WO2022176939A1 - 耐熱性ミラブル型フロロシリコーンゴム組成物 - Google Patents

耐熱性ミラブル型フロロシリコーンゴム組成物 Download PDF

Info

Publication number
WO2022176939A1
WO2022176939A1 PCT/JP2022/006337 JP2022006337W WO2022176939A1 WO 2022176939 A1 WO2022176939 A1 WO 2022176939A1 JP 2022006337 W JP2022006337 W JP 2022006337W WO 2022176939 A1 WO2022176939 A1 WO 2022176939A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
rubber composition
fluorosilicone rubber
component
Prior art date
Application number
PCT/JP2022/006337
Other languages
English (en)
French (fr)
Inventor
修 林田
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP22756257.6A priority Critical patent/EP4296304A1/en
Priority to JP2023500916A priority patent/JPWO2022176939A1/ja
Priority to US18/546,627 priority patent/US20240132672A1/en
Priority to KR1020237027159A priority patent/KR20230146019A/ko
Publication of WO2022176939A1 publication Critical patent/WO2022176939A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area

Definitions

  • the present invention relates to a millable type fluorosilicone rubber composition that provides silicone rubber with good heat resistance.
  • Silicone rubber has excellent weather resistance, electrical properties, low compression set, heat resistance, and cold resistance. Widely used.
  • the main chain of the base polymer consists essentially of a repeating structure of (3,3,3-trifluoropropyl)methylsiloxane units having 3,3,3-trifluoropropyl groups as side chain substituents.
  • Fluorosilicone rubber compositions based on fluorosilicone have excellent solvent resistance properties, and are widely used as diaphragms, O-rings, and oil seal materials for parts of transportation equipment and petroleum-related equipment.
  • Patent Document 1 Japanese Patent Publication No. 2016-518461 describes that the heat resistance of silicone rubber is improved by adding 0.1% by mass or more of titanium oxide and iron oxide to silicone rubber. , the amounts of formaldehyde, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane generated when heated at 300° C. for 1 hour are measured, but there is no description of changes in physical properties.
  • iron oxide is well known as a coloring agent for silicone rubber, and even a small amount of iron oxide colors silicone rubber red.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-031408 describes that the heat resistance of silicone rubber is improved by adding hydrous cerium oxide and/or hydrous zirconium oxide to silicone rubber. The physical properties are measured after being placed in a dryer for 72 hours, but the physical properties deteriorate under higher temperature conditions.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2006-021991
  • Patent Document 4 Patent Document 4
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2006-021991
  • Patent Document 5 disclose titanium oxide doped with metal ions (metal salts) such as transition metals. Only applications utilizing its optical properties, such as filters and photocatalysts, are disclosed.
  • Patent Document 5 WO2018/079376
  • heat resistance is improved by adding titanium oxide doped with 0.01 to 5% by mass of transition metal oxide and cerium oxide and/or cerium hydroxide to millable silicone rubber.
  • Patent Document 6 (WO2008/154319) introduces a technique for improving heat resistance by adding carbon black, calcium carbonate, iron oxide, and optionally zinc oxide to fluorosilicone rubber. It is difficult to color to the desired appearance.
  • an object of the present invention is to provide a millable type fluorosilicone rubber composition that gives a fluorosilicone rubber (cured product) with excellent heat resistance at 200°C or higher, particularly 250°C or higher.
  • the present inventors have found that 0.01 to 5% by mass of transition metal oxide-modified titanium oxide and calcium carbonate are blended into a fluorosilicone rubber composition. By doing so, the inventors have found that the heat resistance of the fluorosilicone rubber obtained from the composition is remarkably improved, and have completed the present invention.
  • the present invention (A) having at least two silicon-bonded alkenyl groups in one molecule and having siloxane units having at least one fluoroalkyl group in a number of 40% or more of the total number of siloxane units; And 100 parts by mass of organopolysiloxane having an average degree of polymerization of 100 or more, (B) 5 to 100 parts by mass of reinforcing silica having a specific surface area of 50 m 2 /g or more, (C) 0.01 to 10 parts by mass of titanium oxide modified with the transition metal oxide, containing 0.01 to 5% by mass of the transition metal oxide; Provided are a millable type fluorosilicone rubber composition containing (D) 0.01 to 10 parts by mass of calcium carbonate and (E) 0.1 to 50 parts by mass of a curing agent, and a cured product of the composition.
  • the fluorosilicone rubber composition of the present invention can provide a fluorosilicone rubber (cured product) with excellent heat resistance. That is, the fluorosilicone rubber obtained by the present invention exhibits excellent heat resistance at 200°C or higher, particularly 250°C or higher. In addition, an increase in hardness of the fluorosilicone rubber can be suppressed. Furthermore, since the fluorosilicone rubber composition of the present invention is white, it can be easily colored in a desired color with a coloring agent such as a pigment.
  • the composition of the present invention is described in detail below.
  • the specific surface area is a value measured by the BET method.
  • the millable composition is a highly viscous, non-liquid composition that does not self-flow at room temperature (25 ° C.), and is sheared by a kneader such as a roll mill (for example, two rolls or three rolls). It means a composition that can be uniformly kneaded under stress.
  • Component (A) is an organopolysiloxane that is the main ingredient (base polymer) of the present composition, and has at least two silicon-bonded alkenyl groups per molecule and at least one fluoroalkyl group. It is an organopolysiloxane having 40% or more of siloxane units with respect to the total number of all siloxane units and having an average degree of polymerization of 100 or more. It contains 2 or more, preferably 2 to 10,000 alkenyl groups bonded to silicon atoms in one molecule.
  • Organopolysiloxane has an average degree of polymerization of 100 or more (usually 100 to 100,000), preferably in the range of 1,000 to 100,000, preferably 2,000 to 100,000. A range of 50,000 is more preferred, and a range of 2,000 to 20,000 is particularly preferred. If the average degree of polymerization is less than the above lower limit, the silicone rubber composition of the present invention will not satisfy the properties as a millable rubber, and the roll kneadability and the like will be significantly deteriorated, which is not preferable. In the present invention, the average degree of polymerization is based on the polystyrene equivalent weight average molecular weight in GPC (gel permeation chromatography) analysis measured under the following conditions.
  • GPC gel permeation chromatography
  • the component (A) preferably has a high degree of polymerization (high viscosity) and is a non-liquid organopolysiloxane raw rubber having no self-fluidity at room temperature (25° C.).
  • the component (A) has at least 40%, preferably at least 45%, of siloxane units having at least one fluoroalkyl group relative to the total number of siloxane units.
  • the upper limit is not particularly limited as long as it is 100% or less, preferably less than 100%, more preferably 99.8% or less, and may be 98% or less.
  • a copolymer containing a siloxane unit having a fluoroalkyl group and a siloxane unit having a dimethyl group can also be included by having the siloxane unit having a fluoroalkyl group within the above range.
  • Component (A) is preferably represented by the following average compositional formula (1).
  • R 1 n SiO (4 ⁇ n)/2 (1)
  • R 1 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms or a fluoroalkyl group having 1 to 20 carbon atoms, and n is 1.95 to 2.04. is a positive number of
  • each R 1 is independently a monovalent hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, or 1 to 20 carbon atoms. , preferably 1 to 10, more preferably 1 to 6 fluoroalkyl groups.
  • Examples of monovalent hydrocarbon groups include alkyl groups such as methyl group, ethyl group, propyl group and butyl group; cycloalkyl groups such as cyclohexyl group; alkenyl groups such as vinyl group, allyl group, butenyl group and hexenyl group; Aryl groups such as a phenyl group and a tolyl group, aralkyl groups such as a ⁇ -phenylpropyl group, and the like can be mentioned. Among these, a methyl group, a vinyl group and a phenyl group are preferred, and a methyl group and a vinyl group are more preferred.
  • fluoroalkyl group examples include 3,3,3-trifluoropropyl group, 3,3,4,4,5,5,5-heptafluorobutyl group, and 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl group and the like. Among them, a 3,3,3-trifluoropropyl group is preferred.
  • n is a positive number of 1.95 to 2.04, preferably a positive number of 1.98 to 2.02. If n is out of the range of 1.95 to 2.04, the resulting cured product may not exhibit sufficient rubber elasticity.
  • Organopolysiloxane must have two or more alkenyl groups in one molecule, and in the above formula (1), 0.001 to 10 mol% of the total moles of R 1 , especially 0 .01 to 5 mol % are preferably alkenyl groups.
  • the alkenyl group is preferably a vinyl group or an allyl group, and particularly preferably a vinyl group.
  • the structure of the organopolysiloxane of component (A) is not particularly limited, the main chain consists of repeating diorganosiloxane units (R 1 2 SiO 2/2 ), and both ends of the molecular chain are triorganosiloxy groups ( R 13 SiO 1/2 )-blocked linear diorganopolysiloxanes are preferred.
  • R1 is as described above. Both ends of the molecular chain are preferably blocked with a trimethylsiloxy group, a dimethylvinylsiloxy group, a dimethylhydroxysiloxy group, a methyldivinylsiloxy group, a trivinylsiloxy group, or the like.
  • These organopolysiloxanes may be used singly or in combination of two or more having different degrees of polymerization and molecular structures.
  • the content of component (A) in the fluorosilicone rubber composition of the present invention is preferably 43 to 96% by mass, more preferably 50 to 90% by mass, and more preferably 60 to 80% by mass. More preferred.
  • the reinforcing silica acts as a filler that imparts excellent mechanical properties to the resulting silicone rubber composition.
  • the reinforcing silica may be either precipitated silica (wet silica) or fumed silica (dry silica) and has a large number of silanol groups on its surface.
  • (B) the reinforcing silica must have a specific surface area of 50 m 2 /g or more according to the BET method. It is preferably 100 to 400 m 2 /g. If the specific surface area is less than 50 m 2 /g, the reinforcing effect of the silicone rubber imparted by the component (B) will be insufficient.
  • Component (B), the reinforcing silica may be used in an untreated state, or may be surface-treated with an organosilicon compound such as organopolysiloxane, organopolysilazane, chlorosilane, or alkoxysilane, if necessary. good too. Reinforcing silica may be used singly or in combination of two or more.
  • (B) Reinforcing silica is added in an amount of 5 to 100 parts by mass, preferably 10 to 80 parts by mass, and more preferably 20 to 70 parts by mass based on 100 parts by mass of the organopolysiloxane of component (A). be. If the amount of component (B) is more than the above upper limit or less than the above lower limit, not only is the processability of the resulting silicone rubber composition lowered, but also the cured silicone rubber obtained by curing the silicone rubber composition. mechanical properties such as tensile strength and tear strength are insufficient.
  • Component (C) is a transition metal oxide-modified titanium oxide containing 0.01 to 5% by mass of a transition metal oxide, and is a component that remarkably improves the heat resistance of silicone rubber.
  • titanium oxide modified with a transition metal oxide is more particularly titanium oxide doped with a transition metal oxide.
  • doped refers to a form in which a transition metal oxide is present in the titanium oxide lattice. The amount of the transition metal oxide contained in the titanium oxide is 0.01 to 5% by mass, preferably 0.01% by mass, relative to the mass of the modified (especially doped) titanium oxide.
  • the titanium oxide contains the transition metal oxide within the above range, the heat resistance of the resulting fluorosilicone rubber can be effectively improved.
  • transition metal oxides refer to transition metal oxides other than titanium oxide which is modified.
  • transition metal oxides include manganese oxide, iron oxide, cobalt oxide, nickel oxide, copper oxide, zinc oxide, and zirconium oxide, among which iron oxide (FeO, Fe 2 O 3 ) is preferred.
  • iron oxide-modified titanium oxide particularly iron oxide-doped titanium oxide
  • red coloration due to iron oxide can be suppressed and the heat resistance of the silicone rubber can be improved.
  • Titanium oxide modified with a transition metal oxide, particularly titanium oxide doped with a transition metal oxide is produced by a known production method.
  • Japanese Patent Application Laid-Open No. 2010-013484 describes a method of doping 80% anatase-type and 20% rutile-type crystalline titanium dioxide with iron oxide using titanium tetrachloride and iron trichloride.
  • the amount of component (C) is 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, per 100 parts by weight of organopolysiloxane (A). is. If the amount of component (C) is less than the above lower limit, the heat resistance of the silicone rubber will not be improved. If the above upper limit is exceeded, the mechanical properties of the silicone rubber may significantly deteriorate.
  • the content of the transition metal oxide in the fluorosilicone rubber composition is preferably 0.005 to 1.0% by mass, more preferably 0.01 to 1.0% by mass, based on the total amount of the composition. It is 1.0% by mass, more preferably 0.01 to 0.5% by mass.
  • the content is at least the above lower limit, the effect of the transition metal oxide contained in the titanium oxide can be sufficiently obtained, and when it is at most the above upper limit, there is little effect on coloration, which is preferable.
  • Component (D) is calcium carbonate, which, together with component (C), significantly improves the heat resistance of the silicone rubber.
  • Examples of commercially available calcium carbonate include Silver W, Hakuenka CCR (manufactured by Shiraishi Kogyo Co., Ltd.), Whiten SSB (manufactured by Bihoku Funka Kogyo Co., Ltd.), and the like.
  • the amount of calcium carbonate in the fluorosilicone rubber composition is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, more preferably 0.5 to 100 parts by mass per 100 parts by mass of component (A). 3 parts by mass. Below the above lower limit, the heat resistance of the silicone rubber is not improved. On the other hand, if the above upper limit is exceeded, the mechanical properties of the silicone rubber may significantly deteriorate.
  • the particle size of calcium carbonate is not particularly limited, and may be, for example, an average particle size of 0.1 to 50 ⁇ m.
  • a preferable compounding ratio of the component (C) and the component (D) is 1:100 to 100:1, more preferably 1:50 to 50:1 in mass ratio.
  • the curing agent is not particularly limited as long as it can cure the silicone rubber composition used in the present invention.
  • component may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the component (E) include (E-1) an organic peroxide curing agent, (E-2) an addition reaction type curing agent, and a combination of the (E-1) component and the (E-2) component. mentioned.
  • the amount of component (E) is 0.1 to 50 parts by mass, preferably 0.1 to 40 parts by mass, more preferably 0.2 to 10 parts by mass, per 100 parts by mass of organopolysiloxane (A). Department.
  • Organic peroxide curing agent (E-1)
  • the organic peroxide curing agent include benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methyl benzoyl peroxide, 2,4-dicumyl peroxide, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane, di-t-butyl peroxide, t-butyl perbenzoate, 1,6 -hexanediol-bis-t-butyl peroxycarbonate and the like.
  • the amount of the organic peroxide curing agent is preferably 0.1 to 10 parts by mass, particularly preferably 0.2 to 5 parts by mass, per 100 parts by mass of component (A). If the amount is too small, curing may be insufficient, and if it is too large, the cured product of the silicone rubber may turn yellow due to decomposition residues of the organic peroxide.
  • an organohydrogenpolysiloxane and a hydrosilylation catalyst are preferably used in combination.
  • the organohydrogenpolysiloxane has 2 or more, preferably 3 or more, more preferably 3 to 200, and still more preferably about 4 to 100 silicon-bonded hydrogen atoms (i.e., hydrosilyl group), the structure may be linear, cyclic, branched or three-dimensional network structure, and the hydrosilyl group may be at the end of the molecular chain or in the middle of the molecular chain. or both.
  • the organohydrogenpolysiloxane may be any organohydrogenpolysiloxane known as a cross-linking agent for addition reaction-curable silicone rubber compositions.
  • an organohydrogenpolysiloxane represented by the following average compositional formula (2) can be used. R 2 p H q SiO (4-pq)/2 (2)
  • R 2 is independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, preferably 1 to 8 carbon atoms, and aliphatically unsaturated It is preferably one that does not have a bond.
  • alkyl groups such as methyl group, ethyl group and propyl group, cycloalkyl groups such as cyclohexyl group, aryl groups such as phenyl group and tolyl group, benzyl group, 2-phenylethyl group, 2-phenylpropyl group and the like. and the like.
  • Some or all of the hydrogen atoms in these groups may be substituted with halogen atoms, for example, a 3,3,3-trifluoropropyl group.
  • p is 0 ⁇ p ⁇ 3, preferably 0.5 ⁇ p ⁇ 2.2, more preferably 1.0 ⁇ p ⁇ 2.0, and q is 0 ⁇ q ⁇ 3, preferably 0.002 ⁇ q ⁇ 1.1, more preferably 0.005 ⁇ q ⁇ 1, and p+q is 0 ⁇ p+q ⁇ 3, preferably 1 ⁇ p+q ⁇ 3, more preferably 1.002 ⁇ It is a positive number that satisfies p+q ⁇ 2.7.
  • the organohydrogenpolysiloxane preferably has a viscosity at 25°C of 0.5 to 10,000 mPa ⁇ s, particularly 1 to 300 mPa ⁇ s. In the present invention, viscosity is measured at 25° C. using a rotational viscometer according to the method described in JIS K 7117-1:1999.
  • the organohydrogenpolysiloxane preferably has an average degree of polymerization of 1 to 1,000, more preferably 3 to 150, particularly preferably 3 to 80. The average degree of polymerization is based on the polystyrene equivalent weight average molecular weight in GPC (gel permeation chromatography) analysis measured under the conditions described above.
  • organohydrogenpolysiloxanes examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris(hydrogendimethylsiloxy)methylsilane, tris(hydrogen dimethylsiloxy)phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane/dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends trimethylsiloxy group-blocked dimethylsiloxane/methylhydrogensiloxane Copolymer, dimethylpolysiloxane blocked at both ends by dimethylhydrogensiloxy groups, dimethylsiloxane/methylhydrogensiloxane copolymer blocked at both ends by dimethylhydrogensiloxy groups, copolymer of methylhydrogensiloxane/diphenyl
  • the amount of the organohydrogenpolysiloxane compounded is preferably 0.1 to 40 parts by mass per 100 parts by mass of component (A).
  • the number ratio of silicon-bonded hydrogen atoms (hydrosilyl groups) is suitably in the range of 0.5 to 10, preferably 0.7 to 1, per alkenyl group of component (A). A range of 5 is appropriate. If it is less than the above lower limit, cross-linking may be insufficient and sufficient mechanical strength may not be obtained. or the compression set may increase.
  • the hydrosilylation catalyst is a catalyst for the hydrosilylation addition reaction between the alkenyl groups of the component (A) and the silicon-bonded hydrogen atoms (SiH groups) of the organohydrogenpolysiloxane.
  • Hydrosilylation catalysts include platinum group metal-based catalysts. There are elemental platinum group metals and compounds thereof, and conventionally known catalysts for addition reaction-curable silicone rubber compositions may be used. For example, particulate platinum metal adsorbed on a carrier such as silica, alumina or silica gel, platinum catalyst such as platinic chloride, chloroplatinic acid, alcoholic solution of chloroplatinic acid hexahydrate, palladium catalyst, rhodium catalyst, etc. platinum or platinum compounds (platinum catalysts) are preferred.
  • the amount of the catalyst to be added is sufficient as long as it can promote the above addition reaction. Generally, it is used in the range of 1 mass ppm to 1 mass %, preferably 10 to 500 mass ppm, based on the organopolysiloxane of the component (A) in terms of platinum group metal content. If the amount of the catalyst is less than the above lower limit, the addition reaction may not be sufficiently accelerated, resulting in insufficient curing. If it exceeds the above upper limit, there is little effect on reactivity, and it may be uneconomical.
  • addition reaction curing and organic peroxide curing are combined by combining the above-mentioned (E-1) component and (E-2) component with the (A) component in the above-mentioned range of blending amounts.
  • a co-vulcanized silicone rubber composition can also be used.
  • the silicone rubber composition of the present invention may further contain a filler dispersant, particularly an inorganic filler or silica dispersant, in addition to the components (A) to (E). Dispersants for silica are preferred. By further containing the dispersant, the reinforcing silica described above can be well dispersed in the composition.
  • the dispersant may be, for example, a low-molecular organosilicon compound having an alkoxy group or a silanol group, or a hydrolyzate thereof.
  • alkoxysilanes particularly phenyl group-containing alkoxysilanes and hydrolysates thereof, diphenylsilanediol, carbon functional silanes, and silanol group-containing low-molecular-weight siloxanes may be used.
  • diphenylsilanediol is preferable because it further improves the heat resistance of the silicone rubber. more preferred.
  • the amount of component (F) is preferably 0.1 to 50 parts by mass, particularly preferably 1 to 20 parts by mass, per 100 parts by mass of component (A). If the amount of the silanol group-blocked organopolysiloxane at both ends is too small, the effect of the addition cannot be seen. Workability may deteriorate.
  • the silicone rubber composition used in the present invention may optionally contain fillers other than component (B) (pulverized quartz, diatomaceous earth, etc.), colorants (pigments), tear strength improvers, flame retardant improvers (platinum compounds, etc.), acid acceptors, thermal conductivity improvers (alumina, boron nitride, etc.), release agents, reaction control agents, etc.
  • fillers and additives for thermosetting silicone rubber compositions may be added.
  • Other components may be used individually by 1 type, and may use 2 or more types together.
  • the blending amount may be appropriately adjusted within a range that does not impair the effects of the present invention.
  • the millable type silicone rubber composition of the present invention can be obtained by mixing the components constituting the composition with a known kneader such as a kneader, Banbury mixer, or two-roll mixer.
  • a composition containing the above components (A) to (E) is used as the silicone rubber composition, (A) organopolysiloxane, (B) reinforcing silica, and (C) transition metal oxide-doped titanium oxide and (D) calcium carbonate, and then (E) a curing agent is preferably added to the resulting mixture.
  • the composition containing the above components (A) to (E) further contains other components, components (A), (B), (C), (D) and other components After mixing to obtain a mixture, it is preferable to add component (E) to the mixture.
  • a known molding method may be selected according to the desired shape and size of the molded product. For example, methods such as injection molding, compression molding, injection molding, calendar molding, and extrusion molding can be used.
  • - Cured material - Curing conditions may be known conditions for the molding method used, and are generally from 60 to 450° C. for several seconds to one day.
  • reducing the low-molecular-weight siloxane component remaining in the obtained silicone rubber, and removing organic peroxide decomposition products in the silicone rubber 200 C. or higher, preferably 200 to 250.degree.
  • the (A) organopolysiloxanes used in Examples and Comparative Examples are as follows.
  • the mol% of each siloxane unit in the following is the ratio of the number of each siloxane unit to the total number of siloxane units.
  • Organopolysiloxane raw rubber with a molecular weight of 4,000 (alkenyl groups per molecule: 7, corresponding to n 2.0005 in the average compositional formula (1) above)
  • Organopolysiloxane raw rubber having an average degree of polymerization of 4,000 (7 alkenyl groups per molecule, corresponding to n 2.0005 in
  • Component (C) used in Examples and Comparative Examples is titanium oxide containing 3% by mass of iron oxide (Fe 2 O 3 ) and doped with the iron oxide (AEROXIDE TiO 2 PF2, manufactured by Nippon Aerosil Co., Ltd.). is. Further, in Comparative Example 3, titanium oxide (AEROXIDE TiO 2 P25, manufactured by Nippon Aerosil Co., Ltd.) not modified with iron oxide was used. Tables 1 and 2 show the iron oxide contents (% by mass) in the silicone rubber compositions in the following examples and comparative examples.
  • Example 1 100 parts by mass of organopolysiloxane raw rubber (A1), 40 parts by mass of fumed silica having a BET specific surface area of 200 m 2 /g (Aerosil 200, manufactured by Nippon Aerosil Co., Ltd.), 5 parts by mass of diphenylsilanediol, and both terminal silanol groups.
  • 1.0 parts by mass of 3,3,3-trifluoropropylmethylpolysiloxane having an average polymerization degree of 4 and a viscosity of 15 mPa s at 25 ° C. is added, and mixed with a kneader at 150 ° C. for 2 hours. After heating below, the base compound (1) was prepared.
  • (C) 1.0 parts by mass of titanium oxide containing the above iron oxide is added to 100 parts by mass of organopolysiloxane raw rubber, and (D) calcium carbonate (Silver W, manufactured by Shiraishi Kogyo Co., Ltd.) ) was added by two rolls to prepare compound (A).
  • compound (A) 0.6 parts by weight of 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane as a curing agent (E) is added to 100 parts by weight of organopolysiloxane raw rubber. These were added using a main roll and uniformly mixed to obtain a crude rubber-like silicone rubber composition.
  • the silicone rubber composition was press-cured at 165° C. and 70 kgf/cm 2 for 10 minutes to prepare a test sheet having a thickness of 2 mm.
  • the test sheet was then post-cured in an oven at 200°C for 4 hours.
  • the obtained cured product was subjected to the heat resistance test described above.
  • Example 2 A silicone rubber composition was prepared by repeating Example 1 except that the amount of (C) titanium oxide containing iron oxide in Example 1 was changed to 2.0 parts by mass, and a cured product was obtained. The obtained cured product was subjected to the heat resistance test described above.
  • Example 3 In Example 1, diphenylsilanediol was not added, dimethylpolysiloxane having both terminal silanol groups, an average degree of polymerization of 4, and a viscosity at 25 ° C. of 15 mPa s was added to 6.0 parts by mass.
  • a silicone rubber composition was prepared by repeating Example 1 to obtain a cured product. The obtained cured product was subjected to the heat resistance test described above.
  • Example 5 A silicone rubber composition was prepared by repeating Example 1 except that the organopolysiloxane raw rubber (A1) was changed to 100 parts by mass of the organopolysiloxane raw rubber (A2) to obtain a cured product. The obtained cured product was subjected to the heat resistance test described above.
  • Example 1 A silicone rubber composition was prepared by repeating Example 1 except that (D) calcium carbonate was not added in Example 1, and a cured product was obtained. The obtained cured product was subjected to the heat resistance test described above.
  • Example 2 A silicone rubber composition was prepared by repeating Example 1 except that component (C) was not added, and a cured product was obtained. The obtained cured product was subjected to the heat resistance test described above.
  • Example 3 instead of the component (C) in Example 1, titanium oxide not modified with iron oxide (AEROXIDE TiO2 P25, manufactured by Nippon Aerosil Co., Ltd.) was added in an amount of 1.0 parts by mass per 100 parts by mass of organopolysiloxane raw rubber.
  • a silicone rubber composition was prepared by repeating Example 1, except that 0.03 part by mass of iron oxide (Bengara SR-570, manufactured by Tone Sangyo Co., Ltd.) was added to obtain a cured product. The obtained cured product was subjected to the heat resistance test described above.
  • Example 4 A silicone rubber composition was prepared by repeating Example 4 except that neither component (C) nor component (D) was added in Example 4, and a cured product was obtained. The obtained cured product was subjected to the heat resistance test described above.
  • Example 5 A silicone rubber composition was prepared by repeating Example 1 except that neither component (C) nor component (D) was added, and a cured product was obtained. The obtained cured product was subjected to the heat resistance test described above.
  • Example 1 was repeated except that component (D) was not added in Example 1, and instead 1 part by mass of cerium oxide (trade name cerium oxide SN-2 (manufactured by Nikki Co., Ltd.) was added. was prepared to obtain a cured product, which was subjected to the heat resistance test described above.
  • cerium oxide trade name cerium oxide SN-2 (manufactured by Nikki Co., Ltd.) was added. was prepared to obtain a cured product, which was subjected to the heat resistance test described above.
  • Example 1 except that the organopolysiloxane raw rubber (A1) in Example 1 was replaced with 3,3,3-trifluoropropylmethylpolysiloxane having an average degree of polymerization of 90 and having both ends blocked with dimethylvinylsiloxy groups. 1 was repeated to prepare base compound (2).
  • the base compound (2) was liquid and could not be double roll kneaded (not shown in Table 1).
  • the fluorosilicone rubber obtained from the composition containing only one of (C) titanium oxide containing iron oxide and (D) calcium carbonate was heated at 225°C and 260°C. Poor long-term heat resistance. Also, the fluorosilicone rubber obtained from the fluorosilicone rubber composition containing titanium oxide containing iron oxide and cerium oxide is also inferior in heat resistance at high temperatures for a long period of time (Comparative Example 6). Further, as shown in Comparative Example 3, the silicone rubber obtained from the composition to which titanium oxide and iron oxide were separately added has good long-term heat resistance, but despite the fact that only a small amount of iron oxide is blended, The silicone rubber was initially colored red, and coloring with a pigment was impossible.
  • the silicone rubber (cured product) obtained from the fluorosilicone rubber composition of the present invention has excellent heat resistance and maintains good mechanical properties even under high-temperature long-term storage. It is possible to suppress an increase in the hardness of the silicone rubber. Furthermore, since the fluorosilicone rubber composition of the present invention is white, it can be easily colored in a desired color with a coloring agent.
  • the fluorosilicone rubber composition of the present invention can provide a fluorosilicone rubber (cured product) with excellent heat resistance. That is, the fluorosilicone rubber obtained by the present invention exhibits excellent heat resistance at 200°C or higher, particularly 250°C or higher. In addition, an increase in hardness of the fluorosilicone rubber can be suppressed. Furthermore, since the fluorosilicone rubber composition of the present invention is white, it can be easily colored in a desired color with a coloring agent such as a pigment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[要約] [課題] 耐熱性に優れたフロロシリコーンゴム(硬化物)となるミラブル型フロロシリコーンゴム組成物を提供する。より詳細には、200℃以上、特に250℃以上で耐熱性に優れたフロロシリコーンゴム(硬化物)を与える、ミラブル型フロロシリコーンゴム組成物を提供することを目的とする。 [解決手段] 本発明は、 (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、及び、少なくとも1つのフルオロアルキル基を有するシロキサン単位をシロキサン単位の合計個数に対し40%以上の数で有し、且つ、平均重合度100以上を有するオルガノポリシロキサン 100質量部、 (B)比表面積50m/g以上を有する補強性シリカ 5~100質量部、 (C)遷移金属酸化物を0.01~5質量%含む、前記遷移金属酸化物で変性された酸化チタン 0.01~10質量部、 (D)炭酸カルシウム 0.01~10質量部 及び (E)硬化剤 0.1~50質量部 を含有するミラブル型フロロシリコーンゴム組成物、及び該組成物の硬化物を提供する。 [選択図]なし

Description

耐熱性ミラブル型フロロシリコーンゴム組成物
 本発明は、耐熱性が良好なシリコーンゴムを与えるミラブル型フロロシリコーンゴム組成物に関する。
 シリコーンゴムは、優れた耐候性、電気特性、低圧縮永久歪性、耐熱性、耐寒性等の特性を有しているため、電気機器、自動車、建築、医療、食品を初めとして様々な分野で広く使用されている。特に、ベースポリマーの主鎖が側鎖置換基として3,3,3-トリフルオロプロピル基を有する(3,3,3-トリフルオロプロピル)メチルシロキサン単位の繰返し構造から実質的になるフロロシリコーン生ゴムを主剤とするフロロシリコーンゴム組成物は、耐溶剤性にも優れた性質を有しており、輸送機器部品、石油関連機器部品としてのダイヤフラム、O-リング、オイルシール材等として広く使用されている。現在、シリコーンゴムの需要は益々高まっており、優れた特性を有するシリコーンゴムの開発が望まれている。
 シリコーンゴムの耐熱性を更に向上させるため、酸化セリウム、水酸化セリウム、酸化鉄、カーボンブラック等の添加剤を配合することは知られている。しかし、フロロシリコーンゴムの場合、200℃以上の高温条件下でのシリコーンゴムの耐熱性は十分ではなく、このような条件下で優れた耐熱性を示すシリコーンゴムが要求されている。
 特許文献1(特表2016-518461号公報)には、シリコーンゴムに0.1質量%以上の酸化チタンと酸化鉄を添加することでシリコーンゴムの耐熱性を向上させることが記載されているが、300℃で1時間加熱した際のホルムアルデヒド、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン発生量を測定しているのみで、物性変化についての記載はない。また、酸化鉄はシリコーンゴムの着色剤としてもよく知られており、少量でもシリコーンゴムを赤く着色してしまうため、赤以外の色を所望しても色付けすることが困難である。
 特許文献2(特開2014-031408号公報)には、シリコーンゴムに含水酸化セリウムおよび/または含水酸化ジルコニウムを添加することでシリコーンゴムの耐熱性を向上させることが記載されており、225℃の乾燥機に72時間入れた後の物性を測定しているが、これより高温条件下では物性が低下する。
 特許文献3(特開2006-021991号公報)や特許文献4(WO2010/140499)には、遷移金属などの金属イオン(金属塩)を酸化チタンにドープしたものが開示されているが、中間赤外線フィルターや光触媒体といったその光学特性を利用した用途のみが開示されている。
 特許文献5(WO2018/079376)ではミラブル型シリコーンゴムに0.01~5質量%の遷移金属酸化物をドープした酸化チタンと酸化セリウム及び/又は水酸化セリウムを併用添加することで耐熱性を改良するとしているがフロロシリコーンゴムの場合十分とは言えなかった。
 特許文献6(WO2008/154319)ではフロロシリコーンゴムにカーボンブラック、炭酸カルシウム、酸化鉄、任意に酸化亜鉛を添加して耐熱性を向上させる技術が紹介されているが、カーボンや酸化鉄の添加により所望の外観に色付けすることが困難である。
特表2016-518461号公報 特開2014-031408号公報 特開2006-021991号公報 WO2010/140499 WO2018/079376 WO2008/154319
 従って、本発明は、200℃以上、特に250℃以上で耐熱性に優れたフロロシリコーンゴム(硬化物)を与える、ミラブル型フロロシリコーンゴム組成物を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究した結果、フロロシリコーンゴム組成物に、0.01~5質量%の遷移金属酸化物で変性された酸化チタンと、炭酸カルシウムとを配合することで、該組成物から得られるフロロシリコーンゴムの耐熱性が著しく向上することを見出し、本発明を成すに至った。
 すなわち、本発明は、
 (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、及び、少なくとも1つのフルオロアルキル基を有するシロキサン単位をシロキサン単位の合計個数に対し40%以上の数で有し、且つ、平均重合度100以上を有するオルガノポリシロキサン   100質量部、
 (B)比表面積50m/g以上を有する補強性シリカ   5~100質量部、
 (C)遷移金属酸化物を0.01~5質量%含む、前記遷移金属酸化物で変性された酸化チタン   0.01~10質量部、
 (D)炭酸カルシウム   0.01~10質量部
 及び
 (E)硬化剤   0.1~50質量部
を含有するミラブル型フロロシリコーンゴム組成物、及び該組成物の硬化物を提供する。
 本発明のフロロシリコーンゴム組成物は耐熱性に優れたフロロシリコーンゴム(硬化物)を与えることができる。すなわち、本発明により得られるフロロシリコーンゴムは、200℃以上、特に250℃以上で優れた耐熱性を示す。また、該フロロシリコーンゴムの硬度上昇を抑制できる。さらに、本発明のフロロシリコーンゴム組成物は白色であるため、顔料などの着色剤によって容易に所望の色を着色することができる。
 本発明の組成物について以下詳述する。
 本明細書中において、比表面積はBET法により測定された値である。なお、ミラブル型組成物とは、室温(25℃)において自己流動性のない高粘度で非液状の組成物であって、ロールミル(例えば、二本ロールや三本ロール)などの混練機で剪断応力下に均一に混練することが可能な組成物を意味する。
[(A)オルガノポリシロキサン]
 (A)成分は、本組成物の主剤(ベースポリマー)であるオルガノポリシロキサンであり、ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、及び、少なくとも1のフルオロアルキル基を有するシロキサン単位を全シロキサン単位の合計個数に対し40%以上で有し、且つ、平均重合度100以上を有するオルガノポリシロキサンである。ケイ素原子に結合したアルケニル基を1分子中に2個以上、好ましくは2~10,000個含有する。
 (A)オルガノポリシロキサンは、平均重合度100以上(通常、100~100,000)であり、特に1,000~100,000の範囲にある平均重合度を有することが好ましく、2,000~50,000の範囲がより好ましく、2,000~20,000の範囲が特に好ましい。平均重合度が上記下限値未満であると、本発明のシリコーンゴム組成物がミラブルゴムとしての性状を満たさなくなり、ロール混練性等が著しく悪化してしまうため好ましくない。なお、本発明において平均重合度は、下記条件で測定したGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均分子量に基づく。
[測定条件]
・展開溶媒:THF
・流量:1mL/min
・検出器:示差屈折率検出器(RI)
・カラム:TSKGEL SUPERMULTIPORE HZ-H 4本((株)東ソー社製)
・カラム温度:25℃
・試料注入量:10μL(濃度0.1質量%のTHF溶液)
本発明において(A)成分は、高重合度(高粘度)であって、室温(25℃)において自己流動性のない非液状のオルガノポリシロキサン生ゴムであるのが好ましい。
 (A)成分は、少なくとも1つのフルオロアルキル基を有するシロキサン単位をシロキサン単位の合計個数に対し40%以上、好ましくは45%以上で有する。上限は特に制限されなく100%以下であればよく、好ましくは100%未満、より好ましくは99.8%以下であり、98%以下であってもよい。フルオロアルキル基を有するシロキサン単位を上記範囲で有することにより、フルオロアルキル基を有するシロキサン単位及びジメチル基を有するシロキサン単位を含有するコポリマーも包含できる。
 (A)成分は、好ましくは下記平均組成式(1)で表される。
  R SiO(4-n)/2   (1)
  上記式(1)中、Rは、互いに独立に、炭素原子数1~20の1価炭化水素基又は炭素原子数1~20のフルオロアルキル基であり、nは1.95~2.04の正数である。
 上記平均組成式(1)中、Rは、互いに独立に、炭素原子数1~20、好ましくは1~12、より好ましくは1~8の1価炭化水素基、又は炭素原子数1~20、好ましくは1~10、より好ましくは1~6のフルオロアルキル基である。1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基、ブテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基等のアリール基、β-フェニルプロピル基等のアラルキル基等が挙げられる。これらの中では、メチル基、ビニル基、フェニル基が好ましく、メチル基、ビニル基がより好ましい。前記フルオロアルキル基としては、例えば3,3,3-トリフルオロプロピル基、3,3,4,4,5,5,5-ヘプタフルオロブチル基、及び3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル基等が挙げられる。中でも、3,3,3-トリフルオロプロピル基が好ましい。
 上記平均組成式(1)中、nは1.95~2.04の正数であり、好ましくは1.98~2.02の正数である。nが1.95~2.04の範囲でないと、得られる硬化物が十分なゴム弾性を示さないことがある。
 (A)オルガノポリシロキサンは、1分子中に2個以上のアルケニル基を有することが必要であり、上記式(1)中、Rの合計モルのうち0.001~10モル%、特に0.01~5モル%がアルケニル基であることが好ましい。該アルケニル基としては、好ましくはビニル基及びアリル基であり、特に好ましくはビニル基である。
 (A)成分のオルガノポリシロキサンの構造は特に限定されないが、主鎖がジオルガノシロキサン単位(R SiO2/2)の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、直鎖状のジオルガノポリシロキサンであることが好ましい。Rは上述した通りである。分子鎖両末端が、トリメチルシロキシ基、ジメチルビニルシロキシ基、ジメチルヒドロキシシロキシ基、メチルジビニルシロキシ基、トリビニルシロキシ基等で封鎖されたものが好ましい。これらのオルガノポリシロキサンは、1種単独で用いてもよく、重合度や分子構造の異なる2種以上を組み合わせて用いてもよい。
 本発明のフロロシリコーンゴム組成物中、(A)成分の含有量は43~96質量%であることが好ましく、50~90質量%であることがより好ましく、60~80質量%であることがさらに好ましい。
[(B)補強性シリカ]
 (B)成分の補強性シリカは、得られるシリコーンゴム組成物に対して優れた機械的特性を付与する充填材として作用する。該補強性シリカは、沈降シリカ(湿式シリカ)でもヒュームドシリカ(乾式シリカ)でもよく、表面に多数のシラノール基が存在しているものである。本発明において(B)補強性シリカは、BET法による比表面積50m/g以上を有することが必要である。好ましくは100~400m/gである。この比表面積が50m/g未満であると、(B)成分により付与されるシリコーンゴムの補強効果が不十分となる。
 (B)成分の補強性シリカは、未処理の状態で使用しても、必要に応じて、オルガノポリシロキサン、オルガノポリシラザン、クロロシラン、アルコキシシラン等の有機ケイ素化合物で表面処理されたものを用いてもよい。補強性シリカは、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 (B)補強性シリカの配合量は、(A)成分のオルガノポリシロキサン100質量部に対して5~100質量部であり、好ましくは10~80質量部、より好ましくは20~70質量部である。(B)成分の配合量が上記上限値超又は上記下限値未満では、得られるシリコーンゴム組成物の加工性が低下するだけでなく、該シリコーンゴム組成物を硬化して得られるシリコーンゴム硬化物の引張り強度や引き裂き強度等の機械的特性が不十分なものとなる。
[(C)遷移金属酸化物を含有する酸化チタン]
 (C)成分は、遷移金属酸化物を0.01~5質量%含有する、前記遷移金属酸化物で変性された酸化チタンであり、シリコーンゴムの耐熱性を著しく向上させる成分である。本発明において、遷移金属酸化物で変性された酸化チタンとは、より詳細には遷移金属酸化物でドープされた酸化チタンである。また「ドープされた」とは酸化チタンの格子中に遷移金属酸化物が存在する形のものを言う。酸化チタンに含まれる遷移金属酸化物の量は、変性された(特には、ドープされた)酸化チタンの質量に対して0.01~5質量%となる量であり、好ましくは0.01質量%超、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは1質量%以上であるのがよい。上限値は5質量%以下であり、好ましくは4.5質量%以下、より好ましくは4質量%以下であるのがよい。酸化チタンが当該範囲で遷移金属酸化物を含むことにより、得られるフロロシリコーンゴムの耐熱性を効果的に向上することができる。
 本発明において遷移金属酸化物とは、変性される側である酸化チタンを除く遷移金属酸化物である。遷移金属酸化物の例としては、酸化マンガン、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅、酸化亜鉛、酸化ジルコニウムなどが挙げられ、中でも酸化鉄(FeO、Fe)が好ましい。酸化鉄で変性された酸化チタン、特には酸化鉄がドープされた酸化チタンを用いることで、酸化鉄による赤色着色を抑制し、且つ、シリコーンゴムの耐熱性を向上することができる。遷移金属酸化物で変性された酸化チタン、特には遷移金属酸化物をドープした酸化チタンは、公知の製造方法により製造される。例えば、特開2010-013484号公報には、四塩化チタンと三塩化鉄を使用し、アナターゼ型80%及びルチル型20%の結晶性二酸化チタンに酸化鉄をドープする方法が記載されている。
 (C)成分の量は、(A)オルガノポリシロキサン100質量部に対して0.01~10質量部であり、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。該(C)成分の量が上記下限値未満では、シリコーンゴムの耐熱性が向上しない。上記上限値を超えると、シリコーンゴムの機械特性が著しく低下するおそれがある。
 また、フロロシリコーンゴム組成物中における、前記遷移金属酸化物の含有率は、前記組成物の総量に対して0.005~1.0質量%であることが好ましく、より好ましくは0.01~1.0質量%であり、更に好ましくは0.01~0.5質量%である。該含有率が上記下限値以上であれば酸化チタンに含まれる遷移金属酸化物の効果が十分に得られ、上記上限値以下であれば、着色に対する影響が少ないため好ましい。
[(D)炭酸カルシウム]
 (D)成分は炭酸カルシウムであり、前記(C)成分と相俟ってシリコーンゴムの耐熱性を著しく向上させる。市販の炭酸カルシウムとしては、シルバーW、ハクエンカCCR(白石工業株式会社製)、ホワイトンSSB(備北粉化工業株式会社製)等があげられる。フロロシリコーンゴム組成物中の炭酸カルシウムの量は(A)成分100質量部に対して0.01~10質量部が好ましく、より好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。上記下限値未満では、シリコーンゴムの耐熱性が向上しない。また、上記上限値を超えると、シリコーンゴムの機械特性が著しく低下するおそれがある。炭酸カルシウムの粒径は特に制限されるものでなく、例えば平均粒径0.1~50μmであればよい。
 前記(C)成分と(D)成分との好ましい配合比は、質量比で1:100~100:1であり、より好ましくは1:50~50:1である。
[(E)硬化剤]
 (E)硬化剤は、本発明で用いるシリコーンゴム組成物を硬化させ得るものであれば特に限定されない。(E)成分は1種単独で使用してもよく、2種以上を併用してもよい。(E)成分としては、例えば、(E-1)有機過酸化物硬化剤、(E-2)付加反応型硬化剤、及び(E-1)成分と(E-2)成分との組み合わせが挙げられる。該(E)成分の量は、(A)オルガノポリシロキサン100質量部に対して0.1~50質量部であり、好ましくは0.1~40質量部、より好ましくは0.2~10質量部である。
(E-1)有機過酸化物硬化剤
 (E-1)有機過酸化物硬化剤としては、例えば、ベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、o-メチルベンゾイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,6-ヘキサンジオール-ビス-t-ブチルパーオキシカーボネート等が挙げられる。
 有機過酸化物硬化剤の量は、(A)成分100質量部に対して0.1~10質量部、特に0.2~5質量部が好ましい。配合量が少なすぎると硬化が不十分となる場合があり、多すぎると有機過酸化物の分解残渣によりシリコーンゴム硬化物が黄変する場合がある。
(E-2)付加反応硬化剤
 (E-2)付加反応硬化剤としては、オルガノハイドロジェンポリシロキサンとヒドロシリル化触媒とを組み合せて用いるのがよい。
 オルガノハイドロジェンポリシロキサンとしては、1分子中に2個以上、好ましくは3個以上、より好ましくは3~200個、更に好ましくは4~100個程度のケイ素原子に結合した水素原子(即ち、ヒドロシリル基)を含有すれば、その構造は、直鎖状、環状、分枝状、三次元網状構造のいずれであってもよく、該ヒドロシリル基は、分子鎖末端にあっても、分子鎖の途中にあっても、その両方にあってもよい。
 オルガノハイドロジェンポリシロキサンは、付加反応硬化型シリコーンゴム組成物の架橋剤として公知のオルガノハイドロジェンポリシロキサンであればよい。
例えば、下記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンを用いることができる。

  R SiO(4-p-q)/2   (2)
 上記平均組成式(2)において、Rは互いに独立に、置換又は非置換の、炭素原子数1~12、好ましくは炭素原子数1~8の1価炭化水素基であり、脂肪族不飽和結合を有しないものであることが好ましい。詳細には、メチル基、エチル基、プロピル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基等が挙げられる。なお、これらの基の水素原子の一部又は全部がハロゲン原子等で置換されていてもよく、例えば3,3,3-トリフロロプロピル基等が挙げられる。
 上記平均組成式(2)において、pは0<p<3、好ましくは0.5≦p≦2.2、より好ましくは1.0≦p≦2.0であり、qは0<q≦3、好ましくは0.002≦q≦1.1、より好ましくは0.005≦q≦1であり、p+qは0<p+q≦3、好ましくは1≦p+q≦3、より好ましくは1.002≦p+q≦2.7を満たす正数である。
 該オルガノハイドロジェンポリシロキサンは、25℃における粘度0.5~10,000mPa・s、特に1~300mPa・sを有することが好ましい。本発明において粘度はJIS K 7117-1:1999に記載の方法で、回転粘度計を用いて25℃で測定される。該オルガノハイドロジェンポリシロキサンは、好ましくは平均重合度1~1,000であり、特に3~150の範囲が好ましく、3~80の範囲が特に好ましい。該平均重合度は、上述した条件で測定したGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均分子量に基づく。
 オルガノハイドロジェンポリシロキサンとしては、例えば、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・ジフェニルシロキサン共重合体、両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン・メチルフェニルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などや、上記例示化合物において、メチル基の一部又は全部を他のアルキル基や、フェニル基等に置換したものなどが挙げられる。
 上記オルガノハイドロジェンポリシロキサンの配合量は、(A)成分100質量部に対して0.1~40質量部が好ましい。また、ケイ素原子に結合した水素原子(ヒドロシリル基)の個数比が、(A)成分のアルケニル基1個に対して0.5~10個となる範囲が適当であり、好ましくは0.7~5個となる範囲が適当である。上記下限値未満だと架橋が十分でなく、十分な機械的強度が得られない場合があり、また上記上限値を超えると硬化後の物理特性が低下し、特にシリコーンゴムの耐熱性が悪くなったり、圧縮永久歪が大きくなったりする場合がある。
 ヒドロシリル化触媒は(A)成分のアルケニル基とオルガノハイドロジェンポリシロキサンのケイ素原子結合水素原子(SiH基)とをヒドロシリル化付加反応させる触媒である。ヒドロシリル化触媒としては白金族金属系触媒が挙げられる。白金族金属の単体とその化合物があり、従来公知の、付加反応硬化型シリコーンゴム組成物の触媒であればよい。例えば、シリカ、アルミナ又はシリカゲルのような担体に吸着させた粒子状白金金属、塩化第二白金、塩化白金酸、塩化白金酸6水塩のアルコール溶液等の白金触媒、パラジウム触媒、ロジウム触媒等が挙げられるが、白金又は白金化合物(白金触媒)が好ましい。
 触媒の添加量は、上記付加反応を促進できればよい。通常、白金族金属量に換算して(A)成分のオルガノポリシロキサンに対して1質量ppm~1質量%の範囲で使用され、10~500質量ppmの範囲が好ましい。触媒の量が上記下限値未満では付加反応が十分促進されず、硬化が不十分となる恐れがある。上記上限値超では、反応性に対する影響も少なく、不経済となる場合がある。
 なお、(A)成分に、上記(E-1)成分と(E-2)成分とを、それぞれ上記配合量の範囲内で組み合せて配合した、付加反応硬化と有機過酸化物硬化とを併用した共加硫型のシリコーンゴム組成物とすることもできる。
[(F)充填材用分散剤]
 本発明のシリコーンゴム組成物は、前記(A)~(E)成分に加えて、充填材用分散剤、特には無機充填材又はシリカ用の分散剤を更に含んでもよい。好ましくはシリカ用分散剤である。当該分散剤を更に含むことで上述した補強性シリカを組成物中に良好に分散することができる。当該分散剤は、例えば、アルコキシ基又はシラノール基を有する低分子有機ケイ素化合物又はその加水分解物であればよい。より詳細には、各種アルコキシシラン、特にフェニル基含有アルコキシシラン及びその加水分解物、ジフェニルシランジオール、カーボンファンクショナルシラン、シラノール基含有低分子シロキサンを使用してもよい。中でも、ジフェニルシランジオールを用いると、シリコーンゴムの耐熱性がさらに向上するため好ましく、ジフェニルシランジオールをアルキルアルコキシシランまたはその加水分解物と併用することで、充填材の分散性がさらに向上するため、より好ましい。
 (F)成分の量は、上記(A)成分100質量部に対して0.1~50質量部が好ましく、特に1~20質量部が好ましい。両末端シラノール基封鎖オルガノポリシロキサンの使用量が少なすぎると、添加した効果が見られず、多すぎると組成物の可塑度が低くなりすぎ、ロールミル等の混練手段においてロール粘着が発生してロール作業性が悪化することがある。
-その他の成分-
 本発明で用いるシリコーンゴム組成物には、本発明の効果を損なわない範囲において、上記成分に加え、必要に応じて、その他の成分として、(B)成分以外の充填材(粉砕石英、珪藻土、等)、着色剤(顔料)、引き裂き強度向上剤、難燃性向上剤(白金化合物等)、受酸剤、熱伝導率向上剤(アルミナ、窒化硼素等)、離型剤、反応制御剤等の、熱硬化型シリコーンゴム組成物における公知の充填材及び添加剤を添加してもよい。その他の成分は1種単独で用いてもよく、2種以上を併用してもよい。また、配合量は、本発明の効果を損ねない範囲において適宜調整されればよい。
-組成物の製造方法-
 本発明のミラブル型シリコーンゴム組成物は、該組成物を構成する成分をニーダー、バンバリーミキサー、二本ロール等の公知の混練機で混合することにより得ることができる。該シリコーンゴム組成物として上記(A)~(E)成分を含有する組成物を用いる場合、(A)オルガノポリシロキサンと(B)補強性シリカと(C)遷移金属酸化物をドープした酸化チタンと(D)炭酸カルシウムとを混合した後、得られた混合物に(E)硬化剤を添加することが好ましい。上記(A)~(E)成分を含有する組成物が更にその他の成分を含む場合には、(A)成分と(B)成分と(C)成分と(D)成分とその他の成分とを混合して混合物を得た後、該混合物に(E)成分を添加することが好ましい。
-シリコーンゴム成形物-
 成形方法としては、目的とする成形品の形状及び大きさにあわせて公知の成形方法を選択すればよい。例えば、注入成形、圧縮成形、射出成形、カレンダー成形、押出成形などの方法が挙げられる。
-硬化物-
 硬化条件は、用いる成形方法における公知の条件でよく、一般的に60~450℃の温度で数秒~1日程度である。また、得られる硬化物の圧縮永久歪の低下、得られるシリコーンゴム中に残存している低分子シロキサン成分の低減、該シリコーンゴム中の有機過酸化物の分解物の除去等の目的で、200℃以上、好ましくは200~250℃のオーブン内等で1時間以上、好ましくは1~70時間程度、より好ましくは1~10時間のポストキュア(2次キュア)を行ってもよい。
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。 
 本実施例及び比較例において各評価は次のようにして行った。
[耐熱性]
 シリコーンゴム組成物を硬化して作製した試験用シートを用い、JIS K 6249:2003に準拠して、硬さ(デュロメーターA)、引張強さ(MPa)、切断時伸び(%)の初期値を測定した。該試験用シートを225℃の乾燥機に7日間、または260℃の乾燥機に3日間入れた後に、硬さ、引張強さ、切断時伸びを測定した。結果を表1及び2に示す。
[顔料着色性]
 下記実施例及び比較例で調製したシリコーンゴム組成物100質量部に対して、黄色顔料(商品名:KE-COLOR-Y-064、信越化学工業株式会社製)0.5質量部を二本ロールによって添加し、配合前後の組成物の色調を目視にて確認した。その結果を表1及び2に示す。
 実施例及び比較例において使用した(A)オルガノポリシロキサンは以下の通りである。尚、下記において各シロキサン単位のモル%は、シロキサン単位の合計個数に対する各シロキサン単位の個数の比率である。
オルガノポリシロキサン生ゴム(A1):3,3,3-トリフルオロプロピルメチルシロキサン単位99.825モル%、メチルビニルシロキサン単位0.125モル%、ジメチルビニルシロキシ単位0.05モル%からなり、平均重合度が4,000であるオルガノポリシロキサン生ゴム(1分子中のアルケニル基:7個、上記平均組成式(1)のn=2.0005に相当)
オルガノポリシロキサン生ゴム(A2):3,3,3-トリフルオロプロピルメチルシロキサン単位40モル%、ジメチルシロキサン単位59.825モル%、メチルビニルシロキサン単位0.125モル%、ジメチルビニルシロキシ単位0.05モル%からなり、平均重合度が4,000であるオルガノポリシロキサン生ゴム(1分子中のアルケニル基:7個、上記平均組成式(1)のn=2.0005に相当)
 実施例及び比較例において使用した(C)成分は、3質量%の酸化鉄(Fe)を含む、当該酸化鉄をドープされた酸化チタン(AEROXIDE TiO PF2、日本アエロジル株式会社製)である。
 また、比較例3では、酸化鉄で変性していない酸化チタン(AEROXIDE TiO P25、日本アエロジル株式会社製)を用いた。
 下記実施例及び比較例におけるシリコーンゴム組成物中の酸化鉄の含有率(質量%)を表1及び2に示す。
[実施例1]
 オルガノポリシロキサン生ゴム(A1)100質量部、BET法比表面積が200m/gのヒュームドシリカ(アエロジル200、日本アエロジル株式会社製)40質量部、ジフェニルシランジオール5質量部、両末端シラノール基を有し、平均重合度4であり、25℃における粘度が15mPa・sである3,3,3-トリフルオロプロピルメチルポリシロキサン1.0質量部を添加し、150℃で2時間、ニーダーにより混合下で加熱した後、ベースコンパウンド(1)を調製した。
 該ベースコンパウンド(1)に、オルガノポリシロキサン生ゴム100質量部に対して、(C)上記酸化鉄を含む酸化チタンを1.0質量部、(D)炭酸カルシウム(シルバーW、白石工業株式会社製)1.0質量部を、二本ロールで添加してコンパウンド(A)を調製した。
 該コンパウンド(A)に、オルガノポリシロキサン生ゴム100質量部に対して、(E)硬化剤として2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン0.6質量部を二本ロールにて添加し、均一に混合して生ゴム状のシリコーンゴム組成物を得た。
 該シリコーンゴム組成物を165℃、70kgf/cmの条件で10分間プレスキュアし、2mm厚の試験用シートを作製した。次いで該試験用シートを200℃のオーブンで4時間ポストキュアした。得られた硬化物について、上述した耐熱性試験を行った。
[実施例2]
 実施例1において(C)上記酸化鉄を含む酸化チタンの添加量を2.0質量部とした以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[実施例3]
 実施例1において、ジフェニルシランジオールを添加せず、両末端シラノール基を有し、平均重合度4、25℃における粘度が15mPa・sであるジメチルポリシロキサンを6.0質量部にした以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[実施例4]
 上記コンパウンド(A)に、オルガノポリシロキサン生ゴム100質量部に対して、硬化剤として側鎖にヒドロシリル基を有する、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(重合度8、ヒドロシリル基が0.014モル/g(1分子中に8個)、上記平均組成式(2)のp=1.4、q=0.8に相当)0.5質量部、反応制御剤としてエチニルシクロヘキサノール0.07質量部、白金触媒(Pt濃度1質量%)0.15質量部を二本ロールにて添加し、均一に混合して生ゴム状のシリコーンゴム組成物を製造した後、該組成物を150℃、70kgf/cmの条件で10分間プレスキュアし、2mm厚の試験用シートを作製した。次いで該試験用シートを200℃のオーブンで4時間ポストキュアした。得られた硬化物について、上述した耐熱性試験を行った。
[実施例5]
 実施例1においてオルガノポリシロキサン生ゴム(A1)をオルガノポリシロキサン生ゴム(A2)100質量部に変えた他は実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例1]
 実施例1において(D)炭酸カルシウムを添加しない以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例2]
 実施例1において(C)成分を添加しない以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例3]
 実施例1において(C)成分に替えて、酸化鉄で変性していない酸化チタン(AEROXIDE TiO2 P25、日本アエロジル株式会社製)を、オルガノポリシロキサン生ゴム100質量部に対して1.0質量部、及び、酸化鉄(べんがら SR-570、利根産業株式会社製)0.03質量部を添加した以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例4]
 実施例4において(C)成分及び(D)成分のいずれも添加しない以外は、実施例4を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例5]
 実施例1において(C)成分及び(D)成分のいずれも添加しない以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較例6]
 実施例1において(D)成分を添加せず、代わりに酸化セリウム(商品名酸化セリウムSN-2(ニッキ株式会社製品)を1質量部添加した以外は、実施例1を繰り返してシリコーンゴム組成物を調製し、硬化物を得た。得られた硬化物について、上述した耐熱性試験を行った。
[比較参考例1]
 実施例1においてオルガノポリシロキサン生ゴム(A1)を、両末端がジメチルビニルシロキシ基で封鎖され、平均重合度90を有する3,3,3-トリフルオロプロピルメチルポリシロキサンに替えた以外は、実施例1を繰り返してベースコンパウンド(2)を調製した。当該ベースコンパウンド(2)は液状であり、二本ロールで練ることはできなかった(表1に示されていない)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記表2に示す比較例1及び2の通り、(C)酸化鉄を含む酸化チタン及び(D)炭酸カルシウムのいずれか一方しか含まない組成から得られるフロロシリコーンゴムは、225℃及び260℃の長期耐熱性に劣る。また、酸化鉄を含む酸化チタン及び酸化セリウムを含むフロロシリコーンゴム組成物から得られるフロロシリコーンゴムも高温長期の耐熱性に劣る(比較例6)。また、比較例3に示す通り、酸化チタンと酸化鉄とを別々に添加した組成物から得られるシリコーンゴムは、長期耐熱性は良好であるが、酸化鉄を少量しか配合していないにも関わらずシリコーンゴムが赤色に着色し、顔料による着色が不可能であった。これに対し、上記表1に示す通り、本発明のフロロシリコーンゴム組成物から得られるシリコーンゴム(硬化物)は、高温度長期保存下においても耐熱性に優れ、良好な機械的特性を維持することができ、シリコーンゴムの硬度上昇等を抑制できる。さらに、本発明のフロロシリコーンゴム組成物は、白色であるため着色剤によって容易に所望の色を着色することができる。
 本発明のフロロシリコーンゴム組成物は耐熱性に優れたフロロシリコーンゴム(硬化物)を与えることができる。すなわち、本発明により得られるフロロシリコーンゴムは、200℃以上、特に250℃以上で優れた耐熱性を示す。また、該フロロシリコーンゴムの硬度上昇を抑制できる。さらに、本発明のフロロシリコーンゴム組成物は白色であるため、顔料などの着色剤によって容易に所望の色を着色することができる。
 

Claims (9)

  1.  (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個有し、及び、少なくとも1つのフルオロアルキル基を有するシロキサン単位をシロキサン単位の合計個数に対し40%以上の数で有し、且つ、平均重合度100以上を有するオルガノポリシロキサン
                            100質量部、
     (B)比表面積50m/g以上を有する補強性シリカ
                          5~100質量部、
     (C)遷移金属酸化物を0.01~5質量%含む、前記遷移金属酸化物で変性された酸化チタン   0.01~10質量部、
     (D)炭酸カルシウム   0.01~10質量部
     及び
     (E)硬化剤   0.1~50質量部
    を含有するミラブル型フロロシリコーンゴム組成物。
  2.  前記ミラブル型フロロシリコーンゴム組成物の総質量に対する前記遷移金属酸化物の量が、0.005~1.0質量%である、請求項1記載のミラブル型フロロシリコーンゴム組成物。
  3.  前記遷移金属酸化物が酸化鉄である、請求項1又は2記載のミラブル型フロロシリコーンゴム組成物。
  4.  さらに(F)充填材用分散剤を0.1~50質量部含有する、請求項1~3のいずれか1項に記載のミラブル型フロロシリコーンゴム組成物。
  5.  (A)成分が、平均重合度1,000~100,000を有する、直鎖状のオルガノポリシロキサンである、請求項1~4のいずれか1項記載のミラブル型フロロシリコーンゴム組成物。
  6.  前記(E)成分が有機過酸化物硬化剤であり、該(E)成分の量が0.1~10質量部である、請求項1~5のいずれか1項に記載のミラブル型フロロシリコーンゴム組成物。
  7.  前記(E)成分が付加反応型硬化剤であり、0.1~40質量部のオルガノハイドロジェンポリシロキサンと、触媒量の白金族金属触媒との組み合わせである、請求項1~5のいずれか1項に記載のミラブル型フロロシリコーンゴム組成物。
  8.  前記(F)成分がシリカ用分散剤である、請求項4記載のミラブル型フロロシリコーンゴム組成物。
  9.  請求項1~8のいずれか1項に記載のミラブル型フロロシリコーンゴム組成物の硬化物。
PCT/JP2022/006337 2021-02-18 2022-02-17 耐熱性ミラブル型フロロシリコーンゴム組成物 WO2022176939A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22756257.6A EP4296304A1 (en) 2021-02-18 2022-02-17 Heat-resistant millable fluorosilicone rubber composition
JP2023500916A JPWO2022176939A1 (ja) 2021-02-18 2022-02-17
US18/546,627 US20240132672A1 (en) 2021-02-18 2022-02-17 Millable fluorosilicone rubber composition having heat resistance
KR1020237027159A KR20230146019A (ko) 2021-02-18 2022-02-17 내열성 미러블형 플루오로실리콘 고무 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021023983 2021-02-18
JP2021-023983 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176939A1 true WO2022176939A1 (ja) 2022-08-25

Family

ID=82932273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006337 WO2022176939A1 (ja) 2021-02-18 2022-02-17 耐熱性ミラブル型フロロシリコーンゴム組成物

Country Status (5)

Country Link
US (1) US20240132672A1 (ja)
EP (1) EP4296304A1 (ja)
JP (1) JPWO2022176939A1 (ja)
KR (1) KR20230146019A (ja)
WO (1) WO2022176939A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149259A (ja) * 1989-11-06 1991-06-25 Toshiba Silicone Co Ltd 高強度室温硬化性ポリオルガノシロキサン組成物
JP2006021991A (ja) 2004-06-09 2006-01-26 Kansai Paint Co Ltd 金属ドープ酸化チタン微粒子の製造方法
WO2008154319A1 (en) 2007-06-08 2008-12-18 Dow Corning Corporation Fluorosilicone elastomers for high temperature performance
JP2010013484A (ja) 2004-12-23 2010-01-21 Evonik Degussa Gmbh 構造的に変性された二酸化チタン
WO2010140499A1 (ja) 2009-06-01 2010-12-09 財団法人川村理化学研究所 ルチル型酸化チタン結晶及びこれを用いる中間赤外線フィルター
JP2014031408A (ja) 2012-08-02 2014-02-20 Momentive Performance Materials Inc 熱硬化性シリコーンゴム組成物
JP2016518461A (ja) 2013-05-23 2016-06-23 東レ・ダウコーニング株式会社 耐熱性シリコーンゴム組成物
CN105754353A (zh) * 2016-03-28 2016-07-13 东莞市亚马电子有限公司 一种高导热硅胶皮及其制作工艺
WO2018079376A1 (ja) 2016-10-28 2018-05-03 信越化学工業株式会社 耐熱性ミラブル型シリコーンゴム組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03149259A (ja) * 1989-11-06 1991-06-25 Toshiba Silicone Co Ltd 高強度室温硬化性ポリオルガノシロキサン組成物
JP2006021991A (ja) 2004-06-09 2006-01-26 Kansai Paint Co Ltd 金属ドープ酸化チタン微粒子の製造方法
JP2010013484A (ja) 2004-12-23 2010-01-21 Evonik Degussa Gmbh 構造的に変性された二酸化チタン
WO2008154319A1 (en) 2007-06-08 2008-12-18 Dow Corning Corporation Fluorosilicone elastomers for high temperature performance
WO2010140499A1 (ja) 2009-06-01 2010-12-09 財団法人川村理化学研究所 ルチル型酸化チタン結晶及びこれを用いる中間赤外線フィルター
JP2014031408A (ja) 2012-08-02 2014-02-20 Momentive Performance Materials Inc 熱硬化性シリコーンゴム組成物
JP2016518461A (ja) 2013-05-23 2016-06-23 東レ・ダウコーニング株式会社 耐熱性シリコーンゴム組成物
CN105754353A (zh) * 2016-03-28 2016-07-13 东莞市亚马电子有限公司 一种高导热硅胶皮及其制作工艺
WO2018079376A1 (ja) 2016-10-28 2018-05-03 信越化学工業株式会社 耐熱性ミラブル型シリコーンゴム組成物

Also Published As

Publication number Publication date
KR20230146019A (ko) 2023-10-18
JPWO2022176939A1 (ja) 2022-08-25
US20240132672A1 (en) 2024-04-25
EP4296304A1 (en) 2023-12-27

Similar Documents

Publication Publication Date Title
JP6344333B2 (ja) 付加硬化性シリコーンゴム組成物
JP6658911B2 (ja) 耐熱性ミラブル型シリコーンゴム組成物
EP2554585B1 (en) Silicone Rubber Composition Having Excellent Heat Resistance
JP5510148B2 (ja) ミラブル型シリコーンゴム組成物の製造方法
JP5862512B2 (ja) シリコーンゴム硬化物の難燃性向上方法
JP6957960B2 (ja) 透明性を有するシリコーンゴム組成物及びその硬化物
JP5527309B2 (ja) ミラブル型シリコーンゴムコンパウンド及びシリコーンゴム組成物の製造方法
EP3473661B1 (en) Silicone composition, a cured silicone rubber product and a power cable
JP6830879B2 (ja) シリコーンゴム組成物及びシリコーンゴム
WO2022176939A1 (ja) 耐熱性ミラブル型フロロシリコーンゴム組成物
JP6107741B2 (ja) ミラブル型シリコーンゴムコンパウンド及びミラブル型シリコーンゴム組成物の製造方法
JP6024427B2 (ja) ミラブル型シリコーンゴムコンパウンド及びシリコーンゴム組成物の製造方法
JP2005325158A (ja) 付加硬化型シリコーンゴム組成物
WO2022234770A1 (ja) フロロシリコーンゴム組成物及び硬化成型物
JP2022077398A (ja) 耐熱性ミラブル型シリコーンゴム組成物
JP6245119B2 (ja) シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
JP7106969B2 (ja) シリコーンゴム組成物及びシリコーンゴム
JP2019026772A (ja) シリコーンゴム組成物
JP2022132904A (ja) 耐熱性ミラブル型シリコーンゴム組成物
JP2001342349A (ja) オイルブリード性シリコーンゴム組成物
WO2023218904A1 (ja) ミラブル型シリコーンゴム組成物及びその硬化物
JP2020122107A (ja) シリコーンゴム組成物
JP2022089761A (ja) 硬化性シリコーン組成物
JP2012236976A (ja) シリコーンゴム配合物及びシリコーンゴム組成物の製造方法
JP2023064167A (ja) ミラブル型シリコーンゴム組成物及びシリコーンゴム硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500916

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18546627

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022756257

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022756257

Country of ref document: EP

Effective date: 20230918