームまでの各フレーム画像についても同様に、該当する視点から3Dモデルを捉える仮想カメラの画像として元サイズの画像を生成し、該画像に対して該当する位置及びサイズの画枠で切り出しを行って生成する。
 これにより、FVクリップに連結される画像が切り出し画像とされる場合において、FVクリップにおける被写体の見え方が該FVクリップに連結される画像とは異なることに起因して生じる違和感の緩和を図ることができる。
 ここで、上記のようにFVクリップ中の各フレーム画像を切り出し画像とする場合には、元サイズからの切り出しは、できるだけ元サイズ画像の中心と切り出し画枠中心とが一致する切り出しとして行われることが望ましい。ここで、以下、元サイズ画像の中心と切り出し画枠中心とが一致する切り出しのことを「中心切り出し」と略称する。
 このような中心切り出しは、元サイズ画像の中心と切り出し画枠中心とが一致しない切り出しよりも、処理負担が軽くできるものであり、中心切り出しとなるフレーム数を増やすことで、切り出しに係る処理負担の軽減を図ることができる。
 そこで、本実施形態では、FV中(つまり視点の移動中)において、切り出し画枠の中心を、開始カメラで指定された位置から徐々に遷移させていくことで、FVの途中におけるフレーム画像の生成が、中心切り出しにより行われるようにする。
 図33は、FVクリップ中における切り出し位置の遷移についての説明図である。
 先ず、本例では、FVクリップにおける開始カメラについては、前クリップの撮像装置10と同じ視点であり、切り出し画枠の位置については画枠情報58sで指定された位置となる。
 開始視点フレームの直後フレーム以降の所定数のフレームでは、切り出し画枠の中心位置を、開始カメラで指定された位置(図中、画枠内の左上の破線)から元サイズ画像の中心位置に徐々に近づけていく。そして、切り出し画枠の中心位置が元サイズ画像の中心位置と一致した以降の所定数のフレームでは、切り出し画枠の中心位置を元サイズ画像の中心位置と一致させた状態を維持し、その後、終了視点フレームの直前フレームまでの所定数のフレームでは、切り出し画枠の中心位置を、徐々に終了カメラで指定された切り出し画枠の位置(図中、画枠内の右下の破線)に近づけていく。
 これにより、FVの途中におけるフレーム画像の生成が中心切り出しにより行われるようにすることができ、処理負担の軽減を図ることができる。
 ここで、上記のように切り出し画枠の位置を元サイズ画像の中心位置に近づけていくのみでは、FVの途中で注目被写体が切り出し画枠からフレームアウトしてしまう虞がある。
 このため本実施形態では、切り出し画枠の位置を遷移させるにあたり、視点回転中心の位置も徐々に遷移させるということも行う。
 FVクリップ中における各フレームでの視点は、それぞれ所定の視点に定められている。このため、視点回転中心の位置を変化させることで、視点からの視線方向を変化させることができ、切り出し画枠の位置の遷移に伴って注目被写体が画枠内からフレームアウトしてしまうことの防止を図ることができる。
 ここで、図33では、開始カメラで指定された切り出し画枠の位置から終了カメラで指定された切り出し画枠の位置まで切り出し画枠の位置を遷移させると、自然にFV途中で中心切り出しが行われる例を示した。
 しかしながら、図34に例示するように、開始カメラで指定された切り出し画枠の位置から終了カメラで指定された切り出し画枠の位置まで切り出し画枠の位置を遷移させても、FV途中に中心切り出しが行われないケースもある。具体的に、図34の例では、開始カメラで指定された切り出し画枠の位置は、元サイズ画像の画枠内の左上部分、終了カメラで指定された切り出し画枠の位置は元サイズ画像の画枠内の左下部分となっており、FV中に切り出し画枠の位置を開始カメラでの指定位置から終了カメラでの指定位置に向けて徐々に遷移させていっても、中心切り出しが行われる区間が存在しないことになる。
 本実施形態では、このように切り出し画枠の位置を開始カメラでの指定位置から終了カメラでの指定位置に向けて遷移させても中心切り出しが行われないケースであっても、FV中に中心切り出しが行われる区間が得られるように、切り出し画枠の位置の遷移を行う。
 なお、上記ではFV中における切り出し画枠の遷移として、切り出し画枠の位置の遷移を説明したが、切り出し画枠のサイズについても遷移を行うことができる。具体的には、開始カメラで指定された切り出し画枠のサイズと終了カメラで指定された切り出し画枠のサイズとが異なる場合において、開始カメラで指定された切り出し画枠のサイズから終了カメラで指定された切り出し画枠のサイズへと徐々に遷移させるといったものである。
 ここで、FV中の切り出し画枠の位置の遷移については、中心切り出しとなる位置を経由させることに限定されない。例えば、図34のケースにおいて、開始カメラで指定された切り出し画枠の位置から、中心切り出しとなる位置を経由せず、終了カメラで指定された切り出し画枠の位置まで切り出し画枠の位置を遷移させることも可能である。
 また、開始カメラで指定された切り出し画枠の位置と、終了カメラで指定された切り出し画枠の位置とが一致する場合もある。その場合には、FV中に切り出し画枠の位置の遷移を行わないことも可能である。
<9.処理手順>
 図35のフローチャートを参照し、上述した実施形態としての自由視点画像の生成手法を実現するための処理手順例を説明する。具体的には、前述した表示処理部32a、操作受付部32b、及びカメラパス編集処理部33cを含む画像生成処理部32としての機能を実現するための処理手順例である。
 なお、図35に示す処理は、自由視点画像サーバ2におけるCPU71が例えば記憶部79等に記憶されたプログラムに基づいて実行する。
 先ず、ステップS101でCPU71は、生成操作画面Ggの表示指示を待機する。例えば、自由視点画像サーバ2にインストールされているFVクリップ生成のためのソフトウエアプログラムの立ち上げを指示する操作を待機する。
 生成操作画面Ggの表示指示があった場合、CPU71はステップS102に進んで生成操作画面Ggの表示処理を行う。すなわち、表示部77の画面上に生成操作画面Ggの初期画面(図17参照)を表示させるための処理を行う。
 ステップS102に続くステップS103でCPU71は、シーン指定を待機する。すなわち、シーンリスト表示部42におけるシーンの指定操作を待機する。
 シーン指定が行われた場合、CPU71はステップS104に進み、指定シーンに応じた画像をシーンウインドウ41に表示させる処理を行う。すなわち、指定されたシーンにおける各撮像装置10の撮像画像(画像データV)をシーンウインドウ41に表示させる処理を行う(図18参照)。
 ステップS104に続くステップS105でCPU71は、カメラパス指定を待機する。すなわち、カメラパスリスト表示部44におけるカメラパス情報の指定操作を待機する。
 カメラパス指定があった場合、CPU71はステップS106で指定されたカメラパスに応じた表示更新処理を行う。すなわち、先の図19で説明したように、カメラパスウインドウ43における開始カメラ位置情報51、終了カメラ位置情報52、視点移動軌跡情報53、回転中心位置情報54の表示や、シーンウインドウ41における開始カメラの「S」マーク、終了カメラの「E」マークの表示や、対象空間画像表示部45における開始カメラ画像表示領域56、終了カメラ画像表示領域57における開始カメラの撮像画像、終了カメラの撮像画像の表示、さらには画枠情報58s、58e、回転中心位置情報59s、59e、及び指定可能範囲情報Apの表示がそれぞれ行われるように、生成操作画面Ggの表示内容を更新する処理を行う。
 ステップS106に続くステップS108でCPU71は、画面操作に応じた表示更新処理を実行する。具体的には、図20及び図21を参照して説明したカメラパスウインドウ43における回転中心位置情報54に対する操作に応じた表示更新処理や、図22を参照して説明した視点移動軌跡情報53に対する操作に応じた表示更新処理、さらには、図23から図28を参照して説明した画枠情報58s、58eや回転中心位置情報59s、59e(中心高さ情報Haを含む)に対する操作に応じた表示更新処理等を行う。
 なお、先に説明したように、回転中心位置情報54や回転中心位置情報59s、59eによる視点回転中心の位置指定操作に関しては、指定可能範囲情報Apが示す指定可能範囲内での指定操作のみを有効な指定操作として受け付けるようにする。
 ステップS107に続くステップS108でCPU71は、画像生成実行指示が行われたか否かを判定する。つまり、FVクリップの生成実行指示の操作が行われたか否かを判定するもので、具体的に本例ではエクスポートボタンB3の操作が行われたか否かを判定する処理となる。
 画像生成実行指示がなかった場合、CPU71はステップS107に戻り、画面操作に応じた表示更新処理を行う。
 一方、画像生成実行指示があった場合、CPU71はステップS109に進んでFVクリップ生成処理を行う。すなわち、ステップS107の画面操作によって指定された開始カメラ、終了カメラそれぞれの視点回転中心位置、切り出し画枠の位置及びサイズの情報や、指定されたカメラパス情報が示す視点移動軌跡の情報に基づいたFVクリップの生成処理を実行する。なお、本実施形態におけるFVクリップの具体的生成手法については図32から図34を参照して説明済みであるため重複説明は避ける。
 CPU71は、ステップS109の処理を実行したことに応じて図35に示す一連の処理を終える。
<10.変形例>
 なお、実施形態としては上記により説明した具体例に限定されるものではなく、多様な変形例としての構成を採り得る。
 例えば、上記では、図36に示すように、自由視点画像サーバ2が切り出しを含む自由視点画像の生成を行い、画像作成コントローラ1が前クリップ、後クリップの切り出しを行い、且つ切り出し後の前クリップと後クリップと自由視点画像サーバ2から取得した自由視点画像(切り出し有り)とを取得クリップとしてスイッチャー6に出力するという処理分担の例を挙げた。
 このような処理分担とすることで、自由視点画像サーバ2から画像作成コントローラ1への自由視点画像の転送データ量や転送時間の低減を図ることができる。
 しかしながら、処理分担の手法については該手法に限定されるものではない。
 例えば、図37に示すように、画像作成コントローラ1が切り出しなしの前クリップ、後クリップを作成し、自由視点画像サーバ2が切り出しありの自由視点画像の生成、及び画像作成コントローラ1から取得した前クリップ、後クリップについての切り出しを行う手法とすることもできる。この場合、画像作成コントローラ1は、自由視点画像サーバ2から切り出し後の前クリップと後クリップ、及び自由視点画像を取得し、これらを出力クリップとしてスイッチャー6に出力する。
 この図37のように前クリップ、後クリップ、自由視点画像の全てについての画像切り出しを自由視点画像サーバ2が行う手法とすることで、前クリップと後クリップに対するレンズ歪み補正や自由視点画像に対するレンズ歪み付加処理(仮想カメラの画像を実カメラの画像に近づけるための処理)を高精度に行うことができる。
 或いは、図38に示すように、画像作成コントローラ1の後段に切り出し部9を設けて、この切り出し部9が前クリップと後クリップ、及び自由視点画像の全ての切り出しを行うという手法を採ることもできる。この場合、画像作成コントローラ1、自由視点画像サーバ2は、それぞれ前クリップと後クリップ、自由視点画像について切り出しを行わないことは言うまでもない。
 図38の手法とした場合には、画像作成コントローラ1、自由視点画像サーバ2において切り出し処理が不要となるので、前クリップや後クリップ、自由視点画像について切り出しを行わない既存のFV作成システムをそのまま流用できるという利点がある。
 また、画像作成コントローラ1の後段においてオペレータが画像内容を確認しながら切り出し位置の微調整を行うことができるという利点もある。
 ここで、上記では、視点回転中心の位置が回転中心位置情報(54,59)に対するユーザの操作で指定される例を挙げたが、視点回転中心の位置は、対象空間撮像画像に対する画像認識処理の結果に基づき決定することもできる。
 例えば、この場合の画像認識処理としては、画像生成処理部32(表示処理部32a)は、対象空間撮像画像内から注目被写体(例えば、特定の選手等の特定被写体)を認識する処理として行う。
 例えば、上述した実施形態のように開始カメラ、終了カメラそれぞれの撮像画像を対象空間撮像画像として表示し、開始カメラ、終了カメラについて視点回転中心の位置を指定可能とされる場合には、開始カメラの撮像画像、終了カメラの撮像画像のそれぞれについて注目被写体を認識する画像認識処理を行い、注目被写体が存在する位置に視点回転中心の位置を決定するということが考えられる。
 ここで、画像認識処理の結果に基づき決定した視点回転中心の位置は、そのまま自由視点画像の生成に用いても良いし、開始カメラ画像表示領域56、終了カメラ画像表示領域57において視点回転中心の候補位置として表示するものとしてもよい。
 また、切り出し画枠の位置やサイズについても、同様に対象空間撮像画像に対する画像認識処理の結果に基づき決定することができる。
 例えば、画像生成処理部32(表示処理部32a)は、開始カメラの撮像画像、終了カメラの撮像画像のそれぞれについて注目被写体を認識する画像認識処理を行い、注目被写体が収まる位置及びサイズによる切り出し画枠を決定するということが考えられる。
 このように画像認識処理の結果に基づき決定した切り出し画枠の情報についても、例えばそのまま自由視点画像の生成に用いても良いし、開始カメラ画像表示領域56、終了カメラ画像表示領域57において切り出し画枠の候補として表示するものとしてもよい。
 また、上記では、自由視点画像として主にタイムフリーズの自由視点画像を生成する場合を説明したが、上述した実施形態としての視点回転中心の位置指定や切り出し画枠の指定手法は、フリーランの自由視点画像にも適用可能である。その場合、対象空間撮像画像は、動画像となるため、視点回転中心や切り出し画枠の指定を行うためのGUIでは、対象空間撮像画像として表示した動画像上に、回転中心位置情報や画枠情報を表示させるようにする。
 また、上記では、自由視点画像生成に用いる複数の撮像装置10が固定カメラである前提としたが、撮像装置10のうち一部が手持ちカメラとされてもよい。
 その場合、手持ちカメラの位置情報や向きの情報を用いて、生成操作画面Ggにおけるカメラ位置の表示やFVクリップ生成に用いるカメラ位置の情報の更新を行うことが考えられる。
 また、上記では、回転中心位置情報59の形状が略円筒状とされる場合を例示したが、回転中心位置情報59の形状は例えば四角柱状、球状、棒状等とすることができ、特定の形状に限定されるものではない。
 また、視点回転中心の高さを指定するための中心高さ情報Haについても、外形形状は例示したものに限定されず、また、スライダー等での高さ位置指定が可能とされてもよい。
 また、上記では、視点回転中心の位置と切り出し画枠の位置が個別に調整可能とされたが、例えばダブルクリックやダブルタップ等の所定の操作入力に応じて、両方の位置を同時に調整可能な操作モードに移行するといったことも考えられる。例えば、ダブルクリックすると回転中心位置情報59と画枠情報58の中心が一致し、その状態での移動指示操作により回転中心位置情報59と画枠情報58とが連動して動くようになるモード等が考えられる。
 また、上記では、プリセット画面Gsの表示処理やカメラパス生成のための操作入力受け付けを行う装置と、生成操作画面Ggの表示処理や自由視点画像生成のための操作入力受け付けを行う装置とが、自由視点画像サーバ2としての共通装置とされる例を挙げたが、これらの装置が別装置とされる形態を採ることもできる。
 なお、対象空間撮像画像は、開始カメラや終了カメラの撮像画像ではなく、FV中における途中の視点と同一視点のカメラの撮像画像とすることも可能である。
 或いは、対象空間撮像画像としては、FV中における視点と同一視点のカメラによる撮像画像に限定されるものではなく、自由視点画像の生成対象とする実空間を撮像して得られる画像であればよい。
<11.実施形態のまとめ>
 上記のように実施形態の情報処理装置(自由視点画像サーバ2)は、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、自由視点画像の視点回転中心の位置を示す回転中心位置情報(同59)を表示するための制御を行う表示制御部(表示処理部32a)を備えたものである。
 上記構成によれば、自由視点画像の生成対象とされる実空間を捉えた撮像画像上において、自由視点画像の視点回転中心位置を視覚化して表示することが可能となる。
 従って、自由視点画像としてどのような画像が生成されるかをユーザがイメージし易くなり、自由視点画像の作成作業の迅速化を図ることができる。
 また、実施形態の情報処理装置においては、回転中心位置情報は、視点回転中心の高さを示す情報を含んでいる。
 これにより、自由視点画像の視点回転中心の高さ位置、すなわち自由視点画像の仰俯角をユーザがイメージし易くなる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 さらに、実施形態の情報処理装置においては、表示制御部は、対象空間撮像画像上に視点回転中心の指定可能範囲を示す情報(指定可能範囲情報Ap)を表示するための制御を行っている。
 これにより、視点回転中心の指定可能範囲を対象空間撮像画像に照らしてユーザがイメージし易くなる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 さらにまた、実施形態の情報処理装置においては、表示部(同77)に表示された回転中心位置情報に対する操作を受け付ける操作受付部(同32b)を備え、操作受付部は、指定可能範囲内における視点回転中心の位置指定操作のみを有効な位置指定操作として受け付けている。
 これにより、自由視点画像を適正に生成することが不能となる位置に視点回転中心が設定されることの防止が図られる。
 従って、自由視点画像の適正に行うことができる。
 また、実施形態の情報処理装置においては、表示制御部は、対象空間撮像画像上に自由視点画像の画枠を示す情報(画枠情報58)を表示するための制御を行っている。
 これにより、対象空間撮像画像よりも小さい画枠サイズによる自由視点画像を生成する場合において、自由視点画像がどのような構図の画像となるかを対象空間撮像画像に照らしてユーザがイメージし易くなる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 さらに、実施形態の情報処理装置においては、対象空間撮像画像は、自由視点画像の生成に用いられる複数視点の撮像画像を得るための複数のカメラのうち、自由視点画像の開始視点と同視点の開始カメラ、自由視点画像の終了視点と同視点の終了カメラの少なくとも何れかによる撮像画像である。
 自由視点画像の開始視点や終了視点での構図は、自由視点画像の出来映えを左右する重要な構図となる。このため、上記のように対象空間撮像画像を開始カメラ、終了カメラの撮像画像とし、対象空間撮像画像上に回転中心位置情報が表示されるようにすることで、自由視点画像がどのような構図の画像となるかをユーザがイメージし易くなる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 さらにまた、実施形態の情報処理装置においては、対象空間撮像画像は、開始カメラの撮像画像、及び終了カメラの撮像画像である。
 自由視点画像の開始視点や終了視点での構図は、自由視点画像の出来映えを左右する重要な構図となり、上記のように対象空間撮像画像を開始カメラ、終了カメラそれぞれの撮像画像として、それら対象空間撮像画像上に回転中心位置情報が表示されるようにすることで、自由視点画像がどのような構図の画像となるかをユーザがよりイメージし易くなるようにする。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 また、自由視点画像としては、タイムフリーズの他にフリーランがあるが、フリーランの場合には、注目被写体の位置が自由視点画像の視点遷移中に変化し得るので、開始時点と終了時点とで視点回転中心の位置をずらしたい(例えば開始時点での注目被写体の位置に合わせていた視点回転中心を、終了時点での注目被写体の位置にずらしたい等)場合もあり、そのような場合に好適となる。
 また、実施形態の情報処理装置においては、開始カメラ、終了カメラはカメラパス情報に基づいて決定される。
 カメラパス情報は、事前にプリセット情報として作成しておくことが考えられ、プリセット情報としてのカメラパス情報に従って開始カメラ、終了カメラを決定することで、視点回転中心の指定にあたりその場でカメラパスの作成操作を行う必要がなくなる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 さらに、実施形態の情報処理装置においては、表示制御部は、対象空間撮像画像に対する画像認識処理の結果に基づき回転中心位置情報を決定している。
 例えば、特定の選手等の特定の被写体に注目した自由視点画像を生成する場合等に、特定の被写体を画像認識処理により認識し、認識した被写体に対応する位置に回転中心位置情報を決定すること等が考えられる。
 従って、視点回転中心の位置を定めるにあたってのユーザの操作負担軽減を図ることができ、自由視点画像の作成作業の迅速化を図ることができる。
 さらにまた、実施形態の情報処理装置においては、表示制御部は、対象空間撮像画像に対する画像認識処理の結果に基づき画枠を決定している。
 例えば、特定の選手等の特定の被写体に注目した自由視点画像を生成する場合等に、特定の被写体を画像認識処理により認識し、認識した被写体が収まる画枠を決定すること等が考えられる。
 従って、自由視点画像の画枠を定めるにあたってのユーザの操作負担軽減を図ることができ、自由視点画像の作成作業の迅速化を図ることができる。
 また、実施形態の情報処理装置においては、表示部に表示された回転中心位置情報に対する操作を受け付ける操作受付部(同32b)と、操作受付部が受け付けた操作に基づき設定された視点回転中心の情報に基づいて自由視点画像を生成する画像生成部(画像生成処理部32)と、を備えている。
 これにより、操作に基づき設定された視点回転中心に応じて構図が変化していく自由視点画像を生成することができる。
 さらに、実施形態の情報処理装置においては、表示制御部は、カメラパス情報が示すカメラパスの情報を表示部に表示させる制御を行っている(カメラパスウインドウ43を参照)。
 これによりユーザには、対象空間撮像画像と回転中心位置情報のみでなく、カメラパス情報が示すカメラパスの情報(少なくとも視点移動軌跡を示す情報)が提示される。
 従って、自由視点画像がどのような構図の画像となるかをユーザがイメージし易くなり、自由視点画像の作成作業の迅速化を図ることができる。
 さらにまた、実施形態の情報処理装置においては、表示制御部は、カメラパスの情報の表示領域に回転中心位置情報が表示されるように制御している。
 これにより、カメラパス情報が示す視点移動軌跡と視点回転中心位置との関係性をユーザがイメージし易くなる。また、対象空間撮像画像上で回転中心位置情報が操作された場合に、カメラパスの表示領域における回転中心位置情報を連動させることが可能となる。
 従って、自由視点画像がどのような構図の画像となるかをユーザがイメージし易くなり、自由視点画像の作成作業の迅速化を図ることができる。
 また、実施形態の情報処理装置においては、カメラパスの情報に対する操作をカメラパス情報が示す視点移動軌跡の形状調整操作として受け付ける操作受付部(同32b)を備えている。
 これにより、既存のカメラパスについての編集が表示画面上のカメラパスに対する操作により容易に行われるようにすることが可能となる。
 従って、自由視点画像の作成作業の迅速化を図ることができる。
 また、実施形態の情報処理方法は、情報処理装置が、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う情報処理方法である。
 このような情報処理方法によれば、上記した実施形態の情報処理装置と同様の作用及び効果を得ることができる。
 ここで、実施形態としては、図35等で説明した画像生成処理部32(例えば、表示処理部32a等)による処理を、例えばCPU、DSP(Digital Signal Processor)等、或いはこれらを含むデバイスに実行させるプログラムを考えることができる。
 即ち、実施形態のプログラムは、コンピュータ装置が読み取り可能なプログラムであって、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う機能をコンピュータ装置に実現させるプログラムである。
 このようなプログラムにより、上述した表示処理部32aとしての機能を情報処理装置70としての機器において実現できる。
 上記のようなプログラムは、コンピュータ装置等の機器に内蔵されている記録媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。
 あるいはまた、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウエアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
 またこのようなプログラムによれば、実施形態の表示処理部32aの広範な提供に適している。例えばパーソナルコンピュータ、携帯型情報処理装置、携帯電話機、ゲーム機器、ビデオ機器、PDA(Personal Digital Assistant)等にプログラムをダウンロードすることで、当該パーソナルコンピュータ等を、本開示の表示処理部32aとしての処理を実現する装置として機能させることができる。
 また、実施形態としての表示システムは、画像表示が可能な表示部(自由視点画像サーバ2の表示部77)と、表示部において、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部(表示処理部32a)と、を備えるものである。
 このような表示システムによっても、上記した実施形態としての情報処理装置と同様の作用及び効果を得ることができる。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<12.本技術>

 なお本技術は以下のような構成も採ることができる。
(1)
 自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部を備えた
 情報処理装置。
(2)
 前記回転中心位置情報は、前記視点回転中心の高さを示す情報を含む
 前記(1)に記載の情報処理装置。
(3)
 前記表示制御部は、前記対象空間撮像画像上に前記視点回転中心の指定可能範囲を示す情報を表示するための制御を行う
 前記(1)又は(2)に記載の情報処理装置。
(4)
 表示部に表示された前記回転中心位置情報に対する操作を受け付ける操作受付部を備え、
 前記操作受付部は、前記指定可能範囲内における前記視点回転中心の位置指定操作のみを有効な位置指定操作として受け付ける
 前記(3)に記載の情報処理装置。
(5)
 前記表示制御部は、前記対象空間撮像画像上に前記自由視点画像の画枠を示す情報を表示するための制御を行う
 前記(1)から(4)の何れかに記載の情報処理装置。
(6)
 前記対象空間撮像画像は、前記自由視点画像の生成に用いられる複数視点の撮像画像を得るための複数のカメラのうち、前記自由視点画像の開始視点と同視点の開始カメラ、前記自由視点画像の終了視点と同視点の終了カメラの少なくとも何れかによる撮像画像である
 前記(1)から(5)の何れかに記載の情報処理装置。
(7)
 前記対象空間撮像画像は、前記開始カメラの撮像画像、及び前記終了カメラの撮像画像である
 前記(6)に記載の情報処理装置。
(8)
 前記開始カメラ、前記終了カメラはカメラパス情報に基づいて決定される
 前記(6)又は(7)に記載の情報処理装置。
(9)
 前記表示制御部は、前記対象空間撮像画像に対する画像認識処理の結果に基づき前記回転中心位置情報を決定する
 前記(1)から(8)の何れかに記載の情報処理装置。
(10)
 前記表示制御部は、前記対象空間撮像画像に対する画像認識処理の結果に基づき前記画枠を決定する
 前記(5)に記載の情報処理装置。
(11)
 表示部に表示された前記回転中心位置情報に対する操作を受け付ける操作受付部と、
 前記操作受付部が受け付けた操作に基づき設定された前記視点回転中心の情報に基づいて自由視点画像を生成する画像生成部と、を備える
 前記(1)から(10)の何れかに記載の情報処理装置。
(12)
 前記表示制御部は、カメラパス情報が示すカメラパスの情報を表示部に表示させる制御を行う、
 前記(1)から(11)の何れかに記載の情報処理装置。
(13)
 前記表示制御部は、前記カメラパスの情報の表示領域に前記回転中心位置情報が表示されるように制御する
 前記(12)に記載の情報処理装置。
(14)
 前記カメラパスの情報に対する操作を前記カメラパス情報が示す視点移動軌跡の形状調整操作として受け付ける操作受付部を備えた
 前記(12)又は(13)の何れかに記載の情報処理装置。
(15)
 情報処理装置が、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う
 情報処理方法。
(16)
 コンピュータ装置が読み取り可能なプログラムであって、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う機能を前記コンピュータ装置に実現させる
 プログラム。
(17)
 画像表示が可能な表示部と、
 前記表示部において、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部と、を備える
 表示システム。
2 自由視点画像サーバ
10 撮像装置
31 対象画像取得部
32 画像生成処理部
32a 表示処理部
32b 操作受付部
32c カメラパス編集処理部
33 送信制御部
34 カメラパス生成処理部
34a 表示処理部
Gg 生成操作画面
Gs プリセット画面
41 シーンウインドウ
42 シーンリスト表示部
43 カメラパスウインドウ
44 カメラパスリスト表示部
45 対象空間画像表示部
46 送信ウインドウ
51 開始カメラ位置情報
52 終了カメラ位置情報
53 視点移動軌跡情報
54 回転中心位置情報
56 開始カメラ画像表示領域
57 終了カメラ画像表示領域
58s,58e 画枠情報
59s,59e 回転中心位置情報
Ap 指定可能範囲情報
Ha 中心高さ情報
60s、60e スライダー操作部
61s、61e サイズ指定操作部
62 FV指定操作部
65 パス名入力部
66 FV数選択部
67 カメラ選択部
68 回転方向選択部
B1 OKボタン
B2 キャンセルボタン
B3 エクスポートボタン
70 情報処理装置
71 CPU
72 ROM
73 RAM
74 バス
75 入出力インタフェース
76 入力部
77 表示部
78 音声出力部
79 記憶部
80 通信部
81 リムーバブル記録媒体
82 ドライブ

Claims (17)

  1.  自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部を備えた
     情報処理装置。
  2.  前記回転中心位置情報は、前記視点回転中心の高さを示す情報を含む
     請求項1に記載の情報処理装置。
  3.  前記表示制御部は、前記対象空間撮像画像上に前記視点回転中心の指定可能範囲を示す情報を表示するための制御を行う
     請求項1に記載の情報処理装置。
  4.  表示部に表示された前記回転中心位置情報に対する操作を受け付ける操作受付部を備え、
     前記操作受付部は、前記指定可能範囲内における前記視点回転中心の位置指定操作のみを有効な位置指定操作として受け付ける
     請求項3に記載の情報処理装置。
  5.  前記表示制御部は、前記対象空間撮像画像上に前記自由視点画像の画枠を示す情報を表示するための制御を行う
     請求項1に記載の情報処理装置。
  6.  前記対象空間撮像画像は、前記自由視点画像の生成に用いられる複数視点の撮像画像を得るための複数のカメラのうち、前記自由視点画像の開始視点と同視点の開始カメラ、前記自由視点画像の終了視点と同視点の終了カメラの少なくとも何れかによる撮像画像である
     請求項1に記載の情報処理装置。
  7.  前記対象空間撮像画像は、前記開始カメラの撮像画像、及び前記終了カメラの撮像画像である
     請求項6に記載の情報処理装置。
  8.  前記開始カメラ、前記終了カメラはカメラパス情報に基づいて決定される
     請求項6に記載の情報処理装置。
  9.  前記表示制御部は、前記対象空間撮像画像に対する画像認識処理の結果に基づき前記回転中心位置情報を決定する
     請求項1に記載の情報処理装置。
  10.  前記表示制御部は、前記対象空間撮像画像に対する画像認識処理の結果に基づき前記画枠を決定する
     請求項5に記載の情報処理装置。
  11.  表示部に表示された前記回転中心位置情報に対する操作を受け付ける操作受付部と、
     前記操作受付部が受け付けた操作に基づき設定された前記視点回転中心の情報に基づいて自由視点画像を生成する画像生成部と、を備える
     請求項1に記載の情報処理装置。
  12.  前記表示制御部は、カメラパス情報が示すカメラパスの情報を表示部に表示させる制御を行う、
     請求項1に記載の情報処理装置。
  13.  前記表示制御部は、前記カメラパスの情報の表示領域に前記回転中心位置情報が表示されるように制御する
     請求項12に記載の情報処理装置。
  14.  前記カメラパスの情報に対する操作を前記カメラパス情報が示す視点移動軌跡の形状調整操作として受け付ける操作受付部を備えた
     請求項12に記載の情報処理装置。
  15.  情報処理装置が、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う
     情報処理方法。
  16.  コンピュータ装置が読み取り可能なプログラムであって、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う機能を前記コンピュータ装置に実現させる
     プログラム。
  17.  画像表示が可能な表示部と、
     前記表示部において、自由視点画像の生成対象とされる実空間を撮像して得られる画像である対象空間撮像画像上に、前記自由視点画像の視点回転中心の位置を示す回転中心位置情報を表示するための制御を行う表示制御部と、を備える
     表示システム。
PCT/JP2022/003043 2021-02-25 2022-01-27 情報処理装置、情報処理方法、プログラム、表示システム WO2022181175A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22759217.7A EP4300950A4 (en) 2021-02-25 2022-01-27 INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, PROGRAM AND DISPLAY DEVICE
US18/272,489 US20240314279A1 (en) 2021-02-25 2022-01-27 Information processing device, information processing method, program, and display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028706 2021-02-25
JP2021028706 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181175A1 true WO2022181175A1 (ja) 2022-09-01

Family

ID=83049127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003043 WO2022181175A1 (ja) 2021-02-25 2022-01-27 情報処理装置、情報処理方法、プログラム、表示システム

Country Status (3)

Country Link
US (1) US20240314279A1 (ja)
EP (1) EP4300950A4 (ja)
WO (1) WO2022181175A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114716A (ja) * 2013-12-09 2015-06-22 シャープ株式会社 画像データ再生装置および画像データ生成装置
JP2019045995A (ja) * 2017-08-30 2019-03-22 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、情報処理システム及びプログラム
JP2019056978A (ja) * 2017-09-19 2019-04-11 キヤノン株式会社 制御装置、制御方法、及びプログラム
JP2020021104A (ja) * 2018-07-30 2020-02-06 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理のシステム、およびそれらの制御方法、プログラム
JP2020173529A (ja) * 2019-04-09 2020-10-22 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274564B2 (en) * 2006-10-13 2012-09-25 Fuji Xerox Co., Ltd. Interface for browsing and viewing video from multiple cameras simultaneously that conveys spatial and temporal proximity
JP6980496B2 (ja) * 2017-11-21 2021-12-15 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015114716A (ja) * 2013-12-09 2015-06-22 シャープ株式会社 画像データ再生装置および画像データ生成装置
JP2019045995A (ja) * 2017-08-30 2019-03-22 キヤノン株式会社 情報処理装置、情報処理装置の制御方法、情報処理システム及びプログラム
JP2019056978A (ja) * 2017-09-19 2019-04-11 キヤノン株式会社 制御装置、制御方法、及びプログラム
JP2020021104A (ja) * 2018-07-30 2020-02-06 キヤノンマーケティングジャパン株式会社 情報処理装置、情報処理のシステム、およびそれらの制御方法、プログラム
JP2020173529A (ja) * 2019-04-09 2020-10-22 キヤノン株式会社 情報処理装置、情報処理方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4300950A4 *

Also Published As

Publication number Publication date
EP4300950A1 (en) 2024-01-03
US20240314279A1 (en) 2024-09-19
EP4300950A4 (en) 2024-07-24

Similar Documents

Publication Publication Date Title
CN114125264B (zh) 提供虚拟的摇摄-倾斜-缩放视频功能的系统和方法
JP7123523B2 (ja) 自動的にテレビ番組を制作する方法及びシステム
JP5406813B2 (ja) パノラマ画像表示装置およびパノラマ画像表示方法
JP4986886B2 (ja) 撮像装置、画像再生装置、撮影制御方法及び画像再生方法
US20170272785A1 (en) 360 degree space image reproduction method and system therefor
WO2022107669A1 (ja) 情報処理装置、情報処理方法、情報処理システム
JP5393237B2 (ja) 画像表示装置及びその制御方法、並びにプログラム及び記憶媒体
KR20160021706A (ko) 360도 공간영상 재생방법 및 그 시스템
JP2009177431A (ja) 動画像再生システム、サーバ装置、端末装置及び動画像生成方法等
WO2022181175A1 (ja) 情報処理装置、情報処理方法、プログラム、表示システム
JP3929811B2 (ja) 画像合成装置及び画像合成方法
JP5066878B2 (ja) カメラ及び表示システム
WO2023281863A1 (ja) 情報処理装置、情報処理方法、プログラム
WO2021199715A1 (ja) 情報処理装置、情報処理方法、プログラム
WO2021199714A1 (ja) 情報処理装置、情報処理方法、プログラム
WO2021199735A1 (ja) 情報処理装置、画像処理システム、情報処理方法
JP3227350B2 (ja) 映像再生方法および映像再生装置
JP4934066B2 (ja) 情報生成装置、情報生成方法及び情報生成プログラム
JP2020067716A (ja) 情報処理装置、制御方法、及びプログラム
JP7000520B2 (ja) 動画再生方法及び動画再生システム
JP5646033B2 (ja) 画像表示装置および画像表示方法
JP2008236708A (ja) バーチャル撮影スタジオの媒体制作装置
JP6230675B2 (ja) 画像再生装置、画像再生方法及び画像再生プログラム
JP6016985B2 (ja) 画像処置装置及び画像処理方法
JP5753569B2 (ja) 画像再生装置及び画像再生装置の再生方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18272489

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022759217

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759217

Country of ref document: EP

Effective date: 20230925

NENP Non-entry into the national phase

Ref country code: JP