JP4014109B2 - Vane type vacuum pump - Google Patents

Vane type vacuum pump Download PDF

Info

Publication number
JP4014109B2
JP4014109B2 JP2004525636A JP2004525636A JP4014109B2 JP 4014109 B2 JP4014109 B2 JP 4014109B2 JP 2004525636 A JP2004525636 A JP 2004525636A JP 2004525636 A JP2004525636 A JP 2004525636A JP 4014109 B2 JP4014109 B2 JP 4014109B2
Authority
JP
Japan
Prior art keywords
rotor
vane
housing
vacuum pump
type vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004525636A
Other languages
Japanese (ja)
Other versions
JPWO2004036046A1 (en
Inventor
勝彦 楠本
茂 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2004036046A1 publication Critical patent/JPWO2004036046A1/en
Application granted granted Critical
Publication of JP4014109B2 publication Critical patent/JP4014109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

この発明はベーン式真空ポンプに関するものであり、特に車両用に用いるタンク内を真空にするためのベーン式真空ポンプに関するものである。  The present invention relates to a vane vacuum pump, and more particularly to a vane vacuum pump for evacuating a tank used for a vehicle.

図12および13に断面で示す従来のベーン式真空ポンプはハウジング1を備えており、ハウジング1は弁付きの吸入口2および排出口4を有するカップ形の本体3と、本体3の開端を閉じて内部にポンプ室5を形成するブラケット6とを備えている。ポンプ室5はハウジング1の互いに平行な2つの端面7および8と、端面7および8間の円筒面9とによって形成された円筒形の空間である。ブラケット6の軸受け10には、回転軸11が円筒形のポンプ室5の中心軸心に対して偏心して支持され、回転軸11の内端は本体3の軸受け12によって支持されている。回転軸11の外端には外部の歯車等の駆動装置(図示してない)からの駆動力の伝達を受けるピニオン、プーリ、スプロケット、カム等13が固着されている。
ハウジング1内には、回転軸11に対して同心に、従ってポンプ室5(ハウジング1)に対して偏心したロータ14が収納されている。ロータ14は2つの端面と円筒面を持つほぼ円筒形の部材で、回転軸11によりハウジング1内で回転される。ロータ14には軸心を通って径方向に端面から端面まで延びた4本のスロット15が設けられていて、このスロット15内にはそれぞれ先端でハウジング1の円筒面9に摺接し得るベーン16が径方向に摺動可能に嵌装されている。
このような車両用ベーン式真空ポンプに於いて、ロータ14を図11で時計方向に回転させると、スロット15内のベーン16が遠心力により外側に移動して、ベーン16の先端はポンプ室5の円筒面9に当接したまま摺動する。ロータ14の回転軸11はポンプ室5の中心に対して偏心しているので、ベーン16間に形成されている圧縮室の容積がロータ14の回転に伴い変化し、ハウジング1の吸入口2から空気が吸入されて排出口4に圧送させて、図示してないタンクに接続された吸入口2側に真空を発生させる。このとき、ベーン式真空ポンプ内の様々な摺動部分、特にベーン16がロータ14、ハウジング1の端面7、8および円筒面9等の他の部分に摺接する部分、更に軸受け部分にはエンジンオイルが外部から供給され、それらの摺接部分が潤滑される。
ハウジング1の側端面7および8と、ロータ14の軸方向端面との間も摺動部分であり、この間にはエンジンオイルの油膜が介在して両者の磨耗を防止すると共に、ロータとハウジングとの間の気密が確保される。しかしながら、この間の摺動部分では局部的に油膜破断が生ずる場合がある。油膜破断が生ずると磨耗の問題が起こるだけでなく、気密保持の効果が低下し、ベーン式真空ポンプの真空特性が低下するという問題があった。
このような問題を解決するために、ポンプの容量を増大したり、ロータ回転速度を上げたりすることもできるが、前者ではベーン式真空ポンプの外形寸法が大きくなるために、エンジンへの装着性が悪化し重量が増大する等の問題が生じ、後者の場合には振動の増大、機械磨耗の増大等による寿命低下などの問題が生じていた。
The conventional vane vacuum pump shown in cross section in FIGS. 12 and 13 includes a housing 1, which has a cup-shaped body 3 having a valved suction port 2 and a discharge port 4, and an open end of the body 3 closed. And a bracket 6 for forming a pump chamber 5 therein. The pump chamber 5 is a cylindrical space formed by two parallel end surfaces 7 and 8 of the housing 1 and a cylindrical surface 9 between the end surfaces 7 and 8. A rotating shaft 11 is supported eccentrically with respect to the center axis of the cylindrical pump chamber 5 on the bearing 10 of the bracket 6, and an inner end of the rotating shaft 11 is supported by a bearing 12 of the main body 3. A pinion, a pulley, a sprocket, a cam and the like 13 that receive transmission of driving force from a driving device (not shown) such as an external gear are fixed to the outer end of the rotating shaft 11.
The housing 1 houses a rotor 14 that is concentric with the rotating shaft 11 and thus eccentric with respect to the pump chamber 5 (housing 1). The rotor 14 is a substantially cylindrical member having two end surfaces and a cylindrical surface, and is rotated in the housing 1 by the rotating shaft 11. The rotor 14 is provided with four slots 15 that extend from the end face to the end face in the radial direction through the shaft center, and the vanes 16 that can be brought into sliding contact with the cylindrical face 9 of the housing 1 at the respective ends in the slots 15. Is slidably fitted in the radial direction.
In such a vehicle vane vacuum pump, when the rotor 14 is rotated clockwise in FIG. 11, the vane 16 in the slot 15 is moved outward by centrifugal force, and the tip of the vane 16 is located at the pump chamber 5. It slides in contact with the cylindrical surface 9. Since the rotating shaft 11 of the rotor 14 is eccentric with respect to the center of the pump chamber 5, the volume of the compression chamber formed between the vanes 16 changes with the rotation of the rotor 14, and air is supplied from the suction port 2 of the housing 1. Is sucked and pumped to the discharge port 4 to generate a vacuum on the side of the suction port 2 connected to a tank (not shown). At this time, various sliding parts in the vane-type vacuum pump, in particular, the part where the vane 16 is in sliding contact with other parts such as the rotor 14, the end surfaces 7, 8 and the cylindrical surface 9 of the housing 1, and the bearing part are engine oil. Is supplied from the outside, and the sliding contact portions are lubricated.
Between the side end surfaces 7 and 8 of the housing 1 and the axial end surface of the rotor 14 is also a sliding portion. Between these, an oil film of engine oil is interposed to prevent wear of both, and between the rotor and the housing. Airtightness is ensured. However, an oil film breakage may occur locally at the sliding portion during this period. When the oil film rupture occurs, there is a problem that not only the problem of wear occurs but also the effect of airtightness is lowered, and the vacuum characteristics of the vane type vacuum pump are lowered.
To solve these problems, the pump capacity can be increased or the rotor rotational speed can be increased. However, the former has a larger outer dimension of the vane vacuum pump, so it can be mounted on the engine. However, in the latter case, problems such as increased vibration and decreased life due to increased mechanical wear have occurred.

従って、本発明の目的は、ロータとハウジングとの間の気密性が高く真空特性が良く、十分な潤滑が確保できて磨耗が少ない小型のベーン式真空ポンプを提供することである。
この目的達成のための本発明のベーン式真空ポンプの構成は次の通りである。
(1)吸入口および排出口を有する円筒状のポンプ室を持つハウジングと、ポンプ室内に偏心して収納されたロータと、ロータに固定され、ポンプ室内でロータを回転させる回転軸と、ポンプ室内でハウジングに対して摺接しつつロータに嵌装されて径方向に出入自在なベーンとを備え、ロータの回転によりポンプ室内の空気を吸入口から排出口に圧送させて、吸入口側に真空を発生させるベーン式真空ポンプに於いて、ハウジングとロータとの間で回転軸と同心に設けられ、互いに周方向に相対移動可能に嵌合した少なくとも一組の円形環状溝と円形環状突条とを有するほぼ全周に亘るラビリンス状のシールを備えたことを特徴とするベーン式真空ポンプ。
(2)円形環状突条がロータの端面に設けられ、円形環状溝がロータに設けられたものでもよい。
(3)円形環状溝がロータの側端面に設けられ、円形環状突条がロータに設けられ、ベーンの側端面に突条を受け入れてベーンの径方向運動を妨げないようにする凹部が設けられたものでもよい。
(4)ラビリンス状のシールが同心円状に複数組設けられたものでもよい。
(5)ラビリンス状のシールがロータの両側端面に設けられたものでもよい。
(6)回転軸が車両用交流発電機の出力回転軸であってもよい。
Accordingly, an object of the present invention is to provide a small vane type vacuum pump that has high airtightness between the rotor and the housing, good vacuum characteristics, sufficient lubrication, and low wear.
The configuration of the vane type vacuum pump of the present invention for achieving this object is as follows.
(1) A housing having a cylindrical pump chamber having a suction port and a discharge port, a rotor housed eccentrically in the pump chamber, a rotating shaft fixed to the rotor and rotating the rotor in the pump chamber, and a pump chamber A vane that is fitted in the rotor and slidable against the housing and that can be moved in and out in the radial direction is provided. By rotating the rotor, the air in the pump chamber is pumped from the suction port to the discharge port, and a vacuum is generated on the suction port side. The vane type vacuum pump has at least one pair of circular annular grooves and circular annular protrusions that are concentric with the rotation shaft between the housing and the rotor and are fitted to each other so as to be relatively movable in the circumferential direction. A vane-type vacuum pump characterized by having a labyrinth-like seal over almost the entire circumference.
(2) A circular annular protrusion may be provided on the end face of the rotor, and a circular annular groove may be provided on the rotor.
(3) A circular annular groove is provided on the side end surface of the rotor, a circular annular ridge is provided on the rotor, and a recess is provided on the side end surface of the vane so as not to interfere with the radial movement of the vane. May be good.
(4) A plurality of sets of concentric labyrinth seals may be provided.
(5) Labyrinth-like seals may be provided on both end faces of the rotor.
(6) The rotating shaft may be an output rotating shaft of an automotive alternator.

図1は本発明の第1の実施の形態によるベーン式真空ポンプを図2の線1−1に沿って示す概略断面図である。
図2は図1のベーン式真空ポンプの軸垂直面での概略断面図である。
図3は図1のベーン式真空ポンプのラビリンス状のシールの詳細を示す概略断面図である。
図4は本発明のロータとベーンとを示す部分斜視図である。
図5は本発明の第2の実施の形態によるベーン式真空ポンプを示す概略断面図である。
図6は図5のベーン式真空ポンプのラビリンス状のシールの詳細を示す概略断面図である。
図7は本発明のロータとベーンとを示す部分斜視図である。。
図8は本発明の第3の実施の形態によるベーン式真空ポンプを示す概略断面図である。
図9は本発明の第4の実施の形態によるベーン式真空ポンプを示す概略断面図である。
図10は図4のベーン式真空ポンプを直接交流発電機に連結した例を示す概略断面図である。
図11は図1乃至図4に示す本発明のベーン式真空ポンプと図12および13に示す従来のベーン式真空ポンプとの真空度の比較試験の結果を示すグラフである。
図12は従来のベーン式真空ポンプを図13の線12−12に沿って示す概略断面図である。
図13は図12のベーン式真空ポンプの軸垂直面での概略断面図である。
FIG. 1 is a schematic sectional view showing a vane type vacuum pump according to a first embodiment of the present invention, taken along line 1-1 in FIG.
FIG. 2 is a schematic cross-sectional view of the vane vacuum pump of FIG.
FIG. 3 is a schematic sectional view showing details of a labyrinth-like seal of the vane type vacuum pump of FIG.
FIG. 4 is a partial perspective view showing the rotor and the vane of the present invention.
FIG. 5 is a schematic sectional view showing a vane type vacuum pump according to a second embodiment of the present invention.
6 is a schematic cross-sectional view showing details of a labyrinth-like seal of the vane type vacuum pump of FIG.
FIG. 7 is a partial perspective view showing the rotor and the vane of the present invention. .
FIG. 8 is a schematic sectional view showing a vane type vacuum pump according to a third embodiment of the present invention.
FIG. 9 is a schematic sectional view showing a vane type vacuum pump according to a fourth embodiment of the present invention.
FIG. 10 is a schematic sectional view showing an example in which the vane vacuum pump of FIG. 4 is directly connected to an AC generator.
FIG. 11 is a graph showing the results of a comparative test of the degree of vacuum between the vane vacuum pump of the present invention shown in FIGS. 1 to 4 and the conventional vane vacuum pump shown in FIGS.
FIG. 12 is a schematic sectional view showing a conventional vane type vacuum pump taken along line 12-12 in FIG.
FIG. 13 is a schematic cross-sectional view of the vane type vacuum pump of FIG.

図1乃至図3に示す本発明のベーン式真空ポンプはハウジング21を備えており、ハウジング21は弁付きの吸入口22および排出口24を有するカップ形の本体23と、本体23の開端を閉じて内部にポンプ室25を形成するブラケット26とを備えている。ポンプ室25はハウジング21の互いに平行な2つの端面27および28と、端面27および28間の円筒面29とによって形成された円筒形の空間である。ブラケット26の軸受け30には、円筒形のポンプ室25を貫通して配置された回転軸31が支持され、回転軸31の内端は本体23の軸受け32によって支持されている。回転軸31はポンプ室205の中心軸心に対して偏心して配置されている。回転軸31の外端には外部の歯車等の駆動装置(図示してない)からの駆動力の伝達を受けるピニオン、プーリ、スプロケット、カム等33が固着されている。
ハウジング21内には、回転軸31に対して同心に、従ってポンプ室25(ハウジング21)に対して偏心したロータ34が収納されている。ロータ34は2つの平坦な端面35、36と円筒面37とを持つほぼ円筒形の部材で、回転軸31によりハウジング21内で回転される。ロータ34には軸心を通って端面から端面までロータ34を径方向に貫通して延びた4本のスロット38が設けられている。このスロット38内には、それぞれ先端39でハウジング21の円筒面29に摺接し得、平坦な端面40、41でハウジング21の端面27、28に摺接した板状のベーン42が設けられていて、スロット38内で径方向に摺動可能にされている。
図3および図4に最も良く示されているように、ロータ34の端面35および36には、スロット38の形成されている位置を除いて、回転軸31と同心の環状の突条43が設けられている。ハウジング21の端面35および36には、環状の突条43に対応した位置に設けられて突条43を受け入れる連続した環状の溝44が設けられている。この溝44と突条43との間の径方向の間隙45および軸方向の間隙46は、いずれもロータ34の端面35、36とハウジング21の端面27、28との間の間隙よりも大きくされ、また軸方向の間隙46は径方向の間隙45よりも大きくされている。このため、環状の突条43と環状の溝44との間にはエンジンオイルを貯留できる空間が形成されている。また、この空間は突条43と溝44との間に形成されているので、エンジンオイルの径方向の移動を妨げるラビリンス状のシールを構成している。
ロータ34を図2で反時計方向に回転させると、ベーン42はスロット38内で遠心力により径方向外側に移動して、ベーン42の先端39がポンプ室25の円筒面29に当接して摺動する。ロータ34の回転軸31はポンプ室25の中心に対して偏心しているので、ベーン42間に形成されている圧縮室の容積がロータ34の回転に伴い変化し、ハウジング21の吸入口22から空気が吸入されて排出口24に圧送させて、図示してないタンクに接続された吸入口22側に真空を発生させる。
このとき、ベーン式真空ポンプ内の様々な摺動部分、特にベーン42がロータ34、ハウジング1の端面27、28および円筒面29等の他の部分に摺接する部分、更に軸受け部分には、エンジンオイルが外部から供給され、それらの摺接部分が潤滑される。
本発明によれば、ハウジング1の側端面27および28と、ロータ34の軸方向端面35および36との間の摺動部分には、回転軸31と同心の環状の突条43と、突条43を受け入れる連続した環状の溝44とが設けられており、この溝44と突条43との間には、U字型に屈曲したラビリンス状のシールが形成されており、同時にエンジンオイルを貯留できる空間が形成されている。従って、このラビリンス状のシールにより、摺動部分からエンジンオイルが流れ出して油膜が破壊されてしまうことを防ぐことができ、また貯留空間からエンジンオイルを供給し続けることができるので、摺動部分間の磨耗を防止すると共に、ロータとハウジングとの間の気密が確保される。
図5乃至図7にはハウジング21の側壁27および28に環状の突条47を設け、ロータ34の端面35および36に環状の溝48を設けた例を示す。ハウジング21側の突条47はロータ34の回転軸31と同心の連続した断面がほぼ矩形の環状突起である。ロータ34に設けた溝48は突条47を受け入れる回転軸31と同心の環状突起であるが、ベーン42を収容するスロット38の部分で部分的に切断されている。ベーン42の端面40には、ベーン42がハウジング21側の突条47と干渉しないでスロット38内でロータ34に対して径方向に摺動できるように、逃げ溝としての凹部49が設けてある。
このベーン式真空ポンプに於いても、ハウジング1の側端面27および28と、ロータ34の軸方向端面35および36との間の摺動部分には、ハウジング21側の環状の突条47と、ロータ34側で突条47を受け入れる環状の溝48とが設けられており、この溝48と突条47との間には、U字型に屈曲したラビリンス状のシールが形成されており、同時にエンジンオイルを貯留できる空間が形成されている。従って、摺動部分間の磨耗を防止すると共に、ロータとハウジングとの間の気密が確保される。
図8に示すベーン式真空ポンプに於いては、ロータ34の端面に二重の環状の突条51および52が設けられ、ハウジング21側には二重の環状の溝53および54が設けられている。各々の突条51および52並びに溝53および54は図1乃至図4に示すのと同様の構造のものである。このベーン式真空ポンプに於いては、ラビリンス状のシールおよびオイル貯留空間が二重になっているので、先の実施の形態のものに比べてシール効果が大幅に改善される。
図9に示すベーン式真空ポンプに於いては、ロータ34の端面に二重の環状の溝55および56が設けられ、ハウジング21側には二重の環状の突条57および58が設けられている。各々の溝55および56並びに突条57および58は図5乃至図7に示すのと同様の構造のものである。ベーン42の端面47および48に設けられている逃げ溝59は、二重の突条55、56および溝57、58と干渉しないように充分大きな径方向寸法にされている。このベーン式真空ポンプに於いては、ラビリンス状のシールおよびオイル貯留空間が二重になっているので、シール効果が大幅に改善される。
図10は図1乃至図4に示すベーン式真空ポンプを車両用交流発電機に直接連結した例を示す概略断面図である。図示の例に於いて、車両用交流発電機60はハウジング61内に支持された固定子62と、ハウジング61に取付られた軸受63、64により支持されて回転軸65を持つ回転子66とを備え、回転軸65の図で左端はハウジング61外に延びていて、本発明のベーン式真空ポンプ70のハウジング71内に入っている。即ち、車両用交流発電機60のハウジング61にはベーン式真空ポンプ70のハウジング71のブラケット72が取り付けられ、このブラケット72には軸受が無いが、ハウジング本体73が取り付けられていてポンプのハウジング71を構成している。ハウジング71内の回転軸65にはベーン式真空ポンプ70のロータ34が取り付けられていて、ロータ34とハウジング71との間にはこの発明による円形環状の突条43と円形環状の溝44とが設けられていて、ほぼ全周に亘るラビリンス状のシールが形成されている。
図11は図1乃至図4に示す本発明のベーン式真空ポンプと図12および図13に示す従来のベーン式真空ポンプとを真空度について比較試験した結果を示すグラフである。グラフの2本の曲線AおよびBは、横軸の運転時間(秒)の変化に対するベーン式真空ポンプの吸引側の真空度を水銀柱の高さ(mmHg)で表したときの変化の様子を表すものであり、曲線Aは本発明のベーン式真空ポンプの真空特性を表し、曲線Bは従来のベーン式真空ポンプの真空特性を示すものである。このグラフからポンプの始動から定常運転状態に達するまでは真空度の差が徐々に大きくなり、定速運転状態では真空度自体も定常状態となり、本発明による場合の方が真空度が約12%から約15%程度高くなることが理解できる。
以上の説明から明らかな通り、本発明のベーン式真空ポンプは、ハウジング21とロータ34との間で回転軸31と同心に設けられ、互いに周方向に相対移動可能(即ち回転可能)に嵌合した少なくとも一組の円形で環状の突条43、47と円形で環状の溝44、48とを有するほぼ全周に亘るラビリンス状のシールを備えたものである。
円形環状の突条43がロータ34の端面に設けられ、円形環状の溝44がハウジング21に設けられていても良いし、円形環状の溝48がロータ34の側端面に設けられ、円形環状の突条47がハウジング21に設けられ、ベーン42の側端面にハウジング21の突条47を受け入れてベーン42の径方向運動を妨げないようにする凹部49が設けられていてもよい。また、ラビリンス状のシールが同心円状に複数組設けられていてもよいし、ラビリンス状のシールがロータの両側端面に設けられたものでもよい。
The vane-type vacuum pump of the present invention shown in FIGS. 1 to 3 includes a housing 21. The housing 21 has a cup-shaped main body 23 having a valved suction port 22 and a discharge port 24, and an open end of the main body 23 is closed. And a bracket 26 for forming a pump chamber 25 therein. The pump chamber 25 is a cylindrical space formed by two parallel end surfaces 27 and 28 of the housing 21 and a cylindrical surface 29 between the end surfaces 27 and 28. A bearing 30 of the bracket 26 supports a rotating shaft 31 disposed through the cylindrical pump chamber 25, and an inner end of the rotating shaft 31 is supported by a bearing 32 of the main body 23. The rotating shaft 31 is arranged eccentrically with respect to the central axis of the pump chamber 205. A pinion, a pulley, a sprocket, a cam, and the like 33 for receiving a driving force transmitted from a driving device (not shown) such as an external gear are fixed to the outer end of the rotating shaft 31.
The housing 21 houses a rotor 34 that is concentric with the rotary shaft 31 and thus eccentric with respect to the pump chamber 25 (housing 21). The rotor 34 is a substantially cylindrical member having two flat end surfaces 35, 36 and a cylindrical surface 37, and is rotated in the housing 21 by the rotation shaft 31. The rotor 34 is provided with four slots 38 extending through the rotor 34 in the radial direction from the end face to the end face through the axial center. In the slot 38, plate-like vanes 42 are provided, which can be slidably contacted with the cylindrical surface 29 of the housing 21 at the tip 39, and are slidably contacted with the end surfaces 27 and 28 of the housing 21 with flat end surfaces 40 and 41, respectively. , And can be slid radially in the slot 38.
As best shown in FIGS. 3 and 4, the end faces 35 and 36 of the rotor 34 are provided with annular protrusions 43 concentric with the rotary shaft 31 except for the positions where the slots 38 are formed. It has been. The end faces 35 and 36 of the housing 21 are provided with a continuous annular groove 44 provided at a position corresponding to the annular protrusion 43 and receiving the protrusion 43. Both the radial gap 45 and the axial gap 46 between the groove 44 and the protrusion 43 are made larger than the gap between the end faces 35 and 36 of the rotor 34 and the end faces 27 and 28 of the housing 21. Also, the axial gap 46 is larger than the radial gap 45. For this reason, a space in which engine oil can be stored is formed between the annular protrusion 43 and the annular groove 44. Moreover, since this space is formed between the protrusion 43 and the groove | channel 44, it comprises the labyrinth-like seal which prevents the movement of engine oil in the radial direction.
When the rotor 34 is rotated counterclockwise in FIG. 2, the vane 42 moves radially outward in the slot 38 due to centrifugal force, and the tip 39 of the vane 42 abuts against the cylindrical surface 29 of the pump chamber 25 and slides. Move. Since the rotation shaft 31 of the rotor 34 is eccentric with respect to the center of the pump chamber 25, the volume of the compression chamber formed between the vanes 42 changes with the rotation of the rotor 34, and air is supplied from the suction port 22 of the housing 21. Is sucked and pumped to the discharge port 24 to generate a vacuum on the side of the suction port 22 connected to a tank (not shown).
At this time, various sliding parts in the vane type vacuum pump, in particular, the part where the vane 42 is in sliding contact with other parts such as the rotor 34, the end faces 27 and 28 of the housing 1 and the cylindrical surface 29, and the bearing part, Oil is supplied from the outside, and those sliding parts are lubricated.
According to the present invention, the sliding portion between the side end surfaces 27 and 28 of the housing 1 and the axial end surfaces 35 and 36 of the rotor 34 has an annular ridge 43 concentric with the rotary shaft 31 and a ridge. A continuous annular groove 44 for receiving the valve 43 is provided, and a labyrinth-like seal bent in a U-shape is formed between the groove 44 and the protrusion 43, and at the same time, engine oil is stored. A space is created. Therefore, the labyrinth-like seal can prevent the engine oil from flowing out from the sliding portion and destroying the oil film, and the engine oil can be continuously supplied from the storage space. In addition, the airtightness between the rotor and the housing is ensured.
FIGS. 5 to 7 show an example in which annular ridges 47 are provided on the side walls 27 and 28 of the housing 21 and annular grooves 48 are provided on the end surfaces 35 and 36 of the rotor 34. The protrusion 47 on the housing 21 side is an annular protrusion having a substantially rectangular cross section that is concentric with the rotating shaft 31 of the rotor 34. The groove 48 provided in the rotor 34 is an annular protrusion concentric with the rotating shaft 31 that receives the protrusion 47, but is partially cut at the portion of the slot 38 that accommodates the vane 42. The end face 40 of the vane 42 is provided with a recess 49 as a relief groove so that the vane 42 can slide in the radial direction with respect to the rotor 34 in the slot 38 without interfering with the protrusion 47 on the housing 21 side. .
Also in this vane-type vacuum pump, an annular ridge 47 on the housing 21 side is formed on a sliding portion between the side end surfaces 27 and 28 of the housing 1 and the axial end surfaces 35 and 36 of the rotor 34. An annular groove 48 for receiving the protrusion 47 is provided on the rotor 34 side, and a labyrinth-like seal bent in a U shape is formed between the groove 48 and the protrusion 47. A space for storing engine oil is formed. Therefore, wear between the sliding portions is prevented and airtightness between the rotor and the housing is ensured.
In the vane type vacuum pump shown in FIG. 8, double annular protrusions 51 and 52 are provided on the end face of the rotor 34, and double annular grooves 53 and 54 are provided on the housing 21 side. Yes. Each of the protrusions 51 and 52 and the grooves 53 and 54 have the same structure as shown in FIGS. In this vane type vacuum pump, since the labyrinth-like seal and the oil storage space are doubled, the sealing effect is greatly improved as compared with the previous embodiment.
In the vane vacuum pump shown in FIG. 9, double annular grooves 55 and 56 are provided on the end face of the rotor 34, and double annular protrusions 57 and 58 are provided on the housing 21 side. Yes. Each of the grooves 55 and 56 and the ridges 57 and 58 have the same structure as shown in FIGS. The escape grooves 59 provided in the end faces 47 and 48 of the vane 42 are sufficiently large in the radial direction so as not to interfere with the double protrusions 55 and 56 and the grooves 57 and 58. In this vane type vacuum pump, since the labyrinth-like seal and the oil storage space are doubled, the sealing effect is greatly improved.
FIG. 10 is a schematic cross-sectional view showing an example in which the vane type vacuum pump shown in FIGS. 1 to 4 is directly connected to the vehicle alternator. In the illustrated example, the vehicle alternator 60 includes a stator 62 supported in a housing 61 and a rotor 66 supported by bearings 63 and 64 attached to the housing 61 and having a rotation shaft 65. And the left end of the rotary shaft 65 extends outside the housing 61 and enters the housing 71 of the vane type vacuum pump 70 of the present invention. That is, a bracket 72 of a housing 71 of a vane type vacuum pump 70 is attached to the housing 61 of the vehicle alternator 60, and the bracket 72 has no bearing, but a housing body 73 is attached to the pump housing 71. Is configured. A rotor 34 of a vane type vacuum pump 70 is attached to a rotating shaft 65 in the housing 71, and a circular annular protrusion 43 and a circular annular groove 44 according to the present invention are provided between the rotor 34 and the housing 71. A labyrinth-like seal is provided over almost the entire circumference.
FIG. 11 is a graph showing the results of a comparative test on the degree of vacuum between the vane vacuum pump of the present invention shown in FIGS. 1 to 4 and the conventional vane vacuum pump shown in FIGS. 12 and 13. Two curves A and B in the graph represent the state of change when the vacuum degree on the suction side of the vane type vacuum pump is expressed by the height of the mercury column (mmHg) with respect to the change in the operation time (second) on the horizontal axis. Curve A represents the vacuum characteristics of the vane vacuum pump of the present invention, and curve B represents the vacuum characteristics of the conventional vane vacuum pump. From this graph, the difference in vacuum gradually increases from the start of the pump to the steady operation state, and the vacuum degree itself becomes a steady state in the constant speed operation state, and the degree of vacuum in the case of the present invention is about 12%. Can be understood to be about 15% higher.
As is clear from the above description, the vane vacuum pump of the present invention is provided concentrically with the rotating shaft 31 between the housing 21 and the rotor 34, and is fitted so as to be relatively movable in the circumferential direction (that is, rotatable). A labyrinth-like seal having at least one pair of circular and annular ridges 43 and 47 and circular and annular grooves 44 and 48 is provided over the entire circumference.
A circular annular protrusion 43 may be provided on the end surface of the rotor 34, and a circular annular groove 44 may be provided in the housing 21, or a circular annular groove 48 may be provided on the side end surface of the rotor 34, The protrusion 47 may be provided in the housing 21, and a recess 49 may be provided on the side end surface of the vane 42 so as to receive the protrusion 47 of the housing 21 so as not to prevent the radial movement of the vane 42. A plurality of labyrinth-like seals may be provided concentrically, or a labyrinth-like seal may be provided on both end faces of the rotor.

以上のように、本発明にかかるベーン式真空ポンプは、特に車両の制動倍力装置を構成するタンク内を真空にするための真空ポンプとして有用である。  As described above, the vane type vacuum pump according to the present invention is particularly useful as a vacuum pump for evacuating the tank constituting the braking booster of the vehicle.

Claims (4)

吸入口および排出口を有する円筒状のポンプ室を持つハウジングと、
上記ポンプ室内に偏心して収納されたロータと、
上記ロータに固定され、上記ポンプ室内で上記ロータを回転させる回転軸と、
上記ポンプ室内で上記ハウジングに対して摺接しつつ上記ロータに嵌装されて径方向に出入自在なベーンとを備え、
上記ロータの回転により上記ポンプ室内の空気を上記吸入口から上記排出口に圧送させて、上記吸入口側に真空を発生させるベーン式真空ポンプに於いて、
上記ハウジングと上記ロータとの間で上記回転軸と同心に設けられ、互いに周方向に相対移動可能に嵌合した少なくとも一組の円形環状溝と円形環状突条とを有するほぼ全周に亘るラビリンス状のシールを備え、
上記円形環状溝が上記ロータの側端面に設けられ、
上記円形環状突条がハウジングに設けられ、
上記ベーンの側端面に上記突条を受け入れて上記ベーンの径方向運動を妨げないようにする凹部が設けられたことを特徴とするベーン式真空ポンプ。
A housing having a cylindrical pump chamber having an inlet and an outlet;
A rotor housed eccentrically in the pump chamber;
A rotating shaft fixed to the rotor and rotating the rotor in the pump chamber;
A vane fitted in the rotor and sliding in and out in the radial direction while being in sliding contact with the housing in the pump chamber;
In a vane-type vacuum pump that causes air in the pump chamber to be pumped from the suction port to the discharge port by rotation of the rotor to generate a vacuum on the suction port side.
A labyrinth extending over substantially the entire circumference having at least one pair of circular annular grooves and circular annular ridges provided concentrically with the rotating shaft between the housing and the rotor and fitted so as to be movable relative to each other in the circumferential direction. Shaped seal,
The circular annular groove is provided on a side end surface of the rotor;
The circular annular ridge is provided on the housing,
A vane-type vacuum pump characterized in that a concave portion is provided on a side end face of the vane so as to receive the protrusions so as not to disturb the radial movement of the vane.
上記ラビリンス状のシールが同心円状に複数組設けられたことを特徴とする請求項1記載のベーン式真空ポンプ。2. The vane vacuum pump according to claim 1 , wherein a plurality of sets of the labyrinth seals are provided concentrically. 上記ラビリンス状のシールが上記ロータの両側端面に設けられたことを特徴とする請求項1あるいは2記載のベーン式真空ポンプ。 3. The vane type vacuum pump according to claim 1, wherein the labyrinth seal is provided on both end faces of the rotor. 上記回転軸が車両用交流発電機の出力回転軸であることを特徴とする請求項1乃至3記載のベーン式真空ポンプ。  4. A vane-type vacuum pump according to claim 1, wherein the rotary shaft is an output rotary shaft of a vehicular AC generator.
JP2004525636A 2002-10-15 2002-10-15 Vane type vacuum pump Expired - Fee Related JP4014109B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010661 WO2004036046A1 (en) 2002-10-15 2002-10-15 Vane type vacuum pump

Publications (2)

Publication Number Publication Date
JPWO2004036046A1 JPWO2004036046A1 (en) 2006-02-16
JP4014109B2 true JP4014109B2 (en) 2007-11-28

Family

ID=32104819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004525636A Expired - Fee Related JP4014109B2 (en) 2002-10-15 2002-10-15 Vane type vacuum pump

Country Status (6)

Country Link
EP (1) EP1553301B1 (en)
JP (1) JP4014109B2 (en)
KR (1) KR100607321B1 (en)
CN (1) CN100370141C (en)
DE (1) DE60228765D1 (en)
WO (1) WO2004036046A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3849799B2 (en) * 2005-02-16 2006-11-22 大豊工業株式会社 Vane pump
JP2008128201A (en) 2006-11-24 2008-06-05 Matsushita Electric Works Ltd Vane pump
JP4976827B2 (en) * 2006-11-24 2012-07-18 パナソニック株式会社 Vane pump
JP4811243B2 (en) * 2006-11-24 2011-11-09 パナソニック電工株式会社 Vane pump
ITTO20080033A1 (en) * 2008-01-16 2009-07-17 Vhit Spa VOLUMETRIC PUMP WITH BARRIER AGAINST FLUID DRAWING
CN102878080A (en) * 2012-10-30 2013-01-16 东风汽车公司 Electric vacuum pump
CN103306979B (en) * 2013-06-28 2015-12-30 常州市东南电器电机股份有限公司 Electronic vacuum pump for new energy vehicle brake vacuum booster
CN105317681B (en) * 2014-07-07 2017-11-14 珠海格力节能环保制冷技术研究中心有限公司 Helical-lobe compressor
EP2987951B1 (en) * 2014-08-22 2017-02-15 WABCO Europe BVBA Vacuum pump with eccentrically driven vane
JP6382877B2 (en) 2016-03-24 2018-08-29 大豊工業株式会社 Vane pump
DE102018105144A1 (en) * 2018-03-06 2019-09-12 Schwäbische Hüttenwerke Automotive GmbH Axial sealing element Vacuum pump
CN110374873A (en) * 2019-08-20 2019-10-25 泓道(上海)科技有限公司 Sliding-vane air compressor
KR102301479B1 (en) * 2020-03-27 2021-09-13 엘지전자 주식회사 Rotary compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB455994A (en) * 1935-05-02 1936-11-02 David Hamilton Cockburn Improvements in or relating to pumps and fluid-pressure motors of the rotating vane type
JPS53114510A (en) * 1977-03-17 1978-10-06 Nippon Carbureter Vacuum pump directly coupled to alternator
JP2947030B2 (en) * 1993-11-10 1999-09-13 松下電器産業株式会社 Vane rotary compressor
JPH07279678A (en) * 1994-04-15 1995-10-27 Tochigi Fuji Ind Co Ltd Screw-type supercharger
JPH07317674A (en) * 1994-05-27 1995-12-05 Shuichi Kitamura Unlubricated vane pump
JPH0874767A (en) * 1994-09-07 1996-03-19 Shuichi Kitamura Oilless type rotary pump having vane
CN2239513Y (en) * 1996-04-02 1996-11-06 花少华 Wet vacuum pump
AUPO086196A0 (en) * 1996-07-08 1996-08-01 Boyle, Bede Alfred Rotary engine
SE0003075D0 (en) * 2000-08-31 2000-08-31 Delaval Holding Ab Vacuum pump
JP2002161881A (en) * 2000-11-30 2002-06-07 Denso Corp Vacuum pump

Also Published As

Publication number Publication date
EP1553301A1 (en) 2005-07-13
WO2004036046A1 (en) 2004-04-29
EP1553301B1 (en) 2008-09-03
KR20040094737A (en) 2004-11-10
JPWO2004036046A1 (en) 2006-02-16
CN100370141C (en) 2008-02-20
DE60228765D1 (en) 2008-10-16
KR100607321B1 (en) 2006-07-31
CN1623038A (en) 2005-06-01
EP1553301A4 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
JP4014109B2 (en) Vane type vacuum pump
CN112088250B (en) Scroll compressor having a discharge port
KR100749040B1 (en) Scroll compressor
US20150198161A1 (en) Scroll type compressor
US8241022B2 (en) Rotation-preventing member and scroll compressor
CN1061742C (en) Fluid mechanism
KR102269944B1 (en) Compressor
JP7150870B2 (en) vane pump device
US6663367B2 (en) Shaft seal structure of vacuum pumps
JP4300529B2 (en) Vane pump
JP2770732B2 (en) Lubrication-free vacuum pump
WO2023042328A1 (en) Scroll type fluid machine
JP2019178669A (en) Compressor
JP6374737B2 (en) Cylinder rotary compressor
JP2024048012A (en) Fluid machine
JPH0683977U (en) Vane type fluid machinery
JPS6122151B2 (en)
JPH07233792A (en) Rolling piston type vacuum pump
JP6779807B2 (en) Liquid-sealed vacuum pump
KR100450104B1 (en) Shaft seal structure of vacuum pumps
KR20000067155A (en) Small compressor
JP2023055460A (en) scroll compressor
KR101575357B1 (en) compressor
JP2006029252A (en) Scroll compressor
KR100450105B1 (en) Shaft seal structure of vacuum pumps

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees