WO2022176225A1 - 回転電機、および駆動装置 - Google Patents

回転電機、および駆動装置 Download PDF

Info

Publication number
WO2022176225A1
WO2022176225A1 PCT/JP2021/022342 JP2021022342W WO2022176225A1 WO 2022176225 A1 WO2022176225 A1 WO 2022176225A1 JP 2021022342 W JP2021022342 W JP 2021022342W WO 2022176225 A1 WO2022176225 A1 WO 2022176225A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
electric machine
rotor
motor shaft
axial direction
Prior art date
Application number
PCT/JP2021/022342
Other languages
English (en)
French (fr)
Inventor
祐輔 牧野
哲 梶川
一平 山▲崎▼
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2022176225A1 publication Critical patent/WO2022176225A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to rotating electric machines and drive devices.
  • Patent Literature 1 describes a rotating electric machine having a structure in which cooling oil as a coolant is injected to a stator core through a hollow hole of a shaft, a small hole, and a rotor core.
  • the hollow hole extends downstream in the flow direction of the coolant from the small hole, the flow rate of the coolant flowing in the axial direction may increase, and the flow rate of the coolant flowing through the small hole may decrease. In this case, the cooling efficiency of the stator core by the refrigerant may decrease.
  • the present invention has been made in consideration of the above points, and one of the objects thereof is to provide a rotating electric machine and a driving device having a structure capable of improving the cooling efficiency of the stator core.
  • One aspect of the rotating electric machine of the present invention includes a motor shaft that rotates about a central axis, a rotor that has a rotor body fixed to the motor shaft, and a stator that has a stator core positioned radially outward of the rotor. and a coolant supply portion for supplying coolant to the stator core, the motor shaft having a hollow portion extending in the axial direction of the central axis and having an introduction portion into which the coolant is introduced, and facing the hollow portion. It has a hole that connects the inner peripheral surface and the outer peripheral surface, and a protruding portion that is arranged at a position further from the introduction portion than the hole in the axial direction and protrudes radially inward from the inner peripheral surface.
  • One aspect of the drive device of the present invention is a drive device that is mounted on a vehicle and rotates an axle, comprising the above-described rotating electrical machine, and a transmission that is connected to the rotating electrical machine and transmits the rotation of the rotor to the axle.
  • a device ;
  • the cooling efficiency of the stator core can be improved in the rotary electric machine and the driving device.
  • FIG. 1 is a schematic configuration diagram schematically showing a driving device according to one embodiment.
  • FIG. 2 is a longitudinal sectional view showing the rotor.
  • FIG. 3 is a partial cross-sectional view enlarging the enlarged diameter portion in the hollow portion.
  • FIG. 4 is a cross-sectional view showing a motor shaft of a modified example of one embodiment.
  • FIG. 5 is a cross-sectional view showing a motor shaft of a modified example of one embodiment.
  • FIG. 6 is a schematic configuration diagram schematically showing a drive device of a modified example of one embodiment.
  • the vertical direction will be defined based on the positional relationship when the drive system of the embodiment is mounted on a vehicle positioned on a horizontal road surface.
  • the relative positional relationship in the vertical direction which will be described in the following embodiments, should be satisfied at least when the driving device is mounted on a vehicle positioned on a horizontal road surface.
  • the XYZ coordinate system is shown as a three-dimensional orthogonal coordinate system as appropriate.
  • the Z-axis direction is the vertical direction.
  • the +Z side is vertically upward, and the -Z side is vertically downward.
  • the vertically upper side is simply called “upper side”
  • the vertically lower side is simply called “lower side”.
  • the X-axis direction is a direction orthogonal to the Z-axis direction and is the front-rear direction of the vehicle on which the driving device is mounted.
  • the +X side is the front side of the vehicle and the -X side is the rear side of the vehicle.
  • the Y-axis direction is a direction orthogonal to both the X-axis direction and the Z-axis direction, and is the left-right direction of the vehicle, that is, the vehicle width direction.
  • the +Y side is the left side of the vehicle and the -Y side is the right side of the vehicle.
  • the front-rear direction and the left-right direction are horizontal directions orthogonal to the vertical direction.
  • the positional relationship in the longitudinal direction is not limited to the positional relationship in the following embodiments, and the +X side may be the rear side of the vehicle and the -X side may be the front side of the vehicle.
  • the +Y side is the right side of the vehicle and the -Y side is the left side of the vehicle.
  • the “parallel direction” includes substantially parallel directions
  • the “perpendicular direction” includes substantially perpendicular directions.
  • the central axis J shown in the figure as appropriate is a virtual axis extending in a direction that intersects the vertical direction. More specifically, the central axis J extends in the Y-axis direction perpendicular to the vertical direction, that is, in the lateral direction of the vehicle.
  • the direction parallel to the central axis J is simply referred to as the "axial direction”
  • the radial direction about the central axis J is simply referred to as the "radial direction”
  • the central axis J is referred to as the "radial direction”.
  • the circumferential direction around the center, that is, the circumference of the central axis J is simply referred to as the "circumferential direction”.
  • a driving device 100 of the present embodiment shown in FIG. 1 is mounted on a vehicle and rotates an axle 64 .
  • a vehicle in which drive device 100 is mounted is a vehicle using a motor as a power source, such as a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHV), an electric vehicle (EV), or the like.
  • HEV hybrid vehicle
  • PHY plug-in hybrid vehicle
  • EV electric vehicle
  • drive device 100 includes rotating electric machine 10 , housing 80 , transmission device 60 , and coolant channel 90 .
  • the rotating electric machine 10 includes a rotor 30 rotatable around a central axis J, and a stator 40 located radially outside the rotor 30 . Configurations of the rotating electric machine 10 other than those described above will be described later.
  • the housing 80 accommodates the rotary electric machine 10 and the transmission device 60 .
  • Housing 80 has a motor housing 81 and a gear housing 82 .
  • Motor housing 81 is a housing that accommodates rotor 30 and stator 40 therein.
  • the motor housing 81 is connected to the right side of the gear housing 82 .
  • the motor housing 81 has a peripheral wall portion 81a, a partition wall portion 81b, and a lid portion 81c.
  • the peripheral wall portion 81a and the partition wall portion 81b are, for example, part of the same single member.
  • the lid portion 81c is separate from, for example, the peripheral wall portion 81a and the partition wall portion 81b.
  • the peripheral wall portion 81a has a tubular shape surrounding the central axis J and opening on the right side.
  • the partition wall portion 81b is connected to the left end portion of the peripheral wall portion 81a.
  • the partition wall portion 81b separates the interior of the motor housing 81 and the interior of the gear housing 82 in the axial direction.
  • the partition wall portion 81 b has a partition wall opening 81 d that connects the inside of the motor housing 81 and the inside of the gear housing 82 .
  • a bearing 34 is held in the partition portion 81b.
  • the lid portion 81c is fixed to the right end of the peripheral wall portion 81a.
  • the lid portion 81c closes the opening on the right side of the peripheral wall portion 81a.
  • a bearing 35 is held in the lid portion 81c.
  • the gear housing 82 accommodates a reduction gear 62 and a differential gear 63 of the transmission device 60, which will be described later, and oil O inside.
  • the oil O is stored in the lower area inside the gear housing 82 .
  • the oil O circulates in a coolant flow path 90, which will be described later.
  • Oil O is used as a coolant for cooling rotating electric machine 10 .
  • the oil O is used as a lubricating oil for the reduction gear 62 and the differential gear 63 .
  • the oil O for example, it is preferable to use an oil equivalent to automatic transmission fluid (ATF), which has a relatively low viscosity, in order to function as a refrigerant and a lubricating oil.
  • ATF automatic transmission fluid
  • the transmission device 60 is connected to the rotating electric machine 10 and transmits the rotation of the rotor 30 to the axle 64 of the vehicle.
  • a transmission device 60 of the present embodiment has a reduction gear 62 connected to the rotating electric machine 10 and a differential gear 63 connected to the reduction gear 62 .
  • the differential gear 63 has a ring gear 63a. Torque output from the rotary electric machine 10 is transmitted to the ring gear 63 a via the reduction gear 62 . A lower end portion of the ring gear 63 a is immersed in the oil O stored in the gear housing 82 . The oil O is scooped up by the rotation of the ring gear 63a. The scooped-up oil O is supplied as lubricating oil to, for example, the reduction gear 62 and the differential gear 63 .
  • the rotating electrical machine 10 is a part that drives the driving device 100 .
  • the rotating electrical machine 10 is positioned, for example, on the right side of the transmission device 60 .
  • the rotating electric machine 10 is a motor. Torque of rotor 30 of rotating electric machine 10 is transmitted to transmission device 60 .
  • the rotor 30 has a motor shaft 31 and a rotor body 32 .
  • the rotor body 32 has a rotor core and rotor magnets fixed to the rotor core.
  • the motor shaft 31 is rotatable around the central axis J.
  • the motor shaft 31 is rotatably supported by bearings 34 and 35 .
  • the motor shaft 31 is a hollow shaft.
  • the motor shaft 31 has a cylindrical shape through which oil O as a coolant can flow.
  • the motor shaft 31 extends across the interior of the motor housing 81 and the interior of the gear housing 82 .
  • the left end of the motor shaft 31 protrudes inside the gear housing 82 .
  • a reduction gear 62 is connected to the left end of the motor shaft 31 .
  • the motor shaft 31 is substantially cylindrical.
  • the motor shaft 31 has a hollow portion 51 , a hole portion 33 , a projecting portion 52 and a hole portion 53 .
  • the hollow portion 51 has an introduction portion 54 , a tapered portion 55 and an enlarged diameter portion 56 .
  • the introduction portion 54 is located at one end (-Y side) in the axial direction.
  • the introduction portion 54 receives the refrigerant from the refrigerant supply portion 50 .
  • the tapered portion 55 expands in diameter as it moves away from the introduction portion 54 in the axial direction.
  • the tapered portion 55 expands in diameter from the introduction portion 54 toward the other side (+Y side) in the axial direction.
  • the tapered portion 55 is a surface facing the other side in the axial direction.
  • the refrigerant introduced from the introduction portion 54 and pressed against the inner peripheral surface of the motor shaft 31 by the centrifugal force accompanying the rotation of the rotor 30 easily flows along the tapered portion 55 toward the other side in the axial direction. Therefore, it is possible to prevent the refrigerant introduced from the introduction portion 54 from flowing back to one side in the axial direction.
  • the expanded diameter portion 56 is an annular groove centered on the central axis J. As shown in FIG. 3, the enlarged diameter portion 56 includes a pair of groove walls 56a and 56b that are spaced apart from each other in the axial direction, and is located between the pair of groove walls 56a and 56b in the axial direction and faces radially inward. and a groove bottom 56c. Of the pair of groove walls 56a and 56b, one of the groove walls 56a positioned on one side in the axial direction is tapered to be positioned radially outward toward the other side in the axial direction.
  • the oil O flowing from one axial side to the other axial side in the motor shaft 31 is stably guided to the groove bottom 56c by the one groove wall 56a.
  • the other groove wall 56b positioned on the other side in the axial direction has a tapered shape positioned radially inward toward the other side in the axial direction. Therefore, part of the oil O guided to the groove bottom 56c in the motor shaft 31 and flowing is stably guided to the other side in the axial direction by the other groove wall 56b.
  • the groove bottom 56c is positioned radially outward in the enlarged diameter portion 56. As shown in FIG.
  • the hole portion 33 connects the inner peripheral surface facing the hollow portion 51 and the outer peripheral surface of the motor shaft 31 .
  • the hole portion 33 has a circular hole shape extending radially inside the peripheral wall of the motor shaft 31 .
  • a plurality of holes 33 are arranged at intervals in the circumferential direction. As an example, eight holes 33 are provided at equal pitches in the circumferential direction.
  • the hole portion 33 opens to the groove bottom 56c. That is, the hole portion 33 opens to the enlarged diameter portion 56 . According to this embodiment, the oil O flowing inside the motor shaft 31 is efficiently guided to the hole portion 33 by the enlarged diameter portion 56, and flows inside the rotor 30 as described later, thereby increasing the cooling efficiency of the rotor 30. be done.
  • the protruding portion 52 protrudes radially inward from the inner peripheral surface of the hollow portion 51 .
  • the projecting portion 52 is arranged on the other axial side of the hole portion 33 .
  • the projecting portion 52 is arranged at a position further from the introduction portion 54 than the hole portion 33 in the axial direction.
  • the projecting portion 52 is arranged on the other side in the axial direction of the enlarged diameter portion 56 .
  • the projecting portion 52 is provided in a range including the hole portion 33 at least in the circumferential direction.
  • the projecting portion 52 of the present embodiment is provided over the entire circumference in the circumferential direction.
  • the projecting portion 52 has a planar shape extending in a direction perpendicular to the central axis J and faces one side in the axial direction.
  • the projecting portion 52 serves as a barrier when the oil O guided to the groove bottom 56c flows to the other side in the axial direction via the other groove wall 56b.
  • the protruding portion 52 also acts as a barrier against the oil O that reaches the protruding portion 52 from the tapered portion 55 without passing through the enlarged diameter portion 56 . Since the projecting portion 52 acts as a barrier, the flow resistance of the oil O flowing from the enlarged diameter portion 56 to the other side in the axial direction and the oil O reaching the projecting portion 52 from the tapered portion 55 without passing through the enlarged diameter portion 56 increases. , the oil O can be stably held in the enlarged diameter portion 56 .
  • the oil O flowing inside the motor shaft 31 is efficiently guided to the hole portion 33 by the enlarged diameter portion 56, and flows inside the rotor 30 as described later, thereby increasing the cooling efficiency of the rotor 30. be done.
  • the protruding portion 52 By providing the protruding portion 52 in a range including the hole portion 33 in the circumferential direction, the flow resistance of the oil O reaching the protruding portion 52 at least at the circumferential position of the hole portion 33 is increased.
  • the oil O is more likely to be held by the enlarged diameter portion 56 at the position in the circumferential direction of the hole portion 33 , so that the oil O is efficiently guided to the hole portion 33 and the cooling efficiency of the rotor 30 is enhanced.
  • the oil O can be easily held in the enlarged diameter portion 56 at any position in the circumferential direction of the hole portion 33 regardless of the circumferential direction of the hole portion 33 . efficiently guided to
  • the hole portion 53 penetrates the projecting portion 52 in the axial direction.
  • the hole portion 53 is coaxial with the central axis J. Since the motor shaft 31 has the hole portion 53 , part of the oil O that has reached the projecting portion 52 flows through the hole portion 53 toward the other side in the axial direction of the projecting portion 52 in the hollow portion 51 .
  • the rotor body 32 is a magnetic material. As shown in FIG. 2, the rotor body 32 has a cylindrical shape centered on the central axis J, and is cylindrical in this embodiment. The inner peripheral surface of the rotor body 32 is fixed to the outer peripheral surface of the motor shaft 31 by press fitting or the like. The rotor body 32 and the motor shaft 31 are fixed so as not to move relative to each other in the axial, radial and circumferential directions.
  • the rotor main body 32 has a plurality of electromagnetic steel plates (not shown) that are stacked in the axial direction.
  • the rotor body 32 has a through hole 32a and a communication hole 32b.
  • the through hole 32a axially penetrates the rotor body 32 .
  • the cross-sectional shape of the through hole 32a orthogonal to the axial direction is, as an example, a substantially rectangular shape extending in the circumferential direction.
  • a plurality of through holes 32 a are provided in the rotor body 32 at intervals in the circumferential direction. In this embodiment, eight through holes 32a are provided in the rotor body 32 at equal pitches in the circumferential direction. The position of the through hole 32 a in the circumferential direction is the same as that of the hole portion 33 .
  • the communication hole 32b opens to the inner peripheral surface of the rotor body 32 on the radially inner side, and opens to the through hole 32a on the radially outer side.
  • the communication hole 32b extends radially.
  • the communication hole 32b faces the hole portion 33 from the radially outer side.
  • the communication hole 32b connects the hole portion 33 and the through hole 32a. It is preferable that the circumferential dimension of the communication hole 32 b is equal to or greater than the circumferential dimension (inner diameter) of the hole portion 33 .
  • a plurality of communication holes 32b are provided in the rotor body 32 at intervals in the circumferential direction. In this embodiment, eight communication holes 32b are provided at equal pitches in the circumferential direction.
  • the axial position and circumferential position of the communicating hole 32 b are the same as those of the hole portion 33 .
  • the oil O flowing through the hollow portion 51 of the motor shaft 31 is supplied from the hole portion 33 to the through hole 32a of the rotor body 32 through the communication hole 32b by centrifugal force or the like.
  • the rotor 30 is cooled by the oil O flowing through the through holes 32a. Since the temperature rise of the rotor 30 can be suppressed, the range of selection of the members constituting the rotor 30 is widened, for example, an inexpensive magnet whose upper limit of the operating temperature is not too high can be used.
  • stator 40 faces the rotor 30 with a gap in the radial direction.
  • the stator 40 surrounds the rotor 30 from the radially outer side along the entire circumference.
  • the stator 40 is fixed inside the motor housing 81 .
  • Stator 40 has a stator core 41 and a coil assembly 42 .
  • the stator core 41 has an annular shape surrounding the central axis J of the rotary electric machine 10 .
  • the stator core 41 is configured, for example, by laminating a plurality of plate members such as electromagnetic steel plates in the axial direction.
  • the coil assembly 42 has a plurality of coils 42c attached to the stator core 41 along the circumferential direction.
  • the plurality of coils 42c are attached to respective teeth (not shown) of the stator core 41 via insulators (not shown).
  • a plurality of coils 42c are arranged along the circumferential direction.
  • Coil 42c has a portion protruding from stator core 41 in the axial direction.
  • the coolant channel 90 is provided inside the housing 80 . Oil O as a coolant flows through the coolant channel 90 .
  • the coolant flow path 90 is provided across the inside of the motor housing 81 and the inside of the gear housing 82 .
  • the coolant flow path 90 is a path through which the oil O stored in the gear housing 82 is supplied to the rotating electric machine 10 in the motor housing 81 and returns to the gear housing 82 again.
  • a pump 71 and a cooler 72 are provided in the coolant channel 90 .
  • the coolant channel 90 includes a first channel portion 91, a second channel portion 92, a third channel portion 93, a coolant supply portion 50, a connection channel portion 94, a shaft channel portion 95, It has a communication channel portion 96 and a through-hole channel portion 98 .
  • the first flow path part 91, the second flow path part 92, and the third flow path part 93 are provided on the wall of the gear housing 82, for example.
  • the first flow path portion 91 connects a portion of the gear housing 82 where the oil O is stored and the pump 71 .
  • the second channel portion 92 connects the pump 71 and the cooler 72 .
  • the third channel portion 93 connects the cooler 72 and the coolant supply portion 50 .
  • the third flow path portion 93 is connected to the left end portion of the coolant supply portion 50 , that is, the upstream portion of the coolant supply portion 50 .
  • the coolant supply unit 50 supplies oil O to the stator 40 .
  • the coolant supply portion 50 has a tubular shape extending in the axial direction.
  • the coolant supply portion 50 in this embodiment is a pipe extending in the axial direction.
  • Both axial end portions of the coolant supply portion 50 are supported by the motor housing 81 .
  • a left end portion of the coolant supply portion 50 is supported by, for example, the partition wall portion 81b.
  • a right end portion of the coolant supply portion 50 is supported by, for example, the lid portion 81c.
  • the coolant supply portion 50 is positioned radially outward of the stator 40 .
  • the coolant supply unit 50 is positioned above the stator 40 .
  • the coolant supply part 50 has a supply port 50a for supplying the oil O to the stator 40 .
  • the supply port 50a is a jetting port that jets part of the oil O that has flowed into the coolant supply portion 50 to the outside of the coolant supply portion 50 .
  • the supply port 50a is configured by a hole penetrating the wall portion of the coolant supply portion 50 from the inner peripheral surface to the outer peripheral surface.
  • a plurality of supply ports 50 a are provided in the coolant supply section 50 .
  • the plurality of supply ports 50a are spaced apart from each other, for example, in the axial direction or the circumferential direction.
  • the shaft channel portion 95 is arranged inside the motor shaft 31 .
  • the shaft channel portion 95 includes the inner peripheral surface of the hollow portion 51 , the enlarged diameter portion 56 , the hole portion 33 and the hole portion 53 .
  • the connection channel portion 94 connects the inside of the coolant supply portion 50 and the inside of the motor shaft 31 .
  • the connection channel portion 94 connects the right end portion of the coolant supply portion 50, that is, the downstream portion, and the right end portion of the shaft channel portion 95, that is, the upstream portion.
  • the connection channel portion 94 is provided, for example, in the lid portion 81c. According to this embodiment, it is possible to stably cool the stator 40 and the rotor 30 while simplifying the configuration of the coolant flow path 90 .
  • the through-hole channel portion 98 includes the through-hole 32a.
  • the communication channel portion 96 includes a communication hole 32b.
  • the communication channel portion 96 connects the shaft channel portion 95 and the through-hole channel portion 98 .
  • the oil O stored in the gear housing 82 is sucked up through the first flow passage portion 91 and then through the second flow passage portion 92 into the cooler 72. flow into The oil O that has flowed into the cooler 72 is cooled in the cooler 72 and then flows through the third flow path portion 93 to the coolant supply portion 50 . A portion of the oil O that has flowed into the coolant supply portion 50 is injected from the supply port 50 a and supplied to the stator 40 . Another portion of the oil O that has flowed into the coolant supply portion 50 flows into the shaft flow channel portion 95 through the connection flow channel portion 94 .
  • a portion of the oil O flowing through the shaft channel portion 95 flows from the hole portion 33 through the communication channel portion 96 and the through-hole channel portion 98 and scatters to the stator 40 .
  • Another part of the oil O that has flowed into the shaft passage portion 95 is discharged from the left opening of the motor shaft 31 through the hole portion 53 of the projecting portion 52 (see FIG. 2) into the gear housing 82 and again It is stored inside the gear housing 82 .
  • the projection 52 is provided in the hollow portion 51 inside the motor shaft 31, and the flow resistance of the oil O reaching the projection 52 is increased. Therefore, in the shaft flow path portion 95 , the flow of the oil O flowing through the hole portion 53 to the other side in the axial direction of the projecting portion 52 is suppressed. Therefore, the oil O flowing inside the motor shaft 31 is efficiently guided to the rotor main body 32 via the enlarged diameter portion 56 and the hole portion 33 . As a result, the cooling efficiency of the stator core 41 can be improved by scattering the oil O that has flowed from the hole portion 33 through the communication channel portion 96 and the through hole channel portion 98 .
  • the oil O supplied to the stator 40 from the supply port 50 a takes heat from the stator 40
  • the oil O supplied to the rotor 30 and stator 40 from within the motor shaft 31 takes heat from the rotor 30 and stator 40 .
  • the oil O that has cooled the stator 40 and the rotor 30 drops downward and accumulates in the lower area inside the motor housing 81 .
  • the oil O accumulated in the lower region inside the motor housing 81 returns into the gear housing 82 through the partition wall opening 81d provided in the partition wall portion 81b.
  • coolant flow path 90 supplies oil O stored in gear housing 82 to rotor 30 and stator 40 .
  • FIG. 4 is a cross-sectional view showing a modification of the motor shaft 31 in the rotary electric machine 10. As shown in FIG. FIG. 4 is a cross-sectional view orthogonal to the axial direction at a position including the center of the hole 33 in the axial direction, and is a view seen from one side in the axial direction.
  • the configuration in which the projecting portion 52 is provided over the entire circumference in the circumferential direction is exemplified.
  • the motor shaft 31 has a plurality of locally spaced projections 52 in the circumferential direction. Each projecting portion 52 is provided with a size in a range including 33 holes in the circumferential direction.
  • the hole portion 53 includes not only a region coaxial with the central axis J, but also a region of gaps between the protruding portions 52 .
  • the oil O that has reached the projecting portion 52 with high flow resistance can be guided to the hole portion 33 located radially outside the projecting portion 52 .
  • the cooling efficiency of the stator core 41 can be improved by scattering the oil O that has flowed from the hole portion 33 through the communication channel portion 96 and the through-hole channel portion 98 .
  • FIG. 5 is a cross-sectional view showing a modification of the motor shaft 31 in the rotary electric machine 10.
  • FIG. FIG. 5 is a cross-sectional view orthogonal to the axial direction at a position including the center of the hole 33 in the axial direction, and is a view seen from one side in the axial direction.
  • a configuration in which a portion of the motor shaft 31 protrudes radially inward and the protruding portion 52 is provided is exemplified.
  • a C-ring which is a separate member from the motor shaft 31, is provided as the projecting portion 52.
  • the C-ring has a notch part in the circumferential direction.
  • a hollow portion 51 of the motor shaft 31 has an inner peripheral surface formed with a groove portion 51a that is recessed radially outward along the entire circumference.
  • the C-ring is fitted in the groove portion 51a.
  • FIG. 6 is a schematic configuration diagram schematically showing a driving device 200 that is a modified example of the driving device 100.
  • the coolant channel 290 includes a first channel portion 91, a second channel portion 92, a third channel portion 293, a coolant supply portion 250, a supply channel portion 294, a shaft flow It has a channel portion 95 , a communication channel portion 96 , and a through-hole channel portion 98 .
  • the third channel portion 293 connects the cooler 72 and the supply channel portion 294 .
  • the third flow path portion 293 is provided across, for example, the gear housing 82 and the motor housing 81 .
  • the supply channel portion 294 is provided, for example, in the lid portion 81c.
  • the supply channel portion 294 branches into a channel portion connecting the third channel portion 293 and the coolant supply portion 250 and a channel portion connecting the third channel portion 293 and the shaft channel portion 95.
  • the branched supply channel portion 294 is connected to the right end portion of the coolant supply portion 250, ie, the upstream portion, and the right end portion, ie, the upstream portion, of the shaft channel portion 95, respectively. That is, the supply channel portion 294 supplies the oil O to the upstream portion of the coolant supply portion 250 and the upstream portion of the shaft channel portion 95 .
  • the oil O flows from the right side to the left side inside the coolant supply portion 250 .
  • All of the oil O that has flowed into the coolant supply portion 250 from the supply channel portion 294 is supplied to the stator 40 from the supply port 50a, for example.
  • the stator 40 and the rotor 30 can be stably cooled while simplifying the configuration of the coolant flow path 290 .
  • Other configurations of the drive device 200 are the same as the other configurations of the drive device 100 described above.
  • the coolant flowing through the coolant channels 90 and 290 is not limited to the oil O.
  • the coolant may be, for example, an insulating liquid or water.
  • the surface of the stator 40 may be subjected to insulation treatment.
  • a rotating electric machine to which the present invention is applied is not limited to a motor, and may be a generator. Applications of the rotating electric machine are not particularly limited.
  • the rotating electric machine may be mounted on a vehicle for an application other than for rotating an axle, or may be mounted on equipment other than the vehicle. There is no particular limitation on the posture when the rotating electric machine is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

中心軸を中心に回転するモータシャフトと、モータシャフトに固定されるロータ本体を有するロータと、ロータの径方向外側に位置するステータコアを有するステータと、ステータコアに冷媒を供給する冷媒供給部と、を有する。モータシャフトは、冷媒が導入される導入部を有し中心軸の軸方向に延びる中空部と、中空部に臨む内周面と外周面とをつなぐ孔部と、軸方向で孔部よりも導入部から離れた位置に配置され内周面から径方向内側に突出する突出部と、を有する。

Description

回転電機、および駆動装置
 本発明は、回転電機、および駆動装置に関する。
 冷媒がステータコアに供給される構造を有する回転電機が知られている。例えば、特許文献1には、冷媒としての冷却オイルがシャフトの中空穴、小穴およびロータコアを介してステータコアに噴射される構造を有する回転電機が記載されている。
特開平9-154258号公報
 しかしながら、中空穴が小穴よりも冷媒の流動方向下流側に延びている場合、軸方向に流れる冷媒の流量が多くなり、小穴に流動する冷媒の流量が少なくなることがある。この場合、冷媒によるステータコアの冷却効率が低下する可能性がある。
 本発明は、以上のような点を考慮してなされたもので、ステータコアの冷却効率を向上できる構造を有する回転電機、および駆動装置を提供することを目的の一つとする。
 本発明の回転電機の一つの態様は、中心軸を中心に回転するモータシャフトと、前記モータシャフトに固定されるロータ本体を有するロータと、前記ロータの径方向外側に位置するステータコアを有するステータと、前記ステータコアに冷媒を供給する冷媒供給部と、を有し、前記モータシャフトは、前記冷媒が導入される導入部を有し前記中心軸の軸方向に延びる中空部と、前記中空部に臨む内周面と外周面とをつなぐ孔部と、軸方向で前記孔部よりも前記導入部から離れた位置に配置され前記内周面から径方向内側に突出する突出部と、を有する。
 本発明の駆動装置の一つの態様は、車両に搭載され、車軸を回転させる駆動装置であって、上記の回転電機と、前記回転電機に接続され、前記ロータの回転を前記車軸に伝達する伝達装置と、を備える。
 本発明の一つの態様によれば、回転電機および駆動装置において、ステータコアの冷却効率を向上できる。
図1は、一実施形態の駆動装置を模式的に示す概略構成図である。 図2は、ロータを示す縦断面図である。 図3は、中空部における拡径部を拡大した部分断面図である。 図4は、一実施形態の変形例のモータシャフトを示す横断面図である。 図5は、一実施形態の変形例のモータシャフトを示す横断面図である。 図6は、一実施形態の変形例の駆動装置を模式的に示す概略構成図である。
 以下の説明では、実施形態の駆動装置が水平な路面上に位置する車両に搭載された場合の位置関係を基に、鉛直方向を規定して説明する。つまり、以下の実施形態において説明する鉛直方向に関する相対位置関係は、駆動装置が水平な路面上に位置する車両に搭載された場合に少なくとも満たしていればよい。
 図面においては、適宜3次元直交座標系としてXYZ座標系を示す。XYZ座標系において、Z軸方向は、鉛直方向である。+Z側は、鉛直方向上側であり、-Z側は、鉛直方向下側である。以下の説明では、鉛直方向上側を単に「上側」と呼び、鉛直方向下側を単に「下側」と呼ぶ。X軸方向は、Z軸方向と直交する方向であって駆動装置が搭載される車両の前後方向である。以下の実施形態において、+X側は、車両における前側であり、-X側は、車両における後側である。Y軸方向は、X軸方向とZ軸方向との両方と直交する方向であって、車両の左右方向、すなわち車幅方向である。以下の実施形態において、+Y側は、車両における左側であり、-Y側は、車両における右側である。前後方向および左右方向は、鉛直方向と直交する水平方向である。
 なお、前後方向の位置関係は、以下の実施形態の位置関係に限られず、+X側が車両の後側であり、-X側が車両の前側であってもよい。この場合には、+Y側は、車両の右側であり、-Y側は、車両の左側である。また、本明細書において、「平行な方向」は略平行な方向も含み、「直交する方向」は略直交する方向も含む。
 適宜図に示す中心軸Jは、鉛直方向と交差する方向に延びる仮想軸である。より詳細には、中心軸Jは、鉛直方向と直交するY軸方向、つまり車両の左右方向に延びている。以下の説明においては、特に断りのない限り、中心軸Jに平行な方向を単に「軸方向」と呼び、中心軸Jを中心とする径方向を単に「径方向」と呼び、中心軸Jを中心とする周方向、つまり中心軸Jの軸回りを単に「周方向」と呼ぶ。
 図1に示す本実施形態の駆動装置100は、車両に搭載され、車軸64を回転させる駆動装置である。駆動装置100が搭載される車両は、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)などのモータを動力源とする車両である。図1に示すように、駆動装置100は、回転電機10と、ハウジング80と、伝達装置60と、冷媒流路90と、を備える。回転電機10は、中心軸Jを中心として回転可能なロータ30と、ロータ30の径方向外側に位置するステータ40と、を備える。回転電機10の上記以外の構成については、後述する。
 ハウジング80は、回転電機10および伝達装置60を収容する。ハウジング80は、モータハウジング81と、ギヤハウジング82と、を有する。モータハウジング81は、ロータ30およびステータ40を内部に収容するハウジングである。モータハウジング81は、ギヤハウジング82の右側に繋がっている。モータハウジング81は、周壁部81aと、隔壁部81bと、蓋部81cと、を有する。周壁部81aと隔壁部81bとは、例えば、同一の単一部材の一部である。蓋部81cは、例えば、周壁部81aおよび隔壁部81bとは別体である。
 周壁部81aは、中心軸Jを囲み、右側に開口する筒状である。隔壁部81bは、周壁部81aの左側の端部に繋がっている。隔壁部81bは、モータハウジング81の内部とギヤハウジング82の内部とを軸方向に隔てている。隔壁部81bは、モータハウジング81の内部とギヤハウジング82の内部とを繋ぐ隔壁開口81dを有する。隔壁部81bには、ベアリング34が保持されている。蓋部81cは、周壁部81aの右側の端部に固定されている。蓋部81cは、周壁部81aの右側の開口を塞いでいる。蓋部81cには、ベアリング35が保持されている。
 ギヤハウジング82は、伝達装置60の後述する減速装置62および差動装置63と、オイルOとを内部に収容している。オイルOは、ギヤハウジング82内の下部領域に貯留されている。オイルOは、後述する冷媒流路90内を循環する。オイルOは、回転電機10を冷却する冷媒として使用される。また、オイルOは、減速装置62および差動装置63に対して潤滑油として使用される。オイルOとしては、例えば、冷媒および潤滑油の機能を奏するために、比較的粘度の低いオートマチックトランスミッション用潤滑油(ATF:Automatic Transmission Fluid)と同等のオイルを用いることが好ましい。
 伝達装置60は、回転電機10に接続され、ロータ30の回転を車両の車軸64に伝達する。本実施形態の伝達装置60は、回転電機10に接続される減速装置62と、減速装置62に接続される差動装置63と、を有する。
 差動装置63は、リングギヤ63aを有する。リングギヤ63aには、回転電機10から出力されるトルクが減速装置62を介して伝えられる。リングギヤ63aの下側の端部は、ギヤハウジング82内に貯留されたオイルOに浸漬している。リングギヤ63aが回転することで、オイルOがかき上げられる。かき上げられたオイルOは、例えば、減速装置62および差動装置63に潤滑油として供給される。
 回転電機10は、駆動装置100を駆動する部分である。回転電機10は、例えば、伝達装置60の右側に位置する。本実施形態において回転電機10は、モータである。回転電機10のロータ30のトルクは、伝達装置60に伝達される。
 ロータ30は、モータシャフト31と、ロータ本体32と、を有する。図示は省略するが、ロータ本体32は、ロータコアと、ロータコアに固定されたロータマグネットと、を有する。
 モータシャフト31は、中心軸Jを中心として回転可能である。モータシャフト31は、ベアリング34,35によって回転可能に支持されている。本実施形態においてモータシャフト31は、中空シャフトである。モータシャフト31は、内部に冷媒としてのオイルOが流通可能な筒状である。モータシャフト31は、モータハウジング81の内部とギヤハウジング82の内部とに跨って延びている。モータシャフト31の左側の端部は、ギヤハウジング82の内部に突出している。モータシャフト31の左側の端部には、減速装置62が接続されている。
 図2に示すように、モータシャフト31は、略円筒状である。モータシャフト31は、中空部51と、孔部33と、突出部52と、穴部53と、を有する。中空部51は、導入部54と、テーパ部55と、拡径部56とを有する。導入部54は、軸方向の一方側(-Y側)の端部に位置する。導入部54は、冷媒供給部50から冷媒が導入される。テーパ部55は、軸方向で導入部54から離れるのに従って拡径する。テーパ部55は、導入部54から軸方向の他方側(+Y側)に向けて拡径する。テーパ部55は、軸方向の他方側に向く面である。このため、導入部54から導入され、ロータ30の回転に伴う遠心力でモータシャフト31の内周面に押し付けられた冷媒は、テーパ部55に沿って軸方向の他方側に流れやすくなる。従って、導入部54から導入された冷媒が軸方向の一方側に逆流することを抑制できる。
 拡径部56は、中心軸Jを中心とする環状の溝である。図3に示すように、拡径部56は、軸方向に互いに離れて配置される一対の溝壁56a,56bと、軸方向において一対の溝壁56a,56b間に位置し径方向内側を向く溝底56cと、を有する。一対の溝壁56a,56bのうち、軸方向一方側に位置する一方の溝壁56aは、軸方向他方側へ向かうに従い径方向外側に位置するテーパ状である。
 このため、モータシャフト31内を軸方向一方側から軸方向他方側へ向けて流れるオイルOが、一方の溝壁56aにより溝底56cへ安定して案内される。一対の溝壁56a,56bのうち、軸方向他方側に位置する他方の溝壁56bは、軸方向他方側へ向かうに従い径方向内側に位置するテーパ状である。このため、モータシャフト31内を溝底56cへ案内されて流れたオイルOの一部が、他方の溝壁56bにより軸方向他方側へ安定して案内される。溝底56cは、拡径部56において最も径方向外側に位置する。
 孔部33は、モータシャフト31における中空部51に臨む内周面と外周面とをつなぐ。孔部33は、モータシャフト31の周壁の内部を径方向に延びる円孔状である。孔部33は、周方向に間隔をあけて複数配置されている。孔部33は、一例として、周方向に等ピッチで8つ設けられる。孔部33は、溝底56cに開口する。つまり孔部33は、拡径部56に開口する。本実施形態によれば、モータシャフト31内を流れるオイルOが、拡径部56により孔部33に効率よく案内され、後述するようにロータ30内を流れることにより、ロータ30の冷却効率が高められる。
 突出部52は、中空部51の内周面から径方向内側に突出する。突出部52は、孔部33よりも軸方向他方側に配置されている。突出部52は、軸方向で孔部33よりも導入部54から離れた位置に配置されている。突出部52は、拡径部56よりも軸方向他方側に配置されている。突出部52は、少なくとも周方向で孔部33を含む範囲に設けられている。本実施形態の突出部52は、周方向で全周に亘って設けられている。突出部52は、中心軸Jと垂直な方向に拡がる平面状であり、軸方向一方側を向く。
 このため、突出部52は、溝底56cに案内されたオイルOが他方の溝壁56bを介して軸方向他方側に流れる際の障壁となる。突出部52は、テーパ部55から拡径部56を経ることなく突出部52に達したオイルOに対しても障壁となる。突出部52が障壁となることで、拡径部56から軸方向他方側に流れるオイルOおよびテーパ部55から拡径部56を経ることなく突出部52に達したオイルOの流動抵抗が大きくなり、オイルOが拡径部56に安定して保持されやすくなる。
 本実施形態によれば、モータシャフト31内を流れるオイルOが、拡径部56により孔部33に効率よく案内され、後述するようにロータ30内を流れることにより、ロータ30の冷却効率が高められる。周方向で孔部33を含む範囲に突出部52を設けることで、少なくとも孔部33の周方向位置において突出部52に達したオイルOの流動抵抗が大きくなる。本実施形態によれば、孔部33の周方向位置においてオイルOが拡径部56に保持されやすくなることで、孔部33に効率よく案内され、ロータ30の冷却効率が高められる。突出部52を周方向で全周に亘って設けることで、孔部33の周方向に依らず、孔部33の周方向位置においてオイルOが拡径部56に保持されやすくなり、孔部33に効率よく案内される。
 穴部53は、突出部52を軸方向に貫く。穴部53は、中心軸Jと同軸である。モータシャフト31が穴部53を有することで、突出部52に達したオイルOの一部は、穴部53を介して中空部51における突出部52よりも軸方向他方側に流れる。
 ロータ本体32は、磁性体である。図2に示すように、ロータ本体32は、中心軸Jを中心とする筒状であり、本実施形態では円筒状である。ロータ本体32の内周面は、圧入等によりモータシャフト31の外周面と固定される。ロータ本体32とモータシャフト31とは、軸方向、径方向および周方向において相対移動不能に固定される。ロータ本体32は、軸方向に重ねて配置される複数の電磁鋼板(図示省略)を有する。
 図2および図3に示すように、ロータ本体32は、貫通孔32aと連通孔32bとを有する。貫通孔32aは、ロータ本体32を軸方向に貫通する。図示は省略するが、軸方向と直交する貫通孔32aの断面形状は、一例として、周方向に延びる略四角形状である。貫通孔32aは、ロータ本体32に周方向に互いに間隔をあけて複数設けられる。本実施形態では、ロータ本体32に貫通孔32aが周方向に等ピッチで8つ設けられる。貫通孔32aの周方向の位置は孔部33と同一である。
 連通孔32bは、径方向内側がロータ本体32の内周面に開口し、径方向外側が貫通孔32aに開口する。連通孔32bは、径方向に延びる。連通孔32bは、径方向外側から孔部33に対向する。連通孔32bは、孔部33と貫通孔32aとを接続する。連通孔32bの周方向寸法は、孔部33の周方向寸法(内径)に比べて同等以上であることが好ましい。連通孔32bは、ロータ本体32に周方向に互いに間隔をあけて複数設けられる。本実施形態では、連通孔32bが周方向に等ピッチで8つ設けられる。連通孔32bの軸方向の位置および周方向の位置は孔部33と同一である。
 本実施形態によれば、モータシャフト31の中空部51を流れるオイルOが、遠心力等により孔部33から連通孔32bを通して、ロータ本体32の貫通孔32aに供給される。ロータ30は、貫通孔32aを流れるオイルOにより冷却される。ロータ30の温度上昇を抑えることができるため、例えば使用温度の上限値が高過ぎることのない廉価なマグネットを使用できるなど、ロータ30を構成する部材の選択の幅が広がる。
 図1に示すように、ステータ40は、ロータ30と径方向に隙間を介して対向する。ステータ40は、ロータ30を径方向外側から周方向全周にわたって囲う。ステータ40は、モータハウジング81の内部に固定される。ステータ40は、ステータコア41と、コイルアセンブリ42と、を有する。
 ステータコア41は、回転電機10の中心軸Jを囲む環状である。ステータコア41は、例えば、電磁鋼板などの板部材が軸方向に複数積層されて構成されている。コイルアセンブリ42は、周方向に沿ってステータコア41に取り付けられる複数のコイル42cを有する。複数のコイル42cは、インシュレータ(図示省略)を介してステータコア41の各ティース(図示省略)にそれぞれ装着されている。複数のコイル42cは、周方向に沿って配置されている。コイル42cは、ステータコア41から軸方向に突出する部分を有する。
 冷媒流路90は、ハウジング80内に設けられる。冷媒流路90には、冷媒としてのオイルOが流れる。冷媒流路90は、モータハウジング81の内部とギヤハウジング82の内部とに跨って設けられている。冷媒流路90は、ギヤハウジング82内に貯留されたオイルOがモータハウジング81内の回転電機10に供給されて再びギヤハウジング82内に戻る経路である。冷媒流路90には、ポンプ71と、クーラ72と、が設けられている。冷媒流路90は、第1流路部91と、第2流路部92と、第3流路部93と、冷媒供給部50と、接続流路部94と、シャフト流路部95と、連通流路部96と、貫通孔流路部98と、を有する。
 第1流路部91、第2流路部92、および第3流路部93は、例えば、ギヤハウジング82の壁部に設けられている。第1流路部91は、ギヤハウジング82の内部のうちオイルOが貯留されている部分とポンプ71とを繋いでいる。第2流路部92は、ポンプ71とクーラ72とを繋いでいる。第3流路部93は、クーラ72と冷媒供給部50とを繋いでいる。本実施形態において第3流路部93は、冷媒供給部50の左側の端部すなわち冷媒供給部50の上流側部分に繋がっている。
 冷媒供給部50は、ステータ40にオイルOを供給する。本実施形態において冷媒供給部50は、軸方向に延びる管状である。言い換えれば、本実施形態において冷媒供給部50は、軸方向に延びるパイプである。冷媒供給部50の軸方向両端部は、モータハウジング81に支持されている。冷媒供給部50の左側の端部は、例えば、隔壁部81bに支持されている。冷媒供給部50の右側の端部は、例えば、蓋部81cに支持されている。冷媒供給部50は、ステータ40の径方向外側に位置する。本実施形態において冷媒供給部50は、ステータ40の上側に位置する。
 冷媒供給部50は、ステータ40にオイルOを供給する供給口50aを有する。本実施形態において供給口50aは、冷媒供給部50内に流入したオイルOの一部を冷媒供給部50の外部に噴射させる噴射口である。供給口50aは、冷媒供給部50の壁部を内周面から外周面まで貫通する孔によって構成されている。 供給口50aは、冷媒供給部50に複数設けられている。複数の供給口50aは、例えば、軸方向または周方向に互いに間隔をあけて配置される。
 シャフト流路部95は、モータシャフト31内に配置される。図2に示すように、シャフト流路部95は、中空部51の内周面、拡径部56、孔部33および穴部53を含む。図1に示すように、接続流路部94は、冷媒供給部50の内部とモータシャフト31の内部とを繋いでいる。接続流路部94は、冷媒供給部50の右側の端部つまり下流側部分と、シャフト流路部95の右側の端部つまり上流側部分と、を接続する。接続流路部94は、例えば、蓋部81cに設けられている。本実施形態によれば、冷媒流路90の構成を簡素化しつつ、ステータ40およびロータ30を安定して冷却できる。
 貫通孔流路部98は、貫通孔32aを含む。連通流路部96は、連通孔32bを含む。連通流路部96は、シャフト流路部95と貫通孔流路部98とを繋ぐ。
 図1に示すように、ポンプ71が駆動されると、ギヤハウジング82内に貯留されたオイルOが第1流路部91を通って吸い上げられ、第2流路部92を通ってクーラ72内に流入する。クーラ72内に流入したオイルOは、クーラ72内で冷却された後、第3流路部93を通って、冷媒供給部50へと流れる。冷媒供給部50内に流入したオイルOの一部は、供給口50aから噴射されて、ステータ40に供給される。冷媒供給部50内に流入したオイルOの他の一部は、接続流路部94を通ってシャフト流路部95に流入する。シャフト流路部95を流れるオイルOの一部は、孔部33から連通流路部96および貫通孔流路部98を流れて、ステータ40に飛散する。シャフト流路部95に流入したオイルOの他の一部は、突出部52(図2参照)の穴部53を介してモータシャフト31の左側の開口からギヤハウジング82の内部に排出され、再びギヤハウジング82内に貯留される。
 本実施形態では、モータシャフト31内の中空部51に突出部52が設けられ、突出部52に達したオイルOの流動抵抗が大きくなる。このため、シャフト流路部95においては、モータシャフト31内を流れるオイルOのうち、穴部53を介して突出部52よりも軸方向他方側に流れるオイルOの流れが抑制される。従って、モータシャフト31内を流れるオイルOは、拡径部56および孔部33を介してロータ本体32に効率よく案内される。その結果、孔部33から連通流路部96および貫通孔流路部98を流れたオイルOが飛散することでステータコア41の冷却効率を向上できる。
 供給口50aからステータ40に供給されたオイルOは、ステータ40から熱を奪い、モータシャフト31内からロータ30およびステータ40に供給されたオイルOは、ロータ30およびステータ40から熱を奪う。ステータ40およびロータ30を冷却したオイルOは、下側に落下して、モータハウジング81内の下部領域に溜まる。モータハウジング81内の下部領域に溜ったオイルOは、隔壁部81bに設けられた隔壁開口81dを介してギヤハウジング82内に戻る。以上のようにして、冷媒流路90は、ギヤハウジング82内に貯留されたオイルOをロータ30およびステータ40に供給する。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 図4は、回転電機10におけるモータシャフト31の変形例を示す横断面図である。図4は、軸方向で孔部33の中心を含む位置における、軸方向と直交する断面図であり、軸方向一方側から見た図である。 上記の実施形態では、突出部52が周方向で全周に亘って設けられる構成を例示した。この変形例では、モータシャフト31が周方向で間隔をあけて局所的に配置された複数の突出部52を有する。各突出部52は、周方向で33孔部を含む範囲の大きさで設けられている。穴部53は、中心軸Jと同軸の領域の他に、突出部52同士の隙間の領域も含まれる。この構成を採ることで、流動抵抗が大きい突出部52に達したオイルOを当該突出部52の径方向外側に位置する孔部33に案内できる。この変形例においても、孔部33から連通流路部96および貫通孔流路部98を流れたオイルOが飛散することでステータコア41の冷却効率を向上できる。
 図5は、回転電機10におけるモータシャフト31の変形例を示す横断面図である。図5は、軸方向で孔部33の中心を含む位置における、軸方向と直交する断面図であり、軸方向一方側から見た図である。 上記の実施形態では、モータシャフト31の一部が径方向内側に突出して突出部52が設けられる構成を例示した。この変形例では、モータシャフト31とは別部材であるCリングが突出部52として設けられている。Cリングは、周方向の一部に切欠部を有する。モータシャフト31における中空部51の内周面には、径方向外側に窪む溝部51aが全周に亘って設けられている。Cリングは、溝部51aに嵌め込まれている。この構成を採ることで、安価なCリングを用いることが可能となり、モータシャフト31の製造コストを低減できる。
 図6は、駆動装置100の変形例である駆動装置200を模式的に示す概略構成図である。この変形例では、冷媒流路290が、第1流路部91と、第2流路部92と、第3流路部293と、冷媒供給部250と、供給流路部294と、シャフト流路部95と、連通流路部96と、貫通孔流路部98と、を有する。第3流路部293は、クーラ72と、供給流路部294と、を繋いでいる。第3流路部293は、例えば、ギヤハウジング82とモータハウジング81とに跨って設けられている。 供給流路部294は、例えば、蓋部81cに設けられている。供給流路部294は、第3流路部293と冷媒供給部250とを繋ぐ流路部と、第3流路部293とシャフト流路部95とを繋ぐ流路部と、に分岐している。分岐した供給流路部294は、それぞれ冷媒供給部250の右側の端部つまり上流側部分と、シャフト流路部95の右側の端部つまり上流側部分と、に繋がっている。すなわち、供給流路部294は、冷媒供給部250の上流側部分とシャフト流路部95の上流側部分とにオイルOを供給する。この変形例では、冷媒供給部250の内部において、右側から左側にオイルOが流れる。供給流路部294から冷媒供給部250内に流入したオイルOは、例えば、全てが供給口50aからステータ40に供給される。この変形例においても、冷媒流路290の構成を簡素化しつつ、ステータ40およびロータ30を安定して冷却できる。駆動装置200のその他の構成は、前述した駆動装置100のその他の構成と同様である。
 冷媒流路90,290を流れる冷媒は、オイルOに限らない。冷媒は、例えば、絶縁液であってもよいし、水であってもよい。冷媒が水である場合、ステータ40の表面に絶縁処理を施してもよい。
 本発明が適用される回転電機は、モータに限られず、発電機であってもよい。回転電機の用途は、特に限定されない。回転電機は、例えば、車軸を回転させる用途以外の用途で車両に搭載されてもよいし、車両以外の機器に搭載されてもよい。回転電機が用いられる際の姿勢は、特に限定されない。
 本発明の趣旨から逸脱しない範囲において、前述の実施形態および変形例等で説明した各構成を組み合わせてもよく、また、構成の付加、省略、置換、その他の変更が可能である。また本発明は、前述した実施形態によって限定されず、特許請求の範囲によってのみ限定される。
 10…回転電機、 30…ロータ、 31…モータシャフト、 32…ロータ本体、 33…孔部、 40…ステータ、 41…ステータコア、 50、250…冷媒供給部、 51…中空部、 52…突出部、 53…穴部、 54…導入部、 55…テーパ部、 56…拡径部、
 60…伝達装置、  90…冷媒流路、 100、200…駆動装置、 J…中心軸、 O…オイル(冷媒)

Claims (7)

  1.  中心軸を中心に回転するモータシャフトと、
     前記モータシャフトに固定されるロータ本体を有するロータと、
     前記ロータの径方向外側に位置するステータコアを有するステータと、
     前記ステータコアに冷媒を供給する冷媒供給部と、
     を有し、
     前記モータシャフトは、
      前記冷媒が導入される導入部を有し前記中心軸の軸方向に延びる中空部と、
      前記中空部に臨む内周面と外周面とをつなぐ孔部と、
      軸方向で前記孔部よりも前記導入部から離れた位置に配置され前記内周面から径方向内側に突出する突出部と、
     を有する、回転電機。
  2.  前記突出部は、周方向で前記孔部を含む範囲の大きさで設けられている、
     請求項1に記載の回転電機。
  3.  前記モータシャフトは、前記突出部を軸方向に貫く穴部を有する、
     請求項2に記載の回転電機。
  4.  前記突出部は、周方向で全周に亘って設けられている、
     請求項3に記載の回転電機。
  5.  前記中空部は、軸方向で前記導入部から離れるのに従って拡径するテーパ部を有する、
     請求項1から4のいずれか一項に記載の回転電機。
  6.  前記中空部は、内周面から径方向外側に窪む拡径部を有し、
     前記孔部は、前記拡径部に開口している、
     請求項1から5のいずれか一項に記載の回転電機。
  7.   車両に搭載され、車軸を回転させる駆動装置であって、
      請求項1から6のいずれか一項に記載の回転電機と、
      前記回転電機に接続され、前記ロータの回転を前記車軸に伝達する伝達装置と、
      を備える、駆動装置。
PCT/JP2021/022342 2021-02-18 2021-06-11 回転電機、および駆動装置 WO2022176225A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-024028 2021-02-18
JP2021024028 2021-02-18

Publications (1)

Publication Number Publication Date
WO2022176225A1 true WO2022176225A1 (ja) 2022-08-25

Family

ID=82931283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022342 WO2022176225A1 (ja) 2021-02-18 2021-06-11 回転電機、および駆動装置

Country Status (1)

Country Link
WO (1) WO2022176225A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154258A (ja) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd 強制油冷式電動機又は発電機の冷却構造
JP2005073351A (ja) * 2003-08-22 2005-03-17 Toyota Motor Corp 回転電機の冷却構造
JP2012095381A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp 車両用回転電機の冷却装置
WO2019049820A1 (ja) * 2017-09-08 2019-03-14 アイシン・エィ・ダブリュ株式会社 ロータ
JP2021010217A (ja) * 2019-06-28 2021-01-28 日本電産株式会社 駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154258A (ja) * 1995-11-29 1997-06-10 Mitsubishi Heavy Ind Ltd 強制油冷式電動機又は発電機の冷却構造
JP2005073351A (ja) * 2003-08-22 2005-03-17 Toyota Motor Corp 回転電機の冷却構造
JP2012095381A (ja) * 2010-10-25 2012-05-17 Toyota Motor Corp 車両用回転電機の冷却装置
WO2019049820A1 (ja) * 2017-09-08 2019-03-14 アイシン・エィ・ダブリュ株式会社 ロータ
JP2021010217A (ja) * 2019-06-28 2021-01-28 日本電産株式会社 駆動装置

Similar Documents

Publication Publication Date Title
CN111585394A (zh) 马达单元
JP2022136505A (ja) 駆動装置
JP2014003807A (ja) 回転電機
WO2019208083A1 (ja) モータユニット
TWI797895B (zh) 旋轉電機和驅動裝置
CN114520563A (zh) 驱动装置和车辆
WO2019208081A1 (ja) モータユニットおよび車両駆動装置
WO2019208084A1 (ja) モータユニットおよびモータユニットの制御方法
CN115208130A (zh) 驱动装置及车辆
JP2022136835A (ja) 回転電機、および駆動装置
WO2022107370A1 (ja) 回転電機および駆動装置
WO2020032026A1 (ja) モータユニット
JP2022136508A (ja) 駆動装置
WO2022176225A1 (ja) 回転電機、および駆動装置
US12113400B2 (en) Rotor, rotary electric machine, and drive apparatus
US20220286016A1 (en) Drive device
CN115733299A (zh) 驱动装置
CN115706465A (zh) 驱动装置
CN115733268A (zh) 转子及旋转电机
JP2022151935A (ja) 回転電機
JP2022136836A (ja) 回転電機、および駆動装置
WO2019208082A1 (ja) モータユニット
JP6871077B2 (ja) モータジェネレータ装置
WO2022180876A1 (ja) 回転電機および駆動装置
WO2023149551A1 (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP