WO2022176737A1 - 電波反射板 - Google Patents

電波反射板 Download PDF

Info

Publication number
WO2022176737A1
WO2022176737A1 PCT/JP2022/005131 JP2022005131W WO2022176737A1 WO 2022176737 A1 WO2022176737 A1 WO 2022176737A1 JP 2022005131 W JP2022005131 W JP 2022005131W WO 2022176737 A1 WO2022176737 A1 WO 2022176737A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
wave reflector
liquid crystal
substrate
temperature
Prior art date
Application number
PCT/JP2022/005131
Other languages
English (en)
French (fr)
Inventor
真一郎 岡
光隆 沖田
大一 鈴木
盛右 新木
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to JP2023500775A priority Critical patent/JPWO2022176737A1/ja
Priority to KR1020237029570A priority patent/KR20230142552A/ko
Priority to CN202280015098.0A priority patent/CN116888824A/zh
Publication of WO2022176737A1 publication Critical patent/WO2022176737A1/ja
Priority to US18/451,122 priority patent/US20230400747A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0045Liquid crystals characterised by their physical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/009Thermal properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/02Arrangements for de-icing; Arrangements for drying-out ; Arrangements for cooling; Arrangements for preventing corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective

Definitions

  • Embodiments of the present invention relate to radio wave reflectors.
  • a phase shifter using liquid crystal is being developed as a phase shifter for use in a phased array antenna whose directivity can be electrically controlled.
  • a phased array antenna a plurality of antenna elements to which high-frequency signals are transmitted from corresponding phase shifters are arranged one-dimensionally (or two-dimensionally).
  • radio wave reflectors that can control the direction of radio wave reflection using liquid crystals are also being studied, similar to phased array antennas.
  • this reflector plate reflection control sections having reflective electrodes are arranged one-dimensionally (or two-dimensionally). Also in the reflector, it is necessary to adjust the dielectric constant of the liquid crystal so that the phase difference of the reflected radio waves is constant between the adjacent reflection control sections.
  • the radio wave reflector is also expected to be installed outdoors. However, the temperature of the liquid crystal changes due to the temperature change in the outdoors, and the dielectric constant may deviate from the desired value.
  • This embodiment provides a radio wave reflector whose permittivity changes within a certain range even if there is a change in the outside temperature.
  • a radio wave reflector includes a first substrate having a first base material and a plurality of patch electrodes arranged in a matrix at equal intervals along each of a first direction and a second direction; a second substrate having a second substrate and a common electrode facing the plurality of patch electrodes; a liquid crystal layer sandwiched between the first substrate and the second substrate; A heat exchanger provided in contact with the liquid crystal layer, a temperature sensor that detects the temperature of the liquid crystal layer, and a temperature control unit that controls the heat exchanger based on the temperature detected by the temperature sensor.
  • the light is incident on the incident surface of the first substrate, and the heat exchanger is provided on the opposite side of the incident surface.
  • FIG. 1 is a cross-sectional view showing the radio wave reflector of this embodiment.
  • 2 is a plan view showing the radio wave reflector shown in FIG. 1.
  • FIG. 3 is an enlarged plan view showing patch electrodes.
  • FIG. 4 is an enlarged sectional view showing part of the radio wave reflector.
  • FIG. 5 is a timing chart showing changes in the voltage applied to the patch electrode for each period in the method for driving the radio wave reflector of this embodiment.
  • FIG. 6 is a perspective view of the radio wave reflector of this embodiment.
  • FIG. 7 is a diagram for explaining the radio wave reflector of this embodiment.
  • FIG. 8 is a plan view showing another configuration example of the radio wave reflector in the embodiment.
  • FIG. 9 is a partially enlarged cross-sectional view of the radio wave reflector.
  • first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but they may intersect at an angle other than 90 degrees.
  • the direction toward the tip of the arrow in the third direction Z is defined as upward or upward, and the direction opposite to the direction toward the tip of the arrow in the third direction Z is defined as downward.
  • the second member when “the second member above the first member” and “the second member below the first member” are used, the second member may be in contact with the first member or separated from the first member. may be located In the latter case, a third member may be interposed between the first member and the second member. On the other hand, when “the second member above the first member” and “the second member below the first member” are used, the second member is in contact with the first member.
  • FIG. 1 is a cross-sectional view showing the radio wave reflector of this embodiment.
  • the radio wave reflector RE can reflect radio waves and functions as a relay device for radio waves.
  • the radio wave reflector RE includes a first substrate SUB1, a second substrate SUB2, and a liquid crystal layer LC.
  • the first substrate SUB1 has an electrically insulating base BA1, a plurality of patch electrodes PE, and an alignment film AL1.
  • the base material BA1 is formed in a flat plate shape and extends along an XY plane including a first direction X and a second direction Y which are orthogonal to each other.
  • the alignment film AL1 covers the plurality of patch electrodes PE.
  • the second substrate SUB2 is opposed to the first substrate SUB1 with a predetermined gap.
  • the second substrate SUB2 has an electrically insulating base material BA2, a common electrode CE, and an alignment film AL2.
  • the base material BA2 is formed in a flat plate shape and extends along the XY plane.
  • the common electrode CE faces the plurality of patch electrodes PE in a direction parallel to a third direction Z orthogonal to the first direction X and the second direction Y, respectively.
  • the alignment film AL2 covers the common electrode CE.
  • each of the alignment film AL1 and the alignment film AL2 is a horizontal alignment film.
  • the first substrate SUB1 and the second substrate SUB2 are joined by a sealing material SE arranged on their respective peripheral portions.
  • the liquid crystal layer LC is provided in a space surrounded by the first substrate SUB1, the second substrate SUB2, and the sealing material SE.
  • the liquid crystal layer LC is held between the first substrate SUB1 and the second substrate SUB2.
  • the liquid crystal layer LC faces the plurality of patch electrodes PE on the one hand and the common electrode CE on the other hand.
  • dl be the thickness (cell gap) of the liquid crystal layer LC.
  • the thickness dl is larger than the thickness of the liquid crystal layer of a normal liquid crystal display panel, and is about 20 ⁇ m to 70 ⁇ m. In this embodiment, the thickness dl is 50 ⁇ m. However, the thickness dl may be less than 50 ⁇ m as long as the reflection phase of radio waves can be changed with a sufficient width. Alternatively, the thickness dl may exceed 50 ⁇ m in order to increase the reflection angle of radio waves.
  • the liquid crystal material used for the liquid crystal layer LC of the radio wave reflector RE is different from the liquid crystal material used for ordinary liquid crystal display panels. The reflection phase of the radio wave mentioned above will be described later.
  • a common voltage is applied to the common electrode CE, and the potential of the common electrode CE is fixed.
  • the common voltage is the ground voltage, eg 0V.
  • a voltage is also applied to the patch electrode PE.
  • the patch electrodes PE are AC-driven.
  • the liquid crystal layer LC is driven by a so-called vertical electric field.
  • a voltage applied between the patch electrode PE and the common electrode CE acts on the liquid crystal layer LC, thereby changing the dielectric constant of the liquid crystal layer LC.
  • the dielectric constant of the liquid crystal layer LC changes, the propagation speed of radio waves in the liquid crystal layer LC also changes. Therefore, by adjusting the voltage applied to the liquid crystal layer LC, the reflection phase of radio waves can be adjusted. This makes it possible to adjust the reflection direction of radio waves.
  • the absolute value of the voltage applied to the liquid crystal layer LC is 10 V or less. This is because the dielectric constant of the liquid crystal layer LC is saturated at 10V. However, the absolute value of the voltage acting on the liquid crystal layer LC may exceed 10V. For example, when the response speed of the liquid crystal is required to be improved, a voltage of 10 V or less may be applied to the liquid crystal layer LC after a voltage exceeding 10 V is applied to the liquid crystal layer LC at the initial stage of driving the liquid crystal.
  • the first substrate SUB1 has an incident surface Sa on the side opposite to the side facing the second substrate SUB2.
  • an incident wave w1 is a radio wave incident on the radio wave reflector RE
  • a reflected wave w2 is a radio wave reflected by the radio wave reflector RE.
  • FIG. 2 is a plan view showing the radio wave reflector shown in FIG.
  • a plurality of patch electrodes PE are arranged in a matrix along the first direction X and the second direction Y at intervals.
  • the patch electrodes PE In the XY plane, the patch electrodes PE have the same shape and size.
  • the plurality of patch electrodes PE are arranged at equal intervals along the first direction X and arranged at equal intervals along the second direction Y.
  • a plurality of patch electrodes PE are included in a plurality of patch electrode groups GP extending along the second direction Y and arranged along the first direction X.
  • the multiple patch electrode groups GP include, for example, a first patch electrode group GP1 to an eighth patch electrode group GP8.
  • the first patch electrode group GP1 has a plurality of first patch electrodes PE1, the second patch electrode group GP2 has a plurality of second patch electrodes PE2, and the third patch electrode group GP3 has a plurality of third patch electrodes PE3.
  • the fourth patch electrode group GP4 has a plurality of fourth patch electrodes PE4, the fifth patch electrode group GP5 has a plurality of fifth patch electrodes PE5, and the sixth patch electrode group GP6 has a plurality of the It has six patch electrodes PE6, a seventh patch electrode group GP7 has a plurality of seventh patch electrodes PE7, and an eighth patch electrode group GP8 has a plurality of eighth patch electrodes PE8.
  • the second patch electrode PE2 is located between the first patch electrode PE1 and the third patch electrode PE3 in the direction along the first direction X.
  • Each patch electrode group GP includes a plurality of patch electrodes PE arranged along the second direction Y and electrically connected to each other.
  • the patch electrodes PE of each patch electrode group GP are electrically connected by connection lines CL.
  • the first substrate SUB1 extends along the second direction Y and has a plurality of connection wirings CL arranged along the first direction X. As shown in FIG.
  • the connection wiring CL extends to a region of the first substrate SUB1 not facing the second substrate SUB2.
  • the plurality of connection lines CL may be connected to the plurality of patch electrodes PE one-to-one.
  • the plurality of patch electrodes PE arranged along the second direction Y and the connection wiring CL are integrally formed of the same conductor.
  • the plurality of patch electrodes PE and the connection lines CL may be formed of conductors different from each other.
  • the patch electrodes PE, the connection lines CL, and the common electrode CE are made of metal or a conductor similar to metal.
  • the patch electrodes PE, the connection lines CL, and the common electrode CE may be made of a transparent conductive material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the connection wiring CL may be connected to an outer lead bonding (OLB) pad (not shown).
  • connection wiring CL is a thin wire, and the width of the connection wiring CL is sufficiently smaller than the length Px described later.
  • the width of the connection line CL is several micrometers to several tens of micrometers, and is on the order of micrometers. If the width of the connection line CL is too large, the patch electrode group GP behaves as one rectangular electrode surface, which is undesirable because the sensitivity to the frequency component of the desired radio wave changes.
  • the sealing material SE is arranged at the peripheral edge of the area where the first substrate SUB1 and the second substrate SUB2 face each other.
  • FIG. 2 shows an example in which eight patch electrodes PE are arranged in the direction along the first direction X and the direction along the second direction Y
  • the number of patch electrodes PE can be varied in various ways.
  • 100 patch electrodes PE may be arranged along the first direction X
  • a plurality of (for example, 100) patch electrodes PE may be arranged along the second direction Y.
  • the length of the radio wave reflector RE (first substrate SUB1) in the first direction X is, for example, 40 cm or more and 80 cm or less.
  • FIG. 3 is an enlarged plan view showing patch electrodes.
  • the patch electrode PE has a square shape.
  • the shape of the patch electrode PE is not particularly limited, a square or a perfect circle is desirable. Focusing on the external shape of the patch electrode PE, it is desirable to have a shape with a vertical and horizontal aspect ratio of 1:1. This is because a 90° rotationally symmetrical structure is desirable in order to deal with horizontally polarized waves and vertically polarized waves.
  • the patch electrode PE has a length Px along the first direction X and a length Py along the second direction Y. It is desirable to adjust the length Px and the length Py according to the frequency band of the incident wave w1. Next, a desirable relationship between the frequency band of the incident wave w1 and the lengths Px and Py will be illustrated.
  • FIG. 4 is an enlarged cross-sectional view showing part of the radio wave reflector.
  • the thickness dl (cell gap) of the liquid crystal layer LC is held by a plurality of spacers SS.
  • the spacer SS is a columnar spacer, formed on the second substrate SUB2, and protruding toward the first substrate SUB1.
  • the width of the spacer SS is 10 ⁇ m or more and 20 ⁇ m or less. While the length Px and length Py of the patch electrode PE are on the order of mm, the width of the spacer SS is on the order of ⁇ m. Therefore, it is necessary to have the spacer SS in the region facing the patch electrode PE. Further, the ratio of the region where the plurality of spacers SS are present in the region facing the patch electrode PE is about 1%. Therefore, even if the spacer SS is present in the above region, the effect of the spacer SS on the reflected wave w2 is slight. Note that the spacer SS may be formed on the first substrate SUB1 and protrude toward the second substrate SUB2. Alternatively, the spacers SS may be spherical spacers.
  • the radio wave reflector RE is equipped with a plurality of reflection control units RH.
  • Each reflection control part RH includes one patch electrode PE among the plurality of patch electrodes PE, a portion of the common electrode CE facing the one patch electrode PE, and one patch electrode PE of the liquid crystal layer LC. and a region facing the Each reflection control unit RH adjusts the phase of the radio wave (incident wave w1) incident from the incident surface Sa side according to the voltage applied to the patch electrode PE, reflects the radio wave toward the incident surface Sa side, and reflects the radio wave toward the incident surface Sa side. It functions as wave w2.
  • the reflected wave w2 is a composite wave of the radio wave reflected by the patch electrode PE and the radio wave reflected by the common electrode CE.
  • the patch electrodes PE are arranged at regular intervals.
  • dk be the length (pitch) between adjacent patch electrodes PE.
  • the length dk corresponds to the distance from the geometric center of one patch electrode PE to the geometric center of the adjacent patch electrode PE.
  • the reflected waves w2 have the same phase in the first reflection direction d1.
  • the first reflection direction d1 is a direction forming a first angle ⁇ 1 with the third direction Z.
  • the first reflection direction d1 is parallel to the XZ plane.
  • the phases of the radio waves be aligned on the linear two-dot chain line.
  • the phase of the reflected wave w2 at the point Q1b and the phase of the reflected wave w2 at the point Q2a should be aligned.
  • a physical linear distance from the point Q1a to the point Q1b of the first patch electrode PE1 is dk ⁇ sin ⁇ 1.
  • FIG. 5 is a timing chart showing changes in the voltage applied to the patch electrode for each period in the method for driving the radio wave reflector of this embodiment.
  • FIG. 5 shows the first period Pd1 to the fifth period Pd5 of the driving period of the radio wave reflector RE.
  • a voltage V is applied to the plurality of patch electrodes PE so that For example, a first voltage V1 is applied to the first patch electrode PE1, a second voltage V2 is applied to the second patch electrode PE2, and a third voltage V3 is applied to the third patch electrode PE3.
  • a second period Pd2 following the first period Pd1 voltages are applied to the plurality of patch electrodes PE so that the radio waves reflected by the plurality of reflection control portions RH are kept in phase in the first reflection direction d1.
  • the second voltage V2 is applied to the first patch electrode PE1
  • the third voltage V3 is applied to the second patch electrode
  • the fourth voltage V4 is applied to the third patch electrode PE3.
  • the same voltage is applied to the plurality of patch electrodes PE of each patch electrode group GP via the connection line CL.
  • each patch electrode PE is periodically inverted with respect to the potential of the common electrode CE.
  • the patch electrode PE is driven with a driving frequency of 60 Hz. Since the patch electrode PE is AC-driven, a fixed voltage is not applied to the liquid crystal layer LC for a long period of time. Since it is possible to suppress the occurrence of image sticking, it is possible to suppress deviation of the direction of the reflected wave w2 from the first reflection direction d1.
  • the absolute value of the voltage applied during the second period Pd2 is different from the absolute value of the voltage applied during the first period Pd1. Since the occurrence of burn-in can be sufficiently suppressed, the deviation of the direction of the reflected wave w2 from the first reflection direction d1 can be suppressed.
  • the radio waves reflected in the first reflection direction d1 by one reflection control part RH and the radio waves reflected in the first reflection direction d1 by the adjacent reflection control part RH and the phase amount .delta.1 are maintained.
  • the phase amount ⁇ 1 is 60°.
  • the sixth voltage V6 is applied to the sixth patch electrode PE6 during the first period Pd1. 300 between the radio wave reflected in the first reflection direction d1 by the first reflection control section RH1 and the radio wave reflected in the first reflection direction d1 by the sixth reflection control section having the sixth patch electrode PE6. It gives a phase difference of °.
  • a seventh voltage may be applied to the seventh patch electrode PE7 during the first period Pd1.
  • the first voltage V1 is applied to the seventh patch electrode PE7 during the first period Pd1.
  • a periodic voltage application pattern can drive a large number of patch electrodes PE while suppressing the types of voltages V.
  • the dielectric constant of the liquid crystal layer LC provided in the radio wave reflector RE depends on the temperature.
  • the dielectric constant of liquid crystals is temperature dependent even in a high frequency band, eg 28 GHz as mentioned above.
  • the absolute value of the dielectric constant is important for phase control of the radio wave reflector RE. A change in permittivity due to a change in temperature can cause an error in phase modulation.
  • the liquid crystal of this embodiment has dielectric anisotropy, and the dielectric constant of the liquid crystal below the phase transition temperature is the dielectric constant ⁇ in the direction perpendicular to the liquid crystal director and the dielectric constant ⁇ // in the direction parallel to the liquid crystal director. Above the phase transition temperature, liquid crystals are isotropic and have only a single dielectric constant. Near the phase transition temperature, the change in dielectric constant of the liquid crystal becomes steep. On the other hand, at temperatures away from the phase transition temperature, the dielectric constant of the liquid crystal changes slowly.
  • the absolute value ⁇ (
  • ) of the difference between the dielectric constants ⁇ and ⁇ // is important for phase control of the radio wave reflector RE. More preferably, ⁇ , ⁇ //, and ⁇ are constant in the phase control of the radio wave reflector RE.
  • the phase transition temperature will be exceeded and the liquid crystal will transition to an isotropic state due to an increase in outside air temperature. Also, even if the phase transition temperature is not exceeded, the change in permittivity becomes steep in the vicinity of the phase transition temperature, which may increase the phase modulation error. When the outside air temperature drops, the viscosity of the liquid crystal rises due to the drop in temperature of the liquid crystal, and there is a possibility that the quality of the radio wave reflector RE may deteriorate.
  • the dielectric anisotropy of liquid crystals has temperature dependence.
  • the radio wave reflector of this embodiment utilizes dielectric anisotropy, and is designed with the dielectric constants ⁇ and ⁇ // at optimum values.
  • the dielectric constant greatly deviates from the optimum value due to the ambient temperature, there is a possibility that the radio wave reflector of this embodiment cannot be driven optimally. Therefore, it is necessary to keep the radio wave reflector of this embodiment at an optimum temperature so as not to greatly deviate from the designed dielectric anisotropy.
  • the radio wave reflector is provided with a heat exchanger and a temperature sensor to prevent the temperature change of the radio wave reflector, thereby controlling the absolute value of the dielectric constant.
  • phase modulation errors in the radio wave reflector can be suppressed.
  • the radio wave reflector of this embodiment can be optimally driven based on the designed dielectric anisotropy.
  • FIG. 6 is a perspective view of the radio wave reflector of this embodiment.
  • the radio wave reflector REA shown in FIG. 6 includes the radio wave reflector RE described with reference to FIGS. 1 to 5, the heat exchanger PT, and the temperature sensor SR.
  • the heat exchanger PT is, for example, a Peltier element.
  • a Peltier element is an element whose one side surface can be controlled to be in a heat-generating state or a heat-absorbing state depending on the direction of direct current.
  • the radio wave reflector RE When the radio wave reflector RE becomes hot due to the outside air temperature, the radio wave reflector RE can be cooled by the Peltier element. Conversely, when the radio wave reflector RE becomes low temperature, the radio wave reflector RE can be heated by the Peltier element.
  • the heat exchanger PT is not limited to the Peltier element, and other heat exchangers may be used. As another heat exchanger, for example, a heat exchanger having a cooling function by air cooling or water cooling and a heating function may be used. Although not shown in FIG. 6, a radiator plate may be provided in contact with the heat exchanger PT.
  • the temperature sensor SR detects the temperature of the radio wave reflector RE, especially the liquid crystal layer LC.
  • the heat exchanger PT is controlled based on the detected temperature.
  • the temperature sensor SR is provided outside the radio wave reflector RE, but it may be incorporated in the radio wave reflector RE.
  • the temperature sensor SR is preferably provided at a position closer to the liquid crystal layer LC. When the temperature sensor SR is provided outside the radio wave reflector RE, it may be provided in contact with the first substrate SUB1 or the second substrate SUB2.
  • FIG. 7 is a diagram for explaining the radio wave reflector of this embodiment.
  • the radio wave reflector REA shown in FIG. 7 has a radio wave reflector RE, a temperature sensor SR, a heat exchanger PT, a temperature controller TC, a drive circuit DRV, and a controller CTL.
  • the radio wave reflector RE has the same configuration as above, but only some of the constituent elements are shown in FIG. 7 to make the drawing easier to see.
  • the temperature sensor SR and heat exchanger PT are the same as in FIG.
  • the temperature controller TC controls the heat exchanger PT based on the temperature of the radio wave reflector RE detected by the temperature sensor SR.
  • a drive circuit DRV drives the patch electrode PE and the common electrode CE.
  • the controller CTL controls the drive circuit DRV and the temperature controller CT based on an input from the outside.
  • the temperature of the liquid crystal layer LC rises and the temperature of the liquid crystal layer LC rises.
  • output a control signal to The heat exchanger PT cools the radio wave reflector RE based on the control signal.
  • the liquid crystal layer LC can be maintained at a temperature below the phase transition.
  • the dielectric constant of the liquid crystal layer LC is steep near the phase transition temperature, fine temperature control is desirable.
  • the dielectric constant of the liquid crystal layer LC is gentle, so finer temperature control than in the above case is not required.
  • the temperature of the heat exchanger PT is adjusted such that the temperature of the liquid crystal layer LC is ⁇ 30° C., preferably ⁇ 20° C. Control should be performed. Also, the temperature control of the heat exchanger PT may be performed so that the change in dielectric constant of the liquid crystal layer LC, ⁇ , is within ⁇ 20%, preferably within ⁇ 10%.
  • the temperature controller CT When the outside air temperature drops in the environment where the radio wave reflector REA is placed and the temperature of the liquid crystal layer LC drops, the temperature controller CT outputs a control signal to the heat exchanger PT.
  • the heat exchanger PT heats the radio wave reflector RE based on the control signal. As a result, the temperature of the liquid crystal layer LC can be raised, and an increase in the viscosity of the liquid crystal can be prevented.
  • the heat exchanger PT is provided on the surface of the radio wave reflector RE opposite to the incident surface Sa (also referred to as the reflecting surface) of the incident wave w1.
  • the heat exchanger PT is provided in contact with the base material BA2 of the second substrate SUB2.
  • the base materials BA1 and BA2 are also referred to as a first base material and a second base material, respectively.
  • the temperature sensor SR may be provided on the incident surface Sa, or may be provided on the surface opposite to the incident surface Sa. Specifically, the heat exchanger PT may be provided in contact with the base material BA1 of the first substrate SUB1.
  • FIG. 8 is a plan view showing another configuration example of the radio wave reflector in the embodiment.
  • the configuration example shown in FIG. 8 differs from the configuration example shown in FIG. 2 in that the patch electrodes are driven in an active matrix manner.
  • FIG. 8 is a plan view of the radio wave reflector RE according to this configuration example.
  • the first substrate SUB1 has a plurality of signal lines SL, a plurality of control lines GL, a plurality of switching elements SW, a drive circuit DR, and a plurality of lead lines LE instead of the connection lines CL. is doing.
  • the plurality of signal lines SL extend along the second direction Y and are arranged along the first direction X.
  • the plurality of control lines GL extends along the first direction X and is arranged along the second direction Y. As shown in FIG. A plurality of control lines GL are connected to the drive circuit DR.
  • the switching element SW is provided near the intersection of one signal line SL and one control line GL.
  • a plurality of lead wires LE are connected to the drive circuit DR.
  • the signal line SL and the lead line LE may be connected to outer lead bonding (OLB) pads, respectively.
  • FIG. 9 is a partially enlarged cross-sectional view of the radio wave reflector.
  • control lines GL are provided on the base material BA1 of the radio wave reflector RE.
  • the control line GL has a gate electrode GE.
  • An insulating layer GI is formed on the base material BA1 and the control lines GL.
  • a semiconductor layer SMC is provided on the insulating layer GI.
  • the semiconductor layer SMC overlaps the gate electrode GE and has a first region R1 and a second region R2. One of the first region R1 and the second region R2 is the source region and the other is the drain region.
  • the gate electrode GE, semiconductor layer SMC, etc. constitute a switching element SW as a thin film transistor (TFT).
  • the switching element SW may be a bottom-gate thin film transistor or a top-gate thin film transistor.
  • An insulating layer ILI1 is formed on the insulating layer GI and the semiconductor layer SMC.
  • a connection electrode RY and a signal line SL are provided on the insulating layer ILI1.
  • the signal line SL is connected to the first region R1 of the semiconductor layer SMC.
  • the connection electrode RY is connected to the second region R2 of the semiconductor layer SMC through a contact hole formed in the insulating layer ILI1.
  • An insulating layer ILI2 is formed on the insulating layer ILI1, the signal line SL, and the connection electrode RY.
  • a patch electrode PE is formed on the insulating layer ILI2.
  • the patch electrode PE is connected to the connection electrode RY through a contact hole formed in the insulating layer ILI2.
  • the alignment film AL1 is formed on the insulating layer ILI2 and the patch electrode PE.
  • a plurality of patch electrodes PE can be individually driven by active matrix driving. Therefore, a plurality of patch electrodes PE can be driven independently.
  • the direction of the reflected wave w2 reflected by the radio wave reflector RE can be parallel to the YZ plane. This configuration example has the same effect as the embodiment described above.

Abstract

本実施形態の目的は、外気温の変化があっても、誘電率変化が一定の範囲内となる電波反射板を提供することにある。 本実施形態の電波反射板は、第1基材と、第1方向及び第2方向それぞれに沿って、等間隔にマトリクス状に配置される複数のパッチ電極と、を有する第1基板と、第2基材と、前記複数のパッチ電極に対向する共通電極と、を有する第2基板と、前記第1基板及び前記第2基板との間に挟持される液晶層と、前記第2基板に接して設けられる熱交換器と、前記液晶層の温度を検知する温度センサと、前記温度センサが検知した温度に基づき、前記熱交換器を制御する温度制御部と、を備え、入射波は、第1基板の入射面に入射し、前記熱交換器は、前記入射面の反対側の面に設けられる。

Description

電波反射板
 本発明の実施形態は、電波反射板に関する。
 電気的に指向性を制御できるフェーズドアレイアンテナに使用する移相器として、液晶を利用した移相器の開発が行われている。フェーズドアレイアンテナでは、対応する移相器から高周波信号が伝送される複数のアンテナ素子は、1次元(又は2次元)に並べられている。上記のようなフェーズドアレイアンテナにおいて、隣り合うアンテナ素子に入力する高周波信号の位相差が一定となるよう、液晶の誘電率を調整する必要がある。
 また、フェーズドアレイアンテナと同様に液晶を利用して電波の反射方向を制御できる電波反射板の検討も行われている。この反射板において、反射電極を有する反射制御部が1次元(又は2次元)に並べられている。反射板においても、反射される電波の位相差が隣り合う反射制御部間で一定となるよう、液晶の誘電率を調整する必要がある。
 電波反射板は屋外への設置も想定されている。しかし屋外での温度変化により液晶の温度が変化し、誘電率が所望の値から外れる恐れがある。
特開平11-103201号公報 特表2019-530387号公報
 本実施形態は、外気温の変化があっても、誘電率変化が一定の範囲内となる電波反射板を提供する。
 一実施形態に係る電波反射板は、第1基材と、第1方向及び第2方向それぞれに沿って、等間隔にマトリクス状に配置される複数のパッチ電極と、を有する第1基板と、第2基材と、前記複数のパッチ電極に対向する共通電極と、を有する第2基板と、前記第1基板及び前記第2基板との間に挟持される液晶層と、前記第2基板に接して設けられる熱交換器と、前記液晶層の温度を検知する温度センサと、前記温度センサが検知した温度に基づき、前記熱交換器を制御する温度制御部と、を備え、入射波は、第1基板の入射面に入射し、前記熱交換器は、前記入射面の反対側の面に設けられる。
 本実施形態により、外気温の変化があっても、誘電率変化が一定の範囲内となる電波反射板を提供することができる。
図1は、本実施形態の電波反射板を示す断面図である。 図2は、図1に示した電波反射板を示す平面図である。 図3は、パッチ電極を示す拡大平面図である。 図4は、電波反射板の一部を示す拡大断面図である。 図5は、本実施形態の電波反射板の駆動方法において、期間毎にパッチ電極に印加する電圧の変化を示すタイミングチャートである。 図6は、本実施形態の電波反射板の斜視図である。 図7は、本実施形態の電波反射板を説明する図である。 図8は、実施形態における電波反射板の他の構成例を示す平面図である。 図9は、電波反射板の部分拡大断面図である。
 以下に、本発明の各実施の形態について、図面を参照しつつ説明する。なお、開示はあくまで一例にすぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
 以下、図面を参照しながら一実施形態に係る電波反射板について詳細に説明する。
 本実施形態においては、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。第3方向Zの矢印の先端に向かう方向を上又は上方と定義し、第3方向Zの矢印の先端に向かう方向とは反対側の方向を下又は下方と定義する。
 また、「第1部材の上方の第2部材」及び「第1部材の下方の第2部材」とした場合、第2部材は、第1部材に接していてもよく、又は第1部材から離れて位置していてもよい。後者の場合、第1部材と第2部材との間に、第3の部材が介在していてもよい。一方、「第1部材の上の第2部材」及び「第1部材の下の第2部材」とした場合、第2部材は第1部材に接している。
 また、第3方向Zの矢印の先端側に電波反射板を観察する観察位置があるものとし、この観察位置から、第1方向X及び第2方向Yで規定されるX-Y平面に向かって見ることを平面視という。第1方向X及び第3方向Zによって規定されるX-Z平面、あるいは第2方向Y及び第3方向Zによって規定されるY-Z平面における電波反射板の断面を見ることを断面視という。
 図1は、本実施形態の電波反射板を示す断面図である。電波反射板REは、電波を反射させることができ、電波のための中継装置として機能している。
 図1に示すように、電波反射板REは、第1基板SUB1と、第2基板SUB2と、液晶層LCと、を備えている。第1基板SUB1は、電気絶縁性の基材BA1と、複数のパッチ電極PEと、配向膜AL1と、有している。基材BA1は、平板状に形成され、互いに直交する第1方向X及び第2方向Yを含むX-Y平面に沿って延在している。配向膜AL1は、複数のパッチ電極PEを覆っている。
 第2基板SUB2は、第1基板SUB1に所定の隙間を空けて対向配置されている。第2基板SUB2は、電気絶縁性の基材BA2と、共通電極CEと、配向膜AL2と、を有している。基材BA2は、平板状に形成され、X-Y平面に沿って延在している。共通電極CEは、第1方向X及び第2方向Yのそれぞれに直交する第3方向Zに平行な方向にて複数のパッチ電極PEと対向している。配向膜AL2は、共通電極CEを覆っている。本実施形態において、配向膜AL1及び配向膜AL2は、それぞれ水平配向膜である。
 第1基板SUB1及び第2基板SUB2は、それぞれの周縁部に配置されたシール材SEにより接合されている。液晶層LCは、第1基板SUB1、第2基板SUB2、及びシール材SEで囲まれた空間に設けられている。液晶層LCは、第1基板SUB1と第2基板SUB2との間に保持されている。液晶層LCは、一方で複数のパッチ電極PEと対向し、他方で共通電極CEと対向している。
 ここで、液晶層LCの厚み(セルギャップ)をdlとする。厚みdlは、通常の液晶表示パネルの液晶層の厚みより大きく、20μm乃至70μm程度である。本実施形態において、厚みdlは50μmである。但し、電波の反射位相を十分な幅をもって変化できるのであれば、厚みdlは、50μm未満であってもよい。又は、電波の反射角を大きくするため、厚みdlは、50μmを超えてもよい。電波反射板REの液晶層LCに使用する液晶材料は、通常の液晶表示パネルに使用する液晶材料と異なっている。なお、上述した電波の反射位相に関しては後述する。
 共通電極CEにはコモン電圧が印加され、共通電極CEの電位は固定される。本実施形態において、コモン電圧は接地電圧、例えば0Vである。パッチ電極PEにも電圧が印加される。本実施形態において、パッチ電極PEは、交流駆動される。液晶層LCは、いわゆる縦電界により駆動される。パッチ電極PEと共通電極CEとの間に印加される電圧が液晶層LCに作用することで、液晶層LCの誘電率は変化する。
 液晶層LCの誘電率が変わると、液晶層LCにおける電波の伝搬速度も変わる。そのため、液晶層LCに作用させる電圧を調整することで、電波の反射位相を調整することができる。これにより、電波の反射方向を調整することができる。
 本実施形態において、液晶層LCに作用させる電圧の絶対値は、10V以下である。10Vで液晶層LCの誘電率が飽和状態となるためである。ただし、液晶層LCに作用させる電圧の絶対値は、10Vを超えてもよい。例えば、液晶の応答速度の向上が求められる場合、液晶駆動の初期に10Vを超える電圧を液晶層LCに作用させた後、10V以下の電圧を液晶層LCに作用させてもよい。
 第1基板SUB1は、第2基板SUB2と対向する側とは反対側に入射面Saを有している。なお、図1中、入射波w1は電波反射板REに入射される電波であり、反射波w2は電波反射板REで反射された電波である。
 図2は、図1に示した電波反射板を示す平面図である。図2に示す電波反射板REでは、複数のパッチ電極PEが、第1方向X及び第2方向Yのそれぞれに沿って間隔を置いてマトリクス状に配置されている。X-Y平面において、複数のパッチ電極PEは、同一形状及び同一サイズを有している。
 複数のパッチ電極PEは、第1方向Xに沿って等間隔に並べられ、第2方向Yに沿って等間隔に並べられている。複数のパッチ電極PEは、第2方向Yに沿って延在し第1方向Xに沿って並べられた複数のパッチ電極群GPに含まれている。図2では、複数のパッチ電極群GPは、例えば、第1パッチ電極群GP1から第8パッチ電極群GP8までを有している。
 第1パッチ電極群GP1は複数の第1パッチ電極PE1を有し、第2パッチ電極群GP2は複数の第2パッチ電極PE2を有し、第3パッチ電極群GP3は複数の第3パッチ電極PE3を有し、第4パッチ電極群GP4は複数の第4パッチ電極PE4を有し、第5パッチ電極群GP5は複数の第5パッチ電極PE5を有し、第6パッチ電極群GP6は複数の第6パッチ電極PE6を有し、第7パッチ電極群GP7は複数の第7パッチ電極PE7を有し、第8パッチ電極群GP8は複数の第8パッチ電極PE8を有している。例えば、第2パッチ電極PE2は、第1方向Xに沿った方向において、第1パッチ電極PE1と第3パッチ電極PE3との間に位置している。
 各々のパッチ電極群GPは、第2方向Yに沿って並べられ互いに電気的に接続された複数のパッチ電極PEを含んでいる。本実施形態において、各々のパッチ電極群GPの複数のパッチ電極PEは、接続配線CLにより電気的に接続されている。なお、第1基板SUB1は、第2方向Yに沿って延在し、第1方向Xに沿って並べられた複数の接続配線CLを有している。接続配線CLは、第1基板SUB1のうち第2基板SUB2と対向していない領域まで延在している。なお、本実施形態と異なり、複数の接続配線CLは、複数のパッチ電極PEと一対一で接続されてもよい。
 本実施形態において、第2方向Yに沿って並んだ複数のパッチ電極PEと、接続配線CLとは、同一の導体で一体に形成されている。なお、複数のパッチ電極PEと、接続配線CLとは、互いに異なる導体で形成されてもよい。パッチ電極PE、接続配線CL、及び上記共通電極CEは、金属、又は金属に準ずる導体で形成されている。例えば、パッチ電極PE、接続配線CL、及び上記共通電極CEは、インジウム錫酸化物(Indium Tin Oxide:ITO)等の透明な導電材料で形成されてもよい。接続配線CLは、図示しないアウターリードボンディング(OLB)のパッドに接続されてもよい。
 接続配線CLは細線であり、接続配線CLの幅は後述する長さPxと比べて十分に小さい。接続配線CLの幅は、数μm乃至数十μmであり、μmオーダーである。なお、接続配線CLの幅が大きすぎると、パッチ電極軍GPが一つの長方形の電極面として振る舞い、所望の電波の周波数成分に対する感度が変わってしまうため望ましくない。
 シール材SEは、第1基板SUB1と第2基板SUB2とが対向する領域の周縁部に配置されている。
 図2には、第1方向Xに沿った方向及び第2方向Yに沿った方向にそれぞれ8個のパッチ電極PEが並べられた例を示したが、本実施形態はこれに限定されない。パッチ電極PEの個数は、種々変形可能である。例示すると、パッチ電極PEは、第1方向Xに沿った方向に100個並べられ、第2方向Yに沿った方向に複数個(例えば100個)配置されていてもよい。電波反射板RE(第1基板SUB1)の第1方向Xに沿った方向の長さは、例えば40cm以上80cm以下である。
 図3は、パッチ電極を示す拡大平面図である。図3に示すように、パッチ電極PEは、正方形の形状を有している。パッチ電極PEの形状は得に限定されるものではないが、正方形や真円が望ましい。パッチ電極PEの外形に注目すると、縦横のアスペクト比が1:1となる形状が望ましい。横偏波及び縦偏波に対応するためには90°の回転対称構造が望ましいためである。
 パッチ電極PEは、第1方向Xに沿った方向に長さPxを有し、第2方向Yに沿った方向に長さPyを有している。長さPx及び長さPyは、入射波w1の周波数帯に応じて調整した方が望ましい。次に、上記入射波w1の周波数帯と、長さPx及び長さPyと、の望ましい関係を例示する。
 2.4GHz: Px=Py=35mm 
 5.0GHz: Px=Py=16.8mm 
 28GHz: Px=Py=3.0mm
 図4は、電波反射板の一部を示す拡大断面図である。図4に示すように、液晶層LCの厚みdl(セルギャップ)は、複数のスペーサSSにより保持されている。本実施形態において、スペーサSSは、柱状スペーサであり、第2基板SUB2に形成され、第1基板SUB1側に突出している。
 スペーサSSの幅は10μm以上20μm以下である。パッチ電極PEの長さPx及び長さPyがmmオーダーであるのに対し、スペーサSSの幅はμmオーダーである。そのため、パッチ電極PEと対向する領域にスペーサSSを存在させる必要がある。また、パッチ電極PEと対向する領域のうち、複数のスペーサSSが存在する領域の割合は1%程度である。そのため、上記領域にスペーサSSが存在しても、スペーサSSが反射波w2に及ぼす影響は僅かである。なお、スペーサSSは、第1基板SUB1に形成され、第2基板SUB2側に突出してもよい。又は、スペーサSSは球状スペーサであってもよい。
 電波反射板REは、複数の反射制御部RHを備えている。各々の反射制御部RHは、複数のパッチ電極PEのうち1つのパッチ電極PEと、共通電極CEのうち上記1つのパッチ電極PEと対向した部分と、液晶層LCのうち上記1つのパッチ電極PEと対向した領域と、を有している。各々の反射制御部RHは、パッチ電極PEに印加される電圧に応じて入射面Sa側から入射される電波(入射波w1)の位相を調整し、電波を入射面Sa側に反射させ、反射波w2とするように機能する。各々の反射制御部RHにおいて、反射波w2は、パッチ電極PEで反射した電波と共通電極CEで反射した電波との合成波である。
 第1方向Xに沿った方向において、パッチ電極PEは等間隔に並べられている。隣り合うパッチ電極PE間の長さ(ピッチ)をdkとする。長さdkは、1つのパッチ電極PEの幾何学中心から、隣のパッチ電極PEの幾何学中心までの距離に相当している。本実施形態において、反射波w2を第1反射方向d1において同位相とするものとして説明する。図4のX-Z平面において、第1反射方向d1は、第3方向Zとの間に第1角度θ1を成す方向である。第1反射方向d1は、X-Z平面に平行である。図4中θ1aはθ1と等しい(θ1=θ1a)。
 複数の反射制御部RHで反射される電波が第1反射方向d1で位相を揃えるには、直線状の二点鎖線上で電波の位相が揃っていればよいことになる。例えば、点Q1bでの反射波w2の位相と、点Q2aでの反射波w2の位相とが、揃っていればよい。第1パッチ電極PE1の点Q1aから点Q1bまでの物理的な直線距離はdk×sinθ1である。そのため、第1反射制御部RH1と第2反射制御部RH2とに注目すると、第2反射制御部RH2からの反射波w2の位相を第1反射制御部RH1からの反射波w2の位相より、位相量δ1だけ遅らせればよい。ここで、位相量δ1は次の式で表される。
 δ1=dk×sinθ1×2π/λ
 図5は、本実施形態の電波反射板の駆動方法において、期間毎にパッチ電極に印加する電圧の変化を示すタイミングチャートである。図5では、電波反射板REの駆動期間のうち、第1期間Pd1から第5期間Pd5までを示している。
 図4及び図5に示すように、電波反射板REの駆動が開始されると、第1期間Pd1に、複数の反射制御部RHにて反射される電波が第1反射方向d1において同位相となるように、複数のパッチ電極PEに電圧Vが印加される。例えば、第1パッチ電極PE1に第1電圧V1が印加され、第2パッチ電極PE2に第2電圧V2が印加され、第3パッチ電極PE3に第3電圧V3が印加される。
 第1期間Pd1に続く第2期間Pd2に、複数の反射制御部RHにて反射される電波が第1反射方向d1において同位相に保持されるように、複数のパッチ電極PEに電圧が印加される。例えば、第1パッチ電極PE1に第2電圧V2が印加され、第2パッチ電極に第3電圧V3が印加され、第3パッチ電極PE3に第4電圧V4が印加される。
 それぞれの期間Pdに、各々のパッチ電極群GPの複数のパッチ電極PEに接続配線CLを介して同一の電圧が印加される。
 第1期間Pd1及び第2期間Pd2のそれぞれにおいて、共通電極CEの電位を基準とすると、各々のパッチ電極PEに印加される電圧の極性は、定期的に反転される。例えば、パッチ電極PEは60Hzの駆動周波数で駆動される。パッチ電極PEは交流駆動されるため、長期間、液晶層LCに固定電圧が印加されることはない。焼き付きの発生を抑制できるため、第1反射方向d1に対する反射波w2の方向のずれを抑制することができる。
 さらに、本実施形態において、各々のパッチ電極PEにおいて、第2期間Pd2に印加される電圧の絶対値は、第1期間Pd1に印加される電圧の絶対値と異なる。焼き付きの発生を十分に抑制できるため、第1反射方向d1に対する反射波w2の方向のずれを抑制することができる。
 期間Pdが別の期間Pdに変わっても、1つの反射制御部RHにて第1反射方向d1に反射される電波と、隣の反射制御部RHにて第1反射方向d1に反射される電波との位相量δ1は維持されている。本実施形態において、位相量δ1は60°である。
 図5に示す例では、第6パッチ電極PE6には、第1期間Pd1に第6電圧V6が印加される。第1反射制御部RH1にて第1反射方向d1に反射される電波と、第6パッチ電極PE6を有する第6反射制御部にて第1反射方向d1に反射される電波と、の間に300°の位相差を与えている。
 第1反射制御部RH1にて第1反射方向d1に反射される電波と、第7パッチ電極PE7を有する第7反射制御部にて第1反射方向d1に反射される電波と、の間に360°の位相差を与えるため、第1期間Pd1に、第7パッチ電極PE7には第7電圧を印加してもよい。しかし本実施形態において、第1期間Pd1に、第7パッチ電極PE7には第1電圧V1が印加される。周期的な電圧印加パターンにより、電圧Vの種類を抑えつつ、多数のパッチ電極PEを駆動することができる。
 ここで上述した電波反射板REを屋外へ設置した場合を考える。電波反射板REに備えられた液晶層LCの誘電率は温度に依存する。液晶の誘電率は、高周波数帯、例えば上述の28GHzでも温度に依存する。電波反射板REの位相制御にとって誘電率の絶対値が重要である。温度変化による誘電率変化により、位相変調の誤差が生じる恐れがある。
 本実施形態の液晶は、誘電異方性を有し、相転移温度以下における液晶の誘電率は、液晶ダイレクタに垂直な方向の誘電率ε⊥及び平行な方向の誘電率ε//となる。相転移温度以上では、液晶は等方性を示し、単一の誘電率のみを有する。相転移温度付近では、液晶の誘電率の変化は急峻となる。一方、相転移温度から離れた温度の場合は、液晶の誘電率の変化は緩やかである。
 上述のように、電波反射板REの位相制御には、誘電率ε⊥及びε//の差の絶対値ε(=|ε//-ε⊥|)が重要である。電波反射板REの位相制御において、ε⊥、ε//、及び、Δεは一定であることがより好ましい。
 電波反射板REが野外に設置された場合では、外気温の上昇により、相転移温度を超え、液晶が等方性へと転移する恐れが生じる。また相転移温度を超えなくても、相転移温度付近で誘電率の変化が急峻となり、位相変調の誤差が増大する恐れがある。
 外気温が下降した場合には、液晶の温度が下がることにより液晶の粘性が上昇し、電波反射板REの品質が低下する恐れも生じる。
 上述のように、液晶には誘電率異方性に温度依存がある。本実施形態の電波反射板は、誘電率異方性を利用するものであり、誘電率ε⊥及びε//を最適値で設計している。しかしながら、外気温により当該誘電率が最適値から大きく外れると、本実施形態の電波反射板の最適な駆動ができない恐れが生じる。そこで、設計したときの誘電率異方性から大きく外れないように、本実施形態の電波反射板を最適な温度に保持する必要がある。
 そこで本実施形態では、電波反射板に熱交換器及び温度センサを設け、電波反射板の温度変化を防ぐことにより、誘電率の絶対値を制御する。これにより、電波反射板での位相変調の誤差を抑制することができる。本実施形態の電波反射板では、設計したときの誘電率異方性に基づいて、最適な駆動を行うことが可能である。
 図6は、本実施形態の電波反射板の斜視図である。図6に示す電波反射板REAは、図1から図5までで説明した電波反射板REと、熱交換器PTと、温度センサSRと、を備えている。熱交換器PTは、例えばペルチェ素子である。ペルチェ素子は、流す直流電流の方向によって一方側の面を発熱状態ないし吸熱状態に制御できる素子である。
 外気温により、電波反射板REが高温になる場合は、ペルチェ素子より、電波反射板REを冷却することができる。逆に、電波反射板REが低温になる場合では、ペルチェ素子より、電波反射板REを加熱することができる。ただし熱交換器PTは、ペルチェ素子に限定されず、他の熱交換器を用いてもよい。他の熱交換器として、例えば空冷や水冷による冷却機能、及び加熱機能を有する熱交換器であってもよい。
 図6に表示はしないが、熱交換器PTに接して、放熱板を設けてもよい。
 温度センサSRは、電波反射板RE、特に液晶層LCの温度を検知する。検知した温度に基づいて、熱交換器PTが制御される。図6に示す電波反射板REAでは、温度センサSRは、電波反射板REの外部に設けているが、電波反射板REに内蔵してもよい。温度センサSRは、液晶層LCにより近い位置に設けられることが好ましい。温度センサSRが電波反射板REの外部に設けられている場合は、第1基板SUB1又は第2基板SUB2に接して設けられていればよい。
 図7は、本実施形態の電波反射板を説明する図である。図7に示す電波反射板REAは、電波反射板REと、温度センサSRと、熱交換器PTと、温度制御部TCと、駆動回路DRVと、制御部CTLとを有している。電波反射板REについては、上記と同様の構成であるが、図面を見易くするために、図7では一部のみの構成要素を示している。温度センサSR及び熱交換器PTについては、図6と同様である。
 温度制御部TCは、温度センサSRが検知した電波反射板REの温度に基づき、熱交換器PTを制御する。
 駆動回路DRVは、パッチ電極PE及び共通電極CEを駆動する。
 制御部CTLは、外部からの入力に基づき、駆動回路DRV及び温度制御部CTを制御する。
 電波反射板REAが置かれた環境で外気温が上昇し、液晶層LCの温度が上昇し、特に相転移温度付近であると温度センサSRが検知すると、温度制御部CTは、熱交換器PTに制御信号を出力する。熱交換器PTは、制御信号に基づいて、電波反射板REを冷却する。電波反射板REが冷却されることで、液晶層LCを相転移以下の温度に維持できる。
 相転移温度付近では、液晶層LCの誘電率は急峻なので、細かい温度制御が望ましい。液晶層LCの温度が相転移温度付近から離れている場合は、液晶層LCの誘電率は緩やかなので、上述の場合よりは細かい温度制御が必要ではない。
 液晶層LCの温度が相転移温度付近から離れている場合(例えば50℃以上)は、例えば、液晶層LCが±30℃、好ましくは±20℃程度となるように、熱交換器PTの温度制御を行えばよい。
 また熱交換器PTの温度制御は、液晶層LCの誘電率の変化であるΔεが±20%以内、好ましくは±10%以内となるように行えばよい。
 電波反射板REAが置かれた環境で外気温が下降し、液晶層LCの温度が下降すると、温度制御部CTは、熱交換器PTに制御信号を出力する。熱交換器PTは、制御信号に基づいて、電波反射板REを加熱する。これにより、液晶層LCの温度を上げ、液晶の粘性が高まるのを防ぐことができる。
 図6及び図7において、熱交換器PTは、電波反射板REの面のうち、入射波w1の入射面Sa(反射面ともいう)と反対側の面に設けられている。これにより、電波反射板REへの入射波w1の入射及び反射波w2の反射を阻害しない。
 具体的には、熱交換器PTは、第2基板SUB2の基材BA2に接して設けられている。なお本実施形態においては、基材BA1及びBA2を、それぞれ第1基材及び第2基材ともいう。
 温度センサSRは、入射面Saに設けられていてもよいし、入射面Saの反対側の面に設けられていてもよい。具体的には、熱交換器PTは、第1基板SUB1の基材BA1に接して設けられていてもよい。
 本実施形態により、外気温の変化があっても、誘電率変化が一定の範囲内となる電波反射板を得ることが可能である。
 <構成例1> 
 図8は、実施形態における電波反射板の他の構成例を示す平面図である。図8に示した構成例では、図2に示した構成例と比較して、パッチ電極をアクティブマトリクス駆動するという点で異なっている。
 図8は、本構成例に係る電波反射板REの平面図である。
 図8に示すように、第1基板SUB1は、接続配線CLに代えて、複数の信号線SL、複数の制御線GL、複数のスイッチング素子SW、駆動回路DR、及び複数のリード線LEを有している。
 複数の信号線SLは、第2方向Yに沿って延在し、第1方向Xに沿った方向に配置されている。複数の制御線GLは、第1方向Xに沿って延在し第2方向Yに沿った方向に配置されている。複数の制御線GLは、駆動回路DRに接続されている。スイッチング素子SWは、1つの信号線SLと1つの制御線GLとの交差部近傍に設けられている。複数のリード線LEは、駆動回路DRに接続されている。信号線SL及びリード線LEは、それぞれアウターリードボンディング(OLB)のパッドに接続されてもよい。
 図9は、電波反射板の部分拡大断面図である。図9に示すように、電波反射板REの基材BA1の上に制御線GLが設けられている。制御線GLはゲート電極GEを有している。基材BA1及び制御線GLの上に、絶縁層GIが形成されている。絶縁層GI上に半導体層SMCが設けられている。半導体層SMCは、ゲート電極GEに重畳し、第1領域R1と、第2領域R2と、を有している。第1領域R1及び第2領域R2において、一方がソース領域であり、他方がドレイン領域である。
 ゲート電極GE、半導体層SMC等は、薄膜トランジスタ(TFT)としてのスイッチング素子SWを構成している。スイッチング素子SWは、ボトムゲート型薄膜トランジスタであってもよく、トップゲート型薄膜トランジスタであってもよい。
 絶縁層GI及び半導体層SMCの上に、絶縁層ILI1が形成されている。絶縁層ILI1の上に、接続電極RY及び信号線SLが設けられている。図示しないが、信号線SLは半導体層SMCの第1領域R1に接続されている。接続電極RYは、絶縁層ILI1に形成されたコンタクトホールを通り半導体層SMCの第2領域R2に接続されている。
 絶縁層ILI1、信号線SL、及び接続電極RYの上に、絶縁層ILI2が形成されている。絶縁層ILI2上にパッチ電極PEが形成されている。パッチ電極PEは、絶縁層ILI2に形成されたコンタクトホールを通り接続電極RYに接続されている。配向膜AL1は、絶縁層ILI2及びパッチ電極PEの上に形成されている。
 図8及び図9に示しように、複数のパッチ電極PEをアクティブマトリクス駆動により個別に駆動することができる。そのため、複数のパッチ電極PEを独立して駆動することができる。例えば、電波反射板REが反射する反射波w2の方向を、Y-Z平面に平行な方向とすることができる。
 本構成例は、上述した実施形態と同様の効果を奏する。
 本発明の実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 CE…共通電極、CL…接続配線、CT…温度制御部、GP…パッチ電極群、LC…液晶層、PE…パッチ電極、PT…熱交換器、RE…電波反射板、REA…電波反射板、SS…スペーサ、SUB1…第1基板、SUB2…第2基板、Sa…入射面、TC…温度制御部、w1…入射波、w2…反射波。

Claims (11)

  1.  第1基材と、第1方向及び第2方向それぞれに沿って、等間隔にマトリクス状に配置される複数のパッチ電極と、を有する第1基板と、
     第2基材と、前記複数のパッチ電極に対向する共通電極と、を有する第2基板と、
     前記第1基板及び前記第2基板との間に挟持される液晶層と、
     前記第2基板に接して設けられる熱交換器と、
     前記液晶層の温度を検知する温度センサと、
     前記温度センサが検知した温度に基づき、前記熱交換器を制御する温度制御部と、
     を備え、
     入射波は、第1基板の入射面に入射し、
     前記熱交換器は、前記入射面の反対側の面に設けられる、電波反射板。
  2.  前記熱交換器は、ペルチェ素子である、請求項1に記載の電波反射板。
  3.  前記第1方向に沿って並べられ、前記第2方向に沿って延在する複数の接続配線と、をさらに備え、
     前記複数のパッチ電極は、前記第2方向に沿って延在し、前記第1方向に沿って並べられた複数のパッチ電極群を形成し、
     前記パッチ電極群それぞれの複数のパッチ電極は、前記接続配線により電気的に接続されている、請求項1に記載の電波反射板。
  4.  前記複数のパッチ電極は、それぞれ、スイッチング素子と接続される、請求項1に記載の電波反射板。
  5.  前記温度センサは、前記第1基板又は前記第2基板に接して設けられている、請求項1に記載の電波反射板。
  6.  前記温度センサは、前記電波反射板に内蔵されている、請求項1に記載の電波反射板。
  7.  前記温度制御部は、前記液晶層の温度が±30℃となるように、前記熱交換器を制御する、請求項1に記載の電波反射板。
  8.  前記温度制御部は、前記液晶層の温度が±20℃となるように、前記熱交換器を制御する、請求項1に記載の電波反射板。
  9.  前記温度制御部は、前記液晶層の誘電率の変化が±20%以内となるように、前記熱交換器を制御する、請求項1に記載の電波反射板。
  10.  前記温度制御部は、前記液晶層の誘電率の変化が±10%以内となるように、前記熱交換器を制御する、請求項1に記載の電波反射板。
  11.  前記温度制御部は、前記液晶層を相転移以下の温度に維持するように、前記熱交換器を制御する、請求項1に記載の電波反射板。
PCT/JP2022/005131 2021-02-19 2022-02-09 電波反射板 WO2022176737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023500775A JPWO2022176737A1 (ja) 2021-02-19 2022-02-09
KR1020237029570A KR20230142552A (ko) 2021-02-19 2022-02-09 전파 반사판
CN202280015098.0A CN116888824A (zh) 2021-02-19 2022-02-09 电波反射板
US18/451,122 US20230400747A1 (en) 2021-02-19 2023-08-17 Intelligent reflecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025383 2021-02-19
JP2021-025383 2021-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/451,122 Continuation US20230400747A1 (en) 2021-02-19 2023-08-17 Intelligent reflecting device

Publications (1)

Publication Number Publication Date
WO2022176737A1 true WO2022176737A1 (ja) 2022-08-25

Family

ID=82931645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005131 WO2022176737A1 (ja) 2021-02-19 2022-02-09 電波反射板

Country Status (5)

Country Link
US (1) US20230400747A1 (ja)
JP (1) JPWO2022176737A1 (ja)
KR (1) KR20230142552A (ja)
CN (1) CN116888824A (ja)
WO (1) WO2022176737A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070939A1 (ja) * 2022-09-26 2024-04-04 株式会社ジャパンディスプレイ 電波反射装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264750A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd 液晶表示パネルおよびその駆動方法と画像表示装置と投射型表示装置とビューファインダと光受信方法と光伝送装置
JP2008147763A (ja) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Ebg構造
WO2017065088A1 (ja) * 2015-10-15 2017-04-20 シャープ株式会社 走査アンテナおよびその製造方法
WO2017065255A1 (ja) * 2015-10-15 2017-04-20 シャープ株式会社 走査アンテナおよびその製造方法
JP2020053759A (ja) * 2018-09-25 2020-04-02 シャープ株式会社 走査アンテナおよびtft基板

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11103201A (ja) 1997-09-29 1999-04-13 Mitsui Chem Inc 移相器、移相器アレイおよびフェーズドアレイアンテナ装置
US10720712B2 (en) 2016-09-22 2020-07-21 Huawei Technologies Co., Ltd. Liquid-crystal tunable metasurface for beam steering antennas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264750A (ja) * 2000-03-23 2001-09-26 Matsushita Electric Ind Co Ltd 液晶表示パネルおよびその駆動方法と画像表示装置と投射型表示装置とビューファインダと光受信方法と光伝送装置
JP2008147763A (ja) * 2006-12-06 2008-06-26 Mitsubishi Electric Corp Ebg構造
WO2017065088A1 (ja) * 2015-10-15 2017-04-20 シャープ株式会社 走査アンテナおよびその製造方法
WO2017065255A1 (ja) * 2015-10-15 2017-04-20 シャープ株式会社 走査アンテナおよびその製造方法
JP2020053759A (ja) * 2018-09-25 2020-04-02 シャープ株式会社 走査アンテナおよびtft基板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070939A1 (ja) * 2022-09-26 2024-04-04 株式会社ジャパンディスプレイ 電波反射装置

Also Published As

Publication number Publication date
US20230400747A1 (en) 2023-12-14
CN116888824A (zh) 2023-10-13
JPWO2022176737A1 (ja) 2022-08-25
KR20230142552A (ko) 2023-10-11

Similar Documents

Publication Publication Date Title
CN114063329B (zh) 相控阵天线的驱动方法以及反射板的驱动方法
TW575777B (en) Active matrix type display device
CN110140221B (zh) Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN110050351B (zh) Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
CN110050350B (zh) Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
WO2022176737A1 (ja) 電波反射板
CN109891598B (zh) Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
US10833422B2 (en) TFT substrate and scanning antenna provided with TFT substrate
CN109891560B (zh) Tft基板、具备tft基板的扫描天线以及tft基板的制造方法
WO2022244676A1 (ja) 電波反射板および電波反射装置
JPWO2017141874A1 (ja) 走査アンテナ
US20240128652A1 (en) Intelligent reflecting surface
US20240106132A1 (en) Intelligent reflecting surface and phased array antenna
US11024960B2 (en) Scanned antenna and method of manufacturing scanned antenna
WO2023140243A1 (ja) リフレクトアレイ
WO2022211036A1 (ja) 電波反射板
WO2022211035A1 (ja) 電波反射板
US10539821B2 (en) Optical film movable around a display panel and a display apparatus including the same
TWI824839B (zh) 電波反射板
WO2022209330A1 (ja) 電波反射板
WO2024100974A1 (ja) 電波反射装置
WO2023095566A1 (ja) 電波反射板
WO2023248584A1 (ja) 電波反射装置
WO2023181614A1 (ja) リフレクトアレイ
US20240103322A1 (en) Phase modulating device and intelligent reflecting surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756058

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500775

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280015098.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237029570

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756058

Country of ref document: EP

Kind code of ref document: A1