WO2022179511A1 - 冷凝器 - Google Patents

冷凝器 Download PDF

Info

Publication number
WO2022179511A1
WO2022179511A1 PCT/CN2022/077360 CN2022077360W WO2022179511A1 WO 2022179511 A1 WO2022179511 A1 WO 2022179511A1 CN 2022077360 W CN2022077360 W CN 2022077360W WO 2022179511 A1 WO2022179511 A1 WO 2022179511A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
exchange tube
tube group
baffle plate
condenser
Prior art date
Application number
PCT/CN2022/077360
Other languages
English (en)
French (fr)
Inventor
苏秀平
王利
Original Assignee
约克(无锡)空调冷冻设备有限公司
江森自控泰科知识产权控股有限责任合伙公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 约克(无锡)空调冷冻设备有限公司, 江森自控泰科知识产权控股有限责任合伙公司 filed Critical 约克(无锡)空调冷冻设备有限公司
Priority to KR1020237030500A priority Critical patent/KR20230150304A/ko
Priority to EP22758875.3A priority patent/EP4300009A1/en
Publication of WO2022179511A1 publication Critical patent/WO2022179511A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/045Condensers made by assembling a tube on a plate-like element or between plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • F28D2021/0063Condensers

Definitions

  • the present application relates to a condenser, in particular to a condenser with high heat exchange efficiency.
  • Shell and tube condensers are widely used in refrigeration and air conditioning industry, especially in large steam compressor units.
  • the gaseous high-temperature refrigerant discharged from the compressor enters the condenser through the refrigerant inlet, exchanges heat with the cooling medium flowing through the heat exchange tube, and condenses on the surface of the heat exchange tube.
  • the heat exchange tubes are lowered to the bottom layer by layer and enter the subcooler for subcooling, and then discharged from the refrigerant outlet.
  • the heat transfer efficiency of the condenser is affected by many factors.
  • the present application provides a condenser with high heat exchange efficiency.
  • the condenser includes: a casing, the casing has a cavity, the cavity has a length direction, a width direction and a height direction, the casing is provided with a refrigerant inlet and Refrigerant outlet; first heat exchange tube group, second heat exchange tube group and third heat exchange tube group, in the width direction of the cavity, the second heat exchange tube group and the third heat exchange tube group Arranged on both sides of the first heat exchange tube group, a transverse fluid channel is arranged below the first heat exchange tube group; a pair of first baffles, in the width direction of the cavity, the one Each of the first baffle plates is immediately adjacent to both sides of the first heat exchange tube group, and the upper end of each first baffle plate in the pair of first baffle plates extends to the upper end of the first heat exchange tube group.
  • the upper part is connected to the casing, and the lower end of each first baffle plate in the pair of first baffle plates extends to the lower end of the first heat exchange tube group; the second baffle plate is located at the bottom of the cavity.
  • the second baffle is adjacent to the side of the second heat exchange tube group close to the first heat exchange tube group, the second baffle and the pair of the first baffles
  • a first vertical fluid channel is formed between a first baffle plate adjacent to the second heat exchange tube group, the first vertical fluid channel communicates with the transverse fluid channel, and the second baffle plate extends downward to The lower part of the second baffle closes the transverse fluid channel in the height direction of the cavity; the third baffle is close to the first baffle in the width direction of the cavity.
  • a second vertical fluid channel is formed therebetween, the second vertical fluid channel communicates with the lateral fluid channel, and the third baffle extends downward so that the lower part of the third baffle is in the cavity
  • the transverse fluid channel is closed in the height direction of the ref.
  • the refrigerant inlet receives the refrigerant and causes the second heat exchange tube group and the third heat exchange tube group to pass through the transverse fluid channel, and the first vertical fluid channel and the second vertical fluid channel from the first A heat exchange tube bank receives refrigerant.
  • the lower portion of the second baffle plate and the lower portion of the third baffle plate are at least partially submerged in the refrigerant liquid when the condenser is in operation.
  • a first accommodating space is formed between the pair of first baffle plates, the first heat exchange tube group is arranged in the first accommodating space, and the first accommodating space has a first accommodating space.
  • an accommodation space inlet and a first accommodation space outlet the first accommodation space inlet communicates with the refrigerant inlet, and the first accommodation space outlet communicates with the lateral fluid channel.
  • a second accommodating space is formed between the second baffle plate and the casing, the second heat exchange tube group is arranged in the second accommodating space, and the second accommodating space is The space has a second accommodating space inlet, the second accommodating space inlet is communicated with the first vertical fluid channel; a third accommodating space is formed between the third baffle plate and the housing, and the third accommodating space is The heat pipe group is arranged in the third accommodating space, the third accommodating space has a third channel inlet, and the second accommodating space inlet communicates with the second vertical fluid channel.
  • each of the pair of first baffles includes a main body section and a guide section, the main body section extends along the height direction of the cavity, and the top of the main body section is connected to the guide section.
  • the top of the first heat exchange tube group is flush with or exceeds the top of the first heat exchange tube group, and the guide section is inclined upward from the top of the main body section and toward the direction away from the first heat exchange tube group Extending to connect with the housing, the guide section is located above the first vertical fluid channel or the second vertical fluid channel.
  • the condenser further comprises: a middle baffle plate, the middle baffle plate is provided with ventilation holes to allow gas to flow through, the middle baffle plate is arranged on the first exchange In the heat pipe group, the second heat exchange pipe group or the third heat exchange pipe group, the middle guide plate includes an inclined section, and the inclined section extends from at least one of the pair of first baffles, the second The second baffle, the third baffle or the casing extends upwardly inclined to guide the liquid refrigerant along one of the pair of first baffles, the second baffle, the third baffle plate or the casing flows.
  • the ventilation hole is in the shape of a long strip extending along the inclination direction of the inclined section.
  • a condenser comprising: a casing, the casing has a cavity, the cavity has a length direction, a width direction and a height direction, the casing is provided with a refrigerant an inlet and a refrigerant outlet; a first heat exchange tube group and a second heat exchange tube group, the first heat exchange tube group is arranged on one side of the second heat exchange tube group, the first heat exchange tube group There is a transverse fluid channel below; a first baffle plate and a second baffle plate, the first baffle plate is adjacent to the first heat exchange tube group, the second baffle plate is adjacent to the second heat exchange tube group, and the first baffle plate is adjacent to the first heat exchange tube group.
  • a vertical fluid channel is formed between a baffle plate and a second baffle plate, the vertical fluid channel communicates with the transverse fluid channel, and the upper end of the first baffle plate extends above the first heat exchange tube group and communicates with the first heat exchange tube group.
  • the shells are connected, the lower end of the first baffle plate extends to the lower end of the first heat exchange tube group, the upper end of the second baffle plate extends to the upper end of the second heat exchange tube group, the A second baffle extends downward so that a lower end of the second baffle closes the transverse fluid passage in the height direction of the cavity; wherein the first baffle and the second baffle are configured In order to: make the first heat exchange tube group receive refrigerant from the refrigerant inlet, and make the second heat exchange tube group pass through the transverse fluid channel and the vertical fluid channel from the first heat exchange The tube group receives refrigerant.
  • the lower end of the second baffle is at least partially immersed in the refrigerant liquid.
  • a first accommodating space is formed between the first baffle plate and the shell, the first heat exchange tube group is arranged in the first accommodating space, and the first accommodating space There is a first accommodating space inlet and a first accommodating space outlet, the first accommodating space inlet is communicated with the refrigerant inlet, and the first accommodating space outlet is communicated with the lateral fluid channel.
  • a second accommodating space is formed between the second baffle plate and the casing, the second heat exchange tube group is arranged in the second accommodating space, and the second accommodating space There is a second accommodating space inlet, and the second accommodating space inlet is communicated with the vertical fluid channel.
  • each of the first baffles includes a main body section and a guide section, the main body section extends along the height direction of the cavity, and the top of the main body section is connected to the first
  • the top of the heat exchange tube group is flush with or exceeds the top of the first heat exchange tube group
  • the guide section extends upwardly from the top of the main body section and extends obliquely in a direction away from the first heat exchange tube group and is connected with the first heat exchange tube group.
  • the housing is connected, and the guide section is located above the vertical fluid channel.
  • a condenser comprising: a casing, the casing has a cavity, the cavity has a length direction, a width direction and a height direction, the casing is provided with a refrigerant an inlet and a refrigerant outlet; a first heat exchange tube group and a second heat exchange tube group, in the height direction of the cavity, the first heat exchange tube group is located above the second heat exchange tube group, Both sides of the first heat exchange tube group in the width direction of the cavity are immediately adjacent to the casing, and at least one of the two sides of the second heat exchange tube group in the width direction of the cavity There is a certain distance between the side and the shell; at least one baffle, the at least one baffle is arranged close to at least one side of the second heat exchange tube group with a certain distance from the shell, where the In the height direction of the cavity, the upper end of the at least one baffle plate is not higher than the second heat exchange tube group, and a fluid space is formed between
  • the lower part of the at least one baffle plate has a connecting channel to allow the liquid refrigerant to pass through.
  • the condenser as described above further comprising: a flow guide plate, the flow guide plate is arranged between the first heat exchange tube group and the second heat exchange tube group, and covers the second heat exchange tube group to guide the The liquid refrigerant flows to the fluid space, and the guide plate is provided with ventilation holes to allow the gaseous refrigerant to pass through.
  • the guide plate includes an inclined section, and the inclined section extends upward from the one baffle plate and toward the centerline of the second heat exchange tube group in the width direction of the cavity .
  • the vent hole is a long strip extending along the inclination direction of the inclined section.
  • the flow rate of the gaseous refrigerant in the condenser is increased by the setting of the baffle, so as to facilitate the breaking of the liquid film on the heat exchange tube, and the gaseous refrigerant is easily diffused to the heat exchange in the lower part of the condenser. tube, thereby improving the heat transfer efficiency of condensation.
  • FIG. 1 is a schematic block diagram of a refrigeration system 100
  • FIG. 2A is a perspective view of the first embodiment of the condenser 120 in FIG. 1;
  • FIG. 2B is an axial cross-sectional schematic diagram of the condenser 120 in FIG. 2A;
  • 3A is a schematic diagram of a radial cross-section of the condenser 120 in FIG. 2 cut along the line A-A;
  • FIG. 3B is a schematic diagram of the refrigerant flow direction of the condenser 120 in FIG. 3A;
  • Figure 4 is a radial cross-sectional view of a second embodiment of the condenser in the present application.
  • FIG. 5 is a radial cross-sectional view of a third embodiment of a condenser in the present application.
  • Figure 6 is a radial cross-sectional view of a fourth embodiment of the condenser in the present application.
  • first and second used in this application are only used for distinguishing and identifying, and do not have any other meanings. Unless otherwise specified, they do not represent a specific order or have a specific association. sex. For example, the term “first element” by itself does not imply the presence of a “second element,” nor does the term “second element” by itself imply the presence of a "first element.”
  • FIG. 1 is a schematic block diagram of a refrigeration system 100 .
  • the refrigeration system 100 includes a compressor 110 , a condenser 120 , a throttling device 140 and an evaporator 130 , which are connected by pipes to form a refrigerant circulation circuit, and the circuit is filled with refrigerant.
  • the refrigerant flows through the compressor 110 , the condenser 120 , the throttling device 140 and the evaporator 130 in sequence, and then enters the compressor 110 again.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 110 exchanges heat with the ambient medium in the condenser 120, releases heat and is condensed into a liquid refrigerant;
  • the refrigerant is throttled to reduce its pressure;
  • the low-pressure refrigerant exchanges heat with the object to be cooled in the evaporator 130, absorbs the heat of the object to be cooled and vaporizes;
  • the refrigerant vapor generated by the vaporization is inhaled by the compressor 110, and after compression It is discharged at high pressure, forming a cycle.
  • FIG. 2A is a perspective view of the first embodiment of the condenser 120 in FIG. 1
  • FIG. 2B is an axial cross-sectional schematic view of the condenser 120 in FIG. 2A
  • the condenser 120 has a height direction H, a length direction L and a width direction W, and the height direction, length direction and width direction of the cavity 205 are consistent with the direction of the condenser 120
  • it is a condenser with two cooling medium flows.
  • the condenser 120 has a casing 201.
  • the casing 201 includes a cylinder 204, a left tube sheet 216, a right tube sheet 214, a rear water tank 226 and Front water tank 228.
  • the left and right ends of the cylinder body 204 are respectively closed by the left tube plate 216 and the right tube plate 214 to form the cavity 205 .
  • the rear water tank 226 is connected to the left tube plate 216 and forms a cavity 208 with the left tube plate 216 .
  • the front water tank 228 is connected with the right tube plate 214 and forms a cavity 209 with the right tube plate 214 .
  • the chamber 209 is provided with a transverse divider plate 210 extending laterally from the right tube sheet 214 to the front water tank 228 , thereby forming the chamber 209 to be divided into an outlet chamber 234 and an inlet chamber 232 .
  • the front water tank 228 is provided with a medium inlet 222 and a medium outlet 223 , the medium inlet 222 communicates with the inlet chamber 232 , and the medium outlet 223 communicates with the outlet chamber 234 .
  • a heat exchange tube bundle formed by a plurality of heat exchange tubes arranged in sequence is arranged in the cavity 205 .
  • Each heat exchange tube in the heat exchange tube bundle extends along the length direction L of the cavity 205 .
  • the heat exchange tubes in the condenser 120 include an upper tube bundle 242 and a lower tube bundle 244 located below the upper tube bundle 242 .
  • the upper tube bundle 242 and the lower tube bundle 244 are placed horizontally in the cavity 205 .
  • each heat exchange tube in the upper tube bundle 242 is in fluid communication with the chamber 208 and the other end is in fluid communication with the outlet cavity 234; one end of each heat exchange tube in the lower tube bundle 244 is in fluid communication with the chamber 208 and the other end is in fluid communication It is in fluid communication with the inlet chamber 232 so that the cooling medium can flow through the inlet chamber 232 , the lower tube bundle 244 , the chamber 208 , the upper tube bundle 242 and the outlet chamber 234 in sequence after passing through the media inlet 222 , and flows out of the condensate through the media outlet 223 device 120.
  • a fluid channel is formed in each heat exchange tube in the heat exchange tube bundle to circulate a cooling medium.
  • the gap between each heat exchange tube in the heat exchange tube bundle and the adjacent heat exchange tube forms a refrigerant channel for circulating refrigerant.
  • the medium in the fluid channel exchanges heat with the refrigerant in the refrigerant channel through the tube wall of the heat exchange tube.
  • the cooling medium may be set to a single flow or multiple flows.
  • the cylinder 204 is provided with a refrigerant inlet 211 and a refrigerant outlet 212 , wherein the refrigerant inlet 211 is located at the upper part in the height direction of the condenser 120 , and the refrigerant outlet 212 is located at the lower part in the height direction of the condenser 120 .
  • the gaseous refrigerant in the refrigeration system 100 enters the refrigerant passage between the heat exchange tubes of the condenser 120 from the refrigerant inlet 211, exchanges heat with the cooling medium in the heat exchange tubes, and then turns into liquid refrigerant, and passes through the refrigerant outlet. 212 discharge.
  • the condenser 120 also includes a scour plate 224 .
  • the impact plate 224 is substantially flat and extends along the length and width directions of the cavity 205 .
  • the anti-flushing plate 224 is arranged between the refrigerant inlet 211 and the upper tube bundle 242 with a certain distance from the inner wall of the cylinder 204 at the refrigerant inlet 211 .
  • the area of the dash plate 224 is larger than that of the refrigerant inlet 211 .
  • the anti-shock plate 224 can also guide the refrigerant to flow along the length direction and the width direction of the cavity 205 , so that the refrigerant entering the cavity 205 from the refrigerant inlet 211 can evenly flow to the heat exchange tube bundle.
  • the anti-collision plate 224 is welded on the cylinder body 102 by connecting rods (not shown in the figure).
  • the condenser 120 includes a first heat exchange tube group 301 , a second heat exchange tube group 302 , a third heat exchange tube group 303 and a bottom heat exchange tube group 304 .
  • the bottom heat exchange tube group 304 is located at the lower part of the cavity 205 and arranged along the inner wall of the bottom of the casing 201 .
  • the first heat exchange tube group 301 , the second heat exchange tube group 302 , and the third heat exchange tube group 303 are all arranged along the height direction and the width direction of the cavity 205 .
  • the first heat exchange tube group 301, the second heat exchange tube group 302, and the third heat exchange tube group 303 are all located above the bottom heat exchange tube group 304.
  • the second heat exchange tube group 302 and the third heat exchange tube group 303 are respectively located on both sides of the first heat exchange tube group 301 .
  • the refrigerant inlet 211 is aligned with at least a part of the first heat exchange tube group 301 and is respectively staggered from the second heat exchange tube group 302 and the third heat exchange tube group 303 .
  • the respective heights of the first heat exchange tube group 301 , the second heat exchange tube group 302 and the third heat exchange tube group 303 are not less than the radius of the cavity 205 .
  • the first heat exchange tube group 301 has a top portion 315 , a bottom portion 316 and a left side portion 317 and a right side portion 318 .
  • the first heat exchange tube group 301 is located below the anti-shock plate 224, and there is a certain distance between the top 315 of the first heat exchange tube group 301 and the anti-shock plate 224, so as to facilitate the flow of the refrigerant drained through the anti-shock plate 224 along the Flow along the length direction of the cavity 205, so that the top 315 of the first heat exchange tube group 301 can receive the refrigerant uniformly.
  • the second heat exchange tube group 302 is located on the left side of the first heat exchange tube group 301 .
  • the second heat exchange tube group 302 has a top portion 325 , a bottom portion 326 , and left and right portions 327 and 328 .
  • the bottom 326 of the second heat exchange tube group 302 is higher than the bottom heat exchange tube group 324 , the left side portion 327 of the second heat exchange tube group 302 is disposed adjacent to the inner wall of the casing 201 , and the right side portion of the second heat exchange tube group 302 There is a certain distance between 328 and the left side portion 317 of the first heat exchange tube group 301 .
  • the third heat exchange tube group 303 is located on the right side of the first heat exchange tube group 301 , and the third heat exchange tube group 303 has a top portion 335 , a bottom portion 336 , and left and right portions 337 and 338 .
  • the bottom 336 of the third heat exchange tube group 303 is higher than the bottom heat exchange tube group 304
  • the right side portion 338 of the third heat exchange tube group 303 is disposed adjacent to the inner wall of the casing 201
  • the left side portion of the third heat exchange pipe group 303 There is a certain distance between 327 and the right side portion 318 of the first heat exchange tube group 301 .
  • the liquid refrigerant at the bottom of the condenser 120 maintains a certain liquid level, as shown by the dotted line 350 .
  • the bottom heat exchange tube group 304 is immersed in the liquid refrigerant, so as to supercool the liquid refrigerant.
  • the bottom 316 of the first heat exchange tube group 301 is higher than the liquid level of the liquid refrigerant, so that a transverse fluid channel 312 is formed between the bottom 316 of the first heat exchange tube group 301 and the liquid level plane of the liquid refrigerant, and the transverse fluid channel 312 can Allow gaseous refrigerant to pass through.
  • the condenser 120 includes a pair of first baffles 331 and 332 .
  • the first baffle 331 is adjacent to the left side 317 of the first heat exchange tube group, and there is a space between the first baffle 331 and the left side 317 .
  • the first baffle plate 332 is adjacent to the right side portion 318 of the first heat exchange tube group 301 and has a smaller distance from the right side portion 318 .
  • the upper end of the first baffle 331 is connected to the casing 201, the lower end of the first baffle 331 is flush with the bottom of the first heat exchange tube group 301, the first baffle 331 extends along the length direction, and the two The ends are connected to the left tube sheet 216 and the right tube sheet 214, respectively.
  • the upper end of the first baffle 332 is connected to the casing 201, the lower end of the first baffle 332 is flush with the bottom of the first heat exchange tube group 301, the first baffle 332 extends along the length direction, and the two The ends are connected to the left tube sheet 216 and the right tube sheet 214, respectively.
  • the connections between the upper end of the first baffle 331 and the upper end of the first baffle 332 and the casing 201 are located on both sides of the refrigerant inlet 211 , respectively.
  • the first baffle 331 , the first baffle 332 , the left tube sheet 216 and the right tube sheet 214 enclose a first accommodating space 321 , and the first heat exchange tube group 301 is arranged in the first accommodating space 321 .
  • the first accommodating space 321 has a first accommodating space inlet 341 located at an upper portion of the first accommodating space 321 and a first accommodating space outlet 342 located at a lower portion of the first accommodating space 321 , wherein the first accommodating space inlet 341 is connected to the refrigerant inlet 211 In communication, the first containment space outlet 342 communicates with the lateral fluid channel 312 .
  • the top 315 of the first heat exchange tube group 301 is lower than the inlet 341 of the first accommodating space.
  • the anti-shock plate 224 is also located in the first accommodating space 321 and is lower than the entrance 341 of the first accommodating space. In other embodiments of the present application, the anti-shock plate 224 may be located above the first accommodating space 321 .
  • the first baffle 331 and the first baffle 332 respectively include a main body section 351 and a guide section 352, the main body section 351 extends along the height direction of the cavity 205, and the bottom of the main body section 351 is flush with the first heat exchange tube group 301, The top of the main body section 351 exceeds the top of the first heat exchange tube group 301 or is flush with the top of the first heat exchange tube group 301 .
  • the guide section extends upward from the top of the main body section 351 and away from the first heat exchange tube group 301 until it is connected with the shell 201, so that the guide section 352 is located in the first vertical fluid channel 348 or the second vertical fluid channel Above 349.
  • the orientation of the guide section 352 is beneficial to guide the fluid in the first vertical fluid channel 348 and the second vertical fluid channel 349 to smoothly flow to the second accommodating space 322 and the third accommodating space 323 .
  • the guide section 352 makes the upper part of the first accommodating space 321 form a tapered truncated cone, which is beneficial to guide the gaseous refrigerant to the top of the first heat exchange tube group 301 .
  • the condenser also includes a second baffle 333 and a third baffle 334 .
  • the second baffle plate 333 is adjacent to the right side portion 328 of the second heat exchange tube group 302 and has a small distance from the right side portion 328 .
  • the second baffle plate 333 extends along the length direction of the cavity 205, and two ends of the second baffle plate 333 in the length direction are respectively connected with the left tube plate 216 and the right tube plate 214.
  • a second accommodating space 322 is enclosed between the second baffle plate 333 , the casing 201 , the left tube sheet 216 and the right tube sheet 214 , and the second heat exchange tube group 302 is located in the second accommodating space 322 .
  • the second accommodating space 322 has a second accommodating space inlet 343 at its upper portion and a second accommodating space outlet 344 at its lower portion. There is a gap between the second baffle 333 and the first baffle 331 to form a first vertical fluid channel 348 .
  • the upper end of the first vertical fluid channel 348 is communicated with the second receiving space inlet 343
  • the lower end of the first vertical fluid channel 348 is communicated with the lateral fluid channel 312 .
  • the third baffle plate 334 is adjacent to the left side portion 337 of the third heat exchange tube group 303 and has a small distance from the left side portion 337 .
  • the third baffle plate 334 extends along the length direction of the cavity 205 , and two ends of the third baffle plate 334 in the length direction are respectively connected to the left tube plate 216 and the right tube plate 214 .
  • a third accommodating space 323 is enclosed between the third baffle plate 334 , the casing 201 , the left tube sheet 216 and the right tube sheet 214 , and the third heat exchange tube group 303 is located in the third accommodating space 323 .
  • the third accommodating space 323 has a third accommodating space inlet 345 at its upper portion and a third accommodating space outlet 346 at its lower portion.
  • the third baffle 334 and the first baffle 332 there is a space between the third baffle 334 and the first baffle 332 to form a second vertical fluid channel 349 .
  • the upper end of the second vertical fluid channel 349 is communicated with the third accommodation space inlet 345
  • the lower end of the second vertical fluid channel 349 is communicated with the lateral fluid channel 312 .
  • the second baffle 333 and the third baffle 334 extend beyond the first baffle 331 and the first baffle 332 , respectively.
  • the lower end of the second baffle 333 and the lower end of the third baffle 334 are at least partially submerged in the liquid refrigerant, that is, the bottom of the second baffle 333 and the third baffle
  • the bottom of 334 is below the liquid level plane of the liquid refrigerant, so that the lower part of the second baffle 333 and the lower part of the third baffle 334 close the transverse fluid channel 312 in the height direction of the cavity 205 .
  • FIG. 3B is a schematic diagram of the refrigerant flow in the condenser 120 in FIG. 3A .
  • the gaseous refrigerant from the refrigerant circulation circuit enters the condenser 120 through the refrigerant inlet 211 .
  • the respective tops of the first baffles 331 and 332 are connected to the casing, and the respective ends of the first baffles 331 and 332 in the length direction are connected to the left tube sheet 216 and the right tube sheet 214, the refrigerant inlet
  • the gaseous refrigerant entering the condenser 211 enters the first accommodating space 321 through the first accommodating space inlet 341 .
  • the gaseous refrigerant entering the first accommodating space 321 is guided by the anti-wash plate 224 and collected and guided by the respective guide sections 352 of the first baffles 331 and 332 , and then flows to the top 315 of the first heat exchange tube group 301 relatively uniformly.
  • the first baffle 331 and the first baffle 332 block the flow of the gaseous refrigerant toward the direction of the second heat exchange tube group 302 and the third heat exchange tube group 303. Therefore, the gaseous refrigerant flows in the gaps between the heat exchange tubes of the first heat exchange tube group 301 from top to bottom, and exchanges heat with the medium in the heat exchange tubes in the first heat exchange tube group 301 .
  • the gaseous refrigerant During the heat exchange between the gaseous refrigerant and the first heat exchange tube group 301, a part of the gaseous refrigerant is condensed into a liquid refrigerant, and the other part of the refrigerant remains in a gaseous state.
  • the liquid refrigerant flows downward, passes through the transverse fluid channel 312 until it is integrated with the deposited liquid refrigerant at the bottom of the condenser 120 , and the gaseous refrigerant leaves the first heat exchange tube group 301 and enters the transverse fluid channel 312 .
  • the gaseous refrigerant flows upward along the first vertical fluid channel 348 and the second vertical fluid channel 349, It is guided by the guide sections 352 of the first baffles 331 and 332 to enter the second accommodating space entrance 343 and the third accommodating space entrance 345 respectively.
  • the gaseous refrigerant continues to exchange heat in the second heat exchange tube group 302 and the third heat exchange tube group 303, respectively, is converted into liquid refrigerant, flows out from the second accommodation space outlet 344 and the third accommodation space outlet 346, and is condensed with the refrigerant.
  • the deposited liquid refrigerant at the bottom of the device 120 is integrated.
  • the liquid refrigerant condensed by the condenser 120 flows out from the refrigerant outlet 212 and enters the refrigerant circulation circuit.
  • the gaseous refrigerant flows through the first heat exchange tube group 301 in the condenser 120 for heat exchange, and then passes through the second heat exchange tube group 302 and the third heat exchange tube group 303 for heat exchange. Since the space inside the condenser 120 is partitioned by the first baffles 331 and 332, the second baffle 333 and the third baffle 334, compared with the conventional condenser, the flow direction of the gaseous refrigerant is reduced. The flow cross-sectional area is increased, thereby increasing the flow rate of the gaseous refrigerant, which is beneficial to improve the heat exchange efficiency of the condenser.
  • Figure 4 is a radial cross-sectional view of a second embodiment of the condenser in the present application. Similar to the embodiment shown in Figure 3A, except that the embodiment of Figure 4 includes only one vertical fluid channel. As shown in FIG. 4 , the condenser includes a first heat exchange tube group 401 , a second heat exchange tube group 402 , a bottom heat exchange tube group 404 , and a first baffle 431 and a second baffle 433 .
  • Both the first heat exchange tube group 401 and the second heat exchange tube group 402 are arranged along the height direction and the width direction of the cavity 205 .
  • the first heat exchange tube group 401 and the second heat exchange tube group 402 are both located above the bottom heat exchange tube group 404 .
  • the second heat exchange tube group 402 is located on one side of the first heat exchange tube group 401 .
  • the refrigerant inlet 211 is aligned with at least a part of the first heat exchange tube group 401 and is offset from the second heat exchange tube group 402 in the width direction.
  • the liquid refrigerant at the bottom of the condenser maintains a certain liquid level, as shown by the dotted line 450 .
  • the bottom heat exchange tube group 404 is immersed in the liquid refrigerant, so as to supercool the liquid refrigerant.
  • the bottom of the first heat exchange tube group 401 is higher than the liquid level of the liquid refrigerant, so that a transverse fluid channel 412 is formed between the first heat exchange tube group 401 and the liquid level plane of the liquid refrigerant, and the transverse fluid channel can allow the gaseous refrigerant to pass through .
  • the first heat exchange tube group 401 has a left side portion 417 and a right side portion 418 , and the right side portion 418 is adjacent to the inner wall of the casing 201 .
  • the second heat exchange tube group 402 has a left side portion 427 and a right side portion 428 , the left side portion 427 is close to the inner wall of the housing 201 , and the right side portion 428 has a distance from the first heat exchange tube group 401 .
  • the first baffle 431 is adjacent to the left side 417 of the first heat exchange tube group 401
  • the second baffle 433 is adjacent to the right side 428 of the second heat exchange tube group 402 , so that the first baffle 431 and the second baffle 432 A vertical fluid channel 448 is formed therebetween, and the vertical fluid channel 448 communicates with the transverse fluid channel 412 .
  • the upper end of the first baffle 431 is connected to the casing, the lower end of the first baffle 431 is flush with the bottom of the first heat exchange tube group 401 , and the two ends of the first baffle 431 in the length direction of the cavity 205 are respectively aligned with the bottom of the first heat exchange tube group 401 .
  • the left tube sheet 216 and the right tube sheet 214 are connected, the first baffle 431, the casing 201, the inner walls of the left tube sheet 216 and the right tube sheet 214 enclose a first accommodation space 421, and the first heat exchange tube group 401 is located in the first accommodating space 421. in the accommodating space 421 .
  • the first accommodating space 421 has a first accommodating space inlet 441 and a first accommodating space outlet 442 , the first accommodating space inlet 441 communicates with the refrigerant inlet 211 , and the first accommodating space outlet 442 communicates with the lateral fluid channel 412 .
  • a second accommodating space 422 is formed between the second baffle plate 433 and the casing 201 , the second heat exchange tube group 402 is arranged in the second accommodating space 422 , and the second accommodating space 422 has a second accommodating space entrance 443 and a second accommodating space Space exit 444.
  • the second accommodating space inlet 443 communicates with the vertical fluid channel 438, and the second accommodating space outlet 444 is located below the refrigerant liquid level plane when the condenser operates.
  • the first baffle 431 includes a main body section 451 and a guide section 452.
  • the main body section 451 extends along the height direction of the cavity 205, the bottom of the main body section 451 is flush with the first heat exchange tube group, and the top of the main body section 451 exceeds the first heat exchange tube group.
  • the top of the heat exchange tube group 401 may be flush with the top of the first heat exchange tube group 401 .
  • the guide section 452 extends upward from the top of the body section 451 and toward a direction away from the first heat exchange tube group 401 until it is connected with the casing 201 , so that the guide section 452 is located above the vertical fluid channel 448 .
  • the orientation of the guide section 452 is beneficial to guide the fluid in the vertical fluid channel 448 to smoothly flow to the second accommodating space 422 .
  • the second baffle plate 433 extends downward beyond the first baffle plate 431 .
  • the lower end of the second baffle plate 433 is at least partially immersed in the liquid refrigerant, that is, the bottom of the second baffle plate 433 is located below the liquid level of the liquid refrigerant, so that the second baffle plate 433 is at least partially submerged in the liquid refrigerant.
  • the lower part of the baffle 433 closes the transverse fluid channel 412 in the height direction of the cavity 205 .
  • the gaseous refrigerant from the refrigerant circulation loop enters the condenser 120 through the refrigerant inlet 211 .
  • the gaseous refrigerant entering the condenser from the refrigerant inlet 211 enters the first accommodating space 421 through the first accommodating space inlet 441 .
  • the gaseous refrigerant entering the first accommodating space 421 is guided by the anti-wash plate 424 and collected and guided by the guide section 452 of the first baffle 431 , and then flows to the top of the first heat exchange tube group 401 relatively uniformly.
  • the first baffle 431 blocks the flow of the gaseous refrigerant toward the direction of the second heat exchange tube group 402 .
  • the gaseous refrigerant flows in the gaps between the heat exchange tubes of the first heat exchange tube group 401 from top to bottom, and exchanges heat with the medium in the heat exchange tubes in the first heat exchange tube group 401 .
  • a part of the gaseous refrigerant is condensed into a liquid refrigerant, and the other part of the refrigerant remains in a gaseous state.
  • the liquid refrigerant flows downward, passes through the transverse fluid channel 412 until it is integrated with the deposited liquid refrigerant at the bottom of the condenser, and the gaseous refrigerant leaves the first heat exchange tube group 401 and enters the transverse fluid channel 412 . Since one end of the transverse fluid channel 412 is connected to the vertical fluid channel 448 , the gaseous refrigerant flows upward along the vertical fluid channel 448 and is guided by the guide section 352 of the first baffle 431 to enter the second accommodation space inlet 443 .
  • the gaseous refrigerant exchanges heat with the medium in the heat exchange tubes in the second heat exchange tube group 402 in the second heat exchange tube group 402 , is converted into liquid refrigerant, flows out from the outlet 445 of the second accommodating space, and communicates with the condenser 120 .
  • the deposited liquid refrigerant at the bottom fuses together.
  • the liquid refrigerant condensed by the condenser 120 flows out from the refrigerant outlet 212 and enters the refrigerant circulation circuit.
  • the embodiment shown in FIG. 4 can also improve the heat exchange efficiency of the condenser.
  • FIG. 5 is a radial cross-sectional view of a third embodiment of the condenser in the present application. Similar to the embodiment shown in FIG. 3A , the difference is that the embodiment shown in FIG. 5 also includes a middle baffle.
  • the condenser includes a first heat exchange tube group 501, a second heat exchange tube group 502, a third heat exchange tube group 503, a bottom heat exchange tube group 504, and first baffles 531 and 532.
  • the second baffle 533 and the third baffle 534 The first heat exchange tube group 501 , the second heat exchange tube group 502 and the third heat exchange tube group 503 are provided with middle guide plates 551 and 552 .
  • the middle guide plates 551 and 552 extend along the length direction of the cavity 205, and their respective ends in the length direction are respectively connected with the left tube plate 216 and the right tube plate 214.
  • the middle deflector 551 includes a first inclined section 554 and a second inclined section 555.
  • the first inclined section 554 and the first baffle 531 have a small distance and extend upward from the first baffle 531.
  • the 551 has an inverted "V" shape.
  • the middle guide plate 551 is provided with a long vent hole extending along the oblique direction, and the vent hole allows the gaseous refrigerant to pass through.
  • the middle deflector 551 can guide a part of the liquid refrigerant generated by the heat exchange tubes above the middle deflector 551 to flow along the first baffles 531 and 532 instead of directly dripping onto the heat exchange tubes below the middle deflector 551 to reduce the liquid film generated on the outer wall of the heat exchange tube below the middle guide plate 551, thereby improving the heat exchange efficiency.
  • the ventilation holes on the middle guide plate 551 can allow the gaseous refrigerant to pass through, and continue to exchange heat with the heat exchange tubes below the middle guide plate 551 .
  • the middle baffle plate 552 disposed in the second heat exchange tube group 502 or the third heat exchange tube group 503 has a certain distance from the second baffle plate 533 or the third baffle plate 534, and is separated from the second baffle plate 533 Or the third baffle plate 534 is inclined upwardly, so as to guide the liquid refrigerant to flow along the second baffle plate 533 or the third baffle plate 534, while the gaseous refrigerant passes through the ventilation holes of the middle baffle plate 552 and the ventilation holes below the middle baffle plate 552.
  • the heat exchange tubes continue to exchange heat.
  • the whole middle air guide plate 552 is an inclined section.
  • the middle baffle plate 552 may also have a smaller distance from the casing 201, and extend upwardly inclined from the casing 201, so as to guide the liquid refrigerant to flow along the casing.
  • the second heat exchange tube group 502 or the third heat exchange tube group 503 may also be provided with an inverted "V"-shaped middle baffle.
  • the embodiment shown in FIG. 5 is based on the embodiment shown in FIG. 3A , and the middle guide plate is positioned in the middle of the first heat exchange tube group 501 , the second heat exchange tube group 502 or the third heat exchange tube group 503 .
  • the refrigerant is divided to a certain extent, and part of the liquid refrigerant is guided to flow along the first baffles 531 and 532 , the second baffle 533 , the third baffle 534 or the casing 201 , reducing the liquid refrigerant to flow in the middle
  • the influence of the heat exchange tube under the plate can improve the heat exchange efficiency of the heat exchange tube under the guide plate, thereby improving the heat exchange efficiency of the condenser.
  • FIG. 6 is a radial cross-sectional view of a fourth embodiment of the condenser in the present application.
  • the condenser includes a first heat exchange tube group 601, a second heat exchange tube group 602 and a bottom heat exchange tube group 604.
  • the first heat exchange tube group 601 is located at the Above the second heat exchange tube group 602, the second heat exchange tube group 602 is located above the bottom heat exchange tube group 604.
  • the first heat exchange tube group 601 has a top portion 615 , a bottom portion 616 , a left side portion 617 and a right side portion 618 .
  • the left side portion 617 and the right side portion 618 are respectively adjacent to the housing 201 .
  • the second heat exchange tube group 602 has a top portion 625 , a bottom portion 626 , a left side portion 627 and a right side portion 628 . There is a certain distance between the left side portion 627 of the second heat exchange tube group 602 and the casing 201 , and there is also a certain distance between the right side portion 628 of the second heat exchange tube group 602 and the casing 201 .
  • the condenser further includes a first baffle 631 , a second baffle 632 and a flow guide plate 650 .
  • the first baffle 631 is disposed adjacent to the left side 627 of the second heat exchange tube group 602, and the two ends of the first baffle 631 in the length direction of the cavity 205 are respectively connected to the left tube sheet 216 and the right tube sheet 214,
  • the first baffle plate 631 extends along the vertical direction, the top of which is not lower than the height of the second heat exchange tube group 602 , and the bottom of which is connected to the casing 201 .
  • Both ends of the second baffle 632 in the length direction of the cavity 205 are respectively connected to the left tube sheet 216 and the right tube sheet 214 , the second baffle 632 extends along the vertical direction, and the top of the second baffle 632 is not lower than the second heat exchange The height of the tube group 602, the bottom of which is connected to the casing 201.
  • Two ends of the flow guide plate 650 in the longitudinal direction of the cavity 205 are respectively connected to the left tube plate 216 and the right tube plate 214 .
  • Two ends of the flow guide plate 650 in the width direction of the cavity 205 are respectively connected to the tops of the first baffle 631 and the second baffle 632 .
  • a bottom heat exchange space 670 is formed between the first baffle 631 , the second baffle 632 , the guide plate 650 and the casing, and the second heat exchange tube group 602 and the bottom heat exchange tube group 604 are located in the bottom heat exchange space 670 .
  • connection channel may also be formed by the distance between the bottoms of the first baffle 631 and the second baffle 632 and the casing 201 .
  • the guide plate 650 is gradually lowered from the middle to both sides, thereby forming a first inclined section 655 and a second inclined section 656 , which guide the liquid refrigerant to flow to the fluid space 640 and the fluid space 641 .
  • the first inclined section 655 and the second inclined section 656 are provided with elongated ventilation holes extending along the respective inclined directions to allow the gaseous refrigerant to pass through.
  • the gaseous refrigerant enters the condenser from the refrigerant inlet 211 , and is guided by the anti-wash plate 624 , and then flows uniformly to the top 615 of the first heat exchange tube group 601 .
  • the refrigerant flows from top to bottom in the first heat exchange tube group 601, and exchanges heat with the heat exchange tubes in the first heat exchange tube group 601, part of the gaseous refrigerant is converted into liquid refrigerant, and part of the refrigerant remains gaseous.
  • liquid refrigerant is guided by the guide plate 650, flows to the fluid space 640 and the fluid space 641, and then flows to the bottom heat exchange tube group 604 through the fluid channels at the lower part of the first baffle 631 and the second baffle 632; the gaseous refrigerant and A small amount of liquid refrigerant enters the second heat exchange tube group 602 through the ventilation holes on the guide plate 650 for heat exchange, and is converted into liquid refrigerant and flows to the bottom heat exchange tube group 604 .
  • the liquid refrigerant continues to be cooled by the bottom heat exchange tube group 604 and then flows out from the refrigerant outlet.
  • the flow cross-sectional area of the bottom heat exchange space is smaller than the flow cross-sectional area of the bottom 616 of the first heat exchange tube group 601 , so that gaseous refrigeration
  • the flow rate of the refrigerant in the second heat exchange tube group 602 is accelerated, which is beneficial to change the flow pattern of the gaseous refrigerant in the second heat exchange tube group 602 and improve the heat exchange efficiency in the second heat exchange tube group 602 .
  • the guide plate 650 introduces a part of the liquid refrigerant generated by the first heat exchange tube group 601 into the fluid space 640 and the fluid space 641 to prevent this part of the liquid refrigerant from entering the second heat exchange tube group 602 and affecting the second heat exchange tube. Heat exchange efficiency of group 602 .
  • the flow guide plate 650 is not provided. In this way, the flow rate of the gaseous refrigerant in the second heat exchange tube group 602 can also be increased to a certain extent, so as to improve the heat exchange efficiency of the second heat exchange tube group 602 .
  • the condenser involved in the present application is a shell-and-tube condenser, the refrigerant flows between the heat exchange tubes, and the cooling medium flows inside the heat exchange tubes.
  • the gaseous refrigerant flows between the heat exchange tubes, and the cooling medium flows inside the heat exchange tubes.
  • the flow rate of the refrigerant in the lower part of the condenser is reduced, and the gaseous refrigerant is not easily diffused to the heat exchange tubes in the middle and lower parts.
  • the heat exchange efficiency of the heat exchange tubes in the middle and lower parts is low.
  • the heat exchange tubes are arranged in rows in the condenser, the refrigerant inlet is arranged above the condenser, the refrigerant outlet is arranged below the condenser, and the refrigerant flows from top to bottom.
  • the gaseous refrigerant is continuously condensed into a liquid refrigerant during the flow process, and the heat exchange tube at the lower part is affected by the liquid refrigerant produced by condensation, and the liquid film on the heat exchange tube at the lower part becomes thicker, and the heat exchange coefficient will decrease.
  • the heat transfer coefficient of the heat exchange tube can be expressed by the following formula:
  • ⁇ N is the condensation heat transfer coefficient of the Nth row of pipes
  • ⁇ 1 is the condensation heat transfer coefficient of the first row of pipes.
  • the flow rate of the gaseous refrigerant in the condenser is increased by the setting of the baffle, so as to facilitate the breaking of the liquid film on the heat exchange tube, and the gaseous refrigerant is easily diffused to the heat exchange in the lower part of the condenser. tube, thereby improving the heat transfer efficiency of condensation.
  • the condensers of some embodiments of the present application further include a deflector, which can discharge the condensate in time, make the liquid film on the lower heat exchange tube thinner, and improve the heat exchange efficiency; and can also be used for gaseous refrigerant. Perform redistribution to change the flow state of the gaseous refrigerant and improve the heat exchange effect. Through the diversion and redistribution of the deflector, the heat transfer coefficient of the heat exchange tube under the deflector can be improved.
  • the heat exchange coefficient of the first row of heat exchange tubes under the guide plate is equal to or higher than the heat exchange coefficient of the first row of heat exchange tubes of the existing condenser.

Abstract

本申请提供一种冷凝器,包括:壳体、第一换热管组、第二换热管组和第三换热管组,一对第一挡板,第二挡板,第三挡板,第二换热管组和第三换热管组布置在第一换热管组的两侧,一对第一挡板中的每一个分别紧邻第一换热管组的两侧,第二挡板紧邻第二换热管组的靠近第一换热管组的一侧,第三挡板紧邻第三换热管组的靠近第一换热管组的一侧,其中,一对第一挡板、第二挡板和第三挡板被配置为:使得第一换热管组从制冷剂入口接收制冷剂,并使得第二换热管组和第三换热管组通过横向流体通道、以及第一竖向流体通道和第二竖向流体通道从第一换热管组接收制冷剂。本申请中的冷凝器具有较高的换热效率。

Description

冷凝器 技术领域
本申请涉及一种冷凝器,尤其是涉及一种换热效率高的冷凝器。
背景技术
传统的制冷系统具有蒸发器、冷凝器、节流装置和压缩机。壳管式冷凝器广泛应用于制冷空调行业,特别是大型蒸汽压缩机组上。壳管式冷凝器工作时,由压缩机排出的高温制冷剂气态经制冷剂入口进入冷凝器,与流经换热管内的冷却介质进行热量交换,在换热管表面进行冷凝,冷凝液由上部换热管逐层低落到底部,并进入过冷器进行过冷,然后由制冷剂出口排出。冷凝器的换热效率受到多方面因素影响。
发明内容
本申请提供一种冷凝器,该冷凝器的换热效率较高。
根据本申请的第一方面,所述冷凝器包括:壳体,所述壳体具有容腔,所述容腔具有长度方向、宽度方向和高度方向,所述壳体上设有制冷剂入口和制冷剂出口;第一换热管组、第二换热管组和第三换热管组,在所述容腔的宽度方向上,所述第二换热管组和第三换热管组布置在所述第一换热管组的两侧,所述第一换热管组的下方设有横向流体通道;一对第一挡板,在所述容腔的宽度方向上,所述一对第一挡板中的每一个分别紧邻所述第一换热管组的两侧,所述一对第一挡板中的每一个第一挡板的上端延伸至第一换热管组的上方并与所述壳体连接,所述一对第一挡板中的每一个第一挡板的下端延伸至第一换热管组的下端处;第二挡板,在所述容腔的宽度方向上,所述第二挡板紧邻所述第二换热管组的靠近所述第一换热管组的一侧,所述第二挡板和所述一对所述第一挡板中邻近第二换热管组的一个第一挡板之间形成第一竖向流体通道,所述第一竖向流体通道与所述 横向流体通道连通,所述第二挡板向下延伸以使得所述第二挡板的下部在所述容腔的高度方向上封闭所述横向流体通道;第三挡板,在所述容腔的宽度方向上,所述第三挡板紧邻所述第三换热管组的靠近所述第一换热管组的一侧,所述第三挡板和所述一对所述第一挡板中邻近第三换热管组的一个第一挡板之间形成第二竖向流体通道,所述第二竖向流体通道与所述横向流体通道连通,所述第三挡板向下延伸以使得所述第三挡板的下部在所述容腔的高度方向上封闭所述横向流体通道;其中,所述一对第一挡板、所述第二挡板和第三挡板被配置为:使得所述第一换热管组从所述制冷剂入口接收制冷剂,并使得所述第二换热管组和第三换热管组通过所述横向流体通道、以及所述第一竖向流体通道和所述第二竖向流体通道从第一换热管组接收制冷剂。
根据以上所述的冷凝器,在所述冷凝器工作时,所述第二挡板的下部和所述第三挡板的下部至少部分地浸没在制冷剂液体中。
根据以上所述的冷凝器,所述一对第一挡板之间形成第一容纳空间,所述第一换热管组布置在所述第一容纳空间中,所述第一容纳空间具有第一容纳空间入口和第一容纳空间出口,所述第一容纳空间入口与所述制冷剂入口连通,所述第一容纳空间出口与所述横向流体通道连通。
根据以上所述的冷凝器,所述第二挡板与所述壳体之间形成第二容纳空间,所述第二换热管组布置在所述第二容纳空间中,所述第二容纳空间具有第二容纳空间入口,所述第二容纳空间入口与所述第一竖向流体通道连通;所述第三挡板与所述壳体之间形成第三容纳空间,所述第三换热管组布置在所述第三容纳空间中,所述第三容纳空间具有第三通道入口,所述第二容纳空间入口与所述第二竖向流体通道连通。
根据以上所述的冷凝器,所述一对第一挡板中的每一个包括主体段和引导段,所述主体段沿着所述容腔的高度方向延伸,所述主体段的顶部与所述第一换热管组的顶部齐平或超过所述第一换热管组的顶部,所述引导段自所述主体段的顶部向上并朝向远离所述第一换热管组的方向倾斜延伸至与所述壳体连接,所述引导段位于所述第一竖向流体通道或所述第二竖向流体通道的上方。
根据所述的冷凝器,所述冷凝器还包括:中部导流板,所述中部导流板上设有通气孔,以允许气体流过,所述中部导流板设置在所述第一换热管组、第二换热管组或第三换热管组中,所述中部导流板包括倾斜段,所述倾斜段自所述一对第一挡板中的至少一个、所述第二挡板、所述第三挡板或所述壳体向上倾斜延伸,以引导液态制冷剂沿着所述一对第一挡板中的一个、所述第二挡板、所述第三挡板或所述壳体流动。
根据以上所述的冷凝器,所述通气孔为沿着所述倾斜段的倾斜方向延伸的长条状。
根据本申请的第二方面,提供一种冷凝器,包括:壳体,所述壳体具有容腔,所述容腔具有长度方向、宽度方向和高度方向,所述壳体上设有制冷剂入口和制冷剂出口;第一换热管组和第二换热管组,所述第一换热管组布置在所述第二换热管组的一侧,所述第一换热管组下方设有横向流体通道;第一挡板和第二挡板,所述第一挡板紧邻第一换热管组,所述第二挡板紧邻所述第二换热管组,所述第一挡板和第二挡板之间形成竖向流体通道,所述竖向流体通道与所述横向流体通道连通,所述第一挡板的上端延伸至第一换热管组的上方并与所述壳体连接,所述第一挡板的下端延伸至第一换热管组的下端处,所述第二挡板的上端延伸至所述第二换热管组的上端处,所述第二挡板向下延伸以使得所述第二挡板的下端在所述容腔的高度方向上封闭所述横向流体通道;其中,所述第一挡板和所述第二挡板被配置为:使得第一换热管组从所述的所述制冷剂入口接收制冷剂,并使得所述第二换热管组通过所述横向流体通道和所述竖向流体通道从第一换热管组接收制冷剂。
如上所述的冷凝器,在所述冷凝器工作时,所述第二挡板的下端至少部分地浸没在制冷剂液体中。
如上所述的冷凝器,所述第一挡板与所述壳体之间形成第一容纳空间,所述第一换热管组布置在所述第一容纳空间中,所述第一容纳空间具有第一容纳空间入口和第一容纳空间出口,所述第一容纳空间入口与所述制冷剂入口连通,所述第一容纳空间出口与所述横向流体通道连通。
如上所述的冷凝器,所述第二挡板与所述壳体之间形成第二容纳空间,所述第二换热管组布置在所述第二容纳空间中,所述第二容纳空间具有第二容纳空间入口,所述第二容纳空间入口与所述竖向流体通道连通。
如上所述的冷凝器,所述第一挡板中的每一个包括主体段和引导段,所述主体段沿着所述容腔的高度方向延伸,所述主体段的顶部与所述第一换热管组的顶部齐平或超过所述第一换热管组的顶部,所述引导段自所述主体段的顶部向上并朝向远离所述第一换热管组的方向倾斜延伸并与所述壳体连接,所述引导段位于所述竖向流体通道的上方。
根据本申请的第三方面,提供一种冷凝器,包括:壳体,所述壳体具有容腔,所述容腔具有长度方向、宽度方向和高度方向,所述壳体上设有制冷剂入口和制冷剂出口;第一换热管组和第二换热管组,在所述容腔的高度方向上,所述第一换热管组位于所述第二换热管组的上方,所述第一换热管组在所述容腔的宽度方向上的两侧紧邻所述壳体,所述第二换热管组在所述容腔的宽度方向上的两侧中的至少一侧与所述壳体之间相隔一定距离;至少一个挡板,所述至少一个挡板设置在靠近所述第二换热管组与所述壳体具有一定距离的至少一侧处,在所述容腔的高度方向上,所述至少一个挡板的上端不高于所述第二换热管组,所述至少一个挡板的侧部与所述壳体之间形成流体空间。
如上所述的冷凝器,所述至少一个挡板的下部与具有连接通道,以允许液态制冷剂通过。
如上所述的冷凝器,还包括:引流板,所述引流板设置在所述第一换热管组和第二换热管组之间,并覆盖所述第二换热管组,以引导液态制冷剂流向所述流体空间,所述引流板上设有通气孔,以允许气态制冷剂通过。
如上所述的冷凝器,所述引流板包括倾斜段,所述倾斜段自所述一个挡板向上并朝向所述第二换热管组的在所述容腔的宽度方向上的中心线延伸。
如上所述的冷凝器,所述通气孔为沿着所述倾斜段的倾斜方向延伸的长条状。
在本申请中,通过挡板的设置,使得气态制冷剂在冷凝器中的流速得到提高,以利于冲破换热管上的液膜,并使得气态制冷剂易于扩散到冷凝器中下部的换热管处,从而提高了冷凝换热效率。
附图说明
图1是制冷系统100的示意框图;
图2A是图1中冷凝器120的第一实施例立体图;
图2B是图2A中冷凝器120的一个轴向剖面示意图;
图3A是图2中冷凝器120沿着A-A线剖切的一个径向剖面示意图;
图3B是图3A中冷凝器120的制冷剂流向的示意图;
图4是本申请中的冷凝器的第二实施例的径向截面图;
图5是本申请中的冷凝器的第三实施例的径向截面图;
图6是本申请中的冷凝器的第四实施例的径向截面图。
具体实施方式
下面将参考构成本说明书一部分的附图对本申请的各种具体实施方式进行描述。应该理解的是,虽然在本申请中使用表示方向的术语,诸如“前”、“后”、“上”、“下”、“左”、“右”、“内”、“外”、“顶”、“底”、“正”、“反”、“近端”、“远端”、“横向”、“纵向”等描述本申请的各种示例结构部分和元件,但是在此使用这些术语只是为了方便说明的目的,这些术语是基于附图中显示的示例性方位而确定的。由于本申请所公开的实施例可以按照不同的方向设置,所以这些表示方向的术语只是作为说明而不应视作为限制。
本申请中所使用的诸如“第一”和“第二”等序数词仅仅用于区分和标识,而不具有任何其他含义,如未特别指明则不表示特定的顺序,也不具有特定的关联性。 例如,术语“第一部件”本身并不暗示“第二部件”的存在,术语“第二部件”本身也不暗示“第一部件”的存在。
图1是制冷系统100的示意框图。如图1所示,制冷系统100包括压缩机110、冷凝器120、节流装置140和蒸发器130,它们由管道连接成一个制冷剂循环回路,并在回路中充注有制冷剂。如图1中的箭头方向所示,制冷剂依次流经压缩机110、冷凝器120、节流装置140和蒸发器130,再次进入压缩机110。在制冷过程中,压缩机110排出的高温高压气态制冷剂在冷凝器120内与环境介质进行热量交换,释放出热量并被凝结成液态制冷剂;节流装置140将由冷凝器120来的高压液态制冷剂节流,使其压力降低;低压制冷剂在蒸发器130内与被冷却对象发生热交换,吸收被冷却对象的热量而汽化;汽化产生的制冷剂蒸汽被压缩机110吸入,经压缩后以高压排出,形成一个循环。
图2A是图1中冷凝器120的第一实施例立体图,图2B是图2A中冷凝器120的一个轴向剖面示意图。参见图2A中所示的位置,冷凝器120具有高度方向H,长度方向L和宽度方向W,容腔205的高度方向,长度方向和宽度方向与冷凝器120的方向一致。如图2A和图2B所示,是一个冷却介质为两流程的冷凝器,冷凝器120具有壳体201,壳体201包括筒体204、左管板216、右管板214、后水箱226和前水箱228。筒体204的左右两端分别由左管板216和右管板214封闭,以形成容腔205。后水箱226与左管板216相连接,并与左管板216之间形成腔室208。前水箱228与右管板214相连接,并与右管板214之间形成腔室209。腔室209中设有从右管板214横向延伸至前水箱228的横向分隔板210,从而形成腔室209被分隔成出口容腔234和入口容腔232。前水箱228上设有介质入口222和介质出口223,介质入口222与入口容腔232连通,介质出口223与出口容腔234连通。
容腔205中设多根换热管依次排列形成的换热管束。换热管束中的每个换热管沿着容腔205的长度方向L延伸。冷凝器120中的换热管包括上部管束242和位于上部管束242下方的下部管束244。上部管束242和下部管束244水平地置在容腔205中。上部管束242中的每个换热管的一端与腔室208流体连通,另 一端与出口容腔234流体连通;下部管束244中的每个换热管的一端与腔室208流体连通,另一端与入口容腔232流体连通,从而使得冷却介质能够通过介质入口222后依次流过入口容腔232、下部管束244、腔室208、上部管束242以及出口容腔234,并通过介质出口223流出冷凝器120。换热管束中的每个换热管内形成流体通道,以流通冷却介质。换热管束中每个换热管与相邻的换热管之间的间隙形成制冷剂通道,用于流通制冷剂。流体通道内的介质与制冷剂通道内的制冷剂通过换热管的管壁进行热量交换。在本申请的其它实施例中,冷却介质可以设置为单流程或多流程。
筒体204上设有制冷剂入口211和制冷剂出口212,其中制冷剂入口211位于冷凝器120的高度方向上的上部,制冷剂出口212位于冷凝器120的高度方向上的下部。制冷系统100中的气态制冷剂从制冷剂入口211进入冷凝器120的换热管之间的制冷剂剂通道,与换热管内的冷却介质进行换热后变为液态制冷剂,由制冷剂出口212排出。
冷凝器120还包括防冲板224。作为一个示例,防冲板224大致为平板状,并沿着所述容腔205的长度方向和宽度方向延伸。防冲板224被布置在制冷剂入口211和上部管束242的之间,并与制冷剂入口211处的筒体204的内壁之间具有一定间距。防冲板224的面积大于制冷剂入口211的面积。当气态制冷剂以较高的速度从制冷剂入口211进入筒体204时,防冲板224能够防止气态制冷剂直接冲击换热管。此外,防冲板224还能够引导制冷剂沿着容腔205的长度方向以及宽度方向流动,以使得从制冷剂入口211进入容腔205的制冷剂能够均匀地流向换热管束。防冲板224通过连接杆(图中未示出)焊接在筒体102上。
图3A是图2中冷凝器120沿着A-A线剖切的一个径向剖面示意图,如图3A所示,容腔205中的换热管束沿容腔205的宽度方向和高度方向布置。冷凝器120包括第一换热管组301、第二换热管组302、第三换热管组303以及底部换热管组304。其中底部换热管组304位于容腔205的下部,并沿着壳体201的底部的内壁布置。第一换热管组301、第二换热管组302、第三换热管组303均沿着容腔205的高度方向和宽度方向布置。其中,在容腔205的高度方向上,第 一换热管组301、第二换热管组302、第三换热管组303均位于底部换热管组304的上方。在容腔205宽度方向上,第二换热管组302和第三换热管组303分别位于第一换热管组301的两侧。在容腔205的宽度方向上,制冷剂入口211与第一换热管组301的至少一部分对齐,并与第二换热管组302和第三换热管组303分别错开。第一换热管组301、第二换热管组302和第三换热管组303各自的高度均不小于容腔205的半径。
第一换热管组301具有顶部315,底部316以及左侧部317和右侧部318。其中第一换热管组301位于防冲板224的下方,第一换热管组301的顶部315与防冲板224之间具有一定间距,以利于经防冲板224引流后的制冷剂沿着容腔205的长度方向流动,以使得第一换热管组301的顶部315能够均匀地接收到制冷剂。第一换热管组301的底部316与底部换热管组304之间具有一定间距。第二换热管组302位于第一换热管组301的左侧,第二换热管组302具有顶部325,底部326以及左侧部327和右侧部328。第二换热管组302的底部326高于底部换热管组324,第二换热管组302的左侧部327紧邻壳体201的内壁设置,第二换热管组302的右侧部328与第一换热管组301的左侧部317之间具有一定间距。第三换热管组303位于第一换热管组301的右侧,第三换热管组303具有顶部335,底部336以及左侧部337和右侧部338。第三换热管组303的底部336高于底部换热管组304,第三换热管组303的右侧部338紧邻壳体201的内壁设置,第三换热管组303的左侧部327与第一换热管组301的右侧部318之间具有一定间距。
在冷凝器120的运行过程中,冷凝器120的底部的液态制冷剂保持一定的液位高度,如虚线350所示。底部换热管组304浸没在液态制冷剂中,从而对液态制冷剂进行过冷处理。第一换热管组301的底部316高于液态制冷剂的液位,从而第一换热管组301的底部316与液态制冷剂液位平面之间形成横向流体通道312,横向流体通道312能够允许气态制冷剂通过。
冷凝器120包括一对第一挡板331和332,在容腔205的宽度方向上,第一挡板331紧邻第一换热管组的左侧部317,并与左侧部317之间具有较小的间距, 第一挡板332紧邻第一换热管组301的右侧部318,并与右侧部318之间具有较小的间距。第一挡板331的上端与壳体201连接,第一挡板331的下端与第一换热管组301的底部齐平,第一挡板331沿着长度方向延伸,其长度方向上的两端分别与左管板216和右管板214连接。第一挡板332的上端与壳体201连接,第一挡板332的下端与第一换热管组301的底部齐平,第一挡板332沿着长度方向延伸,其长度方向上的两端分别与左管板216和右管板214连接。第一挡板331的上端和第一挡板332的上端与壳体201的连接处分别位于制冷剂入口211的两侧。
第一挡板331、第一挡板332、左管板216和右管板214围成第一容纳空间321,第一换热管组301布置在第一容纳空间321中。第一容纳空间321具有位于第一容纳空间321的上部的第一容纳空间入口341和位于第一容纳空间321的下部的第一容纳空间出口342,其中第一容纳空间入口341与制冷剂入口211连通,第一容纳空间出口342与横向流体通道312连通。第一换热管组301的顶部315低于第一容纳空间入口341。在本申请的一个实施例中,防冲板224也位于第一容纳空间321中,并低于第一容纳空间入口341。在本申请的其它实施例中,防冲板224可位于第一容纳空间321的上方。
第一挡板331和第一挡板332分别包括主体段351以及引导段352,主体段351沿着容腔205的高度方向延伸,主体段351的底部与第一换热管组301齐平,主体段351的顶部超过第一换热管组301的顶部或与第一换热管组301的顶部齐平。引导段自主体段351的顶部向上并朝向远离第一换热管组301的方向延伸直至与壳体201连接,从而引导段352位于第一竖向流体通道348或所述第二竖向流体通道349的上方。引导段352的方向设置利于引导第一竖向流体通道348和所述第二竖向流体通道349中的流体顺利流向第二容纳空间322和第三容纳空间323。同时引导段352使得第一容纳空间321的上部呈渐缩的截锥形,利于将气态制冷剂引导至第一换热管组301的顶部。
冷凝器还包括第二挡板333和第三挡板334。第二挡板333紧邻第二换热管组302的右侧部328,并与右侧部328之间具有较小的间距。第二挡板333沿着 容腔205的长度方向延伸,其长度方向上的两端分别与左管板216和右管板214连接。第二挡板333、壳体201、左管板216和右管板214之间围成第二容纳空间322,第二换热管组302位于第二容纳空间322中。第二容纳空间322具有位于其上部的第二容纳空间入口343和位于其下部的第二容纳空间出口344。第二挡板333和第一挡板331之间具有间距,从而形成第一竖向流体通道348。第一竖向流体通道348的上端与所述第二容纳空间入口343连通,第一竖向流体通道348的下端与横向流体通道312连通。
类似地,第三挡板334紧邻第三换热管组303的左侧部337,并与左侧部337之间具有较小的间距。第三挡板334沿着容腔205的长度方向延伸,其长度方向上的两端分别与左管板216和右管板214连接。第三挡板334、壳体201、左管板216和右管板214之间围成第三容纳空间323,第三换热管组303位于第三容纳空间323中。第三容纳空间323具有位于其上部的第三容纳空间入口345和位于其下部的第三容纳空间出口346。第三挡板334和第一挡板332之间具有间距,从而形成第二竖向流体通道349。第二竖向流体通道349的上端与第三容纳空间入口345连通,第二竖向流体通道349的下端与横向流体通道312连通。
在容腔205的高度方向上,第二挡板333和第三挡板334分别延伸超过第一挡板331和第一挡板332。在冷凝器120的运行过程中,第二挡板333的下端和第三挡板334的下端至少部分地浸没在液态制冷剂中,也就是说,第二挡板333的底部和第三挡板334的底部位于液态制冷剂的液位平面以下,从而第二挡板333下部和第三挡板334的下部在容腔205的高度方向上封闭横向流体通道312。
图3B是图3A中冷凝器120中制冷剂流向的示意图,如图3B所示,来自制冷剂循环回路中的气态制冷剂通过制冷剂入口211进入冷凝器120。由于第一挡板331和332的各自的顶部与壳体连接,第一挡板331和332的各自的长度方向上的两端与左管板216和右管板214连接,则自制冷剂入口211进入冷凝器的气态制冷剂经第一容纳空间入口341进入第一容纳空间321。进入第一容纳空间321气态制冷剂经防冲板224引导,并经第一挡板331和332的各自的引导段352汇集引导后,较均匀地流向第一换热管组301的顶部315。第一挡板331和第一 挡板332阻挡气态制冷剂朝向第二换热管组302和第三换热管组303的方向流动。从而气态制冷剂自上而下在第一换热管组301的换热管之间的间隙中流动,与第一换热管组301中的换热管内的介质换热。在气态制冷剂与第一换热管组301换热的过程中,一部分气态制冷剂冷凝为液态制冷剂,另一部分制冷剂保持气态。其中液态制冷剂向下流动,经过横向流体通道312直至与冷凝器120底部的沉积液态制冷剂融为一体,气态制冷剂离开第一换热管组301进入横向流体通道312。由于横向流体通道312的两端分别与第一竖向流体通道348和第二竖向流体通道349连通,气态制冷剂沿着第一竖向流体通道348和第二竖向流体通道349向上流动,并经第一挡板331和332的引导段352引导,分别进入第二容纳空间入口343和第三容纳空间入口345。气态制冷剂分别在第二换热管组302和第三换热管组303中继续换热,转化为液态制冷剂,从第二容纳空间出口344和第三容纳空间出口346流出,并与冷凝器120底部的沉积液态制冷剂融为一体。经冷凝器120冷凝后的液态制冷剂从制冷剂出口212流出,进入制冷剂循环回路。
在本申请所示的实施例中,气态制冷剂在冷凝器120中流经第一换热管组301换热后,再经过第二换热管组302和第三换热管组303换热。由于第一挡板331和332、第二挡板333和第三挡板334将冷凝器120内部的空间进行了分隔,与传统的冷凝器相比,减小了在气态制冷剂流动方向上的流通截面积,从而提高了气态制冷剂的流速,有利于提高冷凝器的换热效率。
图4是本申请中的冷凝器的第二实施例的径向截面图。与图3A所示的实施例类似,所不同的是,图4中的实施例仅包含一个竖向流体通道。如图4所示,冷凝器包括第一换热管组401、第二换热管组402和底部换热管组404,以及第一挡板431和第二挡板433。
第一换热管组401和第二换热管组402均沿着容腔205的高度方向和宽度方向布置。在容腔205的高度方向上,第一换热管组401和第二换热管组402均位于底部换热管组404的上方。在容腔205宽度方向上,第二换热管组402位于第一换热管组401的一侧。制冷剂入口211与第一换热管组401的至少一部分对齐,并与第二换热管组402在宽度方向上错开。
在冷凝器的运行过程中,冷凝器的底部的液态制冷剂保持一定的液位高度,如虚线450所示。底部换热管组404浸没在液态制冷剂中,从而对液态制冷剂进行过冷处理。第一换热管组401的底部高于液态制冷剂的液位,从而第一换热管组401与液态制冷剂液位平面之间形成横向流体通道412,横向流体通道能够允许气态制冷剂通过。
第一换热管组401具有左侧部417和右侧部418,右侧部418紧邻壳体201的内壁。第二换热管组402具有左侧部427和右侧部428,左侧部427紧贴壳体201的内壁,右侧部428与第一换热管组401之间具有间距。第一挡板431紧邻第一换热管组401的左侧部417,第二挡板433紧邻第二换热管组402的右侧部428,从而第一挡板431和第二挡板432之间形成竖向流体通道448,竖向流体通道448与横向流体通道412连通。
第一挡板431的上端与壳体连接,第一挡板431的下端与第一换热管组401的底部齐平,第一挡板431在容腔205的长度方向上的两端分别与左管板216和右管板214连接,第一挡板431、壳体201、左管板216和右管板214的内壁围成第一容纳空间421,第一换热管组401位于第一容纳空间421中。第一容纳空间421具有第一容纳空间入口441和第一容纳空间出口442,第一容纳空间入口441与所述制冷剂入口211连通,第一容纳空间出口442与所述横向流体通道412连通。
第二挡板433与壳体201之间形成第二容纳空间422,第二换热管组402布置在第二容纳空间422中,第二容纳空间422具有第二容纳空间入口443和第二容纳空间出口444。第二容纳空间入口443与竖向流体通道438连通,第二容纳空间出口444位于冷凝器工作时的制冷剂液位平面的下方。
第一挡板431包括主体段451以及引导段452,主体段451沿着容腔205的高度方向延伸,主体段451的底部与第一换热管组齐平,主体段451的顶部超过第一换热管组401的顶部或与第一换热管组401的顶部齐平。引导段452自主体段451的顶部向上并朝向远离第一换热管组401的方向延伸直至与壳体201连接, 从而引导段452位于竖向流体通道448的上方。引导段452的方向设置利于引导竖向流体通道448中的流体顺利流向第二容纳空间422。
在容腔205的高度方向上,第二挡板433向下延伸超过第一挡板431。在冷凝器120的运行过程中,第二挡板433的下端至少部分地浸没在液态制冷剂中,也就是说,第二挡板433的底部位于液态制冷剂的液位平面以下,从而第二挡板433下部在容腔205的高度方向上封闭横向流体通道412。
来自制冷剂循环回路中的气态制冷剂通过制冷剂入口211进入冷凝器120。自制冷剂入口211进入冷凝器的气态制冷剂经第一容纳空间入口441进入第一容纳空间421。进入第一容纳空间421气态制冷剂经防冲板424引导,并经第一挡板431引导段452汇集引导后,较均匀地流向第一换热管组401的顶部。第一挡板431阻挡气态制冷剂朝向第二换热管组402方向流动。从而气态制冷剂自上而下在第一换热管组401的换热管之间的间隙中流动,与第一换热管组401中的换热管内的介质换热。在气态制冷剂与第一换热管组401换热的过程中,一部分气态制冷剂冷凝为液态制冷剂,另一部分制冷剂保持气态。其中液态制冷剂向下流动,经过横向流体通道412直至与冷凝器底部的沉积液态制冷剂融为一体,气态制冷剂离开第一换热管组401入横向流体通道412。由于横向流体通道412的一端竖向流体通道448连通,气态制冷剂沿着竖向流体通道448向上流动,并经第一挡板431引导段352引导,进入第二容纳空间入口443。气态制冷剂在第二换热管组402中与第二换热管组402中的换热管内的介质换热,转化为液态制冷剂,从第二容纳空间出口445流出,并与冷凝器120底部的沉积液态制冷剂融为一体。经冷凝器120冷凝后的液态制冷剂从制冷剂出口212流出,进入制冷剂循环回路。图4所示的实施例也能够提高冷凝器的换热效率。
图5是本申请中的冷凝器的第三实施例的径向截面图。与图3A所示的实施例类似,所不同的是图5所示的实施例还包括中部导流板。如图5所示,冷凝器包括第一换热管组501、第二换热管组502、第三换热管组503和底部换热管组504,以及第一挡板531和532,第二挡板533和第三挡板534。第一换热管组501、第二换热管组502和第三换热管组503中设有中部导流板551和552。中 部导流板551和552沿着容腔205的长度方向延伸,其各自的长度方向上的两端分别与左管板216和右管板214连接。中部导流板551包括第一倾斜段554和第二倾斜段555,第一倾斜段554与第一挡板531之间具有较小的间距,并且自第一挡板531向上倾斜延伸,第二倾斜段与第一挡板532之间具有较小的间距,并且自第一挡板532向上倾斜延伸直至与第一倾斜段554相接,从而在冷凝器的径向截面上,中部导流板551呈倒“V”形。中部导流板551上设有沿着倾斜方向延伸的长条状的通气孔,通气孔允许气态制冷剂通过。中部导流板551能够引导中部导流板551上方的换热管产生的一部分液态制冷剂沿着第一挡板531和532流动,而不是直接滴落在中部导流板551下方的换热管上,以减少中部导流板551下方的换热管外壁产生的液膜,从而提高换热效率。同时,中部导流板551上的通气孔能够允许气态制冷剂通过,继续与中部导流板551下方的换热管进行换热。
类似的,设置在第二换热管组502或第三换热管组503中的中部导流板552与第二挡板533或第三挡板534具有一定间距,并自第二挡板533或第三挡板534向上倾斜延伸,从而引导液态制冷剂沿着第二挡板533或第三挡板534流动,而气态制冷剂通过中部导流板552通气孔与中部导流板552下方的换热管继续换热。对于中部导流板552而言,中部导流板552整体均为倾斜段。在本申请的其它实施例中,中部导流板552也可以与壳体201之间具有较小间距,并自壳体201向上倾斜延伸,以引导液态制冷剂沿着壳体流动。第二换热管组502或第三换热管组503也可以设置倒“V”形的中部导流板。
图5所示的实施例在图3A所示的实施例的基础上,中部导流板在第一换热管组501、第二换热管组502或第三换热管组503的中部对制冷剂进行了一定程度的分流,引导部分液态制冷剂沿着第一挡板531和532、第二挡板533、第三挡板534或壳体201流动,减少了液态制冷剂对中部导流板下方的换热管的影响,能提高导流板下方的换热管的换热效率,从而提高冷凝器的换热效率。
图6是本申请中的冷凝器的第四实施例的径向截面图。如图6所示,冷凝器包括第一换热管组601和第二换热管组602以及底部换热管组604,在容腔205 的高度方向上,第一换热管组601位于所述第二换热管组602的上方,第二换热管组602位于底部换热管组604的上方。第一换热管组601具有顶部615、底部616、左侧部617和右侧部618。左侧部617和右侧部618分别紧邻所述壳体201。第二换热管组602具有顶部625、底部626、左侧部627和右侧部628。其中第二换热管组602的左侧部627与壳体201之间具有一定间距,第二换热管组602的右侧部628与壳体201之间也具有一定间距。
冷凝器还包括第一挡板631、第二挡板632和引流板650。其中第一挡板631紧邻第二换热管组602的左侧部627设置,第一挡板631在容腔205的长度方向上的两端分别与左管板216和右管板214连接,第一挡板631沿着竖直方向延伸,其顶部不低于第二换热管组602的高度,其底部与壳体201连接。第二挡板632在容腔205的长度方向上的两端分别与左管板216和右管板214连接,第二挡板632沿着竖直方向延伸,其顶部不低于第二换热管组602的高度,其底部与壳体201连接。引流板650在容腔205的长度方向上的两端分别与左管板216和右管板214连接。引流板650在容腔205的宽度方向上的两端分别与第一挡板631和第二挡板632的顶部连接。第一挡板631、第二挡板632、引流板650与壳体之间形成底部换热空间670,第二换热管组602和底部换热管组604均位于底部换热空间670中。
第一挡板631与壳体201之间具有一定间距,从而形成流体空间640,第二挡板632和壳体201之间具有一定间距从而形成流体空间641。第一挡板631和第二挡板632的下部设有开口,以形成连接通道,以使得底部换热空间670能够与流体空间640和流体空间641连通。在本申请的其它实施例中,连接通道也可以由第一挡板631和第二挡板632的底部与壳体201之间的间距形成。引流板650自中间向两边逐渐降低,从而形成第一倾斜段655和第二倾斜段656,第一倾斜段655和第二倾斜段656引导液态制冷剂流向流体空间640和流体空间641。第一倾斜段655和第二倾斜段656上设有沿着各自的倾斜方向延伸的长条状通气孔,以允许气态制冷剂通过。
在图6所示的实施例中,气态制冷剂从制冷剂入口211进入冷凝器,再经防冲板624引导后,均匀地流向第一换热管组601的顶部615。制冷剂在第一换热管组601中自上而下流动,并与第一换热管组601中的换热管进行换热,一部分气态制冷剂转化为液态制冷剂,一部分制冷剂依然保持气态。其中大部分液态制冷剂经引流板650引导,流向流体空间640和流体空间641,再经第一挡板631和第二挡板632下部的流体通道流向底部换热管组604;气态制冷剂以及少量液态制冷剂经过引流板650上的通气孔进入第二换热管组602进行换热,转化为液态制冷剂流向底部换热管组604。液态制冷剂经底部换热管组604继续冷却后由制冷剂出口流出。
在图6所示的实施例中,在制冷剂的自上而下的流动方向上,底部换热空间的流通截面积小于第一换热管组601的底部616的流通截面积,从而气态制冷剂在第二换热管组602中的流速被加快,利于改变气态制冷剂在第二换热管组602中的流动形态,提高第二换热管组602中换热效率。同时,引流板650将一部分第一换热管组601产生的液态制冷剂引入流体空间640和流体空间641,以避免这部分液态制冷剂进入第二换热管组602,影响第二换热管组602的换热效率。
在本申请的另一个实施例中,也可以仅设置第一挡板631和第二挡板632,而不设置引流板650。这样也能在一定程度上提高气态制冷剂在第二换热管组602中的流速,起到提高第二换热管组602的换热效率的目的。
本申请涉及的冷凝器为管壳式冷凝器,制冷剂在换热管之间流动,冷却介质在换热管内部流动。一般地,在传统管壳式冷凝器中,由于气态制冷剂不断被冷凝为液态,冷凝器下部的制冷剂流速降低,气态制冷剂不容易扩散至中下部的换热管。中下部的换热管换热效率较低。
并且,传统的冷凝器中,换热管在冷凝器中按排布置,制冷剂入口设置在冷凝器的上方,制冷剂出口设置在冷凝器的下方,制冷剂自上而下流动。气态制冷剂在流动过程中不断被冷凝成液态制冷剂,则位于下部换热管受到冷凝产生的液态制冷剂的影响,位于下部的换热管上液膜变厚,换热系数将会减小。换热管的换热系数可以用如下公式表示:
Figure PCTCN2022077360-appb-000001
其中,α N为第N排管的冷凝换热系数,α 1为第一排管的冷凝换热系数。
在本申请中,通过挡板的设置,使得气态制冷剂在冷凝器中的流速得到提高,以利于冲破换热管上的液膜,并使得气态制冷剂易于扩散到冷凝器中下部的换热管处,从而提高了冷凝换热效率。
本申请中的一些实施例的冷凝器还包括导流板,导流板能够及时排出冷凝液,使下部换热管上的液膜变薄,换热效率提升;并且还能够对为气态制冷剂进行再分配,改变气态制冷剂的流动状态,提高换热效果。经过导流板的导流以及再分配,可以使导流板下方的换热管的换热系数得到提高。导流板下方的第一排换热管的换热系数达到或高于现有的冷凝器的第一排换热管换热系数。
尽管本文中仅对本申请的一些特征进行了图示和描述,但是对本领域技术人员来说可以进行多种改进和变化。因此应该理解,所附的权利要求旨在覆盖所有落入本申请实质精神范围内的上述改进和变化。

Claims (20)

  1. 一种冷凝器,其特征在于包括:
    壳体(201),所述壳体(201)具有容腔(205),所述容腔(205)具有长度方向(L)、宽度方向(W)和高度方向(L),所述壳体(201)上设有制冷剂入口(211)和制冷剂出口(212);
    第一换热管组(301)、第二换热管组(302)和第三换热管组(303),在所述容腔(205)的宽度方向上,所述第二换热管组(302)和第三换热管组(303)布置在所述第一换热管组(301)的两侧,所述第一换热管组(301)的下方设有横向流体通道(312);
    一对第一挡板(331,332),在所述容腔(205)的宽度方向上,所述一对第一挡板(331,332)中的每一个分别紧邻所述第一换热管组(301)的两侧,所述一对第一挡板(331,332)中的每一个第一挡板的上端延伸至第一换热管组(301)的上方并与所述壳体(201)连接,所述一对第一挡板(331,332)中的每一个第一挡板的下端延伸至第一换热管组(301)的下端处;
    第二挡板(333),在所述容腔(205)的宽度方向上,所述第二挡板(333)紧邻所述第二换热管组(302)的靠近所述第一换热管组(301)的一侧,所述第二挡板(333)和所述一对所述第一挡板中邻近第二换热管组(302)的一个第一挡板(331)之间形成第一竖向流体通道(348),所述第一竖向流体通道(348)与所述横向流体通道(312)连通,所述第二挡板(333)向下延伸以使得所述第二挡板(333)的下部在所述容腔(205)的高度方向上封闭所述横向流体通道(312);
    第三挡板(334),在所述容腔(205)的宽度方向上,所述第三挡板(334)紧邻所述第三换热管组(303)的靠近所述第一换热管组(301)的一侧,所述第三挡板(334)和所述一对所述第一挡板中邻近第三换热管组(303)的一个第一挡板(332)之间形成第二竖向流体通道(349),所述第二竖向流体通道(349)与所述横向流体通道(312)连通,所述第三挡板(334)向下延伸以使得所述第三挡板(334)的下部在所述容腔(205)的高度方向上封闭所述横向流体通道(312);
    其中,所述一对第一挡板(331,332)、所述第二挡板(333)和第三挡板(334)被配置为:使得所述第一换热管组(301)从所述制冷剂入口(211)接收制冷剂,并使得所述第二换热管组(302)和第三换热管组(303)通过所述横向流体通道(312)、以及所述第一竖向流体通道(348)和所述第二竖向流体通道(349)从第一换热管组(301)接收制冷剂。
  2. 如权利要求1所述的冷凝器,其特征在于:
    在所述冷凝器工作时,所述第二挡板(333)的下部和所述第三挡板(334)的下部至少部分地浸没在制冷剂液体中。
  3. 如权利要求1所述的冷凝器,其特征在于:
    所述一对第一挡板(331,332)之间形成第一容纳空间(321),所述第一换热管组(301)布置在所述第一容纳空间(321)中,所述第一容纳空间(321)具有第一容纳空间入口(341)和第一容纳空间出口(342),所述第一容纳空间入口(341)与所述制冷剂入口(211)连通,所述第一容纳空间出口(342)与所述横向流体通道(312)连通。
  4. 如权利要求1所述的冷凝器,其特征在于:
    所述第二挡板(333)与所述壳体(201)之间形成第二容纳空间(322),所述第二换热管组(302)布置在所述第二容纳空间(322)中,所述第二容纳空间(322)具有第二容纳空间入口,所述第二容纳空间入口与所述第一竖向流体通道(348)连通;
    所述第三挡板(334)与所述壳体(201)之间形成第三容纳空间(323),所述第三换热管组(303)布置在所述第三容纳空间(323)中,所述第三容纳空间(323)具有第三通道入口,所述第二容纳空间入口与所述第二竖向流体通道连通。
  5. 如权利要求1所述的冷凝器,其特征在于:
    所述一对第一挡板(331,332)中的每一个包括主体段(351)和引导段(352),所述主体段(351)沿着所述容腔(205)的高度方向延伸,所述主体段(351)的顶部与所述第一换热管组(301)的顶部齐平或超过所述第一换热管组(301)的顶部,所述引导段(352)自所述主体段(351)的顶部向上并朝向远离所述第一换热管组(301)的方向倾斜延伸至与所述壳体(201)连接,所述引导段(352)位于所述第一竖向流体通道(348)或所述第二竖向流体通道(349)的上方。
  6. 如权利要求1所述的冷凝器,其特征在于所述冷凝器还包括:
    中部导流板(551,552),所述中部导流板(551,552)上设有通气孔,以允许气体流过,所述中部导流板(551,552)设置在所述第一换热管组(301)、第二换热管组(302)或第三换热管组(303)中,所述中部导流板(551,552)包括倾斜段(555),所述倾斜段(555)自所述一对第一挡板(331,332)中的至少一个、所述第二挡板(333)、所述第三挡板(334) 或所述壳体(201)向上倾斜延伸,以引导液态制冷剂沿着所述一对第一挡板(331,332)中的一个、所述第二挡板(333)、所述第三挡板(334)或所述壳体(201)流动。
  7. 如权利要求6所述的冷凝器,其特征在于:
    所述通气孔为沿着所述倾斜段(555)的倾斜方向延伸的长条状。
  8. 一种冷凝器,其特征在于包括:
    壳体(201),所述壳体(201)具有容腔(205),所述容腔(205)具有长度方向(L)、宽度方向(W)和高度方向(H),所述壳体(201)上设有制冷剂入口(211)和制冷剂出口(212);
    第一换热管组(401)和第二换热管组(402),所述第一换热管组(401)布置在所述第二换热管组(402)的一侧,所述第一换热管组(401)下方设有横向流体通道(412);
    第一挡板(431)和第二挡板(433),所述第一挡板(431)紧邻第一换热管组(301),所述第二挡板(433)紧邻所述第二换热管组(402),所述第一挡板(431)和第二挡板(433)之间形成竖向流体通道(438),所述竖向流体通道(438)与所述横向流体通道(412)连通,所述第一挡板(431)的上端延伸至第一换热管组(401)的上方并与所述壳体(201)连接,所述第一挡板(431)的下端延伸至第一换热管组(401)的下端处,所述第二挡板(433)的上端延伸至所述第二换热管组(402)的上端处,所述第二挡板(433)向下延伸以使得所述第二挡板(433)的下端在所述容腔(205)的高度方向上封闭所述横向流体通道(412);
    其中,所述第一挡板(431)和所述第二挡板(432)被配置为:使得第一换热管组从所述的所述制冷剂入口(211)接收制冷剂,并使得所述第二换热管组(402)通过所述横向流体通道(412)和所述竖向流体通道(438)从第一换热管组(401)接收制冷剂。
  9. 如权利要求8所述的冷凝器,其特征在于:
    在所述冷凝器工作时,所述第二挡板(432)的下端至少部分地浸没在制冷剂液体中。
  10. 如权利要求8所述的冷凝器,其特征在于:
    所述第一挡板(431)与所述壳体(201)之间形成第一容纳空间(421),所述第一换热管组(401)布置在所述第一容纳空间(421)中,所述第一容纳空间(421)具有第一容纳空间入口(441)和第一容纳空间出口(442),所述第一容纳空间入口(441)与所述制冷剂入口(211)连通,所述第一容纳空间出口(442)与所述横向流体通道(412)连通。
  11. 如权利要求8所述的冷凝器,其特征在于:
    所述第二挡板(433)与所述壳体(201)之间形成第二容纳空间(422),所述第二换热管组(402)布置在所述第二容纳空间(422)中,所述第二容纳空间(422)具有第二容纳空间入口,所述第二容纳空间入口与所述竖向流体通道(438)连通。
  12. 如权利要求8所述的冷凝器,其特征在于:
    所述第一挡板(431)中的每一个包括主体段(451)和引导段(452),所述主体段(451)沿着所述容腔(205)的高度方向延伸,所述主体段(451)的顶部与所述第一换热管组(401)的顶部齐平或超过所述第一换热管组(401)的顶部,所述引导段(452)自所述主体段(451)的顶部向上并朝向远离所述第一换热管组(401)的方向倾斜延伸并与所述壳体(201)连接,所述引导段(452)位于所述竖向流体通道(438)的上方。
  13. 一种冷凝器,其特征在于包括:
    壳体(201),所述壳体(201)具有容腔(205),所述容腔(205)具有长度方向(L)、宽度方向(W)和高度方向(H),所述壳体(201)上设有制冷剂入口(211)和制冷剂出口(212);
    第一换热管组(601)和第二换热管组(602),在所述容腔(205)的高度方向上,所述第一换热管组(601)位于所述第二换热管组(602)的上方,所述第一换热管组(601)在所述容腔(205)的宽度方向上的两侧紧邻所述壳体(201),所述第二换热管组(602)在所述容腔(205)的宽度方向上的两侧中的至少一侧与所述壳体(201)之间相隔一定距离;
    至少一个挡板(631,632),所述至少一个挡板(631,632)设置在靠近所述第二换热管组(602)与所述壳体(201)具有一定距离的至少一侧处,在所述容腔(205)的高度方向上,所述至少一个挡板(631,632)的上端不高于所述第二换热管组(602),所述至少一个挡板(631,632)的侧部与所述壳体(201)之间形成流体空间(640)。
  14. 如权利要求13所述的冷凝器,其特征在于:
    所述至少一个挡板(631,632)的下部与具有连接通道(677),以允许液态制冷剂通过。
  15. 如权利要求14所述的冷凝器,其特征在于还包括:
    引流板(650),所述引流板(650)设置在所述第一换热管组(601)和第二换热管组(602)之间,并覆盖所述第二换热管组(602),以引导制冷剂液体流向所述流体空间(640),所述引流板(650)上设有通气孔,以允许气态制冷剂通过。
  16. 如权利要求15所述的冷凝器,其特征在于:
    所述引流板(650)包括倾斜段(655),所述倾斜段(655)自所述一个挡板(631,632)向上并朝向所述第二换热管组(602)的在所述容腔(205)的宽度方向上的中心线延伸。
  17. 如权利要求16所述的冷凝器,其特征在于:
    所述通气孔为沿着所述倾斜段(655)的倾斜方向延伸的长条状。
  18. 一种冷凝器,包括权利要求1-7中的任意一项技术特征或技术特征的任意组合。
  19. 一种冷凝器,包括权利要求8-12中的任意一项技术特征或技术特征的任意组合。
  20. 一种冷凝器,包括权利要求13-17中的任意一项技术特征或技术特征的任意组合。
PCT/CN2022/077360 2021-02-24 2022-02-23 冷凝器 WO2022179511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237030500A KR20230150304A (ko) 2021-02-24 2022-02-23 응축기
EP22758875.3A EP4300009A1 (en) 2021-02-24 2022-02-23 Condenser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110208465.6 2021-02-24
CN202110208465.6A CN114963617B (zh) 2021-02-24 2021-02-24 冷凝器

Publications (1)

Publication Number Publication Date
WO2022179511A1 true WO2022179511A1 (zh) 2022-09-01

Family

ID=82972738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077360 WO2022179511A1 (zh) 2021-02-24 2022-02-23 冷凝器

Country Status (5)

Country Link
EP (1) EP4300009A1 (zh)
KR (1) KR20230150304A (zh)
CN (1) CN114963617B (zh)
TW (1) TW202244441A (zh)
WO (1) WO2022179511A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020046572A1 (en) * 2000-10-24 2002-04-25 Mitsubishi Heavy Industries, Ltd. Condenser for refrigerating machine
US20090049861A1 (en) * 2007-08-21 2009-02-26 Wolverine Tube, Inc. Heat Exchanger with Sloped Baffles
CN202928219U (zh) * 2012-12-11 2013-05-08 浙江国祥空调设备有限公司 一种高效水冷冷凝器
CN203629154U (zh) * 2013-12-10 2014-06-04 特灵空调系统(中国)有限公司 壳管式冷凝器内置带密封条过冷器结构
CN104748448A (zh) * 2013-12-27 2015-07-01 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN104764258A (zh) * 2014-01-02 2015-07-08 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN104990315A (zh) * 2015-07-23 2015-10-21 南京冷德节能科技有限公司 一种高效冷凝器
US20160040917A1 (en) * 2012-09-03 2016-02-11 Trane International, Inc. Methods and systems to manage refrigerant in a heat exchanger
CN106288523A (zh) * 2015-06-29 2017-01-04 约克(无锡)空调冷冻设备有限公司 冷凝和降膜蒸发混合换热器
CN107806723A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 壳管式冷凝器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210921674U (zh) * 2019-11-21 2020-07-03 大金空调(上海)有限公司 壳管式冷凝器以及冷水机组

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020046572A1 (en) * 2000-10-24 2002-04-25 Mitsubishi Heavy Industries, Ltd. Condenser for refrigerating machine
US20090049861A1 (en) * 2007-08-21 2009-02-26 Wolverine Tube, Inc. Heat Exchanger with Sloped Baffles
CN201203306Y (zh) * 2007-08-21 2009-03-04 高克联管件(上海)有限公司 一种带气体折流板的冷凝器
US20160040917A1 (en) * 2012-09-03 2016-02-11 Trane International, Inc. Methods and systems to manage refrigerant in a heat exchanger
CN202928219U (zh) * 2012-12-11 2013-05-08 浙江国祥空调设备有限公司 一种高效水冷冷凝器
CN203629154U (zh) * 2013-12-10 2014-06-04 特灵空调系统(中国)有限公司 壳管式冷凝器内置带密封条过冷器结构
CN104748448A (zh) * 2013-12-27 2015-07-01 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN104764258A (zh) * 2014-01-02 2015-07-08 约克(无锡)空调冷冻设备有限公司 壳管式冷凝器
CN106288523A (zh) * 2015-06-29 2017-01-04 约克(无锡)空调冷冻设备有限公司 冷凝和降膜蒸发混合换热器
CN104990315A (zh) * 2015-07-23 2015-10-21 南京冷德节能科技有限公司 一种高效冷凝器
CN107806723A (zh) * 2016-09-09 2018-03-16 青岛海尔智能技术研发有限公司 壳管式冷凝器

Also Published As

Publication number Publication date
KR20230150304A (ko) 2023-10-30
CN114963617B (zh) 2022-12-30
EP4300009A1 (en) 2024-01-03
TW202244441A (zh) 2022-11-16
CN114963617A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US10612859B2 (en) Heat exchanger
US7028762B2 (en) Condenser for refrigerating machine
KR100194853B1 (ko) 통합 적재식 환기응축기가 구비된 증기응축모듈
JP4646302B2 (ja) シェルアンドチューブ式熱交換器
JP2001521132A (ja) 空冷コンデンサ
CA3031201A1 (en) Ultra narrow channel ultra low refrigerant charge evaporative condenser
KR20170031556A (ko) 마이크로 채널 타입 열교환기
CN104764258A (zh) 壳管式冷凝器
CN212390655U (zh) 一种蒸发器及制冷系统
WO2022179511A1 (zh) 冷凝器
JP6670197B2 (ja) 圧縮式冷凍機用凝縮器
WO2022152033A1 (zh) 蒸发器
CN112240715A (zh) 一种减小空气流速的换热翅片换热器
WO2023045707A1 (zh) 降膜式蒸发器
JP4497527B2 (ja) 冷凍装置
WO2021095439A1 (ja) 熱交換器
CN114076424A (zh) 一种蒸发器及制冷系统
CN107806723B (zh) 壳管式冷凝器
CN114151986A (zh) 冷水机组
CN117366917A (zh) 蒸发器
WO2023036004A1 (zh) 蒸发器及包括其的制冷系统
CN216953629U (zh) 一种带过冷盒的冷凝器
CN219037714U (zh) 换热器
KR102088826B1 (ko) 열교환기
CN117906314A (zh) 一种冷凝器及包括其的制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237030500

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022758875

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022758875

Country of ref document: EP

Effective date: 20230925