WO2018171259A1 - 一种检测电路、方法和装置 - Google Patents

一种检测电路、方法和装置 Download PDF

Info

Publication number
WO2018171259A1
WO2018171259A1 PCT/CN2017/115042 CN2017115042W WO2018171259A1 WO 2018171259 A1 WO2018171259 A1 WO 2018171259A1 CN 2017115042 W CN2017115042 W CN 2017115042W WO 2018171259 A1 WO2018171259 A1 WO 2018171259A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
switch
battery pack
unit
control unit
Prior art date
Application number
PCT/CN2017/115042
Other languages
English (en)
French (fr)
Inventor
王文成
吕杨
高挺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17902359.3A priority Critical patent/EP3581950B1/en
Priority to EP23181468.2A priority patent/EP4306976A3/en
Publication of WO2018171259A1 publication Critical patent/WO2018171259A1/zh
Priority to US16/576,368 priority patent/US11313908B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present application relates to the field of electric vehicles, and in particular, to a detection circuit, method and device.
  • High-voltage power battery systems play a key role in ensuring vehicle safety.
  • the battery management system can include a high voltage relay.
  • the high-voltage relay can be used as a safety switch to disconnect when the voltage is greater than a preset threshold to ensure the safety of the circuit and the battery management system. Since the high-voltage relay is prone to failure, the battery management system needs to detect the high-voltage relay from time to time to report the high-voltage power battery system in time when the high-voltage relay fails, so that the high-voltage power battery system can timely handle the malfunctioning high-voltage relay, thereby increasing the high voltage. Safety and reliability of power battery systems.
  • the high voltage relay may include a negative relay, a precharge relay, and a positive relay.
  • a detection circuit includes: a battery pack, a positive relay, a negative relay, a precharge relay, a precharge resistor, and an acquisition control unit, and the connection relationship between these devices is as shown in FIG. 1 .
  • a detection method may include: first, the acquisition control unit controls the anode relay and the pre-charge relay to be closed, wherein the process may be referred to as a power-on process; and then the acquisition control unit collects the load voltage. If the load voltage gradually rises to the total voltage of the battery pack as expected, indicating that the negative relay and the pre-charge relay are normal, it is possible to continue to detect whether the positive relay is faulty. If the load voltage is 0, the detection is stopped.
  • the present application provides a detection circuit, method and apparatus for improving the safety and reliability of a high voltage power battery system.
  • the present application provides a detection circuit for use in a battery management system that can include a battery pack, a relay, and a load.
  • the first end of the battery pack is connected to the first end of the relay
  • the second end of the relay is connected to one end of the load
  • the other end of the load is connected to the second end of the battery pack.
  • the detection circuit can include a switching conversion unit and an acquisition control unit.
  • the switch conversion unit includes a first end, a second end and a third end, the first end of the switch conversion unit is connected to the first end of the relay, and the second end of the switch conversion unit is connected to the second end of the relay.
  • the acquisition control unit includes a first end and a second end, the first end of the acquisition control unit is connected to the third end of the switch conversion unit, and the second end of the acquisition control unit is connected to the second end of the battery pack.
  • the switch conversion unit is configured to connect the first end of the switch conversion unit to the third end of the switch conversion unit in a first time period, and to make the second end of the switch conversion unit and the switch conversion unit in a second time period Three-terminal connection.
  • the acquisition control unit can be configured to collect the voltage V1 between the first end of the relay and the second end of the battery pack in the first time period, and collect the second end of the relay and the battery pack in the second time period
  • the detection circuit provided by the present application can independently detect whether each relay is faulty, thereby improving the stability of the high voltage power battery system.
  • a first switch is disposed between the first end of the switch converting unit and the third end of the switch converting unit, and the second end of the switch converting unit and the third end of the switch converting unit are disposed between The second switch.
  • the first switch is for closing within a first length of time and is disconnected for a second period of time such that the acquisition control unit can acquire a voltage between the first end of the relay and the second end of the battery pack for a first length of time.
  • the second switch is for closing within a second length of time and is disconnected for a first length of time such that the acquisition control unit can acquire a voltage between the second end of the relay and the second end of the battery pack for a second length of time.
  • the switch conversion unit includes a third switch.
  • the third switch includes a first end, a second end, and a third end; the third end of the third switch is a third end of the switch converting unit; and the third switch is configured to turn on the first end of the third switch in the first time period And the third end of the third switch, so that the first end of the third switch is the first end of the switch converting unit; and the switch is configured to turn on the second end of the third switch and the third switch in the second time period
  • the third end is such that the third end of the third switch is the third end of the switching unit.
  • a fourth switch may be disposed between the second end of the battery pack and the second end of the acquisition control unit. In this way, the switching of the circuit between the battery pack and the acquisition control unit can be controlled.
  • the acquisition control unit may be specifically configured to: determine the state of the relay based on the absolute value of the difference between V1 and V2. If it is determined that the state of the relay is different from the preset state, it is determined that the relay is faulty.
  • the state of the relay includes a closed state or an open state, and the preset state includes a closed state or an open state.
  • the relay may include any of the following: a positive relay, a pre-charge relay, and a negative relay.
  • a detection apparatus which can include any of the detection circuits provided by the above first aspect.
  • a detection method is provided, which can be applied to any of the detection circuits provided in the above first aspect.
  • the detection circuit is applied to a battery management system including a battery pack, a relay, and a load.
  • the first end of the battery pack is connected to the first end of the relay
  • the second end of the relay is connected to one end of the load
  • the other end of the load is connected to the second end of the battery pack.
  • the method can include collecting a voltage V1 between the first end of the relay and the second end of the battery pack for a first length of time.
  • the voltage V2 between the second end of the relay and the second end of the battery pack is acquired for a second period of time. According to V1 and V2, it is judged whether the relay is faulty.
  • the detection method provided by the present application it is possible to independently detect whether each relay is normal, thereby improving the stability of the high-voltage power battery system.
  • determining whether the relay is faulty according to V1 and V2 may include: determining the state of the relay according to the absolute value of the difference between V1 and V2.
  • the state of the relay includes a closed state or an open state. If it is determined that the state of the relay is different from the preset state, it is determined that the relay is faulty.
  • the preset state includes a closed state or a disconnected state.
  • FIG. 1 is a schematic diagram of a detection circuit provided by the prior art
  • FIG. 2 is a schematic diagram of a detection circuit provided by the present application.
  • FIG. 3 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 4 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 5 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 6 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 7 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 8 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 9 is a schematic diagram of a resting position of an isolation unit provided by the present application.
  • FIG. 10 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 11 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 12 is a schematic diagram of another detection circuit provided by the present application.
  • FIG. 13 is a schematic diagram of a voltage conversion unit provided by the present application.
  • FIG. 14 is a schematic diagram of another voltage conversion unit provided by the present application.
  • the present application provides a detection circuit.
  • the basic principle is that the detection circuit can include a switching unit.
  • the switch conversion unit may enable the acquisition control unit to collect the voltage V1 between the first end of the relay and the second end of the battery pack within a first time period, and cause the acquisition control unit to collect the second end of the relay and the battery within a second time period.
  • the voltage V2 between the second ends of the group so that the acquisition control unit can judge whether the relay is faulty according to V1 and V2. In this way, it is possible to independently detect whether each relay is malfunctioning.
  • a detection circuit provided by the present application is applied to a battery management system, which may include a battery pack, a relay, and a load.
  • the first end of the battery pack is connected to the first end of the relay, the second end of the relay is connected to one end of the load, and the other end of the load is connected to the second end of the battery pack.
  • the detection circuit includes a switching conversion unit 11 and an acquisition control unit 12.
  • the first end of the switch conversion unit 11 is connected to the first end of the relay, the second end of the switch conversion unit 11 is connected to the second end of the relay, and the third end of the switch conversion unit 11 is connected to the first end of the acquisition control unit 12, and the acquisition control
  • the second end of unit 12 is coupled to the second end of the battery pack.
  • the switch conversion unit 11 may include, but is not limited to, a switch or a semiconductor device or the like.
  • the acquisition control unit 12 may include an electronic circuit unit, which may include a voltage acquisition circuit equivalent to a voltmeter, a controller integrated in the circuit, and the like.
  • the acquisition control unit 12 can include an acquisition unit and a control unit.
  • the acquisition unit may include a voltage acquisition unit equivalent to a voltmeter for collecting voltage.
  • the control unit can include a controller or processor for determining if the relay is faulty.
  • the relay may include, but is not limited to, a positive relay, a pre-charge relay, and a negative relay.
  • the relay may be a positive relay or a pre-charge relay or the like. If the first end of the battery pack is a negative pole, the relay can be a negative relay or the like.
  • the switch converting unit 11 can be configured to connect the first end of the switch converting unit 11 with the third end of the switch converting unit in a first time period, and the second end of the switch converting unit and the switch converting unit in a second time period The third end of the connection.
  • the first duration and the second duration may be any duration, and the embodiment of the present invention does not perform this. limited.
  • the time period of the first duration and the time period of the second duration do not overlap.
  • the acquisition control unit 12 can be configured to collect the voltage V1 between the first end of the relay and the second end of the battery pack in the first time period; and collect the second end of the relay and the battery pack in the second time period The voltage V2 between the second ends; and according to V1 and V2, it is judged whether the relay is faulty.
  • the acquisition control unit 12 determines whether the relay is faulty according to V1 and V2, and may include: First, the acquisition control unit 12 determines the state of the relay based on the absolute value of the difference between V1 and V2. Specifically, the acquisition control unit 12 can calculate the absolute value of the difference between V1 and V2. If it is determined that the absolute value of the difference between V1 and V2 is less than or equal to the preset threshold, it is determined that the state of the relay is the closed state. If it is determined that the absolute value of the difference between V1 and V2 is greater than a preset threshold, it is determined that the state of the relay is the off state. Then, the acquisition control unit 12 determines that the relay is faulty if it is determined that the state of the relay is different from the preset state.
  • the state of the relay includes one of a closed state and a disconnected state.
  • the preset state includes one of a closed state and a disconnected state.
  • both V1 and V2 are equivalent to measuring the battery voltage, and the value of V1 and the value of V2 are approximately equal. Therefore, if the absolute value of the difference between V1 and V2 is less than or equal to the preset threshold, the state of the relay is the closed state.
  • the preset threshold can be set by the battery management system.
  • the preset state may be a state indicated by a control command sent by the acquisition control unit 12 to the switch conversion unit 11, or may be a state indicated by a control command sent by the independent processor to the switch conversion unit 11.
  • the independent processor may be disposed in the battery management system and set independently of the detection circuit, or may be disposed outside the battery management system. If the control command is a close command, the preset state is closed. If the control command is a disconnect command, the preset state is the off state.
  • the technical solution provided by the present application collects the voltage V1 between the first end of the relay and the second end of the battery pack by connecting the first end of the switch converting unit to the third end of the switch converting unit within the first time period.
  • the voltage V2 between the second end of the relay and the second end of the battery pack is acquired by connecting the second end of the switching converter unit to the third end of the switch shifting unit for a second period of time. According to V1 and V2, it is judged whether the relay is faulty.
  • the anode relay and the pre-charge relay are first closed, and whether the anode relay and the pre-charge relay are normal according to the collected load voltage, and whether the cathode relay is faulty under the condition that the anode relay and the pre-charge relay are both normal are detected.
  • the technical solution provided by the present application can independently detect whether the relay is faulty, thereby improving the safety and reliability of the high voltage power battery system.
  • the detection circuit provided by the present application can detect whether the relay is faulty during the power-on process, and can also detect whether the relay is faulty after the power-on is completed. Since the pre-charge relay is in a short-circuit state after the power-on is completed, it is not necessary to detect whether the pre-charge relay is faulty after the power-on is completed.
  • the power-on process refers to the process of closing the negative relay and the pre-charge relay to charge the load capacitor.
  • the switch conversion unit 11 provided by the present application will be described below by way of mode 1 and mode 2. Of course, the specific implementation is not limited thereto.
  • the switching conversion unit 11 includes a first switch 111 and a second switch 112.
  • the first switch 111 is disposed between the first end of the switch converting unit 11 and the third end of the switch converting unit 11, and the second switch 112 is disposed at the second end of the switching converting unit 11 and the third end of the switching converting unit 11 Between, as shown in Figure 3.
  • Figure 3 is drawn on the basis of Figure 2.
  • the first switch 111 and the second switch 112 may each belong to a controllable switch, for example, may include but are not limited to Single pole single throw switch, semiconductor switch and optocoupler switch.
  • the first switch 111 is configured to be closed within the first time period to connect the first end of the switch converting unit 11 with the third end of the switch converting unit 11 during the first time period, thereby causing the collecting control unit 12 to collect the voltage V1.
  • the second switch 112 is configured to be closed within the second time period to connect the second end of the switch converting unit 11 with the third end of the switch converting unit 11 during the second time period, thereby causing the acquisition control unit 12 to collect the voltage V2.
  • the first switch 111 is open for a second period of time and the second switch 112 is open for a first period of time.
  • the switching conversion unit 11 includes a third switch 113 as shown in FIG. Figure 4 is drawn on the basis of Figure 2.
  • the third switch 113 includes a first end, a second end, and a third end; the third end of the third switch 113 is a third end of the switch converting unit 11.
  • the third switch 113 can be a controllable switch, and can include, but is not limited to, a single pole double throw switch, a semiconductor switch, an optocoupler switch, and the like.
  • the third switch 113 is configured to turn on the first end of the third switch 113 and the third end 113 of the third switch in the first time period, so that the first end of the third switch 113 is the first end of the switch converting unit 11 Even if the first end of the switch conversion unit 11 is connected to the third end of the switch conversion unit 11, so that the acquisition control unit 12 collects the voltage V1; the third switch 113 is used to turn on the third switch 113 for the second time period.
  • the third end and the third end of the third switch 113 are such that the third end of the third switch 113 is the third end of the switch converting unit 11, even if the second end of the switching unit 11 and the third end of the switch converting unit 11
  • the connection is such that the acquisition control unit 12 collects the voltage V2.
  • the detecting circuit may further include a fourth switch 13 disposed between the second end of the battery pack and the second end of the acquisition control unit 12.
  • a detection circuit can be as shown in Figure 5.
  • a detection circuit can be as shown in Figure 6. In this way, the switching of the circuit between the battery pack and the acquisition control unit 12 can be controlled.
  • the fourth switch 13 can be disposed independently of the switch conversion unit 11, as shown in FIG. 5 or FIG. 6; in addition, it can also be integrated in the switch conversion unit 11, in which case two ports can be added to the switch conversion unit 11, and A fourth switch 13 is placed between the two ports.
  • the acquisition control unit 12 can indirectly collect the voltage across the battery pack by setting the voltage dividing unit (ie, the first end of the relay and the battery pack) The voltage between the two ends is V1).
  • the acquisition control unit 12 may include a voltage dividing unit, an acquisition unit, and a control unit, as shown in FIG. 7, wherein FIG. 7 is drawn based on FIG. It can be understood that, in FIG. 7, the switching unit 11 can include two third ends.
  • the acquisition control unit includes two first ends; the voltage dividing unit can include resistors R0, R1 and R2. In the detecting circuit shown in FIG.
  • FIG. 7 can be equivalent to FIG. 8 , that is, the voltage dividing unit is integrated in the switch converting unit 11 .
  • the switch converting unit 11 may further include a fourth end connected to the second end of the acquisition control unit 12; and the voltage dividing unit is connected to the first switch 111, the second switch 112, and the fourth Between the ends.
  • an isolation unit may be provided to isolate the battery management system from the high voltage power battery system to ensure the safety of the high voltage power battery system in the event of a relay failure.
  • the isolation unit can include an isolator. As shown in FIG. 9, it is a schematic diagram of a resting position of the isolation unit. Where the isolation unit can be set Between the switch conversion unit 11 and the acquisition control unit 12.
  • the battery management system includes two relays, specifically, the first end of the battery pack is connected to the first end of the second relay, the second end of the second relay is connected to one end of the load, and the other end of the load is connected to the first relay.
  • the second end of the first relay is connected to the second end of the battery pack; then the two detection circuits provided above can be used to detect whether the two relays are faulty.
  • the two detection circuits can also be integrated together, as shown in FIG.
  • FIG. 10 is a drawing based on FIG. 3, and FIG. 10 is an example in which "the first relay is a positive relay and the second relay is a negative relay". It can be understood that the "fourth end" in FIG. 10 has a different meaning from the "fourth end" in FIG.
  • the detection circuit includes a switching conversion unit 11 and an acquisition control unit 12.
  • the battery pack, the first relay and the second relay each comprise a first end and a second end.
  • the switch converting unit 11 includes a first end, a second end, a third end, a fourth end, a fifth end, and a sixth end.
  • the acquisition control unit 12 includes a first end and a second end. The first end of the switch conversion unit 11 is connected to the first end of the first relay, and the second end of the switch conversion unit 11 is connected to the second end of the first relay.
  • the third end of the switch conversion unit 11 is connected to the first end of the acquisition control unit 12, and the fourth end of the switch conversion unit 11 is connected to the second end of the acquisition control unit 12.
  • the fifth end of the switch conversion unit 11 is connected to the first end of the second relay, and the sixth end of the switch conversion unit 11 is connected to the second end of the second relay.
  • the switch conversion unit 11 includes a switch 1, a switch 2, a switch 3, and a switch 4.
  • a switch 1 is disposed between the first end of the switch conversion unit 11 and the third end of the switch conversion unit 11, and a switch 2 is disposed between the second end of the switch conversion unit 11 and the third end of the switch conversion unit 11
  • a switch 3 is disposed between the fourth end of the unit 11 and the fifth end of the switch converting unit 11, and a switch 4 is disposed between the fourth end of the switch converting unit 11 and the sixth end of the switching unit 11.
  • detecting whether the first relay is faulty may include:
  • the switch 1 is closed within the duration 1 such that the first end of the acquisition control unit 12 is coupled to the first end of the first relay and the switch 3 is closed within the duration 1 such that the second end of the acquisition control unit 12 is coupled to the battery pack
  • the second end is connected such that the acquisition control unit 12 collects the voltage V1 between the first end of the first relay and the second end of the battery pack in the duration 1 .
  • the switch 2 is closed within the duration 2 such that the first end of the acquisition control unit 12 is coupled to the second end of the first relay and the switch 3 is closed within the second duration to cause the second end of the acquisition control unit 12 to be coupled to the battery
  • the second end of the set is coupled such that acquisition control unit 12 acquires voltage V2 between the second end of the first relay and the second end of the battery pack for a duration of two.
  • detecting whether the second relay is faulty may include:
  • the switch 1 is closed within the duration 3 such that the first end of the acquisition control unit 12 is coupled to the first end of the battery pack and the switch 3 is closed within the duration 1 such that the second end of the acquisition control unit 12 and the battery pack are The two ends are connected such that the acquisition control unit 12 collects the voltage V3 between the first end of the second relay and the first end of the battery pack for a duration of three.
  • the switch 1 is closed within the duration 4 such that the first end of the acquisition control unit 12 is coupled to the first end of the battery pack and the switch 4 is closed within the duration 1 such that the second end of the acquisition control unit 12 and the battery pack are One end is connected such that the acquisition control unit 12 collects the voltage between the second end of the second relay and the first end of the battery pack in the duration 4 V4.
  • the first relay can be detected first, and then the second relay can be detected. It is also possible to detect the second relay first and then the first relay. In addition, since V1 and V3 are equal, when it is implemented, it can be acquired once.
  • FIG. 11 is drawn based on FIGS. 8 and 10.
  • the battery management system shown in Fig. 11 may include a battery pack, a relay 1, a relay 2, a relay 3, a relay 4, a relay 5, a relay 6, and a load.
  • the first end of the battery pack is connected to the first end of the relay 1
  • the second end of the relay 1 is connected to the first end of the relay 4
  • the second end of the relay 4 is connected to one end of the load
  • the other end of the load is connected to the second end of the relay 2.
  • the first end of the relay 2 is connected to the second end of the battery pack.
  • the relay 3 and the pre-charge resistor R form a series branch and form a parallel branch with the relay 1.
  • the relay 6 is connected in parallel with the relay 5 and in parallel with the relay 4.
  • the detection circuit shown in FIG. 11 includes a switching conversion unit 11 and an acquisition control unit 12.
  • the first end of the switch conversion unit 11 is connected to the first end of the relay 1, the second end of the switch conversion unit 11 is connected to the second end of the relay 1, and the third end of the switch conversion unit is connected to the first end of the acquisition control unit 31.
  • the fourth end of the switch conversion unit 11 is connected to the second end of the acquisition control unit 31, the fifth end of the switch conversion unit 11 is connected to the first end of the relay 2, and the sixth end of the switch conversion unit 11 is connected to the second end of the relay 2.
  • the seventh end of the switch conversion unit 11 is connected to the first end of the relay 6, the eighth end of the switch conversion unit 11 is connected to the first end of the relay 5, and the ninth end of the switch conversion unit 11 is connected to the second end of the relay 4, the switch The tenth end of the conversion unit 11 is connected to the first end of the relay 3.
  • a switch S1 and a resistor R1 are sequentially disposed between the first end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a switch S2 and a resistor R2 are sequentially disposed between the second end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a switch S5 and a resistor R5 are sequentially disposed between the seventh end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a switch S6 and a resistor R6 are sequentially disposed between the eighth end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a switch S7 and a resistor R7 are sequentially disposed between the ninth end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a switch S8 and a resistor R8 are sequentially disposed between the tenth end of the switch conversion unit 11 and the first end of the acquisition control unit 12.
  • a resistor R3 and a switch S3 are sequentially disposed between the fifth end of the switch conversion unit 11 and the second end of the acquisition control unit 12.
  • a switch S4 and a resistor R4 are sequentially disposed between the sixth end of the switch conversion unit 11 and the second end of the acquisition control unit 12.
  • the first end of the detecting resistor R0 is connected to the third end of the switch converting unit, and the second end of the detecting resistor R0 is connected to the fourth end of the switch converting unit. And the first end of the detecting resistor R0 is connected to R1, R2, R5, R6, R7 and R8, and the second end of the detecting resistor R0 is connected to R3 and R4.
  • the switch switching unit 11 can be used to close the switches S1 and S3 in the duration 5, and close the switches S3 and S8 in the duration 6, the acquisition control unit 12 is configured to collect the voltage V13 in the duration 5, and The voltage V38 is collected for the duration 6 and the relay 3 is broken according to V13 and V38.
  • the switch switching unit 11 can be used to close the switches S2 and S3 within the duration 7, and to close the switches S7 and S3 within the duration 8.
  • the acquisition control unit 12 is configured to collect the voltage V23 in the duration 7
  • the voltage V37 is collected in the duration 8 and the relay 4 is judged to be faulty according to V23 and V37.
  • the present application does not limit the order of the detection relay 1 and the detection relay 2.
  • the order of the detection relay 3, the detection relay 4, the detection relay 5, and the detection relay 6 is also not limited. In specific implementation, at least one of the relay 3, the relay 4, the relay 5, and the relay 6 can be detected.
  • the example is described as an example of "detecting whether the relay is faulty during power-on".
  • the technical solution provided by the present application can detect whether the relay is faulty during the power-on process, and can also detect whether the relay is faulty when the relay is working normally.
  • the battery management system can include a battery pack, a load, a positive relay, and a negative relay.
  • the detection circuit may include a voltage conversion unit 1, a voltage conversion unit 2, a voltage conversion unit 3, and an acquisition control unit.
  • the voltage conversion unit 1 is used to measure the voltage across the battery pack (ie, based on V1 or V3 in the example shown in FIG. 10);
  • the voltage conversion unit 2 is used to measure the voltage between the positive pole of the negative relay and the positive pole of the battery pack. (ie, based on V4 in the example shown in FIG.
  • the voltage conversion unit 3 is for measuring the voltage between the negative electrode of the positive electrode relay and the negative electrode of the battery pack (ie, based on V2 in the example shown in FIG. 10).
  • Each voltage conversion unit is connected to an acquisition control unit. Based on this example, a method of judging whether the positive relay and the negative relay are malfunctioning can be referred to above. It can be understood that in this example, whether the positive relay and the negative relay are faulty can be judged simultaneously or sequentially.
  • each voltage conversion unit may be as shown in FIG. 13 or FIG. 14.
  • the present application also provides a detection method that can be applied to any of the detection circuits provided above.
  • the method may include first collecting a voltage V1 between the first end of the relay and the second end of the battery pack within the first duration. Then, within a second duration, the voltage V2 between the second end of the relay and the second end of the battery pack is collected. Finally, according to V1 and V2, it is judged whether the relay is faulty. Specifically, the state of the relay is determined according to the absolute value of the difference between V1 and V2, and if it is determined that the state of the relay is different from the preset state, the relay failure is determined.
  • the state of the relay includes one of a closed state and a disconnected state, and the preset state includes one of a closed state and a disconnected state. See above for details on determining the status of the relay.
  • the anode relay and the pre-charge relay are first closed, and whether the anode relay and the pre-charge relay are normal according to the collected load voltage, and whether the cathode relay is faulty under the condition that the anode relay and the pre-charge relay are both normal are detected.
  • the technical solution provided by the present application can independently detect whether the relay is faulty, thereby improving the safety and reliability of the high voltage power battery system.
  • the steps of the method or algorithm described in connection with the disclosure of the present application may be implemented in a hardware manner, or may be implemented by a processing module executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in RAM, flash memory, ROM, erasable programmable read only memory (EPROM), electrically erasable programmable read only memory (electrically EPROM, EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种检测电路、方法和装置,用以提高高压动力电池管理系统的安全性和可靠性,应用于电池管理系统。检测电路包括:开关转换单元(11)和采集控制单元(12)。开关转换单元(11),用于在第一时长内使开关转换单元(11)的第一端与开关转换单元(11)的第三端连接,并在第二时长内使开关转换单元(11)的第二端与开关转换单元(11)的第三端连接。采集控制单元(12),用于在第一时长内,采集继电器的第一端与电池组的第二端之间的电压V1,并在第二时长内,采集继电器的第二端与电池组的第二端之间的电压V2,以及根据V1和V2,判断继电器是否故障。

Description

一种检测电路、方法和装置
本申请要求于2017年03月20日提交中国专利局、申请号为201710167220.7、申请名称为“一种检测电路、方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车领域,尤其涉及一种检测电路、方法和装置。
背景技术
高压动力电池系统对保障汽车安全起关键作用。电池管理系统可以包括高压继电器。其中,高压继电器可以作为安全开关,用于在电压大于预设阈值时断开,以保障电路和电池管理系统安全。由于高压继电器很容易发生故障,因此电池管理系统需要时时检测高压继电器,以在高压继电器发生故障时及时给高压动力电池系统上报,从而使高压动力电池系统及时处理发生故障的高压继电器,进而提高高压动力电池系统的安全性和可靠性。
高压继电器可以包括负极继电器、预充继电器和正极继电器等。目前,一种检测电路包括:电池组、正极继电器、负极继电器、预充继电器、预充电阻和采集控制单元,这些器件之间的连接关系如图1所示。基于该检测电路,一种检测方法可以包括:首先,采集控制单元控制负极继电器和预充继电器闭合,其中,该过程可以称为上电过程;然后,采集控制单元采集负载电压。若负载电压按照预期逐渐上升至电池组总电压,说明负极继电器和预充继电器正常,则可以继续检测正极继电器是否故障。若负载电压为0,则停止检测。
上述方法中,检测负极继电器是否故障时需要依赖于预充继电器,且在负极继电器正常的情况下,才能检测正极继电器是否故障。这样,不能有效提高高压动力电池系统的安全性和可靠性。
发明内容
本申请提供一种检测电路、方法和装置,用以提高高压动力电池系统的安全性和可靠性。
第一方面,本申请提供一种检测电路,应用于电池管理系统,电池管理系统可以包括电池组、继电器和负载。电池组的第一端与继电器的第一端连接,继电器的第二端与负载的一端连接,负载的另一端与电池组的第二端连接。检测电路可以包括开关转换单元和采集控制单元。其中,开关转换单元包括第一端、第二端和第三端,开关转换单元的第一端与继电器的第一端连接,开关转换单元的第二端与继电器的第二端连接。采集控制单元包括第一端和第二端,采集控制单元的第一端与开关转换单元的第三端连接,采集控制单元的第二端与电池组的第二端连接。开关转换单元,可以用于在第一时长内使开关转换单元的第一端与开关转换单元的第三端连接,并在第二时长内使开关转换单元的第二端与开关转换单元的第三端连接。采集控制单元,可以用于在第一时长内,采集继电器的第一端与电池组的第二端之间的电压V1,并在第二时长内,采集继电器的第二端与电池组的第二端之间的电压V2,以及根据V1和V2, 判断继电器是否故障。本申请提供的检测电路,可以独立检测各继电器是否故障,从而能够提高高压动力电池系统的稳定性。
在一种可能的设计中,开关转换单元的第一端和开关转换单元的第三端之间设置有第一开关,开关转换单元的第二端和开关转换单元的第三端之间设置有第二开关。第一开关用于在第一时长内闭合,并在第二时长内断开,这样,采集控制单元可以在第一时长内采集继电器的第一端和电池组的第二端之间的电压。第二开关用于在第二时长内闭合,并在第一时长内断开,这样,采集控制单元可以在第二时长内采集继电器的第二端和电池组的第二端之间的电压。该可能的设计提供了开关转换单元的一种具体实现方式。
在一种可能的设计中,开关转换单元包括第三开关。第三开关包括第一端、第二端和第三端;第三开关的第三端为开关转换单元的第三端;第三开关用于在第一时长内导通第三开关的第一端与第三开关的第三端,以使第三开关的第一端为开关转换单元的第一端;开关用于在第二时长内导通第三开关的第二端与第三开关的第三端,以使第三开关的第三端为开关转换单元的第三端。该可能的设计提供了开关转换单元的另一种具体实现方式。
在一种可能的设计中,电池组的第二端与采集控制单元的第二端之间可以设置有第四开关。这样,可以控制电池组和采集控制单元之间电路的通断。
在一种可能的设计中,采集控制单元具体可以用于:根据V1和V2的差值的绝对值,确定继电器的状态。若确定继电器的状态与预设状态不同,则确定继电器故障。其中,继电器的状态包括闭合状态或断开状态,预设状态包括闭合状态或断开状态。
在一种可能的设计中,继电器可以包括以下任一种:正极继电器、预充继电器和负极继电器等。
第二方面,提供一种检测装置,可以包括上述第一方面提供的任一项检测电路。
第三方面,提供一种检测方法,可以应用于上述第一方面提供的任一项检测电路。检测电路应用于电池管理系统,电池管理系统包括电池组、继电器和负载。其中,电池组的第一端与继电器的第一端连接,继电器的第二端与负载的一端连接,负载的另一端与电池组的第二端连接。该方法可以包括:在第一时长内,采集继电器的第一端与电池组的第二端之间的电压V1。在第二时长内,采集继电器的第二端与电池组的第二端之间的电压V2。根据V1和V2,判断继电器是否故障。本申请提供的检测方法中,可以独立检测各继电器是否正常,从而能够提高高压动力电池系统的稳定性。
在一种可能的设计中,根据V1和V2,判断继电器是否故障,可以包括:根据V1和V2的差值的绝对值,确定继电器的状态。其中,继电器的状态包括闭合状态或断开状态。若确定继电器的状态与预设状态不同,则确定继电器故障。其中,预设状态包括闭合状态或断开状态。
上述第二方面或第三方面提供的技术方案的相关解释和有益效果可以参考第一方面,此处不再赘述。
附图说明
图1为现有技术提供的一种检测电路的示意图;
图2为本申请提供的一种检测电路的示意图;
图3为本申请提供的另一种检测电路的示意图;
图4为本申请提供的另一种检测电路的示意图;
图5为本申请提供的另一种检测电路的示意图;
图6为本申请提供的另一种检测电路的示意图;
图7为本申请提供的另一种检测电路的示意图;
图8为本申请提供的另一种检测电路的示意图;
图9为本申请提供的一种隔离单元搁置位置的示意图;
图10为本申请提供的另一种检测电路的示意图;
图11为本申请提供的另一种检测电路的示意图;
图12为本申请提供的另一种检测电路的示意图;
图13为本申请提供的一种电压转换单元的示意图;
图14为本申请提供的另一种电压转换单元的示意图。
具体实施方式
若电池管理系统中的继电器故障,则会影响电池管理系统的正常运行,从而不利于高压动力电池系统的安全性。为了提高高压动力电池管理系统的安全性,本申请提供一种检测电路。其基本原理是:该检测电路可以包括开关转换单元。开关转换单元可以使采集控制单元在第一时长内采集继电器的第一端与电池组的第二端之间的电压V1,并使采集控制单元在第二时长内采集继电器的第二端与电池组的第二端之间的电压V2,从而采集控制单元可以根据V1和V2判断继电器是否故障。这样,能够独立检测出各继电器是否故障。
本文中的“第一”和“第二”等是为了更清楚地区分不同的对象,并不做任何其他限定。本文中的“多个”是指两个或两个以上。
如图2所示,为本申请提供的一种检测电路,应用于电池管理系统,电池管理系统可以包括电池组、继电器和负载。电池组的第一端与继电器的第一端连接,继电器的第二端与负载的一端连接,负载的另一端与电池组的第二端连接。检测电路包括开关转换单元11和采集控制单元12。开关转换单元11的第一端连接继电器的第一端,开关转换单元11的第二端连接继电器的第二端,开关转换单元11的第三端连接采集控制单元12的第一端,采集控制单元12的第二端连接电池组的第二端。
需要说明的是,开关转换单元11可以包括但不限于开关或半导体器件等。采集控制单元12可以包括电子电路单元,电子电路单元可以包含等效于电压表的电压采集电路和集成在该电路中的控制器等。从逻辑上划分,采集控制单元12可以包括采集单元和控制单元。其中,采集单元可以包括等效于电压表的电压采集单元,用于采集电压。控制单元可以包括控制器或处理器,用于判断继电器是否故障。可选的,继电器可以包括但不限于正极继电器,预充继电器和负极继电器等。
在图2中,若电池组的第一端为正极,则继电器可以为正极继电器或预充继电器等。若电池组的第一端为负极,则继电器可以为负极继电器等。
开关转换单元11,可以用于在第一时长内使开关转换单元11的第一端与开关转换单元的第三端连接,并在第二时长内使开关转换单元的第二端与开关转换单元的第三端连接。其中,第一时长和第二时长均可以是任一时长,本发明实施例对此不进行 限定。另外,可选的,第一时长的时间段和第二时长的时间段无重叠。
采集控制单元12,可以用于在第一时长内,采集继电器的第一端与电池组的第二端之间的电压V1;并在第二时长内,采集继电器的第二端与电池组的第二端之间的电压V2;以及根据V1和V2,判断继电器是否故障。
采集控制单元12根据V1和V2,判断继电器是否故障可以包括:首先,采集控制单元12根据V1和V2的差值的绝对值,确定继电器的状态。具体的,采集控制单元12可以计算V1和V2的差值的绝对值。若确定V1和V2的差值的绝对值小于或等于预设阈值,则确定继电器的状态是闭合状态。若确定V1和V2的差值的绝对值大于预设阈值,则确定继电器的状态是断开状态。然后,采集控制单元12若确定继电器的状态与预设状态不同,则确定继电器故障。其中,继电器的状态包括闭合状态和断开状态中的一种。预设状态包括闭合状态和断开状态中的一种。
由于继电器闭合时,V1和V2均相当于测电池组电压,V1的值和V2的值近似相等。因此,若V1和V2的差值的绝对值小于或等于预设阈值,则继电器的状态为闭合状态。其中,预设阈值可以由电池管理系统设置。
具体实现时,预设状态可以是由采集控制单元12向开关转换单元11发送的控制命令所指示的状态,也可以是由独立的处理器向开关转换单元11发送的控制命令所指示的状态。其中,独立的处理器可以设置在电池管理系统中且与检测电路独立设置,也可以设置在电池管理系统之外。若控制命令为闭合命令,则预设状态为闭合状态。若控制命令为断开命令,则预设状态为断开状态。
本申请提供的技术方案,通过在第一时长内使开关转换单元的第一端与开关转换单元的第三端连接,采集继电器的第一端与电池组的第二端之间的电压V1。通过在第二时长内使开关转换单元的第二端与开关转换单元的第三端连接,采集继电器的第二端与电池组的第二端之间的电压V2。并根据V1和V2,判断继电器是否故障。与现有技术中先闭合负极继电器和预充继电器,根据采集的负载电压判断负极继电器和预充继电器是否正常,并在负极继电器和预充继电器均正常的情况下检测正极继电器是否故障的方案相比,本申请提供的技术方案能够独立检测继电器是否故障,从而能够提高高压动力电池系统的安全性和可靠性。
另外,与现有技术提供的在上电过程中检测继电器的方法相比,本申请提供的检测电路可以在上电过程中检测继电器是否故障,也可以在上电完毕后检测继电器是否故障。由于在上电完毕后,预充继电器处于短路状态,因此,上电完毕后不需检测预充继电器是否故障。其中,上电过程是指闭合负极继电器和预充继电器,给负载电容充电的过程。
下面通过方式1和方式2对本申请提供的开关转换单元11进行说明,当然,具体实现时不限于此。
方式1:开关转换单元11包括第一开关111和第二开关112。第一开关111设置在开关转换单元11的第一端和开关转换单元11的第三端之间,第二开关112设置在开关转换单元11的第二端和开关转换单元11的第三端之间,如图3所示。图3是在图2的基础上绘制的。
第一开关111和第二开关112均可以是属于可控开关,例如,可以包括但不限于 单刀单掷开关、半导体开关和光耦开关等。第一开关111,用于在第一时长内闭合,以在第一时长内使开关转换单元11的第一端与开关转换单元11的第三端连接,从而使采集控制单元12采集电压V1。第二开关112,用于在第二时长内闭合,以在第二时长内使开关转换单元11的第二端与开关转换单元11的第三端连接,从而使采集控制单元12采集电压V2。一般地,第一开关111在第二时长内断开,第二开关112在第一时长内断开。
方式2:开关转换单元11包括第三开关113,如图4所示。图4是在图2的基础上绘制的。第三开关113包括第一端、第二端和第三端;第三开关113的第三端为开关转换单元11的第三端。
第三开关113可以是可控开关,例如,可以包括但不限于单刀双掷开关、半导体开关和光耦开关等。第三开关113用于在第一时长内导通第三开关113的第一端与第三开关的第三端113,以使第三开关113的第一端为开关转换单元11的第一端,即使开关转换单元11的第一端与开关转换单元11的第三端连接,从而使采集控制单元12采集电压V1;第三开关113用于在第二时长内导通第三开关113的第二端与第三开关113的第三端,以使第三开关113的第三端为开关转换单元11的第三端,即使开关转换单元11的第二端与开关转换单元11的第三端连接,从而使采集控制单元12采集电压V2。
在本申请的一个实施例中,检测电路中还可以包括第四开关13,第四开关13设置在电池组的第二端与采集控制单元12的第二端之间。基于图3,一种检测电路可以如图5所示。基于图4,一种检测电路可以如图6所示。这样,可以控制电池组和采集控制单元12之间电路的通断。第四开关13可以与开关转换单元11独立设置,如图5或图6所示;另外,也可以集成在开关转换单元11中,该情况下,可以给开关转换单元11增添两个端口,并将第四开关13设置在这两个端口之间。
在本申请的一个实施例中,由于电池组两端电压很高,因此,采集控制单元12可以通过设置分压单元,间接采集电池组两端电压(即继电器的第一端与电池组的第二端之间的电压V1)。该情况下,采集控制单元12可以包括分压单元、采集单元和控制单元,如图7所示,其中,图7是基于图3进行绘制的。可以理解的,在图7中,开关转换单元11可以包括两个第三端,对应的,采集控制单元包括两个第一端;分压单元可以包括电阻R0、R1和R2。在图7所示的检测电路中,当第一开关111闭合时,采集控制单元12采集电阻R0两端电压V0,并计算V1,其中,V1=V0(R1+R0)/R0。当第二开关112闭合时,采集控制单元12采集电阻R0两端电压V0’,并计算V2,其中,V2=V0’(R2+R0)/R0。
可以理解的,具体实现时,可以将图7等效为图8,即将分压单元集成在开关转换单元11中。在图8中,开关转换单元11还可以包括第四端,该第四端与采集控制单元12的第二端连接;且分压单元连接在第一开关111、第二开关112与该第四端之间。
在本申请的一个实施例中,可以设置隔离单元将电池管理系统和高压动力电池系统隔离,以在继电器发生故障时保障高压动力电池系统的安全性。隔离单元可以包括隔离器。如图9所示,为一种隔离单元搁置位置的示意图。其中,隔离单元可以设置 在开关转换单元11和采集控制单元12之间。
上文中均是以如何检测一个继电器是否故障为例进行说明的。若电池管理系统中包括两个继电器,具体的,电池组的第一端和第二继电器的第一端连接,第二继电器的第二端和负载的一端连接,负载的另一端连接第一继电器的第二端,第一继电器的第一端连接电池组的第二端;则可以使用上文提供的两个检测电路检测这两个继电器是否故障。另外,还可以将这两个检测电路集成在一起,如图10所示。
图10是基于图3进行绘制的,图10中是以“第一继电器为正极继电器,第二继电器为负极继电器”为例进行说明。可以理解的,图10中的“第四端”与图7中的“第四端”的含义不同。
如图10所示,检测电路包括开关转换单元11和采集控制单元12。其中,电池组、第一继电器和第二继电器均包括第一端和第二端。开关转换单元11包括:第一端、第二端、第三端、第四端、第五端和第六端。采集控制单元12包括第一端和第二端。其中,开关转换单元11的第一端连接第一继电器的第一端,开关转换单元11的第二端连接第一继电器的第二端。开关转换单元11的第三端连接采集控制单元12的第一端,开关转换单元11的第四端连接采集控制单元12的第二端。开关转换单元11的第五端连接第二继电器的第一端,开关转换单元11的第六端连接第二继电器的第二端。开关转换单元11包括开关1,开关2,开关3和开关4。开关转换单元11的第一端与开关转换单元11的第三端之间设置有开关1,开关转换单元11的第二端与开关转换单元11的第三端之间设置有开关2,开关转换单元11的第四端与开关转换单元11的第五端之间设置有开关3,开关转换单元11的第四端与开关转换单元11的第六端之间设置有开关4。
在图10所示的检测电路中,检测第一继电器是否故障可以包括:
在时长1内闭合开关1,以使采集控制单元12的第一端与第一继电器的第一端连接,且在时长1内闭合开关3,以使采集控制单元12的第二端与电池组的第二端连接,从而使采集控制单元12在时长1内采集第一继电器的第一端与电池组的第二端之间的电压V1。
在时长2内闭合开关2,以使采集控制单元12的第一端与第一继电器的第二端连接,且在第二时长内闭合开关3,以使采集控制单元12的第二端与电池组的第二端连接,从而使采集控制单元12在时长2采集第一继电器的第二端与电池组的第二端之间的电压V2。
然后,根据V1和V2确定第一继电器是否故障,其具体实现方式可参考上文。
在图10所示的检测电路中,检测第二继电器是否故障可以包括:
在时长3内闭合开关1,以使采集控制单元12的第一端与电池组的第一端连接且在时长1内闭合开关3,以使采集控制单元12的第二端与电池组的第二端连接,从而使采集控制单元12在时长3内采集第二继电器的第一端与电池组的第一端之间的电压V3。
在时长4内闭合开关1,以使采集控制单元12的第一端与电池组的第一端连接且在时长1内闭合开关4,以使采集控制单元12的第二端与电池组的第一端连接,从而使采集控制单元12在时长4内采集第二继电器的第二端与电池组的第一端之间的电压 V4。
然后,根据V3和V4确定第一继电器是否故障,其具体实现方式可参考上文。
可以理解的,本示例中可以先检测第一继电器,后检测第二继电器。也可以先检测第二继电器,后检测第一继电器。另外,由于V1与V3相等,因此,具体实现时,获取一次即可。
下面通过一个具体的示例进行说明。
如图11所示,为本申请提供的一种检测电路。图11是基于图8和图10进行绘制的。图11所示的电池管理系统可以包括电池组,继电器1,继电器2,继电器3,继电器4,继电器5,继电器6和负载。其中,电池组的第一端连接继电器1的第一端,继电器1的第二端连接继电器4的第一端,继电器4的第二端连接负载的一端,负载的另一端连接继电器2的第二端,继电器2的第一端连接电池组的第二端。继电器3和预充电阻R组成串联支路,并与继电器1组成并联支路。继电器6与继电器5并联,并与继电器4并联。
图11所示的检测电路包括开关转换单元11和采集控制单元12。其中,开关转换单元11的第一端连接继电器1的第一端,开关转换单元11的第二端连接继电器1的第二端,开关转换单元的第三端连接采集控制单元31的第一端,开关转换单元11的第四端连接采集控制单元31的第二端,开关转换单元11的第五端连接继电器2的第一端,开关转换单元11的第六端连接继电器2的第二端,开关转换单元11的第七端连接继电器6的第一端,开关转换单元11的第八端连接继电器5的第一端,开关转换单元11的第九端连接继电器4的第二端,开关转换单元11的第十端连接继电器3的第一端。开关转换单元11的第一端与采集控制单元12的第一端之间依次设置有开关S1和电阻R1。开关转换单元11的第二端与采集控制单元12的第一端之间依次设置有开关S2和电阻R2。开关转换单元11的第七端与采集控制单元12的第一端之间依次设置有开关S5和电阻R5。开关转换单元11的第八端与采集控制单元12的第一端之间依次设置有开关S6和电阻R6。开关转换单元11的第九端与采集控制单元12的第一端之间依次设置有开关S7和电阻R7。开关转换单元11的第十端与采集控制单元12的第一端之间依次设置有开关S8和电阻R8。开关转换单元11的第五端与采集控制单元12的第二端之间依次设置有电阻R3和开关S3。开关转换单元11的第六端与采集控制单元12的第二端之间依次设置有开关S4和电阻R4。检测电阻R0的第一端连接开关转换单元的第三端,检测电阻R0的第二端连接开关转换单元的第四端。且检测电阻R0的第一端连接R1,R2,R5,R6,R7和R8,检测电阻R0的第二端连接R3和R4。
检测继电器1是否故障时,可以参考图10中关于检测第一继电器的相关内容。检测继电器2是否故障时,可以参考图10中关于检测第二继电器的相关内容。
检测继电器3是否故障时:开关转换单元11可以用于在时长5内闭合开关S1和S3,并在时长6内闭合开关S3和S8,采集控制单元12用于在时长5内采集电压V13,并在时长6内采集电压V38,并根据V13和V38,断继电器3是否故障。
检测继电器4是否故障时:开关转换单元11可以用于在时长7内闭合开关S2和S3,并在时长8内闭合开关S7和S3。采集控制单元12用于在时长7内采集电压V23, 并在时长8内采集电压V37,并根据V23和V37判断继电器4是否故障。
检测继电器5是否故障和检测继电器6是否故障的相关内容,可以见上述检测继电器4是否故障的相关内容。
本申请对检测继电器1和检测继电器2的顺序不进行限定。对检测继电器3,检测继电器4,检测继电器5和检测继电器6的顺序也不进行限定。具体实现时,可以检测继电器3,继电器4,继电器5和继电器6中的至少一个继电器。
需要说明的是,本示例是以“在上电过程中检测继电器是否故障”为例说明的。本申请提供的技术方案可以在上电过程中检测继电器是否故障,也可以在继电器正常工作时检测继电器是否故障。
如图12所示,为本申请提供的另一种检测电路,可以应用于电池管理系统。电池管理系统可以包括电池组、负载、正极继电器和负极继电器。检测电路可以包括电压转换单元1,电压转换单元2,电压转换单元3和采集控制单元。其中,电压转换单元1用于测量电池组两端的电压(即基于图10所示的示例中的V1或V3);电压转换单元2用于测量负极继电器的正极与电池组的正极之间的电压(即基于图10所示的示例中的V4);电压转换单元3用于测量正极继电器的负极与电池组的负极之间的电压(即基于图10所示的示例中的V2)。每个电压转换单元均与采集控制单元连接。基于该示例,判断正极继电器和负极继电器是否故障的方法可以参考上文。可以理解的,在本示例中,可以同时或先后判断正极继电器和负极继电器是否故障。可选的,各电压转换单元可以如图13或图14所示。
本申请还提供一种检测方法,可以应用于上文提供的任一种检测电路中。如应用于如图2所示的检测电路中时,该方法可以包括:首先在第一时长内,采集继电器的第一端与电池组的第二端之间的电压V1。然后,在第二时长内,采集继电器的第二端与电池组的第二端之间的电压V2。最后根据V1和V2,判断继电器是否故障。具体的,根据V1和V2的差值的绝对值,确定继电器的状态,若确定继电器的状态与预设状态不同,则确定继电器故障。其中,继电器的状态包括闭合状态和断开状态中的一种,预设状态包括闭合状态和断开状态中的一种。关于确定继电器的状态的相关内容,可以参见上文。
与现有技术中先闭合负极继电器和预充继电器,根据采集的负载电压判断负极继电器和预充继电器是否正常,并在负极继电器和预充继电器均正常的情况下检测正极继电器是否故障的方案相比,本申请提供的技术方案能够独立检测继电器是否故障,从而能够提高高压动力电池系统的安全性和可靠性。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理模块执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。

Claims (9)

  1. 一种检测电路,其特征在于,应用于电池管理系统,所述电池管理系统包括电池组、继电器和负载;所述电池组的第一端与所述继电器的第一端连接,所述继电器的第二端与所述负载的一端连接,所述负载的另一端与所述电池组的第二端连接;所述检测电路包括:
    开关转换单元;其中,所述开关转换单元包括第一端、第二端和第三端;所述开关转换单元的第一端与所述继电器的第一端连接,所述开关转换单元的第二端与所述继电器的第二端连接;
    采集控制单元;其中,所述采集控制单元包括第一端和第二端;所述采集控制单元的第一端与所述开关转换单元的第三端连接,所述采集控制单元的第二端与所述电池组的第二端连接;
    所述开关转换单元,用于在第一时长内使所述开关转换单元的第一端与所述开关转换单元的第三端连接,并在第二时长内使所述开关转换单元的第二端与所述开关转换单元的第三端连接;
    所述采集控制单元,用于在所述第一时长内,采集所述继电器的第一端与所述电池组的第二端之间的电压V1,并在所述第二时长内,采集所述继电器的第二端与所述电池组的第二端之间的电压V2,以及根据所述V1和所述V2,判断所述继电器是否故障。
  2. 根据权利要求1所述的检测电路,其特征在于,所述开关转换单元的第一端和所述开关转换单元的第三端之间设置有第一开关,所述开关转换单元的第二端和所述开关转换单元的第三端之间设置有第二开关;
    所述第一开关用于在所述第一时长内闭合,并在所述第二时长内断开;
    所述第二开关用于在所述第二时长内闭合,并在所述第一时长内断开。
  3. 根据权利要求1所述的检测电路,其特征在于,所述开关转换单元包括:第三开关;
    所述第三开关包括第一端、第二端和第三端;所述第三开关的第三端为所述开关转换单元的第三端;
    所述第三开关用于在所述第一时长内导通所述第三开关的第一端与所述第三开关的第三端,以使所述第三开关的第一端为所述开关转换单元的第一端;
    所述第三开关用于在所述第二时长内导通所述第三开关的第二端与所述第三开关的第三端,以使所述第三开关的第三端为所述开关转换单元的第三端。
  4. 根据权利要求1至3任一项所述的检测电路,其特征在于,所述电池组的第二端与所述采集控制单元的第二端之间设置有第四开关。
  5. 根据权利要求1至4任一项所述的检测电路,其特征在于,
    所述采集控制单元具体用于:根据所述V1和所述V2的差值的绝对值,确定所述继电器的状态,若确定所述继电器的状态与预设状态不同,则确定所述继电器故障;所述继电器的状态包括闭合状态或断开状态,所述预设状态包括闭合状态或断开状态。
  6. 根据权利要求1至5任一项所述的检测电路,其特征在于,所述继电器包括以下任一种:正极继电器、预充继电器和负极继电器。
  7. 一种检测装置,其特征在于,包括权利要求1-6任一项所述的检测电路。
  8. 一种检测方法,其特征在于,应用于权利要求1至6任一项所述的检测电路,所述检测电路应用于电池管理系统,所述电池管理系统包括电池组、继电器和负载;所述电池组的第一端与所述继电器的第一端连接,所述继电器的第二端与所述负载的一端连接,所述负载的另一端与所述电池组的第二端连接;所述方法包括:
    在所述第一时长内,采集所述继电器的第一端与所述电池组的第二端之间的电压V1;
    在所述第二时长内,采集所述继电器的第二端与所述电池组的第二端之间的电压V2;
    根据所述V1和所述V2,判断所述继电器是否故障。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述V1和所述V2,判断所述继电器是否故障,包括:
    根据所述V1和所述V2的差值的绝对值,确定所述继电器的状态;其中,所述继电器的状态包括闭合状态或断开状态;
    若确定所述继电器的状态与预设状态不同,则确定所述继电器故障;其中,所述预设状态包括闭合状态或断开状态。
PCT/CN2017/115042 2017-03-20 2017-12-07 一种检测电路、方法和装置 WO2018171259A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17902359.3A EP3581950B1 (en) 2017-03-20 2017-12-07 Detection circuit, method, and apparatus
EP23181468.2A EP4306976A3 (en) 2017-03-20 2017-12-07 Detection circuit, method, and apparatus
US16/576,368 US11313908B2 (en) 2017-03-20 2019-09-19 Detection circuit, method, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710167220.7A CN108627765A (zh) 2017-03-20 2017-03-20 一种检测电路、方法和装置
CN201710167220.7 2017-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/576,368 Continuation US11313908B2 (en) 2017-03-20 2019-09-19 Detection circuit, method, and apparatus

Publications (1)

Publication Number Publication Date
WO2018171259A1 true WO2018171259A1 (zh) 2018-09-27

Family

ID=63584865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115042 WO2018171259A1 (zh) 2017-03-20 2017-12-07 一种检测电路、方法和装置

Country Status (4)

Country Link
US (1) US11313908B2 (zh)
EP (2) EP3581950B1 (zh)
CN (2) CN114325412A (zh)
WO (1) WO2018171259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092629A (zh) * 2020-09-18 2020-12-18 广州小鹏汽车科技有限公司 高压配电盒、电池系统和高压配电盒的控制方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201800005828A1 (it) * 2018-05-29 2019-11-29 Procedimento di funzionamento di sistemi di gestione di batterie, dispositivo e veicolo corrispondenti
CN109507476A (zh) * 2018-12-25 2019-03-22 中国重汽集团济南动力有限公司 一种高压接触器前后端电压检测系统
CN109782159B (zh) * 2019-02-25 2020-10-16 宁德时代新能源科技股份有限公司 高压检测电路及其检测方法
KR20220074582A (ko) * 2020-11-27 2022-06-03 주식회사 엘지에너지솔루션 릴레이 상태 관리 장치 및 그것의 동작 방법
US11994560B1 (en) * 2023-03-16 2024-05-28 Rivian Ip Holdings, Llc Relay monitoring for electrical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103675591A (zh) * 2013-12-09 2014-03-26 惠州市亿能电子有限公司 一种动力电池输出母线多点绝缘故障检测电路
CN103995211A (zh) * 2014-05-30 2014-08-20 长城汽车股份有限公司 车用高压系统的检测方法及系统
CN104391241A (zh) * 2014-10-13 2015-03-04 惠州市亿能电子有限公司 一种动力电池高压继电器状态检测电路及其方法
KR101504274B1 (ko) * 2011-11-09 2015-03-19 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
CN106427614A (zh) * 2016-08-31 2017-02-22 天津市捷威动力工业有限公司 电动汽车电池系统总电压采样及继电器诊断系统及方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572168B2 (ja) * 2003-03-31 2010-10-27 日本電気株式会社 リレー接点の溶着の検出方法及び装置
JP2011109877A (ja) * 2009-11-20 2011-06-02 Panasonic Electric Works Co Ltd 給電制御装置
JP2013206643A (ja) * 2012-03-28 2013-10-07 Hitachi Ltd 電池システムのリレー溶着検知装置、及びこれを用いた電池システム
JP5983171B2 (ja) * 2012-08-10 2016-08-31 株式会社Gsユアサ スイッチ故障診断装置、蓄電装置
JP6308486B2 (ja) * 2012-09-13 2018-04-11 パナソニックIpマネジメント株式会社 リレー溶着検出装置
KR102052956B1 (ko) * 2013-05-21 2019-12-09 엘지이노텍 주식회사 배터리 팩의 릴레이 진단장치 및 배터리 제어 시스템
CN103353581B (zh) * 2013-06-25 2015-10-21 安徽力高新能源技术有限公司 一种电池组高压状态复合检测装置
KR102210282B1 (ko) * 2014-05-30 2021-02-01 삼성전자주식회사 릴레이 상태 검출 방법 및 장치
CN105425141B (zh) * 2014-09-11 2019-04-05 光阳工业股份有限公司 电动车开关的故障侦测装置及侦测方法
CN204556787U (zh) * 2015-03-13 2015-08-12 北汽福田汽车股份有限公司 一种继电器状态监测装置及具有其的电池管理系统
CN105109347B (zh) * 2015-09-18 2018-05-18 惠州市亿能电子有限公司 电动汽车高压上电电路及其控制方法
CN205092612U (zh) * 2015-10-22 2016-03-16 江苏奥新新能源汽车有限公司 一种具有输出安全检测功能的电池包
CN106338688B (zh) * 2016-08-24 2019-11-26 深圳市科列技术股份有限公司 车载电池管理系统主继电器粘连检测电路及其检测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504274B1 (ko) * 2011-11-09 2015-03-19 주식회사 엘지화학 전기 접촉기 진단 장치 및 방법
CN103675591A (zh) * 2013-12-09 2014-03-26 惠州市亿能电子有限公司 一种动力电池输出母线多点绝缘故障检测电路
CN103995211A (zh) * 2014-05-30 2014-08-20 长城汽车股份有限公司 车用高压系统的检测方法及系统
CN104391241A (zh) * 2014-10-13 2015-03-04 惠州市亿能电子有限公司 一种动力电池高压继电器状态检测电路及其方法
CN106427614A (zh) * 2016-08-31 2017-02-22 天津市捷威动力工业有限公司 电动汽车电池系统总电压采样及继电器诊断系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3581950A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112092629A (zh) * 2020-09-18 2020-12-18 广州小鹏汽车科技有限公司 高压配电盒、电池系统和高压配电盒的控制方法

Also Published As

Publication number Publication date
EP4306976A3 (en) 2024-04-10
EP3581950B1 (en) 2023-07-19
EP3581950A1 (en) 2019-12-18
US20200011929A1 (en) 2020-01-09
EP3581950A4 (en) 2020-05-06
US11313908B2 (en) 2022-04-26
CN108627765A (zh) 2018-10-09
EP4306976A2 (en) 2024-01-17
CN114325412A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2018171259A1 (zh) 一种检测电路、方法和装置
CN107850643B (zh) 用于诊断开关元件的故障的装置和方法
JP5443327B2 (ja) 組電池装置
JP7302765B2 (ja) バッテリー診断装置及び方法
CN207114697U (zh) 高压电池绝缘检测系统
US10416234B2 (en) Diagnosis system for vehicular DC charging relay
CN109100618A (zh) 高压电池绝缘检测系统及方法
CN110568366B (zh) 一种绝缘电路、电池组漏电检测方法及硬件检测方法
CN110907853A (zh) 负载状态的检测电路及方法
CN114270198A (zh) 一种绝缘电阻检测电路、方法、装置及其存储介质
JP2023511169A (ja) リレー診断装置、リレー診断方法、バッテリーシステム及び電気車両
JP7219104B2 (ja) 診断装置及び診断方法
CN101189526A (zh) 过放电情况下的电池电源管理
KR102047055B1 (ko) 배터리 셀 관리 시스템
CN106684827B (zh) 锂离子蓄电池组的过放保护系统及控制方法
KR20210052195A (ko) 누전 검출 장치, 누전 검출 방법 및 전기 차량
CN112455290A (zh) 一种动力电池加热保护电路、方法和装置
CN112858894A (zh) 接触器工作状态的检测方法、检测装置、存储介质及车辆
WO2022178863A1 (zh) 电池系统的检测方法和装置
JP2015095990A (ja) リレーの異常検出方法
CN116125262A (zh) 继电器的检测方法、计算机可读存储介质和充电桩
KR20240038887A (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 자동차
KR20230063055A (ko) 배터리 장치, 배터리 관리 시스템 및 진단 방법
KR20240030552A (ko) 회로 부품의 고장 진단 시스템 및 고장 진단 방법
KR20210051539A (ko) 배터리 절연 진단 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017902359

Country of ref document: EP

Effective date: 20190909

NENP Non-entry into the national phase

Ref country code: DE