WO2016181428A1 - Vane pump for compressible fluid - Google Patents

Vane pump for compressible fluid Download PDF

Info

Publication number
WO2016181428A1
WO2016181428A1 PCT/JP2015/002453 JP2015002453W WO2016181428A1 WO 2016181428 A1 WO2016181428 A1 WO 2016181428A1 JP 2015002453 W JP2015002453 W JP 2015002453W WO 2016181428 A1 WO2016181428 A1 WO 2016181428A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotor
groove
volume change
lubricating oil
Prior art date
Application number
PCT/JP2015/002453
Other languages
French (fr)
Japanese (ja)
Inventor
司 駒井
Original Assignee
日産ライトトラック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産ライトトラック株式会社 filed Critical 日産ライトトラック株式会社
Priority to PCT/JP2015/002453 priority Critical patent/WO2016181428A1/en
Publication of WO2016181428A1 publication Critical patent/WO2016181428A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member

Definitions

  • the present invention relates to a vane pump for compressible fluid.
  • vane pump as a type of a compressible fluid pump that sucks and exhausts a compressive fluid such as a vacuum pump and a compressor (see, for example, Patent Documents 1 and 2).
  • This type of vane pump is used, for example, as a vacuum pump for an automobile brake booster.
  • the vane pump disclosed in Patent Documents 1 and 2 includes a housing, a rotor rotatably disposed in the housing, and one or more vanes that are held in a radial direction by vane grooves formed in the rotor. Prepare.
  • the rotor defines a pump chamber with the housing, and the vane is urged radially outward by a centrifugal force generated by the rotation of the rotor to partition the pump chamber into a plurality of volume change chambers.
  • the volume of each volume change chamber increases and decreases as the rotor rotates, thereby performing intake and exhaust of the compressive fluid.
  • lubricating oil is supplied into the housing.
  • lubricating oil is supplied to the volume change chamber by the negative pressure when the volume is expanded among the plurality of volume change chambers, and lubricates the sliding portions of the housing, the rotor, and the vanes.
  • a technology for providing a relief valve is known in order to release the pressure in the volume change chamber in a state where lubricating oil is supplied during reverse rotation of the rotor.
  • the vane pump In addition to the complicated structure, there are problems such as an increase in the body size of the vane pump and an increase in product cost. Therefore, the present invention prevents or suppresses an excessive load applied to the vane due to the lubricating oil accumulated in the volume change chamber during the reverse rotation of the rotor while avoiding an increase in the body size and an increase in manufacturing cost.
  • An object is to provide a compressible fluid vane pump.
  • a compressible fluid vane pump includes a housing, and a rotor that is rotatably disposed in the housing and defines a pump chamber between the housing and the housing.
  • a vane pump for compressive fluid comprising: one or more vanes that are held by a vane groove formed in the rotor so as to be capable of moving back and forth in a radial direction and that partition the pump chamber into a plurality of volume change chambers, Is provided with lubricating oil releasing means for releasing the lubricating oil accumulated in one volume change chamber to the other space in the housing when the rotor rotates in the reverse direction.
  • the lubricating oil release means releases the lubricating oil accumulated in one volume change chamber to the other space in the housing when the rotor rotates backward. It is possible to prevent or suppress an excessive load from being applied to the vane by the lubricating oil (incompressible fluid) accumulated in one volume change chamber during the reverse rotation of the rotor. Since the lubricating oil escape means is provided in the vane itself, it is possible to prevent or suppress an excessive load from being applied to the vane while avoiding an increase in the body size of the vane pump and an increase in manufacturing cost. it can.
  • the lubricating oil release means is a pressure receiving surface formed at a corner portion on the tip end side of the vane and facing the reverse rotation side of the rotor.
  • the pressure receiving surface is configured to push down the vane itself toward the bottom side of the vane groove by receiving the pressure of the lubricating oil accumulated in the one volume change chamber when the rotor rotates in reverse. It is preferable to be formed.
  • the pressure receiving surface provided at the corner on the tip side of the vane receives the pressure of the lubricating oil accumulated in one volume change chamber when the rotor rotates in reverse, and the bottom of the vane groove Since the vane itself is pushed down to the side, the lubricating oil accumulated in the one volume change chamber can be released from the tip end side of the vane to the other volume change chamber. Therefore, it is suitable for providing the lubricating oil escape means with a simple configuration on the vane itself.
  • the pressure receiving surface is an inclined plane formed at a corner portion on the tip end side of the vane and facing the reverse rotation side of the rotor. And when the rotor rotates in reverse, by receiving the pressure of the lubricating oil accumulated in the one volume changing chamber, the lubricating oil accumulated in the one volume changing chamber is adjacent to the other in the forward rotation direction. It is preferable that the volume change chamber has an inclination angle and a pressure receiving area that allows the volume change chamber to escape from the tip side of the vane.
  • the oil collected in one volume change chamber when the rotor rotates reversely by the inclined flat surface provided at the corner on the tip side of the vane as the pressure receiving surface is used for the tip of the vane. Since it is possible to escape from the side to the other volume change chamber, it is more suitable for providing the lubricating oil escape means with a simple configuration in the vane itself.
  • the lubricating oil release means has a groove formed at a corner portion on the bottom surface side of the vane and facing the reverse rotation side of the rotor.
  • the groove is formed to connect the one volume change chamber and the bottom space of the vane groove when the rotor rotates reversely, and when the rotor rotates forward, the one volume change chamber is formed.
  • the bottom space of the vane groove are preferably formed so as not to communicate with each other.
  • the vane itself is suitable for providing lubricating oil escape means with a simple configuration. Further, when the rotor rotates in the forward direction, the one volume change chamber and the bottom space of the vane groove are not communicated with each other, so that the original performance and function of the pump can be exhibited during the forward rotation of the rotor.
  • the lubricating oil release means is a first portion formed at a corner portion on the bottom surface side of the vane and facing the reverse rotation side of the rotor.
  • a groove, and a second groove formed in a side surface of the vane and in a portion facing the upper edge of the rotor on the side of another volume change chamber adjacent in the forward rotation direction, and the rotor
  • the first groove communicates the one volume change chamber and the bottom space of the vane groove
  • the second groove changes the bottom space of the vane groove and the other volume change.
  • the first groove does not communicate the one volume change chamber and the bottom space of the vane groove
  • the second groove The bottom space of the vane groove and the other volume It is preferably formed so as not to communicate with the reduction chamber.
  • the vane itself is suitable for providing the lubricating oil escape means with a simple configuration.
  • the first groove does not connect the one volume change chamber and the bottom space of the vane groove
  • the second groove includes the bottom space of the vane groove and the other volume change chamber. Is not communicated, so that the performance and function of the original pump can be exhibited during normal rotation of the rotor.
  • FIG. 1 is an enlarged view of the vane shown in FIG. 1, in which the vane is inclined forward with respect to the vane groove due to reverse rotation of the rotor (the forward rotation direction is “front”; hereinafter the same). Show.
  • FIG. 2 is a diagram ((a) to (c)) for explaining an operation during normal rotation of the vane pump shown in FIG. It is a figure explaining the operation
  • the figure (a) shows the state at the time of reverse rotation corresponding to FIG. 2,
  • (b) is the important point in (a).
  • Part (A part) is shown enlarged.
  • 2nd embodiment of the vane pump for compressive fluids which concerns on 1 aspect of this invention The figure has shown the figure corresponding to FIG. It is a perspective view ((a), (b)) of the vane of a second embodiment shown in FIG.
  • FIGS. 8A and 8B are diagrams (a) and (b) for explaining the operation and effects of the vane pump shown in FIG. 7, where (a) shows a state during normal rotation and (b) shows a state during reverse rotation. Yes.
  • the vane pump of this embodiment is used as a vacuum pump for an automobile brake booster.
  • the vane pump 1 includes a housing 10 and a substantially cylindrical rotor 20 that is rotatably disposed in the housing 10.
  • the housing 10 is fixed to an engine case (not shown) with bolts or the like.
  • a plurality of vane grooves 21 are formed in the rotor 20, and a vane 30 is accommodated in each vane groove 21.
  • the housing 10 has a substantially bottomed cylindrical housing body 11 and a housing cover 12 that covers an opening at one end of the housing body 11 in the axial direction.
  • the housing body 11 is formed with a cylindrical accommodating portion 11 d that accommodates the vane 30 and the rotor 20.
  • a bearing portion (not shown) is provided on the bottom surface 11c of the housing portion 11d.
  • An intake port 13 communicating with an intake passage (not shown) is integrally formed on the outer peripheral surface 11 b of the housing body 11.
  • the intake passage is connected to a vacuum booster or a vacuum tank.
  • an exhaust port 14 is provided at a position opposite to the intake port 13 on the inner peripheral surface 10n of the accommodating portion 11d.
  • the housing cover 12 has a circular bearing hole 12e.
  • the bearing hole 12 e is formed at a position coaxial with the bearing portion formed on the bottom surface 11 c of the housing body 11.
  • the bearing hole 12e and the axis of the bearing portion are eccentric by a predetermined amount with respect to the inner peripheral surface of the housing portion 11d.
  • the rotor 20 is rotatably accommodated in the accommodating portion 11d of the housing 10. Both end surfaces in the axial direction of the rotor 20 are arranged with a slight gap between the inner side surface of the housing cover 12 and the bottom surface 11c of the housing body 11.
  • the rotor 20 has a shaft hole 25 at the center.
  • the shaft hole 25 is rotatably fitted to a rotation shaft (not shown).
  • the rotation shaft has a distal end side supported by the bearing portion of the bottom surface 11c of the housing portion 11d and a proximal end side that passes through the bearing hole 12e in the axial direction and is connected to a drive source.
  • the end of the rotating shaft opposite to the housing 10 side is connected to a crankshaft or the like of an automobile via a coupling, and the crankshaft becomes a driving source for rotationally driving the rotor 20.
  • the vane pump 1 has a lubricating oil supply passage (not shown). As the rotor 20 rotates, lubricating oil is supplied into the housing 10 from the engine side via the lubricating oil supply passage. The supplied lubricating oil lubricates the inner peripheral surface 10 n of the housing 10, the rotor 20, and each vane 30 as the rotor 20 rotates. With the above configuration, as illustrated in FIG. 2, the rotation axis of the rotor 20 is arranged eccentrically with respect to the inner peripheral surface 10 n of the housing 10. The outer peripheral surface 23 of the rotor 20 is slightly in contact with the inner peripheral surface 10 n of the housing 10 at the inscribed portion D.
  • the inscribed portion D is set at a position near the front side in the forward rotation direction from the position where the exhaust port 14 is formed.
  • a pump chamber 2 is defined between the inner peripheral surface 10n of the housing 10 and the outer peripheral surface 23 of the rotor 20 in which the opposing distance in the radial direction of the rotor 20 changes with respect to the phase in the circumferential direction. .
  • the rotor 20 is formed with a plurality of vane grooves 21.
  • the plurality of vane grooves 21 are provided radially from the center of the rotor 20 and penetrate along the radial direction.
  • the vane grooves 21 are equally distributed in three places in the circumferential direction.
  • Each vane groove 21 accommodates a vane 30 having a substantially rectangular parallelepiped shape. The movement of the vane 30 accommodated in each vane groove 21 in the axial direction of the rotor 20 is restricted by the inner side surface of the housing cover 12 and the bottom surface 11c of the accommodating portion 11d.
  • Each vane 30 is accommodated along the inner surface of the vane groove 21 so as to advance and retreat in the radial direction of the rotor 20.
  • each vane 30 in the radial direction is slightly shorter than the depth of the vane groove 21.
  • Each vane 30 is accommodated in the vane groove 21 at the position of the inscribed portion D.
  • the tip portion 31 of the vane 30 is urged radially outward by the centrifugal force due to the rotation of the rotor 20, and protrudes from the outer peripheral surface 23 of the rotor 20.
  • 10 is in sliding contact with or close to the inner peripheral surface 10n.
  • each vane 30 partitions the pump chamber 2 into a plurality of volume change chambers 3A, 3B, 3C.
  • the two vanes 30 adjacent in the circumferential direction can be considered as a set of two, and the space defined by the two adjacent vanes 30, the outer peripheral surface 23 of the rotor 20 and the inner peripheral surface 10n of the housing 10 is a volume. Construct a change chamber.
  • the volume change chambers 3A, 3B, and 3C are configured by three vanes 30 at three locations.
  • the volume change chamber 3 ⁇ / b> C at the location where the exhaust port 14 is open is substantially reduced. It is further divided into two in the circumferential direction.
  • the three volume change chambers 3A, 3B, and 3C increase and decrease in internal volume due to the rotation of the vane 30 accompanying the rotation of the rotor 20, thereby intake and exhaust of compressive fluid (air in this example).
  • the vane pump 1 has a lubricating oil release means for releasing the lubricating oil L accumulated in the volume change chamber 3C at the location where the exhaust port 14 is opened to the other space when the rotor 20 rotates in the reverse direction.
  • the vane pump 1 can automatically adjust the pressure at the tip portion of the vane 30 by the lubricating oil release means.
  • the lubricating oil escape means as shown in a perspective view in FIG. 3, a portion (a reverse rotation) that is a corner portion on the tip portion 31 side of the vane 30 and faces the reverse rotation side of the rotor 20.
  • the pressure receiving surface 32 is provided on the side facing the volume change chamber 3C.
  • the pressure receiving surface 32 is constituted by an inclined plane formed over the entire length of the corner portion on the tip end portion 31 side of the vane 30.
  • the pressure receiving surface 32 receives the pressure of the lubricating oil L accumulated in the volume change chamber 3 ⁇ / b> C when the rotor 20 rotates in the reverse direction.
  • the inclination angle ⁇ and the pressure receiving area by which the vane 30 is pushed down and the lubricating oil L accumulated in the volume change chamber 3C is allowed to escape from the tip 31 side of the vane 30 to the volume change chamber 3A adjacent in the forward rotation direction. have. More specifically, as shown in the figure, when the rotor 20 rotates in the reverse direction, the posture of the vane 30 depends on the radial outward force due to centrifugal force and the sliding resistance of the tip portion 31 of the vane 30. 21 in a forward leaning posture. At this time, the inclination angle ⁇ of the pressure receiving surface 32 is determined from the balance condition in the forward / backward direction of the vane 30.
  • the downward force acting on the pressure receiving surface 32 at the tip of the vane 30 is F0
  • the downward force acting on the side surface portion 38 on the volume change chamber 3C side is F0 ′
  • the upward force acting on the bottom surface 33 of the vane 30 is F1
  • the upward force acting on the side surface 39 on the side of the volume change chamber 3A adjacent in the forward rotation direction is F1 ′
  • the pressure receiving surface 32 is set to have an inclination angle ⁇ of about 45 degrees, and the pressure receiving area thereof exceeds the center of the thickness in the thickness direction of the vane 30 and is the upper end in the forward rotation direction.
  • the inclined surface is set to be formed from the position where
  • each volume change chamber 3A, 3B, 3C has a volume change chamber 3A, 3B in a state where both ends in the circumferential direction are partitioned by adjacent vanes 30, and one in the circumferential direction.
  • the volume change chambers 3 ⁇ / b> A, 3 ⁇ / b> B, and 3 ⁇ / b> C change in volume with the rotation of the rotor 20, while sequentially changing to the volume change chamber 3 ⁇ / b> C in which the other end is partitioned by the inscribed portion D and the other end is partitioned by the vane 30. Increase or decrease.
  • Each of the volume change chambers 3A, 3B, 3C is an exhaust chamber when the volume change chamber 3C at the position of the inscribed portion D communicates with the exhaust port 14 as the rotor 20 rotates forward (forward rotation direction FW). After that, after passing through the inscribed portion D, the volume gradually expands, and the inside of the volume change chamber 3C becomes negative pressure ((a) in the figure).
  • the image of a negative pressure is shown with the code
  • FIG. 5 the image of a negative pressure is shown with the code
  • the volume change chamber 3C moves to the volume change chamber 3A.
  • the volume change chamber 3A when the volume further increases and reaches the maximum volume, it functions as an intake chamber where the intake port 13 is open, and sucks in a compressible fluid (usually gas) (see FIG. b) to (c)).
  • a compressible fluid usually gas
  • FIG. 5 an image of the sucked air is indicated by G.
  • the volume change chamber 3A moves to the volume change chamber 3B.
  • the volume change chamber 3B functions as an exhaust chamber from a position communicating with the exhaust port 14 after passing through a position where it does not communicate with either the intake port 13 or the exhaust port 14, and air G is discharged from the exhaust port 14 to the outside of the housing 10. Is done.
  • the volume in the volume change chamber 3B gradually decreases, and when the preceding vane 30 passes through the inscribed portion D, the volume change chamber 3C moves to the volume change chamber 3C.
  • each volume change chamber 3A, 3B, 3C increases / decreases as the rotor 20 rotates, and the intake and exhaust of the compressive fluid can be performed.
  • Lubricating oil is supplied into the housing 10 as the rotor 20 rotates.
  • the lubricating oil L is supplied to the volume change chamber 3A due to negative pressure when the volume is expanded. 10
  • the sliding part of the rotor 20 and each vane 30 can be lubricated.
  • a vacuum pump that rotates via a crankshaft or the like may reversely rotate due to a back-up caused by a stall at the time of climbing a vehicle.
  • the vane pump 1 of the present embodiment is provided with a pressure receiving surface 32 that is inclined toward the reverse rotation side of the tip 31 of the vane 30 as a lubricating oil escape means when the pump rotates reversely as shown in FIG. As a result, the pressure in the volume change chamber 3C can be released.
  • the vane 30 of the present embodiment has the tip of the vane 30 generated by reverse rotation (reverse rotation direction RW). The pressure by the lubricating oil L at the portion 31 is received by the pressure receiving surface 32 of the tip portion 31.
  • the pressure receiving surface 32 When the pressure receiving surface 32 receives pressure from the lubricating oil L, the direction of action of the pressure by the lubricating oil L is converted to the bottom 22 side of the vane groove 21 by setting the inclination angle ⁇ and the pressure receiving area of the pressure receiving surface 32. Therefore, the vane 30 can push back the vane 30 itself to the bottom 22 side of the vane groove 21. Thereby, a clearance (clearance) is generated in the sliding contact portion T of the tip portion 31 of the vane 30, and the lubricating oil L can be released from the clearance generated in the sliding contact portion T to the volume change chamber 3 ⁇ / b> A adjacent in the forward rotation direction. it can.
  • the vane pump 1 the pressure at the time of reverse rotation by the lubricating oil L in the volume change chamber 3 ⁇ / b> C is released, and local high pressure is prevented or suppressed from acting on the vane 30.
  • the symbol P represents an image of the pressure at which the lubricating oil L that has lost its escape is compressed
  • the symbol F is directed toward the bottom 22 of the vane groove 21 by the pressure P received by the pressure receiving surface 32.
  • An image of the pressing force acting on the tip of the vane 30 is shown, and a symbol Lf shows an image of the lubricating oil L escaping from the clearance generated at the sliding contact portion T to the adjacent volume change chamber 3A in the forward rotation direction.
  • the lubricating oil release means has a simple structure in which only the pressure receiving surface 32 that is inclined on the reverse rotation side of the tip 31 of the vane 30 is provided. Therefore, only the shape change of the vane 30 is performed. Thus, the load on the vane 30 can be reduced. Therefore, for example, a structure in which a relief valve is provided does not require additional parts and can be configured simply. Therefore, it is inexpensive, lightweight and compact, and an increase in the body size and an increase in manufacturing cost can be avoided. Further, when the rotor 20 is rotated forward, the performance and function of the original pump can be exhibited as in the conventional case.
  • the compressible fluid vane pump according to the present invention is not limited to the first embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the pressure receiving surface 32 is provided in the corner portion on the tip portion 31 side of the vane 30 and facing the reverse rotation side of the rotor 20.
  • the configuration of the lubricating oil release means is not limited to this.
  • a second embodiment of a compressible fluid vane pump according to an aspect of the present invention will be described.
  • a groove for releasing pressure during reverse rotation is provided in the vane itself as a lubricating oil release means.
  • the second embodiment differs from the first embodiment only in that a groove for releasing the pressure during reverse rotation is provided in place of the pressure receiving surface 32. Therefore, the differences will be described below, and descriptions of other configurations and the like will be omitted.
  • the lubricating oil escape means is formed at a corner portion on the bottom surface 33 side of the vane 30 and facing the reverse rotation side of the rotor 20 (the lower portion 37 of the side surface portion 38).
  • the number of first grooves 34 and second grooves 36 is not particularly limited.
  • the first groove 34 and the second groove 36 may be formed in one place, respectively, and as shown in FIG. You may provide in a part (in the example of the figure, two places).
  • the groove shapes of the first groove 34 and the second groove 36 are not particularly limited.
  • the first groove 34 is formed by cutting away the corner on the bottom surface side of the vane obliquely.
  • the second groove 36 is formed by cutting the side surface of the vane into a concave arc shape.
  • FIGS. 8 and 9 perspective views as viewed from the reverse rotation side of the rotor 20 are shown in FIGS. 8A and 9B, and perspective views as viewed from the forward rotation side of the rotor 20 are shown in FIGS. .
  • FIG. 8A and 9B perspective views as viewed from the forward rotation side of the rotor 20 are shown in FIGS. .
  • the first groove 34 has the volume change chamber 3 ⁇ / b> C and the vane when the vane 30 is inclined forward relative to the vane groove 21 due to the reverse rotation of the rotor 20. It is formed so as to communicate with the bottom space S of the groove 21. Further, the second groove 36 allows the bottom space S of the vane groove 21 and the volume change chamber 3 ⁇ / b> A to communicate with each other when the vane 30 is inclined forward with respect to the vane groove 21 due to the reverse rotation of the rotor 20. Formed.
  • the posture of the vane 30 is such that the radial outward force due to centrifugal force and the sliding of the tip 31 of the vane 30 with respect to the forward rotation direction FW are as shown in FIG. Due to the dynamic resistance, the vane groove 21 rotates in a backward inclined posture. Therefore, in the vane 30 of the second embodiment, when the vane pump 1 rotates in the forward direction, the first groove 34 and the second groove 36 do not communicate with the adjacent volume change chamber. Therefore, the defined state of the volume change chambers 3A, 3B, 3C is not affected. Therefore, at the time of forward rotation, the original performance and function of the pump can be exhibited as in the conventional case.
  • the vane 30 is in a backward inclined posture with respect to the reverse rotation direction RW.
  • the vane 30 is inclined forward with respect to the vane groove 21 based on the positive rotation direction.
  • the vane 30 is a corner portion on the bottom surface 33 side of the vane 30 and is a portion A facing the reverse rotation side of the rotor 20 and a side surface portion 39 facing the forward rotation side of the vane 30 and the volume change chamber 3A side.
  • the portion B facing the upper edge portion 24 of the rotor 20 contacts the inner surface of the vane groove 21.
  • the lubricating oil escape means when the vane 30 is tilted forward (reference to the normal rotation direction) with respect to the vane groove 21, the A part and the B part are brought into contact with each other.
  • a first groove 34 and a second groove 36 are formed at the positions.
  • the vane 30 can be prevented from being damaged by reducing the stress at the A part, the B part, and the sliding contact part T where the vane 30 comes into contact with the vane groove 21 during the reverse rotation of the rotor 20. it can.
  • the lubricating oil release means can be configured also by providing only the first groove 34. That is, the lubricating oil L accumulated in the volume change chamber 3C can be released to the bottom space S of the vane groove 21 by the first groove 34 provided at the corner on the bottom surface side of the vane 30. It is possible to prevent or suppress an excessive load from being applied to the battery.
  • the first embodiment and the second embodiment can be appropriately combined as a lubricating oil escape means.
  • both the inclined pressure receiving surface 32, the first groove 34, and the second groove 36 may be provided to constitute the lubricating oil escape means.

Abstract

The present invention prevents or inhibits, in reverse rotation of a rotor, application of excessive load to a vane etc. due to a lubricating oil (non-compressible fluid) stored in a volume changeable chamber, while avoiding increase in main body size and increase in production cost. This vane pump (1) for compressible fluid is provided with: a housing (10); a rotor (20) that is arranged in the housing (10) so as to be rotatable and that defines a pump chamber (2) between the rotor (20) and the housing (10); and one or more vanes (30) that are held in vane grooves (21) formed in the rotor (20) so as to be movable radially forward and backward and that partition the pump chamber (2) into a plurality of volume changeable chambers (3). The vanes (30) are each provided with a lubricant releasing means (32) that releases, in reverse rotation of the rotor (20), a lubricating oil (L) stored in one volume changeable chamber (3C) into another volume changeable chamber (3A) that is adjacent to the volume changeable chamber (3C) in the forward rotating direction.

Description

圧縮性流体用ベーンポンプVane pump for compressible fluid
 本発明は、圧縮性流体用ベーンポンプに関する。 The present invention relates to a vane pump for compressible fluid.
 バキュームポンプやコンプレッサ等、圧縮性流体を吸気して排気する圧縮性流体用ポンプの一種としてベーンポンプがある(例えば、特許文献1ないし2参照)。この種のベーンポンプは、例えば、自動車用ブレーキブースタのバキュームポンプとして使用されている。
 特許文献1ないし2記載のベーンポンプは、ハウジングと、ハウジング内に回転可能に配設されるロータと、ロータに形成されたベーン溝により径方向に進退可能に保持される1つ以上のベーンとを備える。ロータは、ハウジングとの間にポンプ室を画成し、ベーンは、ロータの回転による遠心力で径方向外側に付勢されてポンプ室を複数の容積変化室に仕切っている。
 特許文献1ないし2記載のベーンポンプは、ロータの回転につれて各容積変化室の容積が増減し、これにより圧縮性流体の吸気および排気を行う。また、ロータの回転につれてハウジング内に潤滑油が供給される。ベーンポンプが正転時には、複数の容積変化室のうち、容積拡大時の負圧により潤滑油が容積変化室に供給され、ハウジング、ロータおよびベーンの摺動部を潤滑する。
There is a vane pump as a type of a compressible fluid pump that sucks and exhausts a compressive fluid such as a vacuum pump and a compressor (see, for example, Patent Documents 1 and 2). This type of vane pump is used, for example, as a vacuum pump for an automobile brake booster.
The vane pump disclosed in Patent Documents 1 and 2 includes a housing, a rotor rotatably disposed in the housing, and one or more vanes that are held in a radial direction by vane grooves formed in the rotor. Prepare. The rotor defines a pump chamber with the housing, and the vane is urged radially outward by a centrifugal force generated by the rotation of the rotor to partition the pump chamber into a plurality of volume change chambers.
In the vane pumps described in Patent Documents 1 and 2, the volume of each volume change chamber increases and decreases as the rotor rotates, thereby performing intake and exhaust of the compressive fluid. Further, as the rotor rotates, lubricating oil is supplied into the housing. During the forward rotation of the vane pump, lubricating oil is supplied to the volume change chamber by the negative pressure when the volume is expanded among the plurality of volume change chambers, and lubricates the sliding portions of the housing, the rotor, and the vanes.
特開2006-90261号公報JP 2006-90261 A 特開2010-209812号公報JP 2010-209812 A
 ところで、この種のベーンポンプが、自動車用ブレーキブースタのバキュームポンプとして使用される場合に、ロータの駆動軸は、自動車のクランクシャフト等を介して回転駆動される。そのため、車両の不意の後退(例えば4、5速ギヤで登坂後に停止時の失速など)により、ロータに逆回転が生じる場合がある。ロータに逆回転が生じると、潤滑油が供給された状態の容積変化室では、非圧縮性流体である潤滑油が圧縮されることがある。そのため、ロータの不意の逆回転時に、ベーンに対して局部的に高い圧力が作用することがあり、ベーンに生じる応力が過大であればベーン破損に至る可能性がある。 By the way, when this type of vane pump is used as a vacuum pump of an automobile brake booster, the drive shaft of the rotor is rotationally driven via an automobile crankshaft or the like. For this reason, the reverse rotation of the rotor may occur due to an unexpected reverse of the vehicle (for example, stall at the time of stopping after climbing up with a fourth or fifth gear). When reverse rotation occurs in the rotor, the lubricating oil that is an incompressible fluid may be compressed in the volume change chamber in a state where the lubricating oil is supplied. Therefore, a high pressure may act locally on the vane during the unexpected reverse rotation of the rotor. If the stress generated in the vane is excessive, vane breakage may occur.
 このような問題に対し、ロータの逆回転時に、潤滑油が供給された状態の容積変化室の圧力を逃すために、リリーフ弁を設ける技術が知られるものの、リリーフ弁を追加すれば、ベーンポンプの構造が複雑になる上、ベーンポンプの本体サイズが大きくなったり、製品コストが高くなったりする等の問題がある。
 そこで、本発明は、ロータの逆回転時に、容積変化室内に溜まっていた潤滑油により、ベーンに過大な負荷が加えられることを、本体サイズの増大や製造コストの上昇を回避しつつ防止または抑制し得る圧縮性流体用ベーンポンプを提供することを課題とする。
To solve this problem, a technology for providing a relief valve is known in order to release the pressure in the volume change chamber in a state where lubricating oil is supplied during reverse rotation of the rotor. However, if a relief valve is added, the vane pump In addition to the complicated structure, there are problems such as an increase in the body size of the vane pump and an increase in product cost.
Therefore, the present invention prevents or suppresses an excessive load applied to the vane due to the lubricating oil accumulated in the volume change chamber during the reverse rotation of the rotor while avoiding an increase in the body size and an increase in manufacturing cost. An object is to provide a compressible fluid vane pump.
 上記課題を解決するために、本発明の一態様に係る圧縮性流体用ベーンポンプは、ハウジングと、前記ハウジング内に回転可能に配設されて前記ハウジングとの間にポンプ室を画成するロータと、前記ロータに形成されたベーン溝により径方向に進退可能に保持されるとともに前記ポンプ室を複数の容積変化室に仕切る1つ以上のベーンとを備える圧縮性流体用ベーンポンプであって、前記ベーンは、前記ロータが逆回転したときに、一の容積変化室内に溜まっていた潤滑油を前記ハウジング内の他の空間に逃がす潤滑油逃がし手段を備えることを特徴とする。 In order to solve the above problems, a compressible fluid vane pump according to an aspect of the present invention includes a housing, and a rotor that is rotatably disposed in the housing and defines a pump chamber between the housing and the housing. A vane pump for compressive fluid, comprising: one or more vanes that are held by a vane groove formed in the rotor so as to be capable of moving back and forth in a radial direction and that partition the pump chamber into a plurality of volume change chambers, Is provided with lubricating oil releasing means for releasing the lubricating oil accumulated in one volume change chamber to the other space in the housing when the rotor rotates in the reverse direction.
 本発明の一態様に係る圧縮性流体用ベーンポンプによれば、潤滑油逃がし手段は、ロータの逆回転時に、一の容積変化室内に溜まっていた潤滑油をハウジング内の他の空間に逃がすので、ロータの逆回転時に、一の容積変化室内に溜まっていた潤滑油(非圧縮性流体)により、ベーンに過大な負荷が加えられることを防止または抑制することができる。
 そして、この潤滑油逃がし手段は、ベーン自体に設けられているので、ベーンポンプの本体サイズの増大や製造コストの上昇を回避しつつ、ベーンに過大な負荷が加えられることを防止または抑制することができる。
According to the compressible fluid vane pump according to one aspect of the present invention, the lubricating oil release means releases the lubricating oil accumulated in one volume change chamber to the other space in the housing when the rotor rotates backward. It is possible to prevent or suppress an excessive load from being applied to the vane by the lubricating oil (incompressible fluid) accumulated in one volume change chamber during the reverse rotation of the rotor.
Since the lubricating oil escape means is provided in the vane itself, it is possible to prevent or suppress an excessive load from being applied to the vane while avoiding an increase in the body size of the vane pump and an increase in manufacturing cost. it can.
 ここで、本発明の一態様に係る圧縮性流体用ベーンポンプにおいて、前記潤滑油逃がし手段は、前記ベーンの先端側の角部であって前記ロータの逆回転側を向く部分に形成された受圧面を有し、前記受圧面は、前記ロータが逆回転したときに、前記一の容積変化室内に溜まっていた潤滑油の圧力を受けることにより、前記ベーン溝の底部側に前記ベーン自身を押し下げるように形成されていることは好ましい。
 このような構成であれば、ベーンの先端側の角部に設けた受圧面により、ロータが逆回転したときに、一の容積変化室内に溜まっていた潤滑油の圧力を受け、ベーン溝の底部側にベーン自身を押し下げるので、一の容積変化室内に溜まっていた潤滑油をベーンの先端側から他の容積変化室に逃がすことができる。そのため、ベーン自体に簡単な構成で潤滑油逃がし手段を設ける上で好適である。
Here, in the vane pump for compressive fluid according to one aspect of the present invention, the lubricating oil release means is a pressure receiving surface formed at a corner portion on the tip end side of the vane and facing the reverse rotation side of the rotor. The pressure receiving surface is configured to push down the vane itself toward the bottom side of the vane groove by receiving the pressure of the lubricating oil accumulated in the one volume change chamber when the rotor rotates in reverse. It is preferable to be formed.
With such a configuration, the pressure receiving surface provided at the corner on the tip side of the vane receives the pressure of the lubricating oil accumulated in one volume change chamber when the rotor rotates in reverse, and the bottom of the vane groove Since the vane itself is pushed down to the side, the lubricating oil accumulated in the one volume change chamber can be released from the tip end side of the vane to the other volume change chamber. Therefore, it is suitable for providing the lubricating oil escape means with a simple configuration on the vane itself.
 また、本発明の一態様に係る圧縮性流体用ベーンポンプにおいて、前記受圧面は、前記ベーンの先端部側の角部であって前記ロータの逆回転側を向く部分に形成された傾斜した平面であり、前記ロータが逆回転したときに、前記一の容積変化室内に溜まっていた潤滑油の圧力を受けることにより、前記一の容積変化室内に溜まっていた潤滑油を正転方向で隣接する他の容積変化室に前記ベーンの先端側から逃がせる傾斜角度と受圧面積とを有することは好ましい。
 このような構成であれば、受圧面として、ベーンの先端側の角部に設けた傾斜した平面により、ロータが逆回転したときに、一の容積変化室内に溜まっていた潤滑油をベーンの先端側から他の容積変化室に逃がすことができるので、ベーン自体に簡単な構成で潤滑油逃がし手段を設ける上でより好適である。
Also, in the compressible fluid vane pump according to one aspect of the present invention, the pressure receiving surface is an inclined plane formed at a corner portion on the tip end side of the vane and facing the reverse rotation side of the rotor. And when the rotor rotates in reverse, by receiving the pressure of the lubricating oil accumulated in the one volume changing chamber, the lubricating oil accumulated in the one volume changing chamber is adjacent to the other in the forward rotation direction. It is preferable that the volume change chamber has an inclination angle and a pressure receiving area that allows the volume change chamber to escape from the tip side of the vane.
With such a configuration, the oil collected in one volume change chamber when the rotor rotates reversely by the inclined flat surface provided at the corner on the tip side of the vane as the pressure receiving surface is used for the tip of the vane. Since it is possible to escape from the side to the other volume change chamber, it is more suitable for providing the lubricating oil escape means with a simple configuration in the vane itself.
 また、本発明の一態様に係る圧縮性流体用ベーンポンプにおいて、前記潤滑油逃がし手段は、前記ベーンの底面側の角部であって前記ロータの逆回転側を向く部分に形成された溝を有し、前記溝は、前記ロータが逆回転したときには、前記一の容積変化室と前記ベーン溝の底部空間とを連通させるように形成され、前記ロータが正回転したときには、前記一の容積変化室と前記ベーン溝の底部空間とを連通させないように形成されていることは好ましい。
 このような構成であれば、ベーンの底面側の角部に設けた溝により、ロータが逆回転したときには、一の容積変化室内に溜まっていた潤滑油をベーン溝の底部空間に逃がすことができるので、ベーン自体に簡単な構成で潤滑油逃がし手段を設ける上で好適である。また、ロータが正回転したときには、一の容積変化室とベーン溝の底部空間とを連通させないので、ロータの正回転時には、本来のポンプの性能・機能を発揮することができる。
Further, in the compressible fluid vane pump according to one aspect of the present invention, the lubricating oil release means has a groove formed at a corner portion on the bottom surface side of the vane and facing the reverse rotation side of the rotor. The groove is formed to connect the one volume change chamber and the bottom space of the vane groove when the rotor rotates reversely, and when the rotor rotates forward, the one volume change chamber is formed. And the bottom space of the vane groove are preferably formed so as not to communicate with each other.
With such a configuration, when the rotor rotates reversely by the groove provided on the corner portion on the bottom surface side of the vane, the lubricating oil accumulated in one volume change chamber can be released to the bottom space of the vane groove. Therefore, the vane itself is suitable for providing lubricating oil escape means with a simple configuration. Further, when the rotor rotates in the forward direction, the one volume change chamber and the bottom space of the vane groove are not communicated with each other, so that the original performance and function of the pump can be exhibited during the forward rotation of the rotor.
 また、本発明の一態様に係る圧縮性流体用ベーンポンプにおいて、前記潤滑油逃がし手段は、前記ベーンの底面側の角部であって前記ロータの逆回転側を向く部分に形成された第一の溝と、前記ベーンの側面部であって正転方向で隣接する他の容積変化室側で前記ロータの上縁部に対向する部分に形成された第二の溝とを有し、前記ロータが逆回転したときには、前記第一の溝は、前記一の容積変化室と前記ベーン溝の底部空間とを連通させるとともに、前記第二の溝は、前記ベーン溝の底部空間と前記他の容積変化室とを連通させるように形成され、前記ロータが正回転したときには、前記第一の溝は、前記一の容積変化室と前記ベーン溝の底部空間とを連通させないとともに、前記第二の溝は、前記ベーン溝の底部空間と前記他の容積変化室とを連通させないように形成されていることは好ましい。 Also, in the compressible fluid vane pump according to one aspect of the present invention, the lubricating oil release means is a first portion formed at a corner portion on the bottom surface side of the vane and facing the reverse rotation side of the rotor. A groove, and a second groove formed in a side surface of the vane and in a portion facing the upper edge of the rotor on the side of another volume change chamber adjacent in the forward rotation direction, and the rotor When reversely rotated, the first groove communicates the one volume change chamber and the bottom space of the vane groove, and the second groove changes the bottom space of the vane groove and the other volume change. When the rotor rotates forward, the first groove does not communicate the one volume change chamber and the bottom space of the vane groove, and the second groove The bottom space of the vane groove and the other volume It is preferably formed so as not to communicate with the reduction chamber.
 このような構成であれば、ロータが逆回転したときに、ベーンの底面側の角部に設けた第一の溝により、一の容積変化室内に溜まっていた潤滑油をベーン溝の底部空間に逃がすことができる。さらに、ベーンの側面部に設けた第二の溝により、ベーン溝の底部空間に溜まった潤滑油を他の容積変化室に逃がすことができる。よって、ベーン自体に簡単な構成で潤滑油逃がし手段を設ける上で好適である。
 また、ロータが正回転したときには、第一の溝は、一の容積変化室とベーン溝の底部空間とを連通させないとともに、第二の溝は、ベーン溝の底部空間と他の容積変化室とを連通させないので、ロータの正回転時には、本来のポンプの性能・機能を発揮することができる。
With such a configuration, when the rotor rotates in the reverse direction, the lubricating oil accumulated in the one volume change chamber is transferred to the bottom space of the vane groove by the first groove provided in the corner portion on the bottom surface side of the vane. I can escape. Further, the second groove provided on the side surface of the vane allows the lubricating oil accumulated in the bottom space of the vane groove to escape to another volume change chamber. Therefore, the vane itself is suitable for providing the lubricating oil escape means with a simple configuration.
Further, when the rotor rotates forward, the first groove does not connect the one volume change chamber and the bottom space of the vane groove, and the second groove includes the bottom space of the vane groove and the other volume change chamber. Is not communicated, so that the performance and function of the original pump can be exhibited during normal rotation of the rotor.
 上述のように、本発明によれば、ロータの逆回転時に、容積変化室内に溜まっていた潤滑油(非圧縮性流体)により、ベーン等に過大な負荷が加えられることを、本体サイズの増大や製造コストの上昇を回避しつつ防止または抑制することができる。 As described above, according to the present invention, when the rotor rotates backward, an excessive load is applied to the vane or the like due to the lubricating oil (incompressible fluid) accumulated in the volume change chamber. And an increase in manufacturing cost can be avoided or suppressed.
本発明の一態様に係る圧縮性流体用ベーンポンプの第一実施形態の説明図であり、同図は、ベーンポンプの要部を分解斜視図にて示している。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing of 1st embodiment of the vane pump for compressive fluids which concerns on 1 aspect of this invention, The figure has shown the principal part of the vane pump with the exploded perspective view. 図1に示すベーンポンプの横断面を模式的に示す図である。It is a figure which shows typically the cross section of the vane pump shown in FIG. 図1に示すベーンポンプが備えるベーンの斜視図である。It is a perspective view of the vane with which the vane pump shown in FIG. 1 is provided. 図1に示すベーンの拡大図であり、同図では、ロータの逆回転でベーンがベーン溝に対して前傾姿勢(正回転方向を「前」とする、以下、同様)になった状態を示している。FIG. 2 is an enlarged view of the vane shown in FIG. 1, in which the vane is inclined forward with respect to the vane groove due to reverse rotation of the rotor (the forward rotation direction is “front”; hereinafter the same). Show. 図1に示すベーンポンプの正回転時の動作を説明する図((a)~(c))である。FIG. 2 is a diagram ((a) to (c)) for explaining an operation during normal rotation of the vane pump shown in FIG. 図1に示すベーンポンプの逆回転時の動作および作用効果を説明する図であり、同図(a)は図2に対応する逆回転時の状態を示し、(b)は(a)での要部(A部)を拡大して示している。It is a figure explaining the operation | movement and effect at the time of reverse rotation of the vane pump shown in FIG. 1, The figure (a) shows the state at the time of reverse rotation corresponding to FIG. 2, (b) is the important point in (a). Part (A part) is shown enlarged. 本発明の一態様に係る圧縮性流体用ベーンポンプの第二実施形態の説明図であり、同図は、図2に対応する図を示している。It is explanatory drawing of 2nd embodiment of the vane pump for compressive fluids which concerns on 1 aspect of this invention, The figure has shown the figure corresponding to FIG. 図7に示す第二実施形態のベーンの斜視図((a)、(b))であり、(a)は、ロータの逆回転側から見た図を示し、(b)は、ロータの正回転側から見た図を示している。It is a perspective view ((a), (b)) of the vane of a second embodiment shown in FIG. 7, (a) shows the figure seen from the reverse rotation side of the rotor, and (b) shows the front of the rotor. The figure seen from the rotation side is shown. 図7に示す第二実施形態のベーンの斜視図((a)、(b))であり、(a)は、ロータの逆回転側から見た図を示し、(b)は、ロータの正回転側から見た図を示している。It is a perspective view ((a), (b)) of the vane of a second embodiment shown in FIG. 7, (a) shows the figure seen from the reverse rotation side of the rotor, and (b) shows the front of the rotor. The figure seen from the rotation side is shown. 図7に示すベーンポンプの動作および作用効果を説明する図((a)、(b))であり、(a)は正回転時の状態を示し、(b)は逆回転時の状態を示している。FIGS. 8A and 8B are diagrams (a) and (b) for explaining the operation and effects of the vane pump shown in FIG. 7, where (a) shows a state during normal rotation and (b) shows a state during reverse rotation. Yes.
 以下、本発明の一実施形態について図面を適宜参照しつつ説明する。なお、各図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なる。特に、ロータの正回転時および逆回転時のベーンの姿勢やベーンとベーン溝との関係は、誇張して図示されていることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings as appropriate. Each drawing is schematic. Therefore, the relationship between the thickness and the planar dimensions, the ratio, etc. are different from the actual ones. In particular, it should be noted that the posture of the vane during forward rotation and reverse rotation of the rotor and the relationship between the vane and the vane groove are exaggerated, and the mutual relationship between the drawings And parts with different ratios. Further, the following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material, shape, structure, and arrangement of components. Etc. are not specified in the following embodiments.
 本実施形態のベーンポンプは、自動車用ブレーキブースタのバキュームポンプとして使用されるものである。図1に斜視図を示すように、このベーンポンプ1は、ハウジング10と、ハウジング10内に回転可能に配設される略円筒状のロータ20とを備える。ハウジング10は、不図示のエンジンケースにボルト等によって固定される。ロータ20には、複数のベーン溝21が形成され、各ベーン溝21にはベーン30がそれぞれ収容されている。 The vane pump of this embodiment is used as a vacuum pump for an automobile brake booster. As shown in the perspective view of FIG. 1, the vane pump 1 includes a housing 10 and a substantially cylindrical rotor 20 that is rotatably disposed in the housing 10. The housing 10 is fixed to an engine case (not shown) with bolts or the like. A plurality of vane grooves 21 are formed in the rotor 20, and a vane 30 is accommodated in each vane groove 21.
 詳しくは、ハウジング10は、略有底筒状のハウジング本体11と、ハウジング本体11の軸方向一端の開口を覆うハウジングカバー12とを有する。ハウジング本体11には、ベーン30およびロータ20を収容する円筒状の収容部11dが形成されている。収容部11dの底面11cには、図示しない軸受部が設けられている。ハウジング本体11の外周面11bには、吸気通路(不図示)に連通する吸気口13が一体形成されている。
 吸気通路は、バキュームブースタないしバキュームタンクに接続される。また、収容部11dの内周面10nには、吸気口13とは反対側の位置に排気口14が設けられている。ハウジングカバー12は、円形の軸受孔12eを有する。軸受孔12eは、ハウジング本体11の底面11cに形成された軸受部と同軸上の位置に形成されている。軸受孔12eおよび軸受部の軸線は、収容部11dの内周面に対して所定量だけ偏心している。
Specifically, the housing 10 has a substantially bottomed cylindrical housing body 11 and a housing cover 12 that covers an opening at one end of the housing body 11 in the axial direction. The housing body 11 is formed with a cylindrical accommodating portion 11 d that accommodates the vane 30 and the rotor 20. A bearing portion (not shown) is provided on the bottom surface 11c of the housing portion 11d. An intake port 13 communicating with an intake passage (not shown) is integrally formed on the outer peripheral surface 11 b of the housing body 11.
The intake passage is connected to a vacuum booster or a vacuum tank. Further, an exhaust port 14 is provided at a position opposite to the intake port 13 on the inner peripheral surface 10n of the accommodating portion 11d. The housing cover 12 has a circular bearing hole 12e. The bearing hole 12 e is formed at a position coaxial with the bearing portion formed on the bottom surface 11 c of the housing body 11. The bearing hole 12e and the axis of the bearing portion are eccentric by a predetermined amount with respect to the inner peripheral surface of the housing portion 11d.
 ハウジング10の収容部11d内には、ロータ20が回転可能に収容される。ロータ20の軸方向の両端面は、ハウジングカバー12の内側面とハウジング本体11の底面11cとに僅かに隙間を隔てて配置される。ロータ20は中心部に軸穴25を有する。軸穴25は、回転軸(不図示)に回転可能に嵌合される。
 回転軸は、先端側が収容部11dの底面11cの軸受部に支持されるとともに、基端側が軸受孔12eを軸方向に貫通して駆動源に接続される。回転軸は、ハウジング10側とは反対側の端部が、カップリングを介して自動車のクランクシャフト等に連結され、クランクシャフトがロータ20を回転駆動する駆動源になる。
The rotor 20 is rotatably accommodated in the accommodating portion 11d of the housing 10. Both end surfaces in the axial direction of the rotor 20 are arranged with a slight gap between the inner side surface of the housing cover 12 and the bottom surface 11c of the housing body 11. The rotor 20 has a shaft hole 25 at the center. The shaft hole 25 is rotatably fitted to a rotation shaft (not shown).
The rotation shaft has a distal end side supported by the bearing portion of the bottom surface 11c of the housing portion 11d and a proximal end side that passes through the bearing hole 12e in the axial direction and is connected to a drive source. The end of the rotating shaft opposite to the housing 10 side is connected to a crankshaft or the like of an automobile via a coupling, and the crankshaft becomes a driving source for rotationally driving the rotor 20.
 また、このベーンポンプ1は、不図示の潤滑油供給通路を有する。ロータ20の回転につれてハウジング10内にエンジン側から潤滑油が潤滑油供給通路を介して供給される。供給された潤滑油は、ロータ20の回転につれて、ハウジング10の内周面10n、ロータ20および各ベーン30を潤滑する。
 上記構成により、図2に示すように、ロータ20の回転軸線は、ハウジング10の内周面10nに対して偏心して配置される。ロータ20の外周面23は、内接部Dにてハウジング10の内周面10nに僅かに接触している。内接部Dは、排気口14の形成位置よりも正回転方向の前側近傍の位置に設定されている。これにより、ハウジング10の内周面10nとロータ20の外周面23との間に、周方向での位相に対してロータ20の径方向での対向距離が変化するポンプ室2が画成される。
The vane pump 1 has a lubricating oil supply passage (not shown). As the rotor 20 rotates, lubricating oil is supplied into the housing 10 from the engine side via the lubricating oil supply passage. The supplied lubricating oil lubricates the inner peripheral surface 10 n of the housing 10, the rotor 20, and each vane 30 as the rotor 20 rotates.
With the above configuration, as illustrated in FIG. 2, the rotation axis of the rotor 20 is arranged eccentrically with respect to the inner peripheral surface 10 n of the housing 10. The outer peripheral surface 23 of the rotor 20 is slightly in contact with the inner peripheral surface 10 n of the housing 10 at the inscribed portion D. The inscribed portion D is set at a position near the front side in the forward rotation direction from the position where the exhaust port 14 is formed. As a result, a pump chamber 2 is defined between the inner peripheral surface 10n of the housing 10 and the outer peripheral surface 23 of the rotor 20 in which the opposing distance in the radial direction of the rotor 20 changes with respect to the phase in the circumferential direction. .
 上述したように、ロータ20には、複数のベーン溝21が形成されている。複数のベーン溝21は、ロータ20の中心から放射状に設けられ径方向に沿って貫通している。本実施形態では、ベーン溝21が3箇所に周方向に等配されている。各ベーン溝21には、略直方体状のベーン30が収容されている。各ベーン溝21に収容されたベーン30は、ハウジングカバー12の内側面と収容部11dの底面11cとによってロータ20軸方向での移動がそれぞれ拘束されている。また、各ベーン30は、ベーン溝21の溝内面に沿ってロータ20の径方向に進退可能に収容されている。 As described above, the rotor 20 is formed with a plurality of vane grooves 21. The plurality of vane grooves 21 are provided radially from the center of the rotor 20 and penetrate along the radial direction. In the present embodiment, the vane grooves 21 are equally distributed in three places in the circumferential direction. Each vane groove 21 accommodates a vane 30 having a substantially rectangular parallelepiped shape. The movement of the vane 30 accommodated in each vane groove 21 in the axial direction of the rotor 20 is restricted by the inner side surface of the housing cover 12 and the bottom surface 11c of the accommodating portion 11d. Each vane 30 is accommodated along the inner surface of the vane groove 21 so as to advance and retreat in the radial direction of the rotor 20.
 各ベーン30の径方向での長さは、ベーン溝21の深さよりも僅かに短い。各ベーン30は、上記内接部Dの位置ではベーン溝21内にベーン30全体が収容される。また、各ベーン30は、内接部D以外の位置では、ベーン30の先端部31が、ロータ20の回転による遠心力で径方向外側に付勢され、ロータ20の外周面23から突出してハウジング10の内周面10nに摺接または近接する。
 これにより、各ベーン30は、ポンプ室2を複数の容積変化室3A,3B,3Cに仕切る。つまり、周方向で隣り合うベーン30相互は、2個で一組と考えることができ、隣り合う二つのベーン30間とロータ20外周面23およびハウジング10内周面10nによる画成空間がそれぞれ容積変化室を構成する。
The length of each vane 30 in the radial direction is slightly shorter than the depth of the vane groove 21. Each vane 30 is accommodated in the vane groove 21 at the position of the inscribed portion D. In each vane 30, at a position other than the inscribed portion D, the tip portion 31 of the vane 30 is urged radially outward by the centrifugal force due to the rotation of the rotor 20, and protrudes from the outer peripheral surface 23 of the rotor 20. 10 is in sliding contact with or close to the inner peripheral surface 10n.
Thereby, each vane 30 partitions the pump chamber 2 into a plurality of volume change chambers 3A, 3B, 3C. That is, the two vanes 30 adjacent in the circumferential direction can be considered as a set of two, and the space defined by the two adjacent vanes 30, the outer peripheral surface 23 of the rotor 20 and the inner peripheral surface 10n of the housing 10 is a volume. Construct a change chamber.
 本実施形態の例では、3つのベーン30によって3箇所に容積変化室3A,3B,3Cが構成される。但し、ロータ20の外周面23は、排気口14近傍の内接部Dにて僅かに接触しているため、排気口14が開口している箇所での容積変化室3Cについては、実質的に周方向で更に二分割されることになる。3つの容積変化室3A,3B,3Cは、ロータ20の回転に伴うベーン30の回転によって内部の容積が増減し、それにより圧縮性流体(この例では空気)の吸気および排気を行う。 In the example of the present embodiment, the volume change chambers 3A, 3B, and 3C are configured by three vanes 30 at three locations. However, since the outer peripheral surface 23 of the rotor 20 is slightly in contact with the inscribed portion D in the vicinity of the exhaust port 14, the volume change chamber 3 </ b> C at the location where the exhaust port 14 is open is substantially reduced. It is further divided into two in the circumferential direction. The three volume change chambers 3A, 3B, and 3C increase and decrease in internal volume due to the rotation of the vane 30 accompanying the rotation of the rotor 20, thereby intake and exhaust of compressive fluid (air in this example).
 ここで、このベーンポンプ1は、ロータ20が逆回転したときに、排気口14が開口している箇所の容積変化室3C内に溜まっていた潤滑油Lを他の空間に逃がす潤滑油逃がし手段を備える。ベーンポンプ1は、この潤滑油逃がし手段により、ベーン30の先端部分の圧力を自動的に調圧可能になっている。
 ここで、第一実施形態では、潤滑油逃がし手段として、図3に斜視図を示すように、ベーン30の先端部31側の角部であってロータ20の逆回転側を向く部分(逆回転側となる容積変化室3C側を向く面)に受圧面32を有する。この例では、受圧面32は、ベーン30の先端部31側の角部の全長に亘って形成された傾斜した平面から構成されている。
Here, the vane pump 1 has a lubricating oil release means for releasing the lubricating oil L accumulated in the volume change chamber 3C at the location where the exhaust port 14 is opened to the other space when the rotor 20 rotates in the reverse direction. Prepare. The vane pump 1 can automatically adjust the pressure at the tip portion of the vane 30 by the lubricating oil release means.
Here, in the first embodiment, as the lubricating oil escape means, as shown in a perspective view in FIG. 3, a portion (a reverse rotation) that is a corner portion on the tip portion 31 side of the vane 30 and faces the reverse rotation side of the rotor 20. The pressure receiving surface 32 is provided on the side facing the volume change chamber 3C. In this example, the pressure receiving surface 32 is constituted by an inclined plane formed over the entire length of the corner portion on the tip end portion 31 side of the vane 30.
 この受圧面32は、図4に拡大図示するように、ロータ20が逆回転したときに、容積変化室3C内に溜まっていた潤滑油Lの圧力を受けることにより、ベーン溝21の底部側にベーン30自身を押し下げて、容積変化室3C内に溜まっていた潤滑油Lを、正転方向で隣接する容積変化室3Aに、ベーン30の先端部31側から逃がせる傾斜角度θと受圧面積とを有している。
 より詳しくは、同図に示すように、ロータ20が逆回転するとき、ベーン30の姿勢は、遠心力による径方向外向きの力とベーン30の先端部31の摺動抵抗とによって、ベーン溝21に対して前傾姿勢となる。このとき、受圧面32の傾斜角度θは、ベーン30の進退方向でのつり合い条件から決定される。
As shown in an enlarged view in FIG. 4, the pressure receiving surface 32 receives the pressure of the lubricating oil L accumulated in the volume change chamber 3 </ b> C when the rotor 20 rotates in the reverse direction. The inclination angle θ and the pressure receiving area by which the vane 30 is pushed down and the lubricating oil L accumulated in the volume change chamber 3C is allowed to escape from the tip 31 side of the vane 30 to the volume change chamber 3A adjacent in the forward rotation direction. have.
More specifically, as shown in the figure, when the rotor 20 rotates in the reverse direction, the posture of the vane 30 depends on the radial outward force due to centrifugal force and the sliding resistance of the tip portion 31 of the vane 30. 21 in a forward leaning posture. At this time, the inclination angle θ of the pressure receiving surface 32 is determined from the balance condition in the forward / backward direction of the vane 30.
 つまり、潤滑油Lの圧力P0を受けたときの、ベーン30先端部の受圧面32に作用する下向きの力をF0、容積変化室3C側の側面部38に作用する下向きの力をF0’、ベーン30の底面33に作用する上向きの力をF1、正転方向で隣接する容積変化室3A側の側面部39に作用する上向きの力をF1’、ベーン30が前傾姿勢時のベーン溝21に対するベーン30の傾斜角度をθ’とするとき、
  F0=(P0×S0)/cos(θ+θ’)
  F0’=(P0×S0’)/cosθ’
  F1=(P1×S1)/cosθ’
  F1’=(P1×S1’)/cosθ’
より、ベーンポンプ1の逆回転時に、ベーン30の先端部31の摺接部Tにクリアランスを発生させる条件は、
  F0+F0’>F1+F1’
よって、受圧面32の傾斜角度θ(および受圧面積)を下記式より求めることができる。
  cos(θ+θ’)=(P0×S0×cosθ’)/(P1×S1+P1×S1’-P0×S0’)
 本実施形態の例では、受圧面32は、傾斜角度θが約45度に設定され、その受圧面積は、ベーン30の厚さ方向において、厚さの中央を超えて正回転方向前方の上端部となる位置から傾斜面が形成されるように設定されている。
That is, when receiving the pressure P0 of the lubricating oil L, the downward force acting on the pressure receiving surface 32 at the tip of the vane 30 is F0, and the downward force acting on the side surface portion 38 on the volume change chamber 3C side is F0 ′, The upward force acting on the bottom surface 33 of the vane 30 is F1, the upward force acting on the side surface 39 on the side of the volume change chamber 3A adjacent in the forward rotation direction is F1 ′, and the vane groove 21 when the vane 30 is tilted forward. When the inclination angle of the vane 30 relative to is θ ′,
F0 = (P0 × S0) / cos (θ + θ ′)
F0 ′ = (P0 × S0 ′) / cos θ ′
F1 = (P1 × S1) / cos θ ′
F1 ′ = (P1 × S1 ′) / cos θ ′
From the above, when the vane pump 1 rotates in reverse, the condition for generating a clearance in the sliding contact portion T of the tip portion 31 of the vane 30 is as follows:
F0 + F0 '> F1 + F1'
Therefore, the inclination angle θ (and the pressure receiving area) of the pressure receiving surface 32 can be obtained from the following equation.
cos (θ + θ ′) = (P0 × S0 × cos θ ′) / (P1 × S1 + P1 × S1′−P0 × S0 ′)
In the example of the present embodiment, the pressure receiving surface 32 is set to have an inclination angle θ of about 45 degrees, and the pressure receiving area thereof exceeds the center of the thickness in the thickness direction of the vane 30 and is the upper end in the forward rotation direction. The inclined surface is set to be formed from the position where
 次に、上記ベーンポンプ1の動作および作用効果について説明する。
 このベーンポンプ1は、自動車のクランクシャフト等の回転によりハウジング10内でロータ20が回転する。ロータ20の回転に伴って各ベーン30もハウジング10内で回転し、各ベーン30の先端部31がハウジング10の内周面と摺動しつつベーン溝21に沿って進退する。
 本実施形態では、各容積変化室3A,3B,3Cは、図5に示すように、周方向の両端が、隣り合うベーン30によって仕切られる状態の容積変化室3A,3Bと、周方向の一方の端が内接部Dにより仕切られ、他方の端がベーン30によって仕切られる状態の容積変化室3Cとに順に変化しつつ、ロータ20の回転につれて各容積変化室3A,3B,3Cの容積が増減する。
 各容積変化室3A,3B,3Cは、ロータ20の正回転(正回転方向FW)に伴い、上記内接部Dの位置にある容積変化室3Cが、排気口14に連通したときに排気室として機能し、その後、内接部Dを通過後に容積が次第に拡大して容積変化室3Cの内部が負圧となる(同図(a))。なお、図5において、負圧のイメージを符号Vで示す。
Next, the operation and effect of the vane pump 1 will be described.
In the vane pump 1, the rotor 20 rotates in the housing 10 by the rotation of a crankshaft or the like of the automobile. As the rotor 20 rotates, each vane 30 also rotates in the housing 10, and the tip portion 31 of each vane 30 advances and retreats along the vane groove 21 while sliding with the inner peripheral surface of the housing 10.
In this embodiment, as shown in FIG. 5, each volume change chamber 3A, 3B, 3C has a volume change chamber 3A, 3B in a state where both ends in the circumferential direction are partitioned by adjacent vanes 30, and one in the circumferential direction. The volume change chambers 3 </ b> A, 3 </ b> B, and 3 </ b> C change in volume with the rotation of the rotor 20, while sequentially changing to the volume change chamber 3 </ b> C in which the other end is partitioned by the inscribed portion D and the other end is partitioned by the vane 30. Increase or decrease.
Each of the volume change chambers 3A, 3B, 3C is an exhaust chamber when the volume change chamber 3C at the position of the inscribed portion D communicates with the exhaust port 14 as the rotor 20 rotates forward (forward rotation direction FW). After that, after passing through the inscribed portion D, the volume gradually expands, and the inside of the volume change chamber 3C becomes negative pressure ((a) in the figure). In addition, in FIG. 5, the image of a negative pressure is shown with the code | symbol V. FIG.
 次いで、内接部Dを通過後に、容積変化室3Cは容積変化室3Aへと移行する。容積変化室3Aでは、容積が更に増大し、最大容積となったときに吸気口13が開口している箇所で吸気室として機能し、圧縮性流体(通常は気体)を吸気する(同図(b)~(c))。これにより、吸気口13に接続されるバキュームブースタの負圧室あるいはそれに接続されたバキュームタンク内を負圧にすることができる。なお、図5において、吸気された空気のイメージを符号Gで示す。
 次いで、吸気口13を通過後に、容積変化室3Aは容積変化室3Bへと移行する。容積変化室3Bは、吸気口13にも排気口14にも連通しない位置を経た後に、排気口14に連通した位置から排気室として機能し、排気口14からハウジング10の外部に空気Gが排出される。容積変化室3B内の容積は次第に縮小し、先行するベーン30が内接部Dを通過したときに容積変化室3Cへと移行する。
Next, after passing through the inscribed portion D, the volume change chamber 3C moves to the volume change chamber 3A. In the volume change chamber 3A, when the volume further increases and reaches the maximum volume, it functions as an intake chamber where the intake port 13 is open, and sucks in a compressible fluid (usually gas) (see FIG. b) to (c)). Thereby, the negative pressure chamber of the vacuum booster connected to the intake port 13 or the inside of the vacuum tank connected thereto can be made negative pressure. In FIG. 5, an image of the sucked air is indicated by G.
Next, after passing through the intake port 13, the volume change chamber 3A moves to the volume change chamber 3B. The volume change chamber 3B functions as an exhaust chamber from a position communicating with the exhaust port 14 after passing through a position where it does not communicate with either the intake port 13 or the exhaust port 14, and air G is discharged from the exhaust port 14 to the outside of the housing 10. Is done. The volume in the volume change chamber 3B gradually decreases, and when the preceding vane 30 passes through the inscribed portion D, the volume change chamber 3C moves to the volume change chamber 3C.
 このように、このベーンポンプ1によれば、ロータ20の回転につれて各容積変化室3A,3B,3Cの容積が増減し、圧縮性流体の吸気および排気を行うことができる。また、ロータ20の回転につれてハウジング10内に潤滑油が供給され、ロータ20が正回転時には、容積拡大時の負圧により潤滑油Lが容積変化室3Aに供給され、ロータ20の回転につれて、ハウジング10、ロータ20および各ベーン30の摺動部を潤滑することができる。
 ここで、上述したように、クランクシャフト等を介して回転するバキュームポンプは、車両の登坂時の失速によるバックなどにより、ポンプが逆回転する場合がある。ポンプが逆回転したとき、ベーンに加わる圧力が局部的に高くなり、内部の潤滑油(非圧縮性流体)が容積変化室内で圧縮されることで高圧となり、ベーンの破損に至るおそれがある。
 これに対し、本実施形態のベーンポンプ1は、図6に示すように、ポンプが逆回転したときの潤滑油逃がし手段として、ベーン30の先端部31の逆回転側に傾斜した受圧面32を設けたので、これにより、容積変化室3Cの圧力を逃がすことができる。
Thus, according to this vane pump 1, the volume of each volume change chamber 3A, 3B, 3C increases / decreases as the rotor 20 rotates, and the intake and exhaust of the compressive fluid can be performed. Lubricating oil is supplied into the housing 10 as the rotor 20 rotates. When the rotor 20 is rotating forward, the lubricating oil L is supplied to the volume change chamber 3A due to negative pressure when the volume is expanded. 10, the sliding part of the rotor 20 and each vane 30 can be lubricated.
Here, as described above, a vacuum pump that rotates via a crankshaft or the like may reversely rotate due to a back-up caused by a stall at the time of climbing a vehicle. When the pump rotates in the reverse direction, the pressure applied to the vane is locally increased, and the internal lubricating oil (incompressible fluid) is compressed in the volume change chamber, resulting in a high pressure, which may cause the vane to be damaged.
On the other hand, the vane pump 1 of the present embodiment is provided with a pressure receiving surface 32 that is inclined toward the reverse rotation side of the tip 31 of the vane 30 as a lubricating oil escape means when the pump rotates reversely as shown in FIG. As a result, the pressure in the volume change chamber 3C can be released.
 つまり、ロータ20の逆回転が生じると、同図(b)に示すように、内接部Dに対して正回転側に位置する容積変化室3Cでは、内部の潤滑油Lが逃げ場を失う状態になるため、内部の潤滑油(非圧縮性流体)が圧縮されて容積変化室3Cが高圧となるところ、本実施形態のベーン30は、逆回転(逆回転方向RW)により生じるベーン30の先端部31での潤滑油Lによる圧力を先端部31の受圧面32で受ける。
 受圧面32が潤滑油Lによる圧力を受けると、受圧面32の傾斜角度θおよび受圧面積の設定により、潤滑油Lによる圧力の作用方向をベーン溝21の底部22側に向かうように変換する。そのため、ベーン30は、ベーン30自身をベーン溝21の底部22側に押し返すことができる。これにより、ベーン30の先端部31の摺接部Tに隙間(クリアランス)が生じ、摺接部Tに生じたクリアランスから、正転方向で隣接する容積変化室3Aに潤滑油Lを逃がすことができる。
That is, when reverse rotation of the rotor 20 occurs, as shown in FIG. 5B, in the volume change chamber 3C located on the forward rotation side with respect to the inscribed portion D, the internal lubricating oil L loses the escape field. Therefore, when the internal lubricating oil (incompressible fluid) is compressed and the volume change chamber 3C becomes high pressure, the vane 30 of the present embodiment has the tip of the vane 30 generated by reverse rotation (reverse rotation direction RW). The pressure by the lubricating oil L at the portion 31 is received by the pressure receiving surface 32 of the tip portion 31.
When the pressure receiving surface 32 receives pressure from the lubricating oil L, the direction of action of the pressure by the lubricating oil L is converted to the bottom 22 side of the vane groove 21 by setting the inclination angle θ and the pressure receiving area of the pressure receiving surface 32. Therefore, the vane 30 can push back the vane 30 itself to the bottom 22 side of the vane groove 21. Thereby, a clearance (clearance) is generated in the sliding contact portion T of the tip portion 31 of the vane 30, and the lubricating oil L can be released from the clearance generated in the sliding contact portion T to the volume change chamber 3 </ b> A adjacent in the forward rotation direction. it can.
 よって、このベーンポンプ1によれば、容積変化室3C内での潤滑油Lによる逆回転時の圧力を逃がし、ベーン30に対して局部的な高い圧力が作用することが防止または抑制される。なお、同図において、符号Pは、逃げ場を失った潤滑油Lが圧縮された圧力のイメージを示し、符号Fは、受圧面32が受けた圧力Pにより、ベーン溝21の底部22側に向かう押圧力がベーン30の先端に作用するイメージを示し、符号Lfは、摺接部Tに生じたクリアランスから、潤滑油Lが正転方向で隣接する容積変化室3Aに逃げるイメージを示している。 Therefore, according to the vane pump 1, the pressure at the time of reverse rotation by the lubricating oil L in the volume change chamber 3 </ b> C is released, and local high pressure is prevented or suppressed from acting on the vane 30. In the figure, the symbol P represents an image of the pressure at which the lubricating oil L that has lost its escape is compressed, and the symbol F is directed toward the bottom 22 of the vane groove 21 by the pressure P received by the pressure receiving surface 32. An image of the pressing force acting on the tip of the vane 30 is shown, and a symbol Lf shows an image of the lubricating oil L escaping from the clearance generated at the sliding contact portion T to the adjacent volume change chamber 3A in the forward rotation direction.
 そして、このベーンポンプ1によれば、潤滑油逃がし手段が、ベーン30の先端部31の逆回転側に傾斜した受圧面32を設けるだけというシンプルな構造なので、ベーン30の形状変更のみを実施することで、ベーン30にかかる負荷を低減することができる。
 よって、例えばリリーフ弁を設けるような構造に対し、追加部品が不要であり簡素に構成できる。そのため、安価で軽量且つコンパクトであり、本体サイズの増大や製造コストの上昇を回避することができる。また、ロータ20の正回転時には、従来同様に、本来のポンプの性能・機能を発揮することができる。
According to the vane pump 1, the lubricating oil release means has a simple structure in which only the pressure receiving surface 32 that is inclined on the reverse rotation side of the tip 31 of the vane 30 is provided. Therefore, only the shape change of the vane 30 is performed. Thus, the load on the vane 30 can be reduced.
Therefore, for example, a structure in which a relief valve is provided does not require additional parts and can be configured simply. Therefore, it is inexpensive, lightweight and compact, and an increase in the body size and an increase in manufacturing cost can be avoided. Further, when the rotor 20 is rotated forward, the performance and function of the original pump can be exhibited as in the conventional case.
 以上説明したように、このベーンポンプ1によれば、ロータ20の逆回転時に、ロータ20の回転中に容積変化室3C内に溜まっていた潤滑油Lにより、ベーン30等に過大な負荷が加えられることを、本体サイズの増大や製造コストの上昇を回避しつつ防止または抑制することができる。
 なお、本発明に係る圧縮性流体用ベーンポンプは、上記第一実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
 例えば、上記第一実施形態では、潤滑油逃がし手段として、ベーン30の先端部31側の角部であってロータ20の逆回転側を向く部分に受圧面32を設けた例で説明したが、潤滑油逃がし手段の構成はこれに限定されない。
As described above, according to the vane pump 1, an excessive load is applied to the vane 30 and the like due to the lubricating oil L accumulated in the volume change chamber 3C during the rotation of the rotor 20 during the reverse rotation of the rotor 20. This can be prevented or suppressed while avoiding an increase in body size and an increase in manufacturing cost.
The compressible fluid vane pump according to the present invention is not limited to the first embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the first embodiment described above, as an example of the lubricating oil escape means, the pressure receiving surface 32 is provided in the corner portion on the tip portion 31 side of the vane 30 and facing the reverse rotation side of the rotor 20. The configuration of the lubricating oil release means is not limited to this.
 以下、本発明の一態様に係る圧縮性流体用ベーンポンプの第二実施形態について説明する。第二実施形態は、潤滑油逃がし手段として、逆回転時の圧力を逃がす溝をベーン自体に設けている。なお、第二実施形態は、上記受圧面32に替えて、逆回転時の圧力を逃がす溝を設ける点のみが上記第一実施形態と異なる。そのため、以下、相違点を説明し、他の構成等の説明は省略する。 Hereinafter, a second embodiment of a compressible fluid vane pump according to an aspect of the present invention will be described. In the second embodiment, a groove for releasing pressure during reverse rotation is provided in the vane itself as a lubricating oil release means. Note that the second embodiment differs from the first embodiment only in that a groove for releasing the pressure during reverse rotation is provided in place of the pressure receiving surface 32. Therefore, the differences will be described below, and descriptions of other configurations and the like will be omitted.
 第二実施形態では、図7に示すように、潤滑油逃がし手段として、ベーン30の底面33側の角部であってロータ20の逆回転側を向く部分(側面部38の下部37)に形成された第一の溝34と、ベーン30の正回転側を向く側面部39であって容積変化室3A側でロータ20の上縁部24に対向する部分に形成された第二の溝36とを有する。
 第一の溝34および第二の溝36の個数は特に限定されない。例えば、図8に示すように、第一の溝34および第二の溝36をそれぞれ一箇所に形成してよいし、また、図9に示すように、ロータ20の軸方向に離隔して複数個所(同図の例では、2箇所)に設けてもよい。
In the second embodiment, as shown in FIG. 7, the lubricating oil escape means is formed at a corner portion on the bottom surface 33 side of the vane 30 and facing the reverse rotation side of the rotor 20 (the lower portion 37 of the side surface portion 38). A first groove 34 formed on the side surface 39 facing the positive rotation side of the vane 30 and a second groove 36 formed in a portion facing the upper edge 24 of the rotor 20 on the volume change chamber 3A side. Have
The number of first grooves 34 and second grooves 36 is not particularly limited. For example, as shown in FIG. 8, the first groove 34 and the second groove 36 may be formed in one place, respectively, and as shown in FIG. You may provide in a part (in the example of the figure, two places).
 また、第一の溝34および第二の溝36の溝形状も特に限定されない。なお、第二実施形態の例では、図8および図9に示すように、第一の溝34は、ベーンの底面側の角部を斜めに切り欠いて溝を形成している。第二の溝36は、ベーンの側面部を凹の円弧状に切削加工して溝を形成している。なお、図8、図9では、各図(a)にロータ20の逆回転側から見た斜視図を示し、各図(b)にロータ20の正回転側から見た斜視図を示している。
 ここで、図10(b)に示すように、第一の溝34は、ロータ20の逆回転でベーン30がベーン溝21に対して前傾姿勢になったときに、容積変化室3Cとベーン溝21の底部空間Sとを連通させるように形成される。また、第二の溝36は、ロータ20の逆回転でベーン30がベーン溝21に対して前傾姿勢になったときに、ベーン溝21の底部空間Sと容積変化室3Aとを連通させるように形成される。
Further, the groove shapes of the first groove 34 and the second groove 36 are not particularly limited. In the example of the second embodiment, as shown in FIGS. 8 and 9, the first groove 34 is formed by cutting away the corner on the bottom surface side of the vane obliquely. The second groove 36 is formed by cutting the side surface of the vane into a concave arc shape. In FIGS. 8 and 9, perspective views as viewed from the reverse rotation side of the rotor 20 are shown in FIGS. 8A and 9B, and perspective views as viewed from the forward rotation side of the rotor 20 are shown in FIGS. .
Here, as shown in FIG. 10 (b), the first groove 34 has the volume change chamber 3 </ b> C and the vane when the vane 30 is inclined forward relative to the vane groove 21 due to the reverse rotation of the rotor 20. It is formed so as to communicate with the bottom space S of the groove 21. Further, the second groove 36 allows the bottom space S of the vane groove 21 and the volume change chamber 3 </ b> A to communicate with each other when the vane 30 is inclined forward with respect to the vane groove 21 due to the reverse rotation of the rotor 20. Formed.
 つまり、ベーンポンプ1が正回転時に、ベーン30の姿勢は、図10(a)に示すように、正回転方向FWに対し、遠心力による径方向外向きの力とベーン30の先端部31の摺動抵抗とによって、ベーン溝21に対して後傾姿勢となって回転する。そのため、第二実施形態のベーン30では、ベーンポンプ1が正回転時には、第一の溝34と第二の溝36が隣接する容積変化室を連通させない。そのため、容積変化室3A,3B,3Cの画成状態に影響を与えることがない。よって、正回転時は、従来同様に、本来のポンプの性能・機能を発揮することができる。
 一方、ベーンポンプ1が逆回転時には、図10(b)に示すように、逆回転方向RWに対してベーン30が後傾姿勢となる。換言すれば、正回転方向を基準として、ベーン30がベーン溝21に対して前傾姿勢となる。このとき、ベーン30は、ベーン30の底面33側の角部であってロータ20の逆回転側を向くA部、およびベーン30の正回転側を向く側面部39であって容積変化室3A側でロータ20の上縁部24に対向するB部がベーン溝21の内側面に当接する。
That is, when the vane pump 1 rotates forward, the posture of the vane 30 is such that the radial outward force due to centrifugal force and the sliding of the tip 31 of the vane 30 with respect to the forward rotation direction FW are as shown in FIG. Due to the dynamic resistance, the vane groove 21 rotates in a backward inclined posture. Therefore, in the vane 30 of the second embodiment, when the vane pump 1 rotates in the forward direction, the first groove 34 and the second groove 36 do not communicate with the adjacent volume change chamber. Therefore, the defined state of the volume change chambers 3A, 3B, 3C is not affected. Therefore, at the time of forward rotation, the original performance and function of the pump can be exhibited as in the conventional case.
On the other hand, when the vane pump 1 rotates in the reverse direction, as shown in FIG. 10B, the vane 30 is in a backward inclined posture with respect to the reverse rotation direction RW. In other words, the vane 30 is inclined forward with respect to the vane groove 21 based on the positive rotation direction. At this time, the vane 30 is a corner portion on the bottom surface 33 side of the vane 30 and is a portion A facing the reverse rotation side of the rotor 20 and a side surface portion 39 facing the forward rotation side of the vane 30 and the volume change chamber 3A side. Thus, the portion B facing the upper edge portion 24 of the rotor 20 contacts the inner surface of the vane groove 21.
 そこで、この第二実施形態では、潤滑油逃がし手段として、ベーン30がベーン溝21に対して前傾姿勢(正回転方向基準)になったときに、上記A部とB部とにそれぞれ接触する位置に、第一の溝34と第二の溝36を形成している。A部とB部に第一の溝34と第二の溝36を設けることで、ロータ20の逆回転時に、第一の溝34と第二の溝36とが協働して、図10(b)に示すように、容積変化室3Cの潤滑油Lを正回転方向で隣接する容積変化室3Aに逃がして容積変化室3Cの圧力を下げることができる。よって、この第二実施形態によっても、ロータ20の逆回転時にベーン30がベーン溝21に対して接触する、A部、B部および摺接部Tでの応力を下げてベーン破損を防ぐことができる。 Therefore, in the second embodiment, as the lubricating oil escape means, when the vane 30 is tilted forward (reference to the normal rotation direction) with respect to the vane groove 21, the A part and the B part are brought into contact with each other. A first groove 34 and a second groove 36 are formed at the positions. By providing the first groove 34 and the second groove 36 in the A part and the B part, the first groove 34 and the second groove 36 cooperate in the reverse rotation of the rotor 20, and FIG. As shown in b), the lubricating oil L in the volume change chamber 3C can be released to the adjacent volume change chamber 3A in the forward rotation direction to lower the pressure in the volume change chamber 3C. Therefore, according to this second embodiment as well, the vane 30 can be prevented from being damaged by reducing the stress at the A part, the B part, and the sliding contact part T where the vane 30 comes into contact with the vane groove 21 during the reverse rotation of the rotor 20. it can.
 なお、第二実施形態では、第一の溝34と第二の溝36とを設けた例を説明したが、容積変化室3Cの潤滑油Lの全てを逃がさないまでも、ベーン溝21の底部空間Sの容量が大きければ、第一の溝34のみを設けることによっても潤滑油逃がし手段を構成することができる。
 つまり、ベーン30の底面側の角部に設けた第一の溝34により、容積変化室3C内に溜まっていた潤滑油Lをベーン溝21の底部空間Sに逃がすことができるので、ベーン30等に過大な負荷が加えられることを防止または抑制することができる。また、第一の溝34自体の加工深さが深ければ、潤滑油Lを溝の内部で溜めることができるので、溝自体によっても容積変化室3Cの圧力を逃がすことができる。
 また、潤滑油逃がし手段として、上記第一実施形態と第二実施形態とを適宜組み合わせることもできる。例えば、傾斜した受圧面32、第一の溝34および第二の溝36の両方を設けて潤滑油逃がし手段を構成してもよい。
In the second embodiment, the example in which the first groove 34 and the second groove 36 are provided has been described. However, the bottom portion of the vane groove 21 does not escape until all of the lubricating oil L in the volume change chamber 3C is released. If the capacity of the space S is large, the lubricating oil release means can be configured also by providing only the first groove 34.
That is, the lubricating oil L accumulated in the volume change chamber 3C can be released to the bottom space S of the vane groove 21 by the first groove 34 provided at the corner on the bottom surface side of the vane 30. It is possible to prevent or suppress an excessive load from being applied to the battery. Further, if the working depth of the first groove 34 itself is deep, the lubricating oil L can be stored inside the groove, so that the pressure in the volume change chamber 3C can be released also by the groove itself.
Further, the first embodiment and the second embodiment can be appropriately combined as a lubricating oil escape means. For example, both the inclined pressure receiving surface 32, the first groove 34, and the second groove 36 may be provided to constitute the lubricating oil escape means.
 1  ベーンポンプ(圧縮性流体用ベーンポンプ)
 2  ポンプ室
 3A,3B,3C  容積変化室
 10  ハウジング
 11  ハウジング本体
 12  ハウジングカバー
 13  吸気口
 14  排気口
 20  ロータ
 21  ベーン溝
 22  底部
 23  (ロータの)外周面
 24  (ロータの)上縁部
 25  (ロータの)軸穴
 30  ベーン
 31  (ベーンの)先端部
 32  平面(潤滑油逃がし手段)
 33  底面
 34  第一の溝(潤滑油逃がし手段)
 36  第二の溝(潤滑油逃がし手段)
 38  (後方)側面部
 39  (前方)側面部
 D  内接部
 L  潤滑油
1 Vane pump (Vane pump for compressible fluid)
2 Pump chamber 3A, 3B, 3C Volume change chamber 10 Housing 11 Housing body 12 Housing cover 13 Intake port 14 Exhaust port 20 Rotor 21 Vane groove 22 Bottom 23 (Rotor) outer peripheral surface 24 (Rotor) upper edge 25 (Rotor Shaft hole 30 vane 31 tip end of vane 32 plane (lubricating oil escape means)
33 Bottom surface 34 First groove (lubricant escape means)
36 Second groove (lubricant escape means)
38 (Back) Side part 39 (Front) Side part D Inscribed part L Lubricating oil

Claims (5)

  1.  ハウジングと、前記ハウジング内に回転可能に配設されて前記ハウジングとの間にポンプ室を画成するロータと、前記ロータに形成されたベーン溝により径方向に進退可能に保持されるとともに前記ポンプ室を複数の容積変化室に仕切る1つ以上のベーンとを備える圧縮性流体用ベーンポンプであって、
     前記ベーンは、前記ロータが逆回転したときに、一の容積変化室内に溜まっていた潤滑油を前記ハウジング内の他の空間に逃がす潤滑油逃がし手段を備えることを特徴とする圧縮性流体用ベーンポンプ。
    The pump is rotatably held in the radial direction by a housing, a rotor rotatably disposed in the housing and defining a pump chamber between the housing, and a vane groove formed in the rotor, and the pump A compressible fluid vane pump comprising one or more vanes that partition the chamber into a plurality of volume change chambers,
    The vane includes a vane pump for compressive fluid, characterized in that the vane pump includes a lubricating oil releasing means for releasing the lubricating oil accumulated in one volume change chamber to another space in the housing when the rotor rotates in the reverse direction. .
  2.  前記潤滑油逃がし手段は、前記ベーンの先端部側の角部であって前記ロータの逆回転側を向く部分に形成された受圧面を有し、
     前記受圧面は、前記ロータが逆回転したときに、前記一の容積変化室内に溜まっていた潤滑油の圧力を受けることにより、前記ベーン溝の底部側に前記ベーン自身を押し下げるように形成されている請求項1に記載の圧縮性流体用ベーンポンプ。
    The lubricating oil release means has a pressure receiving surface formed at a corner of the vane on the tip side and facing the reverse rotation side of the rotor,
    The pressure receiving surface is formed so as to push down the vane itself to the bottom side of the vane groove by receiving the pressure of the lubricating oil accumulated in the one volume change chamber when the rotor rotates backward. The vane pump for compressive fluid according to claim 1.
  3.  前記受圧面は、前記ベーンの先端部側の角部であって前記ロータの逆回転側を向く部分に形成された傾斜した平面であり、
     前記ロータが逆回転したときに、前記一の容積変化室内に溜まっていた潤滑油の圧力を受けることにより、前記一の容積変化室内に溜まっていた潤滑油を正転方向で隣接する他の容積変化室に前記ベーンの先端側から逃がせる傾斜角度と受圧面積とを有する請求項2に記載の圧縮性流体用ベーンポンプ。
    The pressure-receiving surface is an inclined plane formed at a corner portion on the tip end side of the vane and facing the reverse rotation side of the rotor,
    When the rotor rotates in the reverse direction, by receiving the pressure of the lubricating oil accumulated in the one volume change chamber, the lubricating oil accumulated in the one volume change chamber is another volume adjacent in the forward rotation direction. The vane pump for compressive fluid according to claim 2, wherein the change chamber has an inclination angle and a pressure receiving area that allows the vane to escape from the tip side of the vane.
  4.  前記潤滑油逃がし手段は、前記ベーンの底面側の角部であって前記ロータの逆回転側を向く部分に形成された溝を有し、
     前記溝は、前記ロータが逆回転したときには、前記一の容積変化室と前記ベーン溝の底部空間とを連通させるように形成され、前記ロータが正回転したときには、前記一の容積変化室と前記ベーン溝の底部空間とを連通させないように形成されている請求項1~3のいずれか一項に記載の圧縮性流体用ベーンポンプ。
    The lubricating oil release means has a groove formed in a corner portion on the bottom side of the vane and facing the reverse rotation side of the rotor,
    The groove is formed to allow the one volume change chamber and the bottom space of the vane groove to communicate with each other when the rotor rotates in the reverse direction, and when the rotor rotates in the forward direction, The compressible fluid vane pump according to any one of claims 1 to 3, wherein the vane pump is formed so as not to communicate with a bottom space of the vane groove.
  5.  前記潤滑油逃がし手段は、前記ベーンの底面側の角部であって前記ロータの逆回転側を向く部分に形成された第一の溝と、前記ベーンの側面部であって正転方向で隣接する他の容積変化室側で前記ロータの上縁部に対向する部分に形成された第二の溝とを有し、
     前記ロータが逆回転したときには、前記第一の溝は、前記一の容積変化室と前記ベーン溝の底部空間とを連通させるとともに、前記第二の溝は、前記ベーン溝の底部空間と前記他の容積変化室とを連通させるように形成され、
     前記ロータが正回転したときには、前記第一の溝は、前記一の容積変化室と前記ベーン溝の底部空間とを連通させないとともに、前記第二の溝は、前記ベーン溝の底部空間と前記他の容積変化室とを連通させないように形成されている請求項1~3のいずれか一項に記載の圧縮性流体用ベーンポンプ。
    The lubricating oil release means is adjacent to the first groove formed in the corner portion on the bottom surface side of the vane and facing the reverse rotation side of the rotor in the normal rotation direction on the side surface portion of the vane. A second groove formed in a portion facing the upper edge of the rotor on the other volume change chamber side,
    When the rotor rotates in the reverse direction, the first groove communicates the one volume change chamber and the bottom space of the vane groove, and the second groove communicates with the bottom space of the vane groove and the other. It is formed to communicate with the volume change chamber of
    When the rotor rotates forward, the first groove does not connect the one volume change chamber and the bottom space of the vane groove, and the second groove does not communicate with the bottom space of the vane groove. The vane pump for compressive fluid according to any one of claims 1 to 3, wherein the vane pump is formed so as not to communicate with the volume change chamber.
PCT/JP2015/002453 2015-05-14 2015-05-14 Vane pump for compressible fluid WO2016181428A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002453 WO2016181428A1 (en) 2015-05-14 2015-05-14 Vane pump for compressible fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/002453 WO2016181428A1 (en) 2015-05-14 2015-05-14 Vane pump for compressible fluid

Publications (1)

Publication Number Publication Date
WO2016181428A1 true WO2016181428A1 (en) 2016-11-17

Family

ID=57249242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002453 WO2016181428A1 (en) 2015-05-14 2015-05-14 Vane pump for compressible fluid

Country Status (1)

Country Link
WO (1) WO2016181428A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027751A (en) * 2021-03-25 2021-06-25 宁波圣龙智能汽车系统有限公司 Single-action oil trapping-free vane pump

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484613U (en) * 1977-11-28 1979-06-15
JPS6323392B2 (en) * 1979-03-23 1988-05-16 Matsushita Electric Ind Co Ltd
JPH0814174A (en) * 1994-06-30 1996-01-16 Toyota Motor Corp Vane type vacuum pump
JPH1159900A (en) * 1997-08-22 1999-03-02 Mitsui High Tec Inc Conveying atmosphere converting device for particulate matter
US20140219853A1 (en) * 2013-02-01 2014-08-07 Saeta Gmbh & Co. Kg Vane for a Vane Cell Device, as Well as a Vane Cell Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484613U (en) * 1977-11-28 1979-06-15
JPS6323392B2 (en) * 1979-03-23 1988-05-16 Matsushita Electric Ind Co Ltd
JPH0814174A (en) * 1994-06-30 1996-01-16 Toyota Motor Corp Vane type vacuum pump
JPH1159900A (en) * 1997-08-22 1999-03-02 Mitsui High Tec Inc Conveying atmosphere converting device for particulate matter
US20140219853A1 (en) * 2013-02-01 2014-08-07 Saeta Gmbh & Co. Kg Vane for a Vane Cell Device, as Well as a Vane Cell Device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113027751A (en) * 2021-03-25 2021-06-25 宁波圣龙智能汽车系统有限公司 Single-action oil trapping-free vane pump

Similar Documents

Publication Publication Date Title
US8535030B2 (en) Gerotor hydraulic pump with fluid actuated vanes
US9046100B2 (en) Variable vane pump with communication groove in the cam ring
JP3874300B2 (en) Vane pump
WO2015085823A1 (en) Scroll compressor
JP6444166B2 (en) Variable displacement pump
WO2016181428A1 (en) Vane pump for compressible fluid
JP5878786B2 (en) Oil pump
JP6382877B2 (en) Vane pump
WO2022176544A1 (en) Tandem-type oil pump
JP5475701B2 (en) Vane pump
JP2010209812A (en) Variable displacement vane pump
JP4960815B2 (en) Variable displacement pump
JP4042746B2 (en) Vane type vacuum pump
JP2008520899A (en) Variable discharge vane pump for oil discharge
WO2022176545A1 (en) Tandem type oil pump
JPWO2020084666A1 (en) Vane pump device
JP4142863B2 (en) Gas compressor
JP6017023B2 (en) Vane type compressor
JP5149226B2 (en) Variable displacement vane pump
WO2023042530A1 (en) Oil pump
JP2009091973A (en) Vacuum pump
JPH034759B2 (en)
JP2009174355A (en) Compressor
JPH0683977U (en) Vane type fluid machinery
JP2010101209A (en) Vane type vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP