WO2022176545A1 - Tandem type oil pump - Google Patents

Tandem type oil pump Download PDF

Info

Publication number
WO2022176545A1
WO2022176545A1 PCT/JP2022/002864 JP2022002864W WO2022176545A1 WO 2022176545 A1 WO2022176545 A1 WO 2022176545A1 JP 2022002864 W JP2022002864 W JP 2022002864W WO 2022176545 A1 WO2022176545 A1 WO 2022176545A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotor
drive shaft
oil
pressure
Prior art date
Application number
PCT/JP2022/002864
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 楊
亮 松村
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202280015388.5A priority Critical patent/CN116897248A/en
Publication of WO2022176545A1 publication Critical patent/WO2022176545A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to an oil pump, and more particularly to a tandem oil pump having two oil pumps.
  • a tandem-type oil pump applied to an internal combustion engine mounted on an automobile has a well-known configuration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2008-163925 (Patent Document 1).
  • a tandem-type oil pump disclosed in Patent Document 1 includes a first pump having the same shape and a second pump arranged with a rotation phase shifted with respect to the first pump, in a pump body formed in a cylindrical shape with a bottom.
  • An annular partition member for partitioning between the pumps, and a pump body slidably supported in the pump body penetrates both pumps and the partition member to transmit driving force to the inner rotors of both pumps.
  • Each pump performs a pumping action when the drive shaft is rotationally driven by the driving force transmitted from the internal combustion engine.
  • the first pump and the second pump are pumps having substantially the same discharge pressure.
  • a tandem oil pump that combines a high-pressure oil pump and a low-pressure oil pump has also been proposed.
  • a scavenging oil pump (low-pressure oil pump) that collects engine oil (hereinafter simply referred to as oil) from the oil pan, and supplies pressurized oil to the variable valve mechanism and the main oil gallery of the internal combustion engine.
  • oil engine oil
  • a tandem oil pump combined with a variable capacity oil feed pump (high pressure oil pump) is known.
  • a gear-type oil pump is used as the scavenging oil pump
  • a vane-type oil pump is used as the variable displacement oil feed pump.
  • the scavenging oil pump is a pump that simultaneously sucks oil, mist, blow-by gas, etc. from the oil pan.
  • the sucked oil containing air bubbles and foreign matter is separated by a reservoir tank and a centrifugal separator, pressurized by a variable displacement oil feed pump, and supplied to the variable valve mechanism and the main oil gallery of the internal combustion engine. It is designed to be
  • the present invention is directed to a tandem-type oil pump in which the high-pressure oil pump and the low-pressure oil pump are combined. is not limited to
  • a drive shaft is engaged with the pump rotor of the first pump and the pump rotor of the second pump, and this drive shaft is used to rotate an internal combustion engine, an electric motor, or the like. It is configured to be rotationally driven by power from a source. In addition, it is necessary to provide a thrust control function so that the drive shaft to which the pump rotor is attached does not move in the axial direction.
  • the pump rotor and the drive shaft are firmly fixed, and the side surface of the pump rotor orthogonal to the axis of the drive shaft is brought into contact with the wall surface of the pump rotor storage section, so that the drive shaft with the pump rotor mounted thereon is moved in the axial direction. I try not to move. In this case, the side surface of the pump rotor rotates while sliding against the wall surface of the pump rotor housing section that houses the pump rotor.
  • the discharge pressure of the low-pressure oil pump is low when the wall surface of the pump rotor housing portion and the side surface of the pump rotor of the low-pressure oil pump come into contact with each other with a high surface pressure.
  • An object of the present invention is to provide a novel tandem-type oil pump that can suppress seizure or wear on the side surface of the pump rotor of the low-pressure oil pump when a high-pressure oil pump and a low-pressure oil pump are combined. to provide.
  • the present invention a first pump rotor accommodation portion and a second pump rotor accommodation portion; a partition wall that partitions the first pump rotor accommodation portion and the second pump rotor accommodation portion; a pump body having a bearing through-hole connecting between two pump rotor accommodating portions; a drive shaft rotatably disposed in the bearing through-hole and driven to rotate by an external power source; and a first pump rotor.
  • first pump rotor Having a first pump rotor disposed in the housing portion and fixed to the drive shaft so as to restrict relative movement in the drive axis direction and the rotational direction, the first pump rotor being rotationally driven by the drive shaft; a first oil pump that pressurizes the oil introduced from the first suction portion and discharges it from the first discharge portion; Having a second pump rotor disposed in the second pump rotor accommodating portion, capable of moving relative to the drive shaft in the direction of the drive axis, and restricted from moving relative to the drive shaft in the rotational direction; A second oil pump that rotates the second pump rotor by the drive shaft to discharge the oil introduced from the second suction part from the second discharge part at a pressure lower than the pressure discharged from the first pump. And, it is characterized by having.
  • the present invention a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a drive shaft bearing connecting between a drive shaft arranged in the high-pressure pump rotor housing and the low-pressure pump rotor housing, and rotatably driven by an external power source rotatably supported by the drive shaft bearing; High-pressure oil having a high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and press-fitted and fixed to the drive shaft.
  • the high-pressure pump rotor is rotationally driven by the drive shaft to perform a pump action at a first discharge pressure.
  • a pump It has a low-pressure pump rotor disposed in a low-pressure pump rotor accommodating section and mounted movably in the drive axis direction with respect to the drive shaft. a low-pressure oil pump that performs a pumping action at a low second discharge pressure.
  • the second pump rotor in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, the second pump rotor (low-pressure pump rotor) can move in the axial direction of the drive shaft. ), a sufficient amount of oil can be supplied to the side surface of the second pump rotor (low-pressure pump rotor), thereby suppressing the seizure phenomenon or wear phenomenon on the side surface of the second pump rotor (low-pressure pump rotor). can do.
  • the high-pressure oil pump since the high-pressure oil pump has a high discharge pressure, even if the side surface of the first pump rotor (high-pressure pump rotor) comes into contact with the pump housing portion with a large surface pressure, the first oil pump (high-pressure oil pump) will To supply a sufficient amount of oil to the side surface of a first pump rotor (high-pressure pump rotor), and to suppress the occurrence of a seizure phenomenon or a wear phenomenon on the side surface of the first pump rotor (high-pressure pump rotor). can be done.
  • FIG. 1 is an external perspective view of a tandem-type oil pump according to an embodiment of the present invention, viewed obliquely from above;
  • FIG. FIG. 2 is a front view of the tandem oil pump shown in FIG. 1 viewed from the side of a variable displacement oil feed pump;
  • FIG. 2 is a rear view of the tandem oil pump shown in FIG. 1 as seen from the scavenging oil pump side;
  • FIG. 2 is an exploded perspective view of a variable displacement oil feed pump, viewed obliquely from above;
  • FIG. 3 is a cross-sectional view for explaining the internal structure of a pump portion of a variable displacement oil feed pump;
  • FIG. 4 is an exploded perspective view of the scavenging oil pump when viewed obliquely from above;
  • FIG. 4 is a cross-sectional view for explaining the internal structure of the pump portion of the scavenging oil pump;
  • FIG. 2 is a sectional view showing the AA section of the tandem oil pump shown in FIG. 1;
  • FIG. 3 is an exploded perspective view for explaining the shapes of the inner rotor and drive shaft of the scavenging oil pump;
  • FIG. 2 is an external perspective view of the tandem oil pump shown in FIG. 1 with a part cut away and viewed obliquely from above; 1. It is the external perspective view which notched a part of modification of the tandem-type oil pump shown in FIG. 1, and was seen from the diagonally upper side.
  • FIG. 3 is an external perspective view of a tandem oil pump as a comparative example, with a part cut away and viewed obliquely from above;
  • FIG. 1 shows a tandem-type oil pump according to an embodiment of the present invention as seen obliquely from above.
  • a high-pressure pump cover 13 (corresponding to the first pump cover in the claims) attached at 12, and a low-pressure pump cover 15 (see FIG. 3) attached to the rear portion 11B of the pump body 11 with bolts 14 (see FIG. 3). (corresponding to the second pump cover).
  • the pump body 11 on the side of the high-pressure pump cover 13 houses a variable displacement oil feed pump, which is a high-pressure oil pump (corresponding to the first pump in the claims).
  • a scavenging oil pump which is a low-pressure oil pump (corresponding to a second pump in the claims), is accommodated in the pump body 11 on the low-pressure pump cover 15 side.
  • the pump body 11 is formed in a substantially rectangular parallelepiped box shape, but in reality, the shape is changed according to the external shape and size of the internal combustion engine. However, even if the external shape changes, the basic idea of the present invention does not change.
  • the tandem-type oil pump 10 has a drive shaft 16 extending through the high-pressure pump cover 13 and the pump body 11 to the low-pressure pump cover 15.
  • the drive shaft 16 may be the crankshaft of an internal combustion engine or an external drive such as an electric motor. Rotationally driven by a source.
  • the drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and the drive shaft 16 rotates the pump rotors of the high-pressure oil pump and the low-pressure oil pump, respectively.
  • a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15.
  • a suction hole 17 (corresponding to a second suction hole in the claims) is formed on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15 a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided.
  • a suction hole 17 (corresponding to a second suction hole in the claims) is formed.
  • a pair of attachment portions 11A to be attached to the oil pan of the internal combustion engine are provided on the upper surface portion 11U of the pump body 11. Fixing bolts are inserted through the attachment portions 11A to be fixed to the internal combustion engine.
  • a low-pressure side suction hole 17 is formed in the mounting portion 11A.
  • the pair of attachment portions 11A are provided so as to sandwich the pump body 11 from both sides at radial positions with respect to the drive shaft 16 provided in the pump body 11, and are attached to the internal combustion engine. Therefore, when the tandem-type oil pump 10 is attached to the internal combustion engine, the oil in the oil pan can be easily guided to the low-pressure side suction hole 17 .
  • FIG. 2 shows the front of the tandem-type oil pump 10 on the side on which the high-pressure pump cover 13 is provided. (pump chamber).
  • the high-pressure pump cover 13 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
  • a high-pressure oil pump connected to a discharge portion (corresponding to a first discharge portion in the claims) of the high-pressure oil pump is provided on the high-pressure pump cover 13 located radially outside the drive shaft center of the drive shaft 16 .
  • a side discharge hole 18 (corresponding to a first discharge hole in the claims) is formed.
  • the high-pressure side discharge hole 18 supplies pressurized oil to at least the main oil gallery of the internal combustion engine in this embodiment, but it may also supply the variable valve mechanism.
  • FIG. 3 shows the rear surface of the tandem-type oil pump 10 on the side where the low-pressure pump cover 15 is provided. forms part of The low-pressure pump cover 15 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
  • a suction portion (corresponding to a first suction portion in the claims) of a high-pressure oil pump is connected to the rear surface portion 11B of the pump body 11 located radially outside the drive shaft center of the drive shaft 16.
  • a high-pressure side suction hole 19 (corresponding to a first suction hole in the claims) is formed.
  • the low-pressure pump cover 15 has a low-pressure side discharge hole 20 (corresponding to the second discharge hole in the claims) connected to the discharge part (corresponding to the second discharge part in the claims) of the low-pressure oil pump. is formed.
  • FIG. 4 shows the disassembled state of the high-pressure oil pump after the low-pressure oil pump is assembled
  • FIG. 6 shows the disassembled state of the low-pressure oil pump after the high-pressure oil pump is assembled.
  • the high-pressure oil pump is a vane-type oil pump (variable displacement type) using vanes
  • the low-pressure pump is a gear-type oil pump using a trochoid gear.
  • one side of the pump body 11 is formed with a vane pump rotor accommodating portion 21 (corresponding to the first pump rotor accommodating portion/high pressure pump rotor accommodating portion in the claims) of the vane type oil pump.
  • a gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion in the claims) of the gear type oil pump is provided. do) is formed.
  • a partition wall 23 that partitions the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 is formed between the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 .
  • the vane-type oil pump can be assembled from one side of the pump body 11, and the gear-type oil pump can be assembled from the other side of the pump body 11. can.
  • a bearing through hole 24 (corresponding to a drive shaft bearing portion in the claims) through which the drive shaft 16 passes is formed in the partition wall 23 (see FIG. 8).
  • FIG. 5 shows a pump portion of a well-known vane-type oil pump taken in a cross section perpendicular to the axis.
  • a pump body 25 is housed in a recessed vane pump rotor housing portion 21 formed in the pump body 11.
  • a vane pump rotor 26 (corresponding to a first pump rotor/high-pressure pump rotor in the claims) press-fitted with the drive shaft 16 is arranged substantially in the center of the vane pump rotor accommodating portion 21, and a swinging rotor 26 is arranged on the outer side thereof.
  • An adjustment ring 27 is arranged whose dynamic center is eccentric to the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 in this manner, it is firmly fixed so as to restrict relative movement in the drive axis direction and the rotational direction.
  • the adjustment ring 27 is pivotable about the pivot 28, and in the initial state, the adjustment ring 27 is pushed rightward in FIG. and the eccentricity is at its maximum setting.
  • the vanes 31 are arranged in a plurality of slits provided in the vane pump rotor 26, and when the vane pump rotor 26 rotates, the tips of the vanes slide on the inner peripheral surface of the adjustment ring 27 while appearing and disappearing from the outer peripheral surface of the vane pump rotor 26. All of the vanes 31 are supported by vane rings 32 so as not to retreat inward even when stopped.
  • a space formed by the outer peripheral surface of the vane pump rotor 26, the inner peripheral surface of the adjustment ring 27, and the two vanes 31 (hereinafter referred to as the hydraulic oil chamber) rotates counterclockwise as shown in FIG.
  • the volume increases and decreases as the vane pump rotor 26 rotates.
  • a suction portion 33 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber increases. The suction portion 33 is connected to the high-pressure side suction hole 19 provided in the rear portion 11B of the pump body 11 on the low-pressure oil pump side.
  • a discharge portion 34 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber is reduced. This discharge portion 34 is connected to a high pressure side discharge hole 18 provided in the front portion 11F of the pump body 11 on the side of the high pressure oil pump.
  • the vane type oil pump sucks up oil through the suction hole 19 and discharges the oil through the discharge hole 18 to the variable valve mechanism or the main oil gallery of the internal combustion engine to perform a pumping action.
  • the compression spring 35 biases the ball valve 36, and when the discharge pressure rises above a predetermined value, the ball valve 36 is opened to reduce the discharge pressure. Since the configuration and operation of this vane type oil pump are well known, further explanation will be omitted.
  • the vane-type oil pump is arranged swingably in the vane pump rotor accommodating portion 21 and accommodated in the adjustment ring 27 having the vane accommodating portion therein, and the drive shaft and a plurality of vanes 31 accommodated on the outer peripheral surface of the vane pump rotor 26 and forming a plurality of hydraulic oil chambers through which oil is directed between the adjustment ring 27 and the vane pump rotor 26. Then, the oil is sucked from the suction hole 19 (see FIG. 3) whose volume increases among the plurality of hydraulic oil chambers as the drive shaft 16 rotates, and It is an oil pump that discharges oil from a discharge hole 18 (see FIG. 2) whose volume decreases.
  • FIG. 7 shows a pump portion of a known gear-type oil pump taken in a cross section perpendicular to the axis.
  • a gear pump rotor accommodating portion 22 is formed on the side of the rear portion 11B of the pump body 11, and an outer rotor 37 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is formed therein. ) are slidably and rotatably arranged.
  • an inner rotor 38 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is arranged inside the outer rotor 37. As shown in FIG. 7, five internal teeth 40, one more than the external teeth 39 of the inner rotor 38, are formed on the inner peripheral side of the outer rotor 37. It meshes with the external teeth 39 of the rotor 38 .
  • a plurality of working oil chambers are formed between the outer teeth 39 of the inner rotor 38 and the inner teeth 40 of the outer rotor 37.
  • the outer rotor 37 rotates eccentrically, thereby The volume of the oil chamber increases and decreases, thereby continuously sucking and discharging oil to perform a pump action.
  • the inner rotor 38 is rotationally driven by the drive shaft 16.
  • the inner rotor 38 can move relative to the drive shaft 16 in the direction of the drive axis, and the drive shaft 16 can rotate. Relative movement in the rotational direction is restricted with respect to Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a width across flats, and the inner rotor 38 can move in the drive shaft direction at this portion.
  • the width across flats means a shape formed along the axial direction of the drive shaft 16 and having planes facing each other parallel to each other. Therefore, the inner rotor 38 can move along the axial direction of the drive shaft 16 and rotate together with the drive shaft 16 in the rotational direction.
  • the gear-type oil pump is housed inside the gear pump rotor housing portion 22 and also housed inside the outer rotor 37 including the plurality of internal teeth 40 on the inner peripheral side and the outer rotor 37.
  • an inner rotor provided on a drive shaft 16 so as to be movable in the direction of the drive axis of the drive shaft 16 and having a plurality of external teeth 39 meshing with a plurality of internal teeth 40 on the outer peripheral side.
  • FIG. 8 is taken along line AA shown in FIG.
  • a high-pressure pump cover 13 is attached to the pump body 11 with bolts 12 on the front portion 11F of the pump body 11, and a low-pressure pump cover 15 is attached to the pump body 11 with bolts 14 on the rear portion 11B of the pump body 11. installed.
  • a vane-type oil pump which is a high-pressure oil pump, is accommodated in the pump body 11 on the high-pressure pump cover 13 side, and a gear-type oil pump, which is a low-pressure oil pump, is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Contains the oil pump.
  • the drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and rotates the vane pump rotor 26 of the high-pressure oil pump and the inner rotor 38 of the low-pressure oil pump, respectively.
  • a large diameter portion 16L having a circular cross section is formed on the drive shaft 16, and the large diameter portion 16L is supported by a hole formed in the high pressure pump cover 13. Further, the drive shaft 16 is supported by a bearing through hole 24 provided in the partition wall 23 . Therefore, the drive shaft 16 has a circular cross section at least up to the point where it contacts the partition wall 23 .
  • the drive shaft 16 abuts on the low-pressure pump cover 15 or extends until just before it abuts, and this portion is not supported by a bearing. Therefore, in the vicinity of the low-pressure pump cover 15, a phenomenon occurs in which the drive shaft 16 vibrates. If the drive shaft 16 touches, the positional relationship between the inner rotor 38 and the outer rotor 37 changes, which may cause abnormal noise and oil leakage from the working oil chamber.
  • a small diameter shaft portion 41 (a second pump rotor diameter (corresponding to the small shaft portion/low-pressure pump rotor diameter small shaft portion) are integrally formed.
  • the small-diameter shaft portion 41 has a circular cross section perpendicular to the axis of the drive shaft 16 .
  • an inner rotor-side bearing through-hole 42 (second pump rotor-side bearing through-hole/low-pressure pump rotor-side corresponding to the bearing through hole) are formed.
  • the inner rotor side bearing through-hole 42 is designed to have a larger diameter than the bearing through-hole 24 and a smaller diameter than the gear pump rotor accommodating portion 22 .
  • the inner-rotor-side bearing through-hole 42 and the small-diameter shaft portion 41 of the inner rotor 38 are "spigot-engaged".
  • “Spigot engagement” means "a nested structure in which two parts fit together, one of which has a concave shape and the other has a convex shape”. In this way, the vicinity of the end portion of the drive shaft 16 on the low-pressure pump cover 15 side is supported by the inner rotor side bearing through hole 42 by the small diameter shaft portion 41 of the inner rotor 38 , so that the drive shaft 16 has a Shaking can be suppressed.
  • the inner rotor 38 is configured to be movable in the axial direction of the drive shaft 16, as shown in FIG. That is, relative movement in the direction of the drive axis of the drive shaft 16 is possible, and relative movement in the rotational direction with respect to the drive shaft 16 is restricted.
  • the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a flat surface 43 with a width across flats 43, and the inner rotor 38 can move in the drive shaft direction at this portion.
  • the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P. It is configured to be inserted.
  • the fitting hole 44 has a similar shape to the width across flat portion 16P and is designed to be slightly larger than the width across flat portion 16P.
  • the width across flat portion 16 ⁇ /b>P is formed longer than the axial length of the inner rotor 38 to increase the drive area and sufficiently transmit the torque of the drive shaft 16 .
  • a vane pump rotor 26 is press-fitted to the columnar portion 16C, and the vane pump rotor 26 is configured so as not to move in the axial direction and the rotational direction with respect to the columnar portion 16C. Furthermore, when the vane pump rotor 26 and the columnar portion 16C are serration-coupled, they can be in a more rigid fixed state.
  • the width across flat portion 16P of the drive shaft 16 is fitted with a fitting hole 44 formed in the inner rotor 38 so as to be axially movable. Therefore, as shown in FIG. 8 , even if the drive shaft 16 moves in the axial direction (leftward or rightward), the inner rotor 38 is not forced to move by the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 , it is moved together with the drive shaft 16 .
  • the vane pump rotor 26 press-fitted into the cylindrical portion 16C of the drive shaft 16 and the width across flat portion 16P of the drive shaft 16 can move in the axial direction.
  • the inner rotor 38 fitted to is rotated in synchronization with the rotation of the drive shaft 16 . A pump action is thereby performed.
  • the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17 as indicated by the dashed arrow (Olow), and the rotation of the inner rotor 38 further pressurizes the oil to a low pressure (atmospheric pressure or negative pressure). ) and is discharged from the low-pressure side discharge hole 20 as indicated by the dashed arrow (Olow).
  • a low pressure atmospheric pressure or negative pressure
  • the side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion.
  • the side surface of the vane pump rotor 26 is in contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Also, a sufficient amount of oil can be supplied to the side surface of the vane pump rotor 26 so that oil film shortage does not occur, and the side surface of the vane pump rotor 26 can be suppressed from seizing or wearing.
  • the inner rotor 38 is fitted on the drive shaft 16 so as to be movable in the axial direction. Therefore, the inner rotor 38 is free in the axial direction of the drive shaft 16 even if the drive shaft 16 moves. Therefore, the side surface of the inner rotor 38 perpendicular to the axial direction does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure.
  • the side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side.
  • the side surface perpendicular to the axial direction of the inner rotor 38 does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. The reason is that the inner rotor 38 is free in the axial direction of the drive shaft 16 .
  • the side surface of the inner rotor 38 contacts the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. Therefore, it is possible to supply a sufficient amount of oil to the side surface of the inner rotor 38 without running out of the oil film, thereby suppressing the seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38. can.
  • the inner rotor 38 constituting the low-pressure oil pump can move in the axial direction of the drive shaft 16, it is possible to sufficiently supply oil to the side surfaces of the inner rotor 38 even when the discharge pressure is low. Therefore, it is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38 .
  • the vane pump rotor 26 constituting the high-pressure oil pump has a high discharge pressure, even if the side surface of the vane pump rotor 26 comes into contact with the sliding surface with a large surface pressure, the oil is sufficiently supplied to the side surface of the vane pump rotor. It is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the vane pump rotor 26 .
  • a spline portion (male spline portion) 16S is formed on the tip side of the drive shaft 16. As shown in FIG. The spline portion 16S is formed longer than the axial length of the inner rotor 38 so that the torque of the drive shaft 16 can be sufficiently transmitted.
  • the spline portion 16S is formed with spline teeth 45 having a gear-shaped cross section perpendicular to the axial direction.
  • the inner rotor 38 is also formed with an insertion hole (female spline portion) having a similar shape to the spline teeth 45 and having internal teeth that engage with the spline teeth 45 .
  • the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P.
  • the width across flat portion 16P is inserted into a fitting hole formed in the vane pump rotor 26 with a slight clearance. It is configured to be
  • the fitting hole has a shape similar to that of the width across flat portion 16P, and is designed to be slightly larger than the width across flat portion 16P.
  • An inner rotor 38 is press-fitted to the cylindrical portion 16C, and the inner rotor 38 cannot move in the axial direction and the rotational direction with respect to the cylindrical portion 16C.
  • the rotation of the vane pump rotor 26 causes the oil to be sucked in through the high-pressure side suction hole 19, further pressurized to a high pressure by the rotation of the vane pump rotor 26, and discharged from the high-pressure side discharge hole 18 (see FIG. 1).
  • the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17 , further pressurized to a low pressure by the rotation of the inner rotor 38 , and discharged from the low-pressure side discharge hole 20 .
  • the vane pump rotor 26 When the drive shaft 16 is moved in the axial direction (moved in the thrust direction), the vane pump rotor 26 is fitted in the drive shaft 16 so as to be movable in the axial direction. The rotor 26 is free in the axial direction of the drive shaft 16 . Therefore, the side surface perpendicular to the axial direction of the vane pump rotor 26 does not contact the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure.
  • the side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side.
  • the side surface perpendicular to the axial direction of the vane pump rotor 26 does not contact the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure.
  • the oil discharge pressure of the vane pump rotor 26 is high, and the side surface of the vane pump rotor 26 contacts the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Therefore, sufficient oil can be supplied to the side surface of the vane pump rotor 26, and the side surface of the vane pump rotor 26 can be prevented from being seized or worn.
  • the side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion.
  • the oil discharge pressure is low. Since a sufficient amount of oil cannot be supplied to the side surface of the inner rotor 38, the side surface of the inner rotor 38 may be seized or worn.
  • the pump rotor of the low-pressure pump is seized or worn, but in the present embodiment, the pump rotor of the low-pressure pump is seized or worn. Fear can be controlled.
  • the arrangement positions of the high-pressure pump and the low-pressure pump can be reversed. Even in this case, the above configuration remains the same.
  • the pump rotor of the low-pressure oil pump can move in the axial direction of the drive shaft.
  • a sufficient amount of oil can be supplied to the side surface of the low-pressure oil pump, and it is possible to suppress the seizure phenomenon or wear phenomenon on the side surface of the pump rotor of the low-pressure oil pump.
  • the high-pressure oil pump has a high discharge pressure, even if the side surface of the pump rotor of the high-pressure oil pump abuts against the pump storage section with a large surface pressure, a sufficient amount of oil is applied to the side surface of the pump rotor of the high-pressure oil pump. Oil can be supplied, and seizure phenomenon or wear phenomenon can be suppressed on the side surface of the pump rotor of the high-pressure oil pump.
  • the present invention is not limited to the several embodiments described above, and includes various modifications.
  • the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • Other configurations can be added, deleted, or replaced with respect to the configuration of each embodiment.

Abstract

The present invention provides a tandem type oil pump in which a high-pressure oil pump and a low-pressure oil pump are combined, wherein a pump rotor (38) of the low-pressure oil pump is configured to be movable in the axial direction with respect to a drive shaft (16). This makes it possible for the pump rotor (38) of the low-pressure oil pump to move in the axial direction of the drive shaft (16). Therefore, even when discharge pressure is low, it is possible to supply oil to a side surface of the pump rotor (38) of the low-pressure oil pump, and possible to prevent seizure or abrasion from occurring on the side surface of the pump rotor (38).

Description

タンデム型オイルポンプtandem oil pump
 本発明はオイルポンプに係り、特に2つのオイルポンプを備えたタンデム型オイルポンプに関するものである。 The present invention relates to an oil pump, and more particularly to a tandem oil pump having two oil pumps.
 自動車に搭載された内燃機関に適用されるタンデム型オイルポンプは、例えば、特開2008-163925号公報(特許文献1)に示されているように、良く知られた構成である。 A tandem-type oil pump applied to an internal combustion engine mounted on an automobile has a well-known configuration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2008-163925 (Patent Document 1).
 特許文献1に示されたタンデム型オイルポンプは、有底円筒状に形成されたポンプボデイ内に、同一形状の第1ポンプと、第1ポンプに対して、回転位相をずらして配置された第2ポンプとが配置され、各ポンプ間を仕切るための円環状の仕切部材と、ポンプボデイ内に摺動自在に支持され、両ポンプ、及び仕切部材に貫通して両ポンプのインナーロータに駆動力を伝達する駆動軸とを備え、内燃機関から伝達された駆動力によって駆動軸が回転駆動されることにより、各ポンプがポンプ作用を行うようになっている。尚、第1ポンプと第2ポンプは、吐出圧が実質的に同一のポンプである。 A tandem-type oil pump disclosed in Patent Document 1 includes a first pump having the same shape and a second pump arranged with a rotation phase shifted with respect to the first pump, in a pump body formed in a cylindrical shape with a bottom. An annular partition member for partitioning between the pumps, and a pump body slidably supported in the pump body penetrates both pumps and the partition member to transmit driving force to the inner rotors of both pumps. Each pump performs a pumping action when the drive shaft is rotationally driven by the driving force transmitted from the internal combustion engine. The first pump and the second pump are pumps having substantially the same discharge pressure.
 また、これとは別に、高圧のオイルポンプと低圧のオイルポンプを組み合わせたタンデム型オイルポンプも提案されている。例えば、オイルパンからエンジンオイル(以下、単にオイルと表記する)を回収するスカベンジングオイルポンプ(低圧オイルポンプ)と、可変動弁機構や内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプ(高圧オイルポンプ)とを組み合わせたタンデム型オイルポンプが知られている。尚、スカベンジングオイルポンプは、例えばギヤ型オイルポンプが使用され、可変容量型のオイルフィードポンプは、ベーン型オイルポンプが使用されている。 Apart from this, a tandem oil pump that combines a high-pressure oil pump and a low-pressure oil pump has also been proposed. For example, a scavenging oil pump (low-pressure oil pump) that collects engine oil (hereinafter simply referred to as oil) from the oil pan, and supplies pressurized oil to the variable valve mechanism and the main oil gallery of the internal combustion engine. BACKGROUND ART A tandem oil pump combined with a variable capacity oil feed pump (high pressure oil pump) is known. A gear-type oil pump is used as the scavenging oil pump, and a vane-type oil pump is used as the variable displacement oil feed pump.
 スカベンジングオイルポンプは、オイルパン内からオイルとミスト、ブローバイガス等を同時に吸引するポンプである。また、吸引された気泡や異物を含んだオイルは、リザーバータンクや遠心式のセパレーターで分離され、可変容量型のオイルフィードポンプによって加圧されて可変動弁機構や内燃機関のメインオイルギャラリに供給されるようになっている。 The scavenging oil pump is a pump that simultaneously sucks oil, mist, blow-by gas, etc. from the oil pan. In addition, the sucked oil containing air bubbles and foreign matter is separated by a reservoir tank and a centrifugal separator, pressurized by a variable displacement oil feed pump, and supplied to the variable valve mechanism and the main oil gallery of the internal combustion engine. It is designed to be
 本発明は、この高圧のオイルポンプと低圧のオイルポンプを組み合わせたタンデム型オイルポンプを対象としているが、高圧オイルポンプ、及び低圧オイルポンプは、上述したスカベンジングポンプや可変容量型のオイルフィードポンプに限られるものではない。 The present invention is directed to a tandem-type oil pump in which the high-pressure oil pump and the low-pressure oil pump are combined. is not limited to
特開2008-163925号公報JP 2008-163925 A
 特許文献1にも示されているように、第1ポンプのポンプロータと第2ポンプのポンプロータには駆動軸が係合されており、この駆動軸は、内燃機関、或いは電動機等の回転駆動源からの動力によって回転駆動される構成になっている。そして、ポンプロータを取り付けた駆動軸が、軸方向に移動しないようにスラスト規制機能を持たせることが必要である。 As shown in Patent Document 1, a drive shaft is engaged with the pump rotor of the first pump and the pump rotor of the second pump, and this drive shaft is used to rotate an internal combustion engine, an electric motor, or the like. It is configured to be rotationally driven by power from a source. In addition, it is necessary to provide a thrust control function so that the drive shaft to which the pump rotor is attached does not move in the axial direction.
 このため、ポンプロータと駆動軸を強固に固定し、駆動軸の軸線に直交するポンプロータの側面を、ポンプロータ収納部の壁面に接触させて、ポンプロータを取り付けた駆動軸が、軸方向に移動しないようにしている。この場合、ポンプロータの側面は、ポンプロータを収納するポンプロータ収納部の壁面と摺動しながら回転することになる。 For this reason, the pump rotor and the drive shaft are firmly fixed, and the side surface of the pump rotor orthogonal to the axis of the drive shaft is brought into contact with the wall surface of the pump rotor storage section, so that the drive shaft with the pump rotor mounted thereon is moved in the axial direction. I try not to move. In this case, the side surface of the pump rotor rotates while sliding against the wall surface of the pump rotor housing section that houses the pump rotor.
 ところが、低圧オイルポンプのポンプロータが駆動軸と固定されていると、ポンプロータ収納部の壁面と低圧オイルポンプのポンプロータの側面が強い面圧で接触した場合、低圧オイルポンプの吐出圧が低いことから、ポンプロータの側面とポンプロータ収納部の壁面の接触部分に十分なオイルが供給され難くなって油膜切れを生じ、この接触部分で焼き付き現象、或いは急速な摩耗現象を生じる恐れがある。 However, when the pump rotor of the low-pressure oil pump is fixed to the drive shaft, the discharge pressure of the low-pressure oil pump is low when the wall surface of the pump rotor housing portion and the side surface of the pump rotor of the low-pressure oil pump come into contact with each other with a high surface pressure. As a result, it becomes difficult to supply sufficient oil to the contact portion between the side surface of the pump rotor and the wall surface of the pump rotor storage section, causing the oil film to run out, which may cause seizure or rapid wear at the contact portion.
 本発明の目的は、高圧オイルポンプと低圧オイルポンプを組み合わせた時に、低圧オイルポンプのポンプロータの側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる新規なタンデム型オイルポンプを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a novel tandem-type oil pump that can suppress seizure or wear on the side surface of the pump rotor of the low-pressure oil pump when a high-pressure oil pump and a low-pressure oil pump are combined. to provide.
 本発明は、
 第1ポンプロータ収容部、及び第2ポンプロータ収容部と、第1ポンプロータ収容部と第2ポンプロータ収容部を区画する区画壁と、区隔壁に形成された第1ポンプロータ収容部と第2ポンプロータ収容部との間を接続する軸受用貫通孔とを有したポンプボデイと、 軸受用貫通孔に回転可能に配置され、外部の動力源によって回転駆動される駆動軸と、 第1ポンプロータ収容部に配置され、駆動軸に対して駆動軸線方向及び回転方向の相対移動を規制されるように固定された第1ポンプロータを有し、第1ポンプロータが駆動軸によって回転駆動されることにより、第1吸入部から導かれたオイルを加圧して第1吐出部から吐出する第1オイルポンプと、
 第2ポンプロータ収容部に配置され、駆動軸に対して駆動軸線の方向に相対移動が可能で、かつ、駆動軸に対して回転方向の相対移動を規制された第2ポンプロータを有し、第2ポンプロータが駆動軸によって回転駆動されることにより、第2吸入部から導かれたオイルを、第1ポンプから吐出される圧力よりも低い圧力で第2吐出部から吐出する第2オイルポンプと、を備えた
ことを特徴とするものである。
The present invention
a first pump rotor accommodation portion and a second pump rotor accommodation portion; a partition wall that partitions the first pump rotor accommodation portion and the second pump rotor accommodation portion; a pump body having a bearing through-hole connecting between two pump rotor accommodating portions; a drive shaft rotatably disposed in the bearing through-hole and driven to rotate by an external power source; and a first pump rotor. Having a first pump rotor disposed in the housing portion and fixed to the drive shaft so as to restrict relative movement in the drive axis direction and the rotational direction, the first pump rotor being rotationally driven by the drive shaft; a first oil pump that pressurizes the oil introduced from the first suction portion and discharges it from the first discharge portion;
Having a second pump rotor disposed in the second pump rotor accommodating portion, capable of moving relative to the drive shaft in the direction of the drive axis, and restricted from moving relative to the drive shaft in the rotational direction; A second oil pump that rotates the second pump rotor by the drive shaft to discharge the oil introduced from the second suction part from the second discharge part at a pressure lower than the pressure discharged from the first pump. And, it is characterized by having.
 また、本発明は、
 高圧ポンプロータ収容部、及び低圧ポンプロータ収容部と、高圧ポンプロータ収容部と低圧ポンプロータ収容部を区画する区画壁と、区画壁に形成された、高圧ポンプロータ収容部と低圧ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
 高圧ポンプロータ収容部、及び低圧ポンプロータ収容部に配置され、駆動軸用軸受部に回転可能に軸支された外部の動力源によって回転駆動される駆動軸と、
 高圧ポンプロータ収容部に配置され、駆動軸に対して圧入固定された高圧ポンプロータを有し、高圧ポンプロータが駆動軸によって回転駆動されることにより第1の吐出圧でポンプ作用を行う高圧オイルポンプと、
 低圧ポンプロータ収容部に配置され、駆動軸に対して駆動軸線方向に移動可能に取り付けられた低圧ポンプロータを有し、低圧ポンプロータが駆動軸によって回転駆動されることにより第1の吐出圧より低い第2の吐出圧でポンプ作用を行う低圧オイルポンプと、を備えた
ことを特徴とするものである。
In addition, the present invention
a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a drive shaft bearing connecting between
a drive shaft arranged in the high-pressure pump rotor housing and the low-pressure pump rotor housing, and rotatably driven by an external power source rotatably supported by the drive shaft bearing;
High-pressure oil having a high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and press-fitted and fixed to the drive shaft. The high-pressure pump rotor is rotationally driven by the drive shaft to perform a pump action at a first discharge pressure. a pump;
It has a low-pressure pump rotor disposed in a low-pressure pump rotor accommodating section and mounted movably in the drive axis direction with respect to the drive shaft. a low-pressure oil pump that performs a pumping action at a low second discharge pressure.
 本発明によれば、高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプにおいて、第2ポンプロータ(低圧ポンプロータ)が駆動軸の軸線方向に移動できるので、第2オイルポンプ(低圧オイルポンプ)の第2ポンプロータ(低圧ポンプロータ)の側面に十分な量のオイルを供給することができ、第2ポンプロータ(低圧ポンプロータ)の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 According to the present invention, in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, the second pump rotor (low-pressure pump rotor) can move in the axial direction of the drive shaft. ), a sufficient amount of oil can be supplied to the side surface of the second pump rotor (low-pressure pump rotor), thereby suppressing the seizure phenomenon or wear phenomenon on the side surface of the second pump rotor (low-pressure pump rotor). can do.
 また、高圧オイルポンプの方は、吐出圧が高いので、第1ポンプロータ(高圧ポンプロータ)の側面が大きな面圧でポンプ収納部に当接しても、第1オイルポンプ(高圧オイルポンプ)の第1ポンプロータ(高圧ポンプロータ)の側面に十分な量のオイルを供給することができ、第1ポンプロータ(高圧ポンプロータ)の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 In addition, since the high-pressure oil pump has a high discharge pressure, even if the side surface of the first pump rotor (high-pressure pump rotor) comes into contact with the pump housing portion with a large surface pressure, the first oil pump (high-pressure oil pump) will To supply a sufficient amount of oil to the side surface of a first pump rotor (high-pressure pump rotor), and to suppress the occurrence of a seizure phenomenon or a wear phenomenon on the side surface of the first pump rotor (high-pressure pump rotor). can be done.
本発明の実施形態になるタンデム型オイルポンプを斜め上側から眺めた外観斜視図である。1 is an external perspective view of a tandem-type oil pump according to an embodiment of the present invention, viewed obliquely from above; FIG. 図1に示すタンデム型オイルポンプを可変容量型のオイルフィードポンプの側から見た正面図である。FIG. 2 is a front view of the tandem oil pump shown in FIG. 1 viewed from the side of a variable displacement oil feed pump; 図1に示すタンデム型オイルポンプをスカベンジングオイルポンプの側から見た背面図である。FIG. 2 is a rear view of the tandem oil pump shown in FIG. 1 as seen from the scavenging oil pump side; 可変容量型のオイルフィードポンプを分解して斜め上方から眺めた分解斜視図である。FIG. 2 is an exploded perspective view of a variable displacement oil feed pump, viewed obliquely from above; 可変容量型のオイルフィードポンプのポンプ部分の内部構造を説明する断面図である。FIG. 3 is a cross-sectional view for explaining the internal structure of a pump portion of a variable displacement oil feed pump; スカベンジングオイルポンプを分解して斜め上方から眺めた分解斜視図である。FIG. 4 is an exploded perspective view of the scavenging oil pump when viewed obliquely from above; スカベンジングオイルポンプのポンプ部分の内部構造を説明する断面図である。FIG. 4 is a cross-sectional view for explaining the internal structure of the pump portion of the scavenging oil pump; 図1に示すタンデム型オイルポンプのA-A断面を示す断面図である。FIG. 2 is a sectional view showing the AA section of the tandem oil pump shown in FIG. 1; スカベンジングオイルポンプのインナーロータと駆動軸の形状を説明するための分解斜視図である。FIG. 3 is an exploded perspective view for explaining the shapes of the inner rotor and drive shaft of the scavenging oil pump; 図1に示すタンデム型オイルポンプの一部を切り欠いて斜め上側から眺めた外観斜視図である。FIG. 2 is an external perspective view of the tandem oil pump shown in FIG. 1 with a part cut away and viewed obliquely from above; 図1に示すタンデム型オイルポンプの変形例の一部を切り欠いて斜め上側から眺めた外観斜視図である。1. It is the external perspective view which notched a part of modification of the tandem-type oil pump shown in FIG. 1, and was seen from the diagonally upper side. 比較例としてのタンデム型オイルポンプの一部を切り欠いて斜め上側から眺めた外観斜視図である。FIG. 3 is an external perspective view of a tandem oil pump as a comparative example, with a part cut away and viewed obliquely from above;
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and applications can be made within the technical concept of the present invention. is also included in the scope.
 図1は、本発明の実施形態になるタンデム型オイルポンプを斜め上側から眺めたものであり、略直方体で箱状のタンデム型オイルポンプ10は、ポンプボデイ11と、ポンプボデイ11の正面部11Fにボルト12で取り付けられた高圧ポンプカバー13(請求項でいう第1ポンプカバーに相当する)と、ポンプボデイ11の背面部11Bにボルト14(図3参照)で取り付けられた低圧ポンプカバー15(請求項でいう第2ポンプカバーに相当する)とを備えている。 FIG. 1 shows a tandem-type oil pump according to an embodiment of the present invention as seen obliquely from above. A high-pressure pump cover 13 (corresponding to the first pump cover in the claims) attached at 12, and a low-pressure pump cover 15 (see FIG. 3) attached to the rear portion 11B of the pump body 11 with bolts 14 (see FIG. 3). (corresponding to the second pump cover).
 詳細は後で説明するが、高圧ポンプカバー13の側のポンプボデイ11内には、高圧オイルポンプ(請求項でいう第1ポンプに相当する)である可変容量型のオイルフィードポンプが収納されており、低圧ポンプカバー15の側のポンプボデイ11内には、低圧オイルポンプ(請求項でいう第2ポンプに相当する)であるスカベンジングオイルポンプが収納されている。尚、ここで、ポンプボデイ11は略直方体で箱状に形成されているが、実際には、内燃機関の外観形状や体格に対応して形状が変更されるものである。ただ、外観形状が変わっても、本発明の基本的な考え方は変わりないものである。 Although the details will be described later, the pump body 11 on the side of the high-pressure pump cover 13 houses a variable displacement oil feed pump, which is a high-pressure oil pump (corresponding to the first pump in the claims). A scavenging oil pump, which is a low-pressure oil pump (corresponding to a second pump in the claims), is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Here, the pump body 11 is formed in a substantially rectangular parallelepiped box shape, but in reality, the shape is changed according to the external shape and size of the internal combustion engine. However, even if the external shape changes, the basic idea of the present invention does not change.
 タンデム型オイルポンプ10は、高圧ポンプカバー13、ポンプボデイ11を貫通して、低圧ポンプカバー15まで延びる駆動軸16を備えており、この駆動軸16は内燃機関のクランク軸や、電動機等の外部駆動源によって回転駆動される。駆動軸16は、高圧オイルポンプと低圧オイルポンプとで共用されており、駆動軸16で、高圧オイルポンプと低圧オイルポンプのポンプロータをそれぞれ回転駆動している。 The tandem-type oil pump 10 has a drive shaft 16 extending through the high-pressure pump cover 13 and the pump body 11 to the low-pressure pump cover 15. The drive shaft 16 may be the crankshaft of an internal combustion engine or an external drive such as an electric motor. Rotationally driven by a source. The drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and the drive shaft 16 rotates the pump rotors of the high-pressure oil pump and the low-pressure oil pump, respectively.
 また、高圧ポンプカバー13と低圧ポンプカバー15の間に位置するポンプボデイ11の上面部11Uには、低圧オイルポンプの吸入部(請求項でいう第2吸入部に相当する)に接続された低圧側吸入孔17(請求項でいう第2吸入孔に相当する)が形成されている。 In addition, on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15, a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided. A suction hole 17 (corresponding to a second suction hole in the claims) is formed.
 また、ポンプボデイ11の上面部11Uには、内燃機機関のオイルパンに取り付けられる一対の取付部11Aが設けられており、この取付部11Aに固定ボルトを挿通して内燃機関に固定されるが、この取付部11Aに低圧側吸入孔17が形成されている。この一対の取付部11Aは、ポンプボデイ11に設けた駆動軸16に対して径方向の位置において、ポンプボデイ11を両側から挟むようにして設けられ、内燃機関に取り付けられる。したがって、タンデム型オイルポンプ10を内燃機機関に取り付けた時に、オイルパンのオイルを容易に低圧側吸入孔17に導くことができるようになっている。 A pair of attachment portions 11A to be attached to the oil pan of the internal combustion engine are provided on the upper surface portion 11U of the pump body 11. Fixing bolts are inserted through the attachment portions 11A to be fixed to the internal combustion engine. A low-pressure side suction hole 17 is formed in the mounting portion 11A. The pair of attachment portions 11A are provided so as to sandwich the pump body 11 from both sides at radial positions with respect to the drive shaft 16 provided in the pump body 11, and are attached to the internal combustion engine. Therefore, when the tandem-type oil pump 10 is attached to the internal combustion engine, the oil in the oil pan can be easily guided to the low-pressure side suction hole 17 .
 図2は、高圧ポンプカバー13が設けられた側のタンデム型オイルポンプ10の正面を示しており、この高圧ポンプカバー13は、ポンプボデイ11の正面部11Fに固定されて高圧オイルポンプの作動油室(ポンプ室)の一部を形成している。高圧ポンプカバー13は、駆動軸16の軸線に対して直交する面に沿ってポンプボデイ11に取り付けられている。 FIG. 2 shows the front of the tandem-type oil pump 10 on the side on which the high-pressure pump cover 13 is provided. (pump chamber). The high-pressure pump cover 13 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
 また、駆動軸16の駆動軸心に対して径方向で外側の位置の高圧ポンプカバー13には、高圧オイルポンプの吐出部(請求項でいう第1吐出部に相当する)に接続された高圧側吐出孔18(請求項でいう第1吐出孔に相当する)が形成されている。高圧側吐出孔18は、本実施形態では少なくとも内燃機関のメインオイルギャラリに加圧されたオイルを供給しているが、可変動弁機構にも供給されていても良い。 A high-pressure oil pump connected to a discharge portion (corresponding to a first discharge portion in the claims) of the high-pressure oil pump is provided on the high-pressure pump cover 13 located radially outside the drive shaft center of the drive shaft 16 . A side discharge hole 18 (corresponding to a first discharge hole in the claims) is formed. The high-pressure side discharge hole 18 supplies pressurized oil to at least the main oil gallery of the internal combustion engine in this embodiment, but it may also supply the variable valve mechanism.
 図3は、低圧ポンプカバー15が設けられた側のタンデム型オイルポンプ10の背面を示しており、この低圧ポンプカバー15は、ポンプボデイ11の背面部11Bに固定されて低圧オイルポンプの作動油室の一部を形成している。低圧ポンプカバー15は、駆動軸16の軸線に対して直交する面に沿ってポンプボデイ11に取り付けられている。また、駆動軸16の駆動軸心に対して径方向で外側の位置のポンプボデイ11の背面部11Bには、高圧オイルポンプの吸入部(請求項でいう第1吸入部に相当する)に接続された高圧側吸入孔19(請求項でいう第1吸入孔に相当する)が形成されている。 FIG. 3 shows the rear surface of the tandem-type oil pump 10 on the side where the low-pressure pump cover 15 is provided. forms part of The low-pressure pump cover 15 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 . A suction portion (corresponding to a first suction portion in the claims) of a high-pressure oil pump is connected to the rear surface portion 11B of the pump body 11 located radially outside the drive shaft center of the drive shaft 16. A high-pressure side suction hole 19 (corresponding to a first suction hole in the claims) is formed.
 また、低圧ポンプカバー15には、低圧オイルポンプの吐出部(請求項でいう第2吐出部に相当する)に接続された低圧側吐出孔20(請求項でいう第2吐出孔に相当する)が形成されている。 The low-pressure pump cover 15 has a low-pressure side discharge hole 20 (corresponding to the second discharge hole in the claims) connected to the discharge part (corresponding to the second discharge part in the claims) of the low-pressure oil pump. is formed.
 次に、図4~図7に基づき高圧オイルポンプと低圧オイルポンプの構成について説明する。図4は、低圧オイルポンプを組み付けた後における高圧オイルポンプの側の分解状態を示し、図6は、高圧オイルポンプを組み付けた後における低圧オイルポンプの側の分解状態を示している。ここで、上述した通り、高圧オイルポンプは、ベーンを使用したべーン型オイルポンプ(可変容量型)であり、低圧ポンプは、トロコイドギヤを使用したギヤ型オイルポンプである。 Next, the configurations of the high-pressure oil pump and the low-pressure oil pump will be described with reference to FIGS. 4 to 7. FIG. FIG. 4 shows the disassembled state of the high-pressure oil pump after the low-pressure oil pump is assembled, and FIG. 6 shows the disassembled state of the low-pressure oil pump after the high-pressure oil pump is assembled. Here, as described above, the high-pressure oil pump is a vane-type oil pump (variable displacement type) using vanes, and the low-pressure pump is a gear-type oil pump using a trochoid gear.
 図4に示しているように、ポンプボデイ11の一方側には、ベーン型オイルポンプのベーンポンプロータ収容部21(請求項でいう第1ポンプロータ収容部/高圧ポンプロータ収容部に相当する)が形成され、また、図6に示しているように、ポンプボデイ11の他方側には、ギヤ型オイルポンプのギヤポンプロータ収容部22(請求項でいう第2ポンプロータ収容部/低圧ポンプロータ収容部に相当する)が形成されてる。そして、ベーンポンプロータ収容部21とギヤポンプロータ収容部22を区画する区画壁23が、ベーンポンプロータ収容部21とギヤポンプロータ収容部22の間に形成されている。 As shown in FIG. 4, one side of the pump body 11 is formed with a vane pump rotor accommodating portion 21 (corresponding to the first pump rotor accommodating portion/high pressure pump rotor accommodating portion in the claims) of the vane type oil pump. Further, as shown in FIG. 6, on the other side of the pump body 11, a gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion in the claims) of the gear type oil pump is provided. do) is formed. A partition wall 23 that partitions the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 is formed between the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 .
 この区画壁23は、ポンプボデイ11と一体的に形成されているので、ベーン型オイルポンプは、ポンプボデイ11の一方側から組み付けることができ、ギヤ型オイルポンプは、ポンプボデイ11の他方側から組み付けることができる。そして、区画壁23には駆動軸16が貫通する軸受用貫通孔24(請求項でいう駆動軸用軸受部に相当する)が形成されている(図8参照)。 Since the partition wall 23 is integrally formed with the pump body 11, the vane-type oil pump can be assembled from one side of the pump body 11, and the gear-type oil pump can be assembled from the other side of the pump body 11. can. A bearing through hole 24 (corresponding to a drive shaft bearing portion in the claims) through which the drive shaft 16 passes is formed in the partition wall 23 (see FIG. 8).
 図4、及び図5を用いてベーン型オイルポンプの構成を説明するが、このベーン型オイルポンプは良く知られている構成であるので、説明は簡単に行う。ここで、図5は、周知のベーン型オイルポンプの軸線に直交する方向に断面したポンプ部分を示している。  The configuration of the vane-type oil pump will be described using FIGS. 4 and 5, but since this vane-type oil pump has a well-known configuration, the description will be brief. Here, FIG. 5 shows a pump portion of a well-known vane-type oil pump taken in a cross section perpendicular to the axis.
 図4、及び図5において、ポンプボデイ11に形成された凹形状のベーンポンプロータ収容部21に、ポンプ本体25が収納されるものである。ベーンポンプロータ収容部21には、略中央に駆動軸16と圧入嵌合されたベーンポンプロータ26(請求項でいう第1ポンプロータ/高圧ポンプロータに相当する)が配置され、また、その外側に揺動中心が駆動軸16と偏心した調整リング27が配置されている。このように、ベーンポンプロータ26は駆動軸16に対して圧入嵌合されているので、駆動軸線方向、及び回転方向の相対移動を規制するように強固に固定されている。 4 and 5, a pump body 25 is housed in a recessed vane pump rotor housing portion 21 formed in the pump body 11. As shown in FIG. A vane pump rotor 26 (corresponding to a first pump rotor/high-pressure pump rotor in the claims) press-fitted with the drive shaft 16 is arranged substantially in the center of the vane pump rotor accommodating portion 21, and a swinging rotor 26 is arranged on the outer side thereof. An adjustment ring 27 is arranged whose dynamic center is eccentric to the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 in this manner, it is firmly fixed so as to restrict relative movement in the drive axis direction and the rotational direction.
 調整リング27はピポット28を支点として揺動可能で、初期状態ではアーム部29とベーンポンプロータ収容部21内に配置された制御スプリング30の予圧によって、調整リング27は、図5で右方向に押されて偏心量は最大設定の状態にある。 The adjustment ring 27 is pivotable about the pivot 28, and in the initial state, the adjustment ring 27 is pushed rightward in FIG. and the eccentricity is at its maximum setting.
 ベーンポンプロータ26に設けられた複数のスリットにはベーン31が配置され、ベーンポンプロータ26の回転時には、ベーンポンプロータ26の外周面から出没しながら、先端が調整リング27の内周面を摺動する。停止時にもベーン31の全てが内側に後退しないように、ベーンリング32で支えられている。 The vanes 31 are arranged in a plurality of slits provided in the vane pump rotor 26, and when the vane pump rotor 26 rotates, the tips of the vanes slide on the inner peripheral surface of the adjustment ring 27 while appearing and disappearing from the outer peripheral surface of the vane pump rotor 26. All of the vanes 31 are supported by vane rings 32 so as not to retreat inward even when stopped.
 そして、ベーンポンプロータ26の外周面と調整リング27の内周面、及び2枚のベーン31で形成される空間(以下、作動油室と表記する)が、図5に示すように反時計回りのベーンポンプロータ26の回転に伴い容積が増減する。作動油室の容積が増加する範囲で、ポンプボデイ11の側面に吸入部33が設けられている。この吸入部33は、低圧オイルポンプの側のポンプボデイ11の背面部11Bに設けた高圧側吸入孔19に接続されている。 A space formed by the outer peripheral surface of the vane pump rotor 26, the inner peripheral surface of the adjustment ring 27, and the two vanes 31 (hereinafter referred to as the hydraulic oil chamber) rotates counterclockwise as shown in FIG. The volume increases and decreases as the vane pump rotor 26 rotates. A suction portion 33 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber increases. The suction portion 33 is connected to the high-pressure side suction hole 19 provided in the rear portion 11B of the pump body 11 on the low-pressure oil pump side.
 一方、作動油室の容積が減少する範囲で、ポンプボデイ11の側面に吐出部34が設けられている。この吐出部34は、高圧オイルポンプの側のポンプボデイ11の正面部11Fに設けた高圧側吐出孔18に接続されている。 On the other hand, a discharge portion 34 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber is reduced. This discharge portion 34 is connected to a high pressure side discharge hole 18 provided in the front portion 11F of the pump body 11 on the side of the high pressure oil pump.
 そして、ベーン型オイルポンプは、吸入孔19を介してオイルを吸い上げ、吐出孔18を経て、可変動弁機構、或いは内燃機関のメインオイルギャラリへオイルを吐出してポンプ作用を行うものである。尚、圧縮スプリング35は、ボール弁36を付勢しており、吐出圧が所定値以上に上昇すると、ボール弁36が開かれて吐出圧を低減するように構成されている。このベーン型オイルポンプの構成や動作は、良く知られているので、これ以上の説明は省略する。 The vane type oil pump sucks up oil through the suction hole 19 and discharges the oil through the discharge hole 18 to the variable valve mechanism or the main oil gallery of the internal combustion engine to perform a pumping action. The compression spring 35 biases the ball valve 36, and when the discharge pressure rises above a predetermined value, the ball valve 36 is opened to reduce the discharge pressure. Since the configuration and operation of this vane type oil pump are well known, further explanation will be omitted.
 このように、ベーン型オイルポンプは、ベーンポンプロータ収容部21に揺動可能に配置され、内部にベーン収容部が設けられた調整リング27と、調整リング27の内部に収容されると共に、駆動軸16に固定されたベーンポンプロータ26と、ベーンポンプロータ26の外周面に収容され、調整リング27とベーンポンプロータ26の間でオイルが導かれる複数の作動油室を形成する複数のベーン31と、を有し、駆動軸16の回転に伴って複数の作動油室のうち容積が増加する吸入孔19(図3参照)からオイルを吸入し、駆動軸16の回転に伴って複数の作動油室のうち容積が減少する吐出孔18(図2参照)からオイルを吐出するオイルポンプである。 Thus, the vane-type oil pump is arranged swingably in the vane pump rotor accommodating portion 21 and accommodated in the adjustment ring 27 having the vane accommodating portion therein, and the drive shaft and a plurality of vanes 31 accommodated on the outer peripheral surface of the vane pump rotor 26 and forming a plurality of hydraulic oil chambers through which oil is directed between the adjustment ring 27 and the vane pump rotor 26. Then, the oil is sucked from the suction hole 19 (see FIG. 3) whose volume increases among the plurality of hydraulic oil chambers as the drive shaft 16 rotates, and It is an oil pump that discharges oil from a discharge hole 18 (see FIG. 2) whose volume decreases.
 次に図6、及び図7を用いてギヤ型オイルポンプの構成を説明するが、このギヤ型オイルポンプも良く知られている構成であるので、説明は簡単に行う。ここで、図7は、周知のギヤ型オイルポンプの軸線に直交する方向に断面したポンプ部分を示している。 Next, the configuration of the gear-type oil pump will be described with reference to FIGS. 6 and 7. Since this gear-type oil pump is also well-known, the description will be brief. Here, FIG. 7 shows a pump portion of a known gear-type oil pump taken in a cross section perpendicular to the axis.
 図6において、ポンプボデイ11の背面部11Bの側には、ギヤポンプロータ収容部22が形成されており、この中にアウターロータ37(請求項でいう第2ポンプロータ/低圧ポンプロータの一部に相当する)が摺動回転自在に配置されている。 In FIG. 6, a gear pump rotor accommodating portion 22 is formed on the side of the rear portion 11B of the pump body 11, and an outer rotor 37 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is formed therein. ) are slidably and rotatably arranged.
 更に、アウターロータ37の内部には、インナーロータ38(請求項でいう第2ポンプロータ/低圧ポンプロータの一部に相当する)が配置されている。そして、図7にあるように、アウターロータ37の内周側には、インナーロータ38の外歯39よりも一つ多い5個の内歯40がそれぞれ形成されており、この内歯40がインナーロータ38の外歯39と噛み合うようになっている。 Further, inside the outer rotor 37, an inner rotor 38 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is arranged. As shown in FIG. 7, five internal teeth 40, one more than the external teeth 39 of the inner rotor 38, are formed on the inner peripheral side of the outer rotor 37. It meshes with the external teeth 39 of the rotor 38 .
 そして、インナーロータ38の外歯39とアウターロータ37の内歯40と間には複数の作動油室が形成され、インナーロータ38の回転に伴ってアウターロータ37が偏心して回転することにより、作動油室の容積が増減し、これによって連続的にオイルを吸入、及び吐出してポンプ作用を行うようになっている。 A plurality of working oil chambers are formed between the outer teeth 39 of the inner rotor 38 and the inner teeth 40 of the outer rotor 37. When the inner rotor 38 rotates, the outer rotor 37 rotates eccentrically, thereby The volume of the oil chamber increases and decreases, thereby continuously sucking and discharging oil to perform a pump action.
 ここで、インナーロータ38は駆動軸16によって回転駆動されるが、本実施形態では、駆動軸16に対して、インナーロータ38は、駆動軸線の方向に相対移動が可能で、かつ、駆動軸16に対して回転方向の相対移動が規制されている。具体的には、インナーロータ38が嵌合する駆動軸16は2面幅を有するような形状に形成されており、この部分でインナーロータ38は駆動軸方向に移動可能である。 Here, the inner rotor 38 is rotationally driven by the drive shaft 16. In the present embodiment, the inner rotor 38 can move relative to the drive shaft 16 in the direction of the drive axis, and the drive shaft 16 can rotate. Relative movement in the rotational direction is restricted with respect to Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a width across flats, and the inner rotor 38 can move in the drive shaft direction at this portion.
 ここで、2面幅とは、駆動軸16の軸方向に沿って形成され、互いに対向する面が平行な平面が形成された形状を意味している。したがって、インナーロータ38は、駆動軸16の軸方向に沿って移動可能で、しかも回転方向では、駆動軸16と一体的に回転することが可能となる。 Here, the width across flats means a shape formed along the axial direction of the drive shaft 16 and having planes facing each other parallel to each other. Therefore, the inner rotor 38 can move along the axial direction of the drive shaft 16 and rotate together with the drive shaft 16 in the rotational direction.
 このように、ギヤ型オイルポンプは、ギヤポンプロータ収容部22の内部に収容されると共に、内周側に複数の内歯40を含んだアウターロータ37と、アウターロータ37の内部に収容されると共に、駆動軸16上に駆動軸16の駆動軸線の方向に移動可能に設けられ、外周側に複数の内歯40と噛み合う複数の外歯39とを含んだインナーロータとを有したオイルポンプである。 In this way, the gear-type oil pump is housed inside the gear pump rotor housing portion 22 and also housed inside the outer rotor 37 including the plurality of internal teeth 40 on the inner peripheral side and the outer rotor 37. , and an inner rotor provided on a drive shaft 16 so as to be movable in the direction of the drive axis of the drive shaft 16 and having a plurality of external teeth 39 meshing with a plurality of internal teeth 40 on the outer peripheral side. .
 次に、図1に示すタンデム型オイルポンプ10の内部構成について、図8を用いて説明するが、この断面は図1に示すA-A断面である。 Next, the internal configuration of the tandem-type oil pump 10 shown in FIG. 1 will be described using FIG. 8, which is taken along line AA shown in FIG.
 図8において、ポンプボデイ11の正面部11Fには、ボルト12で高圧ポンプカバー13がポンプボデイ11に取り付けられ、同様に、ポンプボデイ11の背面部11Bには、ボルト14で低圧ポンプカバー15がポンプボデイ11に取り付けられている。そして、高圧ポンプカバー13の側のポンプボデイ11内には、高圧オイルポンプであるベーン型オイルポンプが収納されており、低圧ポンプカバー15の側のポンプボデイ11内には、低圧オイルポンプであるギヤ型オイルポンプが収納されている。 8, a high-pressure pump cover 13 is attached to the pump body 11 with bolts 12 on the front portion 11F of the pump body 11, and a low-pressure pump cover 15 is attached to the pump body 11 with bolts 14 on the rear portion 11B of the pump body 11. installed. A vane-type oil pump, which is a high-pressure oil pump, is accommodated in the pump body 11 on the high-pressure pump cover 13 side, and a gear-type oil pump, which is a low-pressure oil pump, is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Contains the oil pump.
 また、高圧ポンプカバー13、及びポンプボデイ11に形成された区画壁23を貫通して、低圧ポンプカバー15まで延びる駆動軸16を備えている。この駆動軸16は、高圧オイルポンプと低圧オイルポンプとで共用されており、駆動軸16で、高圧オイルポンプのベーンポンプロータ26と、低圧オイルポンプのインナーロータ38をそれぞれ回転駆動している。 It also has a drive shaft 16 extending through the high-pressure pump cover 13 and the partition wall 23 formed in the pump body 11 and extending to the low-pressure pump cover 15 . The drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and rotates the vane pump rotor 26 of the high-pressure oil pump and the inner rotor 38 of the low-pressure oil pump, respectively.
 駆動軸16には、断面が円形状の径大部16Lが形成されており、この径大部16Lは高圧ポンプカバー13に形成した孔部で軸受けされている。また、駆動軸16は、区画壁23に設けた軸受用貫通孔24で軸受けされている。このため、駆動軸16は、少なくとも、区画壁23と接触しているところまで断面が円形状に形成されている。 A large diameter portion 16L having a circular cross section is formed on the drive shaft 16, and the large diameter portion 16L is supported by a hole formed in the high pressure pump cover 13. Further, the drive shaft 16 is supported by a bearing through hole 24 provided in the partition wall 23 . Therefore, the drive shaft 16 has a circular cross section at least up to the point where it contacts the partition wall 23 .
 駆動軸16は、低圧ポンプカバー15に当接、或いは当接する直前まで延びており、この部分が軸受けされていない構成となっている。したがって、低圧ポンプカバー15の付近では、駆動軸16が振れる現象が生じる。駆動軸16が触れると、インナーロータ38とアウターロータ37の位置関係が変わり、異音や作動油室のオイル漏れが発生する恐れが生じる。 The drive shaft 16 abuts on the low-pressure pump cover 15 or extends until just before it abuts, and this portion is not supported by a bearing. Therefore, in the vicinity of the low-pressure pump cover 15, a phenomenon occurs in which the drive shaft 16 vibrates. If the drive shaft 16 touches, the positional relationship between the inner rotor 38 and the outer rotor 37 changes, which may cause abnormal noise and oil leakage from the working oil chamber.
 このため、本実施形態では、インナーロータ38の低圧ポンプカバー15とは反対側に、インナーロータ38からベーンポンプロータ26の側に向けて延びる径小軸部41(請求項でいう第2ポンプロータ径小軸部/低圧ポンプロータ径小軸部に相当する)が、一体的に形成されている。この径小軸部41は駆動軸16の軸線に直交する断面が円形状に形成されている。 For this reason, in the present embodiment, a small diameter shaft portion 41 (a second pump rotor diameter (corresponding to the small shaft portion/low-pressure pump rotor diameter small shaft portion) are integrally formed. The small-diameter shaft portion 41 has a circular cross section perpendicular to the axis of the drive shaft 16 .
 また、軸受用貫通孔24の低圧ポンプカバー15の側には、径小軸部41を軸受けするインナーロータ側軸受貫通孔42(請求項でいう第2ポンプロータ側軸受貫通孔/低圧ポンプロータ側軸受貫通孔に相当する)が形成されている。このインナーロータ側軸受貫通孔42は、軸受用貫通孔24より大径に設計され、ギヤポンプロータ収容部22より小径に設計されている。 On the side of the low-pressure pump cover 15 of the bearing through-hole 24, an inner rotor-side bearing through-hole 42 (second pump rotor-side bearing through-hole/low-pressure pump rotor-side corresponding to the bearing through hole) are formed. The inner rotor side bearing through-hole 42 is designed to have a larger diameter than the bearing through-hole 24 and a smaller diameter than the gear pump rotor accommodating portion 22 .
 したがって、インナーロータ側軸受貫通孔42とインナーロータ38の径小軸部41は、「インロー係合」となっている。「インロー係合」とは、「2つの部品が嵌りあう部分において、一方が凹形状、もう一方が凸形状であるような入れ子構造」のことを意味している。このように、駆動軸16の低圧ポンプカバー15の側の端部付近は、インナーロータ38の径小軸部41によって、インナーロータ側軸受貫通孔42に軸受けされることなり、駆動軸16に生じる振れを抑制することができる。 Therefore, the inner-rotor-side bearing through-hole 42 and the small-diameter shaft portion 41 of the inner rotor 38 are "spigot-engaged". "Spigot engagement" means "a nested structure in which two parts fit together, one of which has a concave shape and the other has a convex shape". In this way, the vicinity of the end portion of the drive shaft 16 on the low-pressure pump cover 15 side is supported by the inner rotor side bearing through hole 42 by the small diameter shaft portion 41 of the inner rotor 38 , so that the drive shaft 16 has a Shaking can be suppressed.
 また、インナーロータ38は図9に示すように、駆動軸16の軸方向に移動可能な構成とされている。つまり、駆動軸16の駆動軸線の方向に相対移動が可能で、かつ、駆動軸16に対して回転方向の相対移動を規制されている。具体的は、インナーロータ38が嵌合する駆動軸16には、2面幅の平面43を有するような形状に形成されており、この部分でインナーロータ38は駆動軸方向に移動可能である。 Also, the inner rotor 38 is configured to be movable in the axial direction of the drive shaft 16, as shown in FIG. That is, relative movement in the direction of the drive axis of the drive shaft 16 is possible, and relative movement in the rotational direction with respect to the drive shaft 16 is restricted. Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a flat surface 43 with a width across flats 43, and the inner rotor 38 can move in the drive shaft direction at this portion.
 図9において、駆動軸16は、円柱部16Cと2面幅部16Pとから構成されており、2面幅部16Pは、インナーロータ38に形成された嵌合孔44に若干の隙間を介して挿入される構成とされている。嵌合孔44は、2面幅部16Pと相似形状とされており、2面幅部16Pの寸法に対して、若干大きく設計されている。2面幅部16Pは、インナーロータ38の軸方向長さより長く形成されており、駆動面積を大きくして駆動軸16のトルクを十分に伝達できるようにされている。 In FIG. 9, the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P. It is configured to be inserted. The fitting hole 44 has a similar shape to the width across flat portion 16P and is designed to be slightly larger than the width across flat portion 16P. The width across flat portion 16</b>P is formed longer than the axial length of the inner rotor 38 to increase the drive area and sufficiently transmit the torque of the drive shaft 16 .
 また、円柱部16Cには、ベーンポンプロータ26が圧入嵌合されており、ベーンポンプロータ26は、円柱部16Cに対して軸方向、及び回転方向に移動できない構成となっている。更に、ベーンポンプロータ26と円柱部16Cは、セレーション結合されていると、更に強固な固定状態とすることができる。 A vane pump rotor 26 is press-fitted to the columnar portion 16C, and the vane pump rotor 26 is configured so as not to move in the axial direction and the rotational direction with respect to the columnar portion 16C. Furthermore, when the vane pump rotor 26 and the columnar portion 16C are serration-coupled, they can be in a more rigid fixed state.
 一方、駆動軸16の2面幅部16Pには、インナーロータ38に形成された嵌合孔44が、軸方向に移動可能に嵌合されている。したがって、図8に示すように、駆動軸16が軸方向(左方向、或いは右方向)に移動しても、インナーロータ38は駆動軸16によって、強制的に移動されることはない。尚、ベーンポンプロータ26は、駆動軸16に圧入固定されているので、駆動軸16と一緒に移動されることになる。 On the other hand, the width across flat portion 16P of the drive shaft 16 is fitted with a fitting hole 44 formed in the inner rotor 38 so as to be axially movable. Therefore, as shown in FIG. 8 , even if the drive shaft 16 moves in the axial direction (leftward or rightward), the inner rotor 38 is not forced to move by the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 , it is moved together with the drive shaft 16 .
 次に、このような構成とされたタンデム型オイルポンプの作用効果について、図10を用いて説明するが、ベーン型オイルポンプ、及びギヤ型オイルポンプの動作は良く知られているので、これらの説明は省略する。 Next, the effects of the tandem oil pump configured as described above will be described with reference to FIG. Description is omitted.
 さて、内燃機関や電動機によって駆動軸16が回転されると、駆動軸16の円柱部16Cに圧入嵌合されたベーンポンプロータ26と、駆動軸16の2面幅部16Pに、軸方向に移動可能に嵌合されたインナーロータ38は、駆動軸16の回転に同期して回転される。これによってポンプ作用が実行される。 Now, when the drive shaft 16 is rotated by an internal combustion engine or an electric motor, the vane pump rotor 26 press-fitted into the cylindrical portion 16C of the drive shaft 16 and the width across flat portion 16P of the drive shaft 16 can move in the axial direction. The inner rotor 38 fitted to is rotated in synchronization with the rotation of the drive shaft 16 . A pump action is thereby performed.
 そして、ベーンポンプロータ26の回転によってオイルは、破線矢印(Ohigh)に示すように、高圧側吸入孔19から吸入され、更にベーンポンプロータ26の回転によって高い圧力に加圧されて、破線矢印(Ohigh)に示すように高圧側吐出孔18(図1参照)から吐出される。 As the vane pump rotor 26 rotates, the oil is sucked from the high-pressure side suction hole 19 as shown by the broken line arrow (Ohigh), and is further pressurized to a high pressure by the rotation of the vane pump rotor 26, as shown by the broken line arrow (Ohigh). is discharged from the high-pressure side discharge hole 18 (see FIG. 1) as shown in FIG.
 同様に、インナーロータ38の回転によってオイルは、破線矢印(Olow)に示すように低圧側吸入孔17から吸入され、更に、インナーロータ38の回転によって低い圧力に加圧(大気圧、或いは負圧の場合もある)されて、破線矢印(Olow)に示すように低圧側吐出孔20から吐出される。 Similarly, the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17 as indicated by the dashed arrow (Olow), and the rotation of the inner rotor 38 further pressurizes the oil to a low pressure (atmospheric pressure or negative pressure). ) and is discharged from the low-pressure side discharge hole 20 as indicated by the dashed arrow (Olow).
 このように、タンデム型オイルポンプが動作している状態で、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、駆動軸16はベーンポンプロータ26に強固に圧入嵌合されているので、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と当接することになる。 In this way, when the drive shaft 16 moves in the axial direction (moves in the thrust direction) while the tandem oil pump is operating, the drive shaft 16 is firmly press-fitted into the vane pump rotor 26. Therefore, the side surface perpendicular to the axial direction of the vane pump rotor 26 comes into contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side.
 そして、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と回転しながら摺動することになる。このため、この摺動部分で焼き付き現象、或いは摩耗現象が発生する恐れがある。しかしながら、ベーンポンプロータ26によるオイルの吐出圧が高いので、ベーンポンプロータ26の側面が大きな面圧で、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面に当接しても、ベーンポンプロータ26の側面に、十分な量のオイルを供給することができて油膜切れを生じず、ベーンポンプロータ26の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 The side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion. However, since the oil discharge pressure of the vane pump rotor 26 is high, the side surface of the vane pump rotor 26 is in contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Also, a sufficient amount of oil can be supplied to the side surface of the vane pump rotor 26 so that oil film shortage does not occur, and the side surface of the vane pump rotor 26 can be suppressed from seizing or wearing.
 一方、タンデム型オイルポンプが動作している状態で、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、インナーロータ38は、駆動軸16の軸方向に移動可能に嵌入されているので、駆動軸16が移動してもインナーロータ38は駆動軸16の軸方向では自由である。このため、インナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と大きな面圧で当接することがない。 On the other hand, when the drive shaft 16 is moved in the axial direction (moved in the thrust direction) while the tandem oil pump is operating, the inner rotor 38 is fitted on the drive shaft 16 so as to be movable in the axial direction. Therefore, the inner rotor 38 is free in the axial direction of the drive shaft 16 even if the drive shaft 16 moves. Therefore, the side surface of the inner rotor 38 perpendicular to the axial direction does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure.
 そしてインナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と回転しながら摺動することになる。しかしながら、インナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と大きな面圧で当接していない。理由は、インナーロータ38が駆動軸16の軸方向で自由であるためである。 The side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side. However, the side surface perpendicular to the axial direction of the inner rotor 38 does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. The reason is that the inner rotor 38 is free in the axial direction of the drive shaft 16 .
 このため、インナーロータ38によるオイルの吐出圧が低くても、インナーロータ38の側面が大きな面圧で低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面に当接していないので、インナーロータ38の側面に、十分な量のオイルを供給することができて油膜切れを生じず、インナーロータ38の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Therefore, even if the oil discharge pressure of the inner rotor 38 is low, the side surface of the inner rotor 38 contacts the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. Therefore, it is possible to supply a sufficient amount of oil to the side surface of the inner rotor 38 without running out of the oil film, thereby suppressing the seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38. can.
 このように、本実施形態では、低圧オイルポンプを構成するインナーロータ38が駆動軸16の軸線方向に移動できるので、吐出圧が低くてもインナーロータ38の側面にオイルを十分に供給することができ、インナーロータ38の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 As described above, in this embodiment, since the inner rotor 38 constituting the low-pressure oil pump can move in the axial direction of the drive shaft 16, it is possible to sufficiently supply oil to the side surfaces of the inner rotor 38 even when the discharge pressure is low. Therefore, it is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38 .
 また、高圧オイルポンプを構成するベーンポンプロータ26の方は、吐出圧が高いので、ベーンポンプロータ26の側面が大きな面圧で摺動面に当接しても、ベーンポンプロータの側面にオイルを十分に供給することができ、ベーンポンプロータ26の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Further, since the vane pump rotor 26 constituting the high-pressure oil pump has a high discharge pressure, even if the side surface of the vane pump rotor 26 comes into contact with the sliding surface with a large surface pressure, the oil is sufficiently supplied to the side surface of the vane pump rotor. It is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the vane pump rotor 26 .
 次に、本実施形態の変形例を図11に基づき説明する。この変形例は駆動軸16の2面幅部16Pをスプラインに変更したものである。尚、図10と同じ参照番号は同一の構成部品を示しているので、重複する説明は省略する。 Next, a modified example of this embodiment will be described with reference to FIG. In this modification, the width across flat portion 16P of the drive shaft 16 is changed to a spline. Note that the same reference numerals as those in FIG. 10 indicate the same component parts, and redundant description will be omitted.
 図11において、駆動軸16の先端側には、スプライン部(雄スプライン部)16Sが形成されている。スプライン部16Sは、インナーロータ38の軸方向長さより長く形成されており、駆動軸16のトルクを十分に伝達できるようにされている。 In FIG. 11, a spline portion (male spline portion) 16S is formed on the tip side of the drive shaft 16. As shown in FIG. The spline portion 16S is formed longer than the axial length of the inner rotor 38 so that the torque of the drive shaft 16 can be sufficiently transmitted.
 そして、スプライン部16Sには、軸方向に直交する断面が歯車状のスプライン歯45が形成されている。もちろん、インナーロータ38にも、このスプライン歯45と係合する内歯を有する、スプライン歯45と相似形状の嵌入孔(雌スプライン部)が形成されていることはいうまでもない。 The spline portion 16S is formed with spline teeth 45 having a gear-shaped cross section perpendicular to the axial direction. Needless to say, the inner rotor 38 is also formed with an insertion hole (female spline portion) having a similar shape to the spline teeth 45 and having internal teeth that engage with the spline teeth 45 .
 このように、スプライン部16Sとインナーロータ38をスプライン結合させたので、インナーロータ38は、駆動軸16の回転によって回転されると共に、駆動軸16の軸方向に移動させることができる。このようなスプライン結合によっても、上述した作用、効果を奏することができる。 Since the spline portion 16S and the inner rotor 38 are spline-coupled in this way, the inner rotor 38 can be rotated by the rotation of the drive shaft 16 and can be moved in the axial direction of the drive shaft 16 . Such a spline connection can also provide the above-described functions and effects.
 次に比較例として、インナーロータ38が駆動軸16に圧入嵌合され、ベーンポンプロータ26が駆動軸16の軸方向に移動可能な構成とされたタンデム型オイルポンプについて、図12を用いて説明する。 Next, as a comparative example, a tandem oil pump in which the inner rotor 38 is press-fitted to the drive shaft 16 and the vane pump rotor 26 is configured to be movable in the axial direction of the drive shaft 16 will be described with reference to FIG. .
 図12において、駆動軸16は、円柱部16Cと2面幅部16Pとから構成されており、2面幅部16Pは、ベーンポンプロータ26に形成された嵌合孔に若干の隙間を介して挿入される構成とされている。嵌合孔は、2面幅部16Pと相似形状とされており、2面幅部16Pの寸法に対して若干大きく設計されている。また、円柱部16Cには、インナーロータ38が圧入嵌合されており、インナーロータ38は、円柱部16Cに対して軸方向、及び回転方向に移動できない構成となっている。 In FIG. 12, the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P. The width across flat portion 16P is inserted into a fitting hole formed in the vane pump rotor 26 with a slight clearance. It is configured to be The fitting hole has a shape similar to that of the width across flat portion 16P, and is designed to be slightly larger than the width across flat portion 16P. An inner rotor 38 is press-fitted to the cylindrical portion 16C, and the inner rotor 38 cannot move in the axial direction and the rotational direction with respect to the cylindrical portion 16C.
 上述した実施形態と同様に内燃機関や電動機によって駆動軸16が回転されると、駆動軸16の円柱部16Cに圧入嵌合されたインナーロータ38と、駆動軸16の2面幅部16Pに、軸方向に移動可能に嵌合されたベーンポンプロータ26は、駆動軸16の回転に同期して回転される。これによってポンプ作用が実行される。 When the drive shaft 16 is rotated by an internal combustion engine or an electric motor as in the above-described embodiment, the inner rotor 38 press-fitted into the cylindrical portion 16C of the drive shaft 16 and the width across flat portion 16P of the drive shaft 16 are rotated. A vane pump rotor 26 , which is axially movably fitted, is rotated in synchronization with the rotation of the drive shaft 16 . A pump action is thereby performed.
 そして、ベーンポンプロータ26の回転によってオイルは、高圧側吸入孔19から吸入され、更にベーンポンプロータ26の回転によって高い圧力に加圧されて、高圧側吐出孔18(図1参照)から吐出される。同様に、インナーロータ38の回転によってオイルは、低圧側吸入孔17から吸入され、更に、インナーロータ38の回転によって低い圧力に加圧されて、低圧側吐出孔20から吐出される。 The rotation of the vane pump rotor 26 causes the oil to be sucked in through the high-pressure side suction hole 19, further pressurized to a high pressure by the rotation of the vane pump rotor 26, and discharged from the high-pressure side discharge hole 18 (see FIG. 1). Similarly, the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17 , further pressurized to a low pressure by the rotation of the inner rotor 38 , and discharged from the low-pressure side discharge hole 20 .
 そして、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、ベーンポンプロータ26は、駆動軸16の軸方向に移動可能に嵌入されているので、駆動軸16が移動してもベーンポンプロータ26は駆動軸16の軸方向では自由である。このため、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と大きな面圧で当接することがない。 When the drive shaft 16 is moved in the axial direction (moved in the thrust direction), the vane pump rotor 26 is fitted in the drive shaft 16 so as to be movable in the axial direction. The rotor 26 is free in the axial direction of the drive shaft 16 . Therefore, the side surface perpendicular to the axial direction of the vane pump rotor 26 does not contact the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure.
 そしてベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と回転しながら摺動することになる。しかしながら、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と大きな面圧で当接していない。 The side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side. However, the side surface perpendicular to the axial direction of the vane pump rotor 26 does not contact the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure.
 このため、ベーンポンプロータ26によるオイルの吐出圧が高い上に、ベーンポンプロータ26の側面が大きな面圧で高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面に当接していないので、ベーンポンプロータ26の側面に、十分なオイルを供給することができ、ベーンポンプロータ26の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Therefore, the oil discharge pressure of the vane pump rotor 26 is high, and the side surface of the vane pump rotor 26 contacts the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Therefore, sufficient oil can be supplied to the side surface of the vane pump rotor 26, and the side surface of the vane pump rotor 26 can be prevented from being seized or worn.
 一方、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、駆動軸16はインナーロータ38に強固に圧入嵌合されているので、インナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と大きな面圧で当接することになる。 On the other hand, when the drive shaft 16 is moved in the axial direction (moved in the thrust direction), the side surface of the inner rotor 38 perpendicular to the axial direction is It comes into contact with the inner end face of the low-pressure pump cover 15 or the end face of the partition wall 23 on the inner rotor 38 side with a large surface pressure.
 そしてインナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と回転しながら摺動することになる。このため、この摺動部分で焼き付き現象、或いは摩耗現象が発生する恐れがある。 The side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion.
 すなわち、インナーロータ38の側面が、大きな面圧で低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面に当接すると、オイルの吐出圧が低いので、インナーロータ38の側面に、十分な量のオイルを供給することができず、インナーロータ38の側面に焼き付き現象、或いは摩耗現象が発生する恐れがある。 That is, when the side surface of the inner rotor 38 contacts the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure, the oil discharge pressure is low. Since a sufficient amount of oil cannot be supplied to the side surface of the inner rotor 38, the side surface of the inner rotor 38 may be seized or worn.
 このように、比較例においては、低圧ポンプのポンプロータに焼き付き現象、或いは摩耗現象が発生する恐れがあるが、本実施形態においては、低圧ポンプのポンプロータに焼き付き現象、或いは摩耗現象が発生する恐れを抑制することができる。尚、本実施形態においては、高圧ポンプと低圧ポンプの配置位置は逆にすることもできる。この場合においても、上述した構成は変わりがないものである。 Thus, in the comparative example, there is a possibility that the pump rotor of the low-pressure pump is seized or worn, but in the present embodiment, the pump rotor of the low-pressure pump is seized or worn. Fear can be controlled. In addition, in this embodiment, the arrangement positions of the high-pressure pump and the low-pressure pump can be reversed. Even in this case, the above configuration remains the same.
 以上述べた通り、本発明によれば、高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプにおいて、低圧オイルポンプのポンプロータが駆動軸の軸線方向に移動できるので、低圧オイルポンプのポンプロータの側面に十分な量のオイルを供給することができ、低圧オイルポンプのポンプロータの側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 As described above, according to the present invention, in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, the pump rotor of the low-pressure oil pump can move in the axial direction of the drive shaft. A sufficient amount of oil can be supplied to the side surface of the low-pressure oil pump, and it is possible to suppress the seizure phenomenon or wear phenomenon on the side surface of the pump rotor of the low-pressure oil pump.
 また、高圧オイルポンプの方は、吐出圧が高いので、高圧オイルポンプのポンプロータの側面が大きな面圧でポンプ収納部に当接しても、高圧オイルポンプのポンプロータの側面に十分な量のオイルを供給することができ、高圧オイルポンプのポンプロータの側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Also, since the high-pressure oil pump has a high discharge pressure, even if the side surface of the pump rotor of the high-pressure oil pump abuts against the pump storage section with a large surface pressure, a sufficient amount of oil is applied to the side surface of the pump rotor of the high-pressure oil pump. Oil can be supplied, and seizure phenomenon or wear phenomenon can be suppressed on the side surface of the pump rotor of the high-pressure oil pump.
 尚、本発明は上記したいくつかの実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成について、他の構成の追加、削除、置換をすることも可能である。 It should be noted that the present invention is not limited to the several embodiments described above, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Other configurations can be added, deleted, or replaced with respect to the configuration of each embodiment.

Claims (18)

  1.  第1ポンプロータ収容部、及び第2ポンプロータ収容部と、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部を区画する区画壁と、前記区画壁に形成された、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部との間を接続する軸受用貫通孔と、を有したポンプボデイと、
     前記軸受用貫通孔に回転可能に配置され、外部の動力源によって回転駆動される駆動軸と、
     前記第1ポンプロータ収容部に配置され、前記駆動軸に対して駆動軸線方向、及び回転方向の相対移動を規制されて固定された第1ポンプロータを有し、前記第1ポンプロータが前記駆動軸によって回転駆動されることにより、第1吸入部から導かれたオイルを加圧して第1吐出部から吐出する第1オイルポンプと、
     前記第2ポンプロータ収容部に配置され、前記駆動軸に対して駆動軸線方向に相対的に移動可能で、かつ、前記駆動軸に対して相対的に回転方向の相対移動を規制された第2ポンプロータを有し、前記第2ポンプロータが前記駆動軸によって回転駆動されることにより、第2吸入部から導かれたオイルを前記第1オイルポンプの前記第1吐出部から吐出される圧力よりも低い圧力で第2吐出部から吐出する第2オイルポンプと、を備えた
    ことを特徴とするタンデム型オイルポンプ。
    a first pump rotor accommodating portion and a second pump rotor accommodating portion; a partition wall partitioning the first pump rotor accommodating portion and the second pump rotor accommodating portion; and the first pump formed in the partition wall. a pump body having a bearing through hole connecting between the rotor accommodating portion and the second pump rotor accommodating portion;
    a drive shaft rotatably arranged in the bearing through hole and driven to rotate by an external power source;
    A first pump rotor disposed in the first pump rotor accommodating portion and fixed relative to the drive shaft in a direction of the drive axis and a direction of rotation thereof, wherein the first pump rotor is the drive shaft. a first oil pump that is rotationally driven by the shaft to pressurize the oil introduced from the first suction portion and discharge it from the first discharge portion;
    A second rotor that is disposed in the second pump rotor accommodating portion, is movable relative to the drive shaft in the drive axis direction, and is restricted from moving relative to the drive shaft in the rotational direction. A pump rotor is provided, and the second pump rotor is rotationally driven by the drive shaft so that the oil introduced from the second suction portion is reduced by the pressure discharged from the first discharge portion of the first oil pump. a second oil pump that discharges from the second discharge portion at a lower pressure than the second oil pump.
  2.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記駆動軸は、固定部を有し、
     前記第1ポンプロータは、前記駆動軸の固定部に圧入して固定され、
     前記駆動軸は、一対の2面幅部を有し、
     前記第2ポンプロータは、一対の前記2面幅部と噛み合う一対の2面幅嵌合部を備え、一対の前記2面幅部に対して移動可能に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The drive shaft has a fixed portion,
    The first pump rotor is press-fitted and fixed to a fixed portion of the drive shaft,
    The drive shaft has a pair of width across flats parts,
    The second pump rotor is provided with a pair of width across flats fitting portions that mesh with the pair of width across flats portions, and is movably fitted to the pair of width across flats portions. Tandem type oil pump.
  3.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記駆動軸は、固定部を有し、
     前記第1ポンプロータは、前記駆動軸の固定部に圧入して固定され、
     前記駆動軸は、前記駆動軸の延びる方向に設けられた雄スプライン部を有し、
     前記第2ポンプロータは、前記雄スプライン部と噛み合う雌スプライン部を備え、前記雄スプライン部に対して移動可能に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The drive shaft has a fixed portion,
    The first pump rotor is press-fitted and fixed to a fixed portion of the drive shaft,
    The drive shaft has a male spline portion provided in the direction in which the drive shaft extends,
    The tandem-type oil pump, wherein the second pump rotor includes a female spline portion that meshes with the male spline portion, and is movably fitted to the male spline portion.
  4.  請求項2に記載のタンデム型オイルポンプにおいて、
     前記駆動軸に形成された前記2面幅部の軸方向の長さは、前記第2ポンプロータの軸方向の長さより長く形成されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 2,
    A tandem type oil pump, wherein the axial length of the width across flat portion formed on the drive shaft is longer than the axial length of the second pump rotor.
  5.  請求項3に記載のタンデム型オイルポンプにおいて、
     前記駆動軸に形成された前記雄スプライン部の軸方向の長さは、前記第2ポンプロータの軸方向の長さより長く形成されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 3,
    A tandem-type oil pump, wherein the axial length of the male spline portion formed on the drive shaft is longer than the axial length of the second pump rotor.
  6.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記第2ポンプロータ収容部と前記軸受用貫通孔との間に設けられ、前記軸受用貫通孔の直径よりも大きく、しかも前記第2ポンプロータ収容部の直径よりも小さい前記第2ポンプロータ収容部と連続して形成された第2ポンプロータ側軸受用貫通孔が形成され、
     前記第2ポンプロータには、前記第2ポンプロータと一体に形成された第2ポンプロータ径小軸部が形成され、前記第2ポンプロータ径小軸部が前記第2ポンプロータ側軸受用貫通孔に収容されて軸受けされている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The pump body is provided between the second pump rotor accommodating portion and the bearing through hole, and has a diameter larger than that of the bearing through hole and smaller than that of the second pump rotor accommodating portion. a second pump rotor side bearing through hole formed continuously with the second pump rotor accommodating portion;
    The second pump rotor is formed with a second pump rotor diameter small shaft portion integrally formed with the second pump rotor, and the second pump rotor diameter small shaft portion is a through hole for the second pump rotor side bearing. A tandem-type oil pump characterized by being housed in a hole and bearing.
  7.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記第1ポンプロータ収容部を閉塞する第1ポンプカバーと、前記第1ポンプカバーと反対側に設けられ、前記第2ポンプロータ収容部を閉塞する第2ポンプカバーとが取り付けられ、
     前記第1ポンプロータは、前記第1ポンプカバーと、前記区画壁との間に配置されると共に、前記駆動軸に固定され、
     前記第2ポンプロータは、前記第2ポンプカバーと、前記区画壁との間に配置されると共に、前記駆動軸と相対移動が可能なように前記駆動軸に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    Attached to the pump body are a first pump cover that closes the first pump rotor accommodating portion, and a second pump cover that is provided on the opposite side of the first pump cover and closes the second pump rotor accommodating portion. be
    The first pump rotor is arranged between the first pump cover and the partition wall and fixed to the drive shaft,
    The second pump rotor is arranged between the second pump cover and the partition wall, and is fitted to the drive shaft so as to be able to move relative to the drive shaft. tandem type oil pump.
  8.  請求項7に記載のタンデム型オイルポンプにおいて、
     前記第1ポンプカバーと前記第2ポンプカバーは、前記駆動軸の軸線に対して直交する面に沿って前記ポンプボデイに取り付けられており、
     前記第1ポンプカバーには、前記駆動軸に対して径方向の位置に開口する前記第1吐出部と繋がる第1吐出孔が設けられ、
     前記第2ポンプカバーが設けられた前記ポンプボデイの側には、前記駆動軸に対して径方向の位置に開口する前記第1吸入部と繋がる第1吸入孔が設けられている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 7,
    The first pump cover and the second pump cover are attached to the pump body along a plane perpendicular to the axis of the drive shaft,
    The first pump cover is provided with a first discharge hole that opens at a radial position with respect to the drive shaft and is connected to the first discharge portion,
    A first suction hole, which opens at a radial position with respect to the drive shaft and communicates with the first suction portion, is provided on the side of the pump body on which the second pump cover is provided. Tandem type oil pump.
  9.  請求項8に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記駆動軸に対して径方向の位置において、前記ポンプボデイを挟むようにして設けられ、内燃機関に取り付けられる一対の取付部と、
     前記取付部の少なくとも1つの前記取付部には、前記第2オイルポンプの前記第2吸入部と繋がる第2吸入孔が設けられている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 8,
    a pair of mounting portions which are provided on the pump body so as to sandwich the pump body at positions in a radial direction with respect to the drive shaft and which are mounted on an internal combustion engine;
    A tandem-type oil pump, wherein at least one of the mounting portions is provided with a second suction hole communicating with the second suction portion of the second oil pump.
  10.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記第1オイルポンプは、
     前記第1ポンプロータ収容部に揺動可能に配置され、内部にロータ収容部が設けられた調整リングと、前記調整リングの内部に収容されポンプロータと、前記ポンプロータの外周面に収容され、前記調整リングと前記ポンプロータの間でオイルが導かれる複数の作動油室を形成する複数のベーンと、を有し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が増加する前記作動油室に開口する前記第1吸入部からオイルを吸入し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が減少する前記作動油室に開口する前記第1吐出部からオイルを吐出するベーン型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The first oil pump is
    an adjustment ring arranged swingably in the first pump rotor accommodation portion and having a rotor accommodation portion provided therein; a pump rotor accommodated inside the adjustment ring; an outer peripheral surface of the pump rotor; a plurality of vanes forming a plurality of hydraulic fluid chambers through which oil is guided between the adjustment ring and the pump rotor, wherein the volumes of the plurality of hydraulic fluid chambers increase as the drive shaft rotates. Oil is sucked from the first suction portion that opens to the hydraulic oil chamber that is open to the hydraulic oil chamber, and the first discharge opens to the hydraulic oil chamber that decreases in volume among the plurality of hydraulic oil chambers as the drive shaft rotates. A tandem-type oil pump characterized by being a vane-type oil pump that discharges oil from a part.
  11.  請求項10に記載のタンデム型オイルポンプにおいて、
     前記第2オイルポンプは、
     前記第2ポンプロータ収容部に収容される前記第2ポンプロータとして、内周側に複数の内歯を含んだアウターロータと、前記アウターロータの内部に収容されると共に、前記駆動軸の駆動軸線の方向に移動可能に設けられ、外周側に複数の前記内歯と噛み合う複数の外歯とを有するギヤ型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 10,
    The second oil pump is
    As the second pump rotor accommodated in the second pump rotor accommodation portion, an outer rotor including a plurality of internal teeth on the inner peripheral side, and an outer rotor accommodated inside the outer rotor and along the drive axis of the drive shaft A tandem-type oil pump characterized by being a gear-type oil pump provided movably in the direction of and having a plurality of external teeth meshing with the plurality of internal teeth on an outer peripheral side.
  12.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記第1オイルポンプは、少なくとも内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプであり、
     前記第2オイルポンプは、内燃機関のオイルパンからオイルを回収するスカベンジングオイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The first oil pump is a variable capacity oil feed pump that supplies pressurized oil to at least a main oil gallery of the internal combustion engine,
    A tandem oil pump, wherein the second oil pump is a scavenging oil pump that collects oil from an oil pan of an internal combustion engine.
  13.  高圧ポンプロータ収容部、及び低圧ポンプロータ収容部と、前記高圧ポンプロータ収容部と前記低圧ポンプロータ収容部を区画する区画壁と、前記区画壁に形成された、前記高圧ポンプロータ収容部と前記低圧ポンプロータ収容部との間を接続する軸受用貫通孔と、を有したポンプボデイと、
     前記軸受用貫通孔に回転可能に配置され、外部の動力源によって回転駆動される駆動軸と、
     前記高圧ポンプロータ収容部に配置され、前記駆動軸に対して圧入固定された高圧ポンプロータを有し、前記高圧ポンプロータが前記駆動軸によって回転駆動されることにより第1の吐出圧でポンプ作用を行う高圧オイルポンプと、
     前記低圧ポンプロータ収容部に配置され、前記駆動軸に対して駆動軸線方向に移動可能に取り付けられた低圧ポンプロータを有し、前記低圧ポンプロータが前記駆動軸によって回転駆動されることにより前記第1の吐出圧より低い第2の吐出圧でポンプ作用を行う低圧オイルポンプと、を備えた
    ことを特徴とするタンデム型オイルポンプ。
    a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a bearing through-hole connecting with the low-pressure pump rotor accommodating portion;
    a drive shaft rotatably arranged in the bearing through hole and driven to rotate by an external power source;
    A high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and press-fitted to the drive shaft is provided, and the high-pressure pump rotor is rotationally driven by the drive shaft to act as a pump at a first discharge pressure. a high-pressure oil pump that performs
    It has a low-pressure pump rotor disposed in the low-pressure pump rotor accommodating portion and mounted movably in the drive axis direction with respect to the drive shaft. and a low-pressure oil pump that performs a pumping action at a second discharge pressure lower than the first discharge pressure.
  14.  請求項13に記載のタンデム型オイルポンプにおいて、
     前記高圧オイルポンプは、少なくとも内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプであり、
     前記低圧オイルポンプは、前記内燃機関のオイルパンからオイルを回収するスカベンジングオイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 13,
    The high-pressure oil pump is a variable displacement oil feed pump that supplies pressurized oil to at least a main oil gallery of the internal combustion engine,
    A tandem-type oil pump, wherein the low-pressure oil pump is a scavenging oil pump that collects oil from an oil pan of the internal combustion engine.
  15.  請求項14に記載のタンデム型オイルポンプにおいて、
     可変容量型の前記オイルフィードポンプは、ベーン型オイルポンプであり、
     前記スカベンジングオイルポンプは、ギヤ型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 14,
    the variable displacement oil feed pump is a vane oil pump,
    A tandem-type oil pump, wherein the scavenging oil pump is a gear-type oil pump.
  16.  請求項13に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記低圧ポンプロータ収容部と前記軸受用貫通孔との間に設けられ、前記軸受用貫通孔の直径よりも大きく、しかも前記低圧ポンプロータ収容部の直径よりも小さい前記低圧ポンプロータ収容部と連続して形成された低圧ポンプロータ側軸受用貫通孔が形成され、
     前記低圧ポンプロータには、前記低圧ポンプロータと一体に形成された低圧ポンプロータ径小軸部が形成され、前記低圧ポンプロータ径小軸部が前記低圧ポンプロータ側軸受用貫通孔に収容されて軸受けされている
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 13,
    The low-pressure pump is provided in the pump body between the low-pressure pump rotor accommodating portion and the bearing through-hole, and has a diameter larger than that of the bearing through-hole and smaller than that of the low-pressure pump rotor accommodating portion. a low-pressure pump rotor-side bearing through-hole formed continuously with the rotor accommodating portion,
    The low-pressure pump rotor is formed with a low-pressure pump rotor diameter small shaft portion integrally formed with the low-pressure pump rotor, and the low-pressure pump rotor diameter small shaft portion is accommodated in the low-pressure pump rotor side bearing through hole. A tandem type oil pump characterized by bearings.
  17.  請求項16に記載のタンデム型オイルポンプにおいて、
     前記駆動軸は、円柱部と、スプライン部、或いは2面幅部を備えており、
     前記円柱部には、前記高圧ポンプロータが圧入固定されており、
     前記スプライン部、或いは前記2面幅部には、前記スプライン部、或いは前記2面幅部に対して相似形状の嵌合孔を備えた前記低圧ポンプロータが、前記駆動軸に対して軸方向で移動可能に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 16,
    The drive shaft has a cylindrical portion and a spline portion or a width across flat portion,
    The high-pressure pump rotor is press-fitted and fixed to the cylindrical portion,
    In the spline portion or the width across flat portion, the low-pressure pump rotor provided with a fitting hole having a similar shape to the spline portion or the width across flat portion extends in the axial direction with respect to the drive shaft. A tandem-type oil pump, characterized by being movably fitted.
  18.  請求項17に記載のタンデム型オイルポンプにおいて、
     前記スプライン部、或いは前記2面幅部の軸方向の長さは、前記低圧ポンプロータの軸方向の長さより長く形成されている
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 17,
    A tandem oil pump, wherein the axial length of the spline portion or the width across flat portion is longer than the axial length of the low-pressure pump rotor.
PCT/JP2022/002864 2021-02-16 2022-01-26 Tandem type oil pump WO2022176545A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280015388.5A CN116897248A (en) 2021-02-16 2022-01-26 Tandem oil pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021022479A JP2022124700A (en) 2021-02-16 2021-02-16 Tandem type oil pump
JP2021-022479 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176545A1 true WO2022176545A1 (en) 2022-08-25

Family

ID=82931616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002864 WO2022176545A1 (en) 2021-02-16 2022-01-26 Tandem type oil pump

Country Status (3)

Country Link
JP (1) JP2022124700A (en)
CN (1) CN116897248A (en)
WO (1) WO2022176545A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153281A (en) * 1988-12-06 1990-06-12 Yamada Seisakusho:Kk Trochoid type oil pump
JP2006170147A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Oil pump
JP2012193702A (en) * 2011-03-17 2012-10-11 Hitachi Automotive Systems Ltd Electric pump
JP2016000989A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Automatic transmission oil pump
JP2016003766A (en) * 2014-06-16 2016-01-12 現代自動車株式会社Hyundaimotor Company Oil pump for automatic transmission
WO2017013932A1 (en) * 2015-07-21 2017-01-26 日立オートモティブシステムズ株式会社 Pump device
WO2018123682A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 Oil pump and balancer unit of oil pump integrated type

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153281A (en) * 1988-12-06 1990-06-12 Yamada Seisakusho:Kk Trochoid type oil pump
JP2006170147A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Oil pump
JP2012193702A (en) * 2011-03-17 2012-10-11 Hitachi Automotive Systems Ltd Electric pump
JP2016000989A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Automatic transmission oil pump
JP2016003766A (en) * 2014-06-16 2016-01-12 現代自動車株式会社Hyundaimotor Company Oil pump for automatic transmission
WO2017013932A1 (en) * 2015-07-21 2017-01-26 日立オートモティブシステムズ株式会社 Pump device
WO2018123682A1 (en) * 2016-12-28 2018-07-05 日立オートモティブシステムズ株式会社 Oil pump and balancer unit of oil pump integrated type

Also Published As

Publication number Publication date
JP2022124700A (en) 2022-08-26
CN116897248A (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US8535030B2 (en) Gerotor hydraulic pump with fluid actuated vanes
CN112088250B (en) Scroll compressor having a discharge port
US20150198161A1 (en) Scroll type compressor
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
WO2022176544A1 (en) Tandem-type oil pump
JP4431160B2 (en) Fluid machinery
JP4014109B2 (en) Vane type vacuum pump
JP4930022B2 (en) Fluid machinery
JP5707337B2 (en) Lubricating oil supply structure for vane compressor
WO2022176545A1 (en) Tandem type oil pump
US20180163543A1 (en) Vane pump with one or more less restricted vanes
JP2016121608A (en) Variable capacity pump
US20160032923A1 (en) Oil pump
EP2818719A1 (en) Oil pump
WO2020110180A1 (en) Internal gear pump
JP5781334B2 (en) Oil rotary vacuum pump
CN114746653B (en) Compressor
CN111630276B (en) Pump device
WO2016181428A1 (en) Vane pump for compressible fluid
JP2007162679A (en) Fluid machine
CN114761691B (en) Compressor
CN112020617A (en) Gear, balancing device, and balancing device with oil pump
US20210033091A1 (en) Oil pump
JP2010185297A (en) Internal gear pump
JPH08200268A (en) Vane pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015388.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755869

Country of ref document: EP

Kind code of ref document: A1