WO2022176300A1 - Control device, heat source system, control method, and control program - Google Patents

Control device, heat source system, control method, and control program Download PDF

Info

Publication number
WO2022176300A1
WO2022176300A1 PCT/JP2021/043250 JP2021043250W WO2022176300A1 WO 2022176300 A1 WO2022176300 A1 WO 2022176300A1 JP 2021043250 W JP2021043250 W JP 2021043250W WO 2022176300 A1 WO2022176300 A1 WO 2022176300A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat source
temperature
outlet
set temperature
flow rate
Prior art date
Application number
PCT/JP2021/043250
Other languages
French (fr)
Japanese (ja)
Inventor
隼佑 磯野
悠 竹中
智 二階堂
勝哉 坂口
林日 崔
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN202180093631.0A priority Critical patent/CN116829876A/en
Priority to US18/276,960 priority patent/US20240125515A1/en
Publication of WO2022176300A1 publication Critical patent/WO2022176300A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/238Flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to a control device, a heat source system, a control method, and a control program.
  • Patent Literature 1 discloses a heat source system including two heat source machines.
  • the set temperature of the chilled water outlet of each heat source machine is determined according to the temperature of the chilled water.
  • the set temperature of the cold water outlet of each heat source device may be set high in order to prevent operation exceeding the capacity of each heat source device.
  • the present disclosure has been made in view of such circumstances, and provides a control device, a heat source system, a control method, and a control program that can deliver a heat medium at a required temperature more effectively. intended to
  • a first aspect of the present disclosure is a control device applied to a heat source system including a plurality of heat source devices connected in series, wherein the measured value of the heat medium flow rate and the inlet temperature of the heat medium in each of the heat source devices
  • the control device includes a setting unit that sets the preset temperature of the heat medium in each heat source device based on the measured value and the required outlet temperature of the heat medium in the heat source system.
  • a second aspect of the present disclosure is a control method for a heat source system including a plurality of heat source devices connected in series, comprising a measured value of a heat medium flow rate and a measured value of an inlet temperature of the heat medium in each of the heat source devices. and setting the outlet preset temperature of the heat medium in each heat source device based on the required outlet temperature of the heat medium in the heat source system.
  • a third aspect of the present disclosure is a control program for a heat source system including a plurality of heat source devices connected in series, comprising a measured value of a heat medium flow rate and a measured value of an inlet temperature of the heat medium in each of the heat source devices. and a required outlet temperature of the heat medium in the heat source system.
  • FIG. 1 is a diagram showing a schematic configuration of a heat source system according to an embodiment of the present disclosure
  • FIG. It is a figure showing an example of hardware constitutions of a control device concerning one embodiment of this indication.
  • 3 is a functional block diagram showing functions provided by a control device according to an embodiment of the present disclosure;
  • FIG. 6 is a flow chart showing an example of a procedure for setting the outlet set temperature of the lower heat source device according to an embodiment of the present disclosure;
  • 4 is a flow chart showing an example of a procedure for setting an outlet set temperature of a higher-level heat source device according to an embodiment of the present disclosure;
  • FIG. 10 is a diagram showing the effect of setting processing of the outlet temperature setting of the control device according to the embodiment of the present disclosure;
  • FIG. 10 is a diagram showing the effects of a modification in the process of setting the outlet temperature setting of the control device according to the embodiment of the present disclosure;
  • FIG. 1 is a diagram showing a schematic configuration of a heat source system 1 according to this embodiment.
  • the heat source system 1 has a plurality of heat source machines connected in series.
  • the heat source equipment on the upstream side in the cold water flow is the upper heat source equipment 2a
  • the heat source equipment on the downstream side is the lower heat source equipment 2b.
  • the heat source system 1 is provided with a cold water pump 5 for adjusting the flow rate of cold water supplied to the heat source machine.
  • the upper side heat source machine 2a and the lower side heat source machine 2b are fixed-speed heat source machines.
  • the heat source machine is, for example, a heat pump type heat source machine, and examples thereof include a turbo chiller, an absorption chiller, a heat recovery machine, and the like.
  • the specifications of the heat source machine are not limited to fixed speed.
  • the lower heat source device 2b has a rated capacity of 2232.6 kW, a rated cold water inlet temperature of 14.6°C, and a rated cold water outlet temperature of 5°C (temperature difference of 9.6°C). ) and the rated cold water flow rate is 200 m3/h.
  • the rated capacity is 2418.6 kW
  • the rated cold water inlet temperature is 25°C
  • the rated cold water outlet temperature is 14.6°C (temperature difference 10.4°C).
  • the rated cold water flow rate is 200 m3/h.
  • the specifications of the heat source equipment are only examples, and are not limited to the above specifications.
  • the set value of the cold water temperature (chilled water supply temperature) on the outlet side of the upper heat source device 2a is referred to as the outlet set temperature (upper SP) C2SP
  • the cold water temperature (chilled water temperature) on the outlet side of the lower heat source device 2b water supply temperature) is referred to as outlet set temperature (lower SP) C1SP.
  • these setpoints are target values.
  • the chilled water feed temperature requested by the load side is called the requested outlet temperature (required SP).
  • chilled water for example, 5° C. to 30° C.
  • an external load 4 such as a cooling device
  • the cooled cold water is supplied to the external load 4, returned to the heat source system 1 again, and cooled.
  • the heat source system 1 is provided with a measuring device TE2 for measuring the cold water inlet temperature C2si in the upper heat source device 2a and a measuring device TE1 for measuring the cold water inlet temperature C1si in the lower heat source device 2b. Measured values are output to the control device 20, which will be described later.
  • the heat source system 1 is provided with a measuring instrument TE3 that measures the outlet temperature of cold water in the lower heat source device 2b.
  • a flow meter FT for measuring the cold water flow rate (heat medium flow rate) C12sf is provided downstream of the lower heat source device 2b (between the lower heat source device 2b and the external load 4). is output to the control device 20, which will be described later.
  • FIG. 1 is an example, and the flowmeter may be installed at another position.
  • the control device 20 controls the operation of the heat source system 1. Specifically, an outlet set temperature of each heat source device is set, and each heat source device is controlled so as to send cold water at the outlet set temperature.
  • each heat source device is controlled based only on the temperature of the cold water, if the temperature of the cold water flowing into the heat source device is high, the heat source device may be operated so as not to be overloaded. In such a case, sufficient cooling may not be achieved and the required outlet temperature may not be met.
  • the control device 20 controls each heat source machine in consideration of not only the temperature state of the cold water but also the flow rate of the cold water.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the control device 20 according to this embodiment.
  • the control device 20 is a computer system (computer system).
  • a RAM (Random Access Memory) 13 functioning as a work area
  • a hard disk drive (HDD) 14 as a large-capacity storage device
  • a communication unit 15 for connecting to a network or the like.
  • a solid state drive (SSD) may be used as the mass storage device.
  • SSD solid state drive
  • the control device 20 may include an input section such as a keyboard and a mouse, and a display section such as a liquid crystal display device for displaying data.
  • the storage medium for storing programs and the like executed by the CPU 11 is not limited to the ROM 12.
  • other auxiliary storage devices such as magnetic disks, magneto-optical disks, and semiconductor memories may be used.
  • a series of processes for realizing various functions described later is recorded in the hard disk drive 14 or the like in the form of a program. As a result, various functions to be described later are realized.
  • the program may be pre-installed in the ROM 12 or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 3 is a functional block diagram showing the functions of the control device 20. As shown in FIG. As shown in FIG. 3 , the control device 20 includes a setting section 21 , an update section 22 and a control section 23 .
  • the setting unit 21 Based on the measured value of the cold water flow rate, the measured values (C1si, C2si) of the cold water inlet temperature in the heat source device, and the required outlet temperature of the cold water in the heat source system 1, the setting unit 21 sets the cold water outlet temperature of each heat source device.
  • the setting unit 21 multiplies the temperature difference between the rated inlet temperature and the rated outlet temperature in the heat source device by a correction coefficient that is the ratio of the rated value of the cold water flow rate to the measured value of the cold water flow rate, and sets the value to the inlet temperature. By subtracting from the temperature measurement value, the outlet set temperature of each heat source machine is set.
  • the set outlet temperature C1SP of the lower heat source device 2b is given by the following formula (1).
  • C1SP C1si - (C1ci - C1co) x (C12cf/C12sf) x A1 (1)
  • C1SP is the outlet set temperature
  • C1si is the inlet temperature (measured value)
  • C1ci is the rated inlet temperature
  • C1co is the rated outlet temperature
  • C12sf is the chilled water flow rate (measured value).
  • C12cf is the rated cold water flow rate
  • A1 is a parameter (coefficient) for adjustment.
  • the coefficient may be set (changed) based on, for example, specific gravity and specific heat or deterioration of the heat source equipment. For example, the coefficient may be changed when the specific gravity and specific heat change depending on the type of cold water. For example, the coefficient may be changed when the rated capacity cannot be obtained due to deterioration of the heat source equipment.
  • C12cf/C12sf is a correction coefficient based on the cold water flow rate.
  • A1 is basically 1. That is, if C1si and C12sf are measured, C1SP is calculated. For C1co, for example, the required outlet temperature is used.
  • the outlet set temperature C2SP of the upper heat source device 2a is given by the following formula (2).
  • C2SP C2si-(C2ci-C2co) x (C12cf/C12sf) x A2 (2)
  • C2SP is the outlet setpoint temperature
  • C2si is the inlet temperature (measured value)
  • C2ci is the rated inlet temperature
  • C2co is the rated outlet temperature
  • C12sf is the chilled water flow rate (measured value).
  • C12cf is the rated cold water flow rate
  • A2 is a parameter (coefficient) for adjustment.
  • (C12cf/C12sf) is a correction coefficient based on the cold water flow rate.
  • A2 is basically 1. That is, if C2si and C12sf are measured, C2SP is calculated.
  • the outlet set temperature of the lower heat source device 2b and the outlet set temperature of the higher heat source device 2a are calculated in consideration of the cold water flow rate.
  • the method of setting the outlet set temperature in consideration of the cold water flow rate is not limited to the above, as long as the outlet set temperature is set to be lower as the measured value of the cold water flow rate is lower.
  • the update unit 22 updates the outlet temperature setting of each heat source machine. Specifically, the update unit 22 compares the outlet set temperature based on the chilled water flow rate set for the heat source device on the most downstream side among the heat source devices connected in series with the required outlet temperature, The higher one is updated as the outlet set temperature of the heat source device on the most downstream side. In this embodiment, since two heat source devices are connected in series, the heat source device on the most downstream side is the lower heat source device 2b.
  • the update unit 22 compares the outlet set temperature C1SP of the lower heat source device 2b calculated by the formula (1) with the required outlet temperature determined by the request from the load side, and selects the higher one as the lower heat source device. Update as the outlet set temperature of 2b.
  • the updating unit 22 compares the outlet set temperature based on the cold water flow rate with the outlet set temperature based on the rated capacity ratio in the heat source devices other than the heat source device on the most downstream side among the serially connected heat source devices, This is updated as the outlet set temperature of the heat source unit.
  • the heat source machine other than the heat source machine on the most downstream side is the upper heat source machine 2a.
  • the update unit 22 compares the outlet set temperature C2SP of the higher side heat source device 2a calculated by Equation (2) with the outlet set temperature based on the rated capacity ratio, and determines the higher one as the outlet temperature of the higher side heat source device 2a. Update as set temperature.
  • the outlet setting temperature based on the rated capacity ratio is a method of distributing the load based on the preset capacity ratio corresponding to each heat source machine. Specifically, the outlet set temperature of each heat source device is calculated based on the result of distributing the difference between the cold water inlet temperature of the heat source system 1 and the required outlet temperature according to the rated capacity ratio of each heat source device. .
  • the outlet set temperature C2SPr of the upper heat source device 2a based on the rated capacity ratio is expressed by the following formula (3).
  • C1cc is the rated refrigerating capacity of the lower heat source machine
  • C2cc is the rated refrigerating capacity of the upper heat source machine 2a. That is, [C1cc/(C1cc+C2cc)] is the rated capacity ratio. That is, if C2si is measured, C2SPr is calculated.
  • the update unit 22 is based on the outlet set temperature C2SP of the upper heat source device 2a calculated by the formula (2) and the rated capacity ratio calculated by the formula (3).
  • the outlet set temperature C2SPr is compared, and the higher one is updated as the outlet set temperature of the upper heat source device 2a.
  • Control may be executed using the outlet set temperature of each heat source machine set by the setting unit 21 without providing the updating unit 22 .
  • the control unit 23 controls each heat source device using the outlet set temperature of each heat source device set by the setting unit 21 and the updating unit 22 .
  • the lower heat source device 2b is controlled to send out cold water having a set outlet set temperature.
  • the upper heat source device 2a is controlled so as to send out cold water having a set outlet set temperature. In this way, cold water is delivered at a temperature that satisfies the outlet setting corresponding to the temperature of the incoming cold water.
  • FIG. 4 is a flow chart showing an example of a procedure for setting the outlet set temperature of the lower heat source device 2b.
  • FIG. 5 is a flow chart showing an example of a procedure for setting the outlet set temperature of the upper heat source device 2a. The flows shown in FIGS. 4 and 5 are repeatedly executed at predetermined control cycles, for example, when the heat source system 1 is in operation.
  • each measurement value and rated specification information are acquired (S101).
  • S101 information for calculating formula (1) is acquired.
  • the outlet set temperature of the lower heat source device 2b is calculated (S102).
  • the outlet set temperature is calculated using equation (1), taking into consideration the flow rate of cold water.
  • the outlet set temperature (the outlet set temperature according to formula (1)) considering the flow rate of cold water is higher than the required outlet temperature (S103).
  • the outlet set temperature considering the flow rate of cold water is higher than the required outlet temperature (YES determination in S103)
  • the outlet set temperature considering the flow rate of cold water is used as the outlet set temperature of the lower heat source device 2b (S104 ).
  • the required outlet temperature is used as the outlet set temperature of the lower heat source device 2b (S105).
  • each measurement value and rated specification information are acquired (S201).
  • information for calculating equations (2) and (3) is acquired.
  • the outlet set temperature of the upper heat source device 2a is calculated (S202).
  • the outlet set temperature is calculated using equation (2) in consideration of the flow rate of cold water.
  • the outlet set temperature is calculated in consideration of the rated capacity ratio (S203).
  • the processing of S202 and S203 may be parallel processing or serial processing.
  • the outlet set temperature considering the flow rate of chilled water (the outlet set temperature by formula (2)) is greater than the outlet set temperature (the outlet set temperature by formula (3)) considering the rated capacity ratio.
  • the outlet set temperature considering the flow rate of chilled water is higher than the outlet set temperature considering the rated capacity ratio (YES determination in S204)
  • the chilled water flow rate is taken into consideration as the outlet set temperature of the upper heat source device 2a.
  • the outlet set temperature is used (S205).
  • the rated capacity ratio is taken into account as the outlet set temperature of the upper heat source device 2a.
  • the outlet set temperature is used (S206).
  • the outlet set temperature of the lower heat source device 2b and the outlet set temperature of the upper heat source device 2a are set, and each heat source device is controlled based on the set outlet set temperature.
  • the vertical axis represents the set temperature of the cold water outlet
  • the horizontal axis represents the inlet temperature of the cold water (the temperature of the cold water flowing into the upper heat source device 2a).
  • Rated load means that the cold water inlet temperature reaches the rated cold water inlet temperature.
  • the cold water flow rate is less than the rated cold water flow rate (for example, 180 m ⁇ 3>/h).
  • the outlet set temperature of the upper heat source device 2a in this embodiment is indicated as L2, and the outlet set temperature of the lower heat source device 2b is indicated as L1.
  • EX2 indicates the outlet set temperature of the upper heat source device 2a in the reference example
  • EX1 indicates the outlet set temperature of the lower heat source device 2b.
  • the reference example is an example of setting the outlet set temperature without considering the flow rate of cold water.
  • the outlet side set temperature of the lower heat source device 2b is set as the required outlet temperature, and the higher side
  • the set temperature on the outlet side of the heat source equipment 2a is set according to the rated capacity ratio.
  • the rated load is exceeded (when the chilled water inlet temperature is higher than the rated chilled water inlet temperature)
  • the chilled water inlet temperature is subtracted by a predetermined value to prevent the heat source unit from exceeding its capacity. (For example, a value obtained by subtracting the rated cold water inlet temperature difference) is assumed to set the outlet set temperature.
  • L1 and EX1 which are the outlet set temperatures of the lower heat source device 2b, are equal. Specifically, in either case, the required outlet temperature is set as the outlet set temperature. Then, in the region where the rated load is exceeded, the outlet set temperature rises in EX1 of the reference example.
  • the outlet set temperature is set in consideration of the fact that the cold water flow rate is less than the rated cold water flow rate. used as Then, even if the load further increases, the outlet set temperature is kept low. That is, in this embodiment, cold water satisfying the required outlet temperature can be delivered in a wider load range. The outlet set temperature can be set low even in a high load area. The above effect increases as the cold water flow rate is lower than the rated cold water flow rate.
  • L2 and EX2 which are the outlet set temperatures
  • the set outlet temperature is set with the same increasing tendency in the region up to the rated load.
  • the outlet set temperature based on the rated capacity ratio is applied.
  • the outlet set temperature rises in EX2 of the reference example.
  • the outlet set temperature is set considering that the flow rate of cold water is less than the rated cold water flow rate, so even after exceeding the rated load, it is equal to the area up to the rated load.
  • the outlet set temperature is set with an increasing trend (ie the outlet set temperature based on the rated capacity ratio). Then, even if the load further increases, the outlet set temperature is kept low. That is, the load states of the upper heat source equipment 2a and the lower heat source equipment 2b are balanced in a wider load range, and high COP operation can be performed.
  • the outlet set temperature can be set low even in a high-load region. The above effect increases as the cold water flow rate is lower than the rated cold water flow rate.
  • this embodiment can effectively satisfy the required outlet temperature in a wider load range (cold water inlet temperature range). Then, the operation state of each heat source machine is balanced in a wider range, and high COP operation becomes possible.
  • FIG. 7 shows the characteristics of the above-described reference example and the modified example of this embodiment.
  • setting processing is performed regardless of whether the cold water inlet temperature is higher than the rated cold water inlet temperature.
  • a modified example of this embodiment is an example in which control switching is performed according to the relationship between the rated load and the load state. Specifically, in the modified example, when the load is up to the rated load (when the chilled water inlet temperature is lower than the rated chilled water inlet temperature), the outlet side set temperature of the lower heat source device 2b is set as the required outlet temperature, and the upper side The set temperature on the outlet side of the heat source equipment 2a is set according to the rated capacity ratio.
  • the outlet side set temperature of the lower heat source device 2b is set by equation (1)
  • the upper side The preset temperature on the outlet side of the heat source device 2a is set by Equation (2).
  • the outlet set temperature of the upper heat source device 2a in the modified example is indicated as L2r
  • the outlet set temperature of the lower heat source device 2b is indicated as L1r.
  • the required outlet temperature of the lower heat source device 2b is used as the outlet set temperature up to about the rated load. Then, the setting method is switched in the region near the rated load, and the outlet set temperature is set by equation (1). Therefore, in the vicinity of the rated load, the set outlet temperature may temporarily drop and fall below the required outlet temperature. Up to about the rated load, the outlet set temperature of the upper heat source device 2a is controlled according to the rated capacity ratio, the setting method is switched in the region near the rated load, and the outlet set temperature is set by equation (2). . Therefore, there is a possibility that the set outlet temperature will drop temporarily near the rated load and the COP will drop.
  • the control device in the heat source system 1 in which a plurality of heat source machines are connected in series, the measured cold water flow rate,
  • the outlet temperature of each heat source device is set using the measured cold water inlet temperature of each heat source device and the required outlet temperature. Therefore, it is possible to deliver cold water at the required outlet temperature more effectively in consideration of the cold water flow rate. For example, even if the chilled water inlet temperature in the heat source equipment is high, if the chilled water flow rate is low, chilled water having the required outlet temperature can be delivered within the capacity of the refrigerator.
  • the outlet set temperature based on the chilled water flow rate is compared with the required outlet temperature, and the higher one is updated as the outlet set temperature of the heat source device on the most downstream side, making it possible to deliver chilled water at the required outlet temperature more reliably. becomes.
  • the outlet set temperature based on the chilled water flow rate is compared with the outlet set temperature based on the rated capacity ratio, and the higher one is updated as the outlet set temperature of the heat source equipment, so it is possible to operate more effectively at a high COP. .
  • a control device (20) according to the present disclosure is a control device (20) applied to a heat source system (1) including a plurality of heat source machines connected in series, the measured value of a heat medium flow rate, and a setting unit (21) for setting the outlet set temperature of the heat medium in each heat source device based on the measured value of the inlet temperature of the heat medium in the heat source device and the required outlet temperature of the heat medium in the heat source system (1);
  • the heat source machines are the upper heat source machine 2a and the lower heat source machine 2b.
  • the control device (20) in the heat source system (1) in which a plurality of heat source devices are connected in series, the measured value of the heat medium flow rate and the measured value of the inlet temperature of the heat medium of each heat source device , and the required outlet temperature, the outlet temperature of each heat source machine is set. Therefore, the heat medium having the required outlet temperature can be delivered more effectively in consideration of the heat medium flow rate. For example, even when the inlet temperature of the heat medium in the heat source equipment is high, if the heat medium flow rate is low, it is possible to deliver the heat medium at the required outlet temperature within the capacity of the refrigerator.
  • the setting unit (21) sets the outlet set temperature of each heat source device such that the lower the measured value of the heat medium flow rate, the lower the outlet set temperature of each heat source device. may be set.
  • control device (20) even when the inlet temperature of the heat medium in the heat source equipment is high, if the flow rate of the heat medium is low, it becomes possible to deliver the heat medium with a lower temperature. .
  • the setting unit (21) sets the rated value of the heat medium flow rate with respect to the measured value of the heat medium flow rate to the temperature difference between the rated inlet temperature and the rated outlet temperature of the heat source equipment.
  • the correction coefficient which is a ratio
  • control device (20) even when the inlet temperature of the heat medium in the heat source equipment is high, if the flow rate of the heat medium is low, the heat medium with a lower temperature is delivered within the capacity of the refrigerator. It becomes possible to
  • a control device (20) controls an outlet set temperature based on a heat medium flow rate set for the heat source device on the most downstream side among the heat source devices connected in series, a required outlet temperature, and and updating the higher one as the outlet set temperature of the heat source machine on the most downstream side.
  • the outlet set temperature based on the heat medium flow rate is compared with the required outlet temperature, and the higher one is updated as the outlet set temperature of the heat source device on the most downstream side. It is possible to reliably deliver the heat medium having the required outlet temperature.
  • the control device (20) calculates the difference between the inlet temperature of the heat medium of the heat source system (1) and the required outlet temperature based on the result of distributing the difference according to the rated capacity ratio of each of the heat source equipment. using the outlet set temperature of each of the heat source devices connected in series, the outlet set temperature based on the heat medium flow rate and the rated An update unit (22) may be provided that compares the outlet set temperature based on the capacity ratio and updates the higher one as the outlet set temperature of the heat source equipment.
  • the outlet set temperature based on the heat medium flow rate and the outlet set temperature based on the rated capacity ratio are compared, and the higher one is updated as the outlet set temperature of the heat source equipment. It becomes possible to operate at a high COP more effectively.
  • a heat source system (1) includes a plurality of serially connected heat source machines and the control device (20).
  • a control method is a control method for a heat source system (1) including a plurality of heat source devices connected in series, wherein the measured value of the heat medium flow rate and the inlet temperature of the heat medium in each of the heat source devices.
  • a control program is a control program for a heat source system (1) including a plurality of heat source devices connected in series, and includes a measured value of a heat medium flow rate and an inlet temperature of the heat medium in each of the heat source devices. Based on the measured value and the required outlet temperature of the heat medium in the heat source system (1), the computer is caused to set the preset temperature of the heat medium in each heat source machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to provide a control device, a heat source system, a control method, and a control program with which a heat medium at a required temperature can be more effectively sent out. This control device, which is applied to a heat source system 1 comprising a plurality of heat source machines (2a), (2b) connected in series, comprises a setting unit which sets the outlet setting temperatures of cool water in the respective heat source machines (2a), (2b) on the basis of: a measured value of a cool water flow rate, measured values of inlet temperatures of the cool water in the respective heat source machines (2a), (2b); and the required outlet temperature of the cool water in the heat source system (1).

Description

制御装置及び熱源システム、並びに制御方法、並びに制御プログラムControl device, heat source system, control method, and control program
 本開示は、制御装置及び熱源システム、並びに制御方法、並びに制御プログラムに関するものである。 The present disclosure relates to a control device, a heat source system, a control method, and a control program.
 複数の熱源機を直列に接続することで、大温度差の冷水(熱媒)を負荷側へ送水することができる。例えば、2台の熱源機を備えた熱源システムは、特許文献1に開示されている。 By connecting multiple heat source units in series, cold water (heat medium) with a large temperature difference can be sent to the load side. For example, Patent Literature 1 discloses a heat source system including two heat source machines.
特許第6336295号公報Japanese Patent No. 6336295
 このような熱源システムでは、冷水の温度状態に応じて各熱源機の冷水の出口設定温度を決定している。しかしながら、例えば、熱源システムへ流入する冷水の温度が高い場合には、各熱源機の能力を上回る運転を防止するため、各熱源機の冷水の出口設定温度が高く設定される場合がある。 In such a heat source system, the set temperature of the chilled water outlet of each heat source machine is determined according to the temperature of the chilled water. However, for example, when the temperature of cold water flowing into the heat source system is high, the set temperature of the cold water outlet of each heat source device may be set high in order to prevent operation exceeding the capacity of each heat source device.
 本開示は、このような事情に鑑みてなされたものであって、より効果的に要求される温度の熱媒を送出することのできる制御装置及び熱源システム、並びに制御方法、並びに制御プログラムを提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a control device, a heat source system, a control method, and a control program that can deliver a heat medium at a required temperature more effectively. intended to
 本開示の第1態様は、直列に接続された複数の熱源機を備える熱源システムに適用される制御装置であって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する設定部を備える制御装置である。 A first aspect of the present disclosure is a control device applied to a heat source system including a plurality of heat source devices connected in series, wherein the measured value of the heat medium flow rate and the inlet temperature of the heat medium in each of the heat source devices The control device includes a setting unit that sets the preset temperature of the heat medium in each heat source device based on the measured value and the required outlet temperature of the heat medium in the heat source system.
 本開示の第2態様は、直列に接続された複数の熱源機を備える熱源システムの制御方法であって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する工程を有する制御方法である。 A second aspect of the present disclosure is a control method for a heat source system including a plurality of heat source devices connected in series, comprising a measured value of a heat medium flow rate and a measured value of an inlet temperature of the heat medium in each of the heat source devices. and setting the outlet preset temperature of the heat medium in each heat source device based on the required outlet temperature of the heat medium in the heat source system.
 本開示の第3態様は、直列に接続された複数の熱源機を備える熱源システムの制御プログラムであって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する処理をコンピュータに実行させるための制御プログラムである。 A third aspect of the present disclosure is a control program for a heat source system including a plurality of heat source devices connected in series, comprising a measured value of a heat medium flow rate and a measured value of an inlet temperature of the heat medium in each of the heat source devices. and a required outlet temperature of the heat medium in the heat source system.
 本開示によれば、より効果的に要求される温度の熱媒を送出することができるという効果を奏する。 According to the present disclosure, it is possible to deliver the heat medium at the required temperature more effectively.
本開示の一実施形態に係る熱源システムの概略構成を示した図である。1 is a diagram showing a schematic configuration of a heat source system according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る制御装置のハードウェア構成の一例を示した図である。It is a figure showing an example of hardware constitutions of a control device concerning one embodiment of this indication. 本開示の一実施形態に係る制御装置が備える機能を示した機能ブロック図である。3 is a functional block diagram showing functions provided by a control device according to an embodiment of the present disclosure; FIG. 本開示の一実施形態に係る下位側熱源機の出口設定温度の設定処理の手順の一例を示すフローチャートである。6 is a flow chart showing an example of a procedure for setting the outlet set temperature of the lower heat source device according to an embodiment of the present disclosure; 本開示の一実施形態に係る上位側熱源機の出口設定温度の設定処理の手順の一例を示すフローチャートである。4 is a flow chart showing an example of a procedure for setting an outlet set temperature of a higher-level heat source device according to an embodiment of the present disclosure; 本開示の一実施形態に係る制御装置の出口設定温度の設定処理による効果を示す図である。FIG. 10 is a diagram showing the effect of setting processing of the outlet temperature setting of the control device according to the embodiment of the present disclosure; 本開示の一実施形態に係る制御装置の出口設定温度の設定処理における変形例による効果を示す図である。FIG. 10 is a diagram showing the effects of a modification in the process of setting the outlet temperature setting of the control device according to the embodiment of the present disclosure;
 以下に、本開示に係る制御装置及び熱源システム、並びに制御方法、並びに制御プログラムの一実施形態について、図面を参照して説明する。本実施形態では、冷水を熱媒として負荷へ供給する場合を説明するが、熱水を熱媒とすることとしてもよい。 An embodiment of a control device, a heat source system, a control method, and a control program according to the present disclosure will be described below with reference to the drawings. In this embodiment, cold water is used as the heat medium and supplied to the load, but hot water may be used as the heat medium.
 図1は、本実施形態に係る熱源システム1の概略構成を示した図である。図1に示すように、熱源システム1は、直列に接続された複数の熱源機を有している。本実施形態では、冷水流れにおいて上流側の熱源機を上位側熱源機2a、下流側の熱源機を下位側熱源機2bとする。ここでは、2台の熱源機を図示しているが、熱源機の直列台数については特に限定されない。熱源システム1は、熱源機に供給される冷水の流量を調整するための冷水ポンプ5が設けられている。 FIG. 1 is a diagram showing a schematic configuration of a heat source system 1 according to this embodiment. As shown in FIG. 1, the heat source system 1 has a plurality of heat source machines connected in series. In this embodiment, the heat source equipment on the upstream side in the cold water flow is the upper heat source equipment 2a, and the heat source equipment on the downstream side is the lower heat source equipment 2b. Although two heat source devices are illustrated here, the number of heat source devices connected in series is not particularly limited. The heat source system 1 is provided with a cold water pump 5 for adjusting the flow rate of cold water supplied to the heat source machine.
 上位側熱源機2a、下位側熱源機2bは固定速の熱源機である。熱源機は、例えば、ヒートポンプ式熱源機であり、一例として、ターボ冷凍機、吸収式冷凍機、ヒートリカバリー機等が挙げられる。熱源機の仕様については固定速に限定されない。例えば、他の仕様としては、下位側熱源機2bは、定格能力が2232.6kWであり、定格冷水入口温度が14.6℃であり、定格冷水出口温度が5℃(温度差9.6℃)であり、定格冷水流量が200m3/hである。上位側熱源機2aの仕様については、例えば、定格能力が2418.6kWであり、定格冷水入口温度が25℃であり、定格冷水出口温度が14.6℃(温度差10.4℃)であり、定格冷水流量が200m3/hである。熱源機の仕様については上記は一例であり、上記仕様に限定されない。 The upper side heat source machine 2a and the lower side heat source machine 2b are fixed-speed heat source machines. The heat source machine is, for example, a heat pump type heat source machine, and examples thereof include a turbo chiller, an absorption chiller, a heat recovery machine, and the like. The specifications of the heat source machine are not limited to fixed speed. For example, as another specification, the lower heat source device 2b has a rated capacity of 2232.6 kW, a rated cold water inlet temperature of 14.6°C, and a rated cold water outlet temperature of 5°C (temperature difference of 9.6°C). ) and the rated cold water flow rate is 200 m3/h. Regarding the specifications of the upper heat source device 2a, for example, the rated capacity is 2418.6 kW, the rated cold water inlet temperature is 25°C, and the rated cold water outlet temperature is 14.6°C (temperature difference 10.4°C). , the rated cold water flow rate is 200 m3/h. The specifications of the heat source equipment are only examples, and are not limited to the above specifications.
 熱源システム1において、上位側熱源機2aの出口側の冷水温度(冷水送水温度)の設定値を、出口設定温度(上位SP)C2SPといい、下位側熱源機2bの出口側の冷水温度(冷水送水温度)の設定値を、出口設定温度(下位SP)C1SPという。換言するとこれらの設定値は、目標値である。負荷側より要求される冷水送水温度を要求出口温度(要求SP)という。 In the heat source system 1, the set value of the cold water temperature (chilled water supply temperature) on the outlet side of the upper heat source device 2a is referred to as the outlet set temperature (upper SP) C2SP, and the cold water temperature (chilled water temperature) on the outlet side of the lower heat source device 2b water supply temperature) is referred to as outlet set temperature (lower SP) C1SP. In other words, these setpoints are target values. The chilled water feed temperature requested by the load side is called the requested outlet temperature (required SP).
 このような熱源システム1において、冷房装置等の外部負荷4で利用されることにより暖められた冷水(例えば、5℃~30℃)は、上位側熱源機2a、下位側熱源機2bに供給されて所定の要求出口温度(例えば、5℃)まで冷却される。冷却された冷水は、外部負荷4に供給されて、再び熱源システム1に戻され、冷却される。 In such a heat source system 1, chilled water (for example, 5° C. to 30° C.) heated by being used by an external load 4 such as a cooling device is supplied to the upper side heat source machine 2a and the lower side heat source machine 2b. to a predetermined required outlet temperature (eg, 5°C). The cooled cold water is supplied to the external load 4, returned to the heat source system 1 again, and cooled.
 図1に示すように、熱源システム1には、上位側熱源機2aにおける冷水の入口温度C2siを計測する計測器TE2、下位側熱源機2bにおける冷水の入口温度C1siを計測する計測器TE1が設けられており、計測値が後述する制御装置20へ出力される。熱源システム1には、下位側熱源機2bにおける冷水の出口温度を計測する計測器TE3が設けられている。冷水流量(熱媒流量)C12sfを計測するための流量計FTが、下位側熱源機2bの下流側(下位側熱源機2bと外部負荷4との間)に設けられており、流量の計測値が後述する制御装置20へ出力される。流量計の設置位置については、図1は一例であり、他の位置に設けられることとしても良い。 As shown in FIG. 1, the heat source system 1 is provided with a measuring device TE2 for measuring the cold water inlet temperature C2si in the upper heat source device 2a and a measuring device TE1 for measuring the cold water inlet temperature C1si in the lower heat source device 2b. Measured values are output to the control device 20, which will be described later. The heat source system 1 is provided with a measuring instrument TE3 that measures the outlet temperature of cold water in the lower heat source device 2b. A flow meter FT for measuring the cold water flow rate (heat medium flow rate) C12sf is provided downstream of the lower heat source device 2b (between the lower heat source device 2b and the external load 4). is output to the control device 20, which will be described later. As for the installation position of the flowmeter, FIG. 1 is an example, and the flowmeter may be installed at another position.
 制御装置20は、熱源システム1の運転制御を行う。具体的には、各熱源機の出口設定温度を設定し、該出口設定温度の冷水を送出するように、各熱源機を制御する。各熱源機を、冷水の温度のみに基づいて制御することとした場合、熱源機へ流入する冷水の温度が高いと、熱源機がオーバーロードとならないように運転される場合がある。このような場合には、十分に冷却を行うことができず、要求出口温度を満たすことができなくなる可能性がある。しかし、熱源機へ流入する冷水の流量によっては、熱源機へ流入する冷水の温度が高くてもオーバーロードとならずに要求出口温度を満たすことができる見込みがある。そこで、制御装置20は、冷水の温度状態だけでなく、冷水の流量も加味して、各熱源機の制御を行う。 The control device 20 controls the operation of the heat source system 1. Specifically, an outlet set temperature of each heat source device is set, and each heat source device is controlled so as to send cold water at the outlet set temperature. When each heat source device is controlled based only on the temperature of the cold water, if the temperature of the cold water flowing into the heat source device is high, the heat source device may be operated so as not to be overloaded. In such a case, sufficient cooling may not be achieved and the required outlet temperature may not be met. However, depending on the flow rate of the cold water flowing into the heat source equipment, even if the temperature of the cold water flowing into the heat source equipment is high, it is expected that the required outlet temperature can be satisfied without causing an overload. Therefore, the control device 20 controls each heat source machine in consideration of not only the temperature state of the cold water but also the flow rate of the cold water.
 図2は、本実施形態に係る制御装置20のハードウェア構成の一例を示した図である。
 図2に示すように、制御装置20は、コンピュータシステム(計算機システム)であり、例えば、CPU11と、CPU11が実行するプログラム等を記憶するためのROM(Read Only Memory)12と、各プログラム実行時のワーク領域として機能するRAM(Random Access Memory)13と、大容量記憶装置としてのハードディスクドライブ(HDD)14と、ネットワーク等に接続するための通信部15とを備えている。大容量記憶装置としては、ソリッドステートドライブ(SSD)を用いることとしてもよい。これら各部は、バス18を介して接続されている。
FIG. 2 is a diagram showing an example of the hardware configuration of the control device 20 according to this embodiment.
As shown in FIG. 2, the control device 20 is a computer system (computer system). A RAM (Random Access Memory) 13 functioning as a work area, a hard disk drive (HDD) 14 as a large-capacity storage device, and a communication unit 15 for connecting to a network or the like. A solid state drive (SSD) may be used as the mass storage device. These units are connected via a bus 18 .
 制御装置20は、キーボードやマウス等からなる入力部や、データを表示する液晶表示装置等からなる表示部などを備えていてもよい。 The control device 20 may include an input section such as a keyboard and a mouse, and a display section such as a liquid crystal display device for displaying data.
 CPU11が実行するプログラム等を記憶するための記憶媒体は、ROM12に限られない。例えば、磁気ディスク、光磁気ディスク、半導体メモリ等の他の補助記憶装置であってもよい。 The storage medium for storing programs and the like executed by the CPU 11 is not limited to the ROM 12. For example, other auxiliary storage devices such as magnetic disks, magneto-optical disks, and semiconductor memories may be used.
 後述の各種機能を実現するための一連の処理の過程は、プログラムの形式でハードディスクドライブ14等に記録されており、このプログラムをCPU11がRAM13等に読み出して、情報の加工・演算処理を実行することにより、後述の各種機能が実現される。プログラムは、ROM12やその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 A series of processes for realizing various functions described later is recorded in the hard disk drive 14 or the like in the form of a program. As a result, various functions to be described later are realized. The program may be pre-installed in the ROM 12 or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図3は、制御装置20が備える機能を示した機能ブロック図である。図3に示されるように、制御装置20は、設定部21と、更新部22と、制御部23とを備えている。 FIG. 3 is a functional block diagram showing the functions of the control device 20. As shown in FIG. As shown in FIG. 3 , the control device 20 includes a setting section 21 , an update section 22 and a control section 23 .
 設定部21は、冷水流量の計測値と、熱源機における冷水の入口温度の計測値(C1si、C2si)と、熱源システム1における冷水の要求出口温度とに基づいて、各熱源機における冷水の出口設定温度(C1SP、C2SP)を設定する。具体的には、設定部21は、冷水流量の計測値が低いほど各熱源機における出口設定温度が低くなるように、各熱源機における出口設定温度を設定する。 Based on the measured value of the cold water flow rate, the measured values (C1si, C2si) of the cold water inlet temperature in the heat source device, and the required outlet temperature of the cold water in the heat source system 1, the setting unit 21 sets the cold water outlet temperature of each heat source device. Set the set temperature (C1SP, C2SP). Specifically, the setting unit 21 sets the outlet preset temperature of each heat source device such that the lower the measured value of the cold water flow rate, the lower the outlet preset temperature of each heat source device.
 具体的には、設定部21は、熱源機における定格入口温度と定格出口温度との温度差に、冷水流量の計測値に対する冷水流量の定格値の割合である補正係数を乗じた値を、入口温度の計測値から減算することにより、各熱源機の出口設定温度を設定する。 Specifically, the setting unit 21 multiplies the temperature difference between the rated inlet temperature and the rated outlet temperature in the heat source device by a correction coefficient that is the ratio of the rated value of the cold water flow rate to the measured value of the cold water flow rate, and sets the value to the inlet temperature. By subtracting from the temperature measurement value, the outlet set temperature of each heat source machine is set.
 下位側熱源機2bの出口設定温度C1SPは、以下の式(1)により示される。 The set outlet temperature C1SP of the lower heat source device 2b is given by the following formula (1).
  [数1]
 C1SP=C1si-(C1ci-C1co)×(C12cf/C12sf)×A1
                                     (1)
[Number 1]
C1SP = C1si - (C1ci - C1co) x (C12cf/C12sf) x A1
(1)
 式(1)において、C1SPは出口設定温度であり、C1siは入口温度(計測値)であり、C1ciは定格入口温度であり、C1coは定格出口温度であり、C12sfは冷水流量(計測値)であり、C12cfは定格冷水流量であり、A1は調整用のパラメータ(係数)である。係数は、例えば、比重比熱や熱源機の劣化に基づいて設定(変更)することとしてもよい。例えば、冷水の種類によって、比重と比熱が変わったときに係数を変更することとしてもよい。例えば、熱源機の劣化により定格能力が出せなくなったときに係数を変更することとしてもよい。(C12cf/C12sf)は冷水の流量に基づく補正係数となる。A1は基本的に1である。すなわち、C1siとC12sfとが計測されれば、C1SPが算出される。C1coは、例えば、要求出口温度が用いられる。 In equation (1), C1SP is the outlet set temperature, C1si is the inlet temperature (measured value), C1ci is the rated inlet temperature, C1co is the rated outlet temperature, and C12sf is the chilled water flow rate (measured value). , C12cf is the rated cold water flow rate, and A1 is a parameter (coefficient) for adjustment. The coefficient may be set (changed) based on, for example, specific gravity and specific heat or deterioration of the heat source equipment. For example, the coefficient may be changed when the specific gravity and specific heat change depending on the type of cold water. For example, the coefficient may be changed when the rated capacity cannot be obtained due to deterioration of the heat source equipment. (C12cf/C12sf) is a correction coefficient based on the cold water flow rate. A1 is basically 1. That is, if C1si and C12sf are measured, C1SP is calculated. For C1co, for example, the required outlet temperature is used.
 上位側熱源機2aの出口設定温度C2SPは、以下の式(2)により示される。 The outlet set temperature C2SP of the upper heat source device 2a is given by the following formula (2).
  [数2]
 C2SP=C2si-(C2ci-C2co)×(C12cf/C12sf)×A2
                                     (2)
[Number 2]
C2SP = C2si-(C2ci-C2co) x (C12cf/C12sf) x A2
(2)
 式(2)において、C2SPは出口設定温度であり、C2siは入口温度(計測値)であり、C2ciは定格入口温度であり、C2coは定格出口温度であり、C12sfは冷水流量(計測値)であり、C12cfは定格冷水流量であり、A2は調整用のパラメータ(係数)である。(C12cf/C12sf)は冷水の流量に基づく補正係数となる。A2は基本的に1である。すなわち、C2siとC12sfとが計測されれば、C2SPが算出される。 In equation (2), C2SP is the outlet setpoint temperature, C2si is the inlet temperature (measured value), C2ci is the rated inlet temperature, C2co is the rated outlet temperature, and C12sf is the chilled water flow rate (measured value). , C12cf is the rated cold water flow rate, and A2 is a parameter (coefficient) for adjustment. (C12cf/C12sf) is a correction coefficient based on the cold water flow rate. A2 is basically 1. That is, if C2si and C12sf are measured, C2SP is calculated.
 このようにして、下位側熱源機2bの出口設定温度と、上位側熱源機2aの出口設定温度とが、冷水の流量を考慮して算出される。冷水の流量を考慮して出口設定温度を設定する方法については、冷水流量の計測値が低いほど出口設定温度が低くなるように設定されれば、上記に限定されない。 In this way, the outlet set temperature of the lower heat source device 2b and the outlet set temperature of the higher heat source device 2a are calculated in consideration of the cold water flow rate. The method of setting the outlet set temperature in consideration of the cold water flow rate is not limited to the above, as long as the outlet set temperature is set to be lower as the measured value of the cold water flow rate is lower.
 更新部22は、各熱源機の出口設定温度を更新する。具体的には、更新部22は、直列に接続された各熱源機のうち、最下流側の熱源機に対して設定された冷水流量に基づく出口設定温度と、要求出口温度とを比較し、高い方を最下流側の熱源機の出口設定温度として更新する。本実施形態では、2つの熱源機を直列に接続しているため、最下流側の熱源機とは、下位側熱源機2bとなる。 The update unit 22 updates the outlet temperature setting of each heat source machine. Specifically, the update unit 22 compares the outlet set temperature based on the chilled water flow rate set for the heat source device on the most downstream side among the heat source devices connected in series with the required outlet temperature, The higher one is updated as the outlet set temperature of the heat source device on the most downstream side. In this embodiment, since two heat source devices are connected in series, the heat source device on the most downstream side is the lower heat source device 2b.
 すなわち、更新部22は、式(1)により算出された下位側熱源機2bの出口設定温度C1SPと、負荷側の要求によって決定される要求出口温度とを比較し、高い方を下位側熱源機2bの出口設定温度として更新する。 That is, the update unit 22 compares the outlet set temperature C1SP of the lower heat source device 2b calculated by the formula (1) with the required outlet temperature determined by the request from the load side, and selects the higher one as the lower heat source device. Update as the outlet set temperature of 2b.
 更新部22は、直列に接続された各熱源機のうち最下流側の熱源機以外の熱源機において、冷水流量に基づく出口設定温度と、定格能力比率に基づく出口設定温度とを比較し、高い方を熱源機の出口設定温度として更新する。本実施形態では、2つの熱源機を直列に接続しているため、最下流側の熱源機以外の熱源機とは、上位側熱源機2aとなる。 The updating unit 22 compares the outlet set temperature based on the cold water flow rate with the outlet set temperature based on the rated capacity ratio in the heat source devices other than the heat source device on the most downstream side among the serially connected heat source devices, This is updated as the outlet set temperature of the heat source unit. In this embodiment, since two heat source machines are connected in series, the heat source machine other than the heat source machine on the most downstream side is the upper heat source machine 2a.
 すなわち、更新部22は、式(2)により算出された上位側熱源機2aの出口設定温度C2SPと、定格能力比率に基づく出口設定温度とを比較し、高い方を上位側熱源機2aの出口設定温度として更新する。 That is, the update unit 22 compares the outlet set temperature C2SP of the higher side heat source device 2a calculated by Equation (2) with the outlet set temperature based on the rated capacity ratio, and determines the higher one as the outlet temperature of the higher side heat source device 2a. Update as set temperature.
 定格能力比率に基づく出口設定温度とは、予め設定された各熱源機に対応した能力比率に基づいて、負荷分配を行う方法である。具体的には、熱源システム1の冷水の入口温度と、要求出口温度との差を各熱源機の定格能力比率に応じて分配した結果に基づいて算出された各熱源機の出口設定温度を行う。 The outlet setting temperature based on the rated capacity ratio is a method of distributing the load based on the preset capacity ratio corresponding to each heat source machine. Specifically, the outlet set temperature of each heat source device is calculated based on the result of distributing the difference between the cold water inlet temperature of the heat source system 1 and the required outlet temperature according to the rated capacity ratio of each heat source device. .
 定格能力比率に基づいた上位側熱源機2aの出口設定温度C2SPrは、以下の式(3)により表される。 The outlet set temperature C2SPr of the upper heat source device 2a based on the rated capacity ratio is expressed by the following formula (3).
  [数3]
 C2SPr
    =C1co-(C2si-C1co)×[C1cc/(C1cc+C2cc)]
                                     (3)
[Number 3]
C2SPr
=C1co-(C2si-C1co)×[C1cc/(C1cc+C2cc)]
(3)
 式(3)において、C1cc下位側熱源機の定格冷凍能力であり、C2ccは上位側熱源機2aの定格冷凍能力である。つまり、[C1cc/(C1cc+C2cc)]が定格能力比率となる。すなわち、C2siが計測されれば、C2SPrが算出される。 In formula (3), C1cc is the rated refrigerating capacity of the lower heat source machine, and C2cc is the rated refrigerating capacity of the upper heat source machine 2a. That is, [C1cc/(C1cc+C2cc)] is the rated capacity ratio. That is, if C2si is measured, C2SPr is calculated.
 式(3)によりC2SPrが算出されると、更新部22は、式(2)により算出された上位側熱源機2aの出口設定温度C2SPと、式(3)により算出された定格能力比率に基づく出口設定温度C2SPrとを比較し、高い方を上位側熱源機2aの出口設定温度として更新する。 When C2SPr is calculated by the formula (3), the update unit 22 is based on the outlet set temperature C2SP of the upper heat source device 2a calculated by the formula (2) and the rated capacity ratio calculated by the formula (3). The outlet set temperature C2SPr is compared, and the higher one is updated as the outlet set temperature of the upper heat source device 2a.
 更新部22を設けることなく、設定部21で設定した各熱源機の出口設定温度を用いて、制御が実行されることとしても良い。 Control may be executed using the outlet set temperature of each heat source machine set by the setting unit 21 without providing the updating unit 22 .
 制御部23は、設定部21及び更新部22において設定された各熱源機の出口設定温度を用いて、各熱源機を制御する。具体的には、下位側熱源機2bは、設定された出口設定温度の冷水を送出するように制御される。上位側熱源機2aは、設定された出口設定温度の冷水を送出するように制御される。このようにして、流入する冷水の温度に対応して出口設定を満たす温度の冷水が送出される。 The control unit 23 controls each heat source device using the outlet set temperature of each heat source device set by the setting unit 21 and the updating unit 22 . Specifically, the lower heat source device 2b is controlled to send out cold water having a set outlet set temperature. The upper heat source device 2a is controlled so as to send out cold water having a set outlet set temperature. In this way, cold water is delivered at a temperature that satisfies the outlet setting corresponding to the temperature of the incoming cold water.
 次に、上述の制御装置20による出口設定温度の設定処理の一例について図4及び図5を参照して説明する。図4は、下位側熱源機2bの出口設定温度の設定処理の手順の一例を示すフローチャートである。図5は、上位側熱源機2aの出口設定温度の設定処理の手順の一例を示すフローチャートである。図4及び図5に示すフローは、例えば、熱源システム1が稼働している場合において所定の制御周期で繰り返し実行される。 Next, an example of the process of setting the outlet set temperature by the control device 20 described above will be described with reference to FIGS. 4 and 5. FIG. FIG. 4 is a flow chart showing an example of a procedure for setting the outlet set temperature of the lower heat source device 2b. FIG. 5 is a flow chart showing an example of a procedure for setting the outlet set temperature of the upper heat source device 2a. The flows shown in FIGS. 4 and 5 are repeatedly executed at predetermined control cycles, for example, when the heat source system 1 is in operation.
 図4を参照して、下位側熱源機2bの出口設定温度の設定処理について説明する。 The process of setting the outlet set temperature of the lower heat source device 2b will be described with reference to FIG.
 まず、各計測値及び定格仕様情報を取得する(S101)。S101では、式(1)を計算するための情報を取得する。 First, each measurement value and rated specification information are acquired (S101). In S101, information for calculating formula (1) is acquired.
 次に、下位側熱源機2bの出口設定温度を算出する(S102)。S102では、式(1)を用い、冷水の流量を考慮して出口設定温度が算出される。 Next, the outlet set temperature of the lower heat source device 2b is calculated (S102). In S102, the outlet set temperature is calculated using equation (1), taking into consideration the flow rate of cold water.
 次に、冷水の流量を考慮した出口設定温度(式(1)による出口設定温度)が、要求出口温度より大きいか否かを判定する(S103)。冷水の流量を考慮した出口設定温度が、要求出口温度より大きい場合(S103のYES判定)には、下位側熱源機2bの出口設定温度として、冷水の流量を考慮した出口設定温度を用いる(S104)。 Next, it is determined whether or not the outlet set temperature (the outlet set temperature according to formula (1)) considering the flow rate of cold water is higher than the required outlet temperature (S103). When the outlet set temperature considering the flow rate of cold water is higher than the required outlet temperature (YES determination in S103), the outlet set temperature considering the flow rate of cold water is used as the outlet set temperature of the lower heat source device 2b (S104 ).
 冷水の流量を考慮した出口設定温度が、要求出口温度より大きくない場合(S103のNO判定)には、下位側熱源機2bの出口設定温度として、要求出口温度を用いる(S105)。 If the outlet set temperature considering the flow rate of cold water is not higher than the required outlet temperature (NO determination in S103), the required outlet temperature is used as the outlet set temperature of the lower heat source device 2b (S105).
 次に、図5を参照して、上位側熱源機2aの出口設定温度の設定処理について説明する。 Next, referring to FIG. 5, the process of setting the outlet set temperature of the upper heat source device 2a will be described.
 まず、各計測値及び定格仕様情報を取得する(S201)。S201では、式(2)及び式(3)を計算するための情報を取得する。 First, each measurement value and rated specification information are acquired (S201). In S201, information for calculating equations (2) and (3) is acquired.
 次に、上位側熱源機2aの出口設定温度を算出する(S202)。S202では、式(2)を用い、冷水の流量を考慮して出口設定温度が算出される。 Next, the outlet set temperature of the upper heat source device 2a is calculated (S202). In S202, the outlet set temperature is calculated using equation (2) in consideration of the flow rate of cold water.
 S202と並列して、式(3)を用い、定格能力比率を考慮した出口設定温度を算出する(S203)。S202とS203の処理は並列処理としても良いし直列処理することとしても良い。 In parallel with S202, using formula (3), the outlet set temperature is calculated in consideration of the rated capacity ratio (S203). The processing of S202 and S203 may be parallel processing or serial processing.
 次に、冷水の流量を考慮した出口設定温度(式(2)による出口設定温度)が、定格能力比率を考慮して出口設定温度(式(3)による出口設定温度)より大きいか否かを判定する(S204)。冷水の流量を考慮した出口設定温度が、定格能力比率を考慮して出口設定温度より大きい場合(S204のYES判定)には、上位側熱源機2aの出口設定温度として、冷水の流量を考慮した出口設定温度を用いる(S205)。 Next, it is determined whether or not the outlet set temperature considering the flow rate of chilled water (the outlet set temperature by formula (2)) is greater than the outlet set temperature (the outlet set temperature by formula (3)) considering the rated capacity ratio. Determine (S204). When the outlet set temperature considering the flow rate of chilled water is higher than the outlet set temperature considering the rated capacity ratio (YES determination in S204), the chilled water flow rate is taken into consideration as the outlet set temperature of the upper heat source device 2a. The outlet set temperature is used (S205).
 冷水の流量を考慮した出口設定温度が、定格能力比率を考慮した出口設定温度より大きくない場合(S204のNO判定)には、上位側熱源機2aの出口設定温度として、定格能力比率を考慮した出口設定温度を用いる(S206)。 If the outlet set temperature considering the flow rate of chilled water is not greater than the outlet set temperature considering the rated capacity ratio (NO determination in S204), the rated capacity ratio is taken into account as the outlet set temperature of the upper heat source device 2a. The outlet set temperature is used (S206).
 このようにして、下位側熱源機2bの出口設定温度と、上位側熱源機2aの出口設定温度とが設定され、設定された出口設定温度に基づいて各熱源機が制御される。 In this way, the outlet set temperature of the lower heat source device 2b and the outlet set temperature of the upper heat source device 2a are set, and each heat source device is controlled based on the set outlet set temperature.
 次に、上述の制御装置20の出口設定温度の設定処理による効果について図6を参照して説明する。図6は、縦軸を冷水の出口設定温度とし、横軸を冷水の入口温度(上位側熱源機2aへ流入する冷水の温度)としている。定格負荷とは、冷水の入口温度が定格冷水入口温度に達することを意味している。そして、図6では、冷水の流量が定格冷水流量より少ない場合(例えば、180m3/h)を想定するものとする。 Next, the effects of the process of setting the outlet set temperature of the control device 20 described above will be described with reference to FIG. In FIG. 6, the vertical axis represents the set temperature of the cold water outlet, and the horizontal axis represents the inlet temperature of the cold water (the temperature of the cold water flowing into the upper heat source device 2a). Rated load means that the cold water inlet temperature reaches the rated cold water inlet temperature. In FIG. 6, it is assumed that the cold water flow rate is less than the rated cold water flow rate (for example, 180 m<3>/h).
 図6では、本実施形態における上位側熱源機2aの出口設定温度をL2として示しており、下位側熱源機2bの出口設定温度をL1として示している。そして、参考例における上位側熱源機2aの出口設定温度をEX2として示しており、下位側熱源機2bの出口設定温度をEX1として示している。 In FIG. 6, the outlet set temperature of the upper heat source device 2a in this embodiment is indicated as L2, and the outlet set temperature of the lower heat source device 2b is indicated as L1. EX2 indicates the outlet set temperature of the upper heat source device 2a in the reference example, and EX1 indicates the outlet set temperature of the lower heat source device 2b.
 参考例とは、冷水の流量を考慮せず出口設定温度を設定する場合の例である。具体的には、参考例では、定格負荷までの場合(冷水の入口温度が定格冷水入口温度よりも低い場合)には、下位側熱源機2bの出口側設定温度を要求出口温度とし、上位側熱源機2aの出口側設定温度を定格能力比率に応じて設定する。そして、参考例では、定格負荷を超える場合(冷水の入口温度が定格冷水入口温度よりも高い場合)には、熱源機の能力超過を防止するために、冷水の入口温度を所定値減算した値(例えば定格冷水入口温度差を減算した値)と仮定して出口設定温度を設定する場合である。 The reference example is an example of setting the outlet set temperature without considering the flow rate of cold water. Specifically, in the reference example, when the load is up to the rated load (when the chilled water inlet temperature is lower than the rated chilled water inlet temperature), the outlet side set temperature of the lower heat source device 2b is set as the required outlet temperature, and the higher side The set temperature on the outlet side of the heat source equipment 2a is set according to the rated capacity ratio. In the reference example, when the rated load is exceeded (when the chilled water inlet temperature is higher than the rated chilled water inlet temperature), the chilled water inlet temperature is subtracted by a predetermined value to prevent the heat source unit from exceeding its capacity. (For example, a value obtained by subtracting the rated cold water inlet temperature difference) is assumed to set the outlet set temperature.
 図6に示すように、定格負荷(上位側熱源機2aの定格冷水入口温度)までは、下位側熱源機2bの出口設定温度であるL1とEX1とは等しくなる。具体的には、いずれの場合でも要求出口温度が出口設定温度として設定される。そして、定格負荷を超えた領域では、参考例のEX1では出口設定温度が上昇する。一方で、本実施形態では、L1として示すように、冷水の流量が定格冷水流量より少ないことが考慮されて出口設定温度が設定されるため、定格負荷を超過後でも要求出口温度が出口設定温度として用いられる。そして、さらに負荷が上昇しても出口設定温度が低く保たれる。すなわち、本実施形態では、より広い負荷範囲で、要求出口温度を満たす冷水を送出することができる。負荷が高い領域でも、出口設定温度を低く設定することができる。冷水の流量が定格冷水流量よりも低いほど、上記効果は大きくなる。 As shown in FIG. 6, up to the rated load (the rated chilled water inlet temperature of the upper heat source device 2a), L1 and EX1, which are the outlet set temperatures of the lower heat source device 2b, are equal. Specifically, in either case, the required outlet temperature is set as the outlet set temperature. Then, in the region where the rated load is exceeded, the outlet set temperature rises in EX1 of the reference example. On the other hand, in this embodiment, as indicated by L1, the outlet set temperature is set in consideration of the fact that the cold water flow rate is less than the rated cold water flow rate. used as Then, even if the load further increases, the outlet set temperature is kept low. That is, in this embodiment, cold water satisfying the required outlet temperature can be delivered in a wider load range. The outlet set temperature can be set low even in a high load area. The above effect increases as the cold water flow rate is lower than the rated cold water flow rate.
 上位側熱源機2aについては、定格負荷(上位側熱源機2aの定格冷水入口温度)までは出口設定温度であるL2とEX2とはほとんど等しい。具体的には、いずれの場合でも定格負荷までの領域では、等しい増加傾向で出口設定温度が設定される。換言すると、定格負荷までの領域では、定格能力比率に基づいた出口設定温度が適用される。そして、定格負荷を超えた領域では、参考例のEX2では出口設定温度が上昇する。一方で、本実施形態では、L2として示すように、冷水の流量が定格冷水流量より少ないことが考慮されて出口設定温度が設定されるため、定格負荷を超過後でも定格負荷までの領域と等しい増加傾向(すなわち定格能力比率に基づいた出口設定温度)で出口設定温度が設定される。そして、さらに負荷が上昇しても出口設定温度が低く保たれる。すなわち、より広い負荷範囲で、上位側熱源機2a及び下位側熱源機2bの負荷状態がバランスされ、高COPの運転を行うことができる。そして、負荷が高い領域でも、出口設定温度を低く設定することができる。冷水の流量が定格冷水流量よりも低いほど、上記効果は大きくなる。 For the upper heat source device 2a, L2 and EX2, which are the outlet set temperatures, are almost equal up to the rated load (the rated chilled water inlet temperature of the upper heat source device 2a). Specifically, in any case, the set outlet temperature is set with the same increasing tendency in the region up to the rated load. In other words, in the region up to the rated load, the outlet set temperature based on the rated capacity ratio is applied. Then, in the region where the rated load is exceeded, the outlet set temperature rises in EX2 of the reference example. On the other hand, in this embodiment, as indicated by L2, the outlet set temperature is set considering that the flow rate of cold water is less than the rated cold water flow rate, so even after exceeding the rated load, it is equal to the area up to the rated load. The outlet set temperature is set with an increasing trend (ie the outlet set temperature based on the rated capacity ratio). Then, even if the load further increases, the outlet set temperature is kept low. That is, the load states of the upper heat source equipment 2a and the lower heat source equipment 2b are balanced in a wider load range, and high COP operation can be performed. In addition, the outlet set temperature can be set low even in a high-load region. The above effect increases as the cold water flow rate is lower than the rated cold water flow rate.
 図6より、参考例と比較して、本実施形態ではより広い負荷範囲(冷水の入口温度範囲)で効果的に要求出口温度を満足することができる。そして、より広い範囲で各熱源機の運転状態をバランスさせて、高COPの運転が可能となる。 From FIG. 6, compared to the reference example, this embodiment can effectively satisfy the required outlet temperature in a wider load range (cold water inlet temperature range). Then, the operation state of each heat source machine is balanced in a wider range, and high COP operation becomes possible.
 図7では、図6と同様に、前述の参考例と、本実施形態の変形例との特性を示している。本実施形態では、図4及び図5のフローに示すように、冷水の入口温度が定格冷水入口温度よりも高いか否かに関係なく設定処理を行なっている。本実施形態の変形例とは、定格負荷と負荷状態の関係により制御切り替えを行う例である。具体的には、変形例では、定格負荷までの場合(冷水の入口温度が定格冷水入口温度よりも低い場合)には、下位側熱源機2bの出口側設定温度を要求出口温度とし、上位側熱源機2aの出口側設定温度を定格能力比率に応じて設定する。そして、変形例では、定格負荷を超える場合(冷水の入口温度が定格冷水入口温度よりも高い場合)には、下位側熱源機2bの出口側設定温度を式(1)により設定し、上位側熱源機2aの出口側設定温度を式(2)により設定する。図7では、変形例における上位側熱源機2aの出口設定温度を、L2rとして示しており、下位側熱源機2bの出口設定温度を、L1rとして示している。 Similar to FIG. 6, FIG. 7 shows the characteristics of the above-described reference example and the modified example of this embodiment. In this embodiment, as shown in the flow charts of FIGS. 4 and 5, setting processing is performed regardless of whether the cold water inlet temperature is higher than the rated cold water inlet temperature. A modified example of this embodiment is an example in which control switching is performed according to the relationship between the rated load and the load state. Specifically, in the modified example, when the load is up to the rated load (when the chilled water inlet temperature is lower than the rated chilled water inlet temperature), the outlet side set temperature of the lower heat source device 2b is set as the required outlet temperature, and the upper side The set temperature on the outlet side of the heat source equipment 2a is set according to the rated capacity ratio. Then, in the modified example, when the rated load is exceeded (when the cold water inlet temperature is higher than the rated cold water inlet temperature), the outlet side set temperature of the lower heat source device 2b is set by equation (1), and the upper side The preset temperature on the outlet side of the heat source device 2a is set by Equation (2). In FIG. 7, the outlet set temperature of the upper heat source device 2a in the modified example is indicated as L2r, and the outlet set temperature of the lower heat source device 2b is indicated as L1r.
 変形例のように制御した場合には、定格負荷程度までは、下位側熱源機2bは要求出口温度が出口設定温度として用いられる。そして、定格負荷付近の領域において設定方法が切り替わり、式(1)により出口設定温度が設定される。このため、定格負荷付近において一時的に、出口設定温度が低下し、出口設定温度が要求出口温度を下回る場合がある。そして、定格負荷程度までは、上位側熱源機2aは定格能力比率に応じて出口設定温度が制御され、定格負荷付近の領域において設定方法が切り替わり、式(2)により出口設定温度が設定される。このため、定格負荷付近において一時的に、出口設定温度が低下してCOPが低下する可能性がある。 When controlled as in the modified example, the required outlet temperature of the lower heat source device 2b is used as the outlet set temperature up to about the rated load. Then, the setting method is switched in the region near the rated load, and the outlet set temperature is set by equation (1). Therefore, in the vicinity of the rated load, the set outlet temperature may temporarily drop and fall below the required outlet temperature. Up to about the rated load, the outlet set temperature of the upper heat source device 2a is controlled according to the rated capacity ratio, the setting method is switched in the region near the rated load, and the outlet set temperature is set by equation (2). . Therefore, there is a possibility that the set outlet temperature will drop temporarily near the rated load and the COP will drop.
 このため、本願発明としては、図4及び図5のフローのように処理を行うことがより好ましい。しかしながら、上記の変形例のように制御することも可能である。 For this reason, it is more preferable for the present invention to perform processing as shown in the flows of FIGS. 4 and 5. However, it is also possible to control like the above modified example.
 以上説明したように、本実施形態に係る制御装置及び熱源システム、並びに制御方法、並びに制御プログラムによれば、複数の熱源機が直列に接続される熱源システム1において、冷水流量の計測値と、各熱源機の冷水の入口温度の計測値と、要求出口温度とを用いて、各熱源機の出口温度が設定される。このため、冷水流量を考慮してより効果的に要求出口温度の冷水を送出することが可能となる。例えば、熱源機における冷水の入口温度が高い場合であっても、冷水流量が低ければ、冷凍機の能力内で要求出口温度の冷水を送出することが可能となる。 As described above, according to the control device, the heat source system, the control method, and the control program according to the present embodiment, in the heat source system 1 in which a plurality of heat source machines are connected in series, the measured cold water flow rate, The outlet temperature of each heat source device is set using the measured cold water inlet temperature of each heat source device and the required outlet temperature. Therefore, it is possible to deliver cold water at the required outlet temperature more effectively in consideration of the cold water flow rate. For example, even if the chilled water inlet temperature in the heat source equipment is high, if the chilled water flow rate is low, chilled water having the required outlet temperature can be delivered within the capacity of the refrigerator.
 冷水流量に基づく出口設定温度と、要求出口温度とを比較し、高い方を最下流側の熱源機の出口設定温度として更新するため、より確実に、要求出口温度の冷水を送出することが可能となる。冷水流量に基づく出口設定温度と、定格能力比率に基づく出口設定温度とを比較し、高い方を熱源機の出口設定温度として更新するため、より効果的に高COPで運転することが可能となる。 The outlet set temperature based on the chilled water flow rate is compared with the required outlet temperature, and the higher one is updated as the outlet set temperature of the heat source device on the most downstream side, making it possible to deliver chilled water at the required outlet temperature more reliably. becomes. The outlet set temperature based on the chilled water flow rate is compared with the outlet set temperature based on the rated capacity ratio, and the higher one is updated as the outlet set temperature of the heat source equipment, so it is possible to operate more effectively at a high COP. .
 本開示は、上述の実施形態のみに限定されるものではなく、発明の要旨を逸脱しない範囲において、種々変形実施が可能である。 The present disclosure is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
 以上説明した各実施形態に記載の制御装置及び熱源システム、並びに制御方法、並びに制御プログラムは例えば以下のように把握される。
 本開示に係る制御装置(20)は、直列に接続された複数の熱源機を備える熱源システム(1)に適用される制御装置(20)であって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システム(1)における熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する設定部(21)を備える。例えば、熱源機は、上位側熱源機2aと下位側熱源機2bである。
The control device, the heat source system, the control method, and the control program described in each of the embodiments described above are grasped, for example, as follows.
A control device (20) according to the present disclosure is a control device (20) applied to a heat source system (1) including a plurality of heat source machines connected in series, the measured value of a heat medium flow rate, and a setting unit (21) for setting the outlet set temperature of the heat medium in each heat source device based on the measured value of the inlet temperature of the heat medium in the heat source device and the required outlet temperature of the heat medium in the heat source system (1); Prepare. For example, the heat source machines are the upper heat source machine 2a and the lower heat source machine 2b.
 本開示に係る制御装置(20)によれば、複数の熱源機が直列に接続される熱源システム(1)において、熱媒流量の計測値と、各熱源機の熱媒の入口温度の計測値と、要求出口温度とを用いて、各熱源機の出口温度が設定される。このため、熱媒流量を考慮してより効果的に要求出口温度の熱媒を送出することが可能となる。例えば、熱源機における熱媒の入口温度が高い場合であっても、熱媒流量が低ければ、冷凍機の能力内で要求出口温度の熱媒を送出することが可能となる。 According to the control device (20) according to the present disclosure, in the heat source system (1) in which a plurality of heat source devices are connected in series, the measured value of the heat medium flow rate and the measured value of the inlet temperature of the heat medium of each heat source device , and the required outlet temperature, the outlet temperature of each heat source machine is set. Therefore, the heat medium having the required outlet temperature can be delivered more effectively in consideration of the heat medium flow rate. For example, even when the inlet temperature of the heat medium in the heat source equipment is high, if the heat medium flow rate is low, it is possible to deliver the heat medium at the required outlet temperature within the capacity of the refrigerator.
 本開示に係る制御装置(20)は、前記設定部(21)は、熱媒流量の計測値が低いほど各前記熱源機における出口設定温度が低くなるように、各前記熱源機における出口設定温度を設定することとしてもよい。 In the control device (20) according to the present disclosure, the setting unit (21) sets the outlet set temperature of each heat source device such that the lower the measured value of the heat medium flow rate, the lower the outlet set temperature of each heat source device. may be set.
 本開示に係る制御装置(20)によれば、熱源機における熱媒の入口温度が高い場合であっても、熱媒流量が低ければ、より温度の低い熱媒を送出することが可能となる。 According to the control device (20) according to the present disclosure, even when the inlet temperature of the heat medium in the heat source equipment is high, if the flow rate of the heat medium is low, it becomes possible to deliver the heat medium with a lower temperature. .
 本開示に係る制御装置(20)は、前記設定部(21)は、前記熱源機における定格入口温度と定格出口温度との温度差に、熱媒流量の計測値に対する熱媒流量の定格値の割合である補正係数を乗じた値を、入口温度の計測値から減算することにより、各前記熱源機の出口設定温度を設定することとしてもよい。 In the control device (20) according to the present disclosure, the setting unit (21) sets the rated value of the heat medium flow rate with respect to the measured value of the heat medium flow rate to the temperature difference between the rated inlet temperature and the rated outlet temperature of the heat source equipment. By subtracting the value obtained by multiplying the correction coefficient, which is a ratio, from the measured value of the inlet temperature, the outlet preset temperature of each heat source device may be set.
 本開示に係る制御装置(20)によれば、熱源機における熱媒の入口温度が高い場合であっても、熱媒流量が低ければ、冷凍機の能力内でより低い温度の熱媒を送出することが可能となる。 According to the control device (20) according to the present disclosure, even when the inlet temperature of the heat medium in the heat source equipment is high, if the flow rate of the heat medium is low, the heat medium with a lower temperature is delivered within the capacity of the refrigerator. It becomes possible to
 本開示に係る制御装置(20)は、直列に接続された各前記熱源機のうち、最下流側の前記熱源機に対して設定された熱媒流量に基づく出口設定温度と、要求出口温度とを比較し、高い方を最下流側の前記熱源機の出口設定温度として更新する更新部(22)を備えることとしてもよい。 A control device (20) according to the present disclosure controls an outlet set temperature based on a heat medium flow rate set for the heat source device on the most downstream side among the heat source devices connected in series, a required outlet temperature, and and updating the higher one as the outlet set temperature of the heat source machine on the most downstream side.
 本開示に係る制御装置(20)によれば、熱媒流量に基づく出口設定温度と、要求出口温度とを比較し、高い方を最下流側の熱源機の出口設定温度として更新するため、より確実に、要求出口温度の熱媒を送出することが可能となる。 According to the control device (20) according to the present disclosure, the outlet set temperature based on the heat medium flow rate is compared with the required outlet temperature, and the higher one is updated as the outlet set temperature of the heat source device on the most downstream side. It is possible to reliably deliver the heat medium having the required outlet temperature.
 本開示に係る制御装置(20)は、前記熱源システム(1)の熱媒の入口温度と、要求出口温度との差を各前記熱源機の定格能力比率に応じて分配した結果に基づいて算出された各前記熱源機の出口設定温度を用い、直列に接続された各前記熱源機のうち最下流側の前記熱源機以外の前記熱源機において、熱媒流量に基づく出口設定温度と、前記定格能力比率に基づく出口設定温度とを比較し、高い方を前記熱源機の出口設定温度として更新する更新部(22)を備えることとしてもよい。 The control device (20) according to the present disclosure calculates the difference between the inlet temperature of the heat medium of the heat source system (1) and the required outlet temperature based on the result of distributing the difference according to the rated capacity ratio of each of the heat source equipment. using the outlet set temperature of each of the heat source devices connected in series, the outlet set temperature based on the heat medium flow rate and the rated An update unit (22) may be provided that compares the outlet set temperature based on the capacity ratio and updates the higher one as the outlet set temperature of the heat source equipment.
 本開示に係る制御装置(20)によれば、熱媒流量に基づく出口設定温度と、定格能力比率に基づく出口設定温度とを比較し、高い方を熱源機の出口設定温度として更新するため、より効果的に高COPで運転することが可能となる。 According to the control device (20) according to the present disclosure, the outlet set temperature based on the heat medium flow rate and the outlet set temperature based on the rated capacity ratio are compared, and the higher one is updated as the outlet set temperature of the heat source equipment. It becomes possible to operate at a high COP more effectively.
 本開示に係る熱源システム(1)は、直列に接続された複数の熱源機と、上記の制御装置(20)と、を備える。 A heat source system (1) according to the present disclosure includes a plurality of serially connected heat source machines and the control device (20).
 本開示に係る制御方法は、直列に接続された複数の熱源機を備える熱源システム(1)の制御方法であって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システム(1)における熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する工程を有する。 A control method according to the present disclosure is a control method for a heat source system (1) including a plurality of heat source devices connected in series, wherein the measured value of the heat medium flow rate and the inlet temperature of the heat medium in each of the heat source devices. A step of setting an outlet preset temperature of the heat medium in each heat source device based on the measured value and the required outlet temperature of the heat medium in the heat source system (1).
 本開示に係る制御プログラムは、直列に接続された複数の熱源機を備える熱源システム(1)の制御プログラムであって、熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システム(1)における熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する処理をコンピュータに実行させる。 A control program according to the present disclosure is a control program for a heat source system (1) including a plurality of heat source devices connected in series, and includes a measured value of a heat medium flow rate and an inlet temperature of the heat medium in each of the heat source devices. Based on the measured value and the required outlet temperature of the heat medium in the heat source system (1), the computer is caused to set the preset temperature of the heat medium in each heat source machine.
1     :熱源システム
2a    :上位側熱源機
2b    :下位側熱源機
4     :外部負荷
5     :冷水ポンプ
11    :CPU
12    :ROM
13    :RAM
14    :ハードディスクドライブ
15    :通信部
18    :バス
20    :制御装置
21    :設定部
22    :更新部
23    :制御部
FT    :流量計
TE1   :計測器
TE2   :計測器
TE3   :計測器
1: heat source system 2a: upper heat source device 2b: lower heat source device 4: external load 5: cold water pump 11: CPU
12: ROM
13: RAM
14: Hard disk drive 15: Communication unit 18: Bus 20: Control device 21: Setting unit 22: Update unit 23: Control unit FT: Flow meter TE1: Measuring instrument TE2: Measuring instrument TE3: Measuring instrument

Claims (8)

  1.  直列に接続された複数の熱源機を備える熱源システムに適用される制御装置であって、
     熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する設定部を備える制御装置。
    A control device applied to a heat source system comprising a plurality of heat source machines connected in series,
    Setting the set temperature at the outlet of the heat medium in each heat source device based on the measured value of the flow rate of the heat medium, the measured value of the inlet temperature of the heat medium in each heat source device, and the required outlet temperature of the heat medium in the heat source system. A control device comprising a setting unit for
  2.  前記設定部は、熱媒流量の計測値が低いほど各前記熱源機における出口設定温度が低くなるように、各前記熱源機における出口設定温度を設定する請求項1に記載の制御装置。 The control device according to claim 1, wherein the setting unit sets the outlet set temperature of each heat source device such that the lower the measured value of the heat medium flow rate, the lower the outlet set temperature of each heat source device.
  3.  前記設定部は、前記熱源機における定格入口温度と定格出口温度との温度差に、熱媒流量の計測値に対する熱媒流量の定格値の割合である補正係数を乗じた値を、入口温度の計測値から減算することにより、各前記熱源機の出口設定温度を設定する請求項1または2に記載の制御装置。 The setting unit multiplies the temperature difference between the rated inlet temperature and the rated outlet temperature in the heat source device by a correction coefficient, which is a ratio of the rated value of the heat medium flow rate to the measured value of the heat medium flow rate, and sets the value to the inlet temperature. 3. The control device according to claim 1, wherein the set outlet temperature of each heat source machine is set by subtracting from the measured value.
  4.  直列に接続された各前記熱源機のうち、最下流側の前記熱源機に対して設定された熱媒流量に基づく出口設定温度と、要求出口温度とを比較し、高い方を最下流側の前記熱源機の出口設定温度として更新する更新部を備える請求項1から3のいずれか1項に記載の制御装置。 Out of the heat source devices connected in series, the outlet set temperature based on the heat medium flow rate set for the heat source device on the most downstream side is compared with the required outlet temperature, and the higher one is selected as the one on the most downstream side. The control device according to any one of claims 1 to 3, further comprising an updating unit that updates the outlet set temperature of the heat source equipment.
  5.  前記熱源システムの熱媒の入口温度と、要求出口温度との差を各前記熱源機の定格能力比率に応じて分配した結果に基づいて算出された各前記熱源機の出口設定温度を用い、直列に接続された各前記熱源機のうち最下流側の前記熱源機以外の前記熱源機において、熱媒流量に基づく出口設定温度と、前記定格能力比率に基づく出口設定温度とを比較し、高い方を前記熱源機の出口設定温度として更新する更新部を備える請求項1から3のいずれか1項に記載の制御装置。 Using the outlet set temperature of each heat source device calculated based on the result of distributing the difference between the inlet temperature of the heat medium of the heat source system and the required outlet temperature according to the rated capacity ratio of each heat source device, comparing the outlet set temperature based on the heat medium flow rate and the outlet set temperature based on the rated capacity ratio in the heat source devices other than the heat source device on the most downstream side among the heat source devices connected to the as the outlet set temperature of the heat source equipment.
  6.  直列に接続された複数の熱源機と、
     請求項1から5のいずれか1項に記載の制御装置と、
    を備える熱源システム。
    a plurality of heat source machines connected in series;
    A control device according to any one of claims 1 to 5;
    A heat source system with
  7.  直列に接続された複数の熱源機を備える熱源システムの制御方法であって、
     熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する工程を有する制御方法。
    A control method for a heat source system comprising a plurality of heat source machines connected in series,
    Setting the set temperature at the outlet of the heat medium in each heat source device based on the measured value of the flow rate of the heat medium, the measured value of the inlet temperature of the heat medium in each heat source device, and the required outlet temperature of the heat medium in the heat source system. A control method comprising the step of
  8.  直列に接続された複数の熱源機を備える熱源システムの制御プログラムであって、
     熱媒流量の計測値と、各前記熱源機における熱媒の入口温度の計測値と、前記熱源システムにおける熱媒の要求出口温度とに基づいて、各熱源機における熱媒の出口設定温度を設定する処理をコンピュータに実行させるための制御プログラム。
    A control program for a heat source system comprising a plurality of heat source machines connected in series,
    Setting the set temperature at the outlet of the heat medium in each heat source device based on the measured value of the flow rate of the heat medium, the measured value of the inlet temperature of the heat medium in each heat source device, and the required outlet temperature of the heat medium in the heat source system. A control program that causes a computer to execute the processing to be performed.
PCT/JP2021/043250 2021-02-19 2021-11-25 Control device, heat source system, control method, and control program WO2022176300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180093631.0A CN116829876A (en) 2021-02-19 2021-11-25 Control device, heat source system, control method, and control program
US18/276,960 US20240125515A1 (en) 2021-02-19 2021-11-25 Control device, heat source system, control method, and control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021025492A JP2022127376A (en) 2021-02-19 2021-02-19 Control device, heat source system, control method, and control program
JP2021-025492 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176300A1 true WO2022176300A1 (en) 2022-08-25

Family

ID=82931366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043250 WO2022176300A1 (en) 2021-02-19 2021-11-25 Control device, heat source system, control method, and control program

Country Status (4)

Country Link
US (1) US20240125515A1 (en)
JP (1) JP2022127376A (en)
CN (1) CN116829876A (en)
WO (1) WO2022176300A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145263A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Heat source system, control method therefor, and program therefor
JP2012225629A (en) * 2011-04-22 2012-11-15 Hitachi Plant Technologies Ltd Operation control system for cold heat source device
JP2013164223A (en) * 2012-02-13 2013-08-22 Hitachi Appliances Inc Heat source system
JP2015161464A (en) * 2014-02-27 2015-09-07 三菱重工業株式会社 Method of setting outlet set temperature of heat source machine and heat source system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145263A (en) * 2011-01-11 2012-08-02 Hitachi Plant Technologies Ltd Heat source system, control method therefor, and program therefor
JP2012225629A (en) * 2011-04-22 2012-11-15 Hitachi Plant Technologies Ltd Operation control system for cold heat source device
JP2013164223A (en) * 2012-02-13 2013-08-22 Hitachi Appliances Inc Heat source system
JP2015161464A (en) * 2014-02-27 2015-09-07 三菱重工業株式会社 Method of setting outlet set temperature of heat source machine and heat source system

Also Published As

Publication number Publication date
CN116829876A (en) 2023-09-29
US20240125515A1 (en) 2024-04-18
JP2022127376A (en) 2022-08-31

Similar Documents

Publication Publication Date Title
US12000608B2 (en) Central plant control system with setpoints modification based on physical constraints
JP5234435B2 (en) Cold cooling source device, cooling system and cooling method for free cooling
JP4505436B2 (en) Energy-saving operation method for cooling tower group and cooling tower group used therefor
WO2012173240A1 (en) Heat source system and control method of same
WO2014104182A1 (en) Cold water circulation system
JP6572005B2 (en) Refrigerator control device, refrigerator system and program
WO2015037434A1 (en) Air-conditioning apparatus
JP2007127321A (en) Cold water load factor controller for refrigerator
JP2018017446A (en) Air conditioning system and operation control method
US20130027879A1 (en) Method for regulating a cooling system
CN111102691B (en) Module combined air conditioning system
JP5215644B2 (en) Number control device for heat source unit and number control method for heat source unit
JP2003294290A (en) Unit number control device of heat source and unit number control method
JP5492712B2 (en) Water supply temperature control apparatus and method
WO2022176300A1 (en) Control device, heat source system, control method, and control program
JP5423080B2 (en) Local cooling system, its control device, program
WO2014010738A1 (en) Heat source system
JP2011226680A (en) Cooling water producing facility
JP2014070753A (en) Air conditioning equipment
JP2009121769A (en) Cold water supply method, cold water supply device and control method for cold water supply device
JP2017003135A (en) Heat source facility and heat source facility control method
JP6737774B2 (en) Phase change cooling device and control method thereof
WO2018066357A1 (en) Heat source system control device, heat source system, heat source system control method, and heat source system control program
JP7093649B2 (en) Heat source system and its control method
JP2020041767A (en) Control device, heat source system, method for determining the number of start-up fans and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18276960

Country of ref document: US

Ref document number: 202180093631.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926728

Country of ref document: EP

Kind code of ref document: A1