WO2020110180A1 - Internal gear pump - Google Patents

Internal gear pump Download PDF

Info

Publication number
WO2020110180A1
WO2020110180A1 PCT/JP2018/043438 JP2018043438W WO2020110180A1 WO 2020110180 A1 WO2020110180 A1 WO 2020110180A1 JP 2018043438 W JP2018043438 W JP 2018043438W WO 2020110180 A1 WO2020110180 A1 WO 2020110180A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring gear
housing
gear
pressure
peripheral surface
Prior art date
Application number
PCT/JP2018/043438
Other languages
French (fr)
Japanese (ja)
Inventor
啓 吉田
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to CN201880097168.5A priority Critical patent/CN112639290B/en
Priority to EP18941686.0A priority patent/EP3828415B1/en
Priority to PCT/JP2018/043438 priority patent/WO2020110180A1/en
Priority to JP2019513468A priority patent/JP6526371B1/en
Publication of WO2020110180A1 publication Critical patent/WO2020110180A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/101Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent-shaped filler element, located between the inner and outer intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/082Details specially related to intermeshing engagement type machines or pumps
    • F04C2/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/102Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member the two members rotating simultaneously around their respective axes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • F04C2240/56Bearing bushings or details thereof

Definitions

  • the technology disclosed here relates to internal gear pumps.
  • Patent Document 1 describes an internal gear pump including a drive gear having external teeth and a driven gear having internal teeth.
  • the internal gear pump of Patent Document 1 has a pocket formed on the circumferential surface of the pump housing on the side opposite to the meshing point where the drive gear and the driven gear mesh with each other.
  • the pocket communicates with the discharge port of the internal gear pump.
  • a crescent-shaped space is formed between the driven gear and the drive gear, which seals when the tooth tips of the driven gear and the tooth tips of the drive gear come into contact with each other.
  • the high-pressure hydraulic fluid discharged from the pocket pushes the driven gear so that the tooth tip of the driven gear is pressed against the tooth tip of the drive gear.
  • the hydraulic oil in the crescent-shaped space is suppressed from leaking between the tooth tips of the driven gear and the tooth tips of the drive gear.
  • Patent Document 2 also describes an internal gear pump that suppresses leakage of hydraulic oil inside the housing.
  • the internal gear pump of Patent Document 2 has an oil groove formed on the inner peripheral surface of the housing.
  • the oil groove is connected to the discharge port and extends in the circumferential direction to a position corresponding to the crescent-shaped space.
  • high-pressure hydraulic oil introduced into the housing through the oil groove pushes the outer rotor.
  • the hydraulic oil is suppressed from leaking between the inner teeth of the outer rotor and the outer teeth of the inner rotor.
  • the internal gear pump described in Patent Document 3 has two pressure balance grooves on the inner peripheral surface of the housing.
  • the two pressure balance grooves are provided at intervals in the circumferential direction in a high pressure region where the discharge port opens.
  • Each of the two pressure balance grooves is connected to the discharge port.
  • an internal gear pump that supplies high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing is operated at a low rotational speed.
  • the pressure increasing region where the outer teeth of the pinion gear and the inner teeth of the ring gear are disengaged from each other, it is possible to prevent the hydraulic oil from leaking between the outer teeth and the inner teeth.
  • the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing becomes small even in the high pressure region, so that the suction port opens from the high pressure region of the hydraulic oil. Leakage to the low pressure region can be suppressed.
  • the technology disclosed here suppresses leakage of hydraulic oil in the housing of the internal gear pump.
  • the "wedge effect” means that as the ring gear rotates, the hydraulic oil is dragged into the narrow gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing, and the outer peripheral surface of the ring gear and the inner peripheral surface of the housing. A phenomenon in which the pressure of the oil film between the surfaces increases.
  • the inventor of the present application decided to partially widen the distance between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing in order to reduce the wedge effect. Then, it is confirmed that by providing a concave portion at a specific position on the inner peripheral surface of the housing, leakage of hydraulic oil is suppressed in the housing of the internal gear pump that is operating at a high rotational speed, and disclosed herein. The technology was completed.
  • the internal gear pump disclosed herein has a pinion gear having external teeth, a ring gear having internal teeth meshing with the external teeth provided on an inner peripheral surface thereof, and a pinion gear and the ring gear that are meshed with each other.
  • a housing provided and having a crescent against which each of the outer teeth and the inner teeth abuts, and a sliding surface on which the outer peripheral surface of the ring gear slides, and a housing that rotatably accommodates the pinion gear and the ring gear,
  • a high-pressure oil supply part having an inlet opening to the sliding surface and supplying high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the sliding surface through the inlet, and an outer peripheral surface of the ring gear And a recess provided in the sliding surface so that the distance between the sliding surface and the sliding surface widens.
  • the space in the housing is divided into three regions of a low pressure region where the suction port is open, a high pressure region where the discharge port is open, and a pressure rise region where the crescent is disposed, and the introduction port is Located in the boost region, the recess is located in the high pressure region.
  • the pinion gear and the ring gear rotate in the direction from the low pressure region to the high pressure region via the boost region.
  • high-pressure hydraulic oil is introduced between the outer peripheral surface of the ring gear and the sliding surface of the housing from the inlet located in the boost region.
  • the high-pressure hydraulic oil pushes and moves the ring gear from the outer periphery of the pressurizing region toward the center of rotation of the ring gear, and the inner teeth of the ring gear are pressed against the crescent.
  • hydraulic oil is suppressed from leaking between the inner teeth of the ring gear and the crescent.
  • hydraulic oil is suppressed from leaking from between the outer peripheral surface of the ring gear and the sliding surface of the housing.
  • the ring gear is suppressed from being pushed from the outer periphery of the high pressure region toward the center of rotation of the ring gear when the internal gear pump is operating at a high rotation speed.
  • hydraulic oil is suppressed from leaking through the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing.
  • leakage of hydraulic oil from between the inner teeth of the ring gear and the crescent is suppressed.
  • the hydraulic oil introduced between the outer peripheral surface of the ring gear and the sliding surface of the housing through the inlet also functions as lubricating oil between the ring gear and the housing. The seizure between the ring gear and the housing is suppressed.
  • the recess may have a groove shape.
  • the groove-shaped recess can effectively reduce the wedge effect. Further, the groove-shaped recess can be easily formed on the sliding surface of the housing.
  • the recess may be unconnected to the discharge port.
  • the concave portion has the function of reducing the wedge effect by widening the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing.
  • the recess does not require the function of introducing high-pressure hydraulic oil into the housing.
  • the high pressure hydraulic oil introduced from the recess pushes the ring gear from the outer periphery of the high pressure area toward the center of rotation of the ring gear.
  • the high pressure hydraulic oil introduced from the recess pushes the ring gear from the outer periphery of the high pressure area toward the center of rotation of the ring gear.
  • the high pressure region there is a risk that hydraulic fluid may be promoted to leak through the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing.
  • the pressure increasing region there is a risk that the hydraulic oil may be promoted to leak from between the inner teeth of the ring gear and the crescent.
  • the high-pressure oil supply unit may have an oil passage that connects the discharge port and the introduction port, and a throttle that is provided in the oil passage and that reduces the pressure of the hydraulic oil.
  • the pressure of the hydraulic oil introduced into the housing through the inlet is too high, the force at which the tooth tips of the ring gear are pressed against the crescent becomes too strong. Wear of the teeth of the ring gear is likely to progress. Therefore, the pressure of the hydraulic oil introduced into the housing may be adjusted by providing a throttle in the oil passage.
  • the outer peripheral surface of the ring gear may be provided with a lubricating coating.
  • the ring gear can be introduced without introducing hydraulic oil into the housing through the two balance grooves. It is possible to suppress the seizure between the housing and the housing.
  • FIG. 1 is a sectional view of an internal gear pump.
  • FIG. 2 is an end view taken along the line II-II of FIG.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2 and a view seen from the direction A.
  • FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2 and a view seen from the direction B.
  • FIG. 5 is an enlarged cross-sectional view showing an enlarged vicinity of a meshing portion of the pinion gear and the ring gear during operation of the internal gear pump.
  • FIG. 6 is a cross-sectional view showing the configuration of a high-pressure oil supply unit different from that in FIG. 3 and a view seen from the direction C.
  • FIG. 1 is a cross-sectional view of the internal gear pump 1.
  • FIG. 2 is an end view taken along the line II-II of FIG.
  • the internal gear pump 1 includes a shaft 2, a pinion gear 3, a ring gear 4, a gear housing 5, a front cover 6, and a rear cover 7.
  • the shaft 2, the pinion gear 3, and the ring gear 4 are not illustrated with hatching showing end faces for easy understanding.
  • the shaft 2 extends in the left-right direction on the paper surface of FIG.
  • the shaft 2 is connected to a prime mover (not shown).
  • the prime mover is, for example, an electric motor.
  • the pinion gear 3 is fixed to the shaft 2.
  • the pinion gear 3 and the shaft 2 are coaxial.
  • the pinion gear 3 rotates with the shaft 2.
  • the pinion gear 3 has external teeth 31.
  • the ring gear 4 meshes with the pinion gear 3.
  • the ring gear 4 is arranged eccentrically with respect to the shaft 2.
  • Inner teeth 41 are formed on the inner peripheral surface of the ring gear 4.
  • part of the outer teeth 31 of the pinion gear 3 meshes with part of the inner teeth 41 of the ring gear 4.
  • the outer peripheral surface 42 of the ring gear 4 is provided with a lubricating coating.
  • the lubricating coating may be made of, for example, a material containing an inorganic material and a fluororesin.
  • the gear housing 5 accommodates the pinion gear 3 and the ring gear 4.
  • a through hole 53 is formed in the gear housing 5.
  • the shaft 2 is located in the through hole 53.
  • the pinion gear 3 and the ring gear 4 are rotatably housed in a gear housing 5.
  • the gear housing 5 has a sliding surface 51 on which the outer peripheral surface 42 of the ring gear 4 slides.
  • the outer peripheral surface 42 of the ring gear 4 has a circular cross section.
  • the sliding surface 51 of the gear housing 5 also has a circular cross section.
  • the sliding surface 51 is eccentric with respect to the shaft 2.
  • the gear housing 5 has a side surface 52 orthogonal to the sliding surface 51.
  • the sliding surface 51 and the side surface 52 form a space 50 that houses the pinion gear 3 and the ring gear 4.
  • the space 50 is open to the left side of the paper surface of FIG.
  • the first side surface (right side surface in FIG. 1) 32 of the pinion gear 3 and the first side surface (right side surface in FIG. 1) 43 of the ring gear 4 slide on the side surface 52 of the gear housing 5, respectively.
  • the front cover 6 is arranged adjacent to the gear housing 5.
  • the front cover 6 has a side surface 61 that is in contact with the gear housing 5 and closes the space 50.
  • the second side surface 33 of the pinion gear 3 (left side surface in FIG. 1) and the second side surface 44 of the ring gear 4 (left side surface in FIG. 1) slide on the side surface 61 of the front cover 6.
  • a support hole 62 through which the shaft 2 passes is formed to penetrate the front cover 6.
  • the shaft 2 is supported by the front cover 6 via a bearing 63 and bearing members 64, 64.
  • the rear cover 7 is arranged on the opposite side of the front cover 6 with the gear housing 5 interposed therebetween.
  • the front cover 6, the gear housing 5, and the rear cover 7 are integrated by being fixed to each other.
  • the front cover 6, the gear housing 5, and the rear cover 7 form a housing 10 of the internal gear pump 1.
  • the front cover 6 and the gear housing 5 are formed with a suction port 11 for sucking hydraulic oil inside the space 50, in other words, inside the housing 10.
  • the inlet of the suction port 11 is open on the outer peripheral surface of the front cover 6, as shown in FIG.
  • the outlet of the suction port 11 is open on each of the side surface 61 of the front cover 6 and the side surface 52 of the gear housing 5.
  • the outlet of the suction port 11 also extends in the circumferential direction along the rotational direction of the shaft 2, as shown in FIG.
  • the front cover 6, the gear housing 5, and the rear cover 7 are formed with a discharge port 12 for discharging hydraulic oil from the inside of the housing 10.
  • the outlet of the discharge port 12 is open to the outer peripheral surface of the rear cover 7, as shown in FIG.
  • the direction of the inlet of the suction port 11 and the direction of the outlet of the discharge port 12 may be the same direction as illustrated in FIG. 1, or may be different directions although not shown. ..
  • the inlet of the discharge port 12 is open on each of the side surface 61 of the front cover 6 and the side surface 52 of the gear housing 5. As shown in FIG. 2, the inlet of the discharge port 12 also extends in the circumferential direction along the rotation direction of the shaft 2 on the side opposite to the suction port 11 across the shaft 2.
  • the gear housing 5 is provided with a crescent 54.
  • the crescent 54 is arranged at a position where the pinion gear 3 and the ring gear 4 are out of mesh with each other.
  • the crescent 54 separates a high pressure region and a low pressure region described below.
  • the crescent 54 extends in the circumferential direction over a predetermined angle range along the rotation direction of the shaft 2. More specifically, the crescent 54 has two arc surfaces, a first arc surface 541 and a second arc surface 542, and the first arc surface 541 and the second arc surface 542 are respectively the side surface 52 of the gear housing 5. (See also Fig. 3). As shown in FIG. 2, the crescent 54 has a crescent shape when viewed along the axial direction of the shaft 2. The tooth tips of the outer teeth 31 of the pinion gear 3 come into contact with the first arc surface 541 of the crescent 54. The tooth tips of the inner teeth 41 of the ring gear 4 contact the second arc surface 542 of the crescent 54.
  • a low pressure region where the suction port 11 opens in the circumferential direction around the rotation center O of the ring gear 4, a low pressure region where the suction port 11 opens, a pressure increasing region where the crescent 54 is arranged, and a high pressure region where the discharge port 12 opens.
  • the area can be divided into three areas.
  • the internal gear pump 1 includes a high-pressure oil supply unit 8 that supplies high-pressure hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5.
  • FIG. 3 illustrates the configuration of the high pressure oil supply unit 8.
  • FIG. 3 corresponds to the III-III cross section of FIG.
  • the high-pressure oil supply unit 8 presses the ring gear 4 from the outer periphery of the pressure increasing region toward the rotation center O of the ring gear 4 by the high-pressure hydraulic oil, and suppresses the hydraulic oil from leaking inside the housing 10.
  • the high-pressure oil supply unit 8 has an introduction port 81 that opens to the sliding surface 51, an oil passage 82 that connects the discharge port 12 and the introduction port 81, and a throttle 83 provided in the oil passage 82.
  • the inlet 81 is located in the boost area as shown in FIG. More specifically, the introduction port 81 faces the crescent 54 in the radial direction.
  • the introduction port 81 introduces a part of the high-pressure hydraulic oil discharged from the discharge port 12 into the housing 10, as described later.
  • the introduction port 81 is preferably a region on the high-pressure side from the intermediate position of the pressure-increasing region in the pressure-increasing region.
  • the introduction port 81 is provided at a position apart from the line connecting the end point of the second arc surface 542 of the crescent 54 and the rotation center O in the region on the high pressure side in the circumferential direction by an angle ⁇ of 10 to 40°. preferable. Further, in order to effectively press the tooth tips of the ring gear 4 against the crescent 54 by the high pressure hydraulic oil introduced from the inlet 81, the inlet 81 is preferably provided facing the crescent 54.
  • the introduction port 81 is provided on the sliding surface 51 at a central position or a substantially central position in the axial direction of the shaft 2.
  • the opening shape of the inlet 81 is circular in the configuration example of FIG. 3.
  • the opening shape of the introduction port 81 is not limited to a particular shape.
  • the oil passage 82 is provided in the gear housing 5 in the configuration example of FIG.
  • the oil passage 82 connects the discharge port 12 opening to the side surface 52 of the gear housing 5 and the inlet 81.
  • the oil passage may be provided in the front cover 6 and the gear housing 5 so as to connect the discharge port 12 provided in the front cover 6 and the introduction port 81, as indicated by a dashed line in FIG. Good.
  • the oil passage may connect the discharge port 12 provided in the gear housing 5 and the introduction port 81, and may connect the discharge port 12 provided in the front cover 6 and the introduction port 81.
  • the throttle 83 is configured to reduce the cross-sectional area of the oil passage 82.
  • the diaphragm 83 may be an orifice or a choke.
  • the hydraulic oil flowing in the oil passage 82 from the discharge port 12 toward the inlet 81 is decompressed by the throttle 83.
  • the pressure of the hydraulic oil introduced into the gear housing 5 through the introduction port 81 is lower than the pressure of the hydraulic oil discharged from the discharge port 12.
  • the pressure of the hydraulic oil introduced into the gear housing 5 can be adjusted by changing the structure of the throttle 83.
  • the hydraulic oil introduced between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 also serves as lubricating oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. Function. As a result, seizure between the ring gear 4 and the gear housing 5 is suppressed. Further, as described above, since the leakage inside the housing 10 is suppressed, the heat generation inside the housing 10 can be suppressed. This also suppresses seizure between the ring gear 4 and the gear housing 5.
  • the internal gear pump 1 also has a recess 9.
  • FIG. 4 illustrates the configuration of the recess 9.
  • FIG. 4 corresponds to the IV-IV cross section of FIG.
  • the recess 9 is provided on the sliding surface 51 of the gear housing 5. As shown in an enlarged view in FIG. 5, the recess 9 is recessed radially outward from the sliding surface 51. In FIG. 5, the size of the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 is exaggerated in order to facilitate understanding. The recess 9 partially widens the distance between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 (see L in FIG. 5 ).
  • the recess 9 has a groove shape extending in the axial direction of the shaft 2 in the configuration example of FIG.
  • the depth of the recess 9 may be, for example, about 1 to several millimeters.
  • the shape of the recess 9 is not limited to the groove shape. As will be described later, the recess 9 may have a function of reducing the wedge effect generated between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5.
  • the recess 9 may be one that partially widens the distance between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5.
  • the recess 9 may be formed by a plurality of holes recessed from the sliding surface 51, for example.
  • the recess 9 may be configured by arranging a plurality of grooves having a short length in the axial direction of the shaft 2.
  • the groove-shaped recess 9 as shown in FIG. 4 has an advantage that it is easy to process.
  • only one recess 9 may be provided, as shown in FIG. Although illustration is omitted, a plurality of recesses 9 may be provided in the circumferential direction of the sliding surface 51.
  • the recess 9 is provided in the high pressure area as shown in FIG.
  • the high pressure hydraulic oil introduced from the inlet 81 of the high pressure oil supply unit 8 pushes and moves the ring gear 4 from the outer periphery of the boost region toward the rotation center O. Since the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 becomes small in the high pressure region, a wedge effect occurs (see the arrow in FIG. 5).
  • the recess 9 is preferably provided in the high pressure region where the wedge effect is generated, in the vicinity of a portion where the wedge effect is significantly generated. More specifically, as shown in FIG.
  • the recess 9 may be provided at a position separated from the meshing point A between the pinion gear 3 and the ring gear 4 by an angle ⁇ of 10 to 40° in the circumferential direction. If the angle ⁇ is too large (that is, the recessed portion 9 moves away from the meshing point A between the pinion gear 3 and the ring gear 4), the position is far from the place where the wedge effect is largely generated, and thus the function of reducing the wedge effect described later. becomes weak. When the angle ⁇ is too small (that is, when the recess 9 approaches the meshing point A between the pinion gear 3 and the ring gear 4), the operating oil passes through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. May be encouraged to leak.
  • the position of the meshing point A between the pinion gear 3 and the ring gear 4 moves in the circumferential direction within a certain range because both gears 3 and 4 rotate together.
  • the center point of the moving range is the meshing point A (see FIG. 2).
  • the recess 9 does not have a function of introducing high-pressure hydraulic oil into the gear housing 5.
  • the recess 9 is not connected to the discharge port 12.
  • the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 is partially widened, so that the wedge effect is reduced. Since the wedge effect is reduced, the ring gear 4 is suppressed from being pushed toward the rotation center O from the outer periphery of the high pressure region when the rotation speed of the internal gear pump 1 is high. As a result, in the high pressure region, the hydraulic oil is suppressed from leaking through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. At the same time, in the boost region, the hydraulic oil is also prevented from leaking from between the inner teeth 41 of the ring gear 4 and the crescent 54.
  • the recess 9 is not connected to the discharge port 12 and does not have the function of introducing high-pressure hydraulic oil. If the high-pressure hydraulic oil is introduced into the housing 10 through the recess 9, the ring gear 4 is pushed from the outer periphery of the high-pressure area toward the rotation center O by the high-pressure hydraulic oil. In the high pressure region, there is a possibility that hydraulic oil may be promoted to leak through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. Further, in the boost region, there is a risk that the hydraulic fluid may be promoted to leak from between the internal teeth 41 of the ring gear 4 and the crescent 54. By disconnecting the recess 9 from the discharge port 12, it is possible to suppress the leakage of hydraulic oil in the housing 10 of the internal gear pump 1.
  • the conventional internal gear pump has relatively low processing accuracy and no lubricating coating is formed on the outer peripheral surface of the ring gear, high-pressure hydraulic oil is introduced into the housing from each of the multiple inlets provided on the sliding surface. Therefore, it has been necessary to adopt a configuration that suppresses seizure between the ring gear and the housing.
  • the internal gear pump 1 has a lubricating coating on the outer peripheral surface 42 of the ring gear 4.
  • the internal gear pump 1 can suppress seizure between the ring gear 4 and the gear housing 5 without adopting a configuration in which the hydraulic oil is introduced into the housing through a plurality of inlets.
  • the internal gear pump 1 introduces the high pressure hydraulic oil into the housing 10 by providing the introduction port 81 of the high pressure oil supply unit 8 in the pressure increasing region, while the high pressure hydraulic oil is introduced in the high pressure region.
  • a recess 9 that is not introduced is provided.
  • the combination of the high-pressure oil supply part 8 and the recess 9 makes it possible to suppress the seizure between the ring gear 4 and the gear housing 5 while suppressing the leakage of the hydraulic oil in the housing 10.
  • the internal gear pump 1 has high reliability and high efficiency.
  • a lubricating coating may be formed on the sliding surface 51 of the gear housing 5, or a lubricating coating may be formed on both the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5.
  • FIG. 6 shows a modification of the high pressure oil supply section.
  • the high-pressure oil supply unit 80 shown in FIG. 6 has an introduction port 810, an oil passage 820, and a throttle 830.
  • the inlet 810 is different from the inlet 81 shown in FIG. 3 in shape, and has a groove shape.
  • the introduction port 810 is open to the sliding surface 51 and extends in the axial direction of the shaft 2.
  • the introduction port 810 also opens in the contact surface of the gear housing 5 with the side surface 61 of the front cover 6.
  • the oil passage 820 is provided in the front cover 6 in the configuration example of FIG.
  • the oil passage 820 connects the discharge port 12 and the introduction port 810 similarly to the oil passage 82.
  • the oil passage 820 extends in the axial direction of the shaft 2.
  • the oil passage 820 opens on the side surface 61 of the front cover 6 and is connected to the opening of the introduction port 810.
  • the throttle 830 is provided in the middle of the oil passage 820.
  • the high-pressure oil supply unit 80 having this configuration can also introduce high-pressure hydraulic oil into the housing 10 in the pressure rising region. Accordingly, it is possible to suppress the leakage of the hydraulic oil between the tooth tips of the ring gear 4 and the crescent 54 and the leakage of the hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. it can.
  • the oil passage may be formed by a groove that extends from the joint surface of the front cover 6 with the gear housing 5 and extends in the radial direction, as shown by the alternate long and short dash line in FIG. Although illustration is omitted, the oil passage and the throttle may be provided in the gear housing 5.
  • the recess 9 is not connected to the discharge port 12.
  • the recess 9 may be connected to the discharge port 12.
  • the ring gear 4 is moved from the outer periphery of the boost region toward the rotation center O by the hydraulic oil introduced between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 through the recess 9. It is preferable that it is pushed and does not move.
  • the internal gear pump 1 illustrated here is a fixed type in which the crescent 54 does not move, but a movable crescent may be provided.
  • the technology disclosed herein can also be applied to an internal gear pump that does not have a crescent.
  • the combination of the high-pressure oil supply unit 8 and the recess 9 described above suppresses seizure between the ring gear 4 and the gear housing 5, and at the same time, prevents the seizure between the ring gear 4 and the pinion gear 3.
  • Leakage of hydraulic oil between the tooth tip and leakage of hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 can be suppressed.
  • the internal gear pump in which the suction port or the discharge port is open on the sliding surface does not originally have a wedge effect. Even if the technology disclosed herein is applied to this type of internal gear pump, the effect cannot be expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

An internal gear pump (1) is provided with: a pinion gear (3); a ring gear (4); a crescent (54); a housing (5) with a slide surface (51) on which an outer peripheral surface (41) of the ring gear slides; a high-pressure oil supply portion (8) which has an inlet (81) opening on the slide surface and supplies a high-pressure operating oil; and a recess (9) provided in the slide surface so as to increase the interval between the outer peripheral surface of the ring gear and the slide surface. The inlet is located in a pressure-increasing region, and the recess is located in a high-pressure region.

Description

内接ギヤポンプInternal gear pump
 ここに開示する技術は、内接ギヤポンプに関する。 The technology disclosed here relates to internal gear pumps.
 特許文献1には、外歯のドライブギヤと内歯のドリブンギヤとを備えた内接ギヤポンプが記載されている。特許文献1の内接ギヤポンプは、ドライブギヤとドリブンギヤとが噛み合う噛合点の反対側において、ポンプハウジングの周面にポケットを形成している。ポケットは、内接ギヤポンプの吐出ポートに連通している。内接ギヤポンプが運転しているときに、吐出ポートから吐出される高圧の作動油の一部が、ポケットを通じてドリブンギヤとハウジングとの間に導入される。 Patent Document 1 describes an internal gear pump including a drive gear having external teeth and a driven gear having internal teeth. The internal gear pump of Patent Document 1 has a pocket formed on the circumferential surface of the pump housing on the side opposite to the meshing point where the drive gear and the driven gear mesh with each other. The pocket communicates with the discharge port of the internal gear pump. When the internal gear pump is operating, a part of the high-pressure hydraulic oil discharged from the discharge port is introduced between the driven gear and the housing through the pocket.
 ドリブンギヤとドライブギヤとの間には、ドリブンギヤの歯先とドライブギヤの歯先とが当たることによりシールされる三日月状の空間が形成されている。ポケットから吐出された高圧の作動油は、ドリブンギヤの歯先をドライブギヤの歯先に押し付けるように、ドリブンギヤを押す。三日月状の空間内の作動油が、ドリブンギヤの歯先とドライブギヤの歯先との間から漏れることが抑制される。 A crescent-shaped space is formed between the driven gear and the drive gear, which seals when the tooth tips of the driven gear and the tooth tips of the drive gear come into contact with each other. The high-pressure hydraulic fluid discharged from the pocket pushes the driven gear so that the tooth tip of the driven gear is pressed against the tooth tip of the drive gear. The hydraulic oil in the crescent-shaped space is suppressed from leaking between the tooth tips of the driven gear and the tooth tips of the drive gear.
 特許文献2にも、ハウジング内の作動油の漏れを抑制する内接ギヤポンプが記載されている。特許文献2の内接ギヤポンプは、ハウジングの内周面に、油溝を形成している。油溝は、吐出ポートにつながっていると共に、三日月状の空間に対応する位置まで周方向に伸びている。内接ギヤポンプの運転中、油溝を通じてハウジング内に導入される高圧の作動油がアウタロータを押す。作動油が、アウタロータの内歯とインナロータの外歯との間から漏れることが抑制される。 Patent Document 2 also describes an internal gear pump that suppresses leakage of hydraulic oil inside the housing. The internal gear pump of Patent Document 2 has an oil groove formed on the inner peripheral surface of the housing. The oil groove is connected to the discharge port and extends in the circumferential direction to a position corresponding to the crescent-shaped space. During operation of the internal gear pump, high-pressure hydraulic oil introduced into the housing through the oil groove pushes the outer rotor. The hydraulic oil is suppressed from leaking between the inner teeth of the outer rotor and the outer teeth of the inner rotor.
 特許文献3に記載された内接ギヤポンプは、ハウジングの内周面に、二本の圧力バランス溝を設けている。二本の圧力バランス溝は、吐出ポートが開口する高圧領域に、周方向に間隔を空けて設けられている。二本の圧力バランス溝はそれぞれ、吐出ポートにつながっている。内接ギヤポンプが運転しているときには、二本の圧力バランス溝のそれぞれを通じて、高圧の作動油が、リングギヤの外周面とハウジングの内周面との間に供給される。リングギヤがハウジングに対してフロート状態で回転をするから、リングギヤの焼き付きが抑制される。 The internal gear pump described in Patent Document 3 has two pressure balance grooves on the inner peripheral surface of the housing. The two pressure balance grooves are provided at intervals in the circumferential direction in a high pressure region where the discharge port opens. Each of the two pressure balance grooves is connected to the discharge port. When the internal gear pump is operating, high-pressure hydraulic oil is supplied between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing through each of the two pressure balance grooves. Since the ring gear rotates with respect to the housing in a floating state, seizure of the ring gear is suppressed.
実開昭61-179385号公報Japanese Utility Model Publication No. 61-179385 特開平7-151066号公報Japanese Patent Laid-Open No. 7-151066 実開昭62-158181号公報Japanese Utility Model Publication No. 62-158181
 特許文献1や特許文献2に記載されているように、高圧の作動油をリングギヤの外周面とハウジングの内周面との間に供給する内接ギヤポンプは、低回転数で運転しているときには、ピニオンギヤの外歯とリングギヤの内歯との噛み合いが離れる昇圧領域において、外歯と内歯との間から作動油が漏れることを抑制することができる。このことに加えて、前記の構成の内接ギヤポンプは、高圧領域においても、リングギヤの外周面とハウジングの内周面との隙間が小さくなるから、作動油が高圧領域から、吸込ポートが開口する低圧領域へ漏れることを抑制することができる。 As described in Patent Document 1 and Patent Document 2, an internal gear pump that supplies high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing is operated at a low rotational speed. In the pressure increasing region where the outer teeth of the pinion gear and the inner teeth of the ring gear are disengaged from each other, it is possible to prevent the hydraulic oil from leaking between the outer teeth and the inner teeth. In addition to this, in the internal gear pump configured as described above, the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing becomes small even in the high pressure region, so that the suction port opens from the high pressure region of the hydraulic oil. Leakage to the low pressure region can be suppressed.
 しかしながら、前記の構成の内接ギヤポンプが高回転数で運転しているときには、ハウジング内の作動油の漏れが増えることに、本願発明者は気づいた。 However, the inventor of the present application has noticed that when the internal gear pump having the above-described configuration operates at a high rotation speed, the amount of hydraulic oil leaking inside the housing increases.
 ここに開示する技術は、内接ギヤポンプのハウジング内の作動油の漏れを抑制する。 The technology disclosed here suppresses leakage of hydraulic oil in the housing of the internal gear pump.
 高圧の作動油をリングギヤの外周面とハウジングの内周面との間に供給することによって、リングギヤが、昇圧領域の外周囲からリングギヤの回転中心の方へと押されて移動すると、前述したように、高圧領域において、リングギヤの外周面とハウジングの内周面との隙間が小さくなる。内接ギヤポンプの運転中は、リングギヤの回転に伴い、リングギヤの外周面とハウジングの内周面との隙間において、いわゆる「くさび効果」が発生する。尚、「くさび効果」は、リングギヤの回転に伴い、リングギヤの外周面とハウジングの内周面との間の狭い隙間に、作動油が引きずり込まれることによって、リングギヤの外周面とハウジングの内周面との間の油膜の圧力が高くなる現象をいう。 By supplying high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing, when the ring gear is pushed and moves from the outer periphery of the boost region toward the center of rotation of the ring gear, as described above. In addition, in the high pressure region, the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing becomes small. During operation of the internal gear pump, a so-called "wedge effect" occurs in the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing as the ring gear rotates. The "wedge effect" means that as the ring gear rotates, the hydraulic oil is dragged into the narrow gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing, and the outer peripheral surface of the ring gear and the inner peripheral surface of the housing. A phenomenon in which the pressure of the oil film between the surfaces increases.
 内接ギヤポンプが低回転で運転しているときは、くさび効果が低いので、高圧領域において、リングギヤの外周面とハウジングの内周面との隙間が小さく、作動油の漏れは少ない。 When the internal gear pump is operating at low speed, the wedge effect is low, so in the high pressure range, the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing is small, and there is little leakage of hydraulic oil.
 しかしながら、内接ギヤポンプが高回転数で運転しているときは、リングギヤの外周面とハウジングの内周面との隙間のくさび効果が高まって、リングギヤが、高圧領域の外周囲からリングギヤの回転中心の方へと押されて移動することを、本願発明者は見いだした。リングギヤが、くさび効果によって、高圧領域の外周囲からリングギヤの回転中心の方へ押されて移動すると、高圧領域において、リングギヤの外周面とハウジングの内周面との隙間が大きくなり、リングギヤの外周面とハウジングの内周面との隙間からの作動油の漏れが増えてしまうだけでなく、昇圧領域においても、ピニオンギヤの外歯とリングギヤの内歯との間からの作動油の漏れが増えてしまう。 However, when the internal gear pump is operating at a high rotational speed, the wedge effect of the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing increases, and the ring gear moves from the outer periphery of the high pressure region to the center of rotation of the ring gear. The inventor of the present application has found that they are pushed and moved toward. When the ring gear is pushed and moves from the outer circumference of the high pressure area toward the center of rotation of the ring gear due to the wedge effect, the gap between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing increases in the high pressure area, and the outer circumference of the ring gear increases. Not only increases the leakage of hydraulic oil from the gap between the inner surface of the housing and the inner peripheral surface of the housing, but also increases the leakage of hydraulic oil between the outer teeth of the pinion gear and the inner teeth of the ring gear even in the boost region. I will end up.
 本願発明者は、前述した知見を得たことから、くさび効果を低減するために、リングギヤの外周面とハウジングの内周面との間隔を部分的に広げることにした。そして、ハウジングの内周面の特定の位置に凹部を設けることによって、高回転数で運転中の内接ギヤポンプのハウジング内において、作動油の漏れが抑制されることを確認し、ここに開示する技術を完成するに至った。 Based on the above knowledge, the inventor of the present application decided to partially widen the distance between the outer peripheral surface of the ring gear and the inner peripheral surface of the housing in order to reduce the wedge effect. Then, it is confirmed that by providing a concave portion at a specific position on the inner peripheral surface of the housing, leakage of hydraulic oil is suppressed in the housing of the internal gear pump that is operating at a high rotational speed, and disclosed herein. The technology was completed.
 具体的に、ここに開示する内接ギヤポンプは、外歯を有するピニオンギヤと、前記外歯に噛み合う内歯が内周面に設けられたリングギヤと、前記ピニオンギヤと前記リングギヤとの噛み合いが離れる箇所に設けられかつ、前記外歯及び前記内歯のそれぞれが当接するクレセントと、前記リングギヤの外周面が摺動する摺動面を有しかつ、前記ピニオンギヤ及び前記リングギヤを回転可能に収容するハウジングと、前記摺動面に開口する導入口を有しかつ、前記導入口を通じて前記リングギヤの外周面と前記摺動面との間に高圧の作動油を供給する高圧油供給部と、前記リングギヤの外周面と前記摺動面との間隔が広がるように、前記摺動面に設けられた凹部と、を備える。 Specifically, the internal gear pump disclosed herein has a pinion gear having external teeth, a ring gear having internal teeth meshing with the external teeth provided on an inner peripheral surface thereof, and a pinion gear and the ring gear that are meshed with each other. A housing provided and having a crescent against which each of the outer teeth and the inner teeth abuts, and a sliding surface on which the outer peripheral surface of the ring gear slides, and a housing that rotatably accommodates the pinion gear and the ring gear, A high-pressure oil supply part having an inlet opening to the sliding surface and supplying high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the sliding surface through the inlet, and an outer peripheral surface of the ring gear And a recess provided in the sliding surface so that the distance between the sliding surface and the sliding surface widens.
 そして、前記ハウジング内の空間は、吸込ポートが開口する低圧領域と、吐出ポートが開口する高圧領域と、前記クレセントが配設されている昇圧領域との三領域に区分され、前記導入口は、前記昇圧領域に位置し、前記凹部は、前記高圧領域に位置している。 Then, the space in the housing is divided into three regions of a low pressure region where the suction port is open, a high pressure region where the discharge port is open, and a pressure rise region where the crescent is disposed, and the introduction port is Located in the boost region, the recess is located in the high pressure region.
 この構成によると、ピニオンギヤ及びリングギヤは、低圧領域から、昇圧領域を経て、高圧領域に至る方向に回転する。 According to this configuration, the pinion gear and the ring gear rotate in the direction from the low pressure region to the high pressure region via the boost region.
 内接ギヤポンプの運転中には、昇圧領域に位置する導入口から、高圧の作動油が、リングギヤの外周面とハウジングの摺動面との間に導入される。高圧の作動油によって、リングギヤは、昇圧領域の外周囲からリングギヤの回転中心の方へと押されて移動し、リングギヤの内歯はクレセントに押し付けられる。昇圧領域において、リングギヤの内歯とクレセントとの間から作動油が漏れることが抑制される。また、高圧領域において、リングギヤの外周面とハウジングの摺動面との間から作動油が漏れることが抑制される。 During operation of the internal gear pump, high-pressure hydraulic oil is introduced between the outer peripheral surface of the ring gear and the sliding surface of the housing from the inlet located in the boost region. The high-pressure hydraulic oil pushes and moves the ring gear from the outer periphery of the pressurizing region toward the center of rotation of the ring gear, and the inner teeth of the ring gear are pressed against the crescent. In the pressure rising region, hydraulic oil is suppressed from leaking between the inner teeth of the ring gear and the crescent. Further, in the high pressure region, hydraulic oil is suppressed from leaking from between the outer peripheral surface of the ring gear and the sliding surface of the housing.
 リングギヤが昇圧領域の外周囲からリングギヤの回転中心の方に押されているため、高圧領域において、リングギヤの外周面とハウジング摺動面との間には、くさび効果が生じる。高圧領域の摺動面には、凹部が設けられている。凹部は、リングギヤの外周面とハウジングの摺動面との間隔を、部分的に広くする。凹部は、くさび効果を低減する。 ㆍSince the ring gear is pushed from the outer circumference of the boost region toward the center of rotation of the ring gear, a wedge effect is created between the outer peripheral surface of the ring gear and the sliding surface of the housing in the high pressure region. A recess is provided on the sliding surface in the high-pressure region. The recess partly widens the distance between the outer peripheral surface of the ring gear and the sliding surface of the housing. The recess reduces the wedge effect.
 くさび効果が低減するため、内接ギヤポンプが高回転数で運転しているときに、リングギヤが高圧領域の外周囲からリングギヤの回転中心の方へ押されて移動することが抑制される。その結果、高圧領域において、リングギヤの外周面とハウジングの摺動面との隙間を通じて作動油が漏れることが抑制される。また、昇圧領域において、リングギヤの内歯とクレセントとの間から作動油が漏れることが抑制される。 Since the wedge effect is reduced, the ring gear is suppressed from being pushed from the outer periphery of the high pressure region toward the center of rotation of the ring gear when the internal gear pump is operating at a high rotation speed. As a result, in the high pressure region, hydraulic oil is suppressed from leaking through the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing. In addition, in the boost region, leakage of hydraulic oil from between the inner teeth of the ring gear and the crescent is suppressed.
 尚、内接ギヤポンプが低回転数で運転しているときには、くさび効果が高くならないため、高圧領域において、リングギヤの外周面とハウジングの摺動面との隙間を通じて作動油が漏れることが抑制される。また、昇圧領域において、リングギヤの内歯とクレセントとの間から作動油が漏れることが抑制される。 Note that when the internal gear pump is operating at a low rotational speed, the wedge effect does not increase, so in the high pressure region, hydraulic oil is suppressed from leaking through the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing. .. In addition, in the boost region, leakage of hydraulic oil from between the inner teeth of the ring gear and the crescent is suppressed.
 また、導入口を通じてリングギヤの外周面とハウジング摺動面との間に導入される作動油は、リングギヤとハウジングとの間の潤滑油としても機能する。リングギヤとハウジングとの間の焼き付きが抑制される。 Also, the hydraulic oil introduced between the outer peripheral surface of the ring gear and the sliding surface of the housing through the inlet also functions as lubricating oil between the ring gear and the housing. The seizure between the ring gear and the housing is suppressed.
 さらに、前述したように、ハウジング内の作動油の漏れを防止することによって、ハウジング内の発熱を抑制することができる。このことによっても、リングギヤとハウジングとの間の焼き付きを抑制することができる。 Further, as described above, by preventing the hydraulic oil from leaking inside the housing, it is possible to suppress heat generation inside the housing. This also prevents seizure between the ring gear and the housing.
 前記凹部は、溝形状を有している、としてもよい。 The recess may have a groove shape.
 溝形状の凹部は、くさび効果を効果的に低減することができる。また、溝形状の凹部は、ハウジングの摺動面に、容易に形成することができる。  The groove-shaped recess can effectively reduce the wedge effect. Further, the groove-shaped recess can be easily formed on the sliding surface of the housing.
 前記凹部は、前記吐出ポートに非接続である、としてもよい。 The recess may be unconnected to the discharge port.
 凹部は、前述したように、リングギヤの外周面とハウジングの摺動面との間の間隔を広げることによって、くさび効果を低減する機能を発揮する。凹部は、高圧の作動油をハウジング内に導入する機能は必要ではない。 As described above, the concave portion has the function of reducing the wedge effect by widening the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing. The recess does not require the function of introducing high-pressure hydraulic oil into the housing.
 また、仮に凹部を通じて高圧の作動油をハウジング内に導入するよう構成すると、リングギヤは、凹部から導入した高圧の作動油によって、高圧領域の外周囲からリングギヤの回転中心の方へと押される。高圧領域において、リングギヤの外周面とハウジングの摺動面との隙間を通じて作動油が漏れることが助長される恐れがある。また、昇圧領域において、リングギヤの内歯とクレセントとの間から作動油が漏れることが助長される恐れがある。 Further, if the high pressure hydraulic oil is introduced into the housing through the recess, the high pressure hydraulic oil introduced from the recess pushes the ring gear from the outer periphery of the high pressure area toward the center of rotation of the ring gear. In the high pressure region, there is a risk that hydraulic fluid may be promoted to leak through the gap between the outer peripheral surface of the ring gear and the sliding surface of the housing. Further, in the pressure increasing region, there is a risk that the hydraulic oil may be promoted to leak from between the inner teeth of the ring gear and the crescent.
 昇圧領域に位置する導入口から高圧の作動油を導入することと、高圧領域に位置する凹部によってくさび効果を低減することと、を組み合わせることにより、ハウジング内の作動油の漏れを抑制することと、リングギヤの焼き付きを防止することとが両立する。 By suppressing the leakage of hydraulic oil in the housing by combining the introduction of high-pressure hydraulic oil from the inlet located in the pressure-increasing region and the reduction of the wedge effect by the recesses located in the high-pressure region, , As well as preventing the seizure of the ring gear.
 前記高圧油供給部は、前記吐出ポートと前記導入口とをつなぐ油路と、前記油路に設けられかつ、前記作動油の圧力を下げる絞りと、を有している、としてもよい。 The high-pressure oil supply unit may have an oil passage that connects the discharge port and the introduction port, and a throttle that is provided in the oil passage and that reduces the pressure of the hydraulic oil.
 導入口を通じてハウジング内に導入する作動油の圧力が高すぎると、リングギヤの歯先が、クレセントへ押し付けられる力が強くなりすぎる。リングギヤの歯の摩耗が進行しやすくなる。そこで、油路内に絞りを設けることによって、ハウジング内に導入する作動油の圧力を調整してもよい。 If the pressure of the hydraulic oil introduced into the housing through the inlet is too high, the force at which the tooth tips of the ring gear are pressed against the crescent becomes too strong. Wear of the teeth of the ring gear is likely to progress. Therefore, the pressure of the hydraulic oil introduced into the housing may be adjusted by providing a throttle in the oil passage.
 また、ハウジング内に導入する作動油の圧力を調整することと、凹部によって、くさび効果を低減することとを組み合わせることにより、ハウジング内の作動油の漏れを抑制することと、リングギヤとハウジングとの間の潤滑性を確保することとが、バランスする。 Further, by adjusting the pressure of the hydraulic oil introduced into the housing and reducing the wedge effect by the recess, the leakage of the hydraulic oil in the housing is suppressed, and the ring gear and the housing are prevented from leaking. There is a balance between ensuring lubricity between them.
 前記リングギヤの外周面には、潤滑コーティングが形成されている、としてもよい。 The outer peripheral surface of the ring gear may be provided with a lubricating coating.
 こうすることで、リングギヤとハウジングとの間の焼き付きが抑制される。従来の内接ギヤポンプは、加工精度が相対的に低くかつ、リングギヤの外周面に潤滑コーティングが形成されていなかったため、特許文献3に記載されているように、二つのバランス溝を通じて作動油をハウジング内に導入することにより、リングギヤとハウジングとの間の焼き付きを抑制しなければならなかった。 By doing this, seizure between the ring gear and the housing is suppressed. Since the conventional internal gear pump has relatively low processing accuracy and the lubrication coating is not formed on the outer peripheral surface of the ring gear, as described in Patent Document 3, the hydraulic oil is supplied to the housing through two balance grooves. It was necessary to suppress seizure between the ring gear and the housing by introducing it inside.
 これに対し、今は加工精度が高くなった上に、前記のようにリングギヤの外周面に潤滑コーティングを形成することによって、二つのバランス溝を通じて作動油をハウジング内に導入しなくても、リングギヤとハウジングとの間の焼き付きを抑制することができる。 On the other hand, now that the machining accuracy is high and the lubrication coating is formed on the outer peripheral surface of the ring gear as described above, the ring gear can be introduced without introducing hydraulic oil into the housing through the two balance grooves. It is possible to suppress the seizure between the housing and the housing.
 前記の内接ギヤポンプによると、ハウジング内の作動油の漏れを抑制することができる。 According to the internal gear pump, it is possible to suppress the leakage of hydraulic oil in the housing.
図1は、内接ギヤポンプの断面図である。FIG. 1 is a sectional view of an internal gear pump. 図2は、図1のII-II線端面図である。FIG. 2 is an end view taken along the line II-II of FIG. 図3は、図2のIII-III線断面図、及び、A方向から見た矢視図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2 and a view seen from the direction A. 図4は、図2のIV-IV線断面図、及び、B方向から見た矢視図である。FIG. 4 is a sectional view taken along the line IV-IV in FIG. 2 and a view seen from the direction B. 図5は、内接ギヤポンプの運転時における、ピニオンギヤ及びリングギヤの噛み合い箇所付近を拡大して示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view showing an enlarged vicinity of a meshing portion of the pinion gear and the ring gear during operation of the internal gear pump. 図6は、図3とは異なる高圧油供給部の構成を示す断面図、及び、C方向から見た矢視図である。FIG. 6 is a cross-sectional view showing the configuration of a high-pressure oil supply unit different from that in FIG. 3 and a view seen from the direction C.
 以下、内接ギヤポンプ1の実施形態について、図面を参照しながら説明をする。尚、以下の説明は、内接ギヤポンプ1の一例である。 Hereinafter, an embodiment of the internal gear pump 1 will be described with reference to the drawings. The following description is an example of the internal gear pump 1.
 (内接ギヤポンプの全体構成)
 図1は、内接ギヤポンプ1の断面図である。図2は、図1のII-II線端面図である。内接ギヤポンプ1は、シャフト2と、ピニオンギヤ3と、リングギヤ4と、ギヤハウジング5と、フロントカバー6と、リヤカバー7と、を備えている。尚、図2においては、理解を容易にするために、シャフト2、ピニオンギヤ3及びリングギヤ4には、端面を示すハッチングの図示を省略している。
(Overall structure of internal gear pump)
FIG. 1 is a cross-sectional view of the internal gear pump 1. FIG. 2 is an end view taken along the line II-II of FIG. The internal gear pump 1 includes a shaft 2, a pinion gear 3, a ring gear 4, a gear housing 5, a front cover 6, and a rear cover 7. In FIG. 2, the shaft 2, the pinion gear 3, and the ring gear 4 are not illustrated with hatching showing end faces for easy understanding.
 シャフト2は、図1における紙面左右方向に伸びている。シャフト2は、図示を省略する原動機に接続されている。原動機は、例えば電気モータである。 The shaft 2 extends in the left-right direction on the paper surface of FIG. The shaft 2 is connected to a prime mover (not shown). The prime mover is, for example, an electric motor.
 ピニオンギヤ3は、シャフト2に固定されている。ピニオンギヤ3とシャフト2とは同軸である。ピニオンギヤ3は、シャフト2と共に回転する。ピニオンギヤ3は、外歯31を有している。 The pinion gear 3 is fixed to the shaft 2. The pinion gear 3 and the shaft 2 are coaxial. The pinion gear 3 rotates with the shaft 2. The pinion gear 3 has external teeth 31.
 リングギヤ4は、ピニオンギヤ3に噛み合う。リングギヤ4は、シャフト2に対して偏心して配置されている。リングギヤ4の内周面には、内歯41が形成されている。図2の紙面右側の領域において、ピニオンギヤ3の外歯31の一部がリングギヤ4の内歯41の一部に噛み合う。尚、図面では示さないが、リングギヤ4の外周面42には、潤滑コーティングが設けられている。潤滑コーティングは、例えば無機材料とフッ素系樹脂とを含む材料によって構成してもよい。 The ring gear 4 meshes with the pinion gear 3. The ring gear 4 is arranged eccentrically with respect to the shaft 2. Inner teeth 41 are formed on the inner peripheral surface of the ring gear 4. In the region on the right side of the paper surface of FIG. 2, part of the outer teeth 31 of the pinion gear 3 meshes with part of the inner teeth 41 of the ring gear 4. Although not shown in the drawing, the outer peripheral surface 42 of the ring gear 4 is provided with a lubricating coating. The lubricating coating may be made of, for example, a material containing an inorganic material and a fluororesin.
 ギヤハウジング5は、ピニオンギヤ3及びリングギヤ4を収容する。ギヤハウジング5には、貫通孔53が形成されている。シャフト2は、貫通孔53内に位置する。 The gear housing 5 accommodates the pinion gear 3 and the ring gear 4. A through hole 53 is formed in the gear housing 5. The shaft 2 is located in the through hole 53.
 ピニオンギヤ3及びリングギヤ4は、回転可能に、ギヤハウジング5に収容される。ギヤハウジング5は、リングギヤ4の外周面42が摺動する摺動面51を有している。リングギヤ4の外周面42は、横断面円形状を有している。ギヤハウジング5の摺動面51も、横断面円形状を有している。摺動面51は、シャフト2に対して偏心している。 The pinion gear 3 and the ring gear 4 are rotatably housed in a gear housing 5. The gear housing 5 has a sliding surface 51 on which the outer peripheral surface 42 of the ring gear 4 slides. The outer peripheral surface 42 of the ring gear 4 has a circular cross section. The sliding surface 51 of the gear housing 5 also has a circular cross section. The sliding surface 51 is eccentric with respect to the shaft 2.
 ギヤハウジング5は、摺動面51に直交する側面52を有している。摺動面51及び側面52は、ピニオンギヤ3及びリングギヤ4を収容する空間50を形成する。当該空間50は、図1における紙面左側に開放されている。ピニオンギヤ3の第一側面(図1の右の側面)32、及び、リングギヤ4の第一側面(図1の右の側面)43はそれぞれ、ギヤハウジング5の側面52を摺動する。 The gear housing 5 has a side surface 52 orthogonal to the sliding surface 51. The sliding surface 51 and the side surface 52 form a space 50 that houses the pinion gear 3 and the ring gear 4. The space 50 is open to the left side of the paper surface of FIG. The first side surface (right side surface in FIG. 1) 32 of the pinion gear 3 and the first side surface (right side surface in FIG. 1) 43 of the ring gear 4 slide on the side surface 52 of the gear housing 5, respectively.
 フロントカバー6は、ギヤハウジング5に隣接して配設されている。フロントカバー6は、ギヤハウジング5に接すると共に、空間50を閉じる側面61を有している。ピニオンギヤ3の第二側面(図1の左の側面)33、及び、リングギヤ4の第二側面(図1の左の側面)44はそれぞれ、フロントカバー6の側面61を摺動する。フロントカバー6には、シャフト2が通る支持孔62が貫通して形成されている。シャフト2は、ベアリング63と軸受部材64、64とを介して、フロントカバー6に支持されている。 The front cover 6 is arranged adjacent to the gear housing 5. The front cover 6 has a side surface 61 that is in contact with the gear housing 5 and closes the space 50. The second side surface 33 of the pinion gear 3 (left side surface in FIG. 1) and the second side surface 44 of the ring gear 4 (left side surface in FIG. 1) slide on the side surface 61 of the front cover 6. A support hole 62 through which the shaft 2 passes is formed to penetrate the front cover 6. The shaft 2 is supported by the front cover 6 via a bearing 63 and bearing members 64, 64.
 リヤカバー7は、ギヤハウジング5を間に挟んで、フロントカバー6とは反対側に配設されている。フロントカバー6、ギヤハウジング5、及び、リヤカバー7は、互いに固定されることによって一体化している。フロントカバー6、ギヤハウジング5及びリヤカバー7によって、内接ギヤポンプ1のハウジング10が構成されている。 The rear cover 7 is arranged on the opposite side of the front cover 6 with the gear housing 5 interposed therebetween. The front cover 6, the gear housing 5, and the rear cover 7 are integrated by being fixed to each other. The front cover 6, the gear housing 5, and the rear cover 7 form a housing 10 of the internal gear pump 1.
 フロントカバー6及びギヤハウジング5には、空間50の内部、言い替えるとハウジング10の内部に作動油を吸い込む吸込ポート11が形成されている。吸込ポート11の入口は、図1に示すように、フロントカバー6の外周面に開口している。吸込ポート11の出口は、フロントカバー6の側面61及びギヤハウジング5の側面52のそれぞれに開口している。吸込ポート11の出口はまた、図2に示すように、シャフト2の回転方向に沿うように、周方向に延びている。 The front cover 6 and the gear housing 5 are formed with a suction port 11 for sucking hydraulic oil inside the space 50, in other words, inside the housing 10. The inlet of the suction port 11 is open on the outer peripheral surface of the front cover 6, as shown in FIG. The outlet of the suction port 11 is open on each of the side surface 61 of the front cover 6 and the side surface 52 of the gear housing 5. The outlet of the suction port 11 also extends in the circumferential direction along the rotational direction of the shaft 2, as shown in FIG.
 フロントカバー6、ギヤハウジング5、及びリヤカバー7には、ハウジング10の内部から作動油を吐き出す吐出ポート12が形成されている。吐出ポート12の出口は、図1に示すように、リヤカバー7の外周面に開口している。尚、吸込ポート11の入口の向きと、吐出ポート12の出口の向きとは、図1に例示するように同じ方向であってもよいし、図示は省略するが、異なる方向であってもよい。 The front cover 6, the gear housing 5, and the rear cover 7 are formed with a discharge port 12 for discharging hydraulic oil from the inside of the housing 10. The outlet of the discharge port 12 is open to the outer peripheral surface of the rear cover 7, as shown in FIG. The direction of the inlet of the suction port 11 and the direction of the outlet of the discharge port 12 may be the same direction as illustrated in FIG. 1, or may be different directions although not shown. ..
 吐出ポート12の入口は、フロントカバー6の側面61及びギヤハウジング5の側面52のそれぞれに開口している。吐出ポート12の入口はまた、図2に示すように、吸込ポート11に対して、シャフト2を挟んだ反対側において、シャフト2の回転方向に沿うように、周方向に延びている。 The inlet of the discharge port 12 is open on each of the side surface 61 of the front cover 6 and the side surface 52 of the gear housing 5. As shown in FIG. 2, the inlet of the discharge port 12 also extends in the circumferential direction along the rotation direction of the shaft 2 on the side opposite to the suction port 11 across the shaft 2.
 ギヤハウジング5には、クレセント54が設けられている。クレセント54は、ピニオンギヤ3とリングギヤ4との噛み合いが離れる箇所に配設されている。クレセント54は、後述する高圧領域と低圧領域とを分離する。 The gear housing 5 is provided with a crescent 54. The crescent 54 is arranged at a position where the pinion gear 3 and the ring gear 4 are out of mesh with each other. The crescent 54 separates a high pressure region and a low pressure region described below.
 クレセント54は、シャフト2の回転方向に沿うように、所定の角度範囲に亘って周方向に伸びている。より詳細に、クレセント54は、第一円弧面541と、第二円弧面542との二つの円弧面を有し、第一円弧面541及び第二円弧面542はそれぞれ、ギヤハウジング5の側面52に立設している(図3も参照)。クレセント54は、図2に示すように、シャフト2の軸方向に沿って見たときに、三日月形状を有している。ピニオンギヤ3の外歯31の歯先は、クレセント54の第一円弧面541に当接する。リングギヤ4の内歯41の歯先は、クレセント54の第二円弧面542に当接する。 The crescent 54 extends in the circumferential direction over a predetermined angle range along the rotation direction of the shaft 2. More specifically, the crescent 54 has two arc surfaces, a first arc surface 541 and a second arc surface 542, and the first arc surface 541 and the second arc surface 542 are respectively the side surface 52 of the gear housing 5. (See also Fig. 3). As shown in FIG. 2, the crescent 54 has a crescent shape when viewed along the axial direction of the shaft 2. The tooth tips of the outer teeth 31 of the pinion gear 3 come into contact with the first arc surface 541 of the crescent 54. The tooth tips of the inner teeth 41 of the ring gear 4 contact the second arc surface 542 of the crescent 54.
 ここで、ハウジング10内は、リングギヤ4の回転中心Oを中心として周方向に、吸込ポート11が開口する低圧領域と、クレセント54が配設されている昇圧領域と、吐出ポート12が開口する高圧領域との三領域に分けることができる。 Here, in the housing 10, in the circumferential direction around the rotation center O of the ring gear 4, a low pressure region where the suction port 11 opens, a pressure increasing region where the crescent 54 is arranged, and a high pressure region where the discharge port 12 opens. The area can be divided into three areas.
 次に、内接ギヤポンプ1の運転を簡単に説明する。原動機によってシャフト2が、図2の白抜きの矢印の方向に回転すると、ピニオンギヤ3及びリングギヤ4がそれぞれ、低圧領域から、昇圧領域を経て、高圧領域に至る方向に回転する。 Next, the operation of the internal gear pump 1 will be briefly explained. When the motor 2 rotates the shaft 2 in the direction of the white arrow in FIG. 2, the pinion gear 3 and the ring gear 4 respectively rotate in the direction from the low pressure region to the high pressure region to the high pressure region.
 ハウジング10内の低圧領域において、噛み合っていたピニオンギヤ3の外歯31とリングギヤ4の内歯41とが離れるに伴って、吸込ポート11から外歯31と内歯41との間に作動油が吸い込まれる。吸い込まれた作動油は、ピニオンギヤ3及びリングギヤ4の回転に伴い、低圧領域から、昇圧領域を経て高圧領域へ運ばれる。 In the low-pressure region in the housing 10, as the outer teeth 31 of the pinion gear 3 and the inner teeth 41 of the ring gear 4 that are meshed with each other are separated, hydraulic oil is sucked from the suction port 11 between the outer teeth 31 and the inner teeth 41. Be done. The sucked hydraulic oil is carried from the low pressure region to the high pressure region through the pressure increasing region as the pinion gear 3 and the ring gear 4 rotate.
 ハウジング10内の高圧領域においては、離れていたピニオンギヤ3の外歯31とリングギヤ4の内歯41とが次第に近づいて噛み合う。このことにより、作動油が、外歯31と内歯41との間から吐出ポート12を通じて吐き出される。 In the high pressure region inside the housing 10, the outer teeth 31 of the pinion gear 3 and the inner teeth 41 of the ring gear 4 that have been separated from each other gradually approach each other and mesh with each other. As a result, hydraulic fluid is discharged from between the outer teeth 31 and the inner teeth 41 through the discharge port 12.
 (ハウジング内の作動油の漏れを抑制する構成)
 内接ギヤポンプ1は、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間に高圧の作動油を供給する高圧油供給部8を備えている。図3は、高圧油供給部8の構成を例示している。図3は、図2のIII-III断面に相当する。
(Structure that suppresses leakage of hydraulic oil in the housing)
The internal gear pump 1 includes a high-pressure oil supply unit 8 that supplies high-pressure hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. FIG. 3 illustrates the configuration of the high pressure oil supply unit 8. FIG. 3 corresponds to the III-III cross section of FIG.
 高圧油供給部8は、高圧の作動油によって、リングギヤ4を、昇圧領域の外周囲からリングギヤ4の回転中心Oの方へと押して移動させ、ハウジング10内で作動油が漏れることを抑制する。高圧油供給部8は、摺動面51に開口する導入口81と、吐出ポート12と導入口81とをつなぐ油路82と、油路82に設けられた絞り83とを有している。 The high-pressure oil supply unit 8 presses the ring gear 4 from the outer periphery of the pressure increasing region toward the rotation center O of the ring gear 4 by the high-pressure hydraulic oil, and suppresses the hydraulic oil from leaking inside the housing 10. The high-pressure oil supply unit 8 has an introduction port 81 that opens to the sliding surface 51, an oil passage 82 that connects the discharge port 12 and the introduction port 81, and a throttle 83 provided in the oil passage 82.
 導入口81は、図2に示すように、昇圧領域に位置している。より詳細に、導入口81は、クレセント54に対し、径方向に向かい合っている。導入口81は、後述するように、吐出ポート12から吐出される高圧の作動油の一部を、ハウジング10内に導入する。ハウジング10内に導入した高圧の作動油が低圧領域へと流れることを抑制するために、導入口81は、昇圧領域のうち、昇圧領域の中間位置から高圧側の領域が好ましい。導入口81は、高圧側の領域のうち、クレセント54の第二円弧面542の端点と回転中心Oを結ぶ線から周方向に、10~40°の角度φだけ離れた位置に設けることがさらに好ましい。また、導入口81から導入した高圧の作動油によって、リングギヤ4の歯先をクレセント54に効果的に押し付けるために、導入口81は、クレセント54に向かい合って設けることが好ましい。 The inlet 81 is located in the boost area as shown in FIG. More specifically, the introduction port 81 faces the crescent 54 in the radial direction. The introduction port 81 introduces a part of the high-pressure hydraulic oil discharged from the discharge port 12 into the housing 10, as described later. In order to suppress the high-pressure hydraulic oil introduced into the housing 10 from flowing into the low-pressure region, the introduction port 81 is preferably a region on the high-pressure side from the intermediate position of the pressure-increasing region in the pressure-increasing region. It is further preferable that the introduction port 81 is provided at a position apart from the line connecting the end point of the second arc surface 542 of the crescent 54 and the rotation center O in the region on the high pressure side in the circumferential direction by an angle φ of 10 to 40°. preferable. Further, in order to effectively press the tooth tips of the ring gear 4 against the crescent 54 by the high pressure hydraulic oil introduced from the inlet 81, the inlet 81 is preferably provided facing the crescent 54.
 導入口81は、図3に例示するように、摺動面51において、シャフト2の軸方向の中央位置又は略中央位置に設けられている。導入口81の開口形状は、図3の構成例では、円形状である。尚、導入口81の開口形状は特定の形状に限定されない。 As illustrated in FIG. 3, the introduction port 81 is provided on the sliding surface 51 at a central position or a substantially central position in the axial direction of the shaft 2. The opening shape of the inlet 81 is circular in the configuration example of FIG. 3. The opening shape of the introduction port 81 is not limited to a particular shape.
 油路82は、図3の構成例では、ギヤハウジング5内に設けられている。油路82は、ギヤハウジング5の側面52に開口する吐出ポート12と、導入口81とをつないでいる。尚、図3に一点鎖線によって仮想的に示すように、油路は、フロントカバー6に設けた吐出ポート12と、導入口81とをつなぐように、フロントカバー6及びギヤハウジング5に設けてもよい。また、油路は、ギヤハウジング5に設けた吐出ポート12と、導入口81とをつなぐと共に、フロントカバー6に設けた吐出ポート12と、導入口81とをつなぐようにしてもよい。 The oil passage 82 is provided in the gear housing 5 in the configuration example of FIG. The oil passage 82 connects the discharge port 12 opening to the side surface 52 of the gear housing 5 and the inlet 81. It should be noted that the oil passage may be provided in the front cover 6 and the gear housing 5 so as to connect the discharge port 12 provided in the front cover 6 and the introduction port 81, as indicated by a dashed line in FIG. Good. The oil passage may connect the discharge port 12 provided in the gear housing 5 and the introduction port 81, and may connect the discharge port 12 provided in the front cover 6 and the introduction port 81.
 絞り83は、油路82の断面積を縮小するように構成されている。絞り83は、オリフィスであってもよいし、チョークであってもよい。吐出ポート12から導入口81に向かって油路82内を流れる作動油は、絞り83によって減圧される。導入口81と通じてギヤハウジング5内に導入する作動油の圧力は、吐出ポート12から吐出される作動油の圧力よりも低下している。ギヤハウジング5内に導入する作動油の圧力は、絞り83の構造を変更することによって、調整することができる。 The throttle 83 is configured to reduce the cross-sectional area of the oil passage 82. The diaphragm 83 may be an orifice or a choke. The hydraulic oil flowing in the oil passage 82 from the discharge port 12 toward the inlet 81 is decompressed by the throttle 83. The pressure of the hydraulic oil introduced into the gear housing 5 through the introduction port 81 is lower than the pressure of the hydraulic oil discharged from the discharge port 12. The pressure of the hydraulic oil introduced into the gear housing 5 can be adjusted by changing the structure of the throttle 83.
 前述したように、内接ギヤポンプ1の運転中に、吐出ポート12から吐出された作動油の一部は、油路82及び導入口81を通じて、リングギヤ4の外周面とギヤハウジング5の摺動面51との間に導入される。高圧の作動油によって、リングギヤ4は、昇圧領域の外周囲から回転中心Oの方へと押されて移動する。これにより、リングギヤ4の歯先がクレセント54に押し付けられるから、昇圧領域において、リングギヤ4の歯先とクレセント54との間を通って作動油が漏れることが抑制される。また、高圧領域において、リングギヤ4の外周面とギヤハウジング5の摺動面51との間を通って作動油が漏れることも抑制される。ハウジング10内の漏れを抑制することによって、内接ギヤポンプ1の効率が向上する。 As described above, during operation of the internal gear pump 1, a part of the hydraulic oil discharged from the discharge port 12 passes through the oil passage 82 and the inlet 81, and the outer peripheral surface of the ring gear 4 and the sliding surface of the gear housing 5. It is introduced between 51 and 51. The high-pressure hydraulic oil pushes and moves the ring gear 4 from the outer periphery of the pressurizing region toward the rotation center O. As a result, the tooth tips of the ring gear 4 are pressed against the crescent 54, so that the hydraulic oil is prevented from leaking between the tooth tips of the ring gear 4 and the crescent 54 in the pressure increasing region. Further, in the high pressure region, the leakage of hydraulic oil between the outer peripheral surface of the ring gear 4 and the sliding surface 51 of the gear housing 5 is also suppressed. By suppressing the leak in the housing 10, the efficiency of the internal gear pump 1 is improved.
 ここで、油路82に絞り83を設けることによって、ハウジング10内に導入する作動油の圧力を下げているため、リングギヤ4の歯先がクレセント54に強く押し付けられることが抑制される。リングギヤ4の歯先が摩耗してしまうことが抑制される。 Here, since the pressure of the hydraulic oil introduced into the housing 10 is reduced by providing the throttle 83 in the oil passage 82, the tooth tips of the ring gear 4 are suppressed from being strongly pressed against the crescent 54. Wear of the tooth tips of the ring gear 4 is suppressed.
 また、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間に導入した作動油は、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間の潤滑油としても機能する。これにより、リングギヤ4とギヤハウジング5との間の焼き付きが抑制される。また、前述したように、ハウジング10内の漏れを抑制しているため、ハウジング10内の発熱を抑制することができる。このことによっても、リングギヤ4とギヤハウジング5との間の焼き付きが抑制される。 Further, the hydraulic oil introduced between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 also serves as lubricating oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. Function. As a result, seizure between the ring gear 4 and the gear housing 5 is suppressed. Further, as described above, since the leakage inside the housing 10 is suppressed, the heat generation inside the housing 10 can be suppressed. This also suppresses seizure between the ring gear 4 and the gear housing 5.
 内接ギヤポンプ1はまた、凹部9を有している。図4は、凹部9の構成を例示している。図4は、図2のIV-IV断面に相当する。 The internal gear pump 1 also has a recess 9. FIG. 4 illustrates the configuration of the recess 9. FIG. 4 corresponds to the IV-IV cross section of FIG.
 凹部9は、ギヤハウジング5の摺動面51に設けられている。凹部9は、図5に拡大して示すように、摺動面51から径方向の外方に凹んでいる。尚、図5は、理解を容易にするために、リングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間の大きさを誇張して描いている。凹部9によって、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間隔は、部分的に広がる(図5のL参照)。 The recess 9 is provided on the sliding surface 51 of the gear housing 5. As shown in an enlarged view in FIG. 5, the recess 9 is recessed radially outward from the sliding surface 51. In FIG. 5, the size of the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 is exaggerated in order to facilitate understanding. The recess 9 partially widens the distance between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 (see L in FIG. 5 ).
 凹部9は、図4の構成例では、シャフト2の軸方向に延びる溝形状を有している。凹部9の深さは、例えば1~数ミリ程度としてもよい。 The recess 9 has a groove shape extending in the axial direction of the shaft 2 in the configuration example of FIG. The depth of the recess 9 may be, for example, about 1 to several millimeters.
 凹部9の形状は、溝形状に限らない。後述するように、凹部9は、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間に生じるくさび効果を低減する機能を有していればよい。凹部9は、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間隔を部分的に広げるものであればよい。凹部9は、図示は省略するが、例えば摺動面51から凹んだ複数の穴によって構成してもよい。また、凹部9は、長さの短い複数の溝を、シャフト2の軸方向に並べることによって構成してもよい。尚、図4に示すような溝形状の凹部9は、加工が容易という利点がある。 The shape of the recess 9 is not limited to the groove shape. As will be described later, the recess 9 may have a function of reducing the wedge effect generated between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. The recess 9 may be one that partially widens the distance between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. Although not shown, the recess 9 may be formed by a plurality of holes recessed from the sliding surface 51, for example. In addition, the recess 9 may be configured by arranging a plurality of grooves having a short length in the axial direction of the shaft 2. The groove-shaped recess 9 as shown in FIG. 4 has an advantage that it is easy to process.
 また、凹部9は、図4に示すように、一つのみ設けてもよい。図示は省略するが、凹部9は、摺動面51の周方向に、複数、設けてもよい。 Also, only one recess 9 may be provided, as shown in FIG. Although illustration is omitted, a plurality of recesses 9 may be provided in the circumferential direction of the sliding surface 51.
 凹部9は、図2に示すように、高圧領域に設けられている。前述したように、高圧油供給部8の導入口81から導入される高圧の作動油によって、リングギヤ4は、昇圧領域の外周囲から回転中心Oの方へと押されて移動している。高圧領域においてリングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間が小さくなるから、くさび効果が生じる(図5の矢印参照)。凹部9は、くさび効果が生じる高圧領域のうち、くさび効果が大きく生じる箇所の近傍に設けることが好ましい。より具体的に、凹部9は、図2に示すように、ピニオンギヤ3とリングギヤ4との噛合点Aに対し、周方向に10~40°の角度θだけ離れた位置に設けてもよい。角度θが大きすぎると(つまり、凹部9がピニオンギヤ3とリングギヤ4との噛合点Aから離れると)、くさび効果が大きく生じる箇所から離れた位置になるため、後述する、くさび効果を低減する機能が弱くなる。また、角度θが小さすぎると(つまり、凹部9がピニオンギヤ3とリングギヤ4との噛合点Aに近づくと)、リングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間を通じて作動油が漏れることが助長される恐れがある。 The recess 9 is provided in the high pressure area as shown in FIG. As described above, the high pressure hydraulic oil introduced from the inlet 81 of the high pressure oil supply unit 8 pushes and moves the ring gear 4 from the outer periphery of the boost region toward the rotation center O. Since the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 becomes small in the high pressure region, a wedge effect occurs (see the arrow in FIG. 5). The recess 9 is preferably provided in the high pressure region where the wedge effect is generated, in the vicinity of a portion where the wedge effect is significantly generated. More specifically, as shown in FIG. 2, the recess 9 may be provided at a position separated from the meshing point A between the pinion gear 3 and the ring gear 4 by an angle θ of 10 to 40° in the circumferential direction. If the angle θ is too large (that is, the recessed portion 9 moves away from the meshing point A between the pinion gear 3 and the ring gear 4), the position is far from the place where the wedge effect is largely generated, and thus the function of reducing the wedge effect described later. Becomes weak. When the angle θ is too small (that is, when the recess 9 approaches the meshing point A between the pinion gear 3 and the ring gear 4), the operating oil passes through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. May be encouraged to leak.
 尚、ピニオンギヤ3とリングギヤ4との噛合点Aの位置は、両ギヤ3、4が共に回転するので、一定の範囲で周方向に移動する。ここでは、移動範囲の中心点を噛合点Aとする(図2参照)。 The position of the meshing point A between the pinion gear 3 and the ring gear 4 moves in the circumferential direction within a certain range because both gears 3 and 4 rotate together. Here, the center point of the moving range is the meshing point A (see FIG. 2).
 凹部9は、高圧油供給部8とは異なり、高圧の作動油をギヤハウジング5内に導入する機能を有していない。凹部9は、吐出ポート12とは非接続である。 Unlike the high-pressure oil supply unit 8, the recess 9 does not have a function of introducing high-pressure hydraulic oil into the gear housing 5. The recess 9 is not connected to the discharge port 12.
 高圧領域における摺動面51に、凹部9を設けることによって、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間隔が、部分的に広くなるから、くさび効果が低減する。くさび効果が低減するため、内接ギヤポンプ1の回転数が高いときに、リングギヤ4が高圧領域の外周囲から回転中心Oの方へと押されて移動することが抑制される。その結果、高圧領域において、リングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間を通じて作動油が漏れることが抑制される。それと共に、昇圧領域において、リングギヤ4の内歯41とクレセント54との間から作動油が漏れることも抑制される。尚、内接ギヤポンプ1が低回転数で運転しているときには、くさび効果がもともと低いから、高圧領域において、リングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間を通じて作動油が漏れることが抑制されると共に、昇圧領域において、リングギヤ4の内歯41とクレセント54との間から作動油が漏れることも抑制される。 By providing the recess 9 on the sliding surface 51 in the high pressure region, the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 is partially widened, so that the wedge effect is reduced. Since the wedge effect is reduced, the ring gear 4 is suppressed from being pushed toward the rotation center O from the outer periphery of the high pressure region when the rotation speed of the internal gear pump 1 is high. As a result, in the high pressure region, the hydraulic oil is suppressed from leaking through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. At the same time, in the boost region, the hydraulic oil is also prevented from leaking from between the inner teeth 41 of the ring gear 4 and the crescent 54. When the internal gear pump 1 is operated at a low rotational speed, the wedge effect is originally low, so that the hydraulic oil flows through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 in the high pressure region. Leakage is suppressed, and at the same time, the hydraulic oil is also prevented from leaking between the internal teeth 41 of the ring gear 4 and the crescent 54 in the pressure increasing region.
 前述したように、凹部9は吐出ポート12とは非接続であり、高圧の作動油を導入する機能を有していない。ここで、仮に凹部9を通じて高圧の作動油をハウジング10内に導入するよう構成すると、リングギヤ4は、高圧の作動油によって高圧領域の外周囲から回転中心Oの方へと押される。高圧領域において、リングギヤ4の外周面42とギヤハウジング5の摺動面51との隙間を通じて作動油が漏れることが助長される恐れがある。また、昇圧領域において、リングギヤ4の内歯41とクレセント54との間から作動油が漏れることが助長される恐れがある。凹部9を、吐出ポート12とは非接続にすることによって、内接ギヤポンプ1のハウジング10内における作動油の漏れを抑制することが可能になる。 As described above, the recess 9 is not connected to the discharge port 12 and does not have the function of introducing high-pressure hydraulic oil. If the high-pressure hydraulic oil is introduced into the housing 10 through the recess 9, the ring gear 4 is pushed from the outer periphery of the high-pressure area toward the rotation center O by the high-pressure hydraulic oil. In the high pressure region, there is a possibility that hydraulic oil may be promoted to leak through the gap between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. Further, in the boost region, there is a risk that the hydraulic fluid may be promoted to leak from between the internal teeth 41 of the ring gear 4 and the crescent 54. By disconnecting the recess 9 from the discharge port 12, it is possible to suppress the leakage of hydraulic oil in the housing 10 of the internal gear pump 1.
 従来の内接ギヤポンプは、加工精度が相対的に低くかつ、リングギヤの外周面に潤滑コーティングが形成されていなかったため、摺動面に設けた複数の導入口のそれぞれからハウジング内に高圧の作動油を導入することにより、リングギヤとハウジングとの間の焼き付きを抑制する構成を採用しなければならなかった。 Since the conventional internal gear pump has relatively low processing accuracy and no lubricating coating is formed on the outer peripheral surface of the ring gear, high-pressure hydraulic oil is introduced into the housing from each of the multiple inlets provided on the sliding surface. Therefore, it has been necessary to adopt a configuration that suppresses seizure between the ring gear and the housing.
 これに対し、今は加工精度が相対的に高くなった上に、内接ギヤポンプ1は、リングギヤ4の外周面42に潤滑コーティングを形成している。内接ギヤポンプ1は、複数の導入口を通じて作動油をハウジング内に導入する構成を採用しなくても、リングギヤ4とギヤハウジング5との間の焼き付きを抑制することができる。 On the other hand, the machining accuracy is now relatively high, and the internal gear pump 1 has a lubricating coating on the outer peripheral surface 42 of the ring gear 4. The internal gear pump 1 can suppress seizure between the ring gear 4 and the gear housing 5 without adopting a configuration in which the hydraulic oil is introduced into the housing through a plurality of inlets.
 そこで、この内接ギヤポンプ1は、昇圧領域には高圧油供給部8の導入口81を設けることにより、高圧の作動油をハウジング10内に導入する一方、高圧領域には、高圧の作動油を導入しない凹部9を設けている。高圧油供給部8と凹部9との組み合わせによって、リングギヤ4とギヤハウジング5との間の焼き付きを抑制しながら、ハウジング10内の作動油の漏れを抑止することが可能になる。この内接ギヤポンプ1は、信頼性が高くかつ、高効率である。 Therefore, the internal gear pump 1 introduces the high pressure hydraulic oil into the housing 10 by providing the introduction port 81 of the high pressure oil supply unit 8 in the pressure increasing region, while the high pressure hydraulic oil is introduced in the high pressure region. A recess 9 that is not introduced is provided. The combination of the high-pressure oil supply part 8 and the recess 9 makes it possible to suppress the seizure between the ring gear 4 and the gear housing 5 while suppressing the leakage of the hydraulic oil in the housing 10. The internal gear pump 1 has high reliability and high efficiency.
 尚、ギヤハウジング5の摺動面51に潤滑コーティングを形成してもよいし、リングギヤ4の外周面42とギヤハウジング5の摺動面51の両面に潤滑コーティングを形成してもよい。 A lubricating coating may be formed on the sliding surface 51 of the gear housing 5, or a lubricating coating may be formed on both the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5.
 図6は、高圧油供給部の変形例を示している。図6に示す高圧油供給部80は、導入口810と、油路820と、絞り830とを有している。導入口810は、図3に示す導入口81と形状が異なり、溝形状を有している。導入口810は、摺動面51に開口していると共に、シャフト2の軸方向に延びている。導入口810はまた、ギヤハウジング5の、フロントカバー6の側面61との当接面にも開口している。 FIG. 6 shows a modification of the high pressure oil supply section. The high-pressure oil supply unit 80 shown in FIG. 6 has an introduction port 810, an oil passage 820, and a throttle 830. The inlet 810 is different from the inlet 81 shown in FIG. 3 in shape, and has a groove shape. The introduction port 810 is open to the sliding surface 51 and extends in the axial direction of the shaft 2. The introduction port 810 also opens in the contact surface of the gear housing 5 with the side surface 61 of the front cover 6.
 油路820は、図6の構成例では、フロントカバー6に設けられている。油路820は、前記の油路82と同様に、吐出ポート12と導入口810とをつなぐ。図6の構成例において、油路820は、シャフト2の軸方向に延びている。油路820は、フロントカバー6の側面61に開口し、導入口810の開口に接続される。また、絞り830は、油路820の途中に設けられている。 The oil passage 820 is provided in the front cover 6 in the configuration example of FIG. The oil passage 820 connects the discharge port 12 and the introduction port 810 similarly to the oil passage 82. In the configuration example of FIG. 6, the oil passage 820 extends in the axial direction of the shaft 2. The oil passage 820 opens on the side surface 61 of the front cover 6 and is connected to the opening of the introduction port 810. The throttle 830 is provided in the middle of the oil passage 820.
 この構成の高圧油供給部80も、前記の高圧油供給部8と同様に、昇圧領域において、高圧の作動油をハウジング10内に導入することができる。これにより、リングギヤ4の歯先とクレセント54との間の作動油の漏れ、及び、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間の作動油の漏れを抑制することができる。 Like the high-pressure oil supply unit 8 described above, the high-pressure oil supply unit 80 having this configuration can also introduce high-pressure hydraulic oil into the housing 10 in the pressure rising region. Accordingly, it is possible to suppress the leakage of the hydraulic oil between the tooth tips of the ring gear 4 and the crescent 54 and the leakage of the hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5. it can.
 尚、油路は、図6に一点鎖線で示すように、フロントカバー6の、ギヤハウジング5との接合面から凹陥すると共に、径方向に延びる凹溝によって構成してもよい。また、図示は省略するが、油路及び絞りは、ギヤハウジング5に設けてもよい。 The oil passage may be formed by a groove that extends from the joint surface of the front cover 6 with the gear housing 5 and extends in the radial direction, as shown by the alternate long and short dash line in FIG. Although illustration is omitted, the oil passage and the throttle may be provided in the gear housing 5.
 尚、凹部9は、吐出ポート12とは非接続である。しかしながら、凹部9を、吐出ポート12に接続してもよい。但し、この場合、凹部9を通じてリングギヤ4の外周面42とギヤハウジング5の摺動面51との間に導入された作動油によって、リングギヤ4が、昇圧領域の外周囲から回転中心Oの方へと押されて移動しないことが好ましい。 Note that the recess 9 is not connected to the discharge port 12. However, the recess 9 may be connected to the discharge port 12. However, in this case, the ring gear 4 is moved from the outer periphery of the boost region toward the rotation center O by the hydraulic oil introduced between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 through the recess 9. It is preferable that it is pushed and does not move.
 ここに例示する内接ギヤポンプ1は、クレセント54が動かない固定式に構成しているが、可動式のクレセントを設けてもよい。また、ここに開示する技術は、クレセントを備えていない内接ギヤポンプに適用することも可能である。クレセントを備えていない内接ギヤポンプにおいて、前述した高圧油供給部8と凹部9との組み合わせは、リングギヤ4とギヤハウジング5との間の焼き付きを抑制しながら、リングギヤ4の歯先とピニオンギヤ3の歯先との間の作動油の漏れ、及び、リングギヤ4の外周面42とギヤハウジング5の摺動面51との間の作動油の漏れを抑制することができる。 The internal gear pump 1 illustrated here is a fixed type in which the crescent 54 does not move, but a movable crescent may be provided. The technology disclosed herein can also be applied to an internal gear pump that does not have a crescent. In the internal gear pump that does not include a crescent, the combination of the high-pressure oil supply unit 8 and the recess 9 described above suppresses seizure between the ring gear 4 and the gear housing 5, and at the same time, prevents the seizure between the ring gear 4 and the pinion gear 3. Leakage of hydraulic oil between the tooth tip and leakage of hydraulic oil between the outer peripheral surface 42 of the ring gear 4 and the sliding surface 51 of the gear housing 5 can be suppressed.
 但し、吸入ポートまたは吐出ポートが摺動面に開口している形式の内接ギヤポンプは、元々くさび効果が発生しない。この形式の内接ギヤポンプに、ここに開示する技術を適用しても、その効果は期待できない。 However, the internal gear pump in which the suction port or the discharge port is open on the sliding surface does not originally have a wedge effect. Even if the technology disclosed herein is applied to this type of internal gear pump, the effect cannot be expected.
1 内接ギヤポンプ
10 ハウジング
3 ピニオンギヤ
31 外歯
4 リングギヤ
41 内歯
42 外周面
5 ギヤハウジング
51 摺動面
54 クレセント
6 フロントカバー
7 リヤカバー
8 高圧油供給部
80 高圧油供給部
81 導入口
810 導入口
82 油路
820 油路
83 絞り
830 絞り
9 凹部
1 Internal Gear Pump 10 Housing 3 Pinion Gear 31 External Teeth 4 Ring Gear 41 Inner Teeth 42 Outer Surface 5 Gear Housing 51 Sliding Surface 54 Crescent 6 Front Cover 7 Rear Cover 8 High Pressure Oil Supply Section 80 High Pressure Oil Supply Section 81 Inlet 810 Inlet 82 Oil passage 820 Oil passage 83 Throttle 830 Throttle 9 Recess

Claims (5)

  1.  外歯を有するピニオンギヤと、
     前記外歯に噛み合う内歯が内周面に設けられたリングギヤと、
     前記ピニオンギヤと前記リングギヤとの噛み合いが離れる箇所に設けられかつ、前記外歯及び前記内歯のそれぞれが当接するクレセントと、
     前記リングギヤの外周面が摺動する摺動面を有しかつ、前記ピニオンギヤ及び前記リングギヤを回転可能に収容するハウジングと、
     前記摺動面に開口する導入口を有しかつ、前記導入口を通じて前記リングギヤの外周面と前記摺動面との間に高圧の作動油を供給する高圧油供給部と、
     前記リングギヤの外周面と前記摺動面との間隔が広がるように、前記摺動面に設けられた凹部と、を備え、
     前記ハウジング内の空間は、吸込ポートが開口する低圧領域と、吐出ポートが開口する高圧領域と、前記クレセントが配設されている昇圧領域との三領域に区分され、
     前記導入口は、前記昇圧領域に位置し、
     前記凹部は、前記高圧領域に位置している内接ギヤポンプ。
    A pinion gear having external teeth,
    A ring gear in which inner teeth meshing with the outer teeth are provided on the inner peripheral surface,
    A crescent provided at a location where the pinion gear and the ring gear are apart from each other, and the external teeth and the internal teeth are in contact with each other, and
    A housing that has a sliding surface on which the outer peripheral surface of the ring gear slides, and rotatably accommodates the pinion gear and the ring gear;
    A high-pressure oil supply unit that has an inlet opening to the sliding surface and that supplies high-pressure hydraulic oil between the outer peripheral surface of the ring gear and the sliding surface through the inlet.
    A recess provided in the sliding surface so that a space between the outer peripheral surface of the ring gear and the sliding surface is widened,
    The space in the housing is divided into three regions, a low pressure region where the suction port opens, a high pressure region where the discharge port opens, and a pressure rising region where the crescent is arranged,
    The inlet is located in the pressure increasing region,
    The internal gear pump, wherein the recess is located in the high pressure region.
  2.  請求項1に記載の内接ギヤポンプにおいて、
     前記凹部は、溝形状を有している内接ギヤポンプ。
    The internal gear pump according to claim 1,
    The internal gear pump in which the recess has a groove shape.
  3.  請求項1又は2に記載の内接ギヤポンプにおいて、
     前記凹部は、前記吐出ポートに非接続である内接ギヤポンプ。
    The internal gear pump according to claim 1 or 2,
    The internal gear pump, wherein the recess is not connected to the discharge port.
  4.  請求項1~3のいずれか1項に記載の内接ギヤポンプにおいて、
     前記高圧油供給部は、
      前記吐出ポートと前記導入口とをつなぐ油路と、
      前記油路に設けられかつ、前記作動油の圧力を下げる絞りと、
    を有している内接ギヤポンプ。
    The internal gear pump according to any one of claims 1 to 3,
    The high-pressure oil supply unit,
    An oil passage connecting the discharge port and the introduction port,
    A throttle provided in the oil passage and configured to reduce the pressure of the hydraulic oil,
    Internal gear pump having.
  5.  請求項1~4のいずれか1項に記載の内接ギヤポンプにおいて、
     前記リングギヤの外周面には、潤滑コーティングが形成されている内接ギヤポンプ。
    The internal gear pump according to any one of claims 1 to 4,
    An internal gear pump in which a lubricating coating is formed on the outer peripheral surface of the ring gear.
PCT/JP2018/043438 2018-11-26 2018-11-26 Internal gear pump WO2020110180A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880097168.5A CN112639290B (en) 2018-11-26 2018-11-26 Internal gear pump
EP18941686.0A EP3828415B1 (en) 2018-11-26 2018-11-26 Internal gear pump
PCT/JP2018/043438 WO2020110180A1 (en) 2018-11-26 2018-11-26 Internal gear pump
JP2019513468A JP6526371B1 (en) 2018-11-26 2018-11-26 Internal gear pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043438 WO2020110180A1 (en) 2018-11-26 2018-11-26 Internal gear pump

Publications (1)

Publication Number Publication Date
WO2020110180A1 true WO2020110180A1 (en) 2020-06-04

Family

ID=66730657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043438 WO2020110180A1 (en) 2018-11-26 2018-11-26 Internal gear pump

Country Status (4)

Country Link
EP (1) EP3828415B1 (en)
JP (1) JP6526371B1 (en)
CN (1) CN112639290B (en)
WO (1) WO2020110180A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360907B2 (en) * 2019-11-15 2023-10-13 住友精密工業株式会社 gear pump
CN115485096B (en) * 2020-11-17 2023-08-22 三菱电机株式会社 Additional manufacturing device and additional manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171885U (en) * 1985-04-15 1986-10-25
JPS61179385U (en) 1985-04-26 1986-11-08
JPS62158181U (en) 1986-03-28 1987-10-07
JPH07151066A (en) 1993-11-26 1995-06-13 Aisin Seiki Co Ltd Trochoidal oil pump
JP2014148907A (en) * 2013-01-31 2014-08-21 Toyota Industries Corp Internal gear pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201363269Y (en) * 2009-02-13 2009-12-16 王乃刚 Circular arc tooth conjugated inner gearing gear pump
CN102141035B (en) * 2011-04-13 2013-04-24 徐州科源液压有限公司 High-pressure gear pump with intermediate-pressure bearing lubrication
DE102011115993A1 (en) * 2011-10-14 2013-04-18 Robert Bosch Gmbh Hydrostatic internal-gear machine used as internal gear pump, has high-pressure working chamber that is provided between ring gear and pinion and sealed against low-pressure working chamber
DE102012215023A1 (en) * 2012-06-29 2014-01-02 Robert Bosch Gmbh Internal gear pump used as hydraulic pump for fuel injection system for motor car, has fluid storage space that is formed between radially outward facing surface of ring gear and radially inward facing surface of ring bearing
JP2016033337A (en) * 2014-07-31 2016-03-10 ダイハツ工業株式会社 Oil pump

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171885U (en) * 1985-04-15 1986-10-25
JPS61179385U (en) 1985-04-26 1986-11-08
JPS62158181U (en) 1986-03-28 1987-10-07
JPH07151066A (en) 1993-11-26 1995-06-13 Aisin Seiki Co Ltd Trochoidal oil pump
JP2014148907A (en) * 2013-01-31 2014-08-21 Toyota Industries Corp Internal gear pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828415A4

Also Published As

Publication number Publication date
EP3828415A1 (en) 2021-06-02
JP6526371B1 (en) 2019-06-05
JPWO2020110180A1 (en) 2021-02-15
CN112639290A (en) 2021-04-09
EP3828415B1 (en) 2022-08-03
CN112639290B (en) 2021-10-08
EP3828415A4 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
US8535030B2 (en) Gerotor hydraulic pump with fluid actuated vanes
US10578101B2 (en) Rotary pump comprising a lubricating groove in the sealing stay
US9404496B2 (en) Oil return passage structure for oil pump
WO2020110180A1 (en) Internal gear pump
US9885356B2 (en) Variable displacement pump
US8690557B2 (en) Variable displacement vane pump
JP5721521B2 (en) Internal gear type oil pump
JP2006046283A (en) Inscribed type gear pump
WO2010095505A1 (en) Internal gear pump
WO2014141888A1 (en) Variable-capacity vane pump
CN108496007A (en) Vane pump
WO2022176544A1 (en) Tandem-type oil pump
JP2012057561A (en) Internal gear oil pump
JP2016138521A (en) Screw compressor
JP7360907B2 (en) gear pump
WO2023243665A1 (en) Internal gear pump
KR102140323B1 (en) Electronic Oil Pump
JP2009052525A (en) Vane pump
JP2008128050A (en) Trochoid fluid pump
JP2012002183A (en) Vane pump
JP2006161696A (en) Vane rotary type vacuum pump
JP2006046203A (en) Vane rotary type air pump
JP2009068473A (en) Internal gear pump
WO1998059171A1 (en) Gear pump
JP2009052467A (en) Gear pump

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019513468

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018941686

Country of ref document: EP

Effective date: 20210224

NENP Non-entry into the national phase

Ref country code: DE