WO2022177066A1 - 유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출 - Google Patents

유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출 Download PDF

Info

Publication number
WO2022177066A1
WO2022177066A1 PCT/KR2021/005091 KR2021005091W WO2022177066A1 WO 2022177066 A1 WO2022177066 A1 WO 2022177066A1 KR 2021005091 W KR2021005091 W KR 2021005091W WO 2022177066 A1 WO2022177066 A1 WO 2022177066A1
Authority
WO
WIPO (PCT)
Prior art keywords
iav
ibv
seq
primer set
specific
Prior art date
Application number
PCT/KR2021/005091
Other languages
English (en)
French (fr)
Inventor
송윤재
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Publication of WO2022177066A1 publication Critical patent/WO2022177066A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/101Temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2527/00Reactions demanding special reaction conditions
    • C12Q2527/125Specific component of sample, medium or buffer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/625Detection means characterised by use of a special device being a nucleic acid test strip device, e.g. dipsticks, strips, tapes, CD plates

Definitions

  • Influenza virus is one of the leading pathogens causing infectious diseases, and has caused several major epidemics and pandemics in human history, including the 1918 pandemic and the 2009 pandemic.
  • Influenza viruses belong to the family Orthomyxoviridae and contain a segmented, negative-stranded RNA genome.
  • influenza viruses There are three influenza viruses that infect humans, influenza A virus (IAV), influenza B virus (IBV) and influenza C virus (ICV), classified based on the M (Matrix) gene or the NP (nucleoprotein) gene, Of these, IAV and IBV cause seasonal flu epidemics.
  • IAVs are also further classified into several subtypes based on genes expressing two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA). Unlike other types, IAV can be transmitted between animals and humans and can be highly variable through reassortment of viral genes between subtypes from different species that have caused the influenza pandemic (Houser and Subbarao, 2015). Therefore, it is necessary to distinguish between infection by IAV and IBV to monitor and prevent the spread of influenza epidemics and pandemics.
  • HA hemagglutinin
  • NA neuraminidase
  • NAT nucleic acid-based tests
  • RT-PCR-based diagnosis has the advantage of being the most sensitive and easy to detect various virus types, it requires special equipment including a thermocycler and skilled personnel, so there is a limit to using it for rapid on-site diagnosis.
  • isothermal nucleic acid amplification techniques such as loop-mediated isothermal amplification (LAMP) that do not require a thermocycler have been used for the diagnosis of influenza virus (Kubo et al., 2010, J. Clin Microbiol 48, 728-735; Poon et al., 2005, J. Clin Microbiol 43, 427-430).
  • LAMP loop-mediated isothermal amplification
  • the present inventors completed the present invention by conducting research to develop a detection method that can rapidly and precisely diagnose influenza A virus and influenza B virus, and can be applied to the field.
  • An object of the present invention is to provide a method for rapidly and precisely detecting an influenza virus type using a primer set specific for each influenza A virus and influenza B virus, and a guide RNA and CRISPR-Cas12a.
  • Another object of the present invention is to provide a kit for detecting influenza virus type comprising a primer set specific for each influenza A virus and influenza B virus, and guide RNA and CRISPR-Cas12a.
  • One aspect of the present invention is a method for detecting influenza virus type using gene scissors
  • It provides a method comprising the step of identifying the influenza virus type in the sample.
  • the primer set and guide RNA specific for the influenza A virus may target the M gene of the influenza A virus.
  • the primer set and guide RNA specific for the influenza B virus may target the HA gene of the influenza B virus.
  • the sample may be a sample containing an influenza virus, and may be a sample obtained from a subject in need of detection of the influenza virus.
  • the samples include, but are not limited to, saliva, blood, serum, plasma, urine, aspiration, and biopsy samples.
  • the step of providing the sample may further include heating the sample to remove nuclease activity from the sample and decompose the virus particles.
  • the step of providing the sample dissolves the virus particles present in the sample without extracting the nucleic acid from the sample, and heats and chemically treats the RNase present therein, for example, EDTA Inactivation by addition (HUDSON, Heatin Unextracted Diagnostic Samples to Obliterate Nucleases) may be further included.
  • HUDSON Heatin Unextracted Diagnostic Samples to Obliterate Nucleases
  • the isothermal amplification may include reverse transcription of a sample in the nucleic acid and performing an isothermal amplification reaction using a product obtained by reverse transcription as a template.
  • the step of isothermal amplifying is RT-RPA (Reverse Transcription-Recombinase Polymerase) using an IAV-specific primer set consisting of SEQ ID NOs: 1 and 2 and an IBV-specific primer set consisting of SEQ ID NOs: 3 and 4 Amplification) may be performed.
  • RT-RPA Reverse Transcription-Recombinase Polymerase
  • the step of isothermal amplifying is RT-LAMP (Reverse Transcription-Loop-) using an IAV-specific primer set consisting of SEQ ID NOs: 5 to 10 and an IBV-specific primer set consisting of SEQ ID NOs: 11 to 16 Mediated Isothermal Amplification).
  • RT-LAMP Reverse Transcription-Loop-
  • the basic four-type primer consists of two outer primers and two inner primers.
  • the outer primer consists of two types of a front outer primer and a rear outer primer, and serves to unwind the DNA double strand during the non-cyclic step of the reaction, and the inner primer is a forward inner primer (FIP) and a rear inner primer (FIP).
  • BIP is composed of two types and consists of nucleotides corresponding to the forward and reverse nucleotide sequences to form an essential ring for LAMP.
  • the additional two types of primers are composed of a forward loop (LF) primer and a backward loop (LB) primer and attach to a nucleotide sequence to which the internal primer does not bind to accelerate the loop-mediated isothermal amplification reaction.
  • the guide RNA specific for each of IAV and IBV in the step of performing the molecular diagnosis may be composed of the sequences of SEQ ID NOs: 17 and 18.
  • performing the molecular diagnosis includes detection of a target site in the isothermal amplification product by the guide RNA, activation of Cas12a, and cleavage of a single-stranded DNA probe by activated Cas12a,
  • the single-stranded DNA probe may not be hybridized with the guide RNA and may be labeled with a labeling material.
  • the single-stranded DNA probe may be double-labeled with a fluorescent material and a quencher material.
  • the single-stranded DNA probe may be double-labeled with biotin and a fluorescent substance.
  • the fluorescent material may be a fluorescent dye including, but not limited to, FAM, VIC, TET, JOE, HEX, CY3, CY5, ROX, RED610, TEXAS RED, and the like.
  • the step of confirming the influenza virus type is to detect whether the single-stranded DNA probe is cut by fluorescence analysis or LFA (lateral flow assay) to determine whether the influenza virus in the sample is IAV or IBV it could be
  • LFA may be performed on a strip.
  • the method comprises an IAV-specific primer set consisting of SEQ ID NOs: 1 and 2, an IBV-specific primer set consisting of SEQ ID NOs: 3 and 4, an IAV-specific guide RNA of SEQ ID NO: 17, and SEQ ID NO: 18 It may be performed using an IBV-specific guide RNA of 1 pfu (plaque forming unit) and have a detection sensitivity of IAV or IBV.
  • the method comprises an IAV-specific primer set consisting of SEQ ID NOs: 5 to 10, an IBV-specific primer set consisting of SEQ ID NOs: 11 to 16, an IAV-specific guide RNA of SEQ ID NO: 17, and SEQ ID NO: 18 of IBV-specific guide RNA, and may have a detection sensitivity of 1 pfu of IAV or IBV.
  • Another aspect of the present invention comprises a primer set specific for each influenza A virus (IAV) and influenza B virus (IBV) and guide RNA, CRISPR / Cas12a, and a single-stranded DNA probe, influenza virus type detection kit to provide.
  • IAV influenza A virus
  • IBV influenza B virus
  • guide RNA guide RNA
  • CRISPR / Cas12a guide RNA
  • single-stranded DNA probe influenza virus type detection kit
  • the kit may be used to detect and distinguish influenza A virus and influenza B virus by reverse transcription-isothermal amplification.
  • the primer set specific for each of IAV and IBV may be an IAV-specific primer set consisting of SEQ ID NOs: 1 and 2 and an IBV-specific primer set consisting of SEQ ID NOs: 3 and 4 for RPA. .
  • the primer set specific for each of IAV and IBV may be an IAV-specific primer set consisting of SEQ ID NOs: 5 to 10 and an IBV-specific primer set consisting of SEQ ID NOs: 11 to 16 for LAMP. .
  • the guide RNA specific for each of the IAV and IBV may be composed of the sequences of SEQ ID NOs: 17 and 18.
  • the kit may further include a reagent for detection by fluorescence or LFA.
  • isothermal amplification refers to a method of amplifying a nucleic acid by incubation at a single temperature without a thermocycler, and is used interchangeably with “isothermal nucleic acid amplification”. Since isothermal amplification is nucleic acid amplification that does not depend on thermal denaturation of the target nucleic acid during the amplification reaction and does not require a rapid change in temperature, it can be performed inside and outside the laboratory environment. Isothermal amplification methods include, but are not limited to, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and the like.
  • LAMP loop-mediated isothermal amplification
  • RPA recombinase polymerase amplification
  • the term "gene scissors” refers to a CRISPR (Clustered Interspaced Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) protein.
  • Scissor-based molecular diagnosis consists of signal amplification, signal transduction, and signal generation.
  • signal amplification isothermal amplification such as RPA and LAMP is mainly used, and CRISPR gene scissors technology is used for signal transduction, and signal generation.
  • various fluorescent substances or proteins are used.
  • CRISPR-Cas12a is a type of CRISPR-Cas protein, and when activated by detection of a target DNA, refers to a CRISPR protein having an activity of randomly cutting untargeted single-stranded DNA (ssDNA). and is used interchangeably with “CRISPR-Cas12a” or “CRISPR/Cas12a”.
  • Cas12a from Lachnospiraceae bacteria recognizes its target DNA using a guide RNA complementary to the target DNA sequence and a T nucleotide-rich protospacer-adjacent motif (PAM) on the target, and after recognition, activated LbCas12a not only catalyzes target DNA cleavage, but also promotes non-specific ssDNA cleavage (Chen et al., 2018, Science 360, 436-439). Using this Cas12a activity, a molecular diagnostic method based on gene scissors is being developed.
  • PAM protospacer-adjacent motif
  • the term “molecular diagnosis” refers to DETECTR, a molecular diagnosis technology based on CRISPR-Cas12a.
  • DETECTR DNA endonuclease-targeted CRISPR trans reporter
  • DETECTR uses the activity of Cas12a to detect target DNA and randomly cut single-stranded DNA, using a guide RNA that specifically binds to a target site and a single-stranded DNA probe or reporter that does not bind to a target site. It is a method for diagnosing the presence or absence of an easily measurable fluorescence signal.
  • single-stranded DNA probe refers to a reporter used to determine the presence or absence of a target nucleic acid by DETECTR, and may be single-stranded DNA of a sequence that does not hybridize with a target site. It may be labeled with a Fluorophore-Quencher pair or the like to produce a detectable signal when cleaved by activated Cas12a.
  • LFA is also called a lateral flow assay, and as a technique well known as a pregnancy diagnostic kit, it refers to an assay that enables rapid detection without skilled personnel or expensive equipment.
  • a sample solution such as blood
  • a device such as a strip
  • bacteria or viruses in the sample can be detected within a short time using lateral flow and specific target binding such as antigen-antibody reaction. Nanoparticles are used.
  • the method for determining the influenza virus type using the gene scissors according to an embodiment of the present invention is capable of rapidly and with high sensitivity detection of influenza A virus and influenza B virus using isothermal amplification and CRISPR-Cas12 in situ. Therefore, it is possible to diagnose influenza infection without special expertise, skills, equipment or infrastructure.
  • CRISPR-Cas12a depicts the detection of influenza virus types using CRISPR-Cas12a.
  • A shows the gRNA targeting the IAV M (Matrix) gene and the PAM sequence recognized by Cas12a
  • B shows the gRNA targeting the IBV HA gene and the PAM sequence recognized by Cas12a.
  • C is a schematic diagram showing the detection of IAV and IBV by CRISPR-Cas12a-based DETECTR (DNA endonuclease-targeted CRISPR trans reporter) combined with fluorescence assay or LFA (lateral flow assay).
  • D is a schematic diagram showing how to distinguish between positive and negative results in LF strips.
  • FB denotes FAM-Biotin
  • C-line denotes a control line
  • T-line denotes a test line.
  • 2 shows the detection of influenza virus type using DETECTR combined with a fluorescence assay according to an embodiment of the present invention.
  • 2A and 2B show results confirmed by gel electrophoresis and amplification of viral nucleic acids by RT-RPA or RT-LAMP using a primer set specific for IAV M or IBV HA gene.
  • the amplicons of the IAV M and IBV HA genes were 245 bp and 194 bp, respectively, in size.
  • 2C and D show the detection results of RT-RPA and RT-LAMP amplicons by DETECTR combined with fluorescence analysis using gRNAs targeting IAV M or IBV HA genes.
  • 3 shows the sensitivity of the IAV DETECTR assay according to an embodiment of the present invention.
  • 3A and B, C and D show different concentrations of IAV (1.0 ⁇ 10 -1 to 1.0 ⁇ 10 4 PFU per reaction) using RT-RPA and RT-LAMP with primer sets specific for the IAV M gene, respectively. Shows the amplification result.
  • RT-RPA and RT-LAMP amplicons were detected by fluorescence assays (A and C) or DETECTR coupled with LFA (B and D) using gRNAs targeting the IAV M gene. The fluorescence signal of DETECTR for RT-RPA or RT-LAMP amplicons was saturated within 20 min. LFA results were evaluated 2 minutes after application of the sample to the strip.
  • 4 shows the sensitivity of the IBV DETECTR assay according to an embodiment of the present invention.
  • 4A and B, C and D show different concentrations of IBV (1.0 ⁇ 10 -1 to 1.0 ⁇ 10 4 PFU per reaction) using RT-RPA and RT-LAMP with primer sets specific for the IBV HA gene, respectively. Shows the amplification result.
  • RT-RPA and RT-LAMP amplicons were detected by fluorescence assays (A and C) or DETECTR coupled with LFA (B and D) using gRNAs targeting the IBV HA gene.
  • the fluorescence signal of DETECTR for RT-RPA or RT-LAMP amplicons was saturated within 20 min. LFA results were evaluated 2 minutes after application of the sample to the strip.
  • 5 shows the specific detection of influenza virus type by DETECTR assay according to an embodiment of the present invention.
  • 5A and B show that 100 PFU of IAV and IBV per reaction were amplified by RT-RPA and RT-LAMP using primer sets specific for IAV M and IBV HA genes, respectively, and RT-RPA and RT-LAMP ampoules The results of detecting ricon by DETECTR combined with fluorescence analysis using gRNA targeting the IAV M or IBV HA gene are shown.
  • Asterisks (*) indicate significant differences between samples, determined by the P values of the 2-sample t test ( P ⁇ 0.05).
  • FIG. 6 shows the sensitivity of the DETECTR assay to IAV and IBV in saliva.
  • Viral nucleic acids were amplified by RT-RPA (A and B) or RT-LAMP (C and D) using (A to D).
  • RT-RPA and RT-LAMP amplicons were detected by DETECTR combined with fluorescence analysis with gRNA targeting the IBV HA gene.
  • influenza viruses Two influenza viruses, influenza A/Puerto Rico/8/1934 (H1N1) and influenza B/Brisbane/60/2008, were propagated in MDCK cells, Kim et al., 2019, J. Virol. Viral titre was determined by plaque assay as described in 13;93(17):e00878-19. Experiments involving viruses were performed in a biosafety level-2 (BSL-2) lab. For DETECTR analysis, as described in Myhrvold et al., 2018, Science 360, 444-448, an unextracted diagnostic sample is heated without separate extraction to dissolve the virus particles to remove the nuclease.
  • RNase was inactivated by addition of EDTA to a final concentration of 1 mM, and the reaction mixture was incubated using a thermocycler in the following sequence: 95°C for 10 min, 50°C for 20 min, and incubated at 95° C. for 5 minutes.
  • RNA amplified using reverse transcription recombinase polymerase amplification (RT-RPA) or reverse transcription loop-mediated isothermal amplification (RT-LAMP) and trans-cleavage analysis using LbCas12a (New England Biolabs, Ipswich, MA) ( trans-cleavage assay) was performed, and DETECTR was performed.
  • RT-RPA was performed using the TwistAmp Basic kit (TwistDx, United Kingdom).
  • the RT-RPA primer was designed according to the TwistAmp Basic kit manual.
  • RT-RPA is 1 ⁇ l sample, 0.24 ⁇ l 10 ⁇ M forward and reverse primers (see Table 1), 29.5 ⁇ l rehydration buffer, 11.2 ⁇ l nuclease free water, 1 ⁇ l TOPscriptTM Reverse Transcriptase (Enzynomics, Korea) and 2.5 ⁇ l 280 mM magnesium acetate, and 50 ⁇ l reaction mixture was incubated at 42° C. for 40 minutes.
  • RT-LAMP was performed, as suggested by New England Biolabs ( www.neb.com/protocols/2014/10/15/15/15-rt-lamp-protocol ).
  • RT-LAMP primers were designed according to PrimerExplorer v.5 (https://primerexplorer.jp/e/) for the target gRNA (see Table 1).
  • LAMP primers were added to Isothermal Amplification Buffer containing 6 mM MgSO 4 , 10 mM dNTP mix and WarmStart RTx Reverse Transcriptase (New England Biolabs), and the reaction mixture was incubated with sample virus at 65° C. for 30 min. did it
  • LbCas12a trans-cleavage assay was performed.
  • 13 ⁇ l nuclease-free water, 2.5 ⁇ l 2 ⁇ M LbCas12a, 2.5 ⁇ l 1 ⁇ M gRNA (Table 2) and 2 ⁇ l 10 ⁇ NEBuffer 2.1 were pre-incubated at 37° C. for 30 minutes.
  • RNA-protein complexes For fluorescence analysis, after formation of RNA-protein complexes, 4 ⁇ l RT-RPA and RT-LAMP amplicons, 20 ⁇ l NEBuffer 2.1, 20 ⁇ l RNA-protein complex, and 4 ⁇ l 1 ⁇ M Fluorophore Quencher (FQ)-labeled Reporter (/56-FAM/TTATT/3IABkFQ/, Integrated DNA Technologies, Coralville, IA) was added directly to 96-well microplates. The reaction mixture was incubated at 37° C. for 20 min and fluorescence was measured at the beginning and end of the incubation ( ⁇ ex, 485 nm; ⁇ em, 535 nm).
  • FQ Fluorophore Quencher
  • RT-RPA and RT-LAMP amplicons were mixed with 38 ⁇ l LbCas12a-gRNA complex, 40 ⁇ l NEBuffer 2.1 and 2 ⁇ l 10 ⁇ M lateral flow cleavage reporter (/56). -FAM/TTATT/3Bio/, Integrated DNA Technologies). The reaction mixture was incubated at 37° C. for 20 min and applied to a lateral flow strip (Milenia HybriDetect 1, TwistDx). Results were analyzed 2 minutes after application.
  • Example 1 Specific detection of influenza virus types using DETECTR.
  • DETECTR analysis was performed. 1 shows a method for detecting influenza virus type using CRISPR-Cas12a.
  • the unextracted diagnostic sample was heated to remove the nuclease to lyse the IAV and IBV viruses in the sample (HUDSON), reverse transcribed, and to the M (Matrix) and HA (Hemagglutinin) genes, respectively. It was amplified using RPA or LAMP as a specific primer. After RT-RPA and RT-LAMP, amplicons were detected by DETECTR analysis followed by fluorescence or LFA.
  • RT-RPA and RT-LAMP primer sets were designed for specific amplification of IAV M or IBV HA genes (Table 1).
  • the M gene is 1 X 10 2 PFU (plaque forming units) per reaction ) from IAV, but not from IBV.
  • the expected size of the product amplified by the primer set specific for the IAV M gene was 245 bp (FIG. 2A).
  • RT-RPA and RT-LAMP using primer sets specific for IBV HA gene primers of SEQ ID NOs: 3 and 4 and primers of SEQ ID NOs: 11 to 16, respectively, only the HA gene of IBV was amplified, and IAV was not amplified. , the expected size of the amplification product was 194 bp (Fig. 2B).
  • RT-LAMP was not, but a non-specific product of RT-RPA was detected (FIG. 2A and B, lane 2). Viral RNA extraction had no additional effect on RP-RPA and RP-LAMP compared to HUDSON (data not shown).
  • RT-RPA and RT-LAMP amplicons were combined with CRISPR-Cas12a complexed with the gRNAs of SEQ ID NO: 17 and SEQ ID NO: 18, targeting the IAV M and IBV HA genes, respectively. incubated (Table 2).
  • CRISPR-Cas12a complexed with the gRNAs of SEQ ID NO: 17 and SEQ ID NO: 18, targeting the IAV M and IBV HA genes, respectively. incubated (Table 2).
  • FAM ssDNA-fluorophore
  • FQ quencher
  • IAV and IBV amplicons were detected by DETECTR combined with fluorescence analysis using gRNAs targeting the IAV M and IBV HA genes, respectively.
  • the results are shown in Figure 2C and D.
  • the RT-RPA and RT-LAMP amplicons obtained using the primer set for the IBV HA gene were not detected by CRISPR-Cas12a complexed with the gRNA targeting the IAV M gene.
  • the RT-RPA and RT-LAMP amplicons obtained using the primer set for the IAV M gene were not detected by CRISPR-Cas12a complexed with the gRNA targeting the IBV HA gene.
  • Example 2 Determination of the sensitivity of the influenza virus DETECTR assay.
  • RT-RPA and RT-LAMP for isothermal amplification of influenza virus RNA and confirmed that these methods efficiently amplify viral nucleic acids.
  • the sensitivity of this assay was further increased through the use of the DETECTR method.
  • gRNAs designed for specific detection of the IAV M and IBV HA genes provided specific detection without cross-reactivity.
  • the inventors developed a DETECTR assay that allows specific detection of either IAV or IBV up to 1 PFU per reaction within 75-85 minutes starting from the sample.
  • Mayuramart et al. recently reported that 10 3 RNA copies of either IAV or IBV per reaction could be detected using a CRISPR-Cas12a-based assay (Mayuramart et al., 2021, Experimental Biology and Medicine 246(4):400- 405).
  • the DETECTR assay developed in this study showed increased sensitivity that was more than 100 times higher.

Abstract

유전자 가위 기반 인플루엔자 바이러스 타입의 신속 검출 방법 및 키트에 관한 것으로, 구체적으로, 인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트와 가이드 RNA, 및 CRISPR-Cas12a를 이용하여, 인플루엔자 바이러스 타입을 신속하게 검출하는 분자진단 방법 및 그를 위한 키트가 개시된다.

Description

유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출
유전자 가위 기반 인플루엔자 바이러스 타입의 신속 검출 방법 및 키트에 관한 것으로, 구체적으로, 인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트와 가이드 RNA(gRNA), 및 CRISPR-Cas12a를 이용하여, 인플루엔자 바이러스 타입을 신속하게 검출하는 분자진단 방법 및 그를 위한 키트가 개시된다.
신속하고 정확한 진단은 감염성 질환의 확산을 예방하는데 필수적이다. 인플루엔자 바이러스는 감염성 질환을 유발하는 주요한 병원체 중 하나로서, 1918년 팬데믹 및 2009년 팬데믹을 포함하여 인류 역사에서 수차례 주요한 에피데믹 및 팬데믹을 유발했다. 인플루엔자 바이러스는 오르토믹소비리대(Orthomyxoviridae)과에 속하고, 분절된, 네가티브-스트랜드 RNA 게놈을 포함한다. M(Matrix) 유전자 또는 NP(nucleoprotein) 유전자를 기준으로 분류된, 인간을 감염시키는 3종의 인플루엔자 바이러스, 인플루엔자 A 바이러스 (IAV), 인플루엔자 B 바이러스 (IBV) 및 인플루엔자 C 바이러스(ICV)가 있고, 이들 중 IAV 및 IBV가 계절성 독감 유행을 유발한다. IAV는 또한 2개의 주요한 표면 당단백질, 헤마글루티닌(HA) 및 뉴라미니다아제(NA)를 발현하는 유전자를 기준으로 여러 서브타입으로 더 분류된다. 다른 타입들과 달리, IAV는 동물과 인간 간에 전파될 수 있고 인플루엔자 팬데믹을 유발한 상이한 종들로부터의 서브타입들 간 바이러스 유전자의 재배열(reassortment)을 통해 매우 가변적일 수 있다 (Houser and Subbarao, 2015). 따라서, 인플루엔자 에피데믹 및 팬데믹의 확산을 모니터링하고 예방하기 위해 IAV와 IBV에 의한 감염을 구별하는 것이 요구하다.
인플루엔자 바이러스의 현재의 진단은 주로 RT-PCR(reverse transcriptase polymerase chain reaction)을 포함한, 핵산-기반 테스트(NAT)에 의존한다. RT-PCR-기반 진단이 다양한 바이러스 타입의 검출에서 가장 민감하고 용이하다는 장점을 갖지만, 써모사이클러를 포함한 특별한 장비 및 숙련된 인력을 필요로 하므로 신속한 현장 진단에 이용하기에는 한계가 있다. PCR이 갖는 문제들을 보완하기 위해, 써모사이클러를 필요로 하지 않는 LAMP(loop-mediated isothermal amplification)와 같은 등온 핵산 증폭 기술들이 인플루엔자 바이러스의 진단을 위해 이용되었다(Kubo et al., 2010, J. Clin Microbiol 48, 728-735; Poon et al., 2005, J. Clin Microbiol 43, 427-430). 그러나, 이러한 진단법들은 특이성의 문제가 있을 수 있다.
이에, 본 발명자들은 인플루엔자 A 바이러스와 인플루엔자 B 바이러스를 신속하고 정밀하게 진단할 수 있고, 현장 적용 가능한 검출 방법을 개발하고자 연구를 수행하여 본 발명을 완성하였다.
본 발명은 인플루엔자 A 바이러스와 인플루엔자 B 바이러스 각각에 특이적인 프라이머 세트 및 가이드 RNA와 CRISPR-Cas12a를 이용하여 인플루엔자 바이러스 타입을 신속하고 정밀하게 검출하는 방법을 제공하는 것을 목적으로 한다.
본 발명은 또한, 인플루엔자 A 바이러스와 인플루엔자 B 바이러스 각각에 특이적인 프라이머 세트 및 가이드 RNA와 CRISPR-Cas12a를 포함하는 인플루엔자 바이러스 타입 검출용 키트를 제공하는 것을 목적으로 한다.
본 발명의 일 양태는 유전자 가위를 이용하여 인플루엔자 바이러스 타입을 검출하는 방법으로서,
시료를 제공하는 단계,
인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트를 이용하여 상기 시료 중 핵산을 등온증폭시키는 단계,
상기 등온증폭에 의해 수득된 산물에 IAV 및 IBV 각각에 특이적인 가이드 RNA와 Cas(CRISPR-associated protein) 12a, 및 단일가닥 DNA 프로브를 첨가하여 유전자 가위에 의한 분자진단을 수행하는 단계, 및
상기 시료 중 인플루엔자 바이러스 타입을 확인하는 단계를 포함하는 것인 방법을 제공한다.
본 발명의 일 구체예에서, 상기 인플루엔자 A 바이러스에 특이적인 프라이머 세트 및 가이드 RNA는 인플루엔자 A 바이러스의 M 유전자를 표적으로 하는 것일 수 있다.
본 발명의 일 구체예에서, 상기 인플루엔자 B 바이러스에 특이적인 프라이머 세트 및 가이드 RNA는 인플루엔자 B 바이러스의 HA 유전자를 표적으로 하는 것일 수 있다.
본 발명의 일 구체예에서, 상기 시료는 인플루엔자 바이러스를 포함하는 시료일 수 있고, 인플루엔자 바이러스의 검출이 필요한 대상으로부터 수득된 시료일 수 있다. 상기 시료는 타액, 혈액, 혈청, 혈장, 소변, 흡입물, 및 생검 시료를 포함하나, 이에 한정되지 않는다.
본 발명의 일 구체예에서, 상기 시료를 제공하는 단계는 상기 시료를 가열하여 상기 시료 중 핵산분해효소 활성을 제거하고 바이러스 입자를 분해시키는 단계를 더 포함할 수 있다.
본 발명의 일 구체예에서, 상기 시료를 제공하는 단계는 시료 중 핵산을 추출하는 단계 없이, 시료 중에 존재하는 바이러스 입자를 용해시키고, 이들 중에 존재하는 RNase를 열과 화학적 처리, 예를 들면, EDTA의 첨가에 의해 불활성화시키는 단계(HUDSON, Heatin Unextracted Diagnostic Samples to Obliterate Nucleases)를 더 포함할 수 있다.
본 발명의 일 구체예에서, 상기 등온증폭시키는 단계는 상기 핵산 중 시료를 역전사시키는 단계 및 역전사에 의해 수득된 산물을 주형으로 등온증폭 반응을 수행하는 단계를 포함할 수 있다.
본 발명의 일 구체예에서, 상기 등온증폭시키는 단계는 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트를 이용한 RT-RPA(Reverse Transcription-Recombinase Polymerase Amplification)에 의해 수행되는 것일 수 있다.
본 발명의 일 구체예에서, 상기 등온증폭시키는 단계는 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트를 이용한 RT-LAMP(Reverse Transcription-Loop-Mediated Isothermal Amplification)에 의해 수행되는 것일 수 있다.
LAMP 반응을 위해 기본적으로 4종의 프라이머가 필요하고, 반응 속도를 향상시키기 위해 2종의 프라이머를 추가하여 총 6종의 프라이머를 사용할 수 있다. 기본 4 종 프라이머는 외부 프라이머 2 종과 내부 프라이머 2 개로 구성된다. 외부 프라이머는 전방 외부 프라이머와 후방 외부 프라이머 2 종으로 구성되고 반응의 비순환기(non-cyclic step)동안 DNA 이중 가닥을 풀어주는 역할을 하고, 내부 프라이머는 전방 내부 프라이머(FIP)와 후방 내부 프라이머(BIP) 2종으로 구성되고 LAMP에 필수적인 고리를 만들 수 있도록 순방향 및 역방향 염기서열에 해당하는 뉴클레오티드로 구성된다. 추가 2종 프라이머는 전방 고리(forward loop, LF) 프라이머와 후방 고리 (backward loop, LB) 프라이머 2 종으로 구성되며 내부 프라이머가 결합하지 않는 염기서열에 부착하여 고리매개등온증폭 반응을 가속화시킨다.
본 발명의 일 구체예에서, 상기 분자진단을 수행하는 단계에서 IAV 및 IBV 각각에 특이적인 가이드 RNA는 서열번호 17 및 18의 서열로 구성되는 것일 수 있다.
본 발명의 일 구체예에서, 상기 분자진단을 수행하는 단계는 상기 가이드 RNA에 의한 등온증폭 산물 중 표적 부위의 검출, Cas12a의 활성화, 및 활성화된 Cas12a에 의한 단일가닥 DNA 프로브의 절단을 포함하며, 상기 단일가닥 DNA 프로브는 상기 가이드 RNA와 혼성화되지 않고, 표지 물질로 표지된 것일 수 있다.
본 발명의 일 구체예에서, 상기 단일가닥 DNA 프로브는 형광물질과 소광물질로 이중 표지될 수 있다.
본 발명의 일 구체예에서, 상기 단일가닥 DNA 프로브는 비오틴과 형광물질에 의해 이중 표지될 수 있다.
본 발명의 일 구체예에서, 상기 형광물질은 FAM, VIC, TET, JOE, HEX, CY3, CY5, ROX, RED610, TEXAS RED, 등을 포함하나 이에 한정되지 않는 형광 염료일 수 있다.
본 발명의 일 구체예에서, 상기 인플루엔자 바이러스 타입을 확인하는 단계는 단일가닥 DNA 프로브의 절단 여부를 형광 분석이나 LFA(lateral flow assay)에 의해 검출하여 상기 시료 중 인플루엔자 바이러스가 IAV 또는 IBV인지 확인하는 것일 수 있다.
본 발명의 일 구체예에서, LFA는 스트립 상에서 수행되는 것일 수 있다.
본 발명의 일 구체예에서, 상기 방법은 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트와 서열번호 17의 IAV 특이적 가이드 RNA 및 서열번호 18의 IBV 특이적 가이드 RNA를 이용하여 수행되고, 1 pfu(plaque forming unit)의 IAV 또는 IBV의 검출 민감도를 갖는 것일 수 있다.
본 발명의 일 구체예에서, 상기 방법은 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트와 서열번호 17의 IAV 특이적 가이드 RNA 및 서열번호 18의 IBV 특이적 가이드 RNA를 이용하여 수행되고, 1 pfu의 IAV 또는 IBV의 검출 민감도를 갖는 것일 수 있다.
본 발명의 또 다른 양태는 인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트와 가이드 RNA, CRISPR/Cas12a, 및 단일가닥 DNA 프로브를 포함하는, 인플루엔자 바이러스 타입 검출용 키트를 제공한다.
본 발명의 일 구체예에서, 상기 키트는 역전사-등온증폭에 의해 인플루엔자 A 바이러스 및 인플루엔자 B 바이러스를 검출하고 구별하기 위해 이용되는 것일 수 있다.
본 발명의 일 구체예에서, 상기 IAV 및 IBV 각각에 특이적인 프라이머 세트는 RPA를 위한 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트일 수 있다.
본 발명의 일 구체예에서, 상기 IAV 및 IBV 각각에 특이적인 프라이머 세트는 LAMP를 위한 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트일 수 있다.
본 발명의 일 구체예에서, 상기 IAV 및 IBV 각각에 특이적인 가이드 RNA는 서열번호 17 및 18의 서열로 구성되는 것일 수 있다.
본 발명의 일 구체예에서, 상기 키트는 형광법 또는 LFA에 의한 검출을 위한 시약을 더 포함하는 것일 수 있다.
본 명세서에서 사용되는 용어는 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
본 명세서에서 사용된 용어, "등온 증폭"은 써모사이클러 없이, 단일 온도에서의 인큐베이션에 의해 핵산을 증폭하는 방법을 의미하며, "등온 핵산 증폭"과 호환적으로 사용된다. 등온 증폭은 증폭 반응 동안 표적 핵산의 열 변성에 의존하지 않으며, 온도의 빠른 변화를 필요로 하지 않는 핵산 증폭이므로, 실험실 환경 내부 및 외부에서 수행될 수 있다. 등온 증폭 방법은 루프-매개 등온 증폭(LAMP), 재조합효소 중합효소 증폭(RPA), 등을 포함하나, 이에 한정되지 않는다.
본 명세서에서 사용된 용어, "유전자가위"는 크리스퍼(CRISPR: Clustered Interspaced Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR-associated) 단백질을 의미한다. 유전자가위 기반 분자진단은 신호 증폭, 신호 변환, 및 신호 발생으로 구성되며, 신호 증폭을 위해 주로 RPA 및 LAMP와 같은 등온 증폭이 이용되고, 신호 변환을 위해 크리스퍼 유전자 가위 기술이 이용되며, 신호 발생을 위해 다양한 형광 물질이나 단백질이 이용된다.
본 명세서에서 사용된 용어, "Cas12a"는 CRISPR-Cas 단백질의 일종으로, 표적 DNA의 검출에 의해 활성화되면 비표적화된 단일가닥 DNA(ssDNA)를 무작위적으로 절단하는 활성을 갖는 크리스퍼 단백질을 의미하며, "CRISPR-Cas12a" 또는 "CRISPR/Cas12a"와 호환적으로 사용된다. 라크노스피라세애(Lachnospiraceae) 박테리아로부터의 Cas12a는 표적 DNA 서열에 상보적인 가이드 RNA 및 표적에 있는 T 뉴클레오티드-풍부 PAM(protospacer-adjacent motif)을 이용하여 그의 표적 DNA를 인식하고, 인식 후에, 활성화된 LbCas12a는 표적 DNA 절단을 촉매할 뿐 아니라, 비특이적 ssDNA 절단을 촉진한다(Chen et al., 2018, Science 360, 436-439). 이러한 Cas12a의 활성을 이용하여 유전자가위에 기반한 분자진단방법이 개발되고 있다.
본 명세서에서 사용된 용어, "분자진단"은 CRISPR-Cas12a에 기반한 분자진단 기술인 DETECTR를 의미한다. LbCas12a의 트랜스-절단 활성 및 RPA와 같은 등온 핵산 증폭 기술을 이용하여, DETECTR(DNA endonuclease-targeted CRISPR trans reporter) 분석법이 임상 시료 중 HPV(human papillomavirus)의 신속하고 특이적인 검출을 위해 개발되었다(Chen et al., 2018, Science 360, 436-439). DETECTR는 Cas12a가 표적 DNA를 검출하고 단일가닥 DNA를 무작위로 절단하는 활성을 이용하여, 표적 부위에 특이적으로 결합하는 가이드 RNA와 표적 부위에 결합하지 않는 단일가닥 DNA 프로브 또는 리포터를 이용하여 표적 DNA의 존재 여부를 용이하게 측정가능한 형광 신호의 발생으로 진단하는 방법이다.
본 명세서에서 사용된 용어, "단일가닥 DNA 프로브"는 DETECTR에 의해 표적 핵산의 존재 여부를 확인하기 위해 이용되는 리포터를 의미하며, 표적 부위와 혼성화되지 않는 서열의 단일가닥 DNA일 수 있다. 활성화된 Cas12a에 의해 절단될 때 검출가능한 신호를 생성할 수 있도록 형광-소광물질(Fluorophore-Quencher) 쌍 등에 의해 표지될 수 있다.
본 명세서에서 사용된 용어, "LFA"는 측방 유동 분석(lateral flow assay)으로도 불리며, 임신진단키트로 잘 알려진 기술로서 숙련된 인력이나 값비싼 장비 없이도 빠른 검출을 가능하게 하는 분석법을 의미한다. 혈액과 같은 시료 용액을 스트립과 같은 장치에 떨어뜨리기만 하면 측방 유동과 항원항체 반응과 같은 특이적 표적 결합을 이용해 단시간 내에 시료 중의 박테리아나 바이러스를 검출할 수 있고, 주로 샌드위치 방식으로 형광/발색 표지나 나노입자가 사용된다.
본 발명의 일 구체예에 따른 유전자 가위를 이용하여 인플루엔자 바이러스 타입을 결정하는 방법은 현장에서 등온 증폭 및 CRISPR-Cas12를 이용하여 인플루엔자 A 바이러스 및 인플루엔자 B 바이러스를 신속하고, 높은 민감도로 검출할 수 있게 하여, 특별한 전문지식이나 기술, 기기, 기반시설이 없어도 인플루엔자 감염을 진달할 수 있게 한다.
도 1은 CRISPR-Cas12a를 이용한 인플루엔자 바이러스 타입의 검출을 도시한다. A는 IAV M(Matrix) 유전자를 표적으로 하는 gRNA 및 Cas12a에 의해 인식되는 PAM 서열을 보여주고, B는 IBV HA 유전자를 표적으로 하는 gRNA 및 Cas12a에 의해 인식되는 PAM 서열을 보여준다. C는 형광 분석법 또는 LFA(lateral flow assay)와 결합된 CRISPR-Cas12a-기반 DETECTR(DNA endonuclease-targeted CRISPR trans reporter)에 의한 IAV 및 IBV의 검출을 보여주는 개략도이다. D는 LF 스트립에서 양성 결과와 음성 결과를 구별하는 방법을 보여주는 개략도이다. 도면 중 FB는 FAM-Biotin, C-line은 대조군 라인(control line), T-line은 테스트 라인(test line)을 의미한다.
도 2는 본 발명의 일 구체예에 따른 형광 분석법과 결합된 DETECTR를 이용한 인플루엔자 바이러스 타입의 검출을 보여준다. 도 2의 A 및 B는 IAV M 또는 IBV HA 유전자에 특이적인 프라이머 세트를 이용한 RT-RPA 또는 RT-LAMP에 의해 바이러스 핵산을 증폭시키고, 겔 전기영동에 의해 확인한 결과를 보여준다. IAV M 및 IBV HA 유전자의 앰플리콘은 크기가 각각 245 bp 및 194 bp였다. 도 2의 C 및 D는 RT-RPA 및 RT-LAMP 앰플리콘을 IAV M 또는 IBV HA 유전자를 표적으로 하는 gRNA를 이용하여 형광 분석법과 결합된 DETECTR에 의해 검출한 결과를 보여준다. RT-RPA 또는 RT-LAMP 앰플리콘에 대한 DETECTR의 형광 신호는 20분 내에 포화되었다. 오류 막대(error bar)는 평균 ± 표준편차를 나타내고, n = 3개의 재현물이었다. 별표 (*)는 2-표본 t 검정의 P 값에 의해 결정된, 시료간 유의성 있는 차이를 나타낸다(P < 0.05).
도 3은 본 발명의 일 구체예에 따른 IAV DETECTR 분석법의 민감도를 보여준다. 도 3의 A 및 B와 C 및 D는 상이한 농도의 IAV(반응당 1.0Х10-1 내지 1.0Х104 PFU)를 각각 IAV M 유전자에 특이적인 프라이머 세트에 의한 RT-RPA 및 RT-LAMP를 이용하여 증폭시킨 결과를 보여준다. RT-RPA 및 RT-LAMP 앰플리콘을 IAV M 유전자를 표적으로 하는 gRNA를 이용하여, 형광 분석법(A 및 C) 또는 LFA(B 및 D)와 결합된 DETECTR에 의해 검출했다. RT-RPA 또는 RT-LAMP 앰플리콘에 대한 DETECTR의 형광 신호는 20분 내에 포화되었다. LFA 결과는 스트립에 시료를 적용한 후 2분 경과 시에 평가했다. 오류 막대는 평균 ± 표준편차를 나타내고, n = 3개의 재현물이었다. 별표 (*)는 2-표본 t 검정의 P 값에 의해 결정된, 시료간 유의성 있는 차이를 나타낸다(P < 0.05). C-라인, 대조군-라인; T-라인, 테스트-라인; Ctr, 대조군.
도 4는 본 발명의 일 구체예에 따른 IBV DETECTR 분석법의 민감도를 보여준다. 도 4의 A 및 B와 C 및 D는 상이한 농도의 IBV(반응당 1.0Х10-1 내지 1.0Х104 PFU)를 각각 IBV HA 유전자에 특이적인 프라이머 세트에 의한 RT-RPA 및 RT-LAMP를 이용하여 증폭시킨 결과를 보여준다. RT-RPA 및 RT-LAMP 앰플리콘을 IBV HA 유전자를 표적으로 하는 gRNA를 이용하여, 형광 분석법(A 및 C) 또는 LFA(B 및 D)와 결합된 DETECTR에 의해 검출했다. RT-RPA 또는 RT-LAMP 앰플리콘에 대한 DETECTR의 형광 신호는 20분 내에 포화되었다. LFA 결과는 스트립에 시료를 적용한 후 2분 경과 시에 평가했다. 오류 막대는 평균 ± 표준편차를 나타내고, n = 3개의 재현물이었다. 별표 (*)는 3-표본 t 검정의 P 값에 의해 결정된, 시료간 유의성 있는 차이를 나타낸다(P < 0.05). C-라인, 대조군-라인; T-라인, 테스트-라인; Ctr, 대조군 .
도 5는 본 발명의 일 구체예에 따른 DETECTR 분석법에 의한 인플루엔자 바이러스 타입의 특이적 검출을 보여준다. 도 5의 A와 B는 각각 반응당 100 PFU의 IAV 및 IBV를 IAV M 및 IBV HA 유전자에 특이적인 프라이머 세트를 이용한 RT-RPA 및 RT-LAMP에 의해 증폭시키고, RT-RPA 및 RT-LAMP 앰플리콘을 IAV M 또는 IBV HA 유전자를 표적으로 하는 gRNA를 이용하여, 형광 분석법과 결합된 DETECTR에 의해 검출한 결과를 보여준다. RT-RPA 또는 RT-LAMP 앰플리콘에 대한 DETECTR의 형광 신호는 20분 내에 포화되었다. LFA 결과는 스트립에 시료를 적용한 후 2분 경과 시에 평가했다. 오류 막대는 평균 ± 표준편차를 나타내고, n = 3개의 재현물이었다. 별표 (*)는 2-표본 t 검정의 P 값에 의해 결정된, 시료간 유의성 있는 차이를 나타낸다(P < 0.05).
도 6은 타액 중 IAV 및 IBV에 대한 DETECTR 분석의 민감도를 보여준다. 인간 개체의 타액 중 상이한 농도(반응 당 1.0 x 100 내지 1.0 x 101 PFU)의 IAV(A 및 C) 및 IBV(B 및 D)에 대해, IAV M 또는 IBV HA 유전자에 대해 특이적인 프라이머 세트를 이용한 RT-RPA(A 및 B) 또는 RT-LAMP(C 및 D)에 의해 바이러스 핵산을 증폭시켰다(A 내지 D). RT-RPA 및 RT-LAMP 앰플리콘을 IBV HA 유전자를 표적으로 하는 gRNA를 이용한 형광 분석과 결합된 DETECTR에 의해 검출하였다. RT-RPA 또는 RT-LAMP 앰플리콘에 대한 DETECTR의 형광 신호는 20분 내에 포화되었다. 값은 평균 ± 표준 편차(오류 막대)로 표시된다(n= 3개의 재현물; 시료간 *P < 0.05, two-sample t-검정). C-라인, 대조군-라인; T-라인, 테스트-라인; Ctr, 대조군.
하기에서, 본 발명은 첨부된 도면을 참조하여, 실시예를 통해 더 설명된다. 그러나, 실시예는 단지 본 발명을 설명하기 위한 것이며, 본 발명을 한정하는 것으로 해석되지 않는다.
재료 및 방법
1. 바이러스
2종의 인플루엔자 바이러스, 인플루엔자 A/Puerto Rico/8/1934(H1N1) 및 인플루엔자 B/Brisbane/60/2008를 MDCK 세포에서 증식시키고, Kim et al., 2019, J. Virol. 13;93(17):e00878-19에 기재된 바와 같이, 플라크 분석법에 의해 바이러스 역가(viral titre)를 결정했다. 바이러스를 포함하는 실험은 BSL-2(biosafety level-2) 랩에서 수행했다. DETECTR 분석을 위해, Myhrvold et al., 2018, Science 360, 444-448에 기재된 바와 같이, 핵산분해효소를 제거하기 위해 진단 대상 시료(unextracted diagnostic sample)를 별도의 추출없이, 가열하여 바이러스 입자를 용해시켰다. 요약하면, 1 mM의 최종 농도까지 EDTA를 첨가하여 RNase를 불활성화시키고, 반응 혼합물을 써모사이클러(thermocycler)를 이용하여 하기의 순서로 인큐베이션시켰다: 95℃에서 10분, 50℃에서 20분, 및 95℃에서 5분 동안 인큐베이션시켰다.
2. DETECTR 분석
RT-RPA(reverse transcription recombinase polymerase amplification) 또는 RT-LAMP(reverse transcription loop-mediated isothermal amplification)를 이용하여 바이러스 RNA를 증폭시키고, LbCas12a (New England Biolabs, Ipswich, MA)을 이용하여 트랜스-절단 분석(trans-cleavage assay)을 수행하여, DETECTR을 수행했다.
(1) 등온 증폭
RT-RPA는 TwistAmp Basic kit (TwistDx, United Kingdom)를 이용하여 수행했다. RT-RPA 프라이머는 TwistAmp Basic kit 매뉴얼에 따라 디자인했다.
RT-RPA는 1 ㎕ 시료, 0.24 ㎕ 10 μM 정방향 및 역방향 프라이머 (표 1 참조), 29.5 ㎕ 재수화 완충액, 11.2 ㎕ 핵산분해효소 불포함 물(nuclease free water), 1 ㎕ TOPscript™ Reverse Transcriptase (Enzynomics, Korea) 및 2.5 ㎕ 280 mM 마그네슘 아세테이트를 포함하는 50 ㎕ 반응 혼합물을 42℃에서 40분 동안 인큐베이션시켜 수행했다.
New England Biolabs에 의해 제안된 바와 같이, RT-LAMP를 수행했다(www.neb.com/protocols/2014/10/09/typical-rt-lamp-protocol). 대상 gRNA에 대해 PrimerExplorer v.5 (https://primerexplorer.jp/e/)에 따라 RT-LAMP 프라이머를 디자인했다(표 1 참조). LAMP 프라이머를 6mM MgSO4, 10 mM dNTP mix 및 WarmStart RTx Reverse Transcriptase (New England Biolabs)를 포함하는 등온 증폭 버퍼(Isothermal Amplification Buffer)에 첨가하고, 반응 혼합물을 시료 바이러스와 함께 65℃에서 30분 동안 인큐베이션시켰다.
RT-RPA 및 RT-LAMP 앰플리콘을 2% 아가로오스 겔에서 전기영동에 의해 분석했다.
(2) 트랜스-절단 분석
Broughton et al., 2020, Nature Biotechnology 38, 870-774에 기재된 방법과 유사하게, LbCas12a 트랜스-절단 분석을 수행했다. LbCas12a-gRNA 복합체를 형성하기 위해, 13 ㎕ 핵산분해효소 불포함 물, 2.5 ㎕ 2 μM LbCas12a, 2.5 ㎕ 1 μM gRNA (표 2)와 2 ㎕ 10Х NEBuffer 2.1을 37℃에서 30분 동안 예비-인큐베이션시켰다.
(3) 형광 분석 및 LFA
형광 분석을 위해, RNA-단백질 복합체의 형성 후에, 4 ㎕ RT-RPA 및 RT-LAMP 앰플리콘, 20 ㎕ NEBuffer 2.1, 20 ㎕ RNA-단백질 복합체, 및 4 ㎕의 1 μM FQ(Fluorophore Quencher)-표지 리포터(/56-FAM/TTATT/3IABkFQ/, Integrated DNA Technologies, Coralville, IA)를 직접 96-웰 마이크로플레이트에 첨가했다. 반응 혼합물을 37℃에서 20분 동안 인큐베이션시키고, 인큐베이션의 개시 및 종료시에 형광을 측정했다(λex, 485 nm; λem, 535 nm).
LFA(lateral flow assay)를 위해, 4 ㎕ RT-RPA 및 RT-LAMP 앰플리콘을 38 ㎕ LbCas12a-gRNA 복합체, 40 ㎕ NEBuffer 2.1 및 2 ㎕ 10 μM 측방 유동 절단 리포터(lateral flow cleavage reporter)(/56-FAM/TTATT/3Bio/, Integrated DNA Technologies)와 조합했다. 반응 혼합물을 37℃에서 20분 동안 인큐베이션시키고 LF 스트립(lateral flow strip) (Milenia HybriDetect 1, TwistDx)에 적용했다. 적용 후 2분에 결과를 분석했다.
실시예 1. DETECTR를 이용한 인플루엔자 바이러스 타입의 특이적 검출.
인플루엔자 바이러스 타입의 신속하고 정밀한 검출을 위해, DETECTR 분석을 수행했다. 도 1에 CRISPR-Cas12a를 이용한 인플루엔자 바이러스 타입의 검출 방법이 도시된다. 요약하면, 핵산분해효소를 제거하기 위해 미추출 진단 시료(unextracted diagnostic sample)를 가열하여 시료 중 IAV 및 IBV 바이러스를 용해시키고 (HUDSON), 역전사시키고, 각각 M(Matrix) 및 HA(Hemagglutinin) 유전자에 특이적인 프라이머로 RPA 또는 LAMP를 이용하여 증폭시켰다. RT-RPA 및 RT-LAMP 후에, DETECTR 분석 및 뒤이은 형광법 또는 LFA에 의해 앰플리콘을 검출했다.
RT-RPA 및 RT-LAMP를 위해, IAV M 또는 IBV HA 유전자의 특이적 증폭을 위한 프라이머 세트를 디자인했다(표 1). IAV M 유전자에 특이적인 프라이머 세트, 각각 서열번호 1 및 2의 프라이머와 서열번호 5 내지 10의 프라이머를 이용한 RT-RPA 및 RT-LAMP에서, M 유전자는 반응당 1 X 102 PFU(plaque forming units)의 IAV로부터 증폭되었으나, IBV에서는 증폭되지 않았다. IAV M 유전자에 특이적인 프라이머 세트에 의해 증폭되는 산물의 예상 크기는 245 bp였다 (도 2의 A). 또한, IBV HA 유전자에 특이적인 프라이머 세트, 각각 서열번호 3과 4의 프라이머 및 서열번호 11 내지 16의 프라이머를 이용한 RT-RPA 및 RT-LAMP에서는 IBV의 HA 유전자만을 증폭시켰고, IAV는 증폭시키지 않았고, 예상되는 증폭 산물의 크기는 194 bp였다 (도 2의 B). RT-LAMP는 그렇지 않았으나, RT-RPA의 비-특이적 산물이 검출되었다(도 2의 A 및 B, 래인 2). 바이러스 RNA 추출은 HUDSON과 비교하여, RP-RPA 및 RP-LAMP에 추가적인 효과는 없었다(데이터 미도시).
IAV 및 IBV를 특이적으로 검출하기 위해, RT-RPA 및 RT-LAMP 앰플리콘을 각각 IAV M 및 IBV HA 유전자를 표적화하는, 서열번호 17 및 서열번호 18의 gRNA와 복합체를 형성한 CRISPR-Cas12a와 인큐베이션시켰다(표 2). RT-RPA 및 RT-LAMP 앰플리콘이 CRISPR-Cas12a와 반응하는지 여부를 결정하기 위해, ssDNA-형광단 (FAM) 퀀처(quencher) (FQ)-표지 리포터를 직접 반응액에 첨가하고 20분 동안 인큐베이션시켰다. 인큐베이션 0분차 및 20분차에, IAV 및 IBV를 검출하기 위해 형광을 측정하였다. 각각 IAV M 및 IBV HA 유전자를 표적으로 하는 gRNA를 이용한 형광 분석과 결합된 DETECTR에 의해 IAV 및 IBV 앰플리콘이 검출되었다. 도 2의 C 및 D에 그 결과가 도시된다. IBV HA 유전자에 대한 프라이머 세트를 이용하여 수득된 RT-RPA 및 RT-LAMP 앰플리콘은 IAV M 유전자를 표적으로 하는 gRNA와 복합체를 형성한 CRISPR-Cas12a에 의해 검출되지 않았다. 마찬가지로, IAV M 유전자에 대한 프라이머 세트를 이용하여 수득된 RT-RPA 및 RT-LAMP 앰플리콘은 IBV HA 유전자를 표적으로 하는 gRNA와 복합체를 형성한 CRISPR-Cas12a에 의해 검출되지 않았다. 이러한 데이터는 DETECTR 분석이 다른 타입에 대한 교차-반응성 없이, 특이적으로 각각 IAV 또는 IBV를 검출한다는 것을 시사한다.
Figure PCTKR2021005091-appb-T000001
바이러스 유전자 gRNA 서열 PAM
IAV M gRNA-IAV-M CAGGGAAGAACACCGATCTT
(서열번호 17)
TTTG
IBV HA gRNA-IBV-HA TTGCCTCAAAAGGTGTGGTG
(서열번호 18)
TTTA
실시예 2. 인플루엔자 바이러스 DETECTR 분석의 민감도의 결정.
분석법의 민감도를 측정하기 위해, 반응당 IAV 및 IBV의 다양한 PFU를 HUDSON에 의해 용해시키고 IAV M (도 3) 또는 IBV HA 유전자 (도 4)에 특이적인 프라이머 세트를 이용한 RT-RPA 및 RT-LAMP를 위해 이용했다. RT-RPA 및 RT-LAMP 앰플리콘을 IAV M (도 3) 및 IBV HA (도 4) 유전자를 표적으로 하는 gRNA와 복합체를 형성한 CRISPR-Cas12a와 인큐베이션시키고 FQ-표지 리포터 분석에 의해 검출했다. 결과적으로, 형광 분석법과 조합된 DETECTR는 IAV 및 IBV의 반응당 1 X 100 PFU까지 검출할 수 있었다. 한편, 타액 중의 IAV 및 IBV의 검출 민감도를 측정하기 위해, 인간 타액 중 다양한 PFU(반응 당 1.0 x 100 내지 1.0 x 101 PFU)의 IAV 및 IBV를 포함하는 시료를 이용하여 동일하게 분석을 수행하였고 그 결과가 도 6에 도시된다. 분석의 민감도는 타액 중 시료의 경우 약 10배 정도 낮았고 이는 인간 타액 중 억제제들 때문일 수 있다.
형광 분석법 외에, 인플루엔자 바이러스의 신속하고 편리한 검출을 위해 별도의 장비가 요구되지 않는 LFA를 DETECTR와 함께 이용했다(도 3 및 4). RT-RPA 및 RT-LAMP 앰플리콘을 IAV M 또는 IBV HA 유전자를 표적으로 하는 gRNA와 복합체를 형성한 CRISPR-Cas12a 및 및 ssDNA-FB(FAM-Biotin) 기질과 인큐베이션시켰다. 인큐베이션 후, 반응 혼합물을 종이 스트립에 적용하고, 2분 내에 절단된 기질에 의해 유발된 T 라인의 증가에 의해 양성 결과를 확인했다(도 1). 2분 후에는 T 라인의 증가가 대조군 래인에서도 검출되므로(데이터 미도시), 시료의 적용 후 2분 이내에 데이터 해석을 수행했다. 형광 분석법 결과와 일관되게, IAV 및 IBV의 반응당 1 X 100 PFU 까지 LFA에서 육안으로 검출되었다. 도 3의 B 및 D와 도 4의 B 및 D에 그 결과가 도시된다. 종합하면, 이러한 데이터는 형광 분석법 및 LFA와 결합된 DETECTR가 높은 민감도 및 특이성으로 IAV 또는 IBV를 검출할 수 있다는 것을 나타낸다.
인플루엔자 바이러스 RNA의 등온 증폭을 위해 RT-RPA 및 RT-LAMP를 이용하고 이 방법들이 효율적으로 바이러스 핵산을 증폭시킨다는 것을 확인했다. 각각 IAV M 및 IBV HA 유전자의 특이적 증폭을 위해 디자인된 RT-RPA 및 RT-LAMP 프라이머 세트는 상호 간에 교차 반응하지 않았다. 또한, 이 분석의 민감도는 DETECTR 방법의 이용을 통해 더 증가되었다. IAV M 및 IBV HA 유전자의 특이적 검출을 위해 설계된 gRNA는 교차-반응성 없이 특이적 검출을 제공했다.
본 연구에서, 발명자들은 시료로부터 출발하여 75 내지 85분 이내에 반응당 1 PFU까지 IAV 또는 IBV의 특이적 검출을 가능하게 하는 DETECTR 분석법을 개발했다. Mayuramart 등이 최근에 반응당 IAV 또는 IBV의 103 RNA 카피를 CRISPR-Cas12a-기반 분석법을 이용하여 검출할 수 있었다고 보고했다 (Mayuramart et al., 2021, Experimental Biology and Medicine 246(4):400-405). 시료의 차이는 있으나, 본 연구에서 개발된 DETECTR 분석법이 100배 이상 더 높은 증가된 민감도를 보였다.

Claims (18)

  1. 유전자 가위를 이용하여 인플루엔자 바이러스 타입을 검출하는 방법으로서,
    시료를 제공하는 단계,
    인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트를 이용하여 상기 시료 중 핵산을 등온증폭시키는 단계,
    상기 등온증폭에 의해 수득된 산물에 IAV 및 IBV 각각에 특이적인 가이드 RNA와 Cas(CRISPR-associated protein) 12a, 및 단일가닥 DNA 프로브를 첨가하여 유전자 가위에 의한 분자진단을 수행하는 단계, 및
    상기 시료 중 인플루엔자 바이러스 타입을 확인하는 단계를 포함하는 것인 방법.
  2. 청구항 1에 있어서, 상기 IAV에 특이적인 프라이머 세트 및 가이드 RNA는 IAV의 M 유전자를 표적으로 하는 것인 방법.
  3. 청구항 1에 있어서, 상기 IBV에 특이적인 프라이머 세트 및 가이드 RNA는 IBV의 HA 유전자를 표적으로 하는 것인 방법.
  4. 청구항 1에 있어서, 상기 시료를 제공하는 단계는 상기 시료를 가열하여 상기 시료 중 핵산분해효소 활성을 제거하고 바이러스 입자를 분해시키는 단계를 더 포함하는 것인 방법.
  5. 청구항 1에 있어서, 상기 등온증폭시키는 단계는 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트를 이용한 RT-RPA(Reverse Transcription-Recombinase Polymerase Amplification)에 의해 수행되는 것인 방법.
  6. 청구항 1에 있어서, 상기 등온증폭시키는 단계는 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트를 이용한 RT-LAMP(Reverse Transcription-Loop-Mediated Isothermal Amplification)에 의해 수행되는 것인 방법.
  7. 청구항 1에 있어서, 상기 IAV 및 IBV 각각에 특이적인 가이드 RNA는 서열번호 17 및 18의 서열로 구성되는 것인 방법.
  8. 청구항 1에 있어서, 상기 분자진단을 수행하는 단계는 상기 가이드 RNA에 의한 등온증폭 산물 중 표적 부위의 검출, Cas12a의 활성화, 및 활성화된 Cas12a에 의한 단일가닥 DNA 프로브의 절단을 포함하며, 상기 단일가닥 DNA 프로브는 상기 가이드 RNA와 혼성화되지 않고 표지 물질로 표지된 것인 방법.
  9. 청구항 1에 있어서, 상기 인플루엔자 바이러스 타입을 확인하는 단계는 단일가닥 DNA 프로브의 절단 여부를 형광 분석이나 LFA(lateral flow assay)에 의해 검출하여 상기 시료 중 인플루엔자 바이러스가 IAV 또는 IBV인지 확인하는 것인 방법.
  10. 청구항 8에 있어서, 상기 LFA는 스트립 상에서 수행되는 것인 방법.
  11. 청구항 1에 있어서, 상기 방법은 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트와 서열번호 17의 IAV 특이적 가이드 RNA 및 서열번호 18의 IBV 특이적 가이드 RNA를 이용하여 수행되고, 1 pfu(plaque forming unit)의 IAV 또는 IBV의 검출 민감도를 갖는 것인 방법.
  12. 청구항 1에 있어서, 상기 방법은 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트와 서열번호 17의 IAV 특이적 가이드 RNA 및 서열번호 18의 IBV 특이적 가이드 RNA를 이용하여 수행되고, 1 pfu의 IAV 또는 IBV의 검출 민감도를 갖는 것인 방법.
  13. 인플루엔자 A 바이러스(IAV) 및 인플루엔자 B 바이러스(IBV) 각각에 특이적인 프라이머 세트와 가이드 RNA, CRISPR-Cas12a, 및 단일가닥 DNA 프로브를 포함하는, 인플루엔자 바이러스 타입 검출용 키트.
  14. 청구항 13에 있어서, 상기 IAV 및 IBV 각각에 특이적인 프라이머 세트는 RPA를 위한 서열번호 1과 2로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 3과 4로 이루어진 IBV 특이적 프라이머 세트인 것인 키트.
  15. 청구항 13에 있어서, 상기 IAV 및 IBV 각각에 특이적인 프라이머 세트는 LAMP를 위한 서열번호 5 내지 10으로 이루어진 IAV 특이적 프라이머 세트 및 서열번호 11 내지 16으로 이루어진 IBV 특이적 프라이머 세트인 것인 키트.
  16. 청구항 13 내지 15 중 어느 한 항에 있어서, 상기 IAV 및 IBV 각각에 특이적인 가이드 RNA는 서열번호 17 및 18의 서열로 구성되는 것인 키트.
  17. 청구항 13 내지 15 중 어느 한 항에 있어서, 상기 키트는 역전사-등온증폭에 의해 인플루엔자 A 바이러스 및 인플루엔자 B 바이러스를 검출하고 구별하기 위해 이용되는 것인 키트.
  18. 청구항 16에 있어서, 상기 키트는 형광법 또는 LFA에 의한 검출을 위한 시약을 더 포함하는 것인 키트.
PCT/KR2021/005091 2021-02-22 2021-04-22 유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출 WO2022177066A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0023692 2021-02-22
KR1020210023692A KR102555480B1 (ko) 2021-02-22 2021-02-22 유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출

Publications (1)

Publication Number Publication Date
WO2022177066A1 true WO2022177066A1 (ko) 2022-08-25

Family

ID=82932027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005091 WO2022177066A1 (ko) 2021-02-22 2021-04-22 유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출

Country Status (2)

Country Link
KR (1) KR102555480B1 (ko)
WO (1) WO2022177066A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140918A (ko) * 2017-03-15 2019-12-20 더 브로드 인스티튜트, 인코퍼레이티드 바이러스 검출을 위한 crispr 이펙터 시스템 기반 진단
CN111534643A (zh) * 2020-07-10 2020-08-14 上海科技大学 一种检测呼吸道病原的核酸的试剂盒、检测方法及应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190140918A (ko) * 2017-03-15 2019-12-20 더 브로드 인스티튜트, 인코퍼레이티드 바이러스 검출을 위한 crispr 이펙터 시스템 기반 진단
CN111534643A (zh) * 2020-07-10 2020-08-14 上海科技大学 一种检测呼吸道病原的核酸的试剂盒、检测方法及应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FOAD MASHAYEKHI; RICKY Y. T. CHIU; ALEXANDER M. LE; FELIX C. CHAO; BENJAMIN M. WU; DANIEL T. KAMEI: "Enhancing the lateral-flow immunoassay for viral detection using an aqueous two-phase micellar system", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, SPRINGER, BERLIN, DE, vol. 398, no. 7 - 8, 24 September 2010 (2010-09-24), Berlin, DE , pages 2955 - 2961, XP019863982, ISSN: 1618-2650, DOI: 10.1007/s00216-010-4213-7 *
JAVALKOTE VIVEK S., KANCHARLA NAGESH, BHADRA BHASKAR, SHUKLA MANISH, SONI BADRISH, SAPRE AJIT, GOODIN MICHAEL, BANDYOPADHYAY ANIND: "CRISPR-based assays for rapid detection of SARS-CoV-2", METHODS, ACADEMIC PRESS, NL, vol. 203, 1 July 2022 (2022-07-01), NL , pages 594 - 603, XP055960418, ISSN: 1046-2023, DOI: 10.1016/j.ymeth.2020.10.003 *
OSBORN MARK J., BHARDWAJ AKSHAY, BINGEA SAMUEL P., KNIPPING FRIEDERIKE, FESER COLBY J., LEES CHRISTOPHER J., COLLINS DANIEL P., ST: "CRISPR/Cas9-Based Lateral Flow and Fluorescence Diagnostics", BIOENGINEERING, vol. 8, no. 2, 1 February 2021 (2021-02-01), pages 23 - 20, XP055960421, ISSN: 2306-5354, DOI: 10.3390/bioengineering8020023 *
PARK BUM JU, PARK MAN SEONG, LEE JAE MYUN, SONG YOON JAE: "Specific Detection of Influenza A and B Viruses by CRISPR-Cas12a-Based Assay", BIOSENSORS, M D P I AG, CH, vol. 11, no. 3, 1 March 2021 (2021-03-01), CH , pages 88 - 9, XP055960424, ISSN: 2079-6374, DOI: 10.3390/bios11030088 *

Also Published As

Publication number Publication date
KR102555480B1 (ko) 2023-07-13
KR20220120050A (ko) 2022-08-30

Similar Documents

Publication Publication Date Title
Kostyusheva et al. CRISPR-Cas systems for diagnosing infectious diseases
Ding et al. All-in-one dual CRISPR-Cas12a (AIOD-CRISPR) assay: a case for rapid, ultrasensitive and visual detection of novel coronavirus SARS-CoV-2 and HIV virus
EP4202064A1 (en) Kit and method for isothermal rapid detection of sars-cov-2 virus nucleic acid
CN111004870B (zh) 新型冠状病毒n基因核酸检测试剂盒
JP6329370B2 (ja) 呼吸器系ウイルスによる疾患の同時診断キット
CN111020064A (zh) 新型冠状病毒ORF1ab基因核酸检测试剂盒
US7851148B2 (en) Method and kit for primer based multiplex amplification of nucleic acids employing primer binding tags
WO2017034207A1 (ko) Lamp를 이용한 인플루엔자 검출용 프라이머 및 그 용도
WO2006000140A1 (fr) Amorces, sequences sondes et procedes utiles dans plusieurs dosages rt-pcr fluorescents en temps reel des sous-types h5, h7 et h9 du virus de la grippe aviaire
CN112063756A (zh) 多重检测呼吸道病毒核酸的方法及试剂盒
Ju et al. Rapid and accurate clinical testing for COVID-19 by nicking and extension chain reaction system-based amplification (NESBA)
CN112575125A (zh) 用于检测呼吸道病原微生物的引物组、探针微球组、试剂盒及方法
CN113652505A (zh) 检测新型冠状病毒及其voc-202012/01突变株的方法和试剂盒
CN110656163A (zh) 一种双标记报告荧光多重病原体核酸检测方法
CN110904198A (zh) 基于恒温扩增与基因编辑的核酸一步检测方法
US20080090224A1 (en) Nucleic acid detection
JP2020533974A5 (ko)
CN110527747B (zh) 一种检测猪瘟病毒野毒株的试剂盒
WO2022177066A1 (ko) 유전자가위 기반 인플루엔자 바이러스 타입의 신속 검출
US8785133B2 (en) Oligonucleotides and process for detection of swine flu virus
CA2726571A1 (en) Method for detecting human metapneumovirus and other respiratory viral agents in a test sample
CN116064954A (zh) 一种基于mb-rt-pcr检测新型冠状病毒及分型的试剂盒及其应用
EP3885455A1 (en) Method and kit for the detection of sars-cov-2 virus in a sample based on reverse transcription loop-mediated isothermal amplification (rt-lamp)
Diego et al. A Simple, Affordable, Rapid, Stabilized, Colorimetric, Versatile RT-LAMP assay to detect SARS-CoV-2
KR20220060668A (ko) CRISPR-Cas 시스템과 멀티플렉스 LAMP 프라이머 세트를 이용한 인플루엔자 바이러스의 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926865

Country of ref document: EP

Kind code of ref document: A1