WO2022178863A1 - 电池系统的检测方法和装置 - Google Patents

电池系统的检测方法和装置 Download PDF

Info

Publication number
WO2022178863A1
WO2022178863A1 PCT/CN2021/078257 CN2021078257W WO2022178863A1 WO 2022178863 A1 WO2022178863 A1 WO 2022178863A1 CN 2021078257 W CN2021078257 W CN 2021078257W WO 2022178863 A1 WO2022178863 A1 WO 2022178863A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
sampling
branch
contactor
voltage
Prior art date
Application number
PCT/CN2021/078257
Other languages
English (en)
French (fr)
Inventor
王文成
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to EP21927299.4A priority Critical patent/EP4283320A4/en
Priority to PCT/CN2021/078257 priority patent/WO2022178863A1/zh
Priority to CN202180007594.7A priority patent/CN114938661A/zh
Publication of WO2022178863A1 publication Critical patent/WO2022178863A1/zh
Priority to US18/456,331 priority patent/US20230400516A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/025Measuring very high resistances, e.g. isolation resistances, i.e. megohm-meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • the present application relates to the field of batteries, and in particular, to a detection method and device for a battery system.
  • the DC voltage of high-voltage battery systems currently used in electric vehicles or hybrid vehicles far exceeds the personal safety voltage.
  • the DC voltage range of high-voltage battery systems is usually 200V-800V, while the personal safety voltage is 60V. Therefore, for safety reasons, it is necessary to perform high voltage detection and insulation detection on the battery system.
  • the high-voltage detection refers to detecting the voltage of the battery pack and the load voltage in the high-voltage battery system
  • the insulation detection refers to detecting the insulation resistance to ground of the two poles of the battery pack in the high-voltage battery system.
  • high-voltage detection and insulation detection need to be electrically isolated, so they are usually designed as two sets of circuits with independent functions, which are complex and occupy a large circuit area.
  • the present application provides a detection method and device for a battery system, which can optimize circuit design.
  • a detection device for a battery system includes: a battery pack, a first contactor, and a second contactor, wherein a first end of the first contactor is connected to the battery pack The positive electrode of the second contactor is connected to the negative electrode of the battery pack, the second end of the first contactor is connected to the first end of the load, and the second contactor is connected to the first end of the load.
  • the second end is used to connect with the second end of the load
  • the detection device includes: a switching unit, including a plurality of switching branches and a plurality of switching switches, each of the multiple switching branches Each switching branch includes a switching resistor, and the multiple switching switches are used to control the multiple switching branches to switch in or out between the following multiple terminals and the reference ground: the positive electrode of the battery pack, the The second end of the first contactor, the negative electrode of the battery pack, and the second end of the second contactor, wherein the reference ground is used to connect the vehicle body ground; the processing unit is used for: detecting the sampling point voltage information of multiple switching branches, the sampling point voltage information is used to indicate the sampling point voltages of the multiple switching branches; and determining high voltage detection information and insulation detection information according to the sampling point voltage information , wherein the high voltage detection information includes at least one of the following: battery pack voltage U bat and load voltage U load , and the insulation detection information includes at least one of the following: the positive electrode-to-ground insulation resistance value R p of the battery pack
  • the detection device of the battery system is provided with a switching unit, and multiple switching branches in the switching unit can flexibly switch in or out between multiple terminals in the battery system and the reference ground.
  • the detection device 200 can detect the voltages of the sampling points of the multiple switching branches in different states, so as to realize the high voltage detection and insulation detection of the battery system. Since the reference grounds of the multiple switching branches in the switching unit are used to connect with the vehicle body ground, the detection device does not need to be electrically isolated for high-voltage detection and insulation detection, and a set of circuits is used to realize the high-voltage detection of the battery system and Insulation testing can optimize circuit design and improve the efficiency of battery system testing.
  • the processing unit is further configured to determine at least one item of the following information according to the voltage information at the sampling point: contact state information of the first contactor, all Contact state information of the second contactor, wherein the contact state information is used to indicate whether the contacts of the contactor are stuck.
  • the detection device can also use the same set of circuits to realize the contact adhesion detection of the contactor of the battery system, thereby further optimizing the circuit design.
  • the switching unit further includes a plurality of sampling branches, and the first end of each sampling branch in the plurality of sampling branches is connected to the plurality of sampling branches.
  • the second end of at least one of the switching branches is connected to the second end, and the second end of each sampling branch of the plurality of sampling branches is connected to the reference ground.
  • Using multiple sampling branches can collect the sampling point voltages of multiple switching branches, and multiple sampling branches can be multiplexed in high voltage detection, insulation detection and contact adhesion detection, thereby optimizing the circuit design.
  • each sampling branch in the plurality of sampling branches includes an up-sampling resistor and a down-sampling resistor, and the first end of the up-sampling resistor is connected to each The first end of the sampling branch is connected to the first end of the up-sampling resistor, the second end of the up-sampling resistor is connected to the first end of the down-sampling resistor, and the second end of the down-sampling resistor is connected to the reference ground, wherein the The voltage at the sampling point of the switching branch is the voltage at the second end of the up-sampling resistor.
  • the multiple switching branches include a first switching branch to a fourth switching branch, and the multiple switching switches include a first switching switch to the fourth switching switch, wherein the first switching branch includes a first switching resistor, and the first switching switch is used to control the first switching branch to switch in or out of the battery pack between the positive pole of the battery and the reference ground; the second switching branch includes a second switching resistor, and the second switching switch is used to control the second switching branch to switch in or out of the battery between the negative pole of the package and the reference ground; the third switching branch includes a third switching resistor, and the third switching switch is used to control the third switching branch to switch in or out of the between the second end of the first contactor and the reference ground; the fourth switching branch includes a fourth switching resistor, and the fourth switching switch is used to control the fourth switching branch to cut in Or cut out between the second end of the second contactor and the reference ground.
  • multiple switching switches and multiple switching branches it can flexibly control multiple switching branches to switch in or out of each battery system for different detection scenarios such as high voltage detection, insulation detection or contact adhesion detection. Between the terminal and the reference ground, the above-mentioned multiple switching switches and multiple switching branches can be reused in different detection scenarios, thereby achieving the purpose of simplifying and optimizing the circuit design.
  • the plurality of sampling branches include a first sampling branch and a second sampling branch, and a first end of the first sampling branch is connected to the first sampling branch.
  • the second end of the switching branch is connected with the second end of the third switching branch; the second end of the second sampling branch is connected with the second end of the second switching branch and the second end of the second sampling branch.
  • the second ends of the fourth switching branch are connected.
  • two sampling branches can be used to realize the sampling point voltage acquisition of the four switching branches, thereby improving the utilization rate of the sampling branches and simplifying the circuit design.
  • the processing unit is specifically configured to: control the plurality of switching switches to be in a first working state, where the first working state is: the first switching The switch and the second switching switch are turned on, and the third switching switch and the fourth switching switch are turned off; when the plurality of switching switches are in the first working state, the detection of the The first sampling point voltage U1 of the first switching branch and the second sampling point voltage U2 of the second switching branch; and, according to the first sampling point voltage U1 and the second sampling point voltage U2 , determine the battery pack voltage U bat .
  • the processing unit controls the on-off of the switching switch and collects the corresponding sampling point voltage for calculation, and the detection device can be used to detect the battery pack voltage U bat of the battery system.
  • the processing unit is specifically configured to determine the battery pack voltage U bat according to the following formula:
  • U p represents the positive voltage of the battery pack
  • Un represents the negative voltage of the battery pack
  • R1 represents the resistance value of the first switching resistor
  • R2 represents the resistance value of the second switching resistor
  • R 11 represents the resistance value of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance value of the down-sampling resistor of the first sampling branch
  • R 21 represents the up-sampling resistor of the second sampling branch
  • the resistance value, R 22 represents the resistance value of the down-sampling resistor of the second sampling branch.
  • the processing unit is specifically configured to: control the plurality of switching switches, the first contactor and the second contactor to be in a second working state,
  • the second working state is: the first switching switch and the second switching switch are turned off, the third switching switch and the fourth switching switch are turned on, and the first contactor is turned on. disconnecting from the second contactor; when the plurality of switching switches, the first contactor and the second contactor are in the second working state, the third switching is detected
  • the third sampling point voltage U3 of the branch and the fourth sampling point voltage U4 of the fourth switching branch and, according to the third sampling point voltage U3 and the fourth sampling point voltage U4, determine the Load voltage U load .
  • the processing unit controls the on-off of the switching switch and the contactor, and collects the corresponding sampling point voltage for calculation.
  • the detection device can be used to detect the load voltage U load of the battery system, thereby improving the detection efficiency of the battery system.
  • the processing unit is specifically configured to determine the load voltage U load according to the following formula:
  • U p ' represents the first terminal voltage of the load
  • Un ' represents the second terminal voltage of the load
  • R3 represents the resistance of the third switching resistor
  • R4 represents the fourth switching resistor
  • R 11 represents the resistance of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance of the down-sampling resistor of the first sampling branch
  • R 21 represents the second sampling branch
  • R 22 represents the resistance of the down-sampling resistor of the second sampling branch.
  • the processing unit is specifically configured to: control the plurality of switching switches to be in a first working state, where the first working state is: the first switching The switch and the second switching switch are turned on, and the third switching switch and the fourth switching switch are turned off; when the plurality of switching switches are in the first working state, detecting The first sampling point voltage U1 of the first switching branch and the second sampling point voltage U2 of the second switching branch; and, controlling the plurality of switching switches to be in a third working state, the The third working state is that the first switching switch is turned on, and the second switching switch to the fourth switching switch are turned off; when the plurality of switching switches are in the third working state Next, detect the fifth sampling point voltage U5 of the first switching branch; determine the battery according to the first sampling point voltage U1, the second sampling point voltage U2 and the fifth sampling point voltage U5 The positive electrode-to-ground insulation resistance value R p of the battery pack, and the negative electrode-to-ground insulation resistance value R n of the battery pack.
  • the processing unit controls the on-off of the switching switch and collects the corresponding sampling point voltage for calculation, and the detection device can be used to perform insulation detection on the battery system, thereby improving the detection efficiency of the battery system.
  • the processing unit is specifically configured to determine the positive electrode-to-ground insulation resistance value R p of the battery pack and the negative electrode-to-ground insulation resistance of the battery pack according to the following formulas Value R n :
  • U p1 represents the positive voltage of the battery pack in the first working state
  • U n1 represents the negative voltage of the battery pack in the first working state
  • U p2 represents the battery pack in the first working state
  • U n2 represents the negative voltage of the battery pack in the third working state
  • R1 represents the resistance of the first switching resistor
  • R2 represents the second switching resistor
  • R 11 represents the resistance of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance of the down-sampling resistor of the first sampling branch
  • R 21 represents the second sampling branch
  • R 22 represents the resistance of the down-sampling resistor of the second sampling branch.
  • the processing unit is further configured to: control the first switching switch to be turned on, and obtain the voltage U c1 of the first end of the first contactor;
  • the third switching switch is turned on, and the voltage U c2 of the second end of the first contactor is obtained; according to U c1 and U c2 , the actual working state of the first contactor is determined; the first contact is obtained
  • the indicated working state of the contactor is the working state of the first contactor indicated by the contactor control signal; according to whether the actual working state and the indicated working state are consistent, the contacting state of the first contactor is obtained. point status information.
  • the processing unit controls the on-off of the switching switch and collects the corresponding sampling point voltage for calculation.
  • the detection device can be used to detect the adhesion of the contactor of the battery system, thereby improving the detection efficiency of the battery system.
  • the battery system includes N battery packs, the battery pack is the first battery pack among the N battery packs, and the battery system further includes The third contactor to the 3N-1th contactor, N ⁇ 2; wherein, the positive pole of the ith battery pack in the N battery packs is connected to the first end of the 3i-3th contactor, and the 3ith battery pack is connected to the first end of the 3i-3th contactor, and the 3ith battery pack
  • the second end of the -3 contactor is used to connect to the first end of the load
  • the negative pole of the i-th battery pack is connected to the first end of the 3i-2 contactor
  • the 3i-2 contactor The second end of the load is connected to the second end of the load
  • a 3i-1 contactor is arranged between the positive electrode of the i-th battery pack and the negative electrode of the i-1-th battery pack, 2 ⁇ i ⁇ N
  • the plurality of switching switches further include the fifth switching switch to the 2N+2 switching switch, and the
  • the switching branch in the switching unit in the detection device of the battery system can be expanded based on the number of battery packs and the connection method in the battery system to be detected, so that a set of circuits can be used to realize the high voltage of the battery system including multiple battery packs Inspection and insulation inspection can optimize circuit design and improve the efficiency of circuit inspection.
  • the plurality of sampling branches include a first sampling branch and a second sampling branch, and the first end of the first sampling branch is connected to the second sampling branch.
  • the second end of the +1 switching branch is connected; the first end of the second sampling branch is connected to the second end of the 2i+2 switching branch.
  • a detection method for a battery system includes: a battery pack, a first contactor and a second contactor, wherein a first end of the first contactor is connected to the battery pack The positive electrode of the second contactor is connected to the negative electrode of the battery pack, the second end of the first contactor is connected to the first end of the load, and the second contactor is connected to the first end of the load.
  • the second end is used for connecting with the second end of the load
  • the method is performed by a detection device
  • the detection device includes a switching unit and a processing unit
  • the processing unit includes a plurality of switching branches and a plurality of switching branches
  • a switch each of the multiple switching branches includes a switching resistor
  • the multiple switching switches are used to control the multiple switching branches to switch in or out of the following
  • the terminal and the reference ground the positive pole of the battery pack, the second end of the first contactor, the negative pole of the battery pack, and the second end of the second contactor, wherein the reference ground is
  • the method includes: the processing unit detects the sampling point voltage information of the plurality of switching branches, and the sampling point voltage information is used to indicate the sampling point voltages of the multiple switching branches.
  • the processing unit determines high-voltage detection information and insulation detection information according to the sampling point voltage information, wherein the high-voltage detection information includes at least one of the following: battery pack voltage U bat and load voltage U load , the insulation detection information It includes at least one of the following: a positive electrode-to-ground insulation resistance value R p of the battery pack and a negative electrode-to-ground insulation resistance value R n of the battery pack.
  • the detection device of the battery system is provided with a switching unit, and multiple switching branches in the switching unit can flexibly switch in or out between multiple terminals in the battery system and the reference ground.
  • the detection device 200 can detect the voltages of the sampling points of the multiple switching branches in different states, so as to realize the high voltage detection and insulation detection of the battery system. Since the reference grounds of the multiple switching branches in the switching unit are used to connect with the vehicle body ground, the detection device does not need to be electrically isolated for high-voltage detection and insulation detection, and a set of circuits is used to realize the high-voltage detection of the battery system and Insulation testing can optimize circuit design and improve the efficiency of battery system testing.
  • the method further includes: the processing unit determines at least one of the following information according to the sampling point voltage information: a contact state of the first contactor information, the contact state information of the second contactor, wherein the contact state information is used to indicate whether the contacts of the contactor are stuck.
  • the switching unit further includes a plurality of sampling branches, and the first end of each sampling branch in the plurality of sampling branches is connected to the plurality of sampling branches.
  • the second end of at least one of the switching branches is connected to the second end, and the second end of each sampling branch of the plurality of sampling branches is connected to the reference ground.
  • each sampling branch in the plurality of sampling branches includes an up-sampling resistor and a down-sampling resistor, and the first end of the up-sampling resistor is connected to each The first end of the sampling branch is connected to the first end of the up-sampling resistor, the second end of the up-sampling resistor is connected to the first end of the down-sampling resistor, and the second end of the down-sampling resistor is connected to the reference ground, wherein the The voltage at the sampling point of the switching branch is the voltage at the second end of the up-sampling resistor.
  • the multiple switching branches include a first switching branch to a fourth switching branch, and the multiple switching switches include a first switching switch to the fourth switching switch, wherein the first switching branch includes a first switching resistor, and the first switching switch is used to control the first switching branch to switch in or out of the battery pack between the positive pole of the battery and the reference ground; the second switching branch includes a second switching resistor, and the second switching switch is used to control the second switching branch to switch in or out of the battery between the negative pole of the package and the reference ground; the third switching branch includes a third switching resistor, and the third switching switch is used to control the third switching branch to switch in or out of the between the second end of the first contactor and the reference ground; the fourth switching branch includes a fourth switching resistor, and the fourth switching switch is used to control the fourth switching branch to cut in Or cut out between the second end of the second contactor and the reference ground.
  • the plurality of sampling branches include a first sampling branch and a second sampling branch, and the first end of the first sampling branch is connected to the first sampling branch.
  • the second end of the switching branch is connected with the second end of the third switching branch; the second end of the second sampling branch is connected with the second end of the second switching branch and the second end of the second sampling branch.
  • the second ends of the fourth switching branch are connected.
  • the processing unit determines the high voltage detection information and the insulation detection information according to the voltage information of the sampling point, including: the processing unit controls the switching switches to be in the first A working state, the first working state is: the first switching switch and the second switching switch are turned on, the third switching switch and the fourth switching switch are turned off; the The processing unit detects the first sampling point voltage U1 of the first switching branch and the second sampling point voltage of the second switching branch when the plurality of switching switches are in the first working state U2; and, the processing unit determines the battery pack voltage U bat according to the first sampling point voltage U1 and the second sampling point voltage U2 .
  • the processing unit determines the battery pack voltage U bat according to the first sampling point voltage U1 and the second sampling point voltage U2 , including: the The processing unit determines the battery pack voltage U bat according to the following formula:
  • U p represents the positive voltage of the battery pack
  • Un represents the negative voltage of the battery pack
  • R1 represents the resistance value of the first switching resistor
  • R2 represents the resistance value of the second switching resistor
  • R 11 represents the resistance value of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance value of the down-sampling resistor of the first sampling branch
  • R 21 represents the up-sampling resistor of the second sampling branch
  • the resistance value, R 22 represents the resistance value of the down-sampling resistor of the second sampling branch.
  • the processing unit determines the high-voltage detection information and the insulation detection information according to the voltage information of the sampling point, including: the processing unit controls the multiple switching switches, the The first contactor and the second contactor are in a second working state, and the second working state is: the first switching switch and the second switching switch are disconnected, and the third switching switch is disconnected.
  • the switch and the fourth switching switch are turned on, and the first contactor and the second contactor are disconnected; the processing unit switches between the plurality of switching switches, the first contactor and the When the second contactor is in the second working state, the third sampling point voltage U3 of the third switching branch and the fourth sampling point voltage U4 of the fourth switching branch are detected; and, The processing unit determines the load voltage U load according to the third sampling point voltage U3 and the fourth sampling point voltage U4 .
  • the processing unit determines the load voltage U load according to the third sampling point voltage U3 and the fourth sampling point voltage U4 , including: the processing The unit determines the load voltage U load according to the following formula:
  • U p ' represents the first terminal voltage of the load
  • Un ' represents the second terminal voltage of the load
  • R3 represents the resistance of the third switching resistor
  • R4 represents the fourth switching resistor
  • R 11 represents the resistance of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance of the down-sampling resistor of the first sampling branch
  • R 21 represents the second sampling branch
  • R 22 represents the resistance of the down-sampling resistor of the second sampling branch.
  • the processing unit determines the high voltage detection information and the insulation detection information according to the voltage information of the sampling point, including: the processing unit controls the switching switches to be in the first A working state, the first working state is: the first switching switch and the second switching switch are turned on, the third switching switch and the fourth switching switch are turned off; the When the plurality of switching switches are in the first working state, the processing unit detects the first sampling point voltage U1 of the first switching branch and the second sampling point of the second switching branch point voltage U2; and, the processing unit controls the plurality of switching switches to be in a third working state, and the third working state is that the first switching switches are turned on, and the second switching switches are connected to the The fourth switching switch is turned off; the processing unit detects the voltage U5 of the fifth sampling point of the first switching branch when the plurality of switching switches are in the third working state; The processing unit determines, according to the first sampling point voltage U1, the second sampling point voltage U2 and the fifth sampling point voltage U5, the positive electrode
  • the processing unit determines the battery pack according to the first sampling point voltage U1 , the second sampling point voltage U2 and the fifth sampling point voltage U5
  • the positive pole-to-ground insulation resistance value R p and the negative pole-to-ground insulation resistance value R n of the battery pack include: the processing unit determining the positive pole-to-ground insulation resistance value R p of the battery pack according to the following formula, all The negative electrode of the battery pack to the ground insulation resistance value R n :
  • U p1 represents the positive voltage of the battery pack in the first working state
  • U n1 represents the negative voltage of the battery pack in the first working state
  • U p2 represents the battery pack in the first working state
  • U n2 represents the negative voltage of the battery pack in the third working state
  • R1 represents the resistance of the first switching resistor
  • R2 represents the second switching resistor
  • R 11 represents the resistance of the up-sampling resistor of the first sampling branch
  • R 12 represents the resistance of the down-sampling resistor of the first sampling branch
  • R 21 represents the second sampling branch
  • R 22 represents the resistance of the down-sampling resistor of the second sampling branch.
  • the method further includes: the processing unit controls the first switching switch to be turned on, and obtains the voltage U c1 of the first end of the first contactor ; the processing unit controls the third switching switch to conduct, and obtains the voltage U c2 of the second end of the first contactor; the processing unit determines the first contactor according to U c1 and U c2 the actual working state of the first contactor; the processing unit obtains the indicated working state of the first contactor, and the indicated working state is the working state of the first contactor indicated by the contactor control signal; the processing unit obtains the working state of the first contactor according to the actual working state Whether the state and the indicated working state are consistent, obtain the contact state information of the first contactor.
  • the battery system includes N battery packs, and the battery pack is the first battery pack among the N battery packs, and the battery system further includes a first battery pack.
  • the plurality of switching switches further include the fifth switching switch to the 2N+2 switching switch, and the multiple switching branches further include the fifth switching branch to the 2N+2 switching branch, wherein, The 2i+1 switching
  • the plurality of sampling branches include a first sampling branch and a second sampling branch, and the first end of the first sampling branch is connected to the 2ith sampling branch.
  • the second end of the +1 switching branch is connected; the first end of the second sampling branch is connected to the second end of the 2i+2 switching branch.
  • a power management system in a third aspect, includes the first aspect or the detection apparatus in any possible implementation manner of the first aspect.
  • an automobile system in a fourth aspect, includes the detection device according to the first aspect or any one of the first aspect.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a detection device 200 according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a detection device 200 according to another embodiment of the present application.
  • FIG. 4 is a flowchart of a high-voltage detection method for a battery pack voltage U bat of a battery system according to an embodiment of the present application
  • FIG. 5 is a flowchart of a high-voltage detection method for a load voltage U load of a battery system according to an embodiment of the present application.
  • FIG. 6 is a flowchart of an insulation detection method for a battery system according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for insulation detection of a battery system according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a method for detecting adhesion of a contactor according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a method for detecting adhesion of a contactor according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a detection apparatus 200 in another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a detection apparatus 200 according to an embodiment of the present application.
  • Contactor refers to a device that can quickly cut off AC and DC main circuits and frequently turn on and off high-current control circuits in electrical engineering.
  • the contactor has a large control capacity, is suitable for frequent operation and long-distance control, and is one of the important components in the automatic control system.
  • Contactors include AC contactors and DC contactors, which can be used in power, distribution and electricity applications.
  • the contactor since the output of the battery system is direct current, the contactor may be a direct current contactor.
  • Battery management system refers to a control system used to monitor and manage battery systems, usually used in power battery system management in electric vehicles. BMS can realize various functions such as battery monitoring, computing, and communication.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • the application scenario includes a battery system 100 and a detection device 200 .
  • the battery system 100 includes a battery pack 110 , a first contactor 101 and a second contactor 102 .
  • the first contactor 101 and the second contactor 102 serve as control switches for the external output of the battery system 100 , that is, control the on-off of the external output circuit of the battery pack 110 .
  • the first end of the first contactor 101 is connected to the positive electrode of the battery pack 110.
  • the second terminal of the first contactor 101 is used to connect to the positive pole of the output terminal of the battery system 100 , or in other words, to connect to the first terminal of the load (not shown in the figure).
  • the first end of the second contactor 102 is connected to the negative electrode of the battery pack 110 .
  • the second terminal of the second contactor 102 is connected to the negative terminal of the output terminal of the battery system 100 , or, in other words, is used to connect to the second terminal of the load.
  • the above-mentioned battery system 100 is a high-voltage battery system. Since it is applied to a high-voltage battery system, the above-mentioned contactor is usually a contactor capable of withstanding high voltage and high current.
  • the various components in the battery system 100 shown in FIG. 1 are only examples.
  • the battery system 100 may further include a plurality of battery packs 110 and a plurality of contactors, and may also include other components not shown in FIG. 1 . shown device or functional block.
  • the battery system 100 in FIG. 1 can be applied to electric vehicles, smart vehicles, or hybrid electric vehicles, and can also be applied to other fields.
  • the detection device 200 is connected to the battery system 100 for realizing high voltage detection and insulation detection in the battery system 100 .
  • the detection device 200 can also realize the contactor adhesion detection of the battery system 100 .
  • the contactor sticking detection refers to detecting whether the contacts in the contactor are sticking. When the mechanical contacts of the contactor are cut off under load, a contact sticking fault may occur, resulting in the failure to cut off the high-voltage output. Therefore, it is also necessary to perform sticking detection on the contacts of the contactor.
  • the detection device 200 may be an independent module, or may be integrated with other functional circuits.
  • the detection device 200 may be integrated in a BMS.
  • High-voltage detection principle It is used to calculate the battery pack voltage U bat or the load voltage U load according to the voltage information collected from the high-voltage battery system.
  • the voltage across the battery pack 110 may refer to the voltage difference between the first end of the first contactor 101 and the first end of the second contactor 102 .
  • the load voltage may refer to a voltage difference between the second terminal of the first contactor 101 and the second terminal of the second contactor 102 .
  • insulation detection is used to respectively detect the positive pole-to-ground insulation resistance R p and the negative pole-to-ground insulation resistance R n of the battery pack 110 .
  • the switching resistance can be switched in or out between the positive electrode (and/or negative electrode) of the battery pack 110 and the ground of the vehicle body, and the positive electrode (and/or negative electrode) of the battery pack 110 can be calculated respectively when the switching resistance is switched in and out.
  • the positive electrode (and/or negative electrode) of the battery pack 110 can be calculated respectively when the switching resistance is switched in and out.
  • the adhesion detection principle of the contactor by comparing the data of the voltage at both ends of the contactor collected by the high-voltage detection, the current working state of the contactor is obtained, and then the current working state of the contactor and the contactor control signal sent by the detection device 200 are judged. Whether the indicated contactor working status is the same. If they are the same, it means that the contacts of the contactor are not stuck; if they are different, it means that the contacts of the contactor are stuck.
  • FIG. 2 is a schematic structural diagram of a detection device 200 according to an embodiment of the present application. As shown in FIG. 2 , the detection device 200 includes a switching unit 201 and a processing unit 202 .
  • the switching unit 201 includes a plurality of switching branches (221-224) and a plurality of switching switches (S1-S4), and each switching branch in the multiple switching branches includes a switching resistance (R1 ). ⁇ R4 ), a plurality of switching switches ( S1 ⁇ S4 ) are used to control a plurality of switching branches to switch in or out between the following terminals and the reference ground: the positive pole of the battery pack 110 , the second pole of the first contactor 101 . Two terminals, the negative terminal of the battery pack 110 , and the second terminal of the second contactor 102 , wherein the reference ground is used to connect the vehicle body ground.
  • the processing unit 202 may send a switching control signal to each of the plurality of switching switches (S1-S4), and the processing unit 202 may control the switching control of each switching switch through the switching control signal. on or off.
  • the processing unit 202 may also send a contactor control signal to the first contactor 101 or the second contactor 102, and the contactor control signal is used to control each contactor to be turned on or off.
  • the embodiments of the present application do not limit the resistance values of the switching resistors ( R1 - R4 ) in the above-mentioned multiple switching branches, and the resistance values of the switching resistors ( R1 - R4 ) may be determined according to practice.
  • the resistance values of the switching resistors ( R1 ⁇ R4 ) can generally be relatively large, such as resistances in the mega-ohm (M ⁇ ) level.
  • switching branch may include one or more switching resistors, and the following description will be made by taking that each switching branch is provided with a switching resistor as an example.
  • the above switching switch may include at least one of the following switching devices: a relay, a photocoupler (photoMOS), and a metal oxide semiconductor field-effect transistor (MOSFET).
  • a relay a photocoupler (photoMOS), and a metal oxide semiconductor field-effect transistor (MOSFET).
  • photoMOS photocoupler
  • MOSFET metal oxide semiconductor field-effect transistor
  • the processing unit 202 is configured to detect sampling point voltage information of the multiple switching branches, and the sampling point voltage information is used to indicate the sampling point voltages of the multiple switching branches.
  • the on-off states of the multiple switching switches (S1-S4) corresponding to the voltage information at the sampling points are also different, or , the sampling point voltage information includes the sampling point voltages of the multiple switching branches when the multiple switching switches (S1-S4) are in different on-off states.
  • the sampling point voltage information includes the sampling point voltages of the multiple switching branches when the multiple switching switches (S1-S4) are in different on-off states.
  • the processing unit 202 is configured to acquire sampling point voltage information from the sampling unit, and determine high voltage detection information and insulation detection information according to the sampling point voltage information, wherein the high voltage detection information includes at least one of the following: battery pack voltage U bat and load voltage U load , the insulation detection information includes at least one of the following: a positive electrode-to-ground insulation resistance value R p of the battery pack 110 and a negative electrode-to-ground insulation resistance value R n of the battery pack 110 .
  • the detection device of the battery system is provided with a switching unit, and multiple switching branches in the switching unit can flexibly switch in or out between multiple terminals in the battery system and the reference ground, Using the above-mentioned multiple switching branches, the detection device 200 can detect the voltages of the sampling points of the multiple switching branches in different states, thereby realizing high voltage detection and insulation detection of the battery system. Since the reference grounds of the multiple switching branches in the switching unit are used to connect with the vehicle body ground, the detection device does not need to be electrically isolated for high-voltage detection and insulation detection, and a set of circuits is used to realize the high-voltage detection of the battery system and Insulation testing can optimize circuit design and improve the efficiency of battery system testing.
  • the processing unit 202 is further configured to determine at least one item of the following information according to the voltage information of the sampling point: the contact state information of the first contactor 101 and the contact state information of the second contactor 102 , wherein the contact state Information is used to indicate whether the contacts of the contactor are stuck.
  • the plurality of switching branches include the first switching branch to the fourth switching branch ( 221 - 224 ), and the multiple switching switches include the first switching switch S1 to the fourth switching branch Switch S4, the above-mentioned multiple switching branches and multiple switching switches are in one-to-one correspondence.
  • the first switching branch 221 includes a first switching resistor R1, the first switching switch S1 is connected in series with the first switching resistor R1, the first end of the first switching branch 221 is connected to the positive electrode of the battery pack 110, and the first switching branch 221 is connected to the positive electrode of the battery pack 110.
  • a switching switch S1 is used to control the first switching branch 221 to switch in or out between the positive electrode of the battery pack 110 and the reference ground.
  • the second switching branch 222 includes a second switching resistor R2, the second switching switch S2 is connected in series with the second switching resistor R2, the first end of the second switching branch 222 is connected to the negative electrode of the battery pack 110, The second switching switch S2 is used to control the second switching branch 222 to switch in or out between the negative electrode of the battery pack 110 and the reference ground.
  • the third switching branch 223 includes a third switching resistor R3, the third switching switch S3 is connected in series with the third switching resistor R3, and the first end of the third switching branch 223 is connected to the second terminal of the first contactor 101.
  • the third switching switch S3 is used to control the third switching branch 223 to cut in or out between the second end of the first contactor 101 and the reference ground.
  • the fourth switching branch 224 includes a fourth switching resistor R4, the fourth switching switch S4 is connected in series with the fourth switching resistor R4, and the first end of the fourth switching branch 224 is connected to the second terminal of the second contactor 102. The terminals are connected, and the fourth switching switch S4 is used to control the fourth switching branch 224 to cut in or out between the second end of the second contactor 102 and the reference ground.
  • the switching unit 201 further includes a plurality of sampling branches ( 2011 , 2012 ), and the plurality of sampling branches are used to provide the sampling point voltages corresponding to the switching branches.
  • the sampling branch may be arranged between multiple switching branches and the reference ground.
  • the first end of each sampling branch of the plurality of sampling branches is connected to the second end of at least one switching branch of the plurality of switching branches, and the second end of each sampling branch is connected to the reference connected to the ground.
  • a plurality of sampling branches including two sampling branches ( 2011 , 2012 ) are taken as an example for illustration, wherein the first end of the first sampling branch 2011 and the first end of the first switching branch 221 The two ends are connected to the second end of the third switching branch 223 .
  • the first end of the second sampling branch 2012 is connected to the second end of the second switching branch 222 and the second end of the fourth switching branch 224 .
  • connection between devices or circuits in the embodiments of the present application may include direct connection and indirect connection, and in the case of indirect connection, other devices may also be provided between the devices or circuits.
  • each of the plurality of sampling branches includes an up-sampling resistor (R 11 , R 21 ) and a down-sampling resistor (R 12 , R 22 ), and the up-sampling resistor ( The first end of R 11 , R 21 ) is connected to the first end of each sampling branch, and the second end of the up-sampling resistor (R 11 , R 21 ) is connected to the first end of the down-sampling resistor (R 12 , R 22 ) The second end of the down-sampling resistor (R 12 , R 22 ) is connected to the reference ground, wherein the voltage of the sampling point of the switching branch is the voltage of the second end of the up-sampling resistor (R 12 , R 22 ).
  • the first switching branch 221 and the third switching branch 223 both correspond to the first sampling branch 2011 .
  • the first switching switch S1 is turned on and the third switching switch S3 is turned off
  • the first switching branch 221 is switched into the circuit, and the sampling point voltage detected by the first sampling branch 2011 is the same as that of the first switching branch.
  • the third switching branch 223 is switched into the circuit, and the sampling point voltage detected by the second sampling branch is the same as the third switching branch.
  • the second switching branch 222 and the fourth switching branch 224 both correspond to the second sampling branch 2012 .
  • the processing unit 202 may calculate the voltage at the terminal corresponding to the switching branch according to the voltage division principle. For example, calculate the voltage at the positive side of the battery pack or the negative side of the battery pack.
  • sampling branch in FIG. 2 is only an example, not a limitation.
  • the sampling branch may also include other implementations, as long as it can realize the function of providing the sampling point voltage of the switching branch.
  • the switching unit 201 in FIG. 2 may include four sampling branches, and the four sampling branches are in one-to-one correspondence with the four switching branches.
  • FIG. 2 is only an example of a specific implementation manner of the detection device 200, and the switching unit 201 may also adopt other implementation manners, as long as it can realize the connection between multiple switching branches and multiple terminals in the battery system
  • the cut-in and cut-out of the switch, and the reference ground of multiple switching branches can be the body ground.
  • Figure 3 below shows yet another implementation of the detection device 200.
  • FIG. 3 is a schematic structural diagram of a detection device 200 according to another embodiment of the present application.
  • the switching branch includes a first switching branch 221 and a second switching branch 222
  • the multiple switching resistors include a first switching resistor R1 and a second switching resistor R2
  • the multiple switching resistors include a first switching resistor R1 and a second switching resistor R2.
  • the switching switch includes a first switching switch S1 and a second switching switch S2, wherein the first switching switch S1 and the second switching switch S2 are single-pole multi-throw switches.
  • the first switching branch 221 includes a first switching resistor R1, the first end of the first switching switch S1 is connected to the first end of the first switching branch 221, and the second end of the first switching switch S1 is connected to the first terminal of the first switching branch 221.
  • the following terminals are connected: the positive electrode of the battery pack 110 , the second end of the first contactor 101 , and the floating terminal (NC).
  • the second switching branch circuit 222 includes a second switching resistance R2, the second end of the second switching switch S2 is connected to the first end of the second switching branch circuit 222, and the second end of the second switching switch S2 is connected to the first end of the second switching branch circuit 222.
  • the following terminals are connected: the negative electrode of the battery pack 110 , the second end of the second contactor 102 , and the floating terminal (NC).
  • the floating terminal may refer to the second end of the switch that is not connected to any potential and is in an off state.
  • FIG. 4 is a flowchart of a high-voltage detection method for a battery pack voltage U bat according to an embodiment of the present application. As shown in Figure 4, the method includes:
  • the processing unit 202 controls a plurality of switching switches to be in a first working state.
  • the first working state is: the first switching switch S1 and the second switching switch S2 are turned on, and the third switching switch S3 and the fourth switching switch are turned on.
  • Switch S4 is open.
  • the processing unit 202 may send a switching control signal to a plurality of switching switches respectively, and the switching control signal is used to control the on-off of each switch.
  • the positive pole of the battery pack is connected to the reference ground through the first switching branch 221
  • the negative pole of the battery pack is connected to the reference ground through the second switching branch 222 .
  • the processing unit 202 detects the first sampling point voltage U1 of the first switching branch 221 and the second sampling point voltage U2 of the second switching branch 222 when the plurality of switching switches are in the first working state .
  • the first sampling point voltage U1 is the voltage at the second end of the up-sampling resistor R 11 in the first sampling branch 2011
  • the second sampling point voltage U2 is the voltage at the second end of the up-sampling resistor R 21 in the second sampling branch 2012 . voltage at the second terminal.
  • the processing unit 202 determines the battery pack voltage U bat according to the first sampling point voltage U1 and the second sampling point voltage U2 .
  • the processing unit 202 can calculate the positive voltage U p and the negative voltage U n of the battery pack according to the voltage division theorem, and further calculate the battery pack voltage U bat , the formula is as follows:
  • U p represents the positive voltage of the battery pack
  • Un represents the negative voltage of the battery pack
  • R1 represents the resistance value of the first switching resistor R1
  • R2 represents the resistance value of the second switching resistor R2
  • R11 represents the first switching resistor R2.
  • R 12 represents the resistance value of the down-sampling resistor R 12 of the first sampling branch 2011
  • R 21 represents the resistance of the up-sampling resistor R 21 of the second sampling branch 2012 value
  • R 22 represents the resistance value of the down-sampling resistor R 22 of the second sampling branch 2012 .
  • FIG. 5 is a flowchart of a high-voltage detection method for a load voltage U load of a battery system according to an embodiment of the present application. As shown in Figure 5, the method includes:
  • the processing unit 202 controls a plurality of switching switches, the first contactor 101 and the second contactor 102 to be in a second working state, and the second working state is: the first switching switch S1 and the second switching switch S2 are disconnected , the third switch S3 and the fourth switch S4 are turned on, and the first contactor 101 and the second contactor 102 are disconnected.
  • the second end of the first contactor 101 is connected to the reference ground through the first switching branch 221
  • the second end of the second contactor 102 is connected to the reference ground through the second switching branch 222 .
  • the processing unit 202 may send a switching control signal to a plurality of switching switches respectively, and the switching control signal is used to control the on-off of each switch.
  • the processing unit 202 may send a contactor control signal to the first contactor 101 and the second contactor 102 to control the first contactor 101 and the second contactor 102 to be in an open state so as to detect the load voltage.
  • the processing unit 202 detects the third sampling point voltage U3 of the third switching branch 223 and the fourth sampling point voltage U4 of the fourth switching branch 224 when the plurality of switching switches are in the second working state .
  • the third sampling point voltage U3 is the voltage of the second end of the up-sampling resistor R 11 in the first sampling branch 2011
  • the fourth sampling point voltage U4 is the voltage of the up-sampling resistor R 21 in the second sampling branch 2012 . voltage at the second terminal.
  • the processing unit 202 determines the load voltage U load according to the third sampling point voltage U3 and the fourth sampling point voltage U4.
  • the processing unit 202 can calculate the first terminal voltage U p ' of the load and the second terminal voltage U n ' of the load according to the voltage division theorem, and further calculate the load voltage U load , the formula is as follows:
  • U p ' represents the first terminal voltage of the load
  • Un ' represents the second terminal voltage of the load
  • R3 represents the resistance value of the third switching resistor R3
  • R4 represents the resistance value of the fourth switching resistor R4
  • R 11 represents the resistance of the up-sampling resistor R 11 of the first sampling branch 2011
  • R 12 represents the resistance of the down-sampling resistor R 12 of the first sampling branch 2011
  • R 21 represents the up-sampling of the second sampling branch 2012
  • the resistance value of the resistor R 21 and R 22 represent the resistance value of the down-sampling resistor R 22 of the second sampling branch 2012 .
  • FIG. 6 is a flowchart of an insulation detection method for a battery system according to an embodiment of the present application. As shown in Figure 6, the method includes:
  • the processing unit 202 controls a plurality of switching switches to be in a first working state.
  • the first working state is: the first switching switch S1 and the second switching switch S2 are turned on, and the third switching switch S3 and the fourth switching switch are turned on. Switch S4 is disconnected;
  • the processing unit 202 detects the first sampling point voltage U1 of the first switching branch 221 and the second sampling point voltage U2 of the second switching branch 222 when the plurality of switching switches are in the first working state .
  • the processing unit 202 controls the plurality of switching switches to be in a third working state.
  • the third working state is that the first switching switch S1 is turned on, and the second switching switch S2 to the fourth switching switch S4 are turned off.
  • the processing unit 202 detects the voltage U5 of the fifth sampling point of the first switching branch 221 when the plurality of switching switches are in the third working state.
  • the processing unit 202 determines the positive electrode-to-ground insulation resistance value Rp of the battery pack and the negative electrode-to-ground insulation resistance value Rn of the battery pack according to the first sampling point voltage U1, the second sampling point voltage U2, and the fifth sampling point voltage U5 .
  • the processing unit 202 can calculate the positive-to-ground insulation resistance value R p of the battery pack and the negative-to-ground insulation resistance value R n of the battery pack according to the voltage division theorem and Kirchhoff’s current theorem.
  • the formulas are as follows:
  • U p1 represents the positive voltage of the battery pack in the first working state
  • U n1 represents the negative electrode voltage of the battery pack in the first working state
  • U p2 represents the positive voltage of the battery pack in the third working state
  • U n2 represents The negative voltage of the battery pack in the third working state
  • R1 represents the resistance value of the first switching resistor R1
  • R2 represents the resistance value of the second switching resistor R2
  • R11 represents the up-sampling resistor R of the first sampling branch 2011 11
  • R 12 represents the resistance of the down-sampling resistor R 12 of the first sampling branch 2011,
  • R 21 represents the resistance of the up-sampling resistor R 21 of the second sampling branch 2012
  • R 22 represents the second sampling branch The resistance value of the down-sampling resistor R22 of the circuit 2012.
  • formula (7) and formula (8) utilize Kirchhoff's current principle, that is, the value of the current flowing from the positive electrode of the battery pack to the ground is equal to the value of the current flowing from the ground to the negative electrode of the battery pack.
  • Equations (9) to (11) utilize the principle of resistive voltage division.
  • Equation (12) utilizes the principle that the battery pack voltage is constant.
  • the processing unit 202 may also control the plurality of switching switches to be in a fourth working state, and the fourth working state includes: the second switching switch S2 is turned on, the first switching switch S1, the The three switch S3 and the fourth switch S4 are turned off.
  • the processing unit 202 may detect the sixth sampling point voltage U6 of the second switching branch 222 when the plurality of switching switches are in the fourth working state. And according to the first sampling point voltage U1, the second sampling point voltage U2 and the sixth sampling point voltage U6, the positive electrode-to-ground insulation resistance value Rp of the battery pack and the negative electrode-to-ground insulation resistance value Rn of the battery pack are determined.
  • the processing unit 202 can calculate R p and R n according to the following formulas.
  • U p1 represents the positive voltage of the battery pack in the first working state
  • U n1 represents the negative electrode voltage of the battery pack in the first working state
  • U p3 represents the positive voltage of the battery pack in the fourth working state
  • U n3 represents The negative voltage of the battery pack in the fourth working state
  • R1 represents the resistance of the first switching resistor R1
  • R2 represents the resistance of the second switching resistor R2
  • R11 represents the up-sampling resistor R of the first sampling branch 2011 11
  • R 12 represents the resistance of the down-sampling resistor R 12 of the first sampling branch 2011,
  • R 21 represents the resistance of the up-sampling resistor R 21 of the second sampling branch 2012
  • R 22 represents the second sampling branch The resistance value of the down-sampling resistor R22 of the circuit 2012.
  • control unit can control multiple switching switches to be in other working states, and obtain corresponding sampling point voltages to calculate all the The positive electrode-to-ground insulation resistance value R p of the battery pack, and the negative electrode-to-ground insulation resistance value R n of the battery pack.
  • FIG. 7 is a flowchart of a method for insulation detection of a battery system according to another embodiment of the present application. As shown in Figure 7, the method includes:
  • the processing unit 202 controls the plurality of switching switches to be in the first working state, that is, the first switching switch S1 and the second switching switch S2 are turned on, and the third switching switch S3 and the fourth switching switch S4 are turned off.
  • the processing unit 202 acquires the first sampling point voltage U1 of the first switching branch 221 and the second sampling point voltage U2 of the second switching branch 222 .
  • the processing unit 202 calculates and obtains the positive voltage U p1 of the battery pack and the negative electrode voltage U n1 of the battery pack based on the voltage division principle according to U1 and U2 .
  • the calculation method of the positive electrode voltage U p1 of the battery pack and the negative electrode voltage U n1 of the battery pack can refer to the relevant description in FIG. 6 , and details are not repeated here.
  • the processing unit 202 judges the sizes of U p1 and U n1 , and if U p1 >U n1 , the second switching switch S2 is turned off, and the states of the remaining switching switches remain unchanged, and S705 is executed; if U p1 ⁇ U n1 , Then, the first switching switch S1 is turned off, and the states of the remaining switching switches remain unchanged, and S706 is executed.
  • the processing unit 202 acquires the voltage U5 of the fifth sampling point of the first switching branch 221, and calculates the positive pole to ground of the battery pack according to U1, U2 and U5 The insulation resistance value R p , and the insulation resistance value R n of the negative electrode of the battery pack to ground.
  • R p and R n can be calculated according to formulas (7) to (12), which will not be repeated here.
  • the processing unit 202 obtains the sixth sampling point voltage U6 of the second switching branch 222, and calculates the positive pole of the battery pack to the ground according to U1, U2 and U6 The insulation resistance value R p , and the insulation resistance value R n of the negative electrode of the battery pack to ground.
  • R p and R n can be calculated according to formulas (13) to (18), which are not repeated here.
  • FIG. 8 is a flowchart of a method for detecting adhesion of a contactor according to an embodiment of the present application. Wherein, in FIG. 8 , the detection of the first contactor 101 is taken as an example for description. As shown in FIG. 8 , the method includes:
  • the processing unit 202 controls the first switching switch S1 to be turned on, and obtains the voltage U c1 of the first terminal of the first contactor 101 .
  • the processing unit 202 controls the third switching switch S3 to be turned on, and obtains the voltage U c2 of the second terminal of the first contactor 101 .
  • the processing unit 202 may obtain the sampling point voltages of the first switching branch 221 and the second switching branch 222 respectively, and calculate U c1 and U c2 by using the voltage division principle.
  • the processing unit 202 determines the actual working state of the first contactor 101 according to U c1 and U c2 .
  • the processing unit 202 may determine the actual working state of the first contactor 101 according to whether U c1 -U c2 is greater than the preset threshold U 0 . If U c1 -U c2 ⁇ U 0 , it is determined that the actual working state of the first contactor 101 is an open state; if U c1 -U c2 ⁇ U 0 , it is determined that the first contactor 101 is in a closed state. Wherein, the size of the preset threshold U 0 can be determined according to practice.
  • the processing unit 202 acquires the indicated working state of the first contactor 101, where the indicated working state is the working state of the first contactor 101 indicated by the contactor control signal.
  • the processing unit 202 determines the contact state information of the first contactor 101 according to whether the actual working state and the indicated working state are consistent.
  • the processing unit 202 determines whether the actual working state of the first contactor 101 is consistent with the indicated working state. If they are consistent, it is determined that the contact state information is that the first contactor 101 does not have contact adhesion; if not, it is determined that the contact state information is that the first contactor 101 has contact adhesion.
  • FIG. 9 is a flowchart of a method for detecting adhesion of a contactor according to an embodiment of the present application.
  • the detection of the first contactor 101 is taken as an example for illustration.
  • the method includes:
  • the processing unit 202 controls the first switching switch S1 to be turned on, and acquires the voltage U c1 of the first terminal of the first contactor 101 .
  • the processing unit 202 controls the third switching switch S3 to be turned on, and obtains the voltage U c2 of the second terminal of the first contactor 101 .
  • the processing unit 202 determines the actual working state of the first contactor 101 according to whether U c1 -U c2 is greater than the preset threshold U 0 .
  • the processing unit 202 determines whether the actual working state of the first contactor 101 is consistent with the working state indicated by the contactor control signal. If they are consistent, it is determined that the first contactor 101 does not have contact adhesion, and the contacts are normal; if not, it is determined that the first contactor 101 has contact adhesion.
  • FIG. 10 is a schematic diagram of a detection apparatus 200 in another embodiment of the present application.
  • the processing unit 202 may further include multiple subunits, so as to implement various steps performed by the processing unit 202 in the foregoing.
  • the processing unit 202 may include a computing unit 2021 , a control unit 2022 , a driving unit 2023 and a sampling unit 2024 .
  • the functions of the above-mentioned units are as follows.
  • Sampling unit 2024 used to collect the voltage information of the sampling points of the switching branch in the switching unit 201, and transmit the acquired voltage information of the sampling points to the calculation unit.
  • Calculation unit 2021 used to perform calculation and logical processing according to the sampling point voltage information collected by the sampling unit 2024.
  • the calculation unit is further configured to acquire information indicating the contactor control signal or the switching control signal from the control unit 2022, and perform calculation and logic processing.
  • Control unit 2022 used to send a contactor control signal or a switching control signal to the drive unit 2023.
  • the contactor control signal is used to control the on-off of the contactor
  • the switching control signal is used to control the on-off of the switch inside the switching unit.
  • Driving unit 2023 used to receive the contactor control signal or the switching control signal sent by the computing unit 2021, and drive the contactor or the switching switch in the switching unit according to the contactor control signal or the switching control signal.
  • each subunit in FIG. 10 may be integrated into an independent module, or may be arranged in different modules.
  • the detection device 200 is described above by taking the battery system including the single battery pack as an example.
  • the detection apparatus 200 in this embodiment of the present application can also be applied to a battery system with multiple battery packs.
  • the detection apparatus 200 applicable to a battery system with multiple battery packs will be described with reference to FIG. 11 .
  • FIG. 11 is a schematic diagram of a detection apparatus 200 according to an embodiment of the present application.
  • the battery system includes N battery packs and a first contactor to a 3N-1th contactor, and the battery pack in FIG. 2 may be the first battery pack among the N battery packs.
  • the positive pole of the i-th battery pack in the N battery packs is connected to the first end of the 3i-3 contactor, the second end of the 3i-3 contactor is used to connect to the first end of the load, and the i-th contactor is connected to the first end of the load.
  • the negative pole of the battery pack is connected to the first terminal of the 3i-2 contactor, the second terminal of the 3i-2 contactor is connected to the second terminal of the load, and the positive pole of the ith battery pack is connected to the i-1th terminal
  • a 3i-1 contactor is arranged between the negative electrodes of each battery pack, N ⁇ 2, 2 ⁇ i ⁇ N.
  • the above-mentioned N battery packs can be flexibly implemented in series, in parallel, or in a combination of series and parallel.
  • the multiple switching switches in the foregoing further include the fifth switching switch to the 2N+2 switching switch
  • the multiple switching branches further include the fifth switching branch to the 2N+2 switching switch branch.
  • the 2i+1 switching branch includes the 2i+1 switching resistor R 2i+1 , and the 2i+1 switching switch S 2i+1 is used to control the 2i+1 switching branch to switch in or out of the 2i+1 switching branch. Between the positive poles of i battery packs and the reference ground;
  • the 2i+2 switching branch includes the 2i+2 switching resistor R 2i+2 , and the 2i+2 switching switch is used to control the 2i+2 switching branch to switch in or out of the negative pole of the i-th battery pack and the reference ground.
  • the first end of the first sampling branch 2011 is connected to the second end of the 2i+1 switching branch; the first end of the second sampling branch 2012 is connected to the second end of the 2i+2 switching branch.
  • the two ends are connected.
  • the battery system in FIG. 11 can flexibly implement various combinations of series, parallel or series-parallel of multiple battery packs, and in combination with the foregoing description, the detection device 200 in FIG. High voltage detection, insulation detection and contact sticking detection of contactors in various combinations of the above.
  • the detection device 200 in FIG. 11 can also be modified appropriately, for example, the connection relationship or the number of the multiple switching branches and the multiple sampling branches can be changed, as long as it can detect the difference in the battery system.
  • the function of the voltage of the terminal is sufficient.
  • the switching branch in the switching unit in the detection device of the battery system can be expanded based on the number of battery packs in the battery system to be detected and the connection method, so that a set of circuits can be used to realize multiple
  • the high voltage detection and insulation detection of the battery system of the battery pack can optimize the circuit design and improve the efficiency of circuit detection.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device may be components.
  • One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet interacting with other systems via signals
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution, and the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

本申请提供了一种用于电池系统的检测方法和装置,能够优化电路设计。该装置包括:投切单元和处理单元。投切单元包括多个投切支路和多个投切开关,多个投切支路中的每个投切支路中包括投切电阻,多个投切开关用于控制多个投切支路切入或切出以下多个端子与参考地之间:电池包的正极、第一接触器的第二端、电池包的负极、第二接触器的第二端,其中,参考地用于连接车身地。处理单元用于:检测多个投切支路的采样点电压信息,采样点电压信息用于指示多个投切支路的采样点电压;以及根据采样点电压信息确定高压检测信息和绝缘检测信息。

Description

电池系统的检测方法和装置 技术领域
本申请涉及电池领域,尤其涉及用于电池系统的检测方法和装置。
背景技术
目前在电动车或混合动力汽车中使用的高压电池系统的直流电压远超过人身安全电压,例如,高压电池系统的直流电压范围通常为200V-800V,而人身安全电压为60V。因此,出于安全考虑,需要对电池系统进行高压检测以及绝缘检测。其中,高压检测是指检测高压电池系统中的电池包电压以及负载电压,绝缘检测是指检测高压电池系统中的电池包的两极的对地绝缘电阻。
但是,在检测高压电池系统的传统方案中,高压检测和绝缘检测需要进行电气隔离,因此通常作为两套独立功能的电路进行设计,电路复杂,并且占用电路面积大。
发明内容
本申请提供一种用于电池系统的检测方法和装置,能够优化电路设计。
第一方面,提供了一种用于电池系统的检测装置,所述电池系统包括:电池包、第一接触器和第二接触器,所述第一接触器的第一端与所述电池包的正极相连,所述第二接触器的第一端与所述电池包的负极相连,所述第一接触器的第二端用于与负载的第一端相连,所述第二接触器的第二端用于与所述负载的第二端相连,所述检测装置包括:投切单元,包括多个投切支路和多个投切开关,所述多个投切支路中的每个投切支路中包括投切电阻,所述多个投切开关用于控制所述多个投切支路切入或切出以下多个端子与参考地之间:所述电池包的正极、所述第一接触器的第二端、所述电池包的负极、所述第二接触器的第二端,其中,所述参考地用于连接车身地;处理单元,用于:检测所述多个投切支路的采样点电压信息,所述采样点电压信息用于指示所述多个投切支路的采样点电压;以及根据所述采样点电压信息确定高压检测信息和绝缘检测信息,其中,所述高压检测信息包括以下至少一项:电池包电压U bat和负载电压U load,所述绝缘检测信息包括以下至少一项:所述电池包的正极对地绝缘电阻值R p和所述电池包的负极对地绝缘电阻值R n
电池系统的检测装置中设置有投切单元,投切单元中的多个投切支路可以灵活地切入或切出电池系统中的多个端子与参考地之间,利用上述多个投切支路,检测装置200可以通过检测多个投切支路在不同状态下的采样点电压,从而实现电池系统的高压检测以及绝缘检测。由于投切单元中的多个投切支路的参考地均用于与车身地相连,因此检测装置内部可以无需针对高压检测和绝缘检测进行电气隔离,利用一套电路实现电池系统的高压检测以及绝缘检测,能够优化电路设计,并提高电池系统检测的效率。
结合第一方面,在一种可能的实现方式中,所述处理单元还用于根据所述采样点电压信息确定以下信息中的至少一项:所述第一接触器的触点状态信息、所述第二接触器的触 点状态信息,其中,所述触点状态信息用于指示接触器的触点是否发生粘连。
除了进行高压检测和绝缘检测之外,检测装置利用同一套电路还可以实现电池系统的接触器的触点粘连检测,从而进一步优化了电路设计。
结合第一方面,在一种可能的实现方式中,所述投切单元还包括多个采样支路,所述多个采样支路中的每个采样支路的第一端与所述多个投切支路中的至少一个投切支路的第二端相连,所述多个采样支路中的每个采样支路的第二端与所述参考地相连。
利用多个采样支路可以采集多个投切支路的采样点电压,并且多个采样支路可以在高压检测、绝缘检测和触点粘连检测中复用,从而优化了电路设计。
结合第一方面,在一种可能的实现方式中,所述多个采样支路中的每个采样支路中包括上采样电阻和下采样电阻,所述上采样电阻的第一端与每个采样支路的第一端相连,所述上采样电阻的第二端与所述下采样电阻的第一端相连,所述下采样电阻的第二端与所述参考地相连,其中,所述投切支路的采样点电压为所述上采样电阻的第二端的电压。
结合第一方面,在一种可能的实现方式中,所述多个投切支路包括第一投切支路至第四投切支路,所述多个投切开关包括第一投切开关至第四投切开关,其中,所述第一投切支路包括第一投切电阻,所述第一投切开关用于控制所述第一投切支路切入或切出所述电池包的正极与所述参考地之间;所述第二投切支路包括第二投切电阻,所述第二投切开关用于控制所述第二投切支路切入或切出所述电池包的负极与所述参考地之间;所述第三投切支路包括第三投切电阻,所述第三投切开关用于控制所述第三投切支路切入或切出所述第一接触器的第二端与所述参考地之间;所述第四投切支路包括第四投切电阻,所述第四投切开关用于控制所述第四投切支路切入或切出所述第二接触器的第二端与所述参考地之间。
利用多个投切开关和多个投切支路,能够针对高压检测、绝缘检测或触点粘连检测等不同的检测场景,灵活地控制多个投切支路切入或切出电池系统中的各个端子和参考地之间,上述多个投切开关和多个投切支路能够复用于不同的检测场景中,从而达到了简化和优化电路设计的目的。
结合第一方面,在一种可能的实现方式中,所述多个采样支路包括第一采样支路和第二采样支路,所述第一采样支路的第一端与所述第一投切支路的第二端以及所述第三投切支路的第二端相连;所述第二采样支路的第二端与所述第二投切支路的第二端以及所述第四投切支路的第二端相连。
通过利用投切开关控制,可以利用两个采样支路实现对四个投切支路的采样点电压采集,从而提高了采样支路的利用率,简化了电路设计。
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于:控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;在所述多个投切开关处于第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat
处理单元通过控制投切开关的通断,并采集相应的采样点电压进行计算,可以利用该检测装置检测电池系统的电池包电压U bat
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于根据以下公式,确定所述电池包电压U bat
U bat=U p-U n
U p=U1×(R1+R 11+R 12)/R 12
U n=U2×(R2+R 21+R 22)R 22
其中,U p表示所述电池包的正极电压,U n表示所述电池包的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于:控制所述多个投切开关、所述第一接触器以及所述第二接触器处于第二工作状态,所述第二工作状态为:所述第一投切开关和所述第二投切开关断开,所述第三投切开关和所述第四投切开关导通,所述第一接触器和所述第二接触器断开;在所述多个投切开关、所述第一接触器以及所述第二接触器处于所述第二工作状态的情况下,检测所述第三投切支路的第三采样点电压U3和所述第四投切支路的第四采样点电压U4;以及,根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load
处理单元通过控制投切开关以及接触器的通断,并采集相应的采样点电压进行计算,可以利用该检测装置检测电池系统的负载电压U load,从而提高电池系统的检测效率。
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于根据以下公式,确定所述负载电压U load
U load=U p’-U n’;
U p’=U3×(R3+R 11+R 12)/R 12
U n’=U4×(R4+R 21+R 22)R 12
其中,U p’表示所述负载的第一端电压,U n’表示所述负载的第二端电压,R3表示所述第三投切电阻的阻值,R4表示所述第四投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于:控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;在所述多个投切开关处于所述第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,控制所述多个投切开关处于第三工作状态,所述第三工作状态为所述第一投切开关导通,所述第二投切开关至所述第四投切开关断开;在所述多个投切开关处于所述第三工作状态的情况下,检测所述第一投切支路的第五采样点电压U5;根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n
处理单元通过控制投切开关的通断,并采集相应的采样点电压进行计算,可以利用该检测装置对电池系统进行绝缘检测,从而提高电池系统的检测效率。
结合第一方面,在一种可能的实现方式中,所述处理单元具体用于根据以下公式,确 定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n:
U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));
U p2/(R p//(R1+R 11+R 12))=-U n2/R n
U p1=U1×(R1+R 11+R 12)/R 12
U n1=U2×(R2+R 21+R 22)/R 22
U p2=U5×(R1+R 11+R 12)/R 12
U n2=U n1-U p1+U p2
其中,U p1表示所述电池包在所述第一工作状态下的正极电压,U n1表示所述电池包在所述第一工作状态下的负极电压,U p2表示所述电池包在所述第三工作状态下的正极电压,U n2表示所述电池包在所述第三工作状态下的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第一方面,在一种可能的实现方式中,处理单元还用于:控制所述第一投切开关导通,并获取所述第一接触器的第一端的电压U c1;控制所述第三投切开关导通,并获取所述第一接触器的第二端的电压U c2;根据U c1和U c2,确定所述第一接触器的实际工作状态;获取所述第一接触器的指示工作状态,所述指示工作状态为接触器控制信号指示的第一接触器的工作状态;根据所述实际工作状态和所述指示工作状态是否一致,获取所述第一接触器的触点状态信息。
处理单元通过控制投切开关的通断,并采集相应的采样点电压进行计算,可以利用该检测装置对电池系统进行接触器粘连检测,从而提高电池系统的检测效率。
结合第一方面,在一种可能的实现方式中,所述电池系统中包括N个电池包,所述电池包为所述N个电池包中的第一个电池包,所述电池系统还包括第三接触器至第3N-1接触器,N≥2;其中,所述N个电池包中的第i个电池包的正极与第3i-3接触器的第一端相连,所述第3i-3接触器的第二端用于与所述负载的第一端相连,所述第i个电池包的负极与第3i-2接触器的第一端相连,所述第3i-2接触器的第二端与所述负载的第二端相连,并且,第i个电池包的正极与第i-1个电池包的负极之间设置有第3i-1接触器,2≤i≤N;所述多个投切开关还包括第五投切开关至第2N+2投切开关,所述多个投切支路还包括第五投切支路至第2N+2投切支路,其中,第2i+1投切支路包括第2i+1投切电阻,第2i+1投切开关用于控制所述第2i+1投切支路切入或切出所述第i个电池包的正极与所述参考地之间;第2i+2投切支路包括第2i+2投切电阻,第2i+2投切开关用于控制所述第2i+2投切支路切入或切出所述第i个电池包的负极与所述参考地之间。
电池系统的检测装置中的投切单元中的投切支路可以基于待检测的电池系统中的电池包数量和连接方式进行扩展,从而利用一套电路实现包括多个电池包的电池系统的高压检测以及绝缘检测,能够优化电路设计,并提高电路检测的效率。
结合第一方面,在一种可能的实现方式中,所述多个采样支路包括第一采样支路和第二采样支路,所述第一采样支路的第一端与所述第2i+1投切支路的第二端相连;所述第二采样支路的第一端与所述第2i+2投切支路的第二端相连。
第二方面,提供了一种用于电池系统的检测方法,所述电池系统包括:电池包、第一 接触器和第二接触器,所述第一接触器的第一端与所述电池包的正极相连,所述第二接触器的第一端与所述电池包的负极相连,所述第一接触器的第二端用于与负载的第一端相连,所述第二接触器的第二端用于与所述负载的第二端相连,所述方法由检测装置执行,所述检测装置包括投切单元和处理单元,所述处理单元包括多个投切支路和多个投切开关,所述多个投切支路中的每个投切支路中包括投切电阻,所述多个投切开关用于控制所述多个投切支路切入或切出以下多个端子与参考地之间:所述电池包的正极、所述第一接触器的第二端、所述电池包的负极、所述第二接触器的第二端,其中,所述参考地用于连接车身地;所述方法包括:所述处理单元检测所述多个投切支路的采样点电压信息,所述采样点电压信息用于指示所述多个投切支路的采样点电压;所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,其中,所述高压检测信息包括以下至少一项:电池包电压U bat和负载电压U load,所述绝缘检测信息包括以下至少一项:所述电池包的正极对地绝缘电阻值R p和所述电池包的负极对地绝缘电阻值R n
电池系统的检测装置中设置有投切单元,投切单元中的多个投切支路可以灵活地切入或切出电池系统中的多个端子与参考地之间,利用上述多个投切支路,检测装置200可以通过检测多个投切支路在不同状态下的采样点电压,从而实现电池系统的高压检测以及绝缘检测。由于投切单元中的多个投切支路的参考地均用于与车身地相连,因此检测装置内部可以无需针对高压检测和绝缘检测进行电气隔离,利用一套电路实现电池系统的高压检测以及绝缘检测,能够优化电路设计,并提高电池系统检测的效率。
结合第二方面,在一种可能的实现方式中,所述方法还包括:所述处理单元根据所述采样点电压信息确定以下信息中的至少一项:所述第一接触器的触点状态信息、所述第二接触器的触点状态信息,其中,所述触点状态信息用于指示接触器的触点是否发生粘连。
结合第二方面,在一种可能的实现方式中,所述投切单元还包括多个采样支路,所述多个采样支路中的每个采样支路的第一端与所述多个投切支路中的至少一个投切支路的第二端相连,所述多个采样支路中的每个采样支路的第二端与所述参考地相连。
结合第二方面,在一种可能的实现方式中,所述多个采样支路中的每个采样支路中包括上采样电阻和下采样电阻,所述上采样电阻的第一端与每个采样支路的第一端相连,所述上采样电阻的第二端与所述下采样电阻的第一端相连,所述下采样电阻的第二端与所述参考地相连,其中,所述投切支路的采样点电压为所述上采样电阻的第二端的电压。
结合第二方面,在一种可能的实现方式中,所述多个投切支路包括第一投切支路至第四投切支路,所述多个投切开关包括第一投切开关至第四投切开关,其中,所述第一投切支路包括第一投切电阻,所述第一投切开关用于控制所述第一投切支路切入或切出所述电池包的正极与所述参考地之间;所述第二投切支路包括第二投切电阻,所述第二投切开关用于控制所述第二投切支路切入或切出所述电池包的负极与所述参考地之间;所述第三投切支路包括第三投切电阻,所述第三投切开关用于控制所述第三投切支路切入或切出所述第一接触器的第二端与所述参考地之间;所述第四投切支路包括第四投切电阻,所述第四投切开关用于控制所述第四投切支路切入或切出所述第二接触器的第二端与所述参考地之间。
结合第二方面,在一种可能的实现方式中,所述多个采样支路包括第一采样支路和第二采样支路,所述第一采样支路的第一端与所述第一投切支路的第二端以及所述第三投切 支路的第二端相连;所述第二采样支路的第二端与所述第二投切支路的第二端以及所述第四投切支路的第二端相连。
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:所述处理单元控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;所述处理单元在所述多个投切开关处于第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,所述处理单元根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat,包括:所述处理单元根据以下公式,确定所述电池包电压U bat
U bat=U p-U n
U p=U1×(R1+R 11+R 12)/R 12
U n=U2×(R2+R 21+R 22)R 22
其中,U p表示所述电池包的正极电压,U n表示所述电池包的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:所述处理单元控制所述多个投切开关、所述第一接触器以及所述第二接触器处于第二工作状态,所述第二工作状态为:所述第一投切开关和所述第二投切开关断开,所述第三投切开关和所述第四投切开关导通,所述第一接触器和所述第二接触器断开;所述处理单元在所述多个投切开关、所述第一接触器以及所述第二接触器处于所述第二工作状态的情况下,检测所述第三投切支路的第三采样点电压U3和所述第四投切支路的第四采样点电压U4;以及,所述处理单元根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load,包括:所述处理单元根据以下公式,确定所述负载电压U load
U load=U p’-U n’;
U p’=U3×(R3+R 11+R 12)/R 12
U n’=U4×(R4+R 21+R 22)R 12
其中,U p’表示所述负载的第一端电压,U n’表示所述负载的第二端电压,R3表示所述第三投切电阻的阻值,R4表示所述第四投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:所述处理单元控制所述多个投切开关处于第一工 作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;所述处理单元在所述多个投切开关处于所述第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,所述处理单元控制所述多个投切开关处于第三工作状态,所述第三工作状态为所述第一投切开关导通,所述第二投切开关至所述第四投切开关断开;所述处理单元在所述多个投切开关处于所述第三工作状态的情况下,检测所述第一投切支路的第五采样点电压U5;所述处理单元根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n
结合第二方面,在一种可能的实现方式中,所述处理单元根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n,包括:所述处理单元根据以下公式,确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n:
U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));
U p2/(R p//(R1+R 11+R 12))=-U n2/R n
U p1=U1×(R1+R 11+R 12)/R 12
U n1=U2×(R2+R 21+R 22)/R 22
U p2=U5×(R1+R 11+R 12)/R 12
U n2=U n1-U p1+U p2
其中,U p1表示所述电池包在所述第一工作状态下的正极电压,U n1表示所述电池包在所述第一工作状态下的负极电压,U p2表示所述电池包在所述第三工作状态下的正极电压,U n2表示所述电池包在所述第三工作状态下的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
结合第二方面,在一种可能的实现方式中,该方法还包括:所述处理单元控制所述第一投切开关导通,并获取所述第一接触器的第一端的电压U c1;所述处理单元控制所述第三投切开关导通,并获取所述第一接触器的第二端的电压U c2;所述处理单元根据U c1和U c2,确定所述第一接触器的实际工作状态;所述处理单元获取所述第一接触器的指示工作状态,所述指示工作状态为接触器控制信号指示的第一接触器的工作状态;所述处理单元根据所述实际工作状态和所述指示工作状态是否一致,获取所述第一接触器的触点状态信息。
结合第二方面,在一种可能的实现方式中,所述电池系统中包括N个电池包所述电池包为所述N个电池包中的第一个电池包,所述电池系统还包括第三接触器至第3N-1接触器,N≥2;其中,所述N个电池包中的第i个电池包的正极与第3i-3接触器的第一端相连,所述第3i-3接触器的第二端用于与所述负载的第一端相连,所述第i个电池包的负极与第3i-2接触器的第一端相连,所述第3i-2接触器的第二端与所述负载的第二端相连,并且,第i个电池包的正极与第i-1个电池包的负极之间设置有第3i-1接触器,2≤i≤N;所述多个投切开关还包括第五投切开关至第2N+2投切开关,所述多个投切支路还包括第五投切支 路至第2N+2投切支路,其中,第2i+1投切支路包括第2i+1投切电阻,第2i+1投切开关用于控制所述第2i+1投切支路切入或切出所述第i个电池包的正极与所述参考地之间;第2i+2投切支路包括第2i+2投切电阻,第2i+2投切开关用于控制所述第2i+2投切支路切入或切出所述第i个电池包的负极与所述参考地之间。
结合第二方面,在一种可能的实现方式中,所述多个采样支路包括第一采样支路和第二采样支路,所述第一采样支路的第一端与所述第2i+1投切支路的第二端相连;所述第二采样支路的第一端与所述第2i+2投切支路的第二端相连。
第三方面,提供了一种电源管理系统,所述电源管理系统包括第一方面或第一方面中任一种可能的实现方式中的检测装置。
第四方面,提供了一种汽车系统,所述汽车系统中包括如第一方面或第一方面中任一种检测装置。
附图说明
图1是本申请一实施例的应用场景的示意图。
图2是本申请一实施例的检测装置200的结构示意图。
图3是本申请又一实施例的检测装置200的结构示意图。
图4是本申请一实施例的电池系统的电池包电压U bat的高压检测方法的流程图
图5是本申请一实施例的电池系统的负载电压U load的高压检测方法的流程图。
图6是本申请一实施例的电池系统的绝缘检测方法的流程图。
图7是本申请又一实施例的电池系统的绝缘检测的方法流程图。
图8是本申请一实施例的接触器的粘连检测方法的流程图。
图9是本申请一实施例的接触器的粘连检测方法的流程图。
图10是本申请又一实施例中的检测装置200的示意图。
图11是本申请一实施例的检测装置200的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解,首先描述本申请实施例中涉及到的若干术语。
接触器:是指在电工学中可快速切断交流与直流主回路以及可频繁地接通与关断大电流控制电路的装置。接触器控制容量大,适用于频繁操作和远距离控制,是自动控制系统中的重要元件之一。接触器包括交流接触器和直流接触器,可应用于电力、配电与用电场合。在本申请实施例中,由于电池系统的输出为直流电,因此接触器可以为直流接触器。
电池管理系统(battery management system,BMS):是指用于监控和管理电池系统的一种控制系统,通常应用于电动汽车中的动力电池系统管理。BMS可实现电池监控、计算、通信等多种功能。
图1是本申请一实施例的应用场景的示意图。如图1所示,该应用场景中包括电池系统100和检测装置200。其中,电池系统100中包括电池包110、第一接触器101和第二接触器102。第一接触器101和第二接触器102作为电池系统100的对外输出的控制开关,即控制电池包110对外输出电路的通断。其中,第一接触器101的第一端与电池包110的 正极相连。第一接触器101的第二端用于和电池系统100的输出端正极相连,或者说,用于与负载(图中未示出)的第一端相连。第二接触器102的第一端与电池包110的负极相连。第二接触器102的第二端与电池系统100的输出端负极相连,或者说,用于与负载的第二端相连。
在一些示例中,上述电池系统100为高压电池系统,由于应用于高压电池系统,因此上述接触器通常为能承受高压和大电流的接触器。
应理解,图1中所示的电池系统100中的各个部件仅作为示例,在实践中,电池系统100中还可以包括多个电池包110以及多个接触器,也可以包括其它图1中未示出的器件或功能模块。
应理解,图1中的电池系统100可应用于电动车、智能车、或者混合动力汽车,也可以应用于其它领域。
如图1所述,检测装置200与电池系统100相连,用于实现电池系统100中的高压检测以及绝缘检测。
进一步地,该检测装置200还可以实现电池系统100的接触器粘连检测。其中,接触器粘连检测是指检测接触器中的触点是否发生粘连。接触器的机械触点在带载切断的情况下可能会出现触点粘连故障,导致无法切断高压输出,因此还需要对接触器的触点进行粘连检测。
应理解,该检测装置200可以是一个独立的模块,也可以和其它的功能电路集成在一起。例如,该检测装置200可以集成在BMS中。
为了便于理解,接下来分别介绍高压检测、绝缘检测以及接触器的触点粘连检测原理。
高压检测原理:用于根据从高压电池系统采集到的电压信息,计算得到电池包电压U bat,或者负载电压U load。例如,电池包110两端的电压可以指第一接触器101的第一端和第二接触器102的第一端之间的电压差。负载电压可以指第一接触器101的第二端和第二接触器102的第二端之间的电压差。
绝缘检测原理:绝缘检测用于分别检测电池包110的正极对地绝缘电阻R p以及负极对地绝缘电阻R n。具体地,可以在电池包110正极(和/或负极)和车身地之间切入或切出投切电阻,并分别计算在切入和切出投切电阻时电池包110正极(和/或负极)对车身地的电压,然后利用基尔霍夫电流定理列出方程组,计算得到电池包110正极对地绝缘电阻R p以及负极对地绝缘电阻R n
接触器的粘连检测原理:通过比较高压检测采集到的接触器的两端的电压的数据,得出接触器的当前工作状态,然后判断接触器的当前工作状态与检测装置200发出的接触器控制信号指示的接触器工作状态是否相同。如果相同,则表示接触器的触点未粘连;如果不同,则表示接触器触点粘连。
图2是本申请一实施例的检测装置200的结构示意图。如图2所示,该检测装置200包括:投切单元201以及处理单元202。
投切单元201中包括多个投切支路(221~224)和多个投切开关(S1~S4),多个投切支路中的每个投切支路中包括投切电阻(R1~R4),多个投切开关(S1~S4)用于控制多个投切支路切入或切出以下多个端子与参考地之间:电池包110的正极、第一接触器101的第二端、电池包110的负极、第二接触器102的第二端,其中,参考地用于连接车身地。
在一些示例中,处理单元202可以向上述多个投切开关(S1~S4)中的每个投切开关发送投切控制信号,处理单元202可以通过投切控制信号控制每个投切开关的导通或断开。
在一些示例中,处理单元202还可以向第一接触器101或第二接触器102发送接触器控制信号,接触器控制信号用于控制每个接触器导通或者断开。
可以理解为,在投切支路对应的投切开关(S1~S4)导通之后,该投切支路中的投切电阻(R1~R4)将切入到相应的端子和参考地之间。在投切支路对应的投切开关(S1~S4)断开之后,该投切电阻(R1~R4)与相应的端子断开。
可选地,本申请实施例对上述多个投切支路中的投切电阻(R1~R4)的阻值不作限定,上述投切电阻(R1~R4)的阻值可根据实践确定。作为示例,上述投切电阻(R1~R4)的阻值通常可采用比较大的阻值,例如兆欧(MΩ)级别的电阻。
应理解,上述投切支路中可以包括一个或多个投切电阻,下文中以每个投切支路中设置有一个投切电阻为例进行说明。
作为示例,上述投切开关可以包括以下开关器件中的至少一个:继电器、光电耦合器(photoMOS)、金属氧化物场效应晶体管(metaloxidesemiconductor field-effect transistor,MOSFET)。
处理单元202,用于检测多个投切支路的采样点电压信息,采样点电压信息用于指示多个投切支路的采样点电压。
应理解,根据检测装置200的检测目的不同,例如进行高压检测、绝缘检测或者接触器粘连检测,采样点电压信息对应的多个投切开关(S1~S4)的通断状态也不同,或者说,采样点电压信息中包括多个投切支路在多个投切开关(S1~S4)处于不同通断状态下的采样点电压。后文中将进一步描述不同的检测方法的实现方式。
处理单元202用于从采样单元获取采样点电压信息,并根据该采样点电压信息确定高压检测信息和绝缘检测信息,其中,高压检测信息包括以下至少一项:电池包电压U bat和负载电压U load,绝缘检测信息包括以下至少一项:电池包110的正极对地绝缘电阻值R p和所述电池包110的负极对地绝缘电阻值R n
在本申请实施例中,电池系统的检测装置中设置有投切单元,投切单元中的多个投切支路可以灵活地切入或切出电池系统中的多个端子与参考地之间,利用上述多个投切支路,检测装置200可以通过检测多个投切支路在不同状态下的采样点电压,从而实现电池系统的高压检测以及绝缘检测。由于投切单元中的多个投切支路的参考地均用于与车身地相连,因此检测装置内部可以无需针对高压检测和绝缘检测进行电气隔离,利用一套电路实现电池系统的高压检测以及绝缘检测,能够优化电路设计,并提高电池系统检测的效率。
进一步地,处理单元202还用于根据采样点电压信息确定以下信息中的至少一项:第一接触器101的触点状态信息、第二接触器102的触点状态信息,其中,触点状态信息用于指示接触器的触点是否发生粘连。
继续参见图2,作为示例,多个投切支路包括第一投切支路至第四投切支路(221~224),多个投切开关包括第一投切开关S1至第四投切开关S4,上述多个投切支路和多个投切开关一一对应。
第一投切支路221包括第一投切电阻R1,第一投切开关S1与第一投切电阻R1串联,第一投切支路221的第一端与电池包110的正极相连,第一投切开关S1用于控制第一投 切支路221切入或切出电池包110的正极与参考地之间。
第二投切支路222包括第二投切电阻R2,第二投切开关S2与第二投切电阻R2串联,第二投切支路222的第一端与电池包110的负极相连,第二投切开关S2用于控制第二投切支路222切入或切出电池包110的负极与参考地之间。
第三投切支路223包括第三投切电阻R3,第三投切开关S3与第三投切电阻R3串联,第三投切支路223的第一端与第一接触器101的第二端相连,第三投切开关S3用于控制第三投切支路223切入或切出第一接触器101的第二端与参考地之间。
第四投切支路224包括第四投切电阻R4,第四投切开关S4与第四投切电阻R4串联,第四投切支路224的第一端与第二接触器102的第二端相连,第四投切开关S4用于控制第四投切支路224切入或切出第二接触器102的第二端与参考地之间。
继续参见图2,投切单元201中还包括多个采样支路(2011,2012),多个采样支路用于提供投切支路对应的采样点电压。可选地,采样支路可设置于多个投切支路与参考地之间。例如,多个采样支路中的每个采样支路的第一端与多个投切支路中的至少一个投切支路的第二端相连,每个采样支路的第二端与参考地相连。
作为示例,图2中以多个采样支路包括两个采样支路(2011,2012)为例进行说明,其中,第一采样支路2011的第一端与第一投切支路221的第二端以及第三投切支路223的第二端相连。第二采样支路2012的第一端与第二投切支路222的第二端以及第四投切支路224的第二端相连。
应理解,本申请实施例中的器件或电路之间的相连可包括直接相连和间接相连,在间接相连的情况下,器件或电路之间也可以设置有其它器件。
继续参见图2,在一些示例中,多个采样支路中的每个采样支路中包括上采样电阻(R 11,R 21)和下采样电阻(R 12,R 22),上采样电阻(R 11,R 21)的第一端与每个采样支路的第一端相连,上采样电阻(R 11,R 21)的第二端与下采样电阻(R 12,R 22)的第一端相连,下采样电阻(R 12,R 22)的第二端与参考地相连,其中,投切支路的采样点电压为上采样电阻(R 12,R 22)的第二端的电压。
应理解,在图2中,第一投切支路221和第三投切支路223均对应于第一采样支路2011。当第一投切开关S1导通且第三投切开关S3断开时,第一投切支路221切入电路中,通过第一采样支路2011检测的采样点电压为与第一投切支路221对应的采样点电压。当第一投切开关S1断开且第三投切开关S3导通时,第三投切支路223切入电路中,通过第二采样支路检测的采样点电压为与第三投切支路对223应的采样点电压。同理,第二投切支路222和第四投切支路224均对应于第二采样支路2012。
在一些示例中,处理单元202在获取投切支路的采样点电压之后,可以根据分压原理,计算与投切支路对应的端子处的电压。例如,计算电池包正极或电池包负极的电压。
应理解,图2中的采样支路仅作为示例,而非限定。采样支路也可以包括其它的实现方式,只要其能实现提供投切支路的采样点电压的功能即可。例如,图2中的投切单元201中可以包括四个采样支路,四个采样支路与四个投切支路一一对应。
应理解,图2仅作为检测装置200的一种具体实现方式的例示,投切单元201也可以采用其它实现方式,只要其能够实现多个投切支路与电池系统中的多个端子之间的切入和切出,并且多个投切支路的参考地均为车身地即可。例如,下图3示出了检测装置200的 又一实现方式。
图3是本申请又一实施例的检测装置200的结构示意图。如图3所示,投切支路包括第一投切支路221和第二投切支路222,多个投切电阻包括第一投切电阻R1和第二投切电阻R2,多个投切开关包括第一投切开关S1和第二投切开关S2,其中,第一投切开关S1和第二投切开关S2为单刀多掷开关。
第一投切支路221包括第一投切电阻R1,第一投切开关S1的第一端与第一投切支路221的第一端相连,第一投切开关S1的第二端与以下多个端子相连:电池包110的正极、第一接触器101的第二端、悬空端子(NC)。
第二投切支路222包括第二投切电阻R2,第二投切开关S2的第二端与第二投切支路222的第一端相连,第二投切开关S2的第二端与以下多个端子相连:电池包110的负极、第二接触器102的第二端、悬空端子(NC)。
其中,悬空端子可以指投切开关的第二端不与任何电位相连,处于断开状态。
接下来,将结合图2所示的检测装置200,详细介绍本申请实施例中的高压检测方法、绝缘检测方法以及接触器的触点粘连检测方法。
图4是本申请一实施例的电池包电压U bat的高压检测方法的流程图。如图4所示,该方法包括:
S401、处理单元202控制多个投切开关处于第一工作状态,第一工作状态为:第一投切开关S1和第二投切开关S2导通,第三投切开关S3和第四投切开关S4断开。
作为示例,处理单元202可以向多个投切开关分别发送投切控制信号,投切控制信号用于控制各个开关的通断。在这种情况下,电池包的正极通过第一投切支路221与参考地相连,电池包的负极通过第二投切支路222与参考地相连。
S402、处理单元202在多个投切开关处于第一工作状态的情况下,检测第一投切支路221的第一采样点电压U1和第二投切支路222的第二采样点电压U2。
具体地,第一采样点电压U1为第一采样支路2011中的上采样电阻R 11的第二端的电压,第二采样点电压U2为第二采样支路2012中的上采样电阻R 21的第二端的电压。
S403、处理单元202根据第一采样点电压U1和第二采样点电压U2,确定电池包电压U bat
具体地,处理单元202可以根据分压定理,计算电池包的正极电压U p和负极电压U n,并进一步计算电池包电压U bat,公式如下:
U bat=U p-U n;                       (1)
U p=U1×(R1+R 11+R 12)/R 12;   (2)
U n=U2×(R2+R 21+R 22)/R 22;   (3)
其中,U p表示电池包的正极电压,U n表示电池包的负极电压,R1表示第一投切电阻R1的阻值,R 2表示第二投切电阻R2的阻值,R 11表示第一采样支路2011的上采样电阻R 11的阻值,R 12表示第一采样支路2011的下采样电阻R 12的阻值,R 21表示第二采样支路2012的上采样电阻R 21的阻值,R 22表示第二采样支路2012的下采样电阻R 22的阻值。
图5是本申请一实施例的电池系统的负载电压U load的高压检测方法的流程图。如图5所示,该方法包括:
S501、处理单元202控制多个投切开关、第一接触器101以及第二接触器102处于第 二工作状态,第二工作状态为:第一投切开关S1和第二投切开关S2断开,第三投切开关S3和第四投切开关S4导通,第一接触器101和第二接触器102断开。
在这种情况下,第一接触器101的第二端通过第一投切支路221与参考地相连,第二接触器102的第二端通过第二投切支路222与参考地相连。
作为示例,处理单元202可以向多个投切开关分别发送投切控制信号,投切控制信号用于控制各个开关的通断。
作为示例,处理单元202可以向第一接触器101和第二接触器102发送接触器控制信号,以控制第一接触器101和第二接触器102处于断开状态,以便于检测负载电压。
S502、处理单元202在多个投切开关处于第二工作状态的情况下,检测第三投切支路223的第三采样点电压U3和第四投切支路224的第四采样点电压U4。
具体地,第三采样点电压U3为第一采样支路2011中的上采样电阻R 11的第二端的电压,第四采样点电压U4为第二采样支路2012中的上采样电阻R 21的第二端的电压。
S503、处理单元202根据第三采样点电压U3和第四采样点电压U4,确定负载电压U load
作为示例,处理单元202可以根据分压定理,计算负载的第一端电压U p’和负载的第二端电压U n’,并进一步计算负载电压U load,公式如下:
U load=U p’-U n’;                      (4)
U p’=U3×(R3+R 11+R 12)/R 12;   (5)
U n’=U4×(R4+R 21+R 22)R 12;   (6)
其中,U p’表示负载的第一端电压,U n’表示负载的第二端电压,R3表示第三投切电阻R 3的阻值,R4表示第四投切电阻R 4的阻值,R 11表示第一采样支路2011的上采样电阻R 11的阻值,R 12表示第一采样支路2011的下采样电阻R 12的阻值,R 21表示第二采样支路2012的上采样电阻R 21的阻值,R 22表示第二采样支路2012的下采样电阻R 22的阻值。
图6是本申请一实施例的电池系统的绝缘检测方法的流程图。如图6所示,该方法包括:
S601、处理单元202控制多个投切开关处于第一工作状态,第一工作状态为:第一投切开关S1和第二投切开关S2导通,第三投切开关S3和第四投切开关S4断开;
S602、处理单元202在多个投切开关处于第一工作状态的情况下,检测第一投切支路221的第一采样点电压U1和第二投切支路222的第二采样点电压U2。
S603、处理单元202控制多个投切开关处于第三工作状态,第三工作状态为第一投切开关S1导通,第二投切开关S2至第四投切开关S4断开。
S604、处理单元202在多个投切开关处于第三工作状态的情况下,检测第一投切支路221的第五采样点电压U5。
S605、处理单元202根据第一采样点电压U1、第二采样点电压U2以及第五采样点电压U5确定电池包的正极对地绝缘电阻值R p、电池包的负极对地绝缘电阻值R n
具体地,处理单元202可以根据分压定理以及基尔霍夫电流定理,计算电池包的正极对地绝缘电阻值R p、电池包的负极对地绝缘电阻值R n,公式如下:
U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));   (7)
U p2/(R p//(R1+R 11+R 12))=-U n2/R n;          (8)
U p1=U1×(R1+R 11+R 12)/R 12;   (9)
U n1=U2×(R2+R 21+R 22)/R 22;   (10)
U p2=U5×(R1+R 11+R 12)/R 12;   (11)
U n2=U n1-U p1+U p2;(12)
其中,U p1表示电池包在第一工作状态下的正极电压,U n1表示电池包在第一工作状态下的负极电压,U p2表示电池包在第三工作状态下的正极电压,U n2表示电池包在第三工作状态下的负极电压,R1表示第一投切电阻R1的阻值,R2表示第二投切电阻R2的阻值,R 11表示第一采样支路2011的上采样电阻R 11的阻值,R 12表示第一采样支路2011的下采样电阻R 12的阻值,R 21表示第二采样支路2012的上采样电阻R 21的阻值,R 22表示第二采样支路2012的下采样电阻R 22的阻值。
其中,公式(7)和公式(8)利用了基尔霍夫电流原理,即电池包正极对地流入的电流值与地对电池包负极流出的电流值相等。公式(9)~(11)利用了电阻分压原理。公式(12)利用了电池包电压不变的原则。
可选地,在S603至S605中,处理单元202也可以控制多个投切开关处于第四工作状态,第四工作状态包括:第二投切开关S2导通,第一投切开关S1、第三投切开关S3以及第四投切开关S4断开。处理单元202可以在多个投切开关处于第四工作状态的情况下,检测第二投切支路222的第六采样点电压U6。并且根据第一采样点电压U1、第二采样点电压U2以及第六采样点电压U6确定电池包的正极对地绝缘电阻值R p、电池包的负极对地绝缘电阻值R n
相应地,处理单元202可以根据以下公式计算R p和R n
U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));     (13)
U p3/R p=-U n3/(R n//R2+R 21+R 22);               (14)
U p1=U1×(R1+R 11+R 12)/R 12;   (15)
U n1=U2×(R2+R 21+R 22)/R 22;   (16)
U n3=U6×(R2+R 21+R 22)/R 22;   (17)
U p3=U p1-U n1+U n3;(18)
其中,U p1表示电池包在第一工作状态下的正极电压,U n1表示电池包在第一工作状态下的负极电压,U p3表示电池包在第四工作状态下的正极电压,U n3表示电池包在第四工作状态下的负极电压,R1表示第一投切电阻R1的阻值,R2表示第二投切电阻R2的阻值,R 11表示第一采样支路2011的上采样电阻R 11的阻值,R 12表示第一采样支路2011的下采样电阻R 12的阻值,R 21表示第二采样支路2012的上采样电阻R 21的阻值,R 22表示第二采样支路2012的下采样电阻R 22的阻值。
应理解,图6的方案仅仅作为绝缘检测的示例性说明,结合本申请提供的检测装置200,控制单元可以控制多个投切开关处于其它工作状态,并获取相应的采样点电压,以计算所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n
接下来结合图7,继续描述本申请的绝缘检测方法的具体示例。
图7是本申请又一实施例的电池系统的绝缘检测的方法的流程图。如图7所示,该方法包括:
S701、处理单元202控制多个投切开关处于第一工作状态,即第一投切开关S1和第 二投切开关S2导通,第三投切开关S3和第四投切开关S4断开。
S702、在多个投切开关处于第一工作状态时,处理单元202获取第一投切支路221的第一采样点电压U1以及第二投切支路222的第二采样点电压U2。
S703、处理单元202根据U1和U2,基于分压原理,计算得到电池包正极电压U p1和电池包负极电压U n1
其中,电池包正极电压U p1和电池包负极电压U n1的计算方式可参见图6中的相关描述,此处不再赘述。
S704、处理单元202判断U p1和U n1的大小,若U p1>U n1,则断开第二投切开关S2,其余投切开关状态不变,并执行S705;若U p1<U n1,则断开第一投切开关S1,其余投切开关状态不变,并执行S706。
在S704中,在U p1的电压大于U n1的情况下,表示电池包正极对地绝缘电阻R p大于电池包负极对地绝缘电阻值R n,若断开第二投切开关S2,则将采用公式(7)~(12)计算R p和R n。在公式(8)中,R p与(R 1+R 11+R 12)并联后的阻值相对于R n的阻值的量级更接近,从而能够减少后续计算中的误差。在这种情况下,如果选择断开第一投切开关S1,则需要采用公式(13)~(18)计算R p和R n,在公式(14)中,R n与(R 2+R 21+R 22)并联后的阻值相对于R p的阻值的量级相差更大,这将导致计算误差增加。
同理,在U p1的电压小于U n1的情况下,选择断开第一投切开关S1,并采用公式(13)~(18)计算R p和R n,计算误差将更小。
因此,采用S704中的方式计算R p和R n,能够提高计算R p和R n的精确度。
S705、若在S704中断开第二投切开关S2,则处理单元202获取第一投切支路221的第五采样点电压U5,并根据U1、U2以及U5,计算电池包的正极对地绝缘电阻值R p、以及电池包的负极对地绝缘电阻值R n
具体地,可以根据公式(7)~(12)计算R p和R n,此处不再赘述。
S706、若在S704中断开第一投切开关S1,则处理单元202获取第二投切支路222的第六采样点电压U6,并根据U1、U2以及U6,计算电池包的正极对地绝缘电阻值R p、以及电池包的负极对地绝缘电阻值R n
具体地,可以根据公式(13)~(18)计算R p和R n,此处不再赘述。
接下来结合图8和图9,介绍本申请实施例的接触器的粘连检测方法。
图8是本申请一实施例的接触器的粘连检测方法的流程图。其中,图8中以检测第一接触器101为例进行说明,如图8所示,该方法包括:
S801、处理单元202控制第一投切开关S1导通,并获取第一接触器101的第一端的电压U c1
S802、处理单元202控制第三投切开关S3导通,并获取第一接触器101的第二端的电压U c2
具体地,处理单元202可以分别获取第一投切支路221和第二投切支路222的采样点电压,并利用分压原理计算U c1和U c2
S803、处理单元202根据U c1和U c2,确定第一接触器101的实际工作状态。
例如,处理单元202可以根据U c1-U c2是否大于预设阈值U 0,以确定第一接触器101的实际工作状态。若U c1-U c2≥U 0,则确定第一接触器101的实际工作状态为断开状态;若 U c1-U c2<U 0,则确定第一接触器101处于闭合状态。其中,预设阈值U 0的大小可以根据实践确定。
S804、处理单元202获取第一接触器101的指示工作状态,该指示工作状态为接触器控制信号指示的第一接触器101的工作状态。
S805、处理单元202根据所述实际工作状态和所述指示工作状态是否一致,确定所述第一接触器101的触点状态信息。
例如,若处理单元202判断第一接触器101的实际工作状态与指示工作状态是否一致。若一致,则确定触点状态信息为第一接触器101未发生触点粘连;若不一致,则确定触点状态信息为第一接触器101发生触点粘连。
图9是本申请一实施例的接触器的粘连检测方法的流程图。图9中以检测第一接触器101为例进行说明,如图9所示,该方法包括:
S901、处理单元202控制第一投切开关S1导通,并获取第一接触器101的第一端的电压U c1
S902、处理单元202控制第三投切开关S3导通,并获取第一接触器101的第二端的电压U c2
S903、处理单元202根据U c1-U c2是否大于预设阈值U 0,以确定第一接触器101的实际工作状态。
S904、若U c1-U c2≥U 0,则确定第一接触器101的实际工作状态为断开状态;若U c1-U c2<U 0,则确定第一接触器101处于闭合状态。
S905、处理单元202判断第一接触器101的实际工作状态与接触器控制信号指示的工作状态是否一致。若一致,则确定第一接触器101未发生触点粘连,触点正常;若不一致,则确定第一接触器101发生触点粘连。
图10是本申请又一实施例中的检测装置200的示意图。如图10所示,作为示例,处理单元202中还可以包括多个子单元,以实现前文中处理单元202执行的各个步骤。如图10所示,处理单元202可包括计算单元2021、控制单元2022、驱动单元2023以及采样单元2024。上述各个单元的功能如下所述。
采样单元2024:用于采集投切单元201中投切支路的采样点电压信息,并将获取的采样点电压信息传输给计算单元。
计算单元2021:用于根据采样单元2024采集到的采样点电压信息,进行计算和逻辑处理。计算单元还用于从控制单元2022获取指示接触器控制信号或投切控制信号的信息,并进行计算和逻辑处理。
控制单元2022:用于向驱动单元2023发出接触器控制信号或者投切控制信号。其中接触器控制信号用于控制接触器的通断,投切控制信号用于控制投切单元内部的开关的通断。
驱动单元2023:用于接收计算单元2021发送的接触器控制信号或者投切控制信号,并根据接触器控制信号或者投切控制信号驱动接触器或者投切单元中的投切开关。
应理解,图10中的各个子单元可以集成在一个独立的模块中,也可以设置在不同的模块之中。
上文中以电池系统包括单电池包为例,描述了检测装置200。可选地,本申请实施例 中的检测装置200也可以应用于多电池包的电池系统,接下来将结合图11,继续描述可应用于多电池包的电池系统的检测装置200。
图11是本申请一实施例的检测装置200的示意图。如图11所示,该电池系统中包括N个电池包、以及第一接触器至第3N-1接触器,图2中的电池包可以为N个电池包中的第一个电池包。其中,N个电池包中的第i个电池包的正极与第3i-3接触器的第一端相连,第3i-3接触器的第二端用于与负载的第一端相连,第i个电池包的负极与第3i-2接触器的第一端相连,第3i-2接触器的第二端与负载的第二端相连,并且,第i个电池包的正极与第i-1个电池包的负极之间设置有第3i-1接触器,N≥2,2≤i≤N。
可选地,通过控制上述3N-1个接触器的通断,上述N个电池包之间可以灵活地实现串联、并联或者串并联的组合。
继续参见图11,前文中的多个投切开关还包括第五投切开关至第2N+2投切开关,多个投切支路还包括第五投切支路至第2N+2投切支路。
其中,第2i+1投切支路包括第2i+1投切电阻R 2i+1,第2i+1投切开关S 2i+1用于控制第2i+1投切支路切入或切出第i个电池包的正极与参考地之间;
第2i+2投切支路包括第2i+2投切电阻R 2i+2,第2i+2投切开关用于控制第2i+2投切支路切入或切出第i个电池包的负极与参考地之间。
可选地,第一采样支路2011的第一端与第2i+1投切支路的第二端相连;第二采样支路2012的第一端与第2i+2投切支路的第二端相连。
应理解,图11中的电池系统可以灵活的实现多个电池包的串联、并联或串并联的各种组合,而结合前文中的描述,图11中的检测装置200可以实现对单个电池包或者上述各种组合的高压检测、绝缘检测以及接触器的触点粘连检测。
可选地,图11中的检测装置200也可以作适当的变形,例如,可以改变多个投切支路和多个采样支路的连接关系或数量,只要其能实现检测电池系统中的不同端子的电压的功能即可。
在本申请实施例中,电池系统的检测装置中的投切单元中的投切支路可以基于待检测的电池系统中的电池包数量和连接方式进行扩展,从而利用一套电路实现包括多个电池包的电池系统的高压检测以及绝缘检测,能够优化电路设计,并提高电路检测的效率。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设束条件。专业技术人员可以对 每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种用于电池系统的检测装置,其特征在于,所述电池系统包括:电池包、第一接触器和第二接触器,所述第一接触器的第一端与所述电池包的正极相连,所述第二接触器的第一端与所述电池包的负极相连,所述第一接触器的第二端用于与负载的第一端相连,所述第二接触器的第二端用于与所述负载的第二端相连,所述检测装置包括:
    投切单元,包括多个投切支路和多个投切开关,所述多个投切支路中的每个投切支路中包括投切电阻,所述多个投切开关用于控制所述多个投切支路切入或切出以下多个端子与参考地之间:所述电池包的正极、所述第一接触器的第二端、所述电池包的负极、所述第二接触器的第二端,其中,所述参考地用于连接车身地;
    处理单元,用于:检测所述多个投切支路的采样点电压信息,所述采样点电压信息用于指示所述多个投切支路的采样点电压;以及根据所述采样点电压信息确定高压检测信息和绝缘检测信息,其中,所述高压检测信息包括以下至少一项:电池包电压U bat和负载电压U load,所述绝缘检测信息包括以下至少一项:所述电池包的正极对地绝缘电阻值R p和所述电池包的负极对地绝缘电阻值R n
  2. 如权利要求1所述的检测装置,其特征在于,所述处理单元还用于根据所述采样点电压信息确定以下信息中的至少一项:
    所述第一接触器的触点状态信息、所述第二接触器的触点状态信息,其中,所述触点状态信息用于指示接触器的触点是否发生粘连。
  3. 如权利要求1或2所述的检测装置,其特征在于,所述投切单元还包括多个采样支路,所述多个采样支路中的每个采样支路的第一端与所述多个投切支路中的至少一个投切支路的第二端相连,所述多个采样支路中的每个采样支路的第二端与所述参考地相连。
  4. 如权利要求3所述的检测装置,其特征在于,所述多个采样支路中的每个采样支路中包括上采样电阻和下采样电阻,所述上采样电阻的第一端与每个采样支路的第一端相连,所述上采样电阻的第二端与所述下采样电阻的第一端相连,所述下采样电阻的第二端与所述参考地相连,其中,所述投切支路的采样点电压为所述上采样电阻的第二端的电压。
  5. 如权利要求1至4中任一项所述的检测装置,其特征在于,所述多个投切支路包括第一投切支路至第四投切支路,所述多个投切开关包括第一投切开关至第四投切开关,其中,
    所述第一投切支路包括第一投切电阻,所述第一投切开关用于控制所述第一投切支路切入或切出所述电池包的正极与所述参考地之间;
    所述第二投切支路包括第二投切电阻,所述第二投切开关用于控制所述第二投切支路切入或切出所述电池包的负极与所述参考地之间;
    所述第三投切支路包括第三投切电阻,所述第三投切开关用于控制所述第三投切支路切入或切出所述第一接触器的第二端与所述参考地之间;
    所述第四投切支路包括第四投切电阻,所述第四投切开关用于控制所述第四投切支路切入或切出所述第二接触器的第二端与所述参考地之间。
  6. 如权利要求5所述的检测装置,其特征在于,所述多个采样支路包括第一采样支路 和第二采样支路,
    所述第一采样支路的第一端与所述第一投切支路的第二端以及所述第三投切支路的第二端相连;
    所述第二采样支路的第二端与所述第二投切支路的第二端以及所述第四投切支路的第二端相连。
  7. 如权利要求6所述的检测装置,其特征在于,所述处理单元具体用于:
    控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;
    在所述多个投切开关处于第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,
    根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat
  8. 如权利要求7所述的检测装置,其特征在于,所述处理单元具体用于根据以下公式,确定所述电池包电压U bat
    U bat=U p-U n
    U p=U1×(R1+R 11+R 12)/R 12
    U n=U2×(R2+R 21+R 22)R 22
    其中,U p表示所述电池包的正极电压,U n表示所述电池包的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  9. 如权利要求6至8中任一项所述的检测装置,其特征在于,所述处理单元具体用于:
    控制所述多个投切开关、所述第一接触器以及所述第二接触器处于第二工作状态,所述第二工作状态为:所述第一投切开关和所述第二投切开关断开,所述第三投切开关和所述第四投切开关导通,所述第一接触器和所述第二接触器断开;
    在所述多个投切开关、所述第一接触器以及所述第二接触器处于所述第二工作状态的情况下,检测所述第三投切支路的第三采样点电压U3和所述第四投切支路的第四采样点电压U4;以及,
    根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load
  10. 如权利要求9所述的检测装置,其特征在于,所述处理单元具体用于根据以下公式,确定所述负载电压U load
    U load=U p’-U n’;
    U p’=U3×(R3+R 11+R 12)/R 12
    U n’=U4×(R4+R 21+R 22)R 12
    其中,U p’表示所述负载的第一端电压,U n’表示所述负载的第二端电压,R3表示所述第三投切电阻的阻值,R4表示所述第四投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  11. 如权利要求6至10中任一项所述的检测装置,其特征在于,所述处理单元具体用于:
    控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;
    在所述多个投切开关处于所述第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,
    控制所述多个投切开关处于第三工作状态,所述第三工作状态为所述第一投切开关导通,所述第二投切开关至所述第四投切开关断开;
    在所述多个投切开关处于所述第三工作状态的情况下,检测所述第一投切支路的第五采样点电压U5;
    根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n
  12. 如权利要求11所述的检测装置,其特征在于,所述处理单元具体用于根据以下公式,确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n:
    U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));
    U p2/(R p//(R1+R 11+R 12))=-U n2/R n
    U p1=U1×(R1+R 11+R 12)/R 12
    U n1=U2×(R2+R 21+R 22)/R 22
    U p2=U5×(R1+R 11+R 12)/R 12
    U n2=U n1-U p1+U p2
    其中,U p1表示所述电池包在所述第一工作状态下的正极电压,U n1表示所述电池包在所述第一工作状态下的负极电压,U p2表示所述电池包在所述第三工作状态下的正极电压,U n2表示所述电池包在所述第三工作状态下的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  13. 如权利要求5至12中任一项所述的检测装置,其特征在于,处理单元还用于:
    控制所述第一投切开关导通,并获取所述第一接触器的第一端的电压U c1
    控制所述第三投切开关导通,并获取所述第一接触器的第二端的电压U c2
    根据U c1和U c2,确定所述第一接触器的实际工作状态;
    获取所述第一接触器的指示工作状态,所述指示工作状态为接触器控制信号指示的第一接触器的工作状态;
    根据所述实际工作状态和所述指示工作状态是否一致,获取所述第一接触器的触点状态信息。
  14. 如权利要求5至13中任一项所述的检测装置,其特征在于,所述电池系统中包括N个电池包,所述电池包为所述N个电池包中的第一个电池包,所述电池系统还包括第三接触器至第3N-1接触器,N≥2;
    其中,所述N个电池包中的第i个电池包的正极与第3i-3接触器的第一端相连,所述第3i-3接触器的第二端用于与所述负载的第一端相连,所述第i个电池包的负极与第3i-2接触器的第一端相连,所述第3i-2接触器的第二端与所述负载的第二端相连,并且,第i个电池包的正极与第i-1个电池包的负极之间设置有第3i-1接触器,2≤i≤N;
    所述多个投切开关还包括第五投切开关至第2N+2投切开关,所述多个投切支路还包括第五投切支路至第2N+2投切支路,其中,
    第2i+1投切支路包括第2i+1投切电阻,第2i+1投切开关用于控制所述第2i+1投切支路切入或切出所述第i个电池包的正极与所述参考地之间;
    第2i+2投切支路包括第2i+2投切电阻,第2i+2投切开关用于控制所述第2i+2投切支路切入或切出所述第i个电池包的负极与所述参考地之间。
  15. 如权利要求14所述的检测装置,其特征在于,所述多个采样支路包括第一采样支路和第二采样支路,
    所述第一采样支路的第一端与所述第2i+1投切支路的第二端相连;
    所述第二采样支路的第一端与所述第2i+2投切支路的第二端相连。
  16. 一种用于电池系统的检测方法,其特征在于,所述电池系统包括:电池包、第一接触器和第二接触器,所述第一接触器的第一端与所述电池包的正极相连,所述第二接触器的第一端与所述电池包的负极相连,所述第一接触器的第二端用于与负载的第一端相连,所述第二接触器的第二端用于与所述负载的第二端相连,
    所述方法由检测装置执行,所述检测装置包括投切单元和处理单元,所述处理单元包括多个投切支路和多个投切开关,所述多个投切支路中的每个投切支路中包括投切电阻,所述多个投切开关用于控制所述多个投切支路切入或切出以下多个端子与参考地之间:所述电池包的正极、所述第一接触器的第二端、所述电池包的负极、所述第二接触器的第二端,其中,所述参考地用于连接车身地;
    所述方法包括:
    所述处理单元检测所述多个投切支路的采样点电压信息,所述采样点电压信息用于指示所述多个投切支路的采样点电压;
    所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,其中,所述高压检测信息包括以下至少一项:电池包电压U bat和负载电压U load,所述绝缘检测信息包括以下至少一项:所述电池包的正极对地绝缘电阻值R p和所述电池包的负极对地绝缘电阻值R n
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    所述处理单元根据所述采样点电压信息确定以下信息中的至少一项:所述第一接触器的触点状态信息、所述第二接触器的触点状态信息,其中,所述触点状态信息用于指示接触器的触点是否发生粘连。
  18. 如权利要求16或17所述的方法,其特征在于,所述投切单元还包括多个采样支路,所述多个采样支路中的每个采样支路的第一端与所述多个投切支路中的至少一个投切支路的第二端相连,所述多个采样支路中的每个采样支路的第二端与所述参考地相连。
  19. 如权利要求18所述的方法,其特征在于,所述多个采样支路中的每个采样支路中包括上采样电阻和下采样电阻,所述上采样电阻的第一端与每个采样支路的第一端相连,所述上采样电阻的第二端与所述下采样电阻的第一端相连,所述下采样电阻的第二端与所述参考地相连,其中,所述投切支路的采样点电压为所述上采样电阻的第二端的电压。
  20. 如权利要求16至19中任一项所述的方法,其特征在于,所述多个投切支路包括第一投切支路至第四投切支路,所述多个投切开关包括第一投切开关至第四投切开关,其 中,
    所述第一投切支路包括第一投切电阻,所述第一投切开关用于控制所述第一投切支路切入或切出所述电池包的正极与所述参考地之间;
    所述第二投切支路包括第二投切电阻,所述第二投切开关用于控制所述第二投切支路切入或切出所述电池包的负极与所述参考地之间;
    所述第三投切支路包括第三投切电阻,所述第三投切开关用于控制所述第三投切支路切入或切出所述第一接触器的第二端与所述参考地之间;
    所述第四投切支路包括第四投切电阻,所述第四投切开关用于控制所述第四投切支路切入或切出所述第二接触器的第二端与所述参考地之间。
  21. 如权利要求20所述的方法,其特征在于,所述多个采样支路包括第一采样支路和第二采样支路,
    所述第一采样支路的第一端与所述第一投切支路的第二端以及所述第三投切支路的第二端相连;
    所述第二采样支路的第二端与所述第二投切支路的第二端以及所述第四投切支路的第二端相连。
  22. 如权利要求21所述的方法,其特征在于,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:
    所述处理单元控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;
    所述处理单元在所述多个投切开关处于第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,
    所述处理单元根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat
  23. 如权利要求22所述的方法,其特征在于,所述处理单元根据所述第一采样点电压U1和所述第二采样点电压U2,确定所述电池包电压U bat,包括:所述处理单元根据以下公式,确定所述电池包电压U bat
    U bat=U p-U n
    U p=U1×(R1+R 11+R 12)/R 12
    U n=U2×(R2+R 21+R 22)R 22
    其中,U p表示所述电池包的正极电压,U n表示所述电池包的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  24. 如权利要求21至23中任一项所述的方法,其特征在于,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:
    所述处理单元控制所述多个投切开关、所述第一接触器以及所述第二接触器处于第二工作状态,所述第二工作状态为:所述第一投切开关和所述第二投切开关断开,所述第三投切开关和所述第四投切开关导通,所述第一接触器和所述第二接触器断开;
    所述处理单元在所述多个投切开关、所述第一接触器以及所述第二接触器处于所述第 二工作状态的情况下,检测所述第三投切支路的第三采样点电压U3和所述第四投切支路的第四采样点电压U4;以及,
    所述处理单元根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load
  25. 如权利要求24所述的方法,其特征在于,所述处理单元根据所述第三采样点电压U3和所述第四采样点电压U4,确定所述负载电压U load,包括:所述处理单元根据以下公式,确定所述负载电压U load
    U load=U p’-U n’;
    U p’=U3×(R3+R 11+R 12)/R 12
    U n’=U4×(R4+R 21+R 22)R 12
    其中,U p’表示所述负载的第一端电压,U n’表示所述负载的第二端电压,R3表示所述第三投切电阻的阻值,R4表示所述第四投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  26. 如权利要求21至25中任一项所述的方法,其特征在于,所述处理单元根据所述采样点电压信息确定高压检测信息和绝缘检测信息,包括:
    所述处理单元控制所述多个投切开关处于第一工作状态,所述第一工作状态为:所述第一投切开关和所述第二投切开关导通,所述第三投切开关和所述第四投切开关断开;
    所述处理单元在所述多个投切开关处于所述第一工作状态的情况下,检测所述第一投切支路的第一采样点电压U1和所述第二投切支路的第二采样点电压U2;以及,
    所述处理单元控制所述多个投切开关处于第三工作状态,所述第三工作状态为所述第一投切开关导通,所述第二投切开关至所述第四投切开关断开;
    所述处理单元在所述多个投切开关处于所述第三工作状态的情况下,检测所述第一投切支路的第五采样点电压U5;
    所述处理单元根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n
  27. 如权利要求26所述的方法,其特征在于,所述处理单元根据所述第一采样点电压U1、所述第二采样点电压U2以及所述第五采样点电压U5确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n,包括:
    所述处理单元根据以下公式,确定所述电池包的正极对地绝缘电阻值R p、所述电池包的负极对地绝缘电阻值R n:
    U p1/(R p//(R1+R 11+R 12))=-U n1/(R n//(R2+R 21+R 22));
    U p2/(R p//(R1+R 11+R 12))=-U n2/R n
    U p1=U1×(R1+R 11+R 12)/R 12
    U n1=U2×(R2+R 21+R 22)/R 22
    U p2=U5×(R1+R 11+R 12)/R 12
    U n2=U n1-U p1+U p2
    其中,U p1表示所述电池包在所述第一工作状态下的正极电压,U n1表示所述电池包在 所述第一工作状态下的负极电压,U p2表示所述电池包在所述第三工作状态下的正极电压,U n2表示所述电池包在所述第三工作状态下的负极电压,R1表示所述第一投切电阻的阻值,R2表示所述第二投切电阻的阻值,R 11表示所述第一采样支路的上采样电阻的阻值,R 12表示所述第一采样支路的下采样电阻的阻值,R 21表示所述第二采样支路的上采样电阻的阻值,R 22表示所述第二采样支路的下采样电阻的阻值。
  28. 如权利要求20至27中任一项所述的方法,其特征在于,所述方法还包括:
    所述处理单元控制所述第一投切开关导通,并获取所述第一接触器的第一端的电压U c1
    所述处理单元控制所述第三投切开关导通,并获取所述第一接触器的第二端的电压U c2
    所述处理单元根据U c1和U c2,确定所述第一接触器的实际工作状态;
    所述处理单元获取所述第一接触器的指示工作状态,所述指示工作状态为接触器控制信号指示的第一接触器的工作状态;
    所述处理单元根据所述实际工作状态和所述指示工作状态是否一致,获取所述第一接触器的触点状态信息。
  29. 如权利要求20至28中任一项所述的方法,其特征在于,所述电池系统中包括N个电池包所述电池包为所述N个电池包中的第一个电池包,所述电池系统还包括第三接触器至第3N-1接触器,N≥2;
    其中,所述N个电池包中的第i个电池包的正极与第3i-3接触器的第一端相连,所述第3i-3接触器的第二端用于与所述负载的第一端相连,所述第i个电池包的负极与第3i-2接触器的第一端相连,所述第3i-2接触器的第二端与所述负载的第二端相连,并且,第i个电池包的正极与第i-1个电池包的负极之间设置有第3i-1接触器,2≤i≤N;
    所述多个投切开关还包括第五投切开关至第2N+2投切开关,所述多个投切支路还包括第五投切支路至第2N+2投切支路,其中,
    第2i+1投切支路包括第2i+1投切电阻,第2i+1投切开关用于控制所述第2i+1投切支路切入或切出所述第i个电池包的正极与所述参考地之间;
    第2i+2投切支路包括第2i+2投切电阻,第2i+2投切开关用于控制所述第2i+2投切支路切入或切出所述第i个电池包的负极与所述参考地之间。
  30. 如权利要求29所述的方法,其特征在于,所述多个采样支路包括第一采样支路和第二采样支路,
    所述第一采样支路的第一端与所述第2i+1投切支路的第二端相连;
    所述第二采样支路的第一端与所述第2i+2投切支路的第二端相连。
PCT/CN2021/078257 2021-02-26 2021-02-26 电池系统的检测方法和装置 WO2022178863A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21927299.4A EP4283320A4 (en) 2021-02-26 2021-02-26 DETECTION METHOD AND DEVICE FOR A BATTERY SYSTEM
PCT/CN2021/078257 WO2022178863A1 (zh) 2021-02-26 2021-02-26 电池系统的检测方法和装置
CN202180007594.7A CN114938661A (zh) 2021-02-26 2021-02-26 电池系统的检测方法和装置
US18/456,331 US20230400516A1 (en) 2021-02-26 2023-08-25 Detection Method and Apparatus for Battery System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/078257 WO2022178863A1 (zh) 2021-02-26 2021-02-26 电池系统的检测方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/456,331 Continuation US20230400516A1 (en) 2021-02-26 2023-08-25 Detection Method and Apparatus for Battery System

Publications (1)

Publication Number Publication Date
WO2022178863A1 true WO2022178863A1 (zh) 2022-09-01

Family

ID=82862858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078257 WO2022178863A1 (zh) 2021-02-26 2021-02-26 电池系统的检测方法和装置

Country Status (4)

Country Link
US (1) US20230400516A1 (zh)
EP (1) EP4283320A4 (zh)
CN (1) CN114938661A (zh)
WO (1) WO2022178863A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546916A (zh) * 2016-10-28 2017-03-29 深圳市科列技术股份有限公司 一种动力电池高压继电器故障诊断电路及诊断方法
CN109765495A (zh) * 2019-01-15 2019-05-17 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
CN111766461A (zh) * 2019-04-01 2020-10-13 郑州宇通集团有限公司 一种车辆动力电池的接触器诊断/总压采集电路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107526041A (zh) * 2017-08-29 2017-12-29 宁德时代新能源科技股份有限公司 电池检测电路和电池管理系统
KR102270232B1 (ko) * 2017-12-11 2021-06-25 주식회사 엘지에너지솔루션 배터리 팩의 양극 컨택터 진단 장치 및 방법
KR102270233B1 (ko) * 2017-12-12 2021-06-25 주식회사 엘지에너지솔루션 배터리 팩의 음극 컨택터 진단 장치 및 방법
CN210294422U (zh) * 2019-04-01 2020-04-10 郑州宇通集团有限公司 车辆动力电池的接触器诊断/总压采集电路
CN111929502A (zh) * 2019-05-13 2020-11-13 上海海拉电子有限公司 一种绝缘检测电路及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106546916A (zh) * 2016-10-28 2017-03-29 深圳市科列技术股份有限公司 一种动力电池高压继电器故障诊断电路及诊断方法
CN109765495A (zh) * 2019-01-15 2019-05-17 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
CN110967606A (zh) * 2019-01-15 2020-04-07 宁德时代新能源科技股份有限公司 绝缘检测电路及检测方法、电池管理系统
CN111766461A (zh) * 2019-04-01 2020-10-13 郑州宇通集团有限公司 一种车辆动力电池的接触器诊断/总压采集电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283320A4 *

Also Published As

Publication number Publication date
CN114938661A (zh) 2022-08-23
EP4283320A4 (en) 2024-03-27
EP4283320A1 (en) 2023-11-29
US20230400516A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN105486923B (zh) 用于电绝缘性测试和诊断的总线泄漏电阻估算
EP2606367B1 (en) Ground fault detection circuit for ungrounded power source
KR101470553B1 (ko) 배터리의 절연 저항 측정 장치 및 방법
JP5443327B2 (ja) 組電池装置
CN105823926B (zh) 电动车辆的总线泄漏电阻的估算
JP5274110B2 (ja) 車両用の電源装置
CN107850643A (zh) 用于诊断开关元件的故障的装置和方法
JP2013092396A (ja) 漏電検出装置
CN113557435B (zh) 用于估计绝缘电阻的设备及包括该设备的电池系统
WO2018145397A1 (zh) 车辆直流充电继电器的诊断系统
KR101678277B1 (ko) 스위치 열화 검출 장치 및 방법
WO2018171259A1 (zh) 一种检测电路、方法和装置
EP4325228A1 (en) Insulation sampling circuit and control method therefor, voltage withstand test method, and electrical device
KR20190075609A (ko) 전류 센서 진단 장치 및 방법
CN110967557A (zh) 检测电路及方法
EP4099034A1 (en) Relay diagnosis device, relay diagnosis method, battery system, and electric vehicle
US9575134B2 (en) Assembled-battery voltage detection device
JP2012208066A (ja) 電池電圧検出装置
KR20130112495A (ko) 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 고장 자가 진단 방법
CN109955732A (zh) 车辆的充电装置
JP2016531301A (ja) クリティカルな状況下での絶縁不良を試験する絶縁不良検出装置
WO2022178863A1 (zh) 电池系统的检测方法和装置
JP2014013210A (ja) 充電制御装置、電池パック、および充電制御方法
US20150061595A1 (en) Battery protection system and battery protection method using the same
KR20190013651A (ko) 배터리 셀 관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927299

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021927299

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021927299

Country of ref document: EP

Effective date: 20230825

NENP Non-entry into the national phase

Ref country code: DE