WO2022179144A1 - 压缩机和空调 - Google Patents

压缩机和空调 Download PDF

Info

Publication number
WO2022179144A1
WO2022179144A1 PCT/CN2021/126093 CN2021126093W WO2022179144A1 WO 2022179144 A1 WO2022179144 A1 WO 2022179144A1 CN 2021126093 W CN2021126093 W CN 2021126093W WO 2022179144 A1 WO2022179144 A1 WO 2022179144A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
rotating shaft
face
limiting
main body
Prior art date
Application number
PCT/CN2021/126093
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
龙忠铿
曹聪
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to JP2023531658A priority Critical patent/JP2024507620A/ja
Priority to US18/267,875 priority patent/US20240035471A1/en
Priority to KR1020237017746A priority patent/KR20230147031A/ko
Priority to EP21927568.2A priority patent/EP4234935A1/en
Publication of WO2022179144A1 publication Critical patent/WO2022179144A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/084Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • F04C18/165Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type having more than two rotary pistons with parallel axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • F04C2230/602Gap; Clearance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/101Geometry of the inlet or outlet of the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/10Geometry of the inlet or outlet
    • F04C2250/102Geometry of the inlet or outlet of the outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0475Copper or alloys thereof
    • F05C2201/0478Bronze (Cu/Sn alloy)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0469Other heavy metals
    • F05C2201/0493Tin

Definitions

  • the present disclosure relates to the technical field of compressors, and in particular, to a compressor and an air conditioner.
  • a pair of parallel helical rotors are arranged in the compressor, and the pair of helical rotors and the inner wall of the casing form a space volume.
  • the volume will increase and decrease periodically.
  • the volume is periodically connected and closed with the suction port and the exhaust port, so that the whole process of suction, compression and exhaust can be completed.
  • dual compressors are widely used in refrigeration and air conditioning in the medium cooling capacity range.
  • the different pressures of the gas at the suction port and the exhaust port will cause the helical rotor to generate an axial force, and the axial force will cause the helical rotor to move in the axial direction of the helical rotor in the casing, causing the helical rotor to move in the axial direction.
  • Adjacent end faces of the two oppositely arranged helical rotors collide together.
  • a thrust bearing is usually added between the two helical rotors to prevent the adjacent end faces of the two helical rotors from colliding together.
  • the additional thrust bearing will increase the number of parts of the compressor, resulting in The volume of the compressor increases.
  • the present disclosure provides a compressor and an air conditioner that can maintain a gap between a first rotor and a second rotor without increasing the number of components of the compressor.
  • the present disclosure provides a compressor comprising:
  • a first rotor assembly the first rotor assembly including a first rotor and a second rotor coaxially arranged on the connecting assembly, the connecting assembly can carry the first rotor and the second rotor together around the the first shaft rotates;
  • the connecting assembly is configured to limit the relative position of the first rotor and the second rotor so that there is a gap between the first rotor and the second rotor.
  • an end face of the first rotor away from the second rotor and an end face of the housing close to the first rotor have a first axial gap
  • the second rotor is at An end face away from the first rotor and an end face of the housing proximate the second rotor have a second axial gap
  • the connection assembly is configured to limit the gap between the first rotor and the second rotor The gap is larger than the first axial gap, and the gap between the first rotor and the second rotor is larger than the second axial gap.
  • the compressor further includes:
  • the second rotor assembly includes a third rotor and a fourth rotor coaxially arranged on the second rotating shaft, the second rotating shaft is configured to drive the second rotor assembly along the The rotation direction of the first rotor assembly rotates in the opposite direction, the third rotor and the first rotor are in mesh with each other, and the fourth rotor and the second rotor are in mesh with each other.
  • the end face of the third rotor close to the fourth rotor protrudes from the end face of the first rotor close to the second rotor, and the fourth rotor is close to the The end face of the third rotor protrudes from the end face of the second rotor close to the first rotor, so that the first rotor does not interfere with the fourth rotor and the second rotor does not interfere with the third rotor put one's oar in.
  • the third rotor is engaged with adjacent end faces of the fourth rotor.
  • the gap between the first rotor and the second rotor is L3, and the third rotor faces in the housing along the axial direction of the second shaft.
  • the axial movement amount of moving in the direction close to the fourth rotor is D1
  • the axial movement amount of the second rotor moving in the direction close to the first rotor is D2
  • the fourth rotor is in the housing
  • the axial movement amount of moving in the direction close to the third rotor along the axial direction of the second rotating shaft is D3
  • the axial movement amount of the first rotor moving in the direction close to the second rotor is D4, so
  • the second rotor assembly is configured to satisfy: L3 ⁇ D1+D2, and L3 ⁇ D3+D4.
  • suction ports are provided at adjacent positions of the first rotor, the second rotor, the third rotor, and the fourth rotor, and the first rotor , A first exhaust port is arranged at the adjacent position of the third rotor and the casing, and a second row is arranged at the adjacent position of the second rotor, the fourth rotor and the casing breath.
  • the helical direction of the first rotor is opposite to the helical direction of the second rotor, and the helical direction of the third rotor is opposite to the helical direction of the fourth rotor.
  • the third rotor and the second rotating shaft are integrally formed, the fourth rotor has a shaft hole matched with the second rotating shaft, and the shaft hole is connected to the first rotating shaft.
  • the second shaft adopts a tight fit.
  • the compressor further includes a thrust bearing disposed on one side of the second rotating shaft and a motor disposed on the other side of the second rotating shaft, and the electric motor is configured to The second rotating shaft is driven to rotate, so that the second rotor assembly follows the second rotating shaft to rotate and drives the first rotor assembly and the connecting assembly to rotate around the first rotating shaft together.
  • an end face of the third rotor away from the fourth rotor is away from the second rotor from the first rotor in a direction perpendicular to the axial direction of the second shaft.
  • the end face of the rotor is flush; the end face of the fourth rotor away from the third rotor is flush with the end face of the second rotor away from the first rotor in the direction perpendicular to the axial direction of the second shaft .
  • the connecting assembly includes a first limiting member and a second limiting member that are both sleeved on the first rotating shaft and can both rotate around the first rotating shaft,
  • the first limiting member is configured to limit the position of the first rotor approaching the end face of the second rotor
  • the second limiting member is configured to limit the second rotor approaching the position of the first rotor. position of the end face.
  • an end surface of the first rotor close to the second rotor is provided with a first limiting groove along the axial direction of the first rotating shaft
  • the first limiting member includes a first main body part and a first limiting part, the first main body part is sleeved on the first rotating shaft, the first limiting part is arranged around the periphery of the outer surface of the first main body part and the The first limiting portion is clamped in the first limiting slot; the end face of the second rotor close to the first rotor is provided with a second limiting slot along the axial direction of the first rotating shaft, and the The second limiting member includes a second main body portion and a second limiting portion, the second main body portion is sleeved on the first rotating shaft and is disposed adjacent to the first main body portion, and the second limiting portion surrounds The second limiting portion is arranged on the periphery of the outer surface of the second main body portion and the second limiting portion is clamped
  • an end face of the first limiting portion close to the second limiting portion protrudes from a side of the first rotor close to an end face of the second rotor, and the The end face of the second limiting portion close to the first limiting portion protrudes from the side of the second rotor close to the end face of the first rotor.
  • the end face of the first rotor close to the second rotor and the end face of the second rotor close to the first rotor in the axial direction of the first shaft The distance gradually increases from the axis of the first rotor assembly to the outer periphery of the first rotor assembly.
  • the first limiting member includes a first main body portion and a first limiting portion, the first main body portion is sleeved on the first rotating shaft, and the first The limiting portion is arranged around the periphery of the outer surface of the first main body portion, and the side of the first limiting portion facing away from the second rotor is in contact with the end surface of the first rotor close to the second rotor;
  • the second limiting member includes a second main body portion and a second limiting portion, the second main body portion is sleeved on the first rotating shaft and is disposed adjacent to the first main body portion, and the second main body portion is set adjacent to the first main body portion.
  • the limiting portion is disposed around the periphery of the outer surface of the second main body portion, and a side of the second limiting portion facing away from the first rotor abuts the end surface of the second rotor close to the first rotor.
  • the connecting assembly further includes a third limiting member and a fourth limiting member, and the third limiting member is configured to limit the first rotor to move away from the second The distance between the end face of the rotor and the casing, the fourth limiting member is configured to limit the distance between the end face of the second rotor away from the first rotor and the casing.
  • the third limiting member includes a third main body portion and a third limiting portion, and the third main body portion is sleeved on the first rotating shaft and is connected to the first rotating shaft.
  • a main body part is arranged adjacently, the third limiting part is arranged around the periphery of the outer surface of the third main body part, and the third limiting part abuts against the end surface of the first rotor facing away from the second rotor connected;
  • the fourth limiting member includes a fourth main body portion and a fourth limiting portion, the fourth main body portion is sleeved on the first rotating shaft and is disposed adjacent to the second main body portion, the The fourth limiting portion is disposed around the periphery of the outer surface of the fourth main body portion, and the fourth limiting portion abuts on the end surface of the second rotor facing away from the first rotor.
  • an end surface of the first rotor away from the second rotor is provided with a third limiting groove along the axial direction of the first rotating shaft
  • the third limiting member includes A third main body part and a third limiting part, the third main body part is sleeved on the first rotating shaft and is disposed adjacent to the first main body part, and the third limiting part is arranged around the The peripheral edge of the outer surface of the third main body portion and the third limiting portion is clamped in the third limiting groove; the end face of the second rotor away from the first rotor is along the axial direction of the first rotating shaft
  • a fourth limiting slot is opened in the direction
  • the fourth limiting member includes a fourth main body part and a fourth limiting part, the fourth main body part is sleeved on the first rotating shaft and is connected with the second main body The fourth limiting portion is arranged around the periphery of the outer surface of the fourth main body portion, and the fourth limiting portion is clamped in the
  • the material of the connection component includes tin bronze material.
  • both the first rotating shaft and the connecting assembly are provided with an oil supply channel, and the oil supply channel located on the first rotating shaft and the oil supply channel located on the connecting component The oil flow passage is communicated.
  • Embodiments of the present disclosure also provide an air conditioner including the compressor as described above.
  • the embodiments of the present disclosure improve the connecting assembly connecting the first rotating shaft and the first rotor assembly, so that the connecting assembly can limit the relative position between the first rotor and the second rotor, and realize the first rotor without additional components.
  • a gap is maintained between the first rotor and the second rotor, so as to ensure that the adjacent end faces of the first rotor and the second rotor do not collide with each other.
  • FIG. 1 is a schematic cross-sectional view of a compressor provided in an embodiment of the application.
  • FIG. 2 is a partial structural schematic diagram of the first rotating shaft, the first rotor assembly and the connecting assembly in the compressor shown in FIG. 1 .
  • FIG. 3 is an enlarged structural schematic diagram of the first rotating shaft, the first rotor assembly and the part A of the connecting assembly shown in FIG. 2 .
  • FIG. 4 is an enlarged structural schematic diagram of the first rotating shaft, the first rotor assembly and the B part of the connecting assembly shown in FIG. 2 .
  • FIG. 5 is an enlarged structural schematic diagram of the first rotating shaft, the first rotor assembly and the C part of the connecting assembly shown in FIG. 2 .
  • FIG. 6 is a schematic structural diagram of a first limiting member in the compressor shown in FIG. 1 .
  • FIG. 7 is a schematic cross-sectional view of the first limiting member shown in FIG. 6 along the P-P direction.
  • FIG. 8 is a perspective structural view of the first rotating shaft, the second rotating shaft, the first rotor assembly and the second rotor assembly in the compressor shown in FIG. 1 .
  • FIG. 9 is a schematic diagram of a second structure of the first rotating shaft, the first rotor assembly and the connecting assembly shown in FIG. 2 .
  • FIG. 10 is a schematic structural diagram of the first rotating shaft in the compressor shown in FIG. 1 .
  • the first shaft 21.
  • the second oil supply channel 211, The main oil supply channel; 212, The auxiliary oil supply channel;
  • the first rotor assembly 41, the first rotor; 411, the first end face; 412, the second end face; 413, the first limit groove; 414, the first body; 415, the first spiral blade; Limit slot; 42, second rotor; 421, third end face; 422, fourth end face; 423, second limit slot; 424, second body part; 425, second helical blade; 426, fourth limit groove;
  • 60 the second rotor assembly; 61, the third rotor; 611, the fifth end face; 612, the sixth end face; 613, the third helical blade; 62, the fourth rotor; 621, the seventh end face; 622, the eighth end face; 623, the fourth spiral blade;
  • FIG. 1 is a first partial cross-sectional view of a compressor provided by an embodiment of the application.
  • the compressor 200 shown in FIG. 1 may be a screw compressor, such as the compressor 200 being an opposed screw compressor. It should be noted that the compressor 200 shown in FIG. 1 is not limited to a screw compressor, for example, the compressor 200 may also be a scroll compressor.
  • the compressor 200 may include a casing 10 , a first rotating shaft 20 , a connecting assembly 30 and a first rotor assembly 40 .
  • the housing 10 may be used to accommodate a portion of the first rotating shaft 20 , the connecting assembly 30 and the first rotor assembly 40 .
  • the first rotating shaft 20 may be installed in the casing 10 , for example, the first rotating shaft 20 may pass through the casing 10 , and both ends of the first rotating shaft 20 are exposed outside the casing 10 .
  • the connecting assembly 30 can be sleeved on the first rotating shaft 20
  • the first rotor assembly 40 can include a first rotor 41 and a second rotor 42
  • the first rotor 41 and the second rotor 42 are coaxially arranged on the connecting shaft 20
  • the connecting assembly 30 is configured to carry the first rotor 40 and the second rotor 42 to rotate together around the first shaft 20, and to limit the relative position between the first rotor 41 and the second rotor 42, so that the first rotor There is a gap between 41 and the second rotor 42 .
  • the connecting components can be sliding bearings or rolling bearings.
  • an additional spacer is usually provided between the two rotors of the first rotor assembly 40 to separate the two rotors and maintain the gap between the two rotors during the rotation process.
  • additional spacers need to be added, thereby increasing the The number of parts of the compressor 200 is reduced.
  • FIG. 2 is a schematic structural diagram of the first rotating shaft, the first rotor assembly and the connecting assembly in the compressor shown in FIG. 1
  • FIG. 3 is the first rotating shaft, the first rotor assembly and the connecting assembly shown in FIG. 2 .
  • FIG. 4 is an enlarged structural schematic view of the first shaft, the first rotor assembly and part B in the connecting assembly shown in FIG. 2
  • FIG. 5 is the first rotating shaft and the first rotor shown in FIG. 2
  • the first rotor 41 may include a first end face 411 and a second end face 412 that are opposite to each other, the first end face 411 is the end face of the first rotor 41 that is close to the second rotor 42 , and the second end face 412 is the end face of the first rotor 41 that is far away from the second rotor 42 .
  • the end faces of the two rotors 42 may include a third end face 421 and a fourth end face 422 that are opposite to each other, the third end face 421 is the end face of the second rotor 42 close to the first rotor 41 , and the fourth end face 421 is the end face of the second rotor 42 that is far away from the first rotor 41 .
  • An end face of the rotor 41 is the end face of the rotor 41 .
  • the first end surface 411 and the third end surface 421 are adjacent and spaced apart, the second end surface 412 is adjacent to and spaced apart from one side of the housing 10 , and the fourth end surface 422 is opposite and spaced apart from the other surface of the housing 10 .
  • the second end face 412 of the first rotor 41 and the end face of the casing 10 close to the first rotor 41 have a first axial gap L1
  • the fourth end face 4 of the second rotor 42 and the end face of the casing 10 close to the second rotor 42 have a first axial gap L1.
  • connection assembly 30 is configured to limit the relative positions of the first rotor 41 and the second rotor 42 so that there is a first end face 411 of the first rotor 41 and the third end face 421 of the second rotor 42 Three axial gaps L3.
  • the connecting assembly 30 may include a first limiting member 31 and a second limiting member 32 , both of which are sleeved on the first limiting member 31 and the second limiting member 32 .
  • the first rotor 41 On a rotating shaft 20 and rotatable around the first rotating shaft 20, the first rotor 41 is sleeved on the first limiting member 31 and is fixedly connected with the first limiting member 31, so that the first rotor 41 can follow the first limiting member
  • the parts 31 rotate together around the first rotating shaft 20, wherein the first limiting part 31 is configured to limit the moving distance of the end face of the first rotor 41 close to the second rotor 42 moving toward the second rotor 42; the second rotor 42 is sleeved on the
  • the second limiting member 32 is fixedly connected with the second limiting member 32 , so that the second rotor 42 can rotate around the first rotation shaft 20 along with the second limiting member 32 , wherein the second limiting member 32 is configured to limit The moving distance by which the end surface of the second rotor 42 close to the first rotor 41 moves toward the first rotor 41 .
  • first limiting member 31 is configured to limit the position of the first end face 411 of the first rotor 41
  • second limiting member 32 is configured to limit the position of the second end face 411 of the second rotor 42
  • the first end surface 411 of the first rotor 41 and the third end surface 421 of the second rotor 42 have the third axial gap L3 in cooperation with the first stopper 31 and the second stopper 32 .
  • FIG. 6 is a schematic structural diagram of the first limiting member in the compressor shown in FIG. 1
  • the first limiting member 31 may include a first main body portion 311 and a first limiting portion 312.
  • the first main body portion 311 is sleeved on the first rotating shaft 20.
  • the first main body portion 311 may be provided with a first shaft hole 313.
  • the first limiting member 31 is sleeved on the first rotating shaft 20 through the first shaft hole 313 .
  • the first main body portion 311 may be a ring structure, and the first limiting portion 312 is disposed around the periphery of the outer surface of the first main body portion 311 .
  • the first end surface 411 of the first rotor 41 may be provided with a first limiting slot 413 , and the notch of the first limiting slot 413 faces the second rotor 42 , or the first end surface 411 is opened along the axial direction of the first rotating shaft 20 .
  • the first limiting portion 312 is clamped in the first limiting slot 413 , so that the first limiting portion 312 can limit the first rotor 41 through the first limiting slot 413 .
  • the first limiting portion 312 is protrudingly disposed on the periphery of the outer surface of the first main body portion 311 , and when the first rotor 41 is sleeved on the first limiting member 31 , the first limiting portion of the first rotor 41 is The groove wall of the slot 413 is in contact with the first limiting portion 312 , and the first end surface 411 of the first rotor 41 cannot be relative to the first limiting member 31 under the restriction of the first limiting portion 312 of the first limiting member 31 . movement, so as to realize the restricting effect of the first limiting member 31 on the first end surface 411 of the first rotor 41 .
  • the structure of the second limiting member 32 may be the same as that of the first limiting member 31 , for example, the second limiting member 32 may include a second main body portion 321 and a second limiting portion 322 , and the second main body portion 321 is sleeved On the first rotating shaft 20 , for example, the second main body portion 321 may be provided with a second shaft hole 323 , and the second limiting member 32 is sleeved on the first rotating shaft 20 through the second shaft hole 313 .
  • the second main body portion 321 may be a ring structure, and the second limiting portion 322 is disposed around the periphery of the outer surface of the second main body portion 321 .
  • the third end surface 421 of the second rotor 42 may be provided with a second limiting slot 423 , the notch of the second limiting slot 423 faces the first rotor 41 , or the third end surface 421 is opened along the axial direction of the first rotating shaft 20 There is the second limiting groove 423 .
  • the second limiting portion 322 is clamped in the second limiting slot 423 , so that the second limiting portion 322 can limit the second rotor 42 through the second limiting slot 423 .
  • the second limiting portion 322 is protrudingly disposed on the periphery of the outer surface of the second main body portion 321 , and when the second rotor 42 is sleeved on the second limiting member 32 , the second limiting portion of the second rotor 42 is The groove wall of the slot 423 is in contact with the second limiting portion 322 , and the second end surface 421 of the second rotor 42 cannot be relative to the second limiting member 32 under the restriction of the second limiting portion 322 of the second limiting member 32 . movement, so as to realize the limiting effect of the second limiting member 32 on the third end surface 421 of the second rotor 42 .
  • the position of the first end surface 411 of the first rotor 41 is limited by the first limiting member 31
  • the position of the third end surface 421 of the second rotor 42 is limited by the second limiting member 32 . , so that a third axial gap is maintained between the first end surface 411 of the first rotor 411 and the third end surface 421 of the second rotor 421 .
  • FIG. 8 is a three-dimensional structural view of the first rotating shaft, the second rotating shaft, the first rotor assembly and the second rotor assembly in the compressor shown in FIG. 1 .
  • the first rotor 41 includes a first body portion 414 . and a plurality of first helical vanes 415 disposed around the periphery of the outer surface of the first body portion 414 .
  • the first end surface 411 of the first rotor 41 includes a first part located on the first body part 414 and a second part located on a first helical blade 415 close to the second rotor 42 , and the first limiting groove 413 is opened in the first part superior.
  • the plurality of first helical blades 415 are sequentially arranged on the first body portion 414 from the first end face 411 to the second end face 412 on the first body portion 414 .
  • the end surface and the end surface of the first body portion 414 close to the second rotor 42 are combined together to form the first end surface 411 .
  • the first limiting groove 413 is formed on the end surface of the first body portion 414 .
  • the second rotor 42 includes a second body portion 424 and a plurality of second helical vanes 425 disposed around the periphery of the outer surface of the second body portion 424 .
  • the third end surface 421 of the second rotor 42 includes a third portion located on the second body portion 424 and a fourth portion located on a second helical blade 425 close to the first rotor 42 , and the second limiting groove 423 is opened in the first rotor 42 .
  • the plurality of second helical blades 425 are sequentially arranged on the second body portion 424 from the third end face 421 to the fourth end face 422 on the second body portion 424 .
  • the end face and the end face of the second body portion 424 close to the first rotor 42 are combined together to form a third end face 421 .
  • the second limiting groove 423 is formed on the end surface of the second body portion 424 .
  • the first limiting portion 312 may have a first side surface 3121 and a second side surface 3122 disposed opposite to each other, and the first side surface 3121 is the side of the first limiting portion 312 that is close to the second limiting portion 322 .
  • the second side surface 3122 is the side of the first limiting portion 312 away from the second limiting portion 322 .
  • the second limiting portion 322 may have a third side surface 3221 and a fourth side surface 3222 disposed opposite to each other, the third side surface 3221 is the side of the second limiting portion 322 that is close to the first limiting portion 312, and the fourth side surface 3222 is the first limiting portion 322.
  • the first side surface 3121 is set to protrude from one side of the first end surface 411 of the first rotor 41
  • the third side surface 3221 is set to protrude from one side of the third end surface 421 of the second rotor 42 .
  • the positional relationship between the first limiting member 31 and the first rotor 41 and the positional relationship between the second limiting member 32 and the second rotor 42 are not limited to this.
  • the first side surface 3121 is flush with the end surface of the other part of the first part except for the first limiting groove 413 in the direction perpendicular to the axial direction of the first rotating shaft 20 .
  • the third side surface 3221 is flush with the end surface of the third part except the second limiting groove 423 in the direction perpendicular to the axial direction of the first rotating shaft 20 .
  • the other parts of the first part except the first limiting groove 413 are in contact with other parts of the third part except the second limiting groove 423, and the second part and the fourth part are spaced apart from each other.
  • a third axial gap L3 is formed between the second portion and the fourth portion.
  • first limiting member 31 and the first rotor 41 and the second limiting member 32 and the second rotor 42 move together in the direction of approaching each other to the first limiting portion 312 of the first limiting member 31
  • second limiting part 322 of the second limiting member 322 is in contact with each other, since the end face of the first part excluding the first limiting groove 413 and the first side surface 3121 of the first limiting part 312 are in contact with each other.
  • the direction perpendicular to the axial direction of the first rotating shaft 20 is flush, and the end face of the third part except the other part where the second limiting groove 423 is provided is perpendicular to the third side surface 3221 of the second limiting part 322 .
  • the axial direction of the first rotating shaft 20 is flush, so the end face of the first part excluding the other part with the first limiting groove 413 and the third part excluding the other part with the second limiting groove 423 The end leaves are abutted against each other.
  • the embodiment of the present disclosure can reduce the occupation of the inner space of the housing 10 by the connection assembly 30 .
  • the first part of the first rotor 41 is provided with a first limiting The larger the gap between the end face of the other part of the position slot 413 and the end face of the third part of the second rotor 42 except for the end face of the other part of the second position limit slot 423, the larger the overall length of the first rotor assembly 40, Therefore, the occupied volume of the inner space of the housing 10 by the first rotor assembly 40 is larger.
  • the end face of the first part excluding the first limiting groove 413 and the first side surface 3121 of the first limiting portion 312 are arranged in a direction perpendicular to the axial direction of the first rotating shaft 20 as Flush
  • the end face of the third part except the other part with the second limiting groove 423 and the third side surface 3221 of the second limiting part 322 are arranged in a direction perpendicular to the axial direction of the first rotating shaft 20 to be Flush, so that the first side surface 3121 of the first limiting member 31 abuts the third side surface 3221 of the second limiting member 32 to minimize the overall length of the first rotor assembly 40, thereby reducing the
  • the first rotor assembly 40 occupies the inner space of the housing 10 .
  • the end face of the first body portion 414 and the end face of the second body portion 424 abut each other, and the end face of the first first helical blade 415 and the end face of the first second helical blade 425 are spaced apart from each other so as to be in the second part
  • a third axial gap L3 is formed between the first rotor 41 and the fourth part.
  • the embodiment of the present disclosure can make the first rotor 41
  • the first helical vane 415 and the second helical vane 425 of the second rotor 42 do not interfere with each other, and the length of the first rotor assembly 40 in the housing 10 due to the provision of the third axial gap L3 can be reduced.
  • FIG. 9 is a schematic diagram of the second structure of the first rotating shaft, the first rotor assembly and the connecting assembly shown in FIG. 2 .
  • the first rotor 41 is not provided with the first limiting slot 413
  • the second rotor 42 is not provided with the second limiting slot 423 .
  • a limiting slot may also be provided for the first rotor 41, and the first rotor 41 is clamped with the first limiting member 31 through the limiting slot; the third end face 421 of the second rotor 42 directly abuts against the second limiting portion 322 in the second limiting member 32 .
  • the second rotor 42 is provided with a limiting slot, and the second rotor 42 is clamped with the second limiting member 32 through the limiting slot; the first end surface 411 of the first rotor 41 is directly connected to the first limiting member 31 The bit portion 312 abuts.
  • first limiting member 31 and the second limiting member 32 are separately formed into two parts. In other embodiments, the first limiting member 31 and the second limiting member 32 may also be integrally formed as two parts. a part.
  • the connecting assembly 30 , the first rotor 41 and the second rotor 42 can be rotated together in the casing 10 around the first rotating shaft 20 , because during the rotation, the two sides of the first rotor 41 and the second rotor The pressures on both sides of the 42 are different, resulting in an axial force along the axial direction of the first rotating shaft 20 . If the axial movement of the first rotor 41 and the second rotor 42 is too large, the first rotor 41 and the second rotor 42 may interfere with each other.
  • the embodiment of the present disclosure restricts the first rotor 41 and the second rotor 42 through the connecting assembly 30, so that the gap between the first rotor 41 and the second rotor 42 is larger than that of the first rotor assembly 40 (including the first rotor 41 and the second rotor 42).
  • the axial movement amount of the first rotor 41 and the second rotor 42) moving in the axial direction of the first rotating shaft so as to avoid the occurrence of the above problems.
  • the third axial gap L3 is set to be larger than the first axial gap L1 and larger than the second axial gap L2, that is, L3>L1 and L3 is larger than L2.
  • the first axial gap L1 is the gap between the second end face 412 of the first rotor 41 and the end face adjacent to the first rotor 41 in the housing 10 in the axial direction of the first rotating shaft 20;
  • the second The axial gap L2 is a gap between the fourth end face 422 of the second rotor 42 and the end face adjacent to the second rotor 42 in the housing 10 in the axial direction of the first rotating shaft 20 .
  • connection assembly 300 of the embodiment of the present disclosure may further include a third limiting member 33 and a fourth limiting member 34 , and the third limiting member 33 is configured to limit the first rotor The distance between the second end surface 412 of the first rotor 41 and the housing 10 so that the second end surface 412 of the first rotor 41 and the housing 10 have a first axial gap L1; the fourth limiting member 34 is configured to limit the second rotor 42 The distance between the fourth end face 422 of the second rotor 42 and the casing 10 is such that the fourth end face 422 of the second rotor 42 and the casing 10 have a second axial gap L2.
  • the third limiting member 33 may include a third main body portion 331 and a third limiting portion 332.
  • the third main body portion 331 is sleeved on the first rotating shaft 20 and is disposed adjacent to the first main body portion 311.
  • the position portion 332 is provided around the periphery of the outer surface of the third main body portion 331 .
  • the third limiting portion 331 may have a fifth side surface 3311 and a sixth side surface 3312 .
  • the fifth side surface 3311 is the side of the third limiting portion 331 facing away from the housing 10
  • the sixth side surface 3312 is the side of the third limiting portion 331 that is close to the housing 10 .
  • the fourth limiting member 34 may include a fourth main body portion 341 and a fourth limiting portion 342.
  • the fourth main body portion 341 is sleeved on the first rotating shaft 20 and is disposed adjacent to the second main body portion 321.
  • the fourth limiting portion 342 is provided around the periphery of the outer surface of the fourth main body portion 341 .
  • the fourth limiting portion 341 may have a seventh side surface 3421 and an eighth side surface 3422 .
  • the seventh side surface 3421 is the side of the fourth limiting portion 341 that faces away from the housing 10
  • the eighth side surface 3422 is the side of the fourth limiting portion 341 that is close to the housing 10 .
  • the fourth limiting portion 341 is in contact with the second end surface 412 of the first rotor 41 .
  • the structures of the third limiting member 33 and the fourth limiting member 34 may be the same as the structures of the first limiting member 31 shown in FIG. 6 .
  • the second end surface 412 of the first rotor 41 and the fourth end surface 422 of the second rotor 42 may also have limit slots, which are respectively clamped to the third limit member 33 and the fourth limit member 34 through the limit slots.
  • the second end surface 421 of the first rotor 41 may be provided with a third limiting slot 416 , and the notch of the third limiting slot 416 faces the casing 10 , or the second end surface 421 is along the first rotating shaft 20 .
  • the third limiting groove 416 is opened in the axial direction of the .
  • the third limiting portion 331 is clamped in the third limiting slot 416 , so that the third limiting portion 331 can limit the second end surface 412 of the first rotor 41 through the third limiting slot 416 .
  • the third limiting portion 331 is protrudingly disposed on the periphery of the outer surface of the third main body portion 331 , the first rotor 41 is sleeved on the first limiting member 31 and the third limiting member 33 at the same time, and the A limiting member 31 is used to limit the first end surface 411 of the first rotor 41, and the third limiting member 33 is used to limit the second end surface 412 of the first rotor 42.
  • the positioning member 33 When the first rotor 41 is sleeved to the third limit When the positioning member 33 is on, the groove wall of the third limiting groove 416 of the first rotor 41 is in contact with the third limiting portion 331 , and the second end surface 412 of the first rotor 41 is on the third limiting portion of the third limiting member 33 . Under the restriction of the position portion 331 , it cannot move relative to the third position-limiting member 33 , so that the third position-limiting member 33 restricts the second end surface 412 of the first rotor 41 .
  • the fourth end surface 422 of the second rotor 42 may be provided with a fourth limiting slot 426 , and the notch of the fourth limiting slot 426 faces the housing 10 , or the fourth end surface 422 is along the first rotating shaft 20 .
  • the fourth limiting groove 426 is opened in the axial direction of the .
  • the fourth limiting portion 342 is clamped in the fourth limiting slot 426 , so that the fourth limiting slot 426 can limit the fourth limiting slot 426 of the second rotor 42 through the fourth limiting slot 426 .
  • the fourth limiting portion 342 is protruded from the periphery of the outer surface of the fourth main body portion 341 , the second rotor 41 is sleeved on the second limiting member 32 and the fourth limiting member 34 at the same time, and the first The second limiting member 32 is used for limiting the third end surface 421 of the second rotor 42, and the fourth limiting member 34 is used for limiting the fourth end surface 422 of the second rotor 42.
  • the position of the second end surface 412 of the first rotor 41 is restricted by the third limiting member 33 , so that there is a first axial gap between the second end surface 412 of the first rotor 41 and the casing 10 .
  • L1 and the position of the fourth end surface 422 of the second rotor 42 is limited by the fourth limiting member 34 , so that there is a second axial gap L2 between the fourth end surface 422 of the second rotor 42 and the housing 10 .
  • the connecting component 30 may include a tin bronze material, that is, the connecting component 30 may be made of a tin bronze material, and the tin bronze material is a bronze material with tin as the main alloying element, which contains tin The amount is generally between 3 and 14%.
  • the material has the characteristics of corrosion resistance and wear resistance, and has good mechanical properties and technological properties, and can improve the wear resistance of the connecting component 30 .
  • an oil supply channel may be provided on both the first rotating shaft 20 and the connecting assembly 30,
  • the oil supply component located outside the housing 10 supplies refrigeration oil or other oil to the oil supply channel for lubrication and cooling, reducing friction between the connecting assembly 30 and the first rotor assembly 40 and ensuring reliable operation of the compressor 200 .
  • FIG. 10 is a schematic structural diagram of the first rotating shaft in the compressor shown in FIG. 1 .
  • the connecting assembly 30 is provided with a plurality of first oil supply passages 35, and one limiter may be provided with one or more first oil supply passages 36 (for example, the first limiter 31, the second limiter 32, the third limiter Both the limiting member 33 and the fourth limiting member 34 are provided with a first oil supply passage 35), and the first shaft 20 is provided with an oil supply main passage 211 along the axial direction of the first shaft 20, and along the direction perpendicular to the first shaft
  • a plurality of auxiliary oil supply channels 212 communicated with the main oil supply channel 211 are provided in the second direction of the axial direction of
  • the second oil supply passage 21 communicates with the plurality of first oil supply passages 35 through the plurality of auxiliary oil supply passages 212 .
  • the refrigeration oil or other oil can be input into the main oil supply channel 211 of the first rotating shaft 20 through the oil supply component located in the housing 10, and the main oil supply channel 211 can pass the refrigeration oil or other oil through a plurality of
  • the auxiliary oil supply channel 212 flows between the first rotating shaft 20 and the connecting assembly 30 to lubricate and cool the contact surface of the first rotating shaft 20 and the connecting assembly 30 .
  • Refrigerant oil or other oil may flow between the connecting assembly 20 and the first rotor assembly 40 through the plurality of first oil supply passages 35 to lubricate or cool the connecting assembly 20 and the first rotor assembly 40 .
  • the compressor 200 in the embodiment of the present disclosure may further include a second rotating shaft 50 and a second rotor assembly 60 , the second rotating shaft 50 is installed in the casing 10 , and the second rotating shaft 50 is located in the second rotating shaft 50 .
  • the axial direction of the rotating shaft 50 is arranged in parallel with the first rotating shaft 20 .
  • the second rotor assembly 60 may include a third rotor 61 and a fourth rotor 62 coaxially disposed on the second rotating shaft 50 , and the second rotating shaft 50 is configured to drive the second rotor assembly 60 along the distance between the first rotor assembly 40 and the second rotating shaft 50 .
  • the third rotor 61 meshes with the first rotor 41
  • the fourth rotor 62 meshes with the second rotor 42 .
  • the first rotor assembly 20 can be a female rotor assembly
  • the second rotor assembly 60 can be a male rotor assembly
  • the second rotor assembly 60 serving as a male rotor assembly is an active rotor assembly
  • Assembly 40 may be a driven rotor assembly.
  • the second shaft 50 can be connected with a driving component such as a motor
  • the first rotating shaft 50 can be driven to rotate by the driving component
  • the first rotating shaft 50 drives the second rotor assembly 60 to rotate together when rotating
  • the second rotor assembly 60 rotates
  • the first rotor assembly 40 is driven to rotate around the first rotating shaft 20 .
  • the first rotor assembly 40 and the second rotor assembly 60 will move axially under the action of the axial force.
  • the two rotors of the first rotor assembly 40 and the two rotors of the second rotor assembly 60 are dislocated and meshed, and the two rotors of the first rotor assembly 40 and the two rotors of the second rotor assembly 60 interfere with each other, thereby causing the four rotors to be scratched. Even hanged situations occurred.
  • the end face of the third rotor 61 close to the fourth rotor 62 protrudes from the end face of the first rotor 41 close to the second rotor 42
  • the end face of the fourth rotor 62 close to the third rotor 61 protrudes from the end face of the first rotor 41 close to the second rotor 42
  • the second rotor 42 is close to the end face of the first rotor 41 .
  • the embodiment of the present disclosure can ensure that the first rotor 41 and the fourth rotor 62 do not interfere and the second rotor 31 and the third rotor 61 do not interfere.
  • the third rotor 61 may have a fifth end face 611 and a sixth end face 612 arranged opposite to each other, the fifth end face 611 is a side close to the fourth rotor 62 , and the sixth end face 612 is a side away from the fourth rotor 62 , wherein the fifth end face 611 of the third rotor 61 is higher than the first end face 411 of the first rotor 41 in the axial direction of the second rotating shaft 50 , which can ensure that a part of the third rotor 61 is always located between the first rotor 41 and the second rotor 42 in the gap between.
  • the fourth rotor 62 may have a seventh end face 621 and an eighth end face 622 arranged opposite to each other, the seventh end face 621 is a face close to the third rotor 61, and the eighth end face 622 is a face away from the third rotor 61, wherein the fourth rotor
  • the seventh end surface 621 of the 62 is higher than the third end surface 421 of the second rotor 42 in the axial direction of the second rotating shaft 50 , which can ensure that a part of the fourth rotor 62 is always located in the gap between the first rotor 41 and the second rotor 42 Inside.
  • a part of the third rotor 61 located in the first rotor 41 and the second rotor 42 can limit the seventh end face 621 of the fourth rotor 62 , so that the The seventh end surface 621 of the fourth rotor 62 and the first end surface 411 of the first rotor 41 always have a gap without interfering with each other;
  • a part ie, the part higher than the third end surface 421 of the second rotor 31
  • the three end faces 421 always have gaps without interfering with each other.
  • the first rotor assembly 40 is limited by the connecting assembly 30, so that a third axial gap L3 is maintained between the first rotor 41 and the second rotor 42 in the first rotor assembly 40, and this
  • the adjacent end faces of the third rotor 61 and the fourth rotor 62 of the second rotor assembly 60 are higher than the adjacent end faces of the first rotor 41 and the second rotor 42, respectively, thereby ensuring that the first rotor assembly 40 and the In the second rotor assembly 60, the two pairs of rotors located at the diagonal positions do not interfere with each other, so as to avoid the occurrence of scratches and strangulation of the rotors.
  • the fifth end face 611 of the third rotor 61 is engaged with the seventh end face 621 of the fourth rotor 62 , that is, the adjacent end faces of the third rotor 61 and the fourth rotor 62 are engaged.
  • the three rotors 61 and the fourth rotor 62 are arranged to be spaced apart from each other, and the embodiment of the present disclosure can reduce the overall length of the second rotor assembly 60 , thereby reducing the occupation of the inner space of the housing 10 by the second rotor assembly 60 .
  • the third rotor 61 and the fourth rotor 62 are also possible to be spaced apart from each other, as long as it is ensured that the adjacent end faces of the third rotor 61 and the fourth rotor 62 are both located at the first rotor 41 and the fourth rotor 62 .
  • the effect of ensuring that the two pairs of rotors located at the diagonal positions do not interfere with each other can also be achieved.
  • the distance between the fifth end surface 611 of the third rotor 61 in the axial direction of the second rotating shaft 50 and the first end surface 411 of the first rotor 41 is d1 , and d1 may be 0.2mm, 0.3mm, 0.4mm or other smaller value.
  • the distance between the seventh end surface 621 of the fourth rotor 62 and the third end surface 421 of the second rotor 42 in the axial direction of the second rotating shaft 50 is d2, and d2 may be 0.2 mm, 0.3 mm, 0.4 mm or other relatively small distances. small value.
  • the second rotating shaft 50 and the second rotor assembly 60 will move in the axial direction of the second rotating shaft 50 under the influence of the axial force exerted thereon.
  • the amount of movement is D1
  • the amount of axial movement of the second rotor 42 in the direction close to the first rotor 41 is D2
  • the fourth rotor 62 in the housing 10 in the axial direction of the second shaft 50 is close to the third rotor 61
  • the axial movement amount of the first rotor 41 moving in the direction close to the second rotor 42 is D4
  • the second rotor assembly 60 must satisfy: L3>D1+D2, and L3>D3 +D4, so as to ensure that the fifth end face 611 of the third rotor 61 does not interfere with the third end face 612 of the second rotor 42 and the seventh end face 621 of the fourth rotor 62 does not interfere with the first end face 621 of the first rotor 41
  • the end face 411 interferes.
  • the first rotor assembly 40 can move axially and the second rotor assembly 60 can move axially, when the two pairs of rotors located at the diagonal positions move axially toward each other
  • the two pairs of rotors located in the diagonal position can always have a gap or the gap is just zero, so that the two pairs of rotors located in the diagonal position can always have a gap.
  • the rotors do not interfere with each other.
  • the housing 10 also has an accommodating space communicating with the housing 10 for accommodating the first rotating shaft 20 , the connecting assembly 30 , the first rotor assembly 40 , the second rotating shaft 50 and the second rotor assembly 60 .
  • the suction port 11, the first exhaust port 12 and the second exhaust port 13, the suction port 11 is used to transmit the gas outside the casing 10 to the casing when the first rotor assembly 40 and the second rotor assembly 60 are engaged and rotated
  • the accommodating space in the casing 10, the first exhaust port 12 and the second exhaust port 13 are used to compress the gas in the accommodating space of the casing 10 to the casing when the first rotor assembly 40 and the second rotor assembly 60 are engaged and rotated. body 10.
  • the suction port 11 is located at adjacent positions of the first rotor 41 , the second rotor 42 , the third rotor 61 and the fourth rotor 62 , the first end face of the first rotor 41 , the third end face of the second rotor 42 , The fifth end face 611 of the third rotor 61 and the fourth rotor 621 are both suction end faces adjacent to the suction port 11 .
  • the first exhaust port 12 is located at the adjacent positions of the first rotor 41 , the third rotor 61 and the casing 10 .
  • the exhaust end face adjacent to the exhaust port 12; the second exhaust port 13 is located at the adjacent position of the second rotor 42, the fourth rotor 62 and the housing 10, the fourth end face 422 of the second rotor 42, the fourth rotor
  • the eighth end surface 622 of 62 is the exhaust end surface adjacent to the second exhaust port 13 .
  • the intake port 11 is located in the middle of the housing 10 along the axial direction of the first rotating shaft 30
  • the first exhaust port 12 and the second exhaust port 13 are located along the axial direction of the first rotating shaft 20 . both ends of the housing 10.
  • the helical direction of the first rotor 41 and the helical direction of the second rotor 42 are arranged in opposite directions, so that when the first rotor assembly 40 and the second rotor assembly 60 rotate in mesh with each other, the first rotor 41
  • the opposite axial force is generated between the first rotor 41 and the second rotor 42
  • the opposite axial flow is generated between the first rotor 41 and the second rotor 42 . Due to the symmetry of the axial force, the opposite axial forces generated between the first rotor 41 and the second rotor 42 can almost cancel each other out.
  • the first rotor 41 may have a plurality of first helical blades 415
  • the second rotor 42 may have a plurality of second helical blades 425
  • the number of the first helical blades 415 is the same as that of the second helical blades 415.
  • the number of the helical blades 425 is the same, and the helical direction of the first helical blade 415 and the helical direction of the second helical blade 425 can be set in opposite directions, for example, one can be configured as left-handed, and the other can be configured as right-handed, so as to realize the first
  • the spiral directions of the first rotor 41 and the second rotor 42 are opposite.
  • the helical direction of the third rotor 61 and the helical direction of the fourth rotor 62 are also configured to be opposite directions, so that when the first rotor assembly 40 and the second rotor assembly 60 rotate in mesh with each other, the third rotor 61
  • the opposite axial force is generated between the fourth rotor 62 and the fourth rotor 62
  • the opposite axial flow is generated between the third rotor 62 and the second rotor 42 . Due to the symmetry of the axial force, the opposite axial forces generated between the first rotor 41 and the second rotor 42 can almost cancel each other out.
  • the third rotor 61 may have a plurality of third helical blades 613
  • the fourth rotor 62 may have a plurality of fourth helical blades 623
  • the number of the fourth helical blades 623 is the same as the number of the third helical blades 613 .
  • the third rotor 61 may be integrally formed with the second rotating shaft 50, and the fourth rotor 62 may be directly sleeved on the second rotating shaft 50 and fixedly connected to the second rotating shaft 50.
  • the fourth rotor 62 may have a The shaft hole 624 of the second rotating shaft 50 is matched with the shaft hole 624 and the second rotating shaft 50 in a tight fit so that the fourth rotor 63 is sleeved and connected to the second rotating shaft 50 .
  • both the third rotor 61 and the fourth rotor 62 may be integrally formed with the second rotating shaft 50 , or the third rotor 61 and the fourth rotor 62 may be sleeved on the second rotating shaft 520 .
  • the compressor 200 of the embodiment of the present disclosure further includes a thrust bearing 70 , the thrust bearing 70 is arranged on one side of the second rotating shaft 50 , and the third rotor 61 is connected to the first rotor 61 through the thrust bearing 70 .
  • the remaining small amount of axial force between the four rotors 62 is balanced out, so that the forces of the third rotor 61 and the fourth rotor 62 are balanced.
  • the compressor 200 further includes a drive motor 80, and the drive motor 80 is disposed on the other side of the second shaft 50.
  • the second shaft 50 may have a first end portion 51 and a second end portion 52 disposed opposite to each other, and a thrust bearing 70 It is sleeved on the first end portion 51, and the second end portion 52 is drivingly connected with the driving motor 80.
  • the driving motor 80 is configured to drive the second rotating shaft 50 to rotate to drive the second rotor assembly 60 to rotate, and drive the first rotor assembly 40. It rotates around the first rotating shaft 20 together with the connecting assembly 30 .
  • the end face of the third rotor 61 away from the fourth rotor 62 is flush with the end face of the first rotor 41 away from the second rotor 42 in the direction perpendicular to the axial direction of the second rotating shaft 50 ; the fourth rotor 62 The end face away from the third rotor 61 is flush with the end face of the second rotor 42 away from the first rotor 41 in the direction perpendicular to the axial direction of the second rotating shaft 50 .
  • the sixth end face 621 of the third rotor 61 is flush with the second end face 412 of the first rotor 41 in the first direction, that is, the exhaust end face of the third rotor 61 is flush with the first rotor
  • the exhaust end face of the 41 is flush.
  • the eighth end surface 62 of the fourth rotor 62 is flush with the fourth end surface 422 of the second rotor 42 in the first direction, and the exhaust end surface of the fourth rotor 62 is flush with the exhaust end surface of the second rotor 41 .
  • the housing 10 may include a casing 14 , a first bearing seat 15 , and a second bearing seat 1 .
  • the first bearing seat 15 is arranged on the side of the exhaust end face of the first rotor 41 and the third rotor 61 , or a part of the first bearing seat 15 is arranged on the side of the second end face 412 of the first rotor 41 .
  • a part of the bearing housing 15 is provided on the sixth end face 412 side of the third rotor 42 .
  • the first bearing seat 15 is also located between the first rotor 41 and the driving assembly 80 .
  • the first bearing seat 15 is used to carry the first end 51 of the second rotating shaft 50 and the end of the first rotating shaft 20 close to the first rotor 41 . .
  • the second bearing seat 16 is provided on the side of the exhaust end face of the second rotor 42 and the fourth rotor 62, or a part of the second bearing seat 16 is provided on the side of the fourth end face 422 of the second rotor 42.
  • the first bearing seat A part of 15 is provided on the eighth end surface 622 side of the fourth rotor 62 .
  • the second bearing seat 13 is used to carry the second end 52 of the second rotating shaft 30 and the end of the second rotating shaft 20 close to the third rotor 42 .
  • the compressor 200 may further include a first radial bearing 91 and a second radial bearing 92, the first radial bearing 91 is sleeved on the first end 51 of the second rotating shaft 50, and the outer surface of the first radial bearing 91 Fitted with the first bearing seat 15 .
  • the first bearing seat 15 may be provided with an installation groove, and the first radial bearing 91 is installed in the installation groove and abuts with the groove wall of the installation groove.
  • the second radial bearing 92 is sleeved on the second end 52 of the second rotating shaft 50, and the second radial bearing 92 is located on the side of the thrust bearing 70 close to the third rotor 42.
  • the outer surface of the thrust bearing 70 and The outer surfaces of the second radial bearings 92 are all abutted with the second bearing seat 16 .
  • the second bearing seat 16 may also be provided with an installation groove, and both the thrust bearing 70 and the second radial bearing 92 are installed in the installation groove and are in contact with the groove wall of the installation groove.
  • the second radial bearing 92 and the first radial bearing 12 are used for cooperating to balance the radial force of the second rotating shaft 50 .
  • both ends of the first rotating shaft 30 may be respectively fixed on the first bearing seat 15 and the second bearing seat 13 .
  • the third limiting member 33 and the fourth limiting member 34 in the embodiment of the present disclosure can limit the exhaust end face of the first rotor 41 so that there is a gap between the first rotor 41 and the first bearing seat 15 , and the second rotor 42 and the second bearing seat 14 have a gap, which can ensure that the exhaust end face of the first rotor 41 does not collide with the end face of the first bearing seat 15, and that the exhaust end face of the second rotor 42 does not collide with the end face of the second bearing seat 13 , or the exhaust end faces of the two groups of yin and yang rotors are separated from the end faces of the bearing housing.
  • the compressor 200 in one or more of the above embodiments may be applied to an air conditioner.
  • Embodiments of the present disclosure also provide an air conditioner including the compressor 200 as defined in combination with one or more of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

本公开提供一种压缩机和空调,该压缩机(200)包括:壳体(10);第一转轴(20),安装于壳体(10)内;连接组件(30),套设于第一转轴(20)上;以及第一转子组件(40),第一转子组件(40)包括同轴设置于连接组件(30)上的第一转子(41)和第二转子(42),连接组件(30)可承载第一转子(41)和第二转子(42)一起围绕第一转轴(20)旋转;其中,连接组件(30)还被配置为限制第一转子(41)和第二转子(42)的相对位置,以使得第一转子(41)和第二转子(42)之间具有间隙。本公开可以在不增加压缩机的部件数量的情况下,保持第一转子和第二转子之间具有间隙。

Description

压缩机和空调
相关申请的交叉引用
本公开是以CN申请号为202110219948.6,申请日为2021年2月26日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及压缩机技术领域,特别涉及一种压缩机和空调。
背景技术
通常压缩机中布置有一对平行的螺旋转子,该对螺旋转子与壳体内壁形成空间容积。螺旋转子在工作过程中,该容积会周期性的增大和减小。通过合理的设计,使该容积与吸气口和排气口周期性的连通和关闭,从而可以完成吸气、压缩和排气的全过程。目前双压缩机广泛应用于中等冷量范围的制冷空调中。
在螺旋转子在工作过程中,气体在吸气口和排气口的压力不同使得螺旋转子会产生轴向力,其轴向力会使得螺旋转子在壳体内沿螺旋转子的轴向方向移动而使得相对设置的两个螺旋转子的相邻端面碰撞在一起。相关技术中,通常采用在两个螺旋转子之间额外增设止推轴承的方式以阻止两个螺旋转子的相邻端面碰撞到一起,但是额外增设的止推轴承会增加压缩机的部件数量,导致压缩机的体积增大。
发明内容
本公开提供一种压缩机和空调,可以在不增加压缩机的部件数量的情况下,保持第一转子和第二转子之间具有间隙。
本公开提供一种压缩机,其包括:
壳体;
第一转轴,安装于所述壳体内;
连接组件,套设于所述第一转轴上;以及
第一转子组件,所述第一转子组件包括同轴设置于所述连接组件上的第一转子和第二转子,所述连接组件可承载所述第一转子和所述第二转子一起围绕所述第一转轴旋转;
其中,所述连接组件被配置为限制所述第一转子和所述第二转子的相对位置,以使得所述第一转子和所述第二转子之间具有间隙。
本公开一种可选的实施例中,所述第一转子远离所述第二转子的端面与所述壳体靠近所述第一转子的端面具有第一轴向间隙,所述第二转子在远离所述第一转子的端面与所述壳体靠近所述第二转子的端面具有第二轴向间隙,所述连接组件被配置为限制所述第一转 子和所述第二转子之间的间隙大于所述第一轴向间隙,以及所述第一转子和所述第二转子之间的间隙大于所述第二轴向间隙。
本公开一种可选的实施例中,所述压缩机还包括:
第二转轴,安装于所述壳体内;和
第二转子组件,所述第二转子组件包括同轴设置于所述第二转轴上的第三转子和第四转子,所述第二转轴被配置为带动所述第二转子组件沿与所述第一转子组件的转动方向相反的方向转动,所述第三转子与所述第一转子相互啮合,所述第四转子与所述第二转子相互啮合。
本公开一种可选的实施例中,所述第三转子靠近所述第四转子的端面凸出于所述第一转子靠近所述第二转子的端面,且所述第四转子靠近所述第三转子的端面凸出于所述第二转子靠近所述第一转子的端面,以使得所述第一转子与所述第四转子不干涉以及所述第二转子与所述第三转子不干涉。
本公开一种可选的实施例中,所述第三转子与所述第四转子的相邻端面相接合。
本公开一种可选的实施例中,所述第三转子靠近所述第四转子的端面在所述第二转轴的轴向方向上与所述第一转子靠近所述第二转子的端面之间的距离为d1,所述第四转子靠近所述第三转子的端面在所述第二转轴的轴向方向上与所述第二转子靠近所述第一转子的端面之间的距离为d2,所述第二转子组件被配置为满足:d2=d1。
本公开一种可选的实施例中,所述第一转子和所述第二转子之间的间隙为L3,所述第三转子在所述壳体内沿所述第二转轴的轴向方向朝靠近所述第四转子的方向移动的轴向移动量为D1,所述第二转子朝靠近所述第一转子的方向移动的轴向移动量为D2,所述第四转子在所述壳体内沿所述第二转轴的轴向方向朝靠近第三转子的方向移动的轴向移动量为D3,所述第一转子朝靠近所述第二转子的方向移动的轴向移动量为D4,所述第二转子组件被配置为满足:L3≥D1+D2,且L3≥D3+D4。
本公开一种可选的实施例中,所述第一转子、所述第二转子、所述第三转子和所述第四转子的相邻位置处设置有吸气口,所述第一转子、所述第三转子和所述壳体的相邻位置处设置有第一排气口,所述第二转子、所述第四转子和所述壳体的相邻位置处设置有第二排气口。
本公开一种可选的实施例中,所述第一转子的螺旋方向与第二转子的螺旋方向相反,所述第三转子的螺旋方向与所述第四转子的螺旋方向相反。
本公开一种可选的实施例中,所述第三转子与所述第二转轴一体成型,所述第四转子 具有与所述第二转轴配合的轴孔,所述轴孔与所述第二转轴采用紧配合。
本公开一种可选的实施例中,所述压缩机还包括设置在所述第二转轴一侧的止推轴承和设置在所述第二转轴另一侧的电机,所述电机被配置为驱动所述第二转轴转动,以使得所述第二转子组件跟随所述第二转轴转动并带动所述第一转子组件和所述连接组件一起围绕所述第一转轴转动。
本公开一种可选的实施例中,所述第三转子远离所述第四转子的端面在垂直于所述第二转轴的轴向方向的方向上与所述第一转子远离所述第二转子的端面齐平;所述第四转子远离所述第三转子的端面在垂直于所述第二转轴的轴向方向的方向上与所述第二转子远离所述第一转子的端面齐平。
本公开一种可选的实施例中,其中所述连接组件包括均套设在所述第一转轴上且均可围绕所述第一转轴转动的第一限位件和第二限位件,所述第一限位件被配置为限制所述第一转子靠近所述第二转子的端面的位置,所述第二限位件被配置为限制所述第二转子靠近所述第一转子的端面的位置。
本公开一种可选的实施例中,所述第一转子靠近所述第二转子的端面沿所述第一转轴的轴向方向开设有第一限位槽,所述第一限位件包括第一主体部和第一限位部,所述第一主体部套设在所述第一转轴上,所述第一限位部围绕设置在所述第一主体部的外表面周缘且所述第一限位部卡设在所述第一限位槽内;所述第二转子靠近所述第一转子的端面沿所述第一转轴的轴向方向开设有第二限位槽,所述第二限位件包括第二主体部和第二限位部,所述第二主体部套设在第一转轴上且与所述第一主体部相邻设置,所述第二限位部围绕设置在所述第二主体部的外表面周缘且所述第二限位部卡设在所述第二限位槽内。
本公开一种可选的实施例中,所述第一限位部靠近所述第二限位部的端面凸出在所述第一转子靠近所述第二转子的端面的一侧,且所述第二限位部靠近所述第一限位部的端面凸出在所述第二转子靠近所述第一转子的端面的一侧。
本公开一种可选的实施例中,所述第一转子靠近所述第二转子的端面与所述第二转子靠近所述第一转子的端面在所述第一转轴的轴向方向上的距离自所述第一转子组件的轴线至所述第一转子组件的外周缘逐渐增加。
本公开一种可选的实施例中,所述第一限位件包括第一主体部和第一限位部,所述第一主体部套设在所述第一转轴上,所述第一限位部环绕设置在所述第一主体部的外表面周缘,所述第一限位部中背离所述第二转子的一面与所述第一转子靠近所述第二转子的端面抵接;所述第二限位件包括第二主体部和第二限位部,所述第二主体部套设在所述第一转 轴上且与所述第一主体部相邻设置,所述第二限位部环绕设置在所述第二主体部的外表面周缘,所述第二限位部中背离所述第一转子的一面与所述第二转子靠近所述第一转子的端面抵接。
本公开一种可选的实施例中,所述连接组件还包括第三限位件和第四限位件,所述第三限位件被配置为限制所述第一转子远离所述第二转子的端面与所述壳体之间的距离,所述第四限位件被配置为限制所述第二转子远离所述第一转子的端面与所述壳体之间的距离。
本公开一种可选的实施例中,所述第三限位件包括第三主体部和第三限位部,所述第三主体部套设在所述第一转轴上且与所述第一主体部相邻设置,所述第三限位部围绕设置在所述第三主体部的外表面周缘,所述第三限位部与所述第一转子背离所述第二转子的端面抵接;所述第四限位件包括第四主体部和第四限位部,所述第四主体部套设在所述第一转轴上且与所述第二主体部相邻设置,所述第四限位部围绕设置在所述第四主体部的外表面周缘,所述第四限位部与所述第二转子背离所述第一转子的端面抵接。
本公开一种可选的实施例中,所述第一转子远离所述第二转子的端面沿所述第一转轴的轴向方向开设有第三限位槽,所述第三限位件包括第三主体部和第三限位部,所述第三主体部套设在所述第一转轴上且与所述第一主体部相邻设置,所述第三限位部围绕设置在所述第三主体部的外表面周缘且所述第三限位部卡设在所述第三限位槽内;所述第二转子远离所述第一转子的端面沿所述第一转轴的轴向方向开设有第四限位槽,所述第四限位件包括第四主体部和第四限位部,所述第四主体部套设在所述第一转轴上且与所述第二主体部相邻设置,所述第四限位部围绕设置在所述第四主体部的外表面周缘且所述第四限位部卡设在所述第四限位槽内。
本公开一种可选的实施例中,所述连接组件的材料包括锡青铜材料。
本公开一种可选的实施例中,所述第一转轴和所述连接组件均设置有供油流道,位于所述第一转轴上的供油流道与位于所述连接组件上的供油流道连通。
本公开实施还提供一种空调,包括如上所述的压缩机。
本公开实施例通过对连接第一转轴和第一转子组件的连接组件进行改进,使得连接组件可以对第一转子和第二转子之间的相对位置进行限制,并无需额外增加部件即可实现第一转子和第二转子之间保持有间隙,从而确保第一转子和第二转子的相邻端面不互相碰撞。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为申请实施例提供的压缩机的剖面示意图。
图2为图1所示压缩机中第一转轴、第一转子组件以及连接组件的局部结构示意图。
图3为图2所示第一转轴、第一转子组件以及连接组件中A部分的放大结构示意图。
图4为图2所示第一转轴、第一转子组件以及连接组件中B部分的放大结构示意图。
图5为图2所示第一转轴、第一转子组件以及连接组件中C部分的放大结构示意图。
图6为图1所示压缩机中第一限位件的结构示意图。
图7为图6所示的第一限位件沿P-P方向的剖面示意图。
图8为图1所示压缩机中第一转轴、第二转轴、第一转子组件和第二转子组件的立体结构图。
图9为图2所示第一转轴、第一转子组件以及连接组件的第二种结构示意图。
图10为图1所示压缩机中第一转轴的结构示意图。
各附图标记分别代表:
200、压缩机;
10、壳体;11、吸气口;12、第一排气口;13、第二排气口;14、机壳;15、第一轴承座;16、第二轴承座;
20、第一转轴;21、第二供油通道;211、供油主通道;212、供油辅通道;
30、连接组件;31、第一限位件;311、第一主体部;312、第一限位部;3121、第一侧面;3122、第二侧面;313、第一轴孔;32、第二限位件;321、第二主体部;322、第二限位部;3221、第三侧面;3222、第四侧面;323、第二轴孔;33、第三限位件;331、第三主体部;332、第三限位部;3321、第五侧面;3322、第六侧面;34、第四限位件;341、第四主体部;3421、第七侧面;3422、第八侧面;342、第四限位部;35、第一供油通道;
40、第一转子组件;41、第一转子;411、第一端面;412、第二端面;413、第一限位槽;414、第一本体;415、第一螺旋叶;416、第三限位槽;42、第二转子;421、第三端面;422、第四端面;423、第二限位槽;424、第二本体部;425、第二螺旋叶;426、第四限位槽;
50、第二转轴;51、第一端部;52、第二端部;
60、第二转子组件;61、第三转子;611、第五端面;612、第六端面;613、第三螺旋叶;62、第四转子;621、第七端面;622、第八端面;623、第四螺旋叶;
70、止推轴承;
80、驱动电机;
91、第一径向轴承;92、第二径向轴承。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本文中提及“实施例”或“实施方式”意味着,结合实施例或实施方式描述的特定特征、结构或特性可以包含在本公开的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本公开提供一种压缩机。请参阅图1,图1为申请实施例提供的压缩机的第一种部分剖视图。图1所示压缩机200可以是螺杆压缩机,诸如压缩机200为对置螺杆压缩机。需要说明的是,图1所示压缩机200并不限于螺杆压缩机,诸如压缩机200还可以是涡旋压缩机。压缩机200可以包括壳体10、第一转轴20、连接组件30和第一转子组件40。壳体10可以用于容纳第一转轴20的一部分、连接组件30和第一转子组件40。可以理解的是,第一转轴20可以安装在壳体10内,比如第一转轴20可以穿设在壳体10内,且第一转轴20的两端裸露在壳体10外。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
如图1所示,连接组件30可以套设在第一转轴20上,第一转子组件40可以包括第一转子41和第二转子42,第一转子41和第二转子42同轴设置在连接组件30上,连接组件30被配置为承载第一转子40和第二转子42一起围绕第一转轴20转动,以及限制第一转子41和第二转子42之间的相对位置,以使得第一转子41和第二转子42之间具有间隙。其中连接组件可 以为滑动轴承或滚动轴承。
相关技术中,通常采用在第一转子组件40的两个转子之间额外设置间隔物,将两个转子间隔开,保持两个转子在旋转过程中的间隙,然而间隔物需要额外添加,从而增加了压缩机200的部件数量。然而本公开实施例直接在连接第一转轴20和第一转子组件40的连接组件30进行改进,使得连接组件30可以对第一转子41和第二转子42之间的相对位置进行限制,并无需额外增加部件即可实现第一转子41和第二转子42之间保持有间隙,从而确保第一转子41和第二转子42的相邻端面不互相碰撞。如图2至图5所示,图2为图1所示压缩机中第一转轴、第一转子组件以及连接组件的结构示意图,图3为图2所示第一转轴、第一转子组件以及连接组件中A部分的放大结构示意图,图4为图2所示第一转轴、第一转子组件以及连接组件中B部分的放大结构示意图,图5为图2所示第一转轴、第一转子组件以及连接组件中C部分的放大结构示意图。第一转子41可以包括相背设置的第一端面411和第二端面412,第一端面411为第一转子41中靠近第二转子42的端面,第二端面412为第一转子41中远离第二转子42的端面。第二转子42可以包括相背设置的第三端面421和第四端面422,第三端面421为第二转子42中靠近第一转子41的端面,第四端面421为第二转子42中远离第一转子41的端面。
其中,第一端面411与第三端面421相邻且间隔设置,第二端面412与壳体10的一面相邻且间隔设置,第四端面422与壳体10的另一面相对且间隔设置。第一转子41的第二端面412与壳体10靠近第一转子41的端面具有第一轴向间隙L1,第二转子42的第四端面4与壳体10靠近第二转子42的端面具有第二轴向间隙L2,连接组件30被配置为限制第一转子41和第二转子42的相对位置以使得第一转子41的第一端面411和第二转子42的第三端面421之间具有第三轴向间隙L3。
可以理解的是,本公开实施例中,当第一转子41沿第一转轴20的轴向方向朝靠近壳体10中与第一转子41相邻的端面移动时,由于第三轴向间隙L3大于第一轴向间隙L1,故而即使第一转子41的第二端面411与壳体10中与第一转子41相邻的端面抵接时,第一转子41的第一端面411和第二转子42的第三端面421也不会相抵接,即第一转子41和第二转子42之间仍具有间隙。
当第二转子42沿第一转轴20的轴向方向朝靠近壳体10中与第二转子42相邻的端面移动时,由于第三轴向间隙L3大于第二轴向间隙L2,故而即使第二转子42的第四端面421与壳体10中与第二转子42相邻的端面抵接时,第二转子41的第一端面411和第二转子42的第三端面421也不会相抵接,即第一转子41和第二转子42之间仍具有间隙。
示例性的,请继续参阅图2和图4,连接组件30可以包括第一限位件31和第二限位件32,第一限位件31和第二限位件32均套设在第一转轴20上且可围绕第一转轴20转动,第一转子41套设在第一限位件31上且与第一限位件31固定连接,以使得第一转子41可跟随第一限位件31一起围绕第一转轴20转动,其中第一限位件31配置为限制第一转子41靠近第二转子42的端面朝靠近第二转子42移动的移动距离;第二转子42套设在第二限位件32上且与第二限位件32固定连接,以使得第二转子42可跟随第二限位件32一起围绕第一转轴20转动,其中第二限位件32配置为限制第二转子42靠近第一转子41的端面朝靠近第一转子41移动的移动距离。
可以理解的是,第一限位件31被配置为限制第一转子41的第一端面411的位置,第二限位件32被配置为限制第二转子42的第二端面411的位置,第一限位件31和第二限位件32共同配合以使得第一转子41的第一端面411和第二转子42的第三端面421具有所述第三轴向间隙L3。
示例性的,结合图2、图4、图5、图6和图7所示,图6为图1所示压缩机中第一限位件的结构示意图,图7为图6所示的第一限位件沿P-P方向的剖面示意图。第一限位件31可以包括第一主体部311和第一限位部312,第一主体部311套设在第一转轴20上,比如第一主体部311可以设置有第一轴孔313,第一限位件31通过第一轴孔313套设在第一转轴20上。第一主体部311可以为圆环结构,第一限位部312环绕第一主体部311的外表面周缘设置。第一转子41的第一端面411可以设置有第一限位槽413,第一限位槽413的槽口朝向第二转子42,或者说第一端面411沿第一转轴20的轴向方向开设有该第一限位槽413。第一限位部312卡设在第一限位槽413内,以使得第一限位部312可以通过第一限位槽413对第一转子41进行限位。
可以理解的是,第一限位部312凸出设置在第一主体部311的外表面周缘,第一转子41套设到第一限位件31上时,第一转子41的第一限位槽413的槽壁与第一限位部312抵接,第一转子41的第一端面411在第一限位件31的第一限位部312的限制下无法相对于第一限位件31运动,从而实现第一限位件31对第一转子41的第一端面411的限制作用。
其中,第二限位件32的结构可以与第一限位件31的结构相同,比如第二限位件32可以包括第二主体部321和第二限位部322,第二主体部321套设在第一转轴20上,比如第二主体部321可以设置有第二轴孔323,第二限位件32通过第二轴孔313套设在第一转轴20上。第二主体部321可以为圆环结构,第二限位部322环绕第二主体部321的外表面周缘设置。第二转子42的第三端面421可以设置有第二限位槽423,第二限位槽423的 槽口朝向第一转子41,或者说第三端面421沿第一转轴20的轴向方向开设有该第二限位槽423。第二限位部322卡设在第二限位槽423内,以使得第二限位部322可以通过第二限位槽423对第二转子42进行限位。
可以理解的是,第二限位部322凸出设置在第二主体部321的外表面周缘,第二转子42套设到第二限位件32上时,第二转子42的第二限位槽423的槽壁与第二限位部322抵接,第二转子42的第二端面421在第二限位件32的第二限位部322的限制下无法相对于第二限位件32运动,从而实现第二限位件32对第二转子42的第三端面421的限制作用。
本公开实施例中,通过第一限位件31对第一转子41的第一端面411的位置进行限制,以及通过第二限位件32对第二转子42的第三端面421的位置进行限制,从而使得第一转子411的第一端面411和第二转子421的第三端面421之间保持有第三轴向间隙。
请参阅图3和图8,图8为图1所示压缩机中第一转轴、第二转轴、第一转子组件和第二转子组件的立体结构图,第一转子41包括第一本体部414和多个第一螺旋叶415,多个第一螺旋叶415围绕设置在第一本体部414的外表面周缘。第一转子41的第一端面411包括位于第一本体部414上的第一部分和位于靠近第二转子42的一个第一螺旋叶415上的第二部分,第一限位槽413开设在第一部分上。可以理解的是,多个第一螺旋叶415在第一本体部414上自第一端面411朝第二端面412的方向依次排列在第一本体部414上,第一个第一螺旋叶415的端面和第一本体部414靠近第二转子42的端面共同组合成第一端面411。第一限位槽413开设在第一本体部414的端面上。
第二转子42包括第二本体部424和多个第二螺旋叶425,多个第二螺旋叶425围绕设置在第二本体部424的外表面周缘。第二转子42的第三端面421包括位于第二本体部424上的第三部分和位于靠近第一转子42的一个第二螺旋叶425上的第四部分,第二限位槽423开设在第三部分上。可以理解的是,多个第二螺旋叶425在第二本体部424上自第三端面421朝第四端面422的方向依次排列在第二本体部424上,第一个第二螺旋叶425的端面和第二本体部424靠近第一转子42的端面共同组合成第三端面421。第二限位槽423开设在第二本体部424的端面上。
本公开实施例中,第一限位部312可以具有相背设置的第一侧面3121和第二侧面3122,第一侧面3121为第一限位部312中靠近第二限位部322的一面,第二侧面3122为第一限位部312中远离第二限位部322的一面。第二限位部322可以具有相背设置的第三侧面3221和第四侧面3222,第三侧面3221为第二限位部322中靠近第一限位部312的一面,第四侧面3222为第二限位部322中远离第一限位部312的一面。
其中,第一侧面3121设置为凸出在第一转子41的第一端面411的一侧,并且第三侧面3221设置为凸出在第二转子42的第三端面421的一侧。当第一转子41和第二转子42朝彼此靠近的方向运动至第一限位件31和第二限位件32相互抵接时,由于第一限位件31的一部分凸出于第一转子41的端面,第二限位件32的一部分凸出于第二转子42的端面,第一转子41的第一端面411和第一转子41的第一端面411相互间隔设置,可以实现第一转子41和第二转子42之间具有第三轴向间隙L3的效果。其中,第一部分、第二部分、第三部分和第四部分之间共同形成所述第三轴向间隙L3。
需要说明的是,第一限位件31与第一转子41之间的位置关系、第二限位件32与第二转子42之间的位置关系并不限于此。在其他一些实施例中,第一侧面3121在垂直于第一转轴20的轴向方向的方向上与第一部分中除设置有第一限位槽413的其他部分的端面齐平。第三侧面3221在垂直于第一转轴20的轴向方向的方向上与第三部分中除设置有第二限位槽423的其他部分的端面齐平。
其中,第一部分中除开设有第一限位槽413的其他部分均与第三部分中除开设有第二限位槽423的其他部分相抵接,而且第二部分和第四部分相互间隔设置以在第二部分和第四部分之间形成第三轴向间隙L3。
可以理解的是,当第一限位件31与第一转子41以及第二限位件32与第二转子42一起朝相互靠近的方向运动至第一限位件31的第一限位部312和第二限位件322的第二限位部322相互抵接时,由于第一部分中除开设有第一限位槽413的其他部分的端面与第一限位部312的第一侧面3121在垂直于第一转轴20的轴向方向的方向上齐平,而且第三部分中除开设有第二限位槽423的其他部分的端面与第二限位部322的第三侧面3221在垂直于第一转轴20的轴向方向的方向上齐平,故而第一部分中除开设有第一限位槽413的其他部分的端面和第三部分中除开设有第二限位槽423的其他部分的端面叶相互抵接在一起。相比于将第一侧面3121设置为凸出在第一部分中除开设有第一限位槽413的其他部分的一侧,并将第三侧面3221设置为凸出在第三部分中除开设有第二限位槽423的其他部分的一侧,本公开实施例可以减少连接组件30对壳体10内部空间的占用。
还可以理解的是,在第一转子组件40的各个部件的长度固定的情况下,当第一限位件31与第一转子41以及第二限位件32与第二转子42一起朝相互靠近的方向运动至第一限位件31的第一限位部312和第二限位件322的第二限位部322相互抵接时,第一转子41的第一部分中除开设有第一限位槽413的其他部分的端面和第二转子42的第三部分中除开设有第二限位槽423的其他部分的端面之间的间隙越大,第一转子组件40的整体长 度越大,从而使得第一转子组件40对壳体10的内部空间的占用体积越大。
本公开实施例将第一部分中除开设有第一限位槽413的其他部分的端面与第一限位部312的第一侧面3121在垂直于第一转轴20的轴向方向的方向上设置为齐平,而且第三部分中除开设有第二限位槽423的其他部分的端面与第二限位部322的第三侧面3221在垂直于第一转轴20的轴向方向的方向上设置为齐平,以在第一限位件31的第一侧面3121与第二限位件32的第三侧面3221相抵接,最大程度地减小了第一转子组件40的整体长度,从而减小了第一转子组件40对壳体10内部空间的占用。
而且,第一本体部414的端面与第二本体部424的端面相互抵接,第一个第一螺旋叶415的端面和第一个第二螺旋叶425的端面相互间隔设置以在第二部分和第四部分之间形成第三轴向间隙L3,相比于直接将第一转子41的整个端面和第二转子42的整个端面相互间隔设置,本公开实施例既可以使得第一转子41的第一螺旋叶415和第二转子42的第二螺旋叶425不互相干涉,又可以缩小由于设置第三轴向间隙L3的设置而带来的第一转子组件40在壳体10内的长度。
在其他一些实施例中,如图9所示,图9为图2所示第一转轴、第一转子组件以及连接组件的第二种结构示意图。第一转子41未设置有第一限位槽413,第二转子42未设置有第二限位槽423。替代性的,直接将第一转子41的第一端面411与第一限位部312中背离第二转子42的一面抵接,并且将第二转子42的第三端面421与第二限位部322中背离第一转子41的一面抵接,从而实现使得第一转子41和第二转子42之间具有第三轴向间隙L3。可以理解的是,在本公开实施例中,当第一限位件31和第二限位件32相互抵接时,由于第一限位件31的第一限位部312和第二限位件32的第二限位部322的阻隔,使得第一转子41的第一端面411和第二转子42的第三端面421不会抵接到一起,或者说使得第一转子41的第一端面411和第二转子42的第三端面421始终具有间隙。
需要说明的是,在其他实施例中,也可以为第一转子41开设有限位槽,第一转子41通过限位槽与第一限位件31卡接;第二转子42的第三端面421直接与第二限位件32中的第二限位部322抵接。或者第二转子42开设有限位槽,第二转子42通过限位槽与第二限位件32卡接;第一转子41的第一端面411直接与第一限位件31中的第一限位部312抵接。
本公开实施例中,第一限位件31和第二限位件32分开成型为两个部件,在其他实施例中,第一限位件31和第二限位件32也可以一体成型为一个部件。
本申请实施例中,连接组件30、第一转子41和第二转子42可以一起围绕第一转轴20在 壳体10内转动,由于在转动过程中,第一转子41的两侧以及第二转子42的两侧所受到的压力不同而产生沿第一转轴20的轴向方向的轴向力,第一转子41和第二转子42在该轴向力的作用下可能会在第一转轴20的轴向方向上移动,此时如果第一转子41和第二转子42的轴向移动量过大,可能会使得第一转子41与第二转子42产生干涉问题。
基于此,本公开实施例从实际问题出发,通过连接组件30限制第一转子41和第二转子42,使得第一转子41和第二转子42之间的间隙大于第一转子组件40(包括第一转子41和第二转子42)沿第一转轴的轴向方向移动的轴向移动量,从而避免上述问题的出现。
本申请实施例中,将第三轴向间隙L3设置为大于第一轴向间隙L1且大于第二轴向间隙L2,即L3>L1且L3大于L2。其中,第一轴向间隙L1为在第一转轴20的轴向方向上,第一转子41的第二端面412与壳体10中与第一转子41相邻的端面之间的间隙;第二轴向间隙L2为在第一转轴20的轴向方向上,第二转子42的第四端面422与壳体10中与第二转子42相邻端面之间的间隙。请继续参阅图2、图4和图5,本公开实施例的连接组件300还可以包括第三限位件33和第四限位件34,第三限位件33被配置为限制第一转子41的第二端面412与壳体10的距离,以使得第一转子41的第二端面412与壳体10具有第一轴向间隙L1;第四限位件34被配置为限制第二转子42的第四端面422与壳体10的距离,以使得第二转子42的第四端面422与壳体10具有第二轴向间隙L2。
其中,第三限位件33可以包括第三主体部331和第三限位部332,第三主体部331套设在第一转轴20上且与第一主体部311相邻设置,第三限位部332围绕设置在第三主体部331的外表面周缘。第三限位部331可以具有第五侧面3311和第六侧面3312,第五侧面3311为第三限位部331中背离壳体10的一面,第六侧面3312为第三限位部331中靠近壳体10的一面,第五侧面3311与第一转子41的第二端面412抵接。第四限位件34可以包括第四主体部341和第四限位部342,第四主体部341套设在第一转轴20上且与第二主体部321相邻设置,第四限位部342围绕设置在第四主体部341的外表面周缘。第四限位部341可以具有第七侧面3421和第八侧面3422,第七侧面3421为第四限位部341中背离壳体10的一面,第八侧面3422为第四限位部341中靠近壳体10的一面,第四限位部341与第一转子41的第二端面412抵接。
本公开实施例中,第三限位件33、第四限位件34的结构可以均与如图6所示的第一限位件31的结构相同。第一转子41的第二端面412和第二转子42的第四端面422也可以均开设有限位槽,并分别通过限位槽与第三限位件33和第四限位件34卡接。
如图4所示,第一转子41的第二端面421可以设置有第三限位槽416,第三限位槽416的槽口朝向壳体10,或者说第二端面421沿第一转轴20的轴向方向开设有该第三限位槽416。第三限位部331卡设在第三限位槽416内,以使得第三限位部331可以通过第三限位槽416对第一转子41的第二端面412进行限位。可以理解的是,第三限位部331凸出设置在第三主体部331的外表面周缘,第一转子41同时套设在第一限位件31和第三限位件33上,且第一限位件31用于限位第一转子41的第一端面411,第三限位件33用于限位第一转子42的第二端面412,当第一转子41套设到第三限位件33上时,第一转子41的第三限位槽416的槽壁与第三限位部331抵接,第一转子41的第二端面412在第三限位件33的第三限位部331的限制下无法相对于第三限位件33运动,从而实现第三限位件33对第一转子41的第二端面412的限制作用。
如图5所示,第二转子42的第四端面422可以设置有第四限位槽426,第四限位槽426的槽口朝向壳体10,或者说第四端面422沿第一转轴20的轴向方向开设有该第四限位槽426。第四限位部342卡设在第四限位槽426内,以使得第四限位槽426可以通过第四限位槽426对第二转子42的第四限位槽426进行限位。
可以理解的是,第四限位部342凸出设置在第四主体部341的外表面周缘,第二转子41同时套设在第二限位件32和第四限位件34上,且第二限位件32用于限位第二转子42的第三端面421,第四限位件34用于限位第二转子42的第四端面422,当第二转子42套设到第四限位件34上时,第二转子42的第四限位槽426的槽壁与第四限位部342抵接,第二转子42的第四端面422在第四限位件34的第四限位部341的限制下无法相对于第四限位件34运动,从而实现第四限位件34对第二转子42的第四端面422的限制作用。
本公开实施例中,通过第三限位件33对第一转子41的第二端面412的位置进行限制,使得第一转子41的第二端面412与壳体10之间具有第一轴向间隙L1,以及通过第四限位件34对第二转子42的第四端面422的位置进行限制,使得第二转子42的第四端面422与壳体10之间具有第二轴向间隙L2。
由于连接组件30与第一转子组件40同步转动,运行时可能会与第一转子组件40产生轴摩擦而导致连接组件30磨损。为此,本公开实施例中,连接组件30的可以包括锡青铜材料,即连接组件30可以采用锡青铜材料制成,锡青铜材料为一种以锡为主要合金元素的青铜材料,其含锡量一般在3~14%之间。该材料具有耐蚀、耐磨的特性,有较好的力学性能和工艺性能,可以提高连接组件30的耐磨性能。
本公开实施例中,为避免连接组件30与第一转子组件40产生轴摩擦时的摩擦温度过 高,本公开实施例还可以在第一转轴20和连接组件30均设置有供油通道,通过位于壳体10外部的供油部件向供油通道供入冷冻油或其他油进行润滑及降温,减少连接组件30与第一转子组件40的摩擦,保证压缩机200的可靠运行。
示例性的,结合图2和图10所示,图10为图1所示压缩机中第一转轴的结构示意图。连接组件30设置有多个第一供油通道35,一个限位件可以设置有一个或多个第一供油流道36(比如第一限位件31、第二限位件32、第三限位件33和第四限位件34均设置有第一供油通道35),第一转轴20沿第一转轴20的轴向方向设置有供油主通道211,而且沿垂直于第一转轴20的轴向方向的第二方向上设置有与供油主通道211连通的多个供油辅通道212,供油主通道211和多个供油辅通道212共同组成第二供油通道21,第二供油通道21通过多个供油辅通道212与多个第一供油通道35连通。实际运行过程中,可以通过位于壳体10的供油部件可以将冷冻油或其他油输入至第一转轴20的供油主通道211中,供油主通道211将冷冻油或其他油通过多个供油辅通道212流到第一转轴20与连接组件30之间,以对第一转轴20和连接组件30的接触面进行润滑和降温。冷冻油或其他油可以通过多个第一供油通道35流到连接组件20与第一转子组件40之间,以对连接组件20和第一转子组件40进行润滑或降温。
请参阅图1和图8,本公开实施例中的压缩机200还可以包括第二转轴50和第二转子组件60,第二转轴50安装于壳体10内,且第二转轴50在第二转轴50的轴向方向上与第一转轴20平行设置。第二转子组件60可以包括同轴设置于第二转轴50上的第三转子61和第四转子62,第二转轴50被配置为带动第二转子组件60沿与所述第一转子组件40的转动方向相反的方向转动,第三转子61与所述第一转子41相互啮合,第四转子62与第二转子42相互啮合。
可以理解的是,第一转子组件20可以为阴转子组件,第二转子组件60可以为阳转子组件,作为阳转子组件的第二转子组件60为主动转子组件,作为阴转子组件的第一转子组件40可以为从动转子组件。举例而言,第二转轴50可以与驱动组件诸如电机传动连接,第一转轴50可以由驱动组件驱动旋转,第一转轴50在转动时带动第二转子组件60一起转动,第二转子组件60转动时带动第一转子组件40围绕第一转轴20旋转。
在第一转子组件40和第二转子组件60的旋转过程中,由于第一转子组件40和第二转子组件60在轴向力的作用下会产生轴向移动,若移动到第一转子组件40的两个转子和第二转子组件60的两个转子错位啮合,则会出现第一转子组件40的两个转子和第二转子组件60的两个转子相互干涉,从而导致四个转子的擦伤甚至绞死的情况出现。
基于此,本公开实施例中,第三转子61靠近第四转子62的端面凸出于第一转子41靠近第二转子42的端面,且第四转子62靠近第三转子61的端面凸出于第二转子42靠近第一转子41的端面。本公开实施例可以确保第一转子41与第四转子62不干涉以及第二转子31和第三转子61不干涉。
可以理解的是,第三转子61可以具有相背设置的第五端面611和第六端面612,第五端面611为靠近第四转子62的一面,第六端面612为远离第四转子62的一面,其中第三转子61的第五端面611在第二转轴50的轴向方向上高于第一转子41的第一端面411,可以确保第三转子61一部分始终位于第一转子41和第二转子42之间的间隙内。第四转子62可以具有相背设置的第七端面621和第八端面622,第七端面621为靠近第三转子61的一面,第八端面622为远离第三转子61的一面,其中第四转子62的第七端面621在第二转轴50的轴向方向上高于第二转子42的第三端面421,可以确保第四转子62一部分始终位于第一转子41和第二转子42之间的间隙内。第三转子61中位于第一转子41和第二转子42的一部分(即高出第一转子41的第一端面411的部分)可以对第四转子62的第七端面621进行限位,以使得第四转子62的第七端面621与第一转子41的第一端面411始终具有间隙而不互相干涉;与此同时第四转子62中位于第一转子41和第二转子42之间的间隙的一部分(即高出第二转子31的第三端面421的部分)可以对第三转子61的第五端面611进行限位,以使得第三转子61的第五端面611与第二转子42的第三端面421始终具有间隙而不互相干涉。
本公开实施例中,通过连接组件30对第一转子组件40进行限位,使得第一转子组件40中的第一转子41和第二转子42之间保持有第三轴向间隙L3,而且本公开实施例中的第二转子组件60的第三转子61和第四转子62的相邻端面均分别高出第一转子41和第二转子42的相邻端面,从而确保第一转子组件40和第二转子组件60中位于对角位置的两对转子不互相干涉,避免转子的擦伤和绞死的情况出现。
如图1所示,第三转子61的第五端面611和第四转子62的第七端面621相接合,即第三转子61和第四转子62的相邻端面相接合,相比于将第三转子61和第四转子62设置为相互间隔设置,本公开实施例可以缩小第二转子组件60的整体长度,从而减小第二转子组件60对壳体10的内部空间的占用。
当然,在其他一些实施例中,将第三转子61和第四转子62设置为相互间隔设置也是可以的,只要确保第三转子61和第四转子62的相邻端面均位于第一转子41和第二转子42之间的间隙内,也可以实现确保位于对角位置的两对转子不互相干涉的效果。
如图3所示,本公开实施例中,第三转子61的第五端面611在第二转轴50的轴向方向上与第一转子41的第一端面411之间的距离为d1,d1可以为0.2毫米、0.3毫米、0.4毫米或其他较小的数值。第四转子62的第七端面621在第二转轴50的轴向方向上与第二转子42的第三端面421之间的距离为d2,d2可以为0.2毫米、0.3毫米、0.4毫米或其他较小的数值。其中d1=d2,且d1+d2=L3,即第三转子61的第五端面611在第二转轴50的轴向方向上与第一转子41的第一端面411之间的距离与第四转子62的第七端面621在第二转轴50的轴向方向上与第二转子42的第三端面421之间的距离相等,而且两者的距离的总和等于第一转子41和第二转子42之间的第三轴向间隙L3。
在压缩机200的实际工作中,第二转轴50和第二转子组件60会受到施加在其上的轴向力的影响而在第二转轴50的轴向方向移动。
当第三转子61和第四转子62移动时,假设第三转子61在壳体10内沿第二转轴50的轴向方向朝靠近第四转子62的方向移动的轴向移动量移动的轴向移动量为D1,第二转子42朝靠近第一转子41的方向移动的轴向移动量为D2,第四转子62在壳体10内沿第二转轴50的轴向方向朝靠近第三转子61的方向移动的轴向移动量为D3,第一转子41朝靠近第二转子42的方向移动的轴向移动量为D4,第二转子组件60需满足:L3>D1+D2,且L3>D3+D4,这样才可以确保第三转子61的第五端面611不会与第二转子42的第三端面612干涉,以及第四转子62的第七端面621不会与第一转子41的第一端面411干涉。
可以理解的是,当第一转子组件40可以产生轴向移动且第二转子组件60可以产生轴向移动的情况下,当位于对角位置的两对转子朝彼此靠近的方向轴向移动时的轴向移动量的总和小于第一转子41和第二转子42之间的间隙时,可以使得位于对角位置的两对转子始终具有间隙或者刚好间隙为零,进而使得两组位于对角位置的转子不互相干涉。
结合图1和8所示,壳体10还具有与壳体10用于容纳第一转轴20、连接组件30、第一转子组件40、第二转轴50和第二转子组件60的容纳空间连通的吸气口11、第一排气口12和第二排气口13,吸气口11用来在第一转子组件40和第二转子组件60啮合旋转时将壳体10外的气体传输至壳体10内的容纳空间,第一排气口12和第二排气口13用来在第一转子组件40和第二转子组件60啮合旋转时将壳体10的容纳空间内的气体压缩至壳体10外。从而可以实现压缩机200的吸气、压缩和排气的过程。
其中,吸气口11位于第一转子41、第二转子42、第三转子61和第四转子62的相邻位置处,第一转子41的第一端面、第二转子42的第三端面、第三转子61的第五端面611和第四转子621均为与吸气口11相邻的吸气端面。第一排气口12位于第一转子41、第三 转子61和壳体10的相邻位置处,第一转子41的第二端面412、第三转子61的第六端面612均为与第一排气口12相邻的排气端面;第二排气口13位于第二转子42、第四转子62和壳体10的相邻位置处,第二转子42的第四端面422、第四转子62的第八端面622均为与第二排气口13相邻的排气端面。
可以理解的是,吸气口11位于沿第一转轴30的轴向方向的壳体10的中间位置,第一排气口12和第二排气口13位于沿第一转轴20的轴向方向的壳体10的两端。
压缩机200在压缩气体的过程中,由于气体在吸气口和排气口的压力不同而对两对转子组件产生轴向力,形成压缩机运行时的主要载荷。并且轴向力总是由排气口指向吸气口,相关技术中通常采用在转轴的两侧增加止推轴承的方向去平衡该轴向力,但过多的止推轴承导致运行损耗过大,降低压缩机效率。
基于此,本公开实施例中将第一转子41的螺旋方向与第二转子42的螺旋方向配置为相反方向,使得第一转子组件40和第二转子组件60相互啮合旋转时,第一转子41和第二转子42之间产生相反的轴向力,也可以理解为第一转子41和第二转子42之间产生相反的轴向流。由于轴向力的对称性,第一转子41和第二转子42之间产生相反的轴向力几乎可以抵消。
可以理解的是,如上述申请实施例所述,第一转子41可以具有多个第一螺旋叶415,第二转子42具有多个第二螺旋叶425,第一螺旋叶415的数量与第二螺旋叶425的数量相同,可以通过将第一螺旋叶415的螺旋方向与第二螺旋叶425的螺旋方向设置为相反的方向,比如一个可以配置为左旋,另一个可以配置为右旋,实现第一转子41和第二转子42的螺旋方向相反。
而且,本公开实施例中还将第三转子61的螺旋方向与第四转子62的螺旋方向配置为相反方向,使得第一转子组件40和第二转子组件60相互啮合旋转时,第三转子61和第四转子62之间产生相反的轴向力,也可以理解为第三转子62和第二转子42之间产生相反的轴向流。由于轴向力的对称性,第一转子41和第二转子42之间产生相反的轴向力几乎可以抵消。可以理解的是,第三转子61可以具有多个第三螺旋叶613,第四转子62具有多个第四螺旋叶623,第四螺旋叶623的数量与第三螺旋叶613的数量相同,可以通过将第三螺旋叶613的螺旋方向与第四螺旋叶623的螺旋方向设置为相反的方向,比如一个可以配置为左旋,另一个可以配置为右旋,实现第三转子61和第四转子62的螺旋方向相反。
本公开实施例中,第三转子61可以均第二转轴50一体成型,第四转子62可以直接套设 在第二转轴50上且与第二转轴50固定连接,比如第四转子62可以具有与第二转轴50配合的轴孔624,轴孔624与第二转轴50采用紧配合以使得第四转子63套设且连接于第二转轴50上。本公开其他实施例中,第三转子61和第四转子62可以均与第二转轴50一体成型,或者第三转子61和第四转子62可以套设在第二转轴520上。
在实际加工过程中,受加工工艺的影响,无法将第三转子61的螺旋方向与第四转子62的螺旋方向加工到完全相反,即第三转子61与第四转子62之间的轴向力并无法完全抵消。基于此,如图1所示,本公开实施例的压缩机200还包括止推轴承70,止推轴承70设置在第二转轴50的一侧,通过止推轴承70将第三转子61与第四转子62之间的剩余的少量轴向力平衡掉,以使得第三转子61和第四转子62的受力平衡。
压缩机200还包括驱动电机80,驱动电机80设置在第二转轴50的另一侧,比如第二转轴50可以具有相背设置的第一端部51和第二端部52,止推轴承70套设在第一端部51上,第二端部52与驱动电机80传动连接,驱动电机80被配置为驱动第二转轴50转动以带动第二转子组件60转动,并带动第一转子组件40和连接组件30一起围绕第一转轴20转动。
本公开实施例中,第三转子61远离第四转子62的端面在垂直于第二转轴50的轴向方向的方向上与第一转子41远离第二转子42的端面齐平;第四转子62远离第三转子61的端面在垂直于第二转轴50的轴向方向的方向上与第二转子42远离第一转子41的端面齐平。
示例性的,如图8所示,第三转子61的第六端面621在第一方向上与第一转子41的第二端面412齐平,即第三转子61的排气端面与第一转子41的排气端面齐平。第四转子62的第八端面62在第一方向上与第二转子42的第四端面422齐平,及第四转子62的排气端面与第二转子41的排气端面齐平。在第一转子组件40和第二转子组件60的轴向力平衡的情况下,可以确保则阴阳转子的排气端面均与壳体10保持间隙,且阴阳转子的排气端面与壳体10的间隙保持一致。
如图1所示,壳体10可以包括机壳14、第一轴承座15、第二轴承座1。
其中,第一轴承座15设置在第一转子41以及第三转子61的排气端面一侧,或者说第一轴承座15的一部分设置在第一转子41的第二端面412一侧,第一轴承座15的一部分设置在第三转子42的第六端面412一侧。而且第一轴承座15还位于第一转子41和驱动组件80之间,第一轴承座15用于承载第二转轴50的第一端部51和第一转轴20靠近第一转子41的端部。
第二轴承座16设置在第二转子42以及第四转子62的排气端面一侧,或者说第二轴承座16的一部分设置在第二转子42的第四端面422一侧,第一轴承座15的一部分设置在第四转子62的第八端面622一侧。第二轴承座13用于承载第二转轴30的第二端部52和第二转轴20靠近第三转子42的端部。
压缩机200还可以包括第一径向轴承91和第二径向轴承92,第一径向轴承91套设在第二转轴50的第一端部51上,第一径向轴承91的外表面与第一轴承座15相贴合。比如,第一轴承座15可以设置有安装槽,第一径向轴承91安装于安装槽内且与安装槽的槽壁贴合。
第二径向轴承92套设在第二转轴50的第二端部52上,且第二径向轴承92位于止推轴承70靠近第三转子42的一侧,止推轴承70的外表面和第二径向轴承92的外表面均与第二轴承座16相贴合。比如,第二轴承座16也可以设置有安装槽,止推轴承70和第二径向轴承92均安装于安装槽内且均与安装槽的槽壁贴合。第二径向轴承92和第一径向轴承12用于共同配合以平衡第二转轴50的径向力。其中,第一转轴30的两端可以分别固定在第一轴承座15和第二轴承座13上。
本公开实施例的第三限位件33和第四限位件34可以对第一转子41的排气端面进行限位以使得第一转子41与第一轴承座15具有间隙,以及第二转子42与第二轴承座14具有间隙,可以确保第一转子41的排气端面与第一轴承座15的端面不碰撞,以及第二转子42的排气端面与第二轴承座13的端面不碰撞,或者说两组阴阳转子的排气端面均与轴承座端面分离。
以上一种或多种实施例中的压缩机200可以应用于空调中。
本公开实施例还提供一种空调,该空调包括如上一种或多种实施例相结合所界定的压缩机200。
以上对本公开实施例提供的压缩机和空调进行了详细介绍。本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开。同时,对于本领域的技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (23)

  1. 一种压缩机(200),包括:
    壳体(10);
    第一转轴(20),安装于所述壳体(10)内;
    连接组件(30),套设于所述第一转轴(20)上;以及
    第一转子组件(40),所述第一转子组件(40)包括同轴设置于所述连接组件(30)上的第一转子(41)和第二转子(42),所述连接组件(30)可承载所述第一转子(41)和所述第二转子(42)一起围绕所述第一转轴(20)旋转;
    其中,所述连接组件(30)还被配置为限制所述第一转子(41)和所述第二转子(42)的相对位置,以使得所述第一转子(41)和所述第二转子(42)之间具有间隙。
  2. 根据权利要求1所述的压缩机(200),其中所述第一转子(41)远离所述第二转子(42)的端面与所述壳体(10)靠近所述第一转子(41)的端面具有第一轴向间隙,所述第二转子(42)在远离所述第一转子(41)的端面与所述壳体(10)靠近所述第二转子(42)的端面具有第二轴向间隙,所述连接组件(30)被配置为限制所述第一转子(41)和所述第二转子(42)之间的间隙大于所述第一轴向间隙,以及所述第一转子(41)和所述第二转子(42)之间的间隙大于所述第二轴向间隙。
  3. 根据权利要求1或2所述的压缩机(200),还包括:
    第二转轴(50),安装于所述壳体(10)内;和
    第二转子组件(60),所述第二转子组件(60)包括同轴设置于所述第二转轴(50)上的第三转子(61)和第四转子(62),所述第二转轴(50)被配置为带动所述第二转子组件(60)沿与所述第一转子组件(40)的转动方向相反的方向转动,所述第三转子(61)与所述第一转子(41)相互啮合,所述第四转子(62)与所述第二转子(42)相互啮合。
  4. 根据权利要求3所述的压缩机(200),其中所述第三转子(61)靠近所述第四转子(62)的端面凸出于所述第一转子(41)靠近所述第二转子(42)的端面,且所述第四转子(62)靠近所述第三转子(61)的端面凸出于所述第二转子(42)靠近所述第一转子(41)的端面,以使得所述第一转子(41)与所述第四转子(62)不干涉以及所述第二转子(42)与所述第三转子(61)不干涉。
  5. 根据权利要求3或4所述的压缩机(200),其中所述第三转子(61)与所述第四转子(62)的相邻端面相接合。
  6. 根据权利要求3至5任一所述的压缩机(200),其中所述第三转子(61)靠近所述第四转子(62)的端面在所述第二转轴(50)的轴向方向上与所述第一转子(41)靠近所述第二转子(42)的端面之间的距离为d1,所述第四转子(62)靠近所述第三转子(61)的端面在所述第二转轴(50)的轴向方向上与所述第二转子(42)靠近所述第一转子(41)的端面之间的距离为d2,所述第二转子组件(60)被配置为满足:d2=d1。
  7. 根据权利要求3至6任一所述的压缩机(200),其中所述第一转子(41)和所述第二转子(42)之间的间隙为L3,所述第三转子(61)在所述壳体(10)内沿所述第二转轴(50)的轴向方向朝靠近所述第四转子(62)的方向移动的轴向移动量为D1,所述第二转子(42)朝靠近所述第一转子(41)的方向移动的轴向移动量为D2,所述第四转子(62)在所述壳体(10)内沿所述第二转轴(50)的轴向方向朝靠近第三转子(61)的方向移动的轴向移动量为D3,所述第一转子(41)朝靠近所述第二转子(42)的方向移动的轴向移动量为D4,所述第二转子组件(60)被配置为满足:L3≥D1+D2,且L3≥D3+D4。
  8. 根据权利要求3至7任一所述的压缩机(200),其中所述第一转子(41)、所述第二转子(42)、所述第三转子(61)和所述第四转子(62)的相邻位置处设置有吸气口(11),所述第一转子(41)、所述第三转子(61)和所述壳体(10)的相邻位置处设置有第一排气口(12),所述第二转子(42)、所述第四转子(62)和所述壳体(10)的相邻位置处设置有第二排气口(13)。
  9. 根据权利要求3至8任一所述的压缩机(200),其中所述第一转子(41)的螺旋方向与第二转子(42)的螺旋方向相反,所述第三转子(61)的螺旋方向与所述第四转子(62)的螺旋方向相反。
  10. 根据权利要求3至9任一所述的压缩机(200),其中所述第三转子(61)与所述第二转轴(50)一体成型,所述第四转子(62)具有与所述第二转轴(50)配合的轴孔,所述轴孔与所述第二转轴(50)采用紧配合。
  11. 根据权利要求3至10任一所述的压缩机(200),还包括设置在所述第二转轴(50)一侧的止推轴承(70)和设置在所述第二转轴(50)另一侧的电机(80),所述电机(80)被配置为驱动所述第二转轴(50)转动,以使得所述第二转子组件(60)跟随所述第二转轴(50)转动并带动所述第一转子组件(40)和所述连接组件(30)一起围绕所述第一转轴(20)转动。
  12. 根据权利要求3至11任一的压缩机(200),其中所述第三转子(61)远离所述第四转子(62)的端面在垂直于所述第二转轴(50)的轴向方向的方向上与所述第一转子 (41)远离所述第二转子(42)的端面齐平;所述第四转子(62)远离所述第三转子(61)的端面在垂直于所述第二转轴(50)的轴向方向的方向上与所述第二转子(42)远离所述第一转子(41)的端面齐平。
  13. 根据权利要求1至12任一项所述的压缩机(200),其中所述连接组件(30)包括均套设在所述第一转轴(20)上且均可围绕所述第一转轴(20)转动的第一限位件(31)和第二限位件(32),所述第一限位件(31)被配置为限制所述第一转子(41)靠近所述第二转子(42)的端面的位置,所述第二限位件(32)被配置为限制所述第二转子(42)靠近所述第一转子(41)的端面的位置。
  14. 根据权利要求13所述的压缩机(200),其中所述第一转子(41)靠近所述第二转子(42)的端面沿所述第一转轴(20)的轴向方向开设有第一限位槽(413),所述第一限位件(31)包括第一主体部(311)和第一限位部(312),所述第一主体部(311)套设在所述第一转轴(20)上,所述第一限位部(312)围绕设置在所述第一主体部(311)的外表面周缘且所述第一限位部(312)卡设在所述第一限位槽(413)内;
    所述第二转子(42)靠近所述第一转子(41)的端面沿所述第一转轴(20)的轴向方向开设有第二限位槽(423),所述第二限位件(32)包括第二主体部(321)和第二限位部(322),所述第二主体部(321)套设在第一转轴(20)上且与所述第一主体部(311)相邻设置,所述第二限位部(322)围绕设置在所述第二主体部(321)的外表面周缘且所述第二限位部(322)卡设在所述第二限位槽(423)内。
  15. 根据权利要求14所述的压缩机(200),其中所述第一限位部(312)靠近所述第二限位部(322)的端面凸出在所述第一转子(41)靠近所述第二转子(42)的端面的一侧,且所述第二限位部(322)靠近所述第一限位部(312)的端面凸出在所述第二转子(42)靠近所述第一转子(41)的端面的一侧。
  16. 根据权利要求1至15任一所述的压缩机(200),其中所述第一转子(41)靠近所述第二转子(42)的端面与所述第二转子(42)靠近所述第一转子(41)的端面在所述第一转轴(20)的轴向方向上的距离自所述第一转子组件(40)的轴线至所述第一转子组件(40)的外周缘逐渐增加。
  17. 根据权利要求13至16任一所述的压缩机(200),其中所述第一限位件(31)包括第一主体部(311)和第一限位部(312),所述第一主体部(311)套设在所述第一转轴(20)上,所述第一限位部(312)环绕设置在所述第一主体部(311)的外表面周缘,所述第一限位部(312)中背离所述第二转子(42)的一面与所述第一转子(41)靠近所 述第二转子(42)的端面抵接;
    所述第二限位件(32)包括第二主体部(321)和第二限位部(322),所述第二主体部(321)套设在所述第一转轴(20)上且与所述第一主体部(311)相邻设置,所述第二限位部(322)环绕设置在所述第二主体部(321)的外表面周缘,所述第二限位部(322)中背离所述第一转子(41)的一面与所述第二转子(42)靠近所述第一转子(41)的端面抵接。
  18. 根据权利要求13至17任一所述的压缩机(200),其中所述连接组件(30)还包括第三限位件(33)和第四限位件(34),所述第三限位件(33)被配置为限制所述第一转子(41)远离所述第二转子(42)的端面与所述壳体(10)之间的距离,所述第四限位件(34)被配置为限制所述第二转子(42)远离所述第一转子(41)的端面与所述壳体(10)之间的距离。
  19. 根据权利要求18所述的压缩机(200),其中所述第三限位件(33)包括第三主体部(331)和第三限位部(332),所述第三主体部(331)套设在所述第一转轴(20)上且与所述第一主体部(311)相邻设置,所述第三限位部(332)围绕设置在所述第三主体部(331)的外表面周缘,所述第三限位部(332)与所述第一转子(41)背离所述第二转子(42)的端面抵接;
    所述第四限位件(34)包括第四主体部(341)和第四限位部(342),所述第四主体部(341)套设在所述第一转轴(20)上且与所述第二主体部(321)相邻设置,所述第四限位部(342)围绕设置在所述第四主体部(341)的外表面周缘,所述第四限位部(342)与所述第二转子(42)背离所述第一转子(41)的端面抵接。
  20. 根据权利要求18或19所述的压缩机(200),其中所述第一转子(41)远离所述第二转子(42)的端面沿所述第一转轴(20)的轴向方向开设有第三限位槽(416),所述第三限位件(33)包括第三主体部(331)和第三限位部(332),所述第三主体部(331)套设在所述第一转轴(20)上且与所述第一主体部(311)相邻设置,所述第三限位部(332)围绕设置在所述第三主体部(331)的外表面周缘且所述第三限位部(332)卡设在所述第三限位槽(416)内;
    所述第二转子(42)远离所述第一转子(41)的端面沿所述第一转轴(20)的轴向方向开设有第四限位槽(426),所述第四限位件(34)包括第四主体部(341)和第四限位部(342),所述第四主体部(341)套设在所述第一转轴(20)上且与所述第二主体部(321)相邻设置,所述第四限位部(342)围绕设置在所述第四主体部(341)的外表面周缘且所 述第四限位部(342)卡设在所述第四限位槽(426)内。
  21. 根据权利要求1至20任一项所述的压缩机(200),其中所述连接组件(30)的材料包括锡青铜材料。
  22. 根据权利要求1至21任一项所述的压缩机(200),其中所述第一转轴(20)和所述连接组件(30)均设置有供油流道,位于所述第一转轴(20)上的供油流道(211,212)与位于所述连接组件(30)上的供油流道(35)连通。
  23. 一种空调,包括如权利要求1至22任一项所述的压缩机(200)。
PCT/CN2021/126093 2021-02-26 2021-10-25 压缩机和空调 WO2022179144A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023531658A JP2024507620A (ja) 2021-02-26 2021-10-25 圧縮機及び空調装置
US18/267,875 US20240035471A1 (en) 2021-02-26 2021-10-25 Compressor and Air Conditioner
KR1020237017746A KR20230147031A (ko) 2021-02-26 2021-10-25 압축기 및 공조기
EP21927568.2A EP4234935A1 (en) 2021-02-26 2021-10-25 Compressor and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110219948.6A CN112780554A (zh) 2021-02-26 2021-02-26 压缩机和空调
CN202110219948.6 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022179144A1 true WO2022179144A1 (zh) 2022-09-01

Family

ID=75761996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126093 WO2022179144A1 (zh) 2021-02-26 2021-10-25 压缩机和空调

Country Status (6)

Country Link
US (1) US20240035471A1 (zh)
EP (1) EP4234935A1 (zh)
JP (1) JP2024507620A (zh)
KR (1) KR20230147031A (zh)
CN (1) CN112780554A (zh)
WO (1) WO2022179144A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112780554A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机和空调
CN112780555A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 转子组件、压缩机及空调
CN112780560A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 一种转子组件、压缩机及空调机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341951B1 (en) * 2000-05-26 2002-01-29 Industrial Technology Research Institute Combination double screw rotor assembly
CN101793251A (zh) * 2010-03-15 2010-08-04 西安交通大学 一种对称串联式三转子螺杆压缩机
JP2015183572A (ja) * 2014-03-24 2015-10-22 樫山工業株式会社 真空ドライポンプのローターアセンブリおよびドライスクリューポンプ
CN107394914A (zh) * 2017-08-30 2017-11-24 广东威灵电机制造有限公司 电机的转子组件和具有其的电机
CN206785730U (zh) * 2017-04-19 2017-12-22 沈阳鼓风机集团安装检修配件有限公司 一种离心压缩机模型级
CN109751240A (zh) * 2017-11-02 2019-05-14 开利公司 具有非干扰系统的对置式螺杆压缩机
CN111043033A (zh) * 2020-01-06 2020-04-21 珠海格力电器股份有限公司 螺杆压缩机和空调
CN111247343A (zh) * 2017-10-24 2020-06-05 开利公司 用于压缩机的润滑剂供应通道
CN112780554A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机和空调
CN112780556A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机及空调
CN112796999A (zh) * 2021-02-26 2021-05-14 珠海格力电器股份有限公司 压缩机以及空调
CN215256792U (zh) * 2021-02-26 2021-12-21 珠海格力电器股份有限公司 压缩机和空调

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6341951B1 (en) * 2000-05-26 2002-01-29 Industrial Technology Research Institute Combination double screw rotor assembly
CN101793251A (zh) * 2010-03-15 2010-08-04 西安交通大学 一种对称串联式三转子螺杆压缩机
JP2015183572A (ja) * 2014-03-24 2015-10-22 樫山工業株式会社 真空ドライポンプのローターアセンブリおよびドライスクリューポンプ
CN206785730U (zh) * 2017-04-19 2017-12-22 沈阳鼓风机集团安装检修配件有限公司 一种离心压缩机模型级
CN107394914A (zh) * 2017-08-30 2017-11-24 广东威灵电机制造有限公司 电机的转子组件和具有其的电机
CN111247343A (zh) * 2017-10-24 2020-06-05 开利公司 用于压缩机的润滑剂供应通道
CN109751240A (zh) * 2017-11-02 2019-05-14 开利公司 具有非干扰系统的对置式螺杆压缩机
CN111043033A (zh) * 2020-01-06 2020-04-21 珠海格力电器股份有限公司 螺杆压缩机和空调
CN112780554A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机和空调
CN112780556A (zh) * 2021-02-26 2021-05-11 珠海格力电器股份有限公司 压缩机及空调
CN112796999A (zh) * 2021-02-26 2021-05-14 珠海格力电器股份有限公司 压缩机以及空调
CN215256792U (zh) * 2021-02-26 2021-12-21 珠海格力电器股份有限公司 压缩机和空调

Also Published As

Publication number Publication date
JP2024507620A (ja) 2024-02-21
KR20230147031A (ko) 2023-10-20
CN112780554A (zh) 2021-05-11
US20240035471A1 (en) 2024-02-01
EP4234935A1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2022179144A1 (zh) 压缩机和空调
US7226280B1 (en) Roots vacuum pump
KR101227033B1 (ko) 다단식 드라이 펌프
US10975868B2 (en) Compressor with floating seal
CN113389727A (zh) 压缩机以及空调
CN214366711U (zh) 旋转式压缩机
US20200392953A1 (en) Compressor Having Suction Fitting
JP2008514865A (ja) スクリュー圧縮機シール
US20200208632A1 (en) Compressor Having Oldham Keys
CN215256792U (zh) 压缩机和空调
US10858952B2 (en) Variable displacement turbocharger
CN109751240B (zh) 具有非干扰系统的对置式螺杆压缩机
US11421688B2 (en) Vane compressor with elastic member protruding into the cylinder
CN114542507A (zh) 离心压缩机及其叶轮
US20240068475A1 (en) Screw Compressor
WO2022179134A1 (zh) 转子组件、压缩机和空调
CN215256789U (zh) 转子组件、压缩机和空调
CN212803582U (zh) 旋转式压缩机
CN112360742A (zh) 曲轴、泵体结构及压缩机
CN211422901U (zh) 压缩机及具有其的空调器
WO2022000887A1 (zh) 压缩机构及包括该压缩机构的涡旋压缩机
CN215633760U (zh) 压缩机以及空调
CN215633772U (zh) 一种转子组件、压缩机和空调
CN219932390U (zh) 一种卧式压缩机
CN110925192A (zh) 压缩机及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927568

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531658

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021927568

Country of ref document: EP

Effective date: 20230525

WWE Wipo information: entry into national phase

Ref document number: 18267875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE