WO2022176544A1 - Tandem-type oil pump - Google Patents

Tandem-type oil pump Download PDF

Info

Publication number
WO2022176544A1
WO2022176544A1 PCT/JP2022/002863 JP2022002863W WO2022176544A1 WO 2022176544 A1 WO2022176544 A1 WO 2022176544A1 JP 2022002863 W JP2022002863 W JP 2022002863W WO 2022176544 A1 WO2022176544 A1 WO 2022176544A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
oil
rotor
pump rotor
drive shaft
Prior art date
Application number
PCT/JP2022/002863
Other languages
French (fr)
Japanese (ja)
Inventor
亮 松村
英俊 楊
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202280015375.8A priority Critical patent/CN116867969A/en
Publication of WO2022176544A1 publication Critical patent/WO2022176544A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member

Definitions

  • the present invention relates to an oil pump, and more particularly to a tandem oil pump having two oil pumps.
  • a tandem-type oil pump applied to an internal combustion engine mounted on an automobile has a well-known configuration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2008-163925 (Patent Document 1).
  • a tandem-type oil pump disclosed in Patent Document 1 includes a first pump having the same shape and a second pump arranged with a rotation phase shifted with respect to the first pump, in a pump body formed in a cylindrical shape with a bottom.
  • An annular partition member for partitioning between the pumps, and a pump body slidably supported in the pump body penetrates both pumps and the partition member to transmit driving force to the inner rotors of both pumps.
  • Each pump performs a pumping action when the drive shaft is rotationally driven by the driving force transmitted from the internal combustion engine.
  • the first pump and the second pump are pumps having substantially the same discharge pressure.
  • a tandem oil pump that combines a high-pressure oil pump and a low-pressure oil pump has also been proposed.
  • a scavenging oil pump (low-pressure oil pump) that collects engine oil (hereinafter simply referred to as oil) from the oil pan, and supplies pressurized oil to the variable valve mechanism and the main oil gallery of the internal combustion engine.
  • oil engine oil
  • a tandem oil pump combined with a variable capacity oil feed pump (high pressure oil pump) is known.
  • a gear-type oil pump is used as the scavenging oil pump
  • a vane-type oil pump is used as the variable displacement oil feed pump.
  • a pump rotor bearing in which a pump rotor attached to the end of a drive shaft is integrally formed with a pump rotor diameter small shaft portion extending in the axial direction of the drive shaft, and the pump rotor diameter small shaft portion is formed in the pump body. If the bearing is provided at the end of the drive shaft, vibration of the pump rotor at the end of the drive shaft can be suppressed. Note that this configuration will be described in detail in the description of the embodiment.
  • the present invention is directed to a tandem-type oil pump in which a high-pressure oil pump and a low-pressure oil pump are combined. It is not limited.
  • An object of the present invention is to prevent seizure at the contact portion between the pump rotor diameter small shaft portion formed in the pump rotor of the low pressure oil pump and the pump rotor bearing portion formed in the pump body when a high pressure oil pump and a low pressure oil pump are combined.
  • another object of the present invention is to provide a novel tandem-type oil pump capable of suppressing the occurrence of a wear phenomenon.
  • the present invention a first pump rotor accommodating portion and a second pump rotor accommodating portion; a partition wall that partitions the first pump rotor accommodating portion and the second pump rotor accommodating portion; and a first pump rotor accommodating portion formed in the partition wall.
  • a pump body having a drive shaft bearing portion connected to the second pump rotor accommodating portion; a drive shaft rotatably supported by the drive shaft bearing and driven to rotate by an external power source; It has a first pump rotor that is arranged in the first pump rotor accommodating portion and is rotationally driven by the drive shaft, and the first pump rotor is rotationally driven by the drive shaft to absorb oil introduced from the first suction portion.
  • a first oil pump that pressurizes and discharges from the first discharge part; It has a second pump rotor that is arranged in the second pump rotor accommodating portion and is rotationally driven by the drive shaft, and the second pump rotor is rotationally driven by the drive shaft to absorb oil introduced from the second suction portion.
  • a second oil pump that discharges from the second discharge part at a pressure lower than the pressure discharged from the first discharge part of the first oil pump
  • a second rotor housing portion is provided between the second pump rotor housing portion and the drive shaft bearing portion and has a larger diameter than the drive shaft bearing portion and a smaller diameter than the second pump rotor housing portion.
  • a second pump rotor bearing portion is formed continuously with the pump rotor accommodating portion, and the second pump rotor is formed with a second pump rotor diameter small shaft portion integral with the second pump rotor.
  • the pump rotor diameter small shaft portion is accommodated and supported by the second pump rotor bearing portion, and
  • An oil supply passage for supplying oil from the first oil pump to the second pump rotor bearing is formed in the pump body.
  • the present invention a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a drive shaft bearing connecting between a drive shaft positioned in the high-pressure pump rotor accommodating portion and the low-pressure pump rotor accommodating portion and rotatably driven by an external power source rotatably supported by the drive shaft bearing; a high-pressure oil pump having a high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and performing a pumping action at a first discharge pressure by rotation of the high-pressure pump rotor; a low-pressure oil pump having a low-pressure pump rotor disposed in the low-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and performing a pumping action at a second discharge pressure lower than the first discharge pressure by rotation of the low-pressure pump rotor;
  • the low-pressure pump rotor is formed with a low-pressure pump rotor diameter small shaft portion integrated with the low-pressure pump rotor, and the low-pressure pump rotor diameter small shaft portion is formed continuously with the low-pressure pump rotor.
  • the pump body Housed in and supported by the pump rotor bearing, The pump body is characterized in that an oil supply passage for supplying oil from the high-pressure oil pump to the low-pressure pump rotor bearing is formed in the pump body.
  • high-pressure oil is supplied from the first oil pump (high-pressure oil pump) to the second pump rotor bearing through the oil supply passage. It is possible to suppress the occurrence of a seizure phenomenon or an abrasion phenomenon between the second pump rotor diameter small shaft portion formed in the second pump rotor and the second pump rotor bearing portion. .
  • FIG. 1 is an external perspective view of a tandem-type oil pump according to the present invention, viewed obliquely from above;
  • FIG. FIG. 2 is a front view of the tandem oil pump shown in FIG. 1 viewed from the side of a variable displacement oil feed pump;
  • FIG. 2 is a rear view of the tandem oil pump shown in FIG. 1 as seen from the scavenging oil pump side;
  • FIG. 2 is an exploded perspective view of a variable displacement oil feed pump, viewed obliquely from above;
  • FIG. 3 is a cross-sectional view for explaining the internal structure of a pump portion of a variable displacement oil feed pump;
  • FIG. 4 is an exploded perspective view of the scavenging oil pump when viewed obliquely from above;
  • FIG. 4 is a cross-sectional view for explaining the internal structure of the pump portion of the scavenging oil pump;
  • FIG. 3 is an exploded perspective view for explaining the shapes of the inner rotor and drive shaft of the scavenging oil pump;
  • FIG. 2 is a sectional view showing the AA section of the tandem oil pump according to the first embodiment of the present invention shown in FIG. 1;
  • FIG. 10 is an enlarged cross-sectional view showing a portion (near an oil supply passage) of the tandem-type oil pump shown in FIG. 9;
  • FIG. 10 is a sectional view showing the BB section of the tandem oil pump shown in FIG. 9;
  • FIG. 10 is an external perspective view of the pump body of the tandem-type oil pump shown in FIG.
  • FIG. 10 is an enlarged sectional view enlarging a part (near the oil supply passage) of the first modification of the tandem oil pump shown in FIG. 9;
  • FIG. 10 is an enlarged cross-sectional view enlarging a part (near the oil supply passage) of the second modification of the tandem-type oil pump shown in FIG. 9;
  • FIG. 10 is a cross-sectional view showing a cross section corresponding to FIG. 9 of the tandem oil pump according to the second embodiment of the present invention;
  • FIG. 16 is a sectional view showing a CC section of the tandem oil pump shown in FIG. 15;
  • FIG. 16 is an enlarged cross-sectional view enlarging a part (near the oil supply passage) of the modification of the tandem-type oil pump shown in FIG. 15;
  • FIG. 1 shows a tandem-type oil pump according to an embodiment of the present invention as seen obliquely from above.
  • a high-pressure pump cover 13 (corresponding to the first pump cover in the claims) attached at 12, and a low-pressure pump cover 15 (see FIG. 3) attached to the rear portion 11B of the pump body 11 with bolts 14 (see FIG. 3). (corresponding to the second pump cover).
  • the pump body 11 on the side of the high-pressure pump cover 13 houses a variable displacement oil feed pump, which is a high-pressure oil pump (corresponding to the first pump in the claims).
  • a scavenging oil pump which is a low-pressure oil pump (corresponding to a second pump in the claims), is accommodated in the pump body 11 on the low-pressure pump cover 15 side.
  • the pump body 11 is formed in a substantially rectangular parallelepiped box shape, but in reality, the shape is changed according to the external shape and size of the internal combustion engine. However, even if the external shape changes, the basic idea of the present invention does not change.
  • the tandem-type oil pump 10 includes a drive shaft 16 extending through a high-pressure pump cover 13 and a pump body 11 to a low-pressure pump cover 15.
  • the drive shaft 16 is rotationally driven by a crankshaft of an internal combustion engine or an electric motor. be.
  • the drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and the drive shaft 16 rotates the pump rotors of the high-pressure oil pump and the low-pressure oil pump, respectively.
  • a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15.
  • a suction hole 17 (corresponding to a second suction hole in the claims) is formed on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15 a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided.
  • a suction hole 17 (corresponding to a second suction hole in the claims) is formed.
  • a pair of attachment portions 11A to be attached to the oil pan of the internal combustion engine are provided on the upper surface portion 11U of the pump body 11. Fixing bolts are inserted through the attachment portions 11A to be fixed to the internal combustion engine.
  • a low-pressure side suction hole 17 is formed in the mounting portion 11A.
  • the pair of attachment portions 11A are provided so as to sandwich the pump body 11 from both sides at radial positions with respect to the drive shaft 16 provided in the pump body 11, and are attached to the internal combustion engine. Therefore, when the tandem-type oil pump 10 is attached to the internal combustion engine, the oil in the oil pan can be easily guided to the low-pressure side suction hole 17 .
  • FIG. 2 shows the front of the tandem-type oil pump 10 on the side on which the high-pressure pump cover 13 is provided. (pump chamber).
  • the high-pressure pump cover 13 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
  • a high-pressure oil pump connected to a discharge portion (corresponding to a first discharge portion in the claims) of the high-pressure oil pump is provided on the high-pressure pump cover 13 located radially outside the drive shaft center of the drive shaft 16 .
  • a side discharge hole 18 (corresponding to a first discharge hole in the claims) is formed.
  • the high-pressure side discharge hole 18 supplies pressurized oil to at least the main oil gallery of the internal combustion engine in this embodiment, but it may also supply the variable valve mechanism.
  • FIG. 3 shows the rear surface of the tandem-type oil pump 10 on the side where the low-pressure pump cover 15 is provided. forms part of The low-pressure pump cover 15 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
  • a suction portion (corresponding to a first suction portion in the claims) of a high-pressure oil pump is connected to the rear surface portion 11B of the pump body 11 located radially outside the drive shaft center of the drive shaft 16.
  • a high-pressure side suction hole 19 (corresponding to a first suction hole in the claims) is formed.
  • the low-pressure pump cover 15 has a low-pressure side discharge hole 20 (corresponding to the second discharge hole in the claims) connected to the discharge part (corresponding to the second discharge part in the claims) of the low-pressure oil pump. is formed.
  • FIG. 4 shows the disassembled state of the high-pressure oil pump after the low-pressure oil pump is assembled
  • FIG. 6 shows the disassembled state of the low-pressure oil pump after the high-pressure oil pump is assembled.
  • the high-pressure oil pump is a vane-type oil pump (variable displacement type) using vanes
  • the low-pressure pump is a gear-type oil pump using a trochoid gear.
  • one side of the pump body 11 is formed with a vane pump rotor accommodating portion 21 (corresponding to the first pump rotor accommodating portion/high pressure pump rotor accommodating portion in the claims) of the vane type oil pump.
  • a gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion in the claims) of the gear type oil pump is provided. do) is formed.
  • a partition wall 23 that partitions the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 is formed between the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 .
  • the vane-type oil pump can be assembled from one side of the pump body 11, and the gear-type oil pump can be assembled from the other side of the pump body 11. can.
  • a bearing through hole 24 (corresponding to a drive shaft bearing portion in the claims) through which the drive shaft 16 passes is formed in the partition wall 23 (see FIG. 8).
  • FIG. 5 shows a pump portion of a well-known vane-type oil pump taken in a cross section perpendicular to the axis.
  • a pump body 25 is housed in a recessed vane pump rotor housing portion 21 formed in the pump body 11.
  • a vane pump rotor 26 (corresponding to a first pump rotor/high-pressure pump rotor in the claims) press-fitted with the drive shaft 16 is arranged substantially in the center of the vane pump rotor accommodating portion 21, and a swinging rotor 26 is arranged on the outer side thereof.
  • An adjustment ring 27 is arranged with its dynamic center eccentric to the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 in this way, it is firmly fixed so as to restrict relative movement in the drive axis direction and the rotational direction.
  • the adjustment ring 27 is pivotable about the pivot 28, and in the initial state, the adjustment ring 27 is pushed rightward in FIG. and the eccentricity is at its maximum setting.
  • the vanes 31 are arranged in a plurality of slits provided in the vane pump rotor 26, and when the vane pump rotor 26 rotates, the tips of the vanes slide on the inner peripheral surface of the adjustment ring 27 while appearing and disappearing from the outer peripheral surface of the vane pump rotor 26. All of the vanes 31 are supported by vane rings 32 so as not to retreat inward even when stopped.
  • a space formed by the outer peripheral surface of the vane pump rotor 26, the inner peripheral surface of the adjustment ring 27, and the two vanes 31 (hereinafter referred to as the hydraulic oil chamber) rotates counterclockwise as shown in FIG.
  • the volume increases and decreases as the vane pump rotor 26 rotates.
  • a suction portion 33 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber increases. The suction portion 33 is connected to the high-pressure side suction hole 19 provided in the rear portion 11B of the pump body 11 on the low-pressure oil pump side.
  • a discharge part 34 is provided on the side surface of the pump body 11 within the range where the volume decreases.
  • This discharge portion 34 is connected to a high pressure side discharge hole 18 provided in the front portion 11F of the pump body 11 on the side of the high pressure oil pump.
  • the vane type oil pump sucks up oil through the suction hole 19 and discharges the oil through the discharge hole 18 to the variable valve mechanism or the main oil gallery of the internal combustion engine to perform a pumping action.
  • the compression spring 35 biases the ball valve 36, and when the discharge pressure rises above a predetermined value, the ball valve 36 is opened to reduce the discharge pressure. Since the configuration and operation of this vane type oil pump are well known, further explanation will be omitted.
  • the vane-type oil pump is arranged swingably in the vane pump rotor accommodating portion 21 and accommodated in the adjustment ring 27 having the vane accommodating portion therein, and the drive shaft and a plurality of vanes 31 accommodated on the outer peripheral surface of the vane pump rotor 26 and forming a plurality of hydraulic oil chambers through which oil is directed between the adjustment ring 27 and the vane pump rotor 26. Then, the oil is sucked from the suction hole 19 (see FIG. 3) whose volume increases among the plurality of hydraulic oil chambers as the drive shaft 16 rotates, and It is an oil pump that discharges oil from a discharge hole 18 (see FIG. 2) whose volume decreases.
  • FIG. 7 shows a pump portion of a known gear-type oil pump taken in a cross section perpendicular to the axis.
  • a gear pump rotor accommodating portion 22 is formed on the side of the rear portion 11B of the pump body 11, and an outer rotor 37 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is formed therein. ) are slidably and rotatably arranged.
  • an inner rotor 38 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is arranged inside the outer rotor 37. As shown in FIG. 7, five internal teeth 40, one more than the external teeth 39 of the inner rotor 38, are formed on the inner peripheral side of the outer rotor 37. It meshes with the external teeth 39 of the rotor 38 .
  • a plurality of working oil chambers are formed between the outer teeth 39 of the inner rotor 38 and the inner teeth 40 of the outer rotor 37.
  • the outer rotor 37 rotates eccentrically, thereby The volume of the oil chamber increases and decreases, thereby continuously sucking and discharging oil to perform a pump action.
  • the inner rotor 38 is rotationally driven by the drive shaft 16.
  • the inner rotor 38 can move relative to the drive shaft 16 in the direction of the drive axis, and the drive shaft 16 can rotate. Relative movement in the rotational direction is restricted with respect to Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a width across flats, and the inner rotor 38 can move in the drive shaft direction at this portion.
  • the width across flats means a shape formed along the axial direction of the drive shaft 16 and having planes facing each other parallel to each other. Therefore, the inner rotor 38 can move along the axial direction of the drive shaft 16 and rotate together with the drive shaft 16 in the rotational direction.
  • the gear-type oil pump is housed inside the gear pump rotor housing portion 22 and also housed inside the outer rotor 37 including the plurality of internal teeth 40 on the inner peripheral side and the outer rotor 37.
  • an inner rotor provided on a drive shaft 16 so as to be movable in the direction of the drive axis of the drive shaft 16 and having a plurality of external teeth 39 meshing with a plurality of internal teeth 40 on the outer peripheral side.
  • the inner rotor 38 is configured to be movable in the axial direction of the drive shaft 16, as shown in FIG. That is, relative movement in the direction of the drive axis of the drive shaft 16 is possible, and relative movement in the rotational direction with respect to the drive shaft 16 is restricted.
  • the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a flat surface 43 with a width across flats 43, and the inner rotor 38 can move in the drive shaft direction at this portion.
  • the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P. It is configured to be inserted.
  • the fitting hole 44 has a similar shape to the width across flat portion 16P and is designed to be slightly larger than the width across flat portion 16P.
  • the width across flat portion 16 ⁇ /b>P is formed longer than the axial length of the inner rotor 38 to increase the drive area and sufficiently transmit the torque of the drive shaft 16 .
  • a vane pump rotor 26 is press-fitted to the columnar portion 16C, and the vane pump rotor 26 is configured so as not to move in the axial direction and the rotational direction with respect to the columnar portion 16C. Furthermore, when the vane pump rotor 26 and the columnar portion 16C are serration-coupled, they can be in a more rigid fixed state.
  • the width across flat portion 16P of the drive shaft 16 is fitted with a fitting hole 44 formed in the inner rotor 38 so as to be axially movable. Therefore, as shown in FIG. 8 , even if the drive shaft 16 moves in the axial direction (leftward or rightward), the inner rotor 38 is not forced to move by the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 , it is moved together with the drive shaft 16 .
  • FIG. 9 the internal configuration of the tandem oil pump 10 shown in FIG. 1 will be explained using FIGS. 9 to 12.
  • FIG. 9 is a diagrammatic representation of the tandem oil pump 10 shown in FIG. 1
  • a high-pressure pump cover 13 is attached to the pump body 11 with bolts 12 on the front portion 11F of the pump body 11, and a low-pressure pump cover 15 is attached to the pump body 11 with bolts 14 on the rear portion 11B of the pump body 11. installed.
  • a vane-type oil pump which is a high-pressure oil pump, is accommodated in the pump body 11 on the high-pressure pump cover 13 side, and a gear-type oil pump, which is a low-pressure oil pump, is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Contains the oil pump.
  • the drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and rotates the vane pump rotor 26 of the high-pressure oil pump and the inner rotor 38 of the low-pressure oil pump, respectively.
  • a large diameter portion 16L having a circular cross section is formed on the drive shaft 16, and the large diameter portion 16L is supported by a hole formed in the high pressure pump cover 13. Further, the drive shaft 16 is supported by a bearing through hole 24 provided in the partition wall 23 . Therefore, the drive shaft 16 has a circular cross section at least up to the point where it contacts the partition wall 23 .
  • the drive shaft 16 abuts on the low-pressure pump cover 15 or extends until just before it abuts, and this portion is not supported by a bearing. Therefore, in the vicinity of the low-pressure pump cover 15, a phenomenon occurs in which the drive shaft 16 vibrates. If the drive shaft 16 touches, the positional relationship between the inner rotor 38 and the outer rotor 37 changes, which may cause abnormal noise and oil leakage from the working oil chamber.
  • a pump rotor diameter small shaft portion 41 (second pump (corresponding to the rotor diameter small shaft portion/low pressure pump rotor diameter small shaft portion) are integrally formed.
  • the pump rotor diameter small shaft portion 41 has a circular cross section perpendicular to the axis of the drive shaft 16 . Further, on the side of the low-pressure pump cover 15 of the bearing through-hole 24, an inner rotor-side bearing through-hole 42 (second pump rotor bearing portion/low-pressure pump rotor ) are formed.
  • the inner rotor side bearing through hole 42 is designed to have a larger diameter than the bearing through hole 24 .
  • the pump body is provided between the gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion referred to in the claims) and the bearing through hole 24.
  • An inner-rotor-side bearing through-hole 42 that is larger than the diameter of the hole 24 and smaller than the diameter of the gear-pump rotor-accommodating portion 22 is formed continuously with the gear-pump-rotor-accommodating portion 22 .
  • a small diameter pump rotor shaft portion 41 is rotatably supported in the inner rotor side bearing through hole 42 with a minute gap therebetween.
  • the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 of the inner rotor 38 are in "pipe engagement".
  • “Spigot engagement” means "a nested structure in which two parts fit together, one of which has a concave shape and the other has a convex shape”. In this manner, the vicinity of the end portion of the drive shaft 16 on the low-pressure pump cover 15 side is supported by the inner rotor side bearing through hole 42 by the pump rotor diameter small shaft portion 41 of the inner rotor 38 . It is possible to suppress the vibration that occurs in the
  • An annular shape through which the drive shaft 16 is inserted is formed between an end face of the inner rotor side bearing through hole 42 on the vane pump rotor 26 side and an end face of the pump rotor small diameter shaft portion 41 on the vane pump rotor 26 side.
  • An oil reservoir 45 is formed.
  • the oil reservoir 45 is formed in the direction in which the bearing through-hole 24 formed in the partition wall 23 extends (in the direction of the drive shaft 16) and is formed so as to open along the bearing through-hole 24. is fluidly connected with The bearing through hole 24 and the oil supply passage 46 are also fluidly connected.
  • the bearing through-hole 24 has an oil supply passage 46 formed in the shape of a rectangular "recess” or “groove". High-pressure oil is supplied to the oil supply passage 46 from the discharge portion 34 of the vane-type oil pump provided on the side surface of the pump body 11 .
  • FIG. 10 is an enlarged view of the vicinity of the oil supply passage 46
  • FIG. 11 is a cross section taken along line BB of FIG. 9
  • FIG. 12 is a view of the pump body 11 from the side of the high-pressure oil pump. be.
  • the axial length of the pump rotor small diameter shaft portion 41 is set to the axial length (L1), and the seizure phenomenon or wear phenomenon of the pump rotor small diameter shaft portion 41 occurs at this portion. . Therefore, it is necessary to supply oil to the minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 .
  • an annular oil reservoir 45 is formed.
  • the axial length of the oil storage portion 45 is set to the axial length (L2), which is shorter than the axial length (L1) of the pump rotor diameter small shaft portion 41 of the pump.
  • the axial length (L2) is arbitrary, and may be determined to be an appropriate length in terms of design.
  • High-pressure oil is sent from the vane-type oil pump through the oil supply passage 46 and stored in the oil reservoir 45 .
  • the stored oil fills the minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor small diameter shaft portion 41 by its own pressure.
  • the oil supply passage 46 is connected to the discharge portion 34 of the vane-type oil pump via an introduction passage 47 extending in the radial direction.
  • the radial length of the oil supply passage 46 around the axis of the drive shaft 16 is shorter than the radial length of the inner rotor side bearing through-hole 42 around the axis of the drive shaft 16 . set and shortened by the differential length ( ⁇ D). He is trying to supply the required amount of oil to the oil storage part 45 by this.
  • the oil supply passage 46 is formed along the drive shaft 16 , the oil is supplied to even the minute gap formed between the drive shaft 16 and the bearing through hole 24 .
  • the oil supply passage 46 can forcibly supply lubricating oil to both the bearing through-hole 24 and the inner rotor side bearing through-hole 42 .
  • the vane pump rotor 26 press-fitted into the cylindrical portion 16C of the drive shaft 16 and the width across flat portion 16P of the drive shaft 16 can move in the axial direction.
  • the inner rotor 38 fitted to is rotated in synchronization with the rotation of the drive shaft 16 . A pump action is thereby performed.
  • the rotation of the vane pump rotor 26 causes the oil to be sucked from the high-pressure side suction hole 19, and the rotation of the vane pump rotor 26 further pressurizes the oil to a high pressure (corresponding to the first discharge pressure in the claims). It is discharged from the side discharge hole 18 (see FIG. 1).
  • the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17, and the rotation of the inner rotor 38 further pressurizes the oil to a low pressure (corresponding to the second discharge pressure in the claims). Air pressure or negative pressure may be applied) and discharged from the low-pressure side discharge hole 20 .
  • the side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion.
  • the side surface of the vane pump rotor 26 is in contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Also, a sufficient amount of oil can be supplied to the side surface of the vane pump rotor 26, and the side surface of the vane pump rotor 26 can be prevented from being seized or worn.
  • the inner rotor 38 is fitted on the drive shaft 16 so as to be movable in the axial direction. Therefore, the inner rotor 38 is free in the axial direction of the drive shaft 16 even if the drive shaft 16 moves. Therefore, the side surface of the inner rotor 38 perpendicular to the axial direction does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure.
  • the side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side.
  • the side surface perpendicular to the axial direction of the inner rotor 38 does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. The reason is that the inner rotor 38 is free in the axial direction of the drive shaft 16 .
  • the side surface of the inner rotor 38 contacts the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. Therefore, a sufficient amount of oil can be supplied to the side surface of the inner rotor 38, and the side surface of the inner rotor 38 can be prevented from being seized or worn.
  • the inner rotor 38 constituting the low-pressure oil pump can move in the axial direction of the drive shaft 16, it is possible to sufficiently supply oil to the side surfaces of the inner rotor 38 even when the discharge pressure is low. Therefore, it is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38 .
  • the vane pump rotor 26 constituting the high-pressure oil pump has a high discharge pressure, even if the side surface of the vane pump rotor 26 comes into contact with the sliding surface with a large surface pressure, the oil is sufficiently supplied to the side surface of the vane pump rotor. It is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the vane pump rotor 26 .
  • part of the high-pressure oil pressurized by the rotation of the vane oil pump flows out from the discharge part 34 into the introduction passage 47 and reaches the oil supply passage 46. Since the oil supply passage 46 is formed along the axial direction of the bearing through hole 24 , a sufficient oil film can be formed between the drive shafts 16 .
  • the high-pressure oil flowing through the oil supply passage 46 is stored in the oil reservoir 45, as indicated by the arrow OA shown in FIG. Since the pressure of the oil in the oil storage portion 45 is higher than the discharge pressure of the gear type oil pump, the oil in the oil storage portion 45 is pushed through the inner rotor side bearing through hole 42 and the pump rotor diameter small shaft portion 41 by its own pressure. It fills the minute gaps formed in the
  • the following action and effect can be obtained.
  • oil flows out from the oil storage portion 45 to the inner rotor 38 side through a minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 .
  • the cooling action can be improved by the flowing oil. Since the oil is a solid oil, it is possible to obtain the action and effect that the cleaning effect of the sliding portion can be improved by the flowing oil.
  • the oil supply passage 46 is configured to supply oil axially to the oil reservoir 45, but it is also possible to supply oil axially and radially to the inner rotor side bearing through hole 42. It is possible.
  • the inner rotor side bearing through hole 42 is provided with a groove-shaped small diameter shaft portion side oil supply passage 48 formed along the small diameter shaft portion 41 of the pump rotor.
  • the small diameter shaft portion side oil supply passage 48 is connected to the oil reservoir portion 45 , and the oil from the oil supply passage 46 is supplied to the oil reservoir portion 45 . supplied.
  • the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
  • the small diameter shaft portion side oil supply passage 48 is formed in the pump body 11 so as to extend from the oil reservoir 45 to the middle of the small diameter shaft portion 41 of the pump rotor. It extends to about half the length of L1). As a result, a sufficient amount of oil can be supplied to the pump rotor diameter small shaft portion 41 and the inner rotor side bearing through hole 42 .
  • the reason why the small-diameter shaft portion side oil supply passage 48 is formed only halfway through the pump rotor small-diameter shaft portion 41 is that a large amount of high-pressure oil flows to the low-pressure gear-type oil pump side. This is for suppressing deterioration of the specified performance of the pump.
  • By forming the small diameter shaft portion side oil supply passage 48 to the middle of the small diameter shaft portion 41 of the pump rotor it is possible to supply a sufficient amount of oil to the small diameter shaft portion 41 of the pump rotor. can be made to leak as little oil as possible.
  • oil supply passage 46 and the small diameter shaft portion side oil supply passage 48 are formed in the form of grooves on the pump body 11 side.
  • grooves such as the oil supply passage 46 and the small diameter shaft portion side oil supply passage 48 can be formed on the outer circumference of the drive shaft 16 and the outer circumference of the pump rotor small diameter shaft portion 41 .
  • a groove-shaped drive shaft oil supply passage 49 is formed in the outer periphery of the drive shaft 16 in the range where the bearing through hole 24 exists. is connected to the oil reservoir 45 at its end.
  • the end of the drive shaft oil supply passage 49 opposite to the inner rotor 38 is connected to the discharge portion 34 of the vane type oil pump. Therefore, high-pressure oil can be supplied to the oil reservoir 45 also with this configuration.
  • a groove-shaped pump rotor diameter small shaft oil supply passage 50 can be formed on the outer periphery of the pump rotor diameter small shaft portion 41 of the inner rotor 38 .
  • the pump rotor diameter small shaft oil supply passage 50 is connected to the oil reservoir 45, and the oil from the drive shaft oil supply passage 49 is supplied to the oil reservoir 45. 50.
  • the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
  • the reason why the pump rotor diameter small shaft oil supply passage 50 is formed only halfway through the pump rotor diameter small shaft portion 41 is that a large amount of high pressure oil flows to the low pressure gear type oil pump side, This is for suppressing deterioration of the specification performance of the type oil pump.
  • the pump rotor small diameter shaft oil supply passage 50 By forming the pump rotor small diameter shaft oil supply passage 50 to the middle of the pump rotor small diameter shaft portion 41, a sufficient amount of oil can be supplied to the pump rotor small diameter shaft portion 41, and moreover, it is possible to supply a sufficient amount of oil to the gear type oil pump side. can be made to leak as little oil as possible.
  • the oil supply passage 46 is formed along the drive shaft 16 and is open to the drive shaft. It is formed as a closed passageway without opening at all. 15 and 16, the same reference numerals as those in the first embodiment represent the same parts, so description thereof will be omitted.
  • the oil storage portion 45 and the discharge portion 34 of the vane type oil pump are directly connected by an internal oil supply passage 51 formed inside the pump body 11 .
  • the internal oil supply passage 51 does not open to the drive shaft 16 side as in the first embodiment, and has a closed passage structure except for opening to the oil reservoir 45 and the discharge portion 34 . , a hole is drilled so as to connect the oil storage portion 45 and the discharge portion 34 .
  • part of the high-pressure oil pressurized by the rotation of the vane oil pump flows from the discharge part 34 through the internal oil supply passage 51 to the oil reservoir 45. stored.
  • the pressure in the oil reservoir 45 is higher than the discharge pressure of the gear-type oil pump. and fills a minute gap formed in the pump rotor diameter small shaft portion 41 . Therefore, also in this embodiment, it is possible to obtain the same functions and effects as in the first embodiment.
  • the internal oil supply passage 51 is configured to directly supply oil from the discharge portion 34 of the vane type oil pump to the oil storage portion 45 , but the oil is supplied radially to the inner rotor side bearing through hole 42 . It is also possible to supply
  • a small diameter shaft portion side oil supply passage 52 is formed along the small diameter shaft portion 41 of the pump rotor.
  • the small diameter shaft portion side oil supply passage 52 is connected to the internal oil supply passage 51 , and the oil from the internal oil supply passage 51 is supplied to the oil reservoir 45 and the small diameter shaft portion side oil supply passage 52 .
  • the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
  • the small diameter shaft portion side oil supply passage 52 is formed in the pump body 11 so as to extend from the oil storage portion 45 to the middle of the small diameter shaft portion 41 of the pump rotor. It extends up to about half the axial length (L1) of . As a result, a sufficient amount of oil can be supplied to the pump rotor diameter small shaft portion 41 and the inner rotor side bearing through hole 42 .
  • the reason why the small diameter shaft portion side oil supply passage 52 is formed only halfway through the pump rotor small diameter shaft portion 41 is that a large amount of high pressure oil flows to the low pressure gear type oil pump side, This is for suppressing deterioration of the specification performance of the type oil pump.
  • the small diameter shaft portion side oil supply passage 52 By forming the small diameter shaft portion side oil supply passage 52 to the middle of the small diameter pump rotor shaft portion 41, a sufficient amount of oil can be supplied to the small diameter pump rotor shaft portion 41, and moreover, the oil supply passage 52 can be supplied to the gear type oil pump side. can be made to leak as little oil as possible.
  • the diameter of the pump body is located between the pump rotor accommodating portion and the drive shaft bearing portion, and is larger than the diameter of the drive shaft bearing portion and more than the diameter of the pump rotor accommodating portion.
  • the pump rotor housing portion is formed with a pump rotor bearing portion that is continuous with the small pump rotor housing portion.
  • the pump rotor is formed with a pump rotor diameter small shaft portion, and the pump rotor diameter small shaft portion is supported by the pump rotor bearing portion.
  • an oil supply passage for supplying oil from the high-pressure oil pump to the pump rotor bearing is formed in the pump body.
  • high-pressure oil can be supplied from the high-pressure oil pump to the pump rotor bearing portion through the oil supply passage. It is possible to suppress the occurrence of a seizure phenomenon or an abrasion phenomenon in the formed small diameter shaft portion of the pump rotor.
  • the present invention is not limited to the several embodiments described above, and includes various modifications.
  • the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations.
  • Other configurations can be added, deleted, or replaced with respect to the configuration of each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

According to the present invention, a pump-rotor bearing part (42) that is provided between a pump-rotor housing part (22) and a drive-shaft bearing part (24), that is larger in diameter than the drive-shaft bearing part (24), that is smaller in diameter than the pump-rotor housing part (22), and that is continuous with the pump-rotor housing part (22) is formed in a pump body (11). Furthermore, a pump-rotor small-diameter shaft part (41) is formed in a pump rotor (38), the pump-rotor small-diameter shaft part (41) is borne by the pump-rotor bearing part (42), and a lubrication passage (46) for supplying oil from a high-pressure oil pump to the pump-rotor bearing part (42) is formed in the pump body (11). Accordingly, high-pressure oil can be supplied from the high-pressure oil pump to the pump-rotor bearing part (42) via the lubrication passage (46), thus making it possible to suppress the occurrence of a burn-in phenomenon and an abrasion phenomenon between the pump-rotor small-diameter shaft part (41) and the pump-rotor bearing part (42).

Description

タンデム型オイルポンプtandem oil pump
 本発明はオイルポンプに係り、特に2つのオイルポンプを備えたタンデム型オイルポンプに関するものである。 The present invention relates to an oil pump, and more particularly to a tandem oil pump having two oil pumps.
 自動車に搭載された内燃機関に適用されるタンデム型オイルポンプは、例えば、特開2008-163925号公報(特許文献1)に示されているように、良く知られた構成である。 A tandem-type oil pump applied to an internal combustion engine mounted on an automobile has a well-known configuration, for example, as disclosed in Japanese Patent Application Laid-Open No. 2008-163925 (Patent Document 1).
 特許文献1に示されたタンデム型オイルポンプは、有底円筒状に形成されたポンプボデイ内に、同一形状の第1ポンプと、第1ポンプに対して、回転位相をずらして配置された第2ポンプとが配置され、各ポンプ間を仕切るための円環状の仕切部材と、ポンプボデイ内に摺動自在に支持され、両ポンプ、及び仕切部材に貫通して両ポンプのインナーロータに駆動力を伝達する駆動軸とを備え、内燃機関から伝達された駆動力によって駆動軸が回転駆動されることにより、各ポンプがポンプ作用を行うようになっている。尚、第1ポンプと第2ポンプは、吐出圧が実質的に同一のポンプである。 A tandem-type oil pump disclosed in Patent Document 1 includes a first pump having the same shape and a second pump arranged with a rotation phase shifted with respect to the first pump, in a pump body formed in a cylindrical shape with a bottom. An annular partition member for partitioning between the pumps, and a pump body slidably supported in the pump body penetrates both pumps and the partition member to transmit driving force to the inner rotors of both pumps. Each pump performs a pumping action when the drive shaft is rotationally driven by the driving force transmitted from the internal combustion engine. The first pump and the second pump are pumps having substantially the same discharge pressure.
 また、これとは別に、高圧のオイルポンプと低圧のオイルポンプを組み合わせたタンデム型オイルポンプも提案されている。例えば、オイルパンからエンジンオイル(以下、単にオイルと表記する)を回収するスカベンジングオイルポンプ(低圧オイルポンプ)と、可変動弁機構や内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプ(高圧オイルポンプ)とを組み合わせたタンデム型オイルポンプが知られている。尚、スカベンジングオイルポンプは、例えばギヤ型オイルポンプが使用され、可変容量型のオイルフィードポンプは、ベーン型オイルポンプが使用されている。 Apart from this, a tandem oil pump that combines a high-pressure oil pump and a low-pressure oil pump has also been proposed. For example, a scavenging oil pump (low-pressure oil pump) that collects engine oil (hereinafter simply referred to as oil) from the oil pan, and supplies pressurized oil to the variable valve mechanism and the main oil gallery of the internal combustion engine. BACKGROUND ART A tandem oil pump combined with a variable capacity oil feed pump (high pressure oil pump) is known. A gear-type oil pump is used as the scavenging oil pump, and a vane-type oil pump is used as the variable displacement oil feed pump.
 ところで、高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプにおいては、ポンプロータを駆動する駆動軸の一方の端部は軸受けされていない構成となっている。このため駆動軸が回転すると、駆動軸の端部が振れる現象が生じる。駆動軸の端部が振れると、駆動軸の端部に固定されたポンプロータも振れを生じて、径方向の位置が変わり、異音や作動油室のオイル漏れが発生する恐れが生じる。 By the way, in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, one end of the drive shaft that drives the pump rotor is not supported. Therefore, when the drive shaft rotates, a phenomenon occurs in which the end portion of the drive shaft vibrates. When the end of the drive shaft vibrates, the pump rotor fixed to the end of the drive shaft also vibrates and changes its position in the radial direction, which may cause abnormal noise and oil leakage from the hydraulic oil chamber.
 このポンプロータの振れを抑制するためには、次のような構成を採用することが有効である。例えば、駆動軸の端部に取り付けられたポンプロータに、駆動軸の軸線方向に延びるポンプロータ径小軸部を一体的に形成し、このポンプロータ径小軸部をポンプボデイに形成したポンプロータ軸受部で軸受けすれば、駆動軸の端部のポンプロータの振れを抑制することができる。尚、この構成については実施形態の説明で詳述する。 In order to suppress the vibration of the pump rotor, it is effective to adopt the following configuration. For example, a pump rotor bearing in which a pump rotor attached to the end of a drive shaft is integrally formed with a pump rotor diameter small shaft portion extending in the axial direction of the drive shaft, and the pump rotor diameter small shaft portion is formed in the pump body. If the bearing is provided at the end of the drive shaft, vibration of the pump rotor at the end of the drive shaft can be suppressed. Note that this configuration will be described in detail in the description of the embodiment.
 ここで、本発明は高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプを対象としているが、高圧オイルポンプ、及び低圧オイルポンプは、上述したスカベンジングポンプや可変容量型のオイルフィードポンプに限られるものではない。 Here, the present invention is directed to a tandem-type oil pump in which a high-pressure oil pump and a low-pressure oil pump are combined. It is not limited.
特開2008-163925号公報JP 2008-163925 A
 ところが、低圧オイルポンプのポンプロータを、駆動軸の端部に取り付ける構成を採用すると、ポンプロータ径小軸部と、これを軸受けするポンプロータ軸受部の間の接触部分で潤滑のためのオイルが不足し、この接触部分で焼き付き現象、或いは急速な摩耗現象を生じる恐れがある。 However, when the pump rotor of the low-pressure oil pump is attached to the end of the drive shaft, oil for lubrication is lost at the contact portion between the small diameter shaft portion of the pump rotor and the pump rotor bearing portion that bears it. Insufficient, there is a risk of seizure phenomenon or rapid wear phenomenon at this contact portion.
 これらの現象は、低圧オイルポンプのポンプロータの振れを抑制するポンプロータ軸受部とポンプロータ径小軸部の間の隙間が、駆動軸の振れの影響によって狭くなることでオイルの油膜が薄くなって油膜切れを生じること、及び低圧オイルポンプの吐出圧が低いことから、十分な量のオイルが、ポンプロータ径小軸部とポンプロータ軸受部の間の接触部分に供給され難いことが主な要因である。 These phenomena are caused by the fact that the gap between the pump rotor bearing part that suppresses the vibration of the pump rotor of the low-pressure oil pump and the small diameter shaft part of the pump rotor narrows due to the vibration of the drive shaft, resulting in a thin oil film. The main reason is that it is difficult to supply a sufficient amount of oil to the contact portion between the pump rotor diameter small shaft portion and the pump rotor bearing portion because the oil film runs out due to the low pressure oil pump and the low discharge pressure of the low pressure oil pump. is a factor.
 本願発明の目的は、高圧オイルポンプと低圧オイルポンプを組み合わせた時に、低圧オイルポンプのポンプロータに形成したポンプロータ径小軸部と、ポンプボデイに形成したポンプロータ軸受部の接触部分に、焼き付き現象、或いは摩耗現象が発生するのを抑制することができる新規なタンデム型オイルポンプを提供することにある。 An object of the present invention is to prevent seizure at the contact portion between the pump rotor diameter small shaft portion formed in the pump rotor of the low pressure oil pump and the pump rotor bearing portion formed in the pump body when a high pressure oil pump and a low pressure oil pump are combined. Alternatively, another object of the present invention is to provide a novel tandem-type oil pump capable of suppressing the occurrence of a wear phenomenon.
 本発明は、
 第1ポンプロータ収容部、及び第2ポンプロータ収容部と、第1ポンプロータ収容部と第2ポンプロータ収容部を区画する区画壁と、区画壁に形成された、第1ポンプロータ収容部と第2ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
 駆動軸用軸受部に回転可能に軸支され、外部の動力源によって回転駆動される駆動軸と、
 第1ポンプロータ収容部に配置され、駆動軸によって回転駆動される第1ポンプロータを有し、第1ポンプロータが駆動軸によって回転駆動されることにより、第1吸入部から導かれたオイルを加圧して第1吐出部から吐出する第1オイルポンプと、
 第2ポンプロータ収容部に配置され、駆動軸によって回転駆動される第2ポンプロータを有し、第2ポンプロータが駆動軸によって回転駆動されることにより、第2吸入部から導かれたオイルを、第1オイルポンプの第1吐出部から吐出される圧力よりも低い圧力で第2吐出部から吐出する第2オイルポンプと、を備え、
 更に、ポンプボデイには、第2ポンプロータ収容部と駆動軸用軸受部との間に設けられ、駆動軸用軸受部の直径よりも大きく、しかも第2ポンプロータ収容部の直径よりも小さい第2ポンプロータ収容部と連続して形成された第2ポンプロータ用軸受部が形成され、 第2ポンプロータには、第2ポンプロータと一体の第2ポンプロータ径小軸部が形成され、第2ポンプロータ径小軸部が第2ポンプロータ用軸受部に収容されて軸受けされていると共に、
 第1オイルポンプから第2ポンプロータ用軸受部にオイルを供給する給油通路がポンプボデイに形成されている
ことを特徴とするものである。
The present invention
a first pump rotor accommodating portion and a second pump rotor accommodating portion; a partition wall that partitions the first pump rotor accommodating portion and the second pump rotor accommodating portion; and a first pump rotor accommodating portion formed in the partition wall. a pump body having a drive shaft bearing portion connected to the second pump rotor accommodating portion;
a drive shaft rotatably supported by the drive shaft bearing and driven to rotate by an external power source;
It has a first pump rotor that is arranged in the first pump rotor accommodating portion and is rotationally driven by the drive shaft, and the first pump rotor is rotationally driven by the drive shaft to absorb oil introduced from the first suction portion. a first oil pump that pressurizes and discharges from the first discharge part;
It has a second pump rotor that is arranged in the second pump rotor accommodating portion and is rotationally driven by the drive shaft, and the second pump rotor is rotationally driven by the drive shaft to absorb oil introduced from the second suction portion. , a second oil pump that discharges from the second discharge part at a pressure lower than the pressure discharged from the first discharge part of the first oil pump,
Further, in the pump body, a second rotor housing portion is provided between the second pump rotor housing portion and the drive shaft bearing portion and has a larger diameter than the drive shaft bearing portion and a smaller diameter than the second pump rotor housing portion. A second pump rotor bearing portion is formed continuously with the pump rotor accommodating portion, and the second pump rotor is formed with a second pump rotor diameter small shaft portion integral with the second pump rotor. The pump rotor diameter small shaft portion is accommodated and supported by the second pump rotor bearing portion, and
An oil supply passage for supplying oil from the first oil pump to the second pump rotor bearing is formed in the pump body.
 また、本発明は、
 高圧ポンプロータ収容部、及び低圧ポンプロータ収容部と、高圧ポンプロータ収容部と低圧ポンプロータ収容部を区画する区画壁と、区画壁に形成された、高圧ポンプロータ収容部と低圧ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
 高圧ポンプロータ収容部、及び低圧ポンプロータ収容部に位置し、駆動軸用軸受部に回転可能に軸支された外部の動力源によって回転駆動される駆動軸と、
 高圧ポンプロータ収容部に配置され、駆動軸によって回転駆動される高圧ポンプロータを有し、高圧ポンプロータの回転によって第1の吐出圧でポンプ作用を行う高圧オイルポンプと、
 低圧ポンプロータ収容部に配置され、駆動軸によって回転駆動される低圧ポンプロータを有し、低圧ポンプロータの回転によって第1の吐出圧より低い第2の吐出圧でポンプ作用を行う低圧オイルポンプと、を備え、
 更に、ポンプボデイには、低圧ポンプロータ収容部と駆動軸用軸受部との間に設けられ、駆動軸用軸受部の直径よりも大きく、しかも低圧ポンプロータ収容部の直径よりも小さい低圧ポンプロータ収容部と連続して形成された低圧ポンプロータ用軸受部が形成され、 低圧ポンプロータには、低圧ポンプロータと一体の低圧ポンプロータ径小軸部が形成され、低圧ポンプロータ径小軸部が低圧ポンプロータ用軸受部に収容されて軸受けされていると共に、
 高圧オイルポンプから低圧ポンプロータ用軸受部にオイルを供給する給油通路がポンプボデイに形成されている
ことを特徴とするものである。
In addition, the present invention
a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a drive shaft bearing connecting between
a drive shaft positioned in the high-pressure pump rotor accommodating portion and the low-pressure pump rotor accommodating portion and rotatably driven by an external power source rotatably supported by the drive shaft bearing;
a high-pressure oil pump having a high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and performing a pumping action at a first discharge pressure by rotation of the high-pressure pump rotor;
a low-pressure oil pump having a low-pressure pump rotor disposed in the low-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and performing a pumping action at a second discharge pressure lower than the first discharge pressure by rotation of the low-pressure pump rotor; , and
Further, in the pump body, a low-pressure pump rotor accommodating portion is provided between the low-pressure pump rotor accommodating portion and the drive shaft bearing portion, and has a diameter larger than the drive shaft bearing portion and smaller than the diameter of the low-pressure pump rotor accommodating portion. The low-pressure pump rotor is formed with a low-pressure pump rotor diameter small shaft portion integrated with the low-pressure pump rotor, and the low-pressure pump rotor diameter small shaft portion is formed continuously with the low-pressure pump rotor. Housed in and supported by the pump rotor bearing,
The pump body is characterized in that an oil supply passage for supplying oil from the high-pressure oil pump to the low-pressure pump rotor bearing is formed in the pump body.
 本発明によれば、高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプにおいて、第1オイルポンプ(高圧オイルポンプ)から第2ポンプロータ用軸受部に、給油通路を介して高圧のオイルを供給することができ、第2ポンプロータに形成した第2ポンプロータ径小軸部と第2ポンプロータ用軸受部との間で、焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 According to the present invention, in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, high-pressure oil is supplied from the first oil pump (high-pressure oil pump) to the second pump rotor bearing through the oil supply passage. It is possible to suppress the occurrence of a seizure phenomenon or an abrasion phenomenon between the second pump rotor diameter small shaft portion formed in the second pump rotor and the second pump rotor bearing portion. .
本発明のタンデム型オイルポンプを斜め上側から眺めた外観斜視図である。1 is an external perspective view of a tandem-type oil pump according to the present invention, viewed obliquely from above; FIG. 図1に示すタンデム型オイルポンプを可変容量型のオイルフィードポンプの側から見た正面図である。FIG. 2 is a front view of the tandem oil pump shown in FIG. 1 viewed from the side of a variable displacement oil feed pump; 図1に示すタンデム型オイルポンプをスカベンジングオイルポンプの側から見た背面図である。FIG. 2 is a rear view of the tandem oil pump shown in FIG. 1 as seen from the scavenging oil pump side; 可変容量型のオイルフィードポンプを分解して斜め上方から眺めた分解斜視図である。FIG. 2 is an exploded perspective view of a variable displacement oil feed pump, viewed obliquely from above; 可変容量型のオイルフィードポンプのポンプ部分の内部構造を説明する断面図である。FIG. 3 is a cross-sectional view for explaining the internal structure of a pump portion of a variable displacement oil feed pump; スカベンジングオイルポンプを分解して斜め上方から眺めた分解斜視図である。FIG. 4 is an exploded perspective view of the scavenging oil pump when viewed obliquely from above; スカベンジングオイルポンプのポンプ部分の内部構造を説明する断面図である。FIG. 4 is a cross-sectional view for explaining the internal structure of the pump portion of the scavenging oil pump; スカベンジングオイルポンプのインナーロータと駆動軸の形状を説明するための分解斜視図である。FIG. 3 is an exploded perspective view for explaining the shapes of the inner rotor and drive shaft of the scavenging oil pump; 図1に示す本発明の第1の実施形態になるタンデム型オイルポンプのA-A断面を示す断面図である。FIG. 2 is a sectional view showing the AA section of the tandem oil pump according to the first embodiment of the present invention shown in FIG. 1; 図9に示すタンデム型オイルポンプの一部(給油通路付近)を拡大した拡大断面図である。FIG. 10 is an enlarged cross-sectional view showing a portion (near an oil supply passage) of the tandem-type oil pump shown in FIG. 9; 図9に示すタンデム型オイルポンプのB-B断面を示す断面図である。FIG. 10 is a sectional view showing the BB section of the tandem oil pump shown in FIG. 9; 図9に示すタンデム型オイルポンプのポンプボデイを高圧オイルポンプ側から眺めた外観斜視図である。FIG. 10 is an external perspective view of the pump body of the tandem-type oil pump shown in FIG. 9 as viewed from the high-pressure oil pump side; 図9に示すタンデム型オイルポンプの第1変形例の一部(給油通路付近)を拡大した拡大断面図である。FIG. 10 is an enlarged sectional view enlarging a part (near the oil supply passage) of the first modification of the tandem oil pump shown in FIG. 9; 図9に示すタンデム型オイルポンプの第2変形例の一部(給油通路付近)を拡大した拡大断面図である。FIG. 10 is an enlarged cross-sectional view enlarging a part (near the oil supply passage) of the second modification of the tandem-type oil pump shown in FIG. 9; 本発明の第2の実施形態になるタンデム型オイルポンプの図9に対応する断面を示す断面図である。FIG. 10 is a cross-sectional view showing a cross section corresponding to FIG. 9 of the tandem oil pump according to the second embodiment of the present invention; 図15に示すタンデム型オイルポンプのC-C断面を示す断面図である。FIG. 16 is a sectional view showing a CC section of the tandem oil pump shown in FIG. 15; 図15に示すタンデム型オイルポンプの変形例の一部(給油通路付近)を拡大した拡大断面図である。FIG. 16 is an enlarged cross-sectional view enlarging a part (near the oil supply passage) of the modification of the tandem-type oil pump shown in FIG. 15;
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and applications can be made within the technical concept of the present invention. is also included in the scope.
 図1は、本発明の実施形態になるタンデム型オイルポンプを斜め上側から眺めたものであり、略直方体で箱状のタンデム型オイルポンプ10は、ポンプボデイ11と、ポンプボデイ11の正面部11Fにボルト12で取り付けられた高圧ポンプカバー13(請求項でいう第1ポンプカバーに相当する)と、ポンプボデイ11の背面部11Bにボルト14(図3参照)で取り付けられた低圧ポンプカバー15(請求項でいう第2ポンプカバーに相当する)とを備えている。 FIG. 1 shows a tandem-type oil pump according to an embodiment of the present invention as seen obliquely from above. A high-pressure pump cover 13 (corresponding to the first pump cover in the claims) attached at 12, and a low-pressure pump cover 15 (see FIG. 3) attached to the rear portion 11B of the pump body 11 with bolts 14 (see FIG. 3). (corresponding to the second pump cover).
 詳細は後で説明するが、高圧ポンプカバー13の側のポンプボデイ11内には、高圧オイルポンプ(請求項でいう第1ポンプに相当する)である可変容量型のオイルフィードポンプが収納されており、低圧ポンプカバー15の側のポンプボデイ11内には、低圧オイルポンプ(請求項でいう第2ポンプに相当する)であるスカベンジングオイルポンプが収納されている。尚、ここで、ポンプボデイ11は略直方体で箱状に形成されているが、実際には、内燃機関の外観形状や体格に対応して形状が変更されるものである。ただ、外観形状が変わっても、本発明の基本的な考え方は変わりないものである。 Although the details will be described later, the pump body 11 on the side of the high-pressure pump cover 13 houses a variable displacement oil feed pump, which is a high-pressure oil pump (corresponding to the first pump in the claims). A scavenging oil pump, which is a low-pressure oil pump (corresponding to a second pump in the claims), is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Here, the pump body 11 is formed in a substantially rectangular parallelepiped box shape, but in reality, the shape is changed according to the external shape and size of the internal combustion engine. However, even if the external shape changes, the basic idea of the present invention does not change.
 タンデム型オイルポンプ10は、高圧ポンプカバー13、ポンプボデイ11を貫通して、低圧ポンプカバー15まで延びる駆動軸16を備えており、この駆動軸16は内燃機関のクランク軸や、電動機によって回転駆動される。駆動軸16は、高圧オイルポンプと低圧オイルポンプとで共用されており、駆動軸16で、高圧オイルポンプと低圧オイルポンプのポンプロータをそれぞれ回転駆動している。 The tandem-type oil pump 10 includes a drive shaft 16 extending through a high-pressure pump cover 13 and a pump body 11 to a low-pressure pump cover 15. The drive shaft 16 is rotationally driven by a crankshaft of an internal combustion engine or an electric motor. be. The drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and the drive shaft 16 rotates the pump rotors of the high-pressure oil pump and the low-pressure oil pump, respectively.
 また、高圧ポンプカバー13と低圧ポンプカバー15の間に位置するポンプボデイ11の上面部11Uには、低圧オイルポンプの吸入部(請求項でいう第2吸入部に相当する)に接続された低圧側吸入孔17(請求項でいう第2吸入孔に相当する)が形成されている。 In addition, on the upper surface portion 11U of the pump body 11 located between the high-pressure pump cover 13 and the low-pressure pump cover 15, a low-pressure side connected to the suction portion (corresponding to the second suction portion in the claims) of the low-pressure oil pump is provided. A suction hole 17 (corresponding to a second suction hole in the claims) is formed.
 また、ポンプボデイ11の上面部11Uには、内燃機機関のオイルパンに取り付けられる一対の取付部11Aが設けられており、この取付部11Aに固定ボルトを挿通して内燃機関に固定されるが、この取付部11Aに低圧側吸入孔17が形成されている。この一対の取付部11Aは、ポンプボデイ11に設けた駆動軸16に対して径方向の位置において、ポンプボデイ11を両側から挟むようにして設けられ、内燃機関に取り付けられる。したがって、タンデム型オイルポンプ10を内燃機機関に取り付けた時に、オイルパンのオイルを容易に低圧側吸入孔17に導くことができるようになっている。 A pair of attachment portions 11A to be attached to the oil pan of the internal combustion engine are provided on the upper surface portion 11U of the pump body 11. Fixing bolts are inserted through the attachment portions 11A to be fixed to the internal combustion engine. A low-pressure side suction hole 17 is formed in the mounting portion 11A. The pair of attachment portions 11A are provided so as to sandwich the pump body 11 from both sides at radial positions with respect to the drive shaft 16 provided in the pump body 11, and are attached to the internal combustion engine. Therefore, when the tandem-type oil pump 10 is attached to the internal combustion engine, the oil in the oil pan can be easily guided to the low-pressure side suction hole 17 .
 図2は、高圧ポンプカバー13が設けられた側のタンデム型オイルポンプ10の正面を示しており、この高圧ポンプカバー13は、ポンプボデイ11の正面部11Fに固定されて高圧オイルポンプの作動油室(ポンプ室)の一部を形成している。高圧ポンプカバー13は、駆動軸16の軸線に対して直交する面に沿ってポンプボデイ11に取り付けられている。 FIG. 2 shows the front of the tandem-type oil pump 10 on the side on which the high-pressure pump cover 13 is provided. (pump chamber). The high-pressure pump cover 13 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 .
 また、駆動軸16の駆動軸心に対して径方向で外側の位置の高圧ポンプカバー13には、高圧オイルポンプの吐出部(請求項でいう第1吐出部に相当する)に接続された高圧側吐出孔18(請求項でいう第1吐出孔に相当する)が形成されている。高圧側吐出孔18は、本実施形態では少なくとも内燃機関のメインオイルギャラリに加圧されたオイルを供給しているが、可変動弁機構にも供給されていても良い。 A high-pressure oil pump connected to a discharge portion (corresponding to a first discharge portion in the claims) of the high-pressure oil pump is provided on the high-pressure pump cover 13 located radially outside the drive shaft center of the drive shaft 16 . A side discharge hole 18 (corresponding to a first discharge hole in the claims) is formed. The high-pressure side discharge hole 18 supplies pressurized oil to at least the main oil gallery of the internal combustion engine in this embodiment, but it may also supply the variable valve mechanism.
 図3は、低圧ポンプカバー15が設けられた側のタンデム型オイルポンプ10の背面を示しており、この低圧ポンプカバー15は、ポンプボデイ11の背面部11Bに固定されて低圧オイルポンプの作動油室の一部を形成している。低圧ポンプカバー15は、駆動軸16の軸線に対して直交する面に沿ってポンプボデイ11に取り付けられている。また、駆動軸16の駆動軸心に対して径方向で外側の位置のポンプボデイ11の背面部11Bには、高圧オイルポンプの吸入部(請求項でいう第1吸入部に相当する)に接続された高圧側吸入孔19(請求項でいう第1吸入孔に相当する)が形成されている。 FIG. 3 shows the rear surface of the tandem-type oil pump 10 on the side where the low-pressure pump cover 15 is provided. forms part of The low-pressure pump cover 15 is attached to the pump body 11 along a plane perpendicular to the axis of the drive shaft 16 . A suction portion (corresponding to a first suction portion in the claims) of a high-pressure oil pump is connected to the rear surface portion 11B of the pump body 11 located radially outside the drive shaft center of the drive shaft 16. A high-pressure side suction hole 19 (corresponding to a first suction hole in the claims) is formed.
 また、低圧ポンプカバー15には、低圧オイルポンプの吐出部(請求項でいう第2吐出部に相当する)に接続された低圧側吐出孔20(請求項でいう第2吐出孔に相当する)が形成されている。 The low-pressure pump cover 15 has a low-pressure side discharge hole 20 (corresponding to the second discharge hole in the claims) connected to the discharge part (corresponding to the second discharge part in the claims) of the low-pressure oil pump. is formed.
 次に、図4~図7に基づき高圧オイルポンプと低圧オイルポンプの構成について説明する。図4は、低圧オイルポンプを組み付けた後における高圧オイルポンプの側の分解状態を示し、図6は、高圧オイルポンプを組み付けた後における低圧オイルポンプの側の分解状態を示している。ここで、上述した通り、高圧オイルポンプは、ベーンを使用したべーン型オイルポンプ(可変容量型)であり、低圧ポンプは、トロコイドギヤを使用したギヤ型オイルポンプである。 Next, the configurations of the high-pressure oil pump and the low-pressure oil pump will be described with reference to FIGS. 4 to 7. FIG. FIG. 4 shows the disassembled state of the high-pressure oil pump after the low-pressure oil pump is assembled, and FIG. 6 shows the disassembled state of the low-pressure oil pump after the high-pressure oil pump is assembled. Here, as described above, the high-pressure oil pump is a vane-type oil pump (variable displacement type) using vanes, and the low-pressure pump is a gear-type oil pump using a trochoid gear.
 図4に示しているように、ポンプボデイ11の一方側には、ベーン型オイルポンプのベーンポンプロータ収容部21(請求項でいう第1ポンプロータ収容部/高圧ポンプロータ収容部に相当する)が形成され、また、図6に示しているように、ポンプボデイ11の他方側には、ギヤ型オイルポンプのギヤポンプロータ収容部22(請求項でいう第2ポンプロータ収容部/低圧ポンプロータ収容部に相当する)が形成されてる。そして、ベーンポンプロータ収容部21とギヤポンプロータ収容部22を区画する区画壁23が、ベーンポンプロータ収容部21とギヤポンプロータ収容部22の間に形成されている。 As shown in FIG. 4, one side of the pump body 11 is formed with a vane pump rotor accommodating portion 21 (corresponding to the first pump rotor accommodating portion/high pressure pump rotor accommodating portion in the claims) of the vane type oil pump. Further, as shown in FIG. 6, on the other side of the pump body 11, a gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion in the claims) of the gear type oil pump is provided. do) is formed. A partition wall 23 that partitions the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 is formed between the vane pump rotor accommodating portion 21 and the gear pump rotor accommodating portion 22 .
 この区画壁23は、ポンプボデイ11と一体的に形成されているので、ベーン型オイルポンプは、ポンプボデイ11の一方側から組み付けることができ、ギヤ型オイルポンプは、ポンプボデイ11の他方側から組み付けることができる。そして、区画壁23には駆動軸16が貫通する軸受用貫通孔24(請求項でいう駆動軸用軸受部に相当する)が形成されている(図8参照)。 Since the partition wall 23 is integrally formed with the pump body 11, the vane-type oil pump can be assembled from one side of the pump body 11, and the gear-type oil pump can be assembled from the other side of the pump body 11. can. A bearing through hole 24 (corresponding to a drive shaft bearing portion in the claims) through which the drive shaft 16 passes is formed in the partition wall 23 (see FIG. 8).
 図4、及び図5を用いてベーン型オイルポンプの構成を説明するが、このベーン型オイルポンプは良く知られている構成であるので、説明は簡単に行う。ここで、図5は、周知のベーン型オイルポンプの軸線に直交する方向に断面したポンプ部分を示している。  The configuration of the vane-type oil pump will be described using FIGS. 4 and 5, but since this vane-type oil pump has a well-known configuration, the description will be brief. Here, FIG. 5 shows a pump portion of a well-known vane-type oil pump taken in a cross section perpendicular to the axis.
 図4、及び図5において、ポンプボデイ11に形成された凹形状のベーンポンプロータ収容部21に、ポンプ本体25が収納されるものである。ベーンポンプロータ収容部21には、略中央に駆動軸16と圧入嵌合されたベーンポンプロータ26(請求項でいう第1ポンプロータ/高圧ポンプロータに相当する)が配置され、また、その外側に揺動中心が駆動軸16と偏心した状態で調整リング27が配置されている。このように、ベーンポンプロータ26は駆動軸16に対して圧入嵌合されているので、駆動軸線方向及び回転方向の相対移動を規制するように強固に固定されている。 4 and 5, a pump body 25 is housed in a recessed vane pump rotor housing portion 21 formed in the pump body 11. As shown in FIG. A vane pump rotor 26 (corresponding to a first pump rotor/high-pressure pump rotor in the claims) press-fitted with the drive shaft 16 is arranged substantially in the center of the vane pump rotor accommodating portion 21, and a swinging rotor 26 is arranged on the outer side thereof. An adjustment ring 27 is arranged with its dynamic center eccentric to the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 in this way, it is firmly fixed so as to restrict relative movement in the drive axis direction and the rotational direction.
 調整リング27はピポット28を支点として揺動可能で、初期状態ではアーム部29とベーンポンプロータ収容部21内に配置された制御スプリング30の予圧によって、調整リング27は、図5で右方向に押されて偏心量は最大設定の状態にある。 The adjustment ring 27 is pivotable about the pivot 28, and in the initial state, the adjustment ring 27 is pushed rightward in FIG. and the eccentricity is at its maximum setting.
 ベーンポンプロータ26に設けられた複数のスリットにはベーン31が配置され、ベーンポンプロータ26の回転時には、ベーンポンプロータ26の外周面から出没しながら、先端が調整リング27の内周面を摺動する。停止時にもベーン31の全てが内側に後退しないように、ベーンリング32で支えられている。 The vanes 31 are arranged in a plurality of slits provided in the vane pump rotor 26, and when the vane pump rotor 26 rotates, the tips of the vanes slide on the inner peripheral surface of the adjustment ring 27 while appearing and disappearing from the outer peripheral surface of the vane pump rotor 26. All of the vanes 31 are supported by vane rings 32 so as not to retreat inward even when stopped.
 そして、ベーンポンプロータ26の外周面と調整リング27の内周面、及び2枚のベーン31で形成される空間(以下、作動油室と表記する)が、図5に示すように反時計回りのベーンポンプロータ26の回転に伴い容積が増減する。作動油室の容積が増加する範囲で、ポンプボデイ11の側面に吸入部33が設けられている。この吸入部33は、低圧オイルポンプの側のポンプボデイ11の背面部11Bに設けた高圧側吸入孔19に接続されている。 A space formed by the outer peripheral surface of the vane pump rotor 26, the inner peripheral surface of the adjustment ring 27, and the two vanes 31 (hereinafter referred to as the hydraulic oil chamber) rotates counterclockwise as shown in FIG. The volume increases and decreases as the vane pump rotor 26 rotates. A suction portion 33 is provided on the side surface of the pump body 11 within a range where the volume of the hydraulic oil chamber increases. The suction portion 33 is connected to the high-pressure side suction hole 19 provided in the rear portion 11B of the pump body 11 on the low-pressure oil pump side.
 一方、容積が減少する範囲で、ポンプボデイ11の側面に吐出部34が設けられている。この吐出部34は、高圧オイルポンプの側のポンプボデイ11の正面部11Fに設けた高圧側吐出孔18に接続されている。 On the other hand, a discharge part 34 is provided on the side surface of the pump body 11 within the range where the volume decreases. This discharge portion 34 is connected to a high pressure side discharge hole 18 provided in the front portion 11F of the pump body 11 on the side of the high pressure oil pump.
 そして、ベーン型オイルポンプは、吸入孔19を介してオイルを吸い上げ、吐出孔18を経て、可変動弁機構、或いは内燃機関のメインオイルギャラリへオイルを吐出してポンプ作用を行うものである。尚、圧縮スプリング35は、ボール弁36を付勢しており、吐出圧が所定値以上に上昇すると、ボール弁36が開かれて吐出圧を低減するように構成されている。このベーン型オイルポンプの構成や動作は、良く知られているので、これ以上の説明は省略する。 The vane type oil pump sucks up oil through the suction hole 19 and discharges the oil through the discharge hole 18 to the variable valve mechanism or the main oil gallery of the internal combustion engine to perform a pumping action. The compression spring 35 biases the ball valve 36, and when the discharge pressure rises above a predetermined value, the ball valve 36 is opened to reduce the discharge pressure. Since the configuration and operation of this vane type oil pump are well known, further explanation will be omitted.
 このように、ベーン型オイルポンプは、ベーンポンプロータ収容部21に揺動可能に配置され、内部にベーン収容部が設けられた調整リング27と、調整リング27の内部に収容されると共に、駆動軸16に固定されたベーンポンプロータ26と、ベーンポンプロータ26の外周面に収容され、調整リング27とベーンポンプロータ26の間でオイルが導かれる複数の作動油室を形成する複数のベーン31と、を有し、駆動軸16の回転に伴って複数の作動油室のうち容積が増加する吸入孔19(図3参照)からオイルを吸入し、駆動軸16の回転に伴って複数の作動油室のうち容積が減少する吐出孔18(図2参照)からオイルを吐出するオイルポンプである。 Thus, the vane-type oil pump is arranged swingably in the vane pump rotor accommodating portion 21 and accommodated in the adjustment ring 27 having the vane accommodating portion therein, and the drive shaft and a plurality of vanes 31 accommodated on the outer peripheral surface of the vane pump rotor 26 and forming a plurality of hydraulic oil chambers through which oil is directed between the adjustment ring 27 and the vane pump rotor 26. Then, the oil is sucked from the suction hole 19 (see FIG. 3) whose volume increases among the plurality of hydraulic oil chambers as the drive shaft 16 rotates, and It is an oil pump that discharges oil from a discharge hole 18 (see FIG. 2) whose volume decreases.
 次に図6、及び図7を用いてギヤ型オイルポンプの構成を説明するが、このギヤ型オイルポンプも良く知られている構成であるので、説明は簡単に行う。ここで、図7は、周知のギヤ型オイルポンプの軸線に直交する方向に断面したポンプ部分を示している。 Next, the configuration of the gear-type oil pump will be described with reference to FIGS. 6 and 7. Since this gear-type oil pump is also well-known, the description will be brief. Here, FIG. 7 shows a pump portion of a known gear-type oil pump taken in a cross section perpendicular to the axis.
 図6において、ポンプボデイ11の背面部11Bの側には、ギヤポンプロータ収容部22が形成されており、この中にアウターロータ37(請求項でいう第2ポンプロータ/低圧ポンプロータの一部に相当する)が摺動回転自在に配置されている。 In FIG. 6, a gear pump rotor accommodating portion 22 is formed on the side of the rear portion 11B of the pump body 11, and an outer rotor 37 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is formed therein. ) are slidably and rotatably arranged.
 更に、アウターロータ37の内部には、インナーロータ38(請求項でいう第2ポンプロータ/低圧ポンプロータの一部に相当する)が配置されている。そして、図7にあるように、アウターロータ37の内周側には、インナーロータ38の外歯39よりも一つ多い5個の内歯40がそれぞれ形成されており、この内歯40がインナーロータ38の外歯39と噛み合うようになっている。 Further, inside the outer rotor 37, an inner rotor 38 (corresponding to a part of the second pump rotor/low-pressure pump rotor in the claims) is arranged. As shown in FIG. 7, five internal teeth 40, one more than the external teeth 39 of the inner rotor 38, are formed on the inner peripheral side of the outer rotor 37. It meshes with the external teeth 39 of the rotor 38 .
 そして、インナーロータ38の外歯39とアウターロータ37の内歯40と間には複数の作動油室が形成され、インナーロータ38の回転に伴ってアウターロータ37が偏心して回転することにより、作動油室の容積が増減し、これによって連続的にオイルを吸入、及び吐出してポンプ作用を行うようになっている。 A plurality of working oil chambers are formed between the outer teeth 39 of the inner rotor 38 and the inner teeth 40 of the outer rotor 37. When the inner rotor 38 rotates, the outer rotor 37 rotates eccentrically, thereby The volume of the oil chamber increases and decreases, thereby continuously sucking and discharging oil to perform a pump action.
 ここで、インナーロータ38は駆動軸16によって回転駆動されるが、本実施形態では、駆動軸16に対して、インナーロータ38は、駆動軸線の方向に相対移動が可能で、かつ、駆動軸16に対して回転方向の相対移動が規制されている。具体的には、インナーロータ38が嵌合する駆動軸16は2面幅を有するような形状に形成されており、この部分でインナーロータ38は駆動軸方向に移動可能である。 Here, the inner rotor 38 is rotationally driven by the drive shaft 16. In the present embodiment, the inner rotor 38 can move relative to the drive shaft 16 in the direction of the drive axis, and the drive shaft 16 can rotate. Relative movement in the rotational direction is restricted with respect to Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a width across flats, and the inner rotor 38 can move in the drive shaft direction at this portion.
 ここで、2面幅とは、駆動軸16の軸方向に沿って形成され、互いに対向する面が平行な平面が形成された形状を意味している。したがって、インナーロータ38は、駆動軸16の軸方向に沿って移動可能で、しかも回転方向では、駆動軸16と一体的に回転することが可能となる。 Here, the width across flats means a shape formed along the axial direction of the drive shaft 16 and having planes facing each other parallel to each other. Therefore, the inner rotor 38 can move along the axial direction of the drive shaft 16 and rotate together with the drive shaft 16 in the rotational direction.
 このように、ギヤ型オイルポンプは、ギヤポンプロータ収容部22の内部に収容されると共に、内周側に複数の内歯40を含んだアウターロータ37と、アウターロータ37の内部に収容されると共に、駆動軸16上に駆動軸16の駆動軸線の方向に移動可能に設けられ、外周側に複数の内歯40と噛み合う複数の外歯39とを含んだインナーロータとを有したオイルポンプである。 In this way, the gear-type oil pump is housed inside the gear pump rotor housing portion 22 and also housed inside the outer rotor 37 including the plurality of internal teeth 40 on the inner peripheral side and the outer rotor 37. , and an inner rotor provided on a drive shaft 16 so as to be movable in the direction of the drive axis of the drive shaft 16 and having a plurality of external teeth 39 meshing with a plurality of internal teeth 40 on the outer peripheral side. .
 インナーロータ38は図8に示すように、駆動軸16の軸方向に移動可能な構成とされている。つまり、駆動軸16の駆動軸線の方向に相対移動が可能で、かつ、駆動軸16に対して回転方向の相対移動を規制されている。具体的は、インナーロータ38が嵌合する駆動軸16には、2面幅の平面43を有するような形状に形成されており、この部分でインナーロータ38は駆動軸方向に移動可能である。 The inner rotor 38 is configured to be movable in the axial direction of the drive shaft 16, as shown in FIG. That is, relative movement in the direction of the drive axis of the drive shaft 16 is possible, and relative movement in the rotational direction with respect to the drive shaft 16 is restricted. Specifically, the drive shaft 16 to which the inner rotor 38 is fitted is formed in a shape having a flat surface 43 with a width across flats 43, and the inner rotor 38 can move in the drive shaft direction at this portion.
 図8において、駆動軸16は、円柱部16Cと2面幅部16Pとから構成されており、2面幅部16Pは、インナーロータ38に形成された嵌合孔44に若干の隙間を介して挿入される構成とされている。嵌合孔44は、2面幅部16Pと相似形状とされており、2面幅部16Pの寸法に対して、若干大きく設計されている。2面幅部16Pは、インナーロータ38の軸方向長さより長く形成されており、駆動面積を大きくして駆動軸16のトルクを十分に伝達できるようにされている。 In FIG. 8, the drive shaft 16 is composed of a cylindrical portion 16C and a width across flat portion 16P. It is configured to be inserted. The fitting hole 44 has a similar shape to the width across flat portion 16P and is designed to be slightly larger than the width across flat portion 16P. The width across flat portion 16</b>P is formed longer than the axial length of the inner rotor 38 to increase the drive area and sufficiently transmit the torque of the drive shaft 16 .
 また、円柱部16Cには、ベーンポンプロータ26が圧入嵌合されており、ベーンポンプロータ26は、円柱部16Cに対して軸方向、及び回転方向に移動できない構成となっている。更に、ベーンポンプロータ26と円柱部16Cは、セレーション結合されていると、更に強固な固定状態とすることができる。 A vane pump rotor 26 is press-fitted to the columnar portion 16C, and the vane pump rotor 26 is configured so as not to move in the axial direction and the rotational direction with respect to the columnar portion 16C. Furthermore, when the vane pump rotor 26 and the columnar portion 16C are serration-coupled, they can be in a more rigid fixed state.
 一方、駆動軸16の2面幅部16Pには、インナーロータ38に形成された嵌合孔44が、軸方向に移動可能に嵌合されている。したがって、図8に示すように、駆動軸16が軸方向(左方向、或いは右方向)に移動しても、インナーロータ38は駆動軸16によって、強制的に移動されることはない。尚、ベーンポンプロータ26は、駆動軸16に圧入固定されているので、駆動軸16と一緒に移動されることになる。 On the other hand, the width across flat portion 16P of the drive shaft 16 is fitted with a fitting hole 44 formed in the inner rotor 38 so as to be axially movable. Therefore, as shown in FIG. 8 , even if the drive shaft 16 moves in the axial direction (leftward or rightward), the inner rotor 38 is not forced to move by the drive shaft 16 . Since the vane pump rotor 26 is press-fitted onto the drive shaft 16 , it is moved together with the drive shaft 16 .
 次に、図1に示すタンデム型オイルポンプ10の内部構成について、図9~図12を用いて説明する。 Next, the internal configuration of the tandem oil pump 10 shown in FIG. 1 will be explained using FIGS. 9 to 12. FIG.
 図9において、ポンプボデイ11の正面部11Fには、ボルト12で高圧ポンプカバー13がポンプボデイ11に取り付けられ、同様に、ポンプボデイ11の背面部11Bには、ボルト14で低圧ポンプカバー15がポンプボデイ11に取り付けられている。そして、高圧ポンプカバー13の側のポンプボデイ11内には、高圧オイルポンプであるベーン型オイルポンプが収納されており、低圧ポンプカバー15の側のポンプボデイ11内には、低圧オイルポンプであるギヤ型オイルポンプが収納されている。 9, a high-pressure pump cover 13 is attached to the pump body 11 with bolts 12 on the front portion 11F of the pump body 11, and a low-pressure pump cover 15 is attached to the pump body 11 with bolts 14 on the rear portion 11B of the pump body 11. installed. A vane-type oil pump, which is a high-pressure oil pump, is accommodated in the pump body 11 on the high-pressure pump cover 13 side, and a gear-type oil pump, which is a low-pressure oil pump, is accommodated in the pump body 11 on the low-pressure pump cover 15 side. Contains the oil pump.
 また、高圧ポンプカバー13、及びポンプボデイ11に形成された区画壁23を貫通して、低圧ポンプカバー15まで延びる駆動軸16を備えている。この駆動軸16は、高圧オイルポンプと低圧オイルポンプとで共用されており、駆動軸16で、高圧オイルポンプのベーンポンプロータ26と、低圧オイルポンプのインナーロータ38をそれぞれ回転駆動している。 It also has a drive shaft 16 extending through the high-pressure pump cover 13 and the partition wall 23 formed in the pump body 11 and extending to the low-pressure pump cover 15 . The drive shaft 16 is shared by the high-pressure oil pump and the low-pressure oil pump, and rotates the vane pump rotor 26 of the high-pressure oil pump and the inner rotor 38 of the low-pressure oil pump, respectively.
 駆動軸16には、断面が円形状の径大部16Lが形成されており、この径大部16Lは高圧ポンプカバー13に形成した孔部で軸受けされている。また、駆動軸16は、区画壁23に設けた軸受用貫通孔24で軸受けされている。このため、駆動軸16は、少なくとも、区画壁23と接触しているところまで断面が円形状に形成されている。 A large diameter portion 16L having a circular cross section is formed on the drive shaft 16, and the large diameter portion 16L is supported by a hole formed in the high pressure pump cover 13. Further, the drive shaft 16 is supported by a bearing through hole 24 provided in the partition wall 23 . Therefore, the drive shaft 16 has a circular cross section at least up to the point where it contacts the partition wall 23 .
 駆動軸16は、低圧ポンプカバー15に当接、或いは当接する直前まで延びており、この部分が軸受けされていない構成となっている。したがって、低圧ポンプカバー15の付近では、駆動軸16が振れる現象が生じる。駆動軸16が触れると、インナーロータ38とアウターロータ37の位置関係が変わり、異音や作動油室のオイル漏れが発生する恐れが生じる。 The drive shaft 16 abuts on the low-pressure pump cover 15 or extends until just before it abuts, and this portion is not supported by a bearing. Therefore, in the vicinity of the low-pressure pump cover 15, a phenomenon occurs in which the drive shaft 16 vibrates. If the drive shaft 16 touches, the positional relationship between the inner rotor 38 and the outer rotor 37 changes, which may cause abnormal noise and oil leakage from the working oil chamber.
 このため、本実施形態では、インナーロータ38の低圧ポンプカバー15とは反対側に、インナーロータ38からベーンポンプロータ26の側に向けて延びるポンプロータ径小軸部41(請求項でいう第2ポンプロータ径小軸部/低圧ポンプロータ径小軸部に相当する)が、一体的に形成されている。 For this reason, in the present embodiment, a pump rotor diameter small shaft portion 41 (second pump (corresponding to the rotor diameter small shaft portion/low pressure pump rotor diameter small shaft portion) are integrally formed.
 このポンプロータ径小軸部41は駆動軸16の軸線に直交する断面が円形状に形成されている。また、軸受用貫通孔24の低圧ポンプカバー15の側には、ポンプロータ径小軸部41を軸受けするインナーロータ側軸受貫通孔42(請求項でいう第2ポンプロータ用軸受部/低圧ポンプロータ用軸受部に相当する)が形成されている。このインナーロータ側軸受貫通孔42は、軸受用貫通孔24より大径に設計されている。 The pump rotor diameter small shaft portion 41 has a circular cross section perpendicular to the axis of the drive shaft 16 . Further, on the side of the low-pressure pump cover 15 of the bearing through-hole 24, an inner rotor-side bearing through-hole 42 (second pump rotor bearing portion/low-pressure pump rotor ) are formed. The inner rotor side bearing through hole 42 is designed to have a larger diameter than the bearing through hole 24 .
 このように、ポンプボデイには、ギヤポンプロータ収容部22(請求項でいう第2ポンプロータ収容部/低圧ポンプロータ収容部に相当する)と軸受用貫通孔24との間に設けられ、軸受用貫通孔24の直径よりも大きく、しかもギヤポンプロータ収容部22の直径よりも小さい、ギヤポンプロータ収容部22と連続して形成されたインナーロータ側軸受貫通孔42が形成されている。そして、インナーロータ側軸受貫通孔42に微小隙間を介してポンプロータ径小軸部41が回転可能に軸支されている。 In this way, the pump body is provided between the gear pump rotor accommodating portion 22 (corresponding to the second pump rotor accommodating portion/low-pressure pump rotor accommodating portion referred to in the claims) and the bearing through hole 24. An inner-rotor-side bearing through-hole 42 that is larger than the diameter of the hole 24 and smaller than the diameter of the gear-pump rotor-accommodating portion 22 is formed continuously with the gear-pump-rotor-accommodating portion 22 . A small diameter pump rotor shaft portion 41 is rotatably supported in the inner rotor side bearing through hole 42 with a minute gap therebetween.
 したがって、インナーロータ側軸受貫通孔42とインナーロータ38のポンプロータ径小軸部41は、「インロー係合」となっている。「インロー係合」とは、「2つの部品が嵌りあう部分において、一方が凹形状、もう一方が凸形状であるような入れ子構造」のことを意味している。このように、駆動軸16の低圧ポンプカバー15の側の端部付近は、インナーロータ38のポンプロータ径小軸部41によって、インナーロータ側軸受貫通孔42に軸受けされることなり、駆動軸16に生じる振れを抑制することができる。 Therefore, the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 of the inner rotor 38 are in "pipe engagement". "Spigot engagement" means "a nested structure in which two parts fit together, one of which has a concave shape and the other has a convex shape". In this manner, the vicinity of the end portion of the drive shaft 16 on the low-pressure pump cover 15 side is supported by the inner rotor side bearing through hole 42 by the pump rotor diameter small shaft portion 41 of the inner rotor 38 . It is possible to suppress the vibration that occurs in the
 また、インナーロータ側軸受貫通孔42における、ベーンポンプロータ26の側の端面と、ポンプロータ径小軸部41における、ベーンポンプロータ26の側の端面との間は、駆動軸16が挿通した円環状のオイル貯溜部45が形成されている。このオイル貯溜部45は、区画壁23に形成された軸受用貫通孔24が延びる方向(駆動軸16の方向)で、しかも軸受用貫通孔24に沿って開口するように形成された給油通路46と流体的に接続されている。そして、軸受用貫通孔24と給油通路46とは、これも流体的に接続されている。 An annular shape through which the drive shaft 16 is inserted is formed between an end face of the inner rotor side bearing through hole 42 on the vane pump rotor 26 side and an end face of the pump rotor small diameter shaft portion 41 on the vane pump rotor 26 side. An oil reservoir 45 is formed. The oil reservoir 45 is formed in the direction in which the bearing through-hole 24 formed in the partition wall 23 extends (in the direction of the drive shaft 16) and is formed so as to open along the bearing through-hole 24. is fluidly connected with The bearing through hole 24 and the oil supply passage 46 are also fluidly connected.
 つまり、駆動軸16に直交する断面で見て、軸受用貫通孔24には、矩形状の「凹部」、或いは「溝」の形状に形成された給油通路46が形成されている。そして、この給油通路46は、ポンプボデイ11の側面に設けられたベーン型オイルポンプの吐出部34から、高圧のオイルが供給される構成となっている。 That is, when viewed in a cross section orthogonal to the drive shaft 16, the bearing through-hole 24 has an oil supply passage 46 formed in the shape of a rectangular "recess" or "groove". High-pressure oil is supplied to the oil supply passage 46 from the discharge portion 34 of the vane-type oil pump provided on the side surface of the pump body 11 .
 図10~図12に基づいて更に説明を加える。ここで、図10は、給油通路46の付近を拡大したものであり、図11は図9のB-B断面を示すものであり、図12はポンプボデイ11を高圧オイルポンプ側から眺めたものである。 A further explanation will be added based on FIGS. 10 to 12. Here, FIG. 10 is an enlarged view of the vicinity of the oil supply passage 46, FIG. 11 is a cross section taken along line BB of FIG. 9, and FIG. 12 is a view of the pump body 11 from the side of the high-pressure oil pump. be.
 図10において、ポンプロータ径小軸部41の軸方向の長さは、軸長(L1)に設定されており、この部分でポンプロータ径小軸部41の焼き付き現象、或いは摩耗現象が発生する。したがって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間にオイルを供給してやる必要がある。 In FIG. 10, the axial length of the pump rotor small diameter shaft portion 41 is set to the axial length (L1), and the seizure phenomenon or wear phenomenon of the pump rotor small diameter shaft portion 41 occurs at this portion. . Therefore, it is necessary to supply oil to the minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 .
 このため、本実施形態では、円環状のオイル貯溜部45が形成されている。このオイル貯溜部45の軸方向の長さは、軸長(L2)に設定されており、ポンプ尚、ポンプロータ径小軸部41の軸長(L1)に比べて短く設定されている。尚、軸長(L2)の長さは任意であり、設計的に適正な長さに決められていれば良い。 Therefore, in this embodiment, an annular oil reservoir 45 is formed. The axial length of the oil storage portion 45 is set to the axial length (L2), which is shorter than the axial length (L1) of the pump rotor diameter small shaft portion 41 of the pump. Note that the axial length (L2) is arbitrary, and may be determined to be an appropriate length in terms of design.
 そして、このオイル貯溜部45には、ベーン型オイルポンプから給油通路46を介して、高圧のオイルが送られて貯留される。貯留されたオイルは、自身の圧力によってインナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に充填される。給油通路46は、図11、図12に示すように、径方向に延びる導入通路47を介してベーン型オイルポンプの吐出部34に接続されている。 High-pressure oil is sent from the vane-type oil pump through the oil supply passage 46 and stored in the oil reservoir 45 . The stored oil fills the minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor small diameter shaft portion 41 by its own pressure. As shown in FIGS. 11 and 12, the oil supply passage 46 is connected to the discharge portion 34 of the vane-type oil pump via an introduction passage 47 extending in the radial direction.
 尚、駆動軸16の軸心を中心としたインナーロータ側軸受貫通孔42の径方向の長さに対して、駆動軸16の軸心を中心とした給油通路46の径方向の長さは短く設定されており、差分長(ΔD)だけ短くなっている。これによって、必要な量のオイルをオイル貯溜部45に供給するようにしている。ここで、給油通路46は、駆動軸16に沿って形成されているので、駆動軸16と軸受用貫通孔24の間に形成された微小隙間にもオイルを供給している。このように、給油通路46は、軸受用貫通孔24、及びインナーロータ側軸受貫通孔42の両方に、潤滑用のオイルを強制的に供給することができる。 The radial length of the oil supply passage 46 around the axis of the drive shaft 16 is shorter than the radial length of the inner rotor side bearing through-hole 42 around the axis of the drive shaft 16 . set and shortened by the differential length (ΔD). He is trying to supply the required amount of oil to the oil storage part 45 by this. Here, since the oil supply passage 46 is formed along the drive shaft 16 , the oil is supplied to even the minute gap formed between the drive shaft 16 and the bearing through hole 24 . Thus, the oil supply passage 46 can forcibly supply lubricating oil to both the bearing through-hole 24 and the inner rotor side bearing through-hole 42 .
 さて、内燃機関や電動機によって駆動軸16が回転されると、駆動軸16の円柱部16Cに圧入嵌合されたベーンポンプロータ26と、駆動軸16の2面幅部16Pに、軸方向に移動可能に嵌合されたインナーロータ38は、駆動軸16の回転に同期して回転される。これによってポンプ作用が実行される。 Now, when the drive shaft 16 is rotated by an internal combustion engine or an electric motor, the vane pump rotor 26 press-fitted into the cylindrical portion 16C of the drive shaft 16 and the width across flat portion 16P of the drive shaft 16 can move in the axial direction. The inner rotor 38 fitted to is rotated in synchronization with the rotation of the drive shaft 16 . A pump action is thereby performed.
 そして、ベーンポンプロータ26の回転によってオイルは、高圧側吸入孔19から吸入され、更にベーンポンプロータ26の回転によって高い圧力(請求項でいう第1の吐出圧に相当する)に加圧されて、高圧側吐出孔18(図1参照)から吐出される。同様に、インナーロータ38の回転によってオイルは、低圧側吸入孔17から吸入され、更に、インナーロータ38の回転によって低い圧力(請求項でいう第2の吐出圧に相当する)に加圧(大気圧、或いは負圧の場合もある)されて、低圧側吐出孔20から吐出される。 The rotation of the vane pump rotor 26 causes the oil to be sucked from the high-pressure side suction hole 19, and the rotation of the vane pump rotor 26 further pressurizes the oil to a high pressure (corresponding to the first discharge pressure in the claims). It is discharged from the side discharge hole 18 (see FIG. 1). Similarly, the rotation of the inner rotor 38 causes the oil to be sucked from the low-pressure side suction hole 17, and the rotation of the inner rotor 38 further pressurizes the oil to a low pressure (corresponding to the second discharge pressure in the claims). Air pressure or negative pressure may be applied) and discharged from the low-pressure side discharge hole 20 .
 このように、タンデム型オイルポンプが動作している状態で、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、駆動軸16はベーンポンプロータ26に強固に圧入嵌合されているので、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と当接することになる。 In this way, when the drive shaft 16 moves in the axial direction (moves in the thrust direction) while the tandem oil pump is operating, the drive shaft 16 is firmly press-fitted into the vane pump rotor 26. Therefore, the side surface perpendicular to the axial direction of the vane pump rotor 26 comes into contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side.
 そして、ベーンポンプロータ26の軸方向に直交する側面は、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面と回転しながら摺動することになる。このため、この摺動部分で焼き付き現象、或いは摩耗現象が発生する恐れがある。しかしながら、ベーンポンプロータ26によるオイルの吐出圧が高いので、ベーンポンプロータ26の側面が大きな面圧で、高圧ポンプカバー13の内側の端面、或いは区画壁23のベーンポンプロータ26の側の端面に当接しても、ベーンポンプロータ26の側面に、十分な量のオイルを供給することができ、ベーンポンプロータ26の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 The side surface of the vane pump rotor 26 perpendicular to the axial direction slides while rotating on the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side. For this reason, there is a possibility that a seizing phenomenon or an abrasion phenomenon may occur at this sliding portion. However, since the oil discharge pressure of the vane pump rotor 26 is high, the side surface of the vane pump rotor 26 is in contact with the inner end surface of the high-pressure pump cover 13 or the end surface of the partition wall 23 on the vane pump rotor 26 side with a large surface pressure. Also, a sufficient amount of oil can be supplied to the side surface of the vane pump rotor 26, and the side surface of the vane pump rotor 26 can be prevented from being seized or worn.
 一方、タンデム型オイルポンプが動作している状態で、駆動軸16に軸方向の移動(スラスト方向に移動)が生じると、インナーロータ38は、駆動軸16の軸方向に移動可能に嵌入されているので、駆動軸16が移動してもインナーロータ38は駆動軸16の軸方向では自由である。このため、インナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と大きな面圧で当接することがない。 On the other hand, when the drive shaft 16 is moved in the axial direction (moved in the thrust direction) while the tandem oil pump is operating, the inner rotor 38 is fitted on the drive shaft 16 so as to be movable in the axial direction. Therefore, the inner rotor 38 is free in the axial direction of the drive shaft 16 even if the drive shaft 16 moves. Therefore, the side surface of the inner rotor 38 perpendicular to the axial direction does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure.
 そしてインナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と回転しながら摺動することになる。しかしながら、インナーロータ38の軸方向に直交する側面は、低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面と大きな面圧で当接していない。理由は、インナーロータ38が駆動軸16の軸方向で自由であるためである。 The side surface of the inner rotor 38 orthogonal to the axial direction slides while rotating on the inner end surface of the low-pressure pump cover 15 or the end surface of the partition wall 23 on the inner rotor 38 side. However, the side surface perpendicular to the axial direction of the inner rotor 38 does not contact the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. The reason is that the inner rotor 38 is free in the axial direction of the drive shaft 16 .
 このため、インナーロータ38によるオイルの吐出圧が低くても、インナーロータ38の側面が大きな面圧で低圧ポンプカバー15の内側の端面、或いは区画壁23のインナーロータ38の側の端面に当接していないので、インナーロータ38の側面に、十分な量のオイルを供給することができ、インナーロータ38の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Therefore, even if the oil discharge pressure of the inner rotor 38 is low, the side surface of the inner rotor 38 contacts the inner end surface of the low-pressure pump cover 15 or the inner rotor 38 side end surface of the partition wall 23 with a large surface pressure. Therefore, a sufficient amount of oil can be supplied to the side surface of the inner rotor 38, and the side surface of the inner rotor 38 can be prevented from being seized or worn.
 このように、本実施形態では、低圧オイルポンプを構成するインナーロータ38が駆動軸16の軸線方向に移動できるので、吐出圧が低くてもインナーロータ38の側面にオイルを十分に供給することができ、インナーロータ38の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 As described above, in this embodiment, since the inner rotor 38 constituting the low-pressure oil pump can move in the axial direction of the drive shaft 16, it is possible to sufficiently supply oil to the side surfaces of the inner rotor 38 even when the discharge pressure is low. Therefore, it is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the inner rotor 38 .
 また、高圧オイルポンプを構成するベーンポンプロータ26の方は、吐出圧が高いので、ベーンポンプロータ26の側面が大きな面圧で摺動面に当接しても、ベーンポンプロータの側面にオイルを十分に供給することができ、ベーンポンプロータ26の側面に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Further, since the vane pump rotor 26 constituting the high-pressure oil pump has a high discharge pressure, even if the side surface of the vane pump rotor 26 comes into contact with the sliding surface with a large surface pressure, the oil is sufficiently supplied to the side surface of the vane pump rotor. It is possible to suppress the occurrence of seizure phenomenon or wear phenomenon on the side surface of the vane pump rotor 26 .
 また、図11に示しているように、ベーン型オイルポンプの回転によって加圧された高圧のオイルの一部は、吐出部34から導入通路47に流れ出して、給油通路46に至ることになる。そして給油通路46は、軸受用貫通孔24の軸方向に沿って形成されているので、駆動軸16の間に十分な油膜を形成することができる。 Also, as shown in FIG. 11, part of the high-pressure oil pressurized by the rotation of the vane oil pump flows out from the discharge part 34 into the introduction passage 47 and reaches the oil supply passage 46. Since the oil supply passage 46 is formed along the axial direction of the bearing through hole 24 , a sufficient oil film can be formed between the drive shafts 16 .
 更に、図10に示す矢印OAのように、給油通路46を介して流れてきた高圧のオイルは、オイル貯溜部45に貯留される。このオイル貯溜部45のオイルの圧力は、ギヤ型オイルポンプの吐出圧よりも高いので、オイル貯溜部45のオイルは、自身の圧力によってインナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に充填される。 Furthermore, the high-pressure oil flowing through the oil supply passage 46 is stored in the oil reservoir 45, as indicated by the arrow OA shown in FIG. Since the pressure of the oil in the oil storage portion 45 is higher than the discharge pressure of the gear type oil pump, the oil in the oil storage portion 45 is pushed through the inner rotor side bearing through hole 42 and the pump rotor diameter small shaft portion 41 by its own pressure. It fills the minute gaps formed in the
 したがって、インナーロータ38の振れによって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41の間の隙間が狭くなってオイルの油膜が薄くなることがあっても、オイル貯溜部45に貯留された高圧のオイルは、強制的にインナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に送り出されるので、油膜切れを抑制することができる。これによって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41の間で、焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 Therefore, even if the gap between the inner rotor side bearing through-hole 42 and the pump rotor small diameter shaft portion 41 becomes narrower due to vibration of the inner rotor 38 and the oil film becomes thinner, the oil is retained in the oil reservoir 45 . The high-pressure oil that has been pumped is forcibly delivered to the minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41, so oil film breakage can be suppressed. As a result, it is possible to suppress the occurrence of a seizure phenomenon or a wear phenomenon between the inner rotor side bearing through-hole 42 and the pump rotor small diameter shaft portion 41 .
 更に、焼き付き現象、或いは摩耗現象が発生するのを抑制する作用、効果の他に、次のような作用、効果を奏することができる。例えば、(1)オイル貯溜部45から、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間を介して、インナーロータ38の側にオイルが流れ出るので、インナーロータ38とアウターロータ37の回転による打音の抑制ができる、(2)また、流動するオイルによって冷却作用を向上することができる、(3)また、オイル貯溜部45のオイルは、異物等が取り除かれたオイルであるので、流動するオイルによって摺動部分の洗浄効果を向上することができる、といった作用、効果を奏することができる。 Furthermore, in addition to the action and effect of suppressing the occurrence of the seizure phenomenon or the wear phenomenon, the following action and effect can be obtained. For example, (1) oil flows out from the oil storage portion 45 to the inner rotor 38 side through a minute gap formed between the inner rotor side bearing through-hole 42 and the pump rotor diameter small shaft portion 41 . (2) The cooling action can be improved by the flowing oil. Since the oil is a solid oil, it is possible to obtain the action and effect that the cleaning effect of the sliding portion can be improved by the flowing oil.
 ここで、給油通路46は、オイル貯溜部45に対して軸方向からオイルを供給する形態であるが、インナーロータ側軸受貫通孔42に対して軸方向、及び径方向からオイルを供給することも可能である。 Here, the oil supply passage 46 is configured to supply oil axially to the oil reservoir 45, but it is also possible to supply oil axially and radially to the inner rotor side bearing through hole 42. It is possible.
 例えば図13において、インナーロータ側軸受貫通孔42には、ポンプロータ径小軸部41に沿って形成された、溝状の径小軸部側給油通路48が設けられている。この径小軸部側給油通路48は、オイル貯溜部45に接続されており、給油通路46からのオイルは、オイル貯溜部45に供給され、その一部は径小軸部側給油通路48に供給される。これによって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に、更に効率よくオイルを供給することができる。 For example, in FIG. 13, the inner rotor side bearing through hole 42 is provided with a groove-shaped small diameter shaft portion side oil supply passage 48 formed along the small diameter shaft portion 41 of the pump rotor. The small diameter shaft portion side oil supply passage 48 is connected to the oil reservoir portion 45 , and the oil from the oil supply passage 46 is supplied to the oil reservoir portion 45 . supplied. As a result, the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
 径小軸部側給油通路48は、オイル貯溜部45からポンプロータ径小軸部41の途中まで延びるようにポンプボデイ11に形成されており、好ましくは、ポンプロータ径小軸部41の軸長(L1)の半分程度の長さまで延びている。これによって、ポンプロータ径小軸部41とインナーロータ側軸受貫通孔42に、十分な量のオイルを供給することができる。 The small diameter shaft portion side oil supply passage 48 is formed in the pump body 11 so as to extend from the oil reservoir 45 to the middle of the small diameter shaft portion 41 of the pump rotor. It extends to about half the length of L1). As a result, a sufficient amount of oil can be supplied to the pump rotor diameter small shaft portion 41 and the inner rotor side bearing through hole 42 .
 ここで、径小軸部側給油通路48をポンプロータ径小軸部41の途中までしか形成しないのは、多量の高圧のオイルが、低圧のギヤ型オイルポンプの側に流れて、ギヤ型オイルポンプの仕様性能が悪化するのを抑制するためである。径小軸部側給油通路48をポンプロータ径小軸部41の途中まで形成することで、ポンプロータ径小軸部41に十分な量のオイルを供給でき、しかも、ギヤ型オイルポンプの側には、必要最小限のオイルしか漏れないようにすることができる。 Here, the reason why the small-diameter shaft portion side oil supply passage 48 is formed only halfway through the pump rotor small-diameter shaft portion 41 is that a large amount of high-pressure oil flows to the low-pressure gear-type oil pump side. This is for suppressing deterioration of the specified performance of the pump. By forming the small diameter shaft portion side oil supply passage 48 to the middle of the small diameter shaft portion 41 of the pump rotor, it is possible to supply a sufficient amount of oil to the small diameter shaft portion 41 of the pump rotor. can be made to leak as little oil as possible.
 ここで、以上に説明した実施形態において、給油通路46、径小軸部側給油通路48は、ポンプボデイ11の側に溝の形態で形成した例を説明したが、これに代えて図14に示すように、駆動軸16の外周やポンプロータ径小軸部41の外周に、給油通路46、径小軸部側給油通路48のような溝を形成することもできる。以下に簡単に説明する。 Here, in the embodiment described above, an example in which the oil supply passage 46 and the small diameter shaft portion side oil supply passage 48 are formed in the form of grooves on the pump body 11 side has been described. Similarly, grooves such as the oil supply passage 46 and the small diameter shaft portion side oil supply passage 48 can be formed on the outer circumference of the drive shaft 16 and the outer circumference of the pump rotor small diameter shaft portion 41 . A brief description is given below.
 図14において、軸受用貫通孔24が存在するの範囲の駆動軸16の外周には、溝状の駆動軸給油通路49が形成されており、この駆動軸給油通路49は、インナーロータ38の側の端部において、オイル貯溜部45に接続されている。一方、駆動軸給油通路49のインナーロータ38の反対側の端部において、ベーン型オイルポンプの吐出部34と接続されている。したがって、この構成によっても高圧のオイルをオイル貯溜部45に供給することができる。 In FIG. 14, a groove-shaped drive shaft oil supply passage 49 is formed in the outer periphery of the drive shaft 16 in the range where the bearing through hole 24 exists. is connected to the oil reservoir 45 at its end. On the other hand, the end of the drive shaft oil supply passage 49 opposite to the inner rotor 38 is connected to the discharge portion 34 of the vane type oil pump. Therefore, high-pressure oil can be supplied to the oil reservoir 45 also with this configuration.
 更に、インナーロータ38のポンプロータ径小軸部41の外周には、溝状のポンプロータ径小軸給油通路50を形成することもできる。このポンプロータ径小軸給油通路50は、オイル貯溜部45に接続されており、駆動軸給油通路49からのオイルは、オイル貯溜部45に供給され、その一部はポンプロータ径小軸給油通路50に供給される。これによって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に、更に効率よくオイルを供給することができる。 Furthermore, a groove-shaped pump rotor diameter small shaft oil supply passage 50 can be formed on the outer periphery of the pump rotor diameter small shaft portion 41 of the inner rotor 38 . The pump rotor diameter small shaft oil supply passage 50 is connected to the oil reservoir 45, and the oil from the drive shaft oil supply passage 49 is supplied to the oil reservoir 45. 50. As a result, the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
 この例においても、ポンプロータ径小軸給油通路50をポンプロータ径小軸部41の途中までしか形成しないのは、多量の高圧のオイルが、低圧のギヤ型オイルポンプの側に流れて、ギヤ型オイルポンプの仕様性能が悪化するのを抑制するためである。ポンプロータ径小軸給油通路50をポンプロータ径小軸部41の途中まで形成することで、ポンプロータ径小軸部41に十分な量のオイルを供給でき、しかも、ギヤ型オイルポンプの側には、必要最小限のオイルしか漏れないようにすることができる。 In this example, too, the reason why the pump rotor diameter small shaft oil supply passage 50 is formed only halfway through the pump rotor diameter small shaft portion 41 is that a large amount of high pressure oil flows to the low pressure gear type oil pump side, This is for suppressing deterioration of the specification performance of the type oil pump. By forming the pump rotor small diameter shaft oil supply passage 50 to the middle of the pump rotor small diameter shaft portion 41, a sufficient amount of oil can be supplied to the pump rotor small diameter shaft portion 41, and moreover, it is possible to supply a sufficient amount of oil to the gear type oil pump side. can be made to leak as little oil as possible.
 第1の実施形態においては、給油通路46は駆動軸16に沿って、しかも駆動軸に開口する形態で形成されているが、第2の実施形態においては、給油通路46は駆動軸16に沿って開口しないで、閉塞された通路として形成されている。尚、図15~図16で、第1の実施形態と同じ参照番号は、同じ部品を表しているので、その説明は省略する。 In the first embodiment, the oil supply passage 46 is formed along the drive shaft 16 and is open to the drive shaft. It is formed as a closed passageway without opening at all. 15 and 16, the same reference numerals as those in the first embodiment represent the same parts, so description thereof will be omitted.
 図15~図16において、オイル貯溜部45とベーン型オイルポンプの吐出部34は、ポンプボデイ11の内部に形成された内部給油通路51によって直接的に接続されている。内部給油通路51は、第1の実施形態のように駆動軸16の側に開口しておらず、オイル貯溜部45と吐出部34に開口する以外は、閉塞された通路構成とされ、ポンプボデイ11に、オイル貯溜部45と吐出部34を接続するようにドリルによって穿孔されている。 15 and 16, the oil storage portion 45 and the discharge portion 34 of the vane type oil pump are directly connected by an internal oil supply passage 51 formed inside the pump body 11 . The internal oil supply passage 51 does not open to the drive shaft 16 side as in the first embodiment, and has a closed passage structure except for opening to the oil reservoir 45 and the discharge portion 34 . , a hole is drilled so as to connect the oil storage portion 45 and the discharge portion 34 .
 そして、図15~図16に示しているように、ベーン型オイルポンプの回転によって加圧された高圧のオイルの一部は、吐出部34から内部給油通路51を介して、オイル貯溜部45に貯留される。そして、第1の実施形態と同様に、オイル貯溜部45の圧力は、ギヤ型オイルポンプの吐出圧よりも高いので、オイル貯溜部45のオイルは、自身の圧力によってインナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に充填される。したがって、本実施形態においても、第1の実施形態と同様の作用、効果を奏することができる。 As shown in FIGS. 15 and 16, part of the high-pressure oil pressurized by the rotation of the vane oil pump flows from the discharge part 34 through the internal oil supply passage 51 to the oil reservoir 45. stored. As in the first embodiment, the pressure in the oil reservoir 45 is higher than the discharge pressure of the gear-type oil pump. and fills a minute gap formed in the pump rotor diameter small shaft portion 41 . Therefore, also in this embodiment, it is possible to obtain the same functions and effects as in the first embodiment.
 ここで、内部給油通路51は、ベーン型オイルポンプの吐出部34からオイル貯溜部45に直接的にオイルを供給する形態であるが、インナーロータ側軸受貫通孔42に対して径方向からオイルを供給することも可能である。 Here, the internal oil supply passage 51 is configured to directly supply oil from the discharge portion 34 of the vane type oil pump to the oil storage portion 45 , but the oil is supplied radially to the inner rotor side bearing through hole 42 . It is also possible to supply
 例えば図17において、ポンプロータ径小軸部41に沿って形成された径小軸部側給油通路52が形成されている。この径小軸部側給油通路52は、内部給油通路51に接続されており、内部給油通路51からのオイルは、オイル貯溜部45、及び径小軸部側給油通路52に供給される。これによって、インナーロータ側軸受貫通孔42とポンプロータ径小軸部41に形成された微小隙間に、更に効率よくオイルを供給することができる。 For example, in FIG. 17, a small diameter shaft portion side oil supply passage 52 is formed along the small diameter shaft portion 41 of the pump rotor. The small diameter shaft portion side oil supply passage 52 is connected to the internal oil supply passage 51 , and the oil from the internal oil supply passage 51 is supplied to the oil reservoir 45 and the small diameter shaft portion side oil supply passage 52 . As a result, the oil can be more efficiently supplied to the minute gap formed between the inner rotor side bearing through-hole 42 and the small diameter shaft portion 41 of the pump rotor.
 この例においても径小軸部側給油通路52は、オイル貯溜部45からポンプロータ径小軸部41の途中まで延びるようにポンプボデイ11に形成されており、好ましくは、ポンプロータ径小軸部41の軸長(L1)の半分程度の長さまで延びている。これによって、ポンプロータ径小軸部41とインナーロータ側軸受貫通孔42に、十分な量のオイルを供給することができる。 In this example as well, the small diameter shaft portion side oil supply passage 52 is formed in the pump body 11 so as to extend from the oil storage portion 45 to the middle of the small diameter shaft portion 41 of the pump rotor. It extends up to about half the axial length (L1) of . As a result, a sufficient amount of oil can be supplied to the pump rotor diameter small shaft portion 41 and the inner rotor side bearing through hole 42 .
 この例においても、径小軸部側給油通路52をポンプロータ径小軸部41の途中までしか形成しないのは、多量の高圧のオイルが、低圧のギヤ型オイルポンプの側に流れて、ギヤ型オイルポンプの仕様性能が悪化するのを抑制するためである。径小軸部側給油通路52をポンプロータ径小軸部41の途中まで形成することで、ポンプロータ径小軸部41に十分な量のオイルを供給でき、しかも、ギヤ型オイルポンプの側には、必要最小限のオイルしか漏れないようにすることができる。 In this example as well, the reason why the small diameter shaft portion side oil supply passage 52 is formed only halfway through the pump rotor small diameter shaft portion 41 is that a large amount of high pressure oil flows to the low pressure gear type oil pump side, This is for suppressing deterioration of the specification performance of the type oil pump. By forming the small diameter shaft portion side oil supply passage 52 to the middle of the small diameter pump rotor shaft portion 41, a sufficient amount of oil can be supplied to the small diameter pump rotor shaft portion 41, and moreover, the oil supply passage 52 can be supplied to the gear type oil pump side. can be made to leak as little oil as possible.
 以上述べたように、本発明においては、ポンプボデイに、ポンプロータ収容部と駆動軸用軸受部との間に位置し、駆動軸用軸受部の直径よりも大きく、しかもポンプロータ収容部の直径よりも小さいポンプロータ収容部と連続したポンプロータ用軸受部が形成され、また、ポンプロータには、ポンプロータ径小軸部が形成され、ポンプロータ径小軸部がポンプロータ用軸受部に軸受けされていると共に、高圧オイルポンプからポンプロータ用軸受部にオイルを供給する給油通路をポンプボデイに形成されている、ことを特徴としている。 As described above, in the present invention, the diameter of the pump body is located between the pump rotor accommodating portion and the drive shaft bearing portion, and is larger than the diameter of the drive shaft bearing portion and more than the diameter of the pump rotor accommodating portion. The pump rotor housing portion is formed with a pump rotor bearing portion that is continuous with the small pump rotor housing portion. The pump rotor is formed with a pump rotor diameter small shaft portion, and the pump rotor diameter small shaft portion is supported by the pump rotor bearing portion. In addition, an oil supply passage for supplying oil from the high-pressure oil pump to the pump rotor bearing is formed in the pump body.
 これによれば、高圧オイルポンプと低圧オイルポンプを組み合わせたタンデム型オイルポンプにおいて、高圧オイルポンプからポンプロータ用軸受部に、給油通路を介して高圧のオイルを供給することができ、ポンプロータに形成したポンプロータ径小軸部に焼き付き現象、或いは摩耗現象が発生するのを抑制することができる。 According to this, in a tandem-type oil pump that combines a high-pressure oil pump and a low-pressure oil pump, high-pressure oil can be supplied from the high-pressure oil pump to the pump rotor bearing portion through the oil supply passage. It is possible to suppress the occurrence of a seizure phenomenon or an abrasion phenomenon in the formed small diameter shaft portion of the pump rotor.
 尚、本発明は上記したいくつかの実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成について、他の構成の追加、削除、置換をすることも可能である。 It should be noted that the present invention is not limited to the several embodiments described above, and includes various modifications. The above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Moreover, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Other configurations can be added, deleted, or replaced with respect to the configuration of each embodiment.

Claims (20)

  1.  第1ポンプロータ収容部、及び第2ポンプロータ収容部と、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部を区画する区画壁と、前記区画壁に形成された、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
     前記駆動軸用軸受部に回転可能に軸支され、外部の動力源によって回転駆動される駆動軸と、
     前記第1ポンプロータ収容部に配置され、前記駆動軸によって回転駆動される第1ポンプロータを有し、前記第1ポンプロータが前記駆動軸によって回転駆動されることにより、第1吸入部から導かれたオイルを加圧して第1吐出部から吐出する第1オイルポンプと、
     前記第2ポンプロータ収容部に配置され、前記駆動軸によって回転駆動される第2ポンプロータを有し、前記第2ポンプロータが前記駆動軸によって回転駆動されることにより、第2吸入部から導かれたオイルを、前記第1オイルポンプの前記第1吐出部から吐出される圧力よりも低い圧力で第2吐出部から吐出する第2オイルポンプと、を備え、
     更に、前記ポンプボデイには、前記第2ポンプロータ収容部と前記駆動軸用軸受部との間に設けられ、前記駆動軸用軸受部の直径よりも大きく、しかも前記第2ポンプロータ収容部の直径よりも小さい、前記第2ポンプロータ収容部と連続して形成された第2ポンプロータ用軸受部が形成され、
     前記第2ポンプロータには、前記第2ポンプロータと一体の第2ポンプロータ径小軸部が形成され、前記第2ポンプロータ径小軸部が前記第2ポンプロータ用軸受部に収容されて軸受けされていると共に、
     前記第1オイルポンプからのオイルを前記第2ポンプロータ用軸受部に供給する給油通路が前記ポンプボデイに形成されている
    ことを特徴とするタンデム型オイルポンプ。
    a first pump rotor accommodating portion and a second pump rotor accommodating portion; a partition wall partitioning the first pump rotor accommodating portion and the second pump rotor accommodating portion; and the first pump formed in the partition wall. a pump body having a drive shaft bearing portion connecting between the rotor housing portion and the second pump rotor housing portion;
    a drive shaft rotatably supported by the drive shaft bearing and driven to rotate by an external power source;
    It has a first pump rotor that is arranged in the first pump rotor accommodating portion and is rotationally driven by the drive shaft. a first oil pump that pressurizes the spilled oil and discharges it from the first discharge part;
    It has a second pump rotor that is arranged in the second pump rotor accommodating portion and is rotationally driven by the drive shaft. a second oil pump that discharges the discharged oil from a second discharge part at a pressure lower than the pressure discharged from the first discharge part of the first oil pump;
    Further, the pump body is provided between the second pump rotor accommodating portion and the drive shaft bearing portion, and has a diameter larger than that of the drive shaft bearing portion and a diameter of the second pump rotor accommodating portion. a second pump rotor bearing portion formed continuously with the second pump rotor housing portion smaller than the
    The second pump rotor is formed with a second pump rotor diameter small shaft portion integrated with the second pump rotor, and the second pump rotor diameter small shaft portion is housed in the second pump rotor bearing portion. Along with being bearing
    A tandem type oil pump, wherein an oil supply passage for supplying oil from the first oil pump to the second pump rotor bearing is formed in the pump body.
  2.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記第2ポンプロータ径小軸部の前記第1オイルポンプの側の端部と前記第2ポンプロータ用軸受部の前記第1オイルポンプの側の端部との間には、前記第1オイルポンプの吐出部からのオイルを溜めるオイル貯溜部が設けられており、前記給油通路は前記オイル貯溜部と接続されて前記第1オイルポンプからオイルを供給する
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    Between the end of the second pump rotor diameter small shaft portion on the first oil pump side and the end of the second pump rotor bearing portion on the first oil pump side, the first oil A tandem type oil pump, wherein an oil reservoir is provided to store oil from a discharge part of the pump, and the oil supply passage is connected to the oil reservoir to supply oil from the first oil pump.
  3.  請求項2に記載のタンデム型オイルポンプにおいて、
     前記給油通路は、前記駆動軸用軸受部に沿って形成されており、前記給油通路の前記第2ポンプロータ用軸受部の側の端部は、前記駆動軸の軸線方向で前記オイル貯溜部に接続されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 2,
    The oil supply passage is formed along the drive shaft bearing portion, and an end portion of the oil supply passage on the side of the second pump rotor bearing portion extends in the axial direction of the drive shaft toward the oil reservoir. A tandem type oil pump characterized by being connected.
  4.  請求項3に記載のタンデム型オイルポンプにおいて、
     前記第2ポンプロータ用軸受部には、前記第2ポンプロータ径小軸部に沿った径小軸部側給油通路が形成されており、前記径小軸部側給油通路は前記オイル貯溜部に流体的に接続されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 3,
    A small diameter shaft portion side oil supply passage is formed in the second pump rotor bearing portion along the small diameter shaft portion of the second pump rotor, and the small diameter shaft portion side oil supply passage extends into the oil reservoir. A tandem oil pump characterized by being fluidly connected.
  5.  請求項4に記載のタンデム型オイルポンプにおいて、
     前記径小軸部側給油通路は、前記第2ポンプロータ径小軸部の軸方向で前記第2ポンプロータ径小軸部の途中まで形成されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 4,
    The tandem type oil pump, wherein the small diameter shaft portion side oil supply passage is formed halfway through the second small diameter shaft portion of the second pump rotor in the axial direction of the small diameter shaft portion of the second pump rotor.
  6.  請求項2に記載のタンデム型オイルポンプにおいて、
     前記給油通路は、前記ポンプボデイに形成され前記第1オイルポンプの前記吐出部と前記オイル貯溜部とを直接接続する内部給油通路である
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 2,
    The tandem oil pump, wherein the oil supply passage is an internal oil supply passage formed in the pump body and directly connecting the discharge portion of the first oil pump and the oil reservoir.
  7.  請求項6に記載のタンデム型オイルポンプにおいて、
     前記第2ポンプロータ用軸受部には、前記第2ポンプロータ径小軸部に沿った径小軸部側給油通路が形成されており、前記径小軸部側給油通路は前記オイル貯溜部に流体的に接続されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 6,
    A small diameter shaft portion side oil supply passage is formed in the second pump rotor bearing portion along the small diameter shaft portion of the second pump rotor, and the small diameter shaft portion side oil supply passage extends into the oil reservoir. A tandem oil pump characterized by being fluidly connected.
  8.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記第1ポンプロータ収容部を閉塞する第1ポンプカバーと、前記第1ポンプカバーと反対側に設けられ、前記第2ポンプロータ収容部を閉塞する第2ポンプカバーとが取り付けられ、
     前記第1ポンプロータは、前記第1ポンプカバーと、前記区画壁との間に配置されると共に、前記駆動軸に固定され、
     前記第2ポンプロータは、前記第2ポンプカバーと、前記区画壁との間に配置されると共に、前記駆動軸と軸方向に相対移動が可能なように前記駆動軸に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    Attached to the pump body are a first pump cover that closes the first pump rotor accommodating portion, and a second pump cover that is provided on the opposite side of the first pump cover and closes the second pump rotor accommodating portion. be
    The first pump rotor is arranged between the first pump cover and the partition wall and fixed to the drive shaft,
    The second pump rotor is arranged between the second pump cover and the partition wall, and fitted to the drive shaft so as to be axially movable relative to the drive shaft. A tandem oil pump characterized by
  9.  請求項8に記載のタンデム型オイルポンプにおいて、
     前記第1ポンプカバーと前記第2ポンプカバーは、前記駆動軸の軸線に対して直交する面に沿って前記ポンプボデイに取り付けられており、
     前記第1ポンプカバーには、前記駆動軸に対して径方向の位置に開口する前記第1吐出部と繋がる第1吐出孔が設けられ、
     前記第2ポンプカバーが設けられた前記ポンプボデイの側には、前記駆動軸に対して径方向の位置に開口する前記第1吸入部と繋がる第1吸入孔が設けられている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 8,
    The first pump cover and the second pump cover are attached to the pump body along a plane perpendicular to the axis of the drive shaft,
    The first pump cover is provided with a first discharge hole that opens at a radial position with respect to the drive shaft and is connected to the first discharge portion,
    A first suction hole, which opens at a radial position with respect to the drive shaft and communicates with the first suction portion, is provided on the side of the pump body on which the second pump cover is provided. Tandem type oil pump.
  10.  請求項9に記載のタンデム型オイルポンプにおいて、
     前記ポンプボデイには、前記駆動軸に対して径方向の位置において、前記ポンプボデイを挟むようにして設けられ、内燃機関に取り付けられる一対の取付部と、
     前記取付部の少なくとも1つの前記取付部には、前記第2オイルポンプの前記第2吸入部と繋がる第2吸入孔が設けられている
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 9,
    a pair of mounting portions which are provided on the pump body so as to sandwich the pump body at positions in a radial direction with respect to the drive shaft and which are mounted on an internal combustion engine;
    A tandem-type oil pump, wherein at least one of the mounting portions is provided with a second suction hole communicating with the second suction portion of the second oil pump.
  11.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記第1オイルポンプは、
     前記第1ポンプロータ収容部に揺動可能に配置され、内部にロータ収容部が設けられた調整リングと、前記調整リングの内部に収容されポンプロータと、前記ポンプロータの外周面に収容され、前記調整リングと前記ポンプロータの間でオイルが導かれる複数の作動油室を形成する複数のベーンと、を有し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が増加する前記作動油室に開口する前記第1吸入部からオイルを吸入し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が減少する前記作動油室に開口する前記第1吐出部からオイルを吐出するベーン型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The first oil pump is
    an adjustment ring arranged swingably in the first pump rotor accommodation portion and having a rotor accommodation portion provided therein; a pump rotor accommodated inside the adjustment ring; an outer peripheral surface of the pump rotor; a plurality of vanes forming a plurality of hydraulic fluid chambers through which oil is guided between the adjustment ring and the pump rotor, wherein the volumes of the plurality of hydraulic fluid chambers increase as the drive shaft rotates. Oil is sucked from the first suction portion that opens to the hydraulic oil chamber that is open to the hydraulic oil chamber, and the first discharge opens to the hydraulic oil chamber that decreases in volume among the plurality of hydraulic oil chambers as the drive shaft rotates. A tandem-type oil pump characterized by being a vane-type oil pump that discharges oil from a part.
  12.  請求項10に記載のタンデム型オイルポンプにおいて、
     前記第2オイルポンプは、
     前記第2ポンプロータ収容部に収容される前記第2ポンプロータとして、内周側に複数の内歯を含んだアウターロータと、前記アウターロータの内部に収容されると共に、前記駆動軸の駆動軸線の方向に移動可能に設けられ、外周側に複数の前記内歯と噛み合う複数の外歯とを有するギヤ型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 10,
    The second oil pump is
    As the second pump rotor accommodated in the second pump rotor accommodation portion, an outer rotor including a plurality of internal teeth on the inner peripheral side, and an outer rotor accommodated inside the outer rotor and along the drive axis of the drive shaft A tandem-type oil pump characterized by being a gear-type oil pump provided movably in the direction of and having a plurality of external teeth meshing with the plurality of internal teeth on an outer peripheral side.
  13.  請求項1に記載のタンデム型オイルポンプにおいて、
     前記第1オイルポンプは、少なくとも内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプであり、
     前記第2オイルポンプは、内燃機関のオイルパンからオイルを回収するスカベンジングオイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem type oil pump according to claim 1,
    The first oil pump is a variable capacity oil feed pump that supplies pressurized oil to at least a main oil gallery of the internal combustion engine,
    A tandem oil pump, wherein the second oil pump is a scavenging oil pump that collects oil from an oil pan of an internal combustion engine.
  14.  第1ポンプロータ収容部、及び第2ポンプロータ収容部と、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部を区画する区画壁と、前記区画壁に形成された、前記第1ポンプロータ収容部と前記第2ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
     前記第1ポンプロータ収容部、及び前記第2ポンプロータ収容部に配置され、前記駆動軸用軸受部に回転可能に軸支された外部の動力源によって回転駆動される駆動軸と、
     前記駆動軸によって駆動される、前記第1ポンプロータ収容部に配置された第1オイルポンプと、前記第2ポンプロータ収容部に配置された第2オイルポンプと、を備え、
     前記第1オイルポンプは、
     前記第1ポンプロータ収容部に揺動可能に配置され、内部にロータ収容部が設けられた調整リングと、前記調整リングの内部に収容され前記駆動軸に固定されたポンプロータと、前記ポンプロータの外周面に収容され、前記調整リングと前記ポンプロータの間でオイルが導かれる複数の作動油室を形成する複数のベーンと、を有し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が増加する前記作動油室に開口する第1吸入部からオイルを吸入し、前記駆動軸の回転に伴って複数の前記作動油室のうち容積が減少する前記作動油室に開口する第1吐出部からオイルを吐出するベーン型オイルポンプであり、
     前記第2オイルポンプは、
     前記第2ポンプロータ収容部に収容される第2ポンプロータとして、内周側に複数の内歯を含んだアウターロータと、前記アウターロータの内部に収容されると共に、前記駆動軸の駆動軸線の方向に移動可能に設けられ、外周側に複数の前記内歯と噛み合う複数の外歯とを有するギヤ型オイルポンプであり、
     更に、前記ポンプボデイには、前記第2ポンプロータ収容部と前記駆動軸用軸受部との間に設けられ、前記駆動軸用軸受部の直径よりも大きく、しかも前記第2ポンプロータ収容部の直径よりも小さい、前記第2ポンプロータ収容部と連続して形成された第2ポンプロータ用軸受部が形成され、
     前記第2ポンプロータには、前記第2ポンプロータと一体の第2ポンプロータ径小軸部が形成され、前記第2ポンプロータ径小軸部が前記第2ポンプロータ用軸受部に収容されて軸受けされていると共に、
     前記第1オイルポンプからのオイルを前記第2ポンプロータ用軸受部に供給する給油通路が前記ポンプボデイに形成されている
    ことを特徴とするタンデム型オイルポンプ。
    a first pump rotor accommodating portion and a second pump rotor accommodating portion; a partition wall partitioning the first pump rotor accommodating portion and the second pump rotor accommodating portion; and the first pump formed in the partition wall. a pump body having a drive shaft bearing portion connecting between the rotor housing portion and the second pump rotor housing portion;
    a drive shaft arranged in the first pump rotor housing portion and the second pump rotor housing portion and rotatably driven by an external power source and rotatably supported by the drive shaft bearing portion;
    a first oil pump arranged in the first pump rotor accommodating portion and a second oil pump arranged in the second pump rotor accommodating portion, which are driven by the drive shaft;
    The first oil pump is
    an adjusting ring arranged swingably in the first pump rotor accommodating portion and provided with a rotor accommodating portion therein; a pump rotor accommodated inside the adjusting ring and fixed to the drive shaft; and the pump rotor. and a plurality of vanes that are accommodated on the outer peripheral surface of the pump rotor and form a plurality of hydraulic oil chambers through which oil is guided between the adjustment ring and the pump rotor. Oil is sucked from a first suction portion that opens to the hydraulic oil chamber whose volume increases among the oil chambers, and is drawn into the hydraulic oil chamber whose volume decreases with the rotation of the drive shaft. A vane-type oil pump that discharges oil from an open first discharge part,
    The second oil pump is
    As the second pump rotor accommodated in the second pump rotor accommodating portion, an outer rotor including a plurality of internal teeth on the inner peripheral side, and an outer rotor accommodated inside the outer rotor along the drive axis of the drive shaft. A gear-type oil pump provided movably in a direction and having a plurality of external teeth that mesh with the plurality of internal teeth on the outer peripheral side,
    Further, the pump body is provided between the second pump rotor accommodating portion and the drive shaft bearing portion, and has a diameter larger than that of the drive shaft bearing portion and a diameter of the second pump rotor accommodating portion. a second pump rotor bearing portion formed continuously with the second pump rotor housing portion smaller than the
    The second pump rotor is formed with a second pump rotor diameter small shaft portion integrated with the second pump rotor, and the second pump rotor diameter small shaft portion is housed in the second pump rotor bearing portion. Along with being bearing
    A tandem type oil pump, wherein an oil supply passage for supplying oil from the first oil pump to the second pump rotor bearing is formed in the pump body.
  15.  高圧ポンプロータ収容部、及び低圧ポンプロータ収容部と、前記高圧ポンプロータ収容部と前記低圧ポンプロータ収容部を区画する区画壁と、前記区画壁に形成された、前記高圧ポンプロータ収容部と前記低圧ポンプロータ収容部との間を接続する駆動軸用軸受部と、を有したポンプボデイと、
     前記高圧ポンプロータ収容部、及び前記低圧ポンプロータ収容部に配置され、前記駆動軸用軸受部に回転可能に軸支された外部の動力源によって回転駆動される駆動軸と、
     前記高圧ポンプロータ収容部に配置され、前記駆動軸によって回転駆動される高圧ポンプロータを有し、前記高圧ポンプロータの回転によって第1の吐出圧でポンプ作用を行う高圧オイルポンプと、
     前記低圧ポンプロータ収容部に配置され、前記駆動軸によって回転駆動される低圧ポンプロータを有し、前記低圧ポンプロータの回転によって前記第1の吐出圧より低い第2の吐出圧でポンプ作用を行う低圧オイルポンプと、を備え、
     更に、前記ポンプボデイには、前記低圧ポンプロータ収容部と前記駆動軸用軸受部との間に設けられ、前記駆動軸用軸受部の直径よりも大きく、しかも前記低圧ポンプロータ収容部の直径よりも小さい前記低圧ポンプロータ収容部と連続して形成された低圧ポンプロータ用軸受部が形成され、
     前記低圧ポンプロータには、前記低圧ポンプロータと一体の低圧ポンプロータ径小軸部が形成され、前記低圧ポンプロータ径小軸部が前記低圧ポンプロータ用軸受部に収容されて軸受けされていると共に、前記高圧オイルポンプから前記低圧ポンプロータ用軸受部にオイルを供給する給油通路が前記ポンプボデイに形成されている
    ことを特徴とするタンデム型オイルポンプ。
    a high-pressure pump rotor housing portion and a low-pressure pump rotor housing portion; a partition wall that separates the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion; a pump body having a drive shaft bearing portion connected to the low-pressure pump rotor accommodating portion;
    a drive shaft disposed in the high-pressure pump rotor housing portion and the low-pressure pump rotor housing portion and rotatably driven by an external power source rotatably supported by the drive shaft bearing portion;
    a high-pressure oil pump having a high-pressure pump rotor disposed in the high-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and performing a pumping action at a first discharge pressure by rotation of the high-pressure pump rotor;
    It has a low-pressure pump rotor disposed in the low-pressure pump rotor accommodating portion and rotationally driven by the drive shaft, and the rotation of the low-pressure pump rotor performs a pumping action at a second discharge pressure lower than the first discharge pressure. a low pressure oil pump;
    Further, the pump body is provided between the low-pressure pump rotor accommodating portion and the drive shaft bearing portion, and has a diameter larger than that of the drive shaft bearing portion and larger than the diameter of the low-pressure pump rotor accommodating portion. a low-pressure pump rotor bearing portion formed continuously with the small low-pressure pump rotor accommodating portion;
    The low-pressure pump rotor is formed with a low-pressure pump rotor diameter small shaft portion integrated with the low-pressure pump rotor, and the low-pressure pump rotor diameter small shaft portion is housed and supported in the low-pressure pump rotor bearing portion. 1. A tandem type oil pump, wherein an oil supply passage for supplying oil from said high pressure oil pump to said low pressure pump rotor bearing is formed in said pump body.
  16.  請求項15に記載のタンデム型オイルポンプにおいて、
     前記高圧ポンプロータは、前記駆動軸に対して圧入固定されて前記駆動軸によって回転駆動され、
     前記低圧ポンプロータは、前記駆動軸に対して駆動軸線方向に移動可能に取り付けられて前記駆動軸によって回転駆動される
    ことを特徴とするタンデム型オイルポンプ。
    In the tandem oil pump according to claim 15,
    The high-pressure pump rotor is press-fitted and fixed to the drive shaft and rotationally driven by the drive shaft,
    A tandem-type oil pump, wherein the low-pressure pump rotor is movably attached to the drive shaft in the drive axis direction and is rotationally driven by the drive shaft.
  17.  請求項16に記載のタンデム型オイルポンプにおいて、
     前記高圧オイルポンプは、内燃機関の可変動弁機構と前記内燃機関のメインオイルギャラリに加圧されたオイルを供給する可変容量型のオイルフィードポンプであり、
     前記低圧オイルポンプは、前記内燃機関のオイルパンからオイルを回収するスカベンジングオイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 16,
    The high-pressure oil pump is a variable displacement oil feed pump that supplies pressurized oil to a variable valve mechanism of an internal combustion engine and a main oil gallery of the internal combustion engine,
    A tandem-type oil pump, wherein the low-pressure oil pump is a scavenging oil pump that collects oil from an oil pan of the internal combustion engine.
  18.  請求項17に記載のタンデム型オイルポンプにおいて、
     可変容量型の前記オイルフィードポンプは、ベーン型オイルポンプであり、
     前記スカベンジングオイルポンプは、ギヤ型オイルポンプである
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 17,
    the variable displacement oil feed pump is a vane oil pump,
    A tandem-type oil pump, wherein the scavenging oil pump is a gear-type oil pump.
  19.  請求項16に記載のタンデム型オイルポンプにおいて、
     前記駆動軸は、円柱部と2面幅部を備えており、
     前記円柱部には、前記高圧ポンプロータが圧入固定されており、
     前記2面幅部には、前記2面幅部に対して相似形状の嵌合孔を備えた前記低圧ポンプロータが、前記駆動軸に対して軸方向で移動可能に嵌合されている
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 16,
    The drive shaft has a cylindrical portion and a width across flats portion,
    The high-pressure pump rotor is press-fitted and fixed to the cylindrical portion,
    The low-pressure pump rotor having a fitting hole having a shape similar to that of the width across flat portion is fitted in the width across flat portion so as to be axially movable with respect to the drive shaft. Characteristic tandem type oil pump.
  20.  請求項19に記載のタンデム型オイルポンプにおいて、
     前記2面幅部の軸方向の長さは、前記低圧ポンプロータの軸方向の長さより長く形成されている
    ことを特徴とするタンデム型オイルポンプ。
    A tandem oil pump according to claim 19,
    A tandem-type oil pump, wherein the length of the width across flats in the axial direction is longer than the length of the low-pressure pump rotor in the axial direction.
PCT/JP2022/002863 2021-02-16 2022-01-26 Tandem-type oil pump WO2022176544A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280015375.8A CN116867969A (en) 2021-02-16 2022-01-26 Tandem oil pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022477 2021-02-16
JP2021022477A JP7408589B2 (en) 2021-02-16 2021-02-16 tandem oil pump

Publications (1)

Publication Number Publication Date
WO2022176544A1 true WO2022176544A1 (en) 2022-08-25

Family

ID=82931606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002863 WO2022176544A1 (en) 2021-02-16 2022-01-26 Tandem-type oil pump

Country Status (3)

Country Link
JP (1) JP7408589B2 (en)
CN (1) CN116867969A (en)
WO (1) WO2022176544A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117780635A (en) * 2022-09-20 2024-03-29 安徽威灵汽车部件有限公司 Oil pump device and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153281A (en) * 1988-12-06 1990-06-12 Yamada Seisakusho:Kk Trochoid type oil pump
JPH04321783A (en) * 1991-04-19 1992-11-11 Shimadzu Corp Tandem pump
JP2005113894A (en) * 2003-09-18 2005-04-28 Hitachi Ltd Tandem pump
JP2006170147A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Oil pump
JP2016000989A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Automatic transmission oil pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4321783B2 (en) 2008-06-27 2009-08-26 豊丸産業株式会社 Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153281A (en) * 1988-12-06 1990-06-12 Yamada Seisakusho:Kk Trochoid type oil pump
JPH04321783A (en) * 1991-04-19 1992-11-11 Shimadzu Corp Tandem pump
JP2005113894A (en) * 2003-09-18 2005-04-28 Hitachi Ltd Tandem pump
JP2006170147A (en) * 2004-12-17 2006-06-29 Hitachi Ltd Oil pump
JP2016000989A (en) * 2014-06-11 2016-01-07 現代自動車株式会社Hyundaimotor Company Automatic transmission oil pump

Also Published As

Publication number Publication date
JP2022124698A (en) 2022-08-26
JP7408589B2 (en) 2024-01-05
CN116867969A (en) 2023-10-10

Similar Documents

Publication Publication Date Title
US8535030B2 (en) Gerotor hydraulic pump with fluid actuated vanes
JP5690238B2 (en) Variable displacement oil pump
CN111133197B (en) Scroll compressor having a scroll compressor with a suction chamber
WO2022176544A1 (en) Tandem-type oil pump
JP4431160B2 (en) Fluid machinery
JPH07145785A (en) Trochoid type refrigerant compressor
JP5707337B2 (en) Lubricating oil supply structure for vane compressor
US8690557B2 (en) Variable displacement vane pump
JP2016121608A (en) Variable capacity pump
US9157436B2 (en) Variable oil pump with improved partitioning section
WO2020110180A1 (en) Internal gear pump
WO2022176545A1 (en) Tandem type oil pump
CN114746653B (en) Compressor
EP1857679A1 (en) Vane pump
JP5475701B2 (en) Vane pump
JP5863436B2 (en) Fluid machinery
US10890180B2 (en) Internal gear pump
JP2013072362A (en) Compressor
CN111630276B (en) Pump device
JP2012163040A (en) Vane pump
CN114761691B (en) Compressor
JP2006241993A (en) Scroll compressor
JP2004190509A (en) Gas compressor
US20210033091A1 (en) Oil pump
JP2010185297A (en) Internal gear pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015375.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755868

Country of ref document: EP

Kind code of ref document: A1