WO2022175580A2 - Altavoz electrodinámico para bocina con disipación térmica mejorado y método de fabricación - Google Patents

Altavoz electrodinámico para bocina con disipación térmica mejorado y método de fabricación Download PDF

Info

Publication number
WO2022175580A2
WO2022175580A2 PCT/ES2022/070083 ES2022070083W WO2022175580A2 WO 2022175580 A2 WO2022175580 A2 WO 2022175580A2 ES 2022070083 W ES2022070083 W ES 2022070083W WO 2022175580 A2 WO2022175580 A2 WO 2022175580A2
Authority
WO
WIPO (PCT)
Prior art keywords
winding
coil
air gap
thermal dissipation
loudspeaker
Prior art date
Application number
PCT/ES2022/070083
Other languages
English (en)
French (fr)
Other versions
WO2022175580A3 (es
Inventor
Jose Martinez Iranzo
Jorge SERRANO RAMIREZ
Original Assignee
Acustica Beyma S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acustica Beyma S.L. filed Critical Acustica Beyma S.L.
Priority to US18/547,314 priority Critical patent/US20240236577A9/en
Priority to EP22707789.8A priority patent/EP4307714A2/en
Priority to CN202280029354.1A priority patent/CN117441348A/zh
Publication of WO2022175580A2 publication Critical patent/WO2022175580A2/es
Publication of WO2022175580A3 publication Critical patent/WO2022175580A3/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/30Combinations of transducers with horns, e.g. with mechanical matching means, i.e. front-loaded horns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/022Cooling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers

Definitions

  • the object of the present invention is an electrodynamic loudspeaker for horns with improved thermal dissipation (and its manufacturing method) that is configured to increase thermal dissipation in loudspeaker models for medium and high frequencies in general and with a compression chamber in particular. , by increasing the radiating surface of the coil and the air gap.
  • the electrodynamic loudspeaker for horn or compression is formed by a small diaphragm facing a chamber where very important pressure variations are produced, and actuated by a coil. This prevents a significant displacement of the latter from occurring, unlike what happens with direct radiation loudspeakers, especially at medium and high frequencies, which correspond to the working range of this type of loudspeaker.
  • these models aim to achieve high performance and a very wide bandwidth.
  • a very light mobile luggage is used. This implies that the coil has to be relatively small in diameter and very short in height, which results in a very small dissipation area. The usual thing is that this coil has a height less than the thickness of the pole pieces and, to direct the magnetic flux towards it, one of the pieces must be chamfered in the area of the air gap.
  • the compression driver or any other loudspeaker for medium and high frequency reproduction, it is necessary to refer to its main parts: the coil, the section of the conductor wire and the magnetic circuit.
  • an air gap is formed with a height equal to the width of the winding.
  • the outer pole piece is chamfered, so that the lines of force are directed towards the air gap, thus obtaining a very intense induction in the latter.
  • a long coil has a much larger dissipation area and, therefore, its dissipation capacity, both by natural convection and by radiation, will be greater.
  • that larger size will imply a much higher mass, which will reduce the performance of the loudspeaker or require a more powerful magnetic circuit, which will increase the cost of the driver.
  • the mass is smaller and can be located within the air gap so that all its turns are traversed by the lines of force of the magnetic field. Its lower weight increases the performance of the speaker.
  • its reduced dissipation area makes it difficult to extract the heat generated in it, limiting the electrical power applied and increasing power compression losses.
  • non-ferromagnetic elements heat conductors
  • a cooling fluid -ferrofluid- can be applied inside the air gap (Entropy 2014, 16, 5891-5900 ; doi:10.3390/e16115891).
  • This fluid remains within the air gap because it contains, in its composition, iron nanoparticles that "fix” the fluid and prevent it from leaving the air gap.
  • Its efficiency in conducting heat from the coil to the pole pieces is quite good, but it suffers from two drawbacks. The first is the viscosity of the fluid, which “slows down” the coil and modifies its damping, that is, it influences the frequency response of the loudspeaker.
  • the second that, with the passage of time, the fluid disappears, either by migrating outside the air gap, or by evaporation, so its efficiency decreases, leaving the coil exposed to a power for which it is no longer prepared. .
  • the saturation in the areas close to the air gap will be less than if some of the parts that make up the air gap are mechanized due to the decrease of the section in this area. This will make it difficult for the magnetic flux to pass, reducing the energy of induction in the air gap.
  • An object of the present invention is an electrodynamic loudspeaker for a horn with thermal dissipation, and more specifically of the type included as electrodynamic loudspeakers moving coil for medium and high frequencies, especially for loudspeakers with a compression chamber.
  • electrodynamic moving coil loudspeakers are based on the displacement of the coil and, consequently, of the membrane fixed to it to produce pressure variations in the ambient air. This is because the electrical energy applied to the coil will generate a force in the latter, due to Laplace's law. However, some of that energy generates heat due to the Joule effect. To extract this heat from the coil and avoid a thermal overload, which can become irreversible, there are two mechanisms. The first is by convection [Eq.1] and will be of the natural type, as the coil is only in contact with a gaseous fluid. If a displacement also occurs, a movement of the surrounding air is generated, which gives rise to forced convection. But this effect only occurs in low-frequency cone models, which are not the object of the present invention.
  • the area of the coil is defined as its perimeter multiplied by its height. That is, for coils of the same diameter, the area will be proportional to the height of the winding.
  • An object of the present invention is to provide a solution to the problems described in the current state of the art without having an impact on the cost or the technical performance. In other words, it is a solution that can be implemented both in new developments and in existing models. This represents a fundamental advantage over other loudspeakers, since right now this type of loudspeaker has limited performance due to the increase in power compression losses as the applied electrical power increases.
  • the thermal dissipation device of the invention does not affect the performance of the loudspeaker, which, as indicated in [Eq.3], depends mainly on the force factor, Bl, nor on the response at high frequency, which depends, among others, on the mass of the coil.
  • the bobbin can be made with circular section wire or rectangular section wire. In the first case two layers are applied to the winding, while in the second only one is applied. In this case, it has already been mentioned that the width of the winding, for the compression chamber models, is less than the thickness of the external pole piece and that, in order to maximize the magnetic flux that affects the coil, it is chamfered to reduce the thickness until you get the same width as the height of the winding.
  • the solution provided by the present invention consists of doubling the dissipation area of the coil in order to double the admissible power, or else, with the same working conditions, reduce the temperature of the coil with the consequent decrease in losses. by power compression.
  • the doubling of the dissipation area of the coil has to be done without increasing the mass of the coil or modifying the electrical resistance.
  • the coil is made with the same diameter of wire and with the same number of turns as the original, but instead of winding with two layers, a single layer is applied.
  • the air gap has to adapt to the new height of the coil, this is done by reducing the chamfering of the upper pole piece and bringing this piece closer in the same proportion as the thickness of the layer that has been removed, since the outer diameter of the coil has decreased. In this way there will be an air gap with less separation, which reduces the leakage of magnetic flux to the outside and avoids such a high saturation in the areas close to it, allowing a greater number of lines of force to cross it. Likewise, as there is a larger area in the pole pieces facing the coil, the heat absorption capacity will be improved, and it will facilitate its conduction through the first ones towards the outside of the motor.
  • a monolayer rectangular section yarn is used, whose main advantage is that, as there are no gaps between the turns, as occurs in the embodiment with a circular section yarn, the stacking factor is greater and, therefore, Therefore, more turns can be included in the same space. This is possible because the winding is done by winding the turns on the edge.
  • the bobbin since the bobbin is single-layer, it will be necessary to modify the measurements of the flat wire section, although keeping it unchanged. In addition, the same number of turns will be maintained so as not to modify the length or the electrical resistance, until the new winding width is twice as wide as the original model.
  • FIG.1 Shows a view of a loudspeaker-horn assembly, of the type known in the current state of the art.
  • FIG. 2 Shows a partially sectioned view of the compression engine only, with the different parts.
  • FIG.3 Shows a detailed view of the solution for a bilayer coil with circular section wire and short air gap.
  • FIG. 4 Shows a sectional view of the solution with a single-layer coil twice as wide as the two-layer coil, wire with a circular section and a higher air gap.
  • FIG.5 Shows a schematic view of heat capture and dissipation in the first practical embodiment of the invention.
  • FIG.6 Shows a detailed view of the solution for a monolayer bobbin with rectangular section wire.
  • figure 6A shows the solution of the current state of the art
  • figure 6B shows the solution of the invention according to the second practical embodiment of the invention.
  • the electrodynamic loudspeaker for a horn with thermal dissipation will be essentially composed of a compression motor for an electrodynamic loudspeaker with a compression chamber, it comprises a coil or winding (1), a air gap (2) and a magnetic circuit (3).
  • the protruding elements of the magnetic circuit (3) that face the winding (1) and that conduct the magnetic flux provided by the magnet are called pole pieces (4).
  • the dissipation area of the coil (1) is doubled, to double the admissible power, or else, with the same working conditions, reduce the temperature in the coil (1) with the consequent decrease in losses due to power compression.
  • the coil (1) is made with the same wire diameter and with the same number of turns as the original, but instead of two layers as in the current state of the art (figure 3), with a single layer. (figure 4).
  • the air gap (2) has to adapt to the new height of the coil (1). This is done by reducing the chamfering (5) of the pole piece (4) and bringing said pole piece (4) closer together in the same proportion as the thickness of the wire layer that has been removed, since the outer diameter of the coil has decreased.
  • the air gap (2) has a smaller separation than in the double layer embodiments, reducing the leakage of magnetic flux from the outside and also avoiding high saturation in the areas close to the air gap (2), favoring a greater number of lines of force pass through it.
  • the heat absorption capacity is improved, and it facilitates the conduction of heat through the first ones towards the outside of the compression engine. , as can be seen with the arrows in Figure 5.
  • Heat concentration in zones Lower heat concentration in zones adjacent to the air gap adjacent to the air gap
  • the air gap (2) would be reduced by the difference between 0.45 and 0.225, that is, by 0.225 mm, and its height would have to be resized to adapt it to the new size of the coil (1).
  • the manufacturing method of an electrodynamic loudspeaker for a horn with thermal dissipation that will be configured to increase the thermal dissipation in loudspeaker models for medium and high frequencies comprises a winding (1), an air gap (2) and a magnetic circuit (3) that it in turn comprises pole pieces (4) facing the winding (1) and characterized in that it comprises doubling the heat radiating surface of the winding (1) in a single layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

Altavoz electrodinámico para bocina con disipación térmica cuyo funcionamiento se basa en las variaciones de presión generadas en una pequeña cámara situada frente a la membrana, o diafragma. Este tipo de transductor está formado por una bocina y una unidad motora, configurada para incrementar la disipación térmica y comprende un bobinado, un entrehierro y un circuito magnético que comprende a su vez unas piezas polares enfrentadas al bobinado y donde el incremento de la disipación térmica se obtiene mediante el duplicado de la superficie radiante de calor en una única capa de bobinado y el incremento en la altura del entrehierro en la misma proporción que la bobina; estando su rango de trabajo diseñado para abarcar exclusivamente las frecuencias medias y altas.

Description

DESCRIPCIÓN
ALTAVOZ ELECTRODINÁMICO PARA BOCINA CON DISIPACIÓN TÉRMICA
MEJORADA Y MÉTODO DE FABRICACIÓN
Objeto de la invención
El objeto de la presente invención es un altavoz electrodinámico para bocina con disipación térmica mejorada (y su método de fabricación) que está configurado para incrementar la disipación térmica en modelos de altavoz para medias y altas frecuencias en general y con una cámara de compresión en particular, mediante el aumento de la superficie radiante de la bobina y del entrehierro.
Antecedentes de la invención
El altavoz electrodinámico para bocina o de compresión está formado por un diafragma de pequeño tamaño enfrentado a una cámara donde se producen unas variaciones de presión muy importantes, y accionado por una bobina. Esto impide que se produzca un desplazamiento significativo de esta última, a diferencia de lo que sucede con los altavoces de radiación directa, especialmente a frecuencias medias y altas, que corresponden al rango de trabajo de este tipo de altavoz.
Parte de la energía eléctrica aplicada a la bobina de disipa en forma de calor debido al efecto Joule. Este calor se disipa mediante fenómenos de convección natural y radiación, puesto que a estas frecuencias no existe un movimiento significativo de la bobina, que podría llegar a crear un desplazamiento del fluido circundante, que daría lugar a un fenómeno de convección forzada, mucho más eficiente a la hora de refrigerarla.
Por otra parte, en estos modelos se pretende alcanzar un alto rendimiento y una banda pasante muy amplia. Para ello se recurre a un equipaje móvil muy liviano. Esto implica que la bobina ha de ser de un diámetro relativamente pequeño y con una altura muy corta, lo que se traduce en un área de disipación muy reducida. Lo usual es que esta bobina tenga una altura menor al espesor de las piezas polares y, para dirigir el flujo magnético hacia ésta, una de las piezas debe estar achaflanada en la zona del entrehierro.
Una de las limitaciones más severas en este transductor es aquella que tiene que ver con la potencia eléctrica aplicada. En efecto, para aumentar la presión acústica es necesario aplicar una mayor potencia eléctrica. La bobina, al ser recorrida por una corriente eléctrica, y por efecto Joule, se calienta. Este aumento de la temperatura en la bobina incrementa la resistividad del material que forma el conductor eléctrico (generalmente cobre o aluminio), lo que se traduce en un aumento de la resistencia eléctrica. Esto puede llegar a duplicar el valor resistivo de la bobina y tiene como resultado una disminución del rendimiento del altavoz, por un lado, y una merma de la potencia entregada por el amplificador, por otro. A esto se le denomina pérdidas por compresión de potencia y son la razón de una caída de la presión sonora muy importante. La otra consecuencia más trágica es la destrucción de la bobina por sobrecarga térmica.
Para entender mejor el funcionamiento del motor de compresión o de cualquier otro altavoz para reproducción de medias y altas frecuencias es necesario referirse a sus partes principales: la bobina, la sección del hilo conductor y el circuito magnético.
En los altavoces de baja frecuencia se necesita que haya un desplazamiento importante de la membrana para asegurar una presión acústica suficiente. Esto implica que la bobina ha de poder desplazarse en el entrehierro, manteniendo invariable el número de espiras dentro de él. De ahí que sea necesario una longitud apreciable del devanado.
Por el contrario, en los modelos para frecuencias más altas, el desplazamiento es prácticamente inapreciable, por lo que no es necesario que las espiras sobresalgan del entrehierro y se aproveche al máximo la energía magnética, favoreciendo el factor de acoplamiento (BI)2/RE. Estas bobinas tienen, por lo tanto, una altura mucho menor que las bobinas de baja frecuencia y, en consecuencia, una superficie de disipación térmica más pequeña.
Para la realización de la bobina se utilizan materiales que son buenos conductores de la electricidad, como es el cobre, el aluminio o una aleación de ambos materiales. Se presentan con sección circular, lo más usual, pero también se describen en el estado de la técnica otros con una sección rectangular. En el caso de secciones circulares se suelen aplicar dos capas de hilo, mientras que, para secciones rectangulares, al bobinarlo sobre el canto, lo usual es realizar una única capa. Volviendo de nuevo al modelo de baja frecuencia, las masas involucradas en el equipo móvil, es decir, todos aquellos componentes susceptibles de desplazamiento son relativamente elevadas. Esto es necesario para que las piezas tengan una gran rigidez y poder soportar los esfuerzos mecánicos a los que se ven sometidos durante esos desplazamientos. Por lo tanto, estas bobinas tendrán un tamaño importante y el circuito magnético deberá adaptarse a estos condicionantes. Para ello se diseña el entrehierro de tal forma que se aproveche bien la totalidad de las piezas polares, facilitando que la bobina se pueda desplazar sin riesgos de rozarse con el citado entrehierro.
En los demás modelos donde no se produce este desplazamiento, como es el caso de los modelos de media y altas frecuencias y, por lo tanto, los esfuerzos aplicados al diafragma son mucho más pequeños, se trata de reducir las masas de todos los componentes para maximizar el rendimiento. En el caso de la bobina, ésta se realizará de manera que no sobresalga del entrehierro, mientras que los modelos de muy alta eficiencia -como es el caso de los altavoces de cámara de compresión- se reduce la altura del bobinado por debajo incluso del espesor de las piezas polares.
Así pues, en el estado de la técnica actual, para conseguir maximizar el flujo magnético, se forma un entrehierro con una altura igual al ancho del bobinado. Para ello se achaflana la pieza polar exterior, de manera que las líneas de fuerza se vean dirigidas hacia el entrehierro, obteniendo de esta manera una inducción muy intensa en este último.
En resumen, y respecto del estado de la técnica actual, en los altavoces de cono, una bobina larga tiene un área de disipación mucho mayor y, por lo tanto, su capacidad de disipación, tanto por convección natural como por radiación, será mayor. Por el contrario, ese mayor tamaño implicará una masa mucho más elevada, lo que reducirá el rendimiento del altavoz o bien exigirá un circuito magnético más potente, lo que elevará el coste del transductor. En la bobina corta, la masa es más reducida y se puede ubicar dentro del entrehierro de manera que todas sus espiras estén recorridas por las líneas de fuerza del campo magnético. Su menor peso hace que se incremente el rendimiento del altavoz. Por el contrario, su menguada área de disipación dificulta la extracción del calor generado en ésta, limitando la potencia eléctrica aplicada e incrementando las pérdidas por compresión de potencia.
El solicitante conoce de la existencia de otras soluciones más o menos exitosas, aplicadas todas ellas en altavoces de baja frecuencia, siendo las menos eficientes las que aplican elementos que aumentan el área externa del altavoz, como son los radiadores de calor; como los expuestos en los documentos US5748760A y US5533132A. Estos actúan de forma pasiva, por convección natural, y sólo mejoran levemente la temperatura en el exterior del motor del altavoz, sin que afecte de manera sustancial a la refrigeración de la bobina. En otros casos, se aplican elementos no ferromagnéticos, conductores del calor, en las proximidades de la bobina para facilitar el paso del calor desde esta hacia el exterior (US20030081808A1, US6665414B1)), pero, como ya se ha dicho, sólo sirven para altavoces de baja frecuencia, donde la bobina sobresale del entrehierro de manera permanente, al tener está mayor anchura que el entrehierro (ver ejemplos en The Journal of Audio Engineering Society, Vol. 40, No1/2 1992 January/february), donde se explican las diferentes configuraciones de la bobina y el circuito magnético.
En los modelos de frecuencias más altas, donde no es posible introducir elementos adicionales para facilitar el paso del calor desde la bobina al exterior, se puede aplicar un fluido refrigerante -ferrofluido- en el interior del entrehierro (Entropy 2014, 16, 5891-5900; doi:10.3390/e16115891). Este fluido se mantiene dentro del entrehierro por poseer, en su composición, nanopartículas de hierro que «fijan» el fluido e impide que se salga del entrehierro. Su eficacia para conducir el calor desde la bobina a las piezas polares es bastante buena, pero adolece de dos inconvenientes. El primero es la viscosidad del fluido, que «frena» la bobina y modifica el amortiguamiento de ésta, es decir, que influye en la respuesta en frecuencia del altavoz. El segundo, que, con el paso del tiempo, el fluido va desapareciendo, bien por migrar fuera del entrehierro, bien por evaporación, por lo que su eficacia va disminuyendo, dejando a la bobina expuesta a una potencia para la que ya no está preparada.
En cuanto al circuito magnético, si se aprovecha todo el espesor de la pieza polar para conducir el flujo magnético, la saturación en las zonas próximas al entrehierro será menor que si se realiza una mecanización de alguna de las partes que conforman el entrehierro por la disminución de la sección en esta zona. Esto dificultará el paso al flujo magnético, reduciendo la energía de la inducción en el entrehierro.
Es por ello, que ninguna de las soluciones descritas logra solucionar la problemática descrita como lo hace la presente invención, ni de forma autónoma ni mediante la combinación de los mismos.
Descripción de la invención Es un objeto de la presente invención, un altavoz electrodinámico para bocina con disipación térmica, y más concretamente del tipo de los comprendidos como altavoces electrodinámicos de bobina móvil para medias y altas frecuencias, en especial, para altavoces con cámara de compresión.
Como se ha indicado, los altavoces electrodinámicos de bobina móvil se basan en el desplazamiento de la bobina y, consecuentemente, de la membrana fijada a esta para producir variaciones de presión en el aire ambiente. Esto se debe a que la energía eléctrica aplicada a la bobina va a generar una fuerza en esta última, debido a la ley de Laplace. No obstante, parte de esa energía genera calor debido al efecto Joule. Para extraer este calor de la bobina y evitar una sobrecarga térmica, que puede llegar a ser irreversible, existen dos mecanismos. El primero es por convección [Ec.1] y será de tipo natural, al estar la bobina solamente en contacto con un fluido gaseoso. Si además se produce un desplazamiento se genera un movimiento del aire circundante, lo que da lugar a una convección forzada. Pero este efecto sólo se da en los modelos de cono, de baja frecuencia, que no son objeto de la presente invención.
Q Convección hA(Ts Ta) [Ec.1 ]
Adicionalmente, existe un fenómeno de disipación por radiación, que se describe en [Ec.2]:
Figure imgf000007_0001
Como se puede comprobar, en ambos casos existe una proporcionalidad entre el calor extraído y el área A de la bobina. El área de la bobina se define como su perímetro multiplicado por su altura. Es decir que, para bobinas del mismo diámetro, el área será proporcional a la altura del bobinado.
Actualmente, en los altavoces de cámara de compresión, para mejorar la potencia aplicada y conseguir mayor presión acústica, es necesario aumentar el tamaño de la bobina. Esto, como ya se ha mencionado anteriormente, incrementa el área de disipación. La manera de llevarlo a cabo es aumentando el diámetro, pero manteniendo prácticamente invariable la altura del bobinado. En cualquier caso, es necesario magnificar el tamaño del circuito magnético, lo que implica una mayor masa e incrementa el coste del altavoz.
Un objeto de la presente invención es proporcionar una solución frente a los problemas descritos en el estado de la técnica actual sin que tenga repercusión en el coste ni en las prestaciones técnicas. Es decir, se trata de una solución que puede implementarse tanto en los nuevos desarrollos como en modelos ya existentes. Esto representa una ventaja fundamental frente a otros altavoces, puesto que ahora mismo este tipo de altavoces tienen limitadas sus prestaciones debido al incremento de las pérdidas por compresión de potencia al aumentar la potencia eléctrica aplicada.
Es un objeto fundamental de la invención que el dispositivo de disipación térmica de la invención no afecte al rendimiento del altavoz que, como se indica en la [Ec.3] depende principalmente del factor de fuerza, Bl, ni tampoco a la respuesta en alta frecuencia, que depende, entre otros, de la masa de la bobina.
Figure imgf000008_0001
Como se ha mencionado previamente, la bobina puede estar fabricada con hilo de sección circular o bien hilo de sección rectangular. En el primer caso se aplican dos capas al bobinado, mientras que en el segundo sólo se aplica una. En este caso, ya se ha comentado que el ancho del bobinado, para los modelos de cámara de compresión, es inferior al espesor de la pieza polar externa y que ésta, para maximizar el flujo magnético que incide sobre la bobina, se achaflana para reducir el espesor hasta conseguir el mismo ancho que altura tiene el bobinado.
Esta solución, al reducir la sección del material, provoca una fuerte saturación magnética en las zonas adyacentes al entrehierro, con un aumento de la reluctancia del circuito y, por lo tanto, obliga a que parte del flujo magnético busque un camino distinto antes de atravesar el entrehierro, provocando que la energía en este sea menor a lo esperado. Aun así, es indudable que, de no realizar este estrechamiento, parte del flujo no atravesaría a la bobina, con lo cual es una manera de evitar pérdidas mayores.
No obstante, estas zonas, que son las más próximas a la bobina, van a quedar también afectadas por el calor que emite esta última, y que, por conducción, van a extraerlo hacia el exterior del motor hacia el aire ambiente. Si el gradiente de temperatura entre la bobina y las zonas adyacentes al entrehierro, en las piezas polares, no es muy elevado, según las ecuaciones (1) y (2), se entorpecerá la transferencia de calor entre la una y las otras. Además, como también ya se ha dicho, el área de disipación de la bobina será igual al producto del perímetro de esta por el ancho del bobinado. Al presentar un área relativamente pequeña, la disipación se verá dificultada y se producirá una rápida elevación de la temperatura y un fuerte incremento de las pérdidas por compresión.
La solución que aporta la presente invención consiste en duplicar el área de disipación de la bobina para, de esta manera duplicar la potencia admisible, o bien, con las mismas condiciones de trabajo, reducir la temperatura de la bobina con la consiguiente disminución de las pérdidas por compresión de potencia. Como ya se ha comentado en esta memoria descriptiva, la duplicación del área de disipación de la bobina tiene que hacerse sin aumentar la masa de la bobina ni modificar la resistencia eléctrica. Pues bien, para llevarlo a cabo se realiza la bobina con el mismo diámetro de hilo y con el mismo número de vueltas que la original, pero en lugar de hacer un bobinado con dos capas, se aplica una única capa.
Ahora bien, el entrehierro ha de adaptarse a la nueva altura de la bobina, esto se lleva a cabo reduciendo el achaflanado de la pieza polar superior y acercando esta pieza en la misma proporción que el espesor de la capa que se ha eliminado, puesto que el diámetro exterior de la bobina ha disminuido. De esta manera quedará un entrehierro con menos separación, que reduce la fuga de flujo magnético por el exterior y evita una saturación tan elevada en las zonas próximas a éste, propiciando que un mayor número de líneas de fuerza lo atraviesen. Así mismo, al existir un área mayor en las piezas polares enfrentadas a la bobina, la capacidad de absorción del calor se verá mejorada, y facilitará la conducción de éste a través de las primeras hacia el exterior del motor.
En una segunda realización de la invención se emplea un hilo de sección rectangular monocapa, cuya principal ventaja es que, al no existir huecos entre las espiras, como sucede en la realización con hilo de sección circular, el factor de apilamiento es mayor y, por lo tanto, se podrán incluir más espiras en el mismo espacio. Esto es posible porque se realiza el devanado bobinando las espiras sobre el canto. En esta segunda realización, puesto que la bobina es monocapa, será necesario modificar las medidas de la sección del hilo plano, aunque manteniendo invariable. Además, se mantendrá el mismo número de espiras para no modificar la longitud ni tampoco la resistencia eléctrica, hasta conseguir que el nuevo ancho de bobinado tenga el doble de ancho del modelo original.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que restrinjan la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Breve descripción de los dibujos
A continuación, se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
FIG.1 Muestra una vista de un conjunto altavoz-bocina, del tipo conocido en el actual estado de la técnica.
FIG. 2 Muestra una vista parcialmente seccionada del motor de compresión sólo, con las diferentes partes.
FIG.3 Muestra una vista en detalle de la solución para una bobina bicapa con hilo de sección circular y entrehierro corto. FIG. 4 Muestra una vista en sección de la solución con bobina monocapa con el doble de ancho que la bobina bicapa, hilo de sección circular y entrehierro de mayor altura.
FIG.5 Muestra una vista esquemática de la captación y disipación de calor en la primera realización práctica de la invención.
FIG.6 Muestra una vista en detalle de la solución para una bobina monocapa con hilo de sección rectangular. Donde, en la figura 6A se muestra la solución propia del estado de la técnica actual, mientras que en la figura 6B se muestra la solución de la invención de acuerdo con la segunda realización práctica de la invención.
Explicación de un modo detallado de realización de la invención
Tal y como se puede observar, las partes principales de la invención se describen con referencia a las figuras adjuntas. Así, el altavoz electrodinámico para bocina con disipación térmica estará esencialmente compuesto por un motor de compresión para un altavoz electrodinámico de cámara de compresión comprende una bobina o bobinado (1), un entrehierro (2) y un circuito magnético (3). Se denominan piezas polares (4) a los elementos sobresalientes del circuito magnético (3) que están enfrentados al bobinado (1) y que conducen el flujo magnético proporcionado por el imán. Un diafragma (6), la cámara de compresión (7) y la salida (8) hacia la bocina.
En la primera realización se duplica el área de disipación de la bobina (1), para duplicar la potencia admisible, o bien, con las mismas condiciones de trabajo, reducir la temperatura en la bobina (1) con la consiguiente disminución de las pérdidas por compresión de potencia. Para ello, se realiza la bobina (1) con el mismo diámetro de hilo y con el mismo número de vueltas que la original, pero en lugar de dos capas como en el actual estado de la técnica (figura 3), con una única capa (figura 4).
En esta realización, el entrehierro (2) ha de adaptarse a la nueva altura de la bobina (1). Esto se lleva a cabo reduciendo el achaflanado (5) de la pieza polar (4) y acercando la citada pieza polar (4) en la misma proporción que el espesor de la capa de hilo que se ha eliminado, puesto que el diámetro exterior de la bobina ha disminuido. En esta primera realización práctica, el entrehierro (2) tiene una separación menor que en las realizaciones con doble capa, reduciendo la fuga de flujo magnético por el exterior y evitando también una saturación elevada en las zonas próximas al entrehierro (2), propiciando que un mayor número de líneas de fuerza lo atraviesen. Así mismo, al existir un área mayor en las piezas polares (4) enfrentadas a la bobina (1), la capacidad de absorción del calor se mejora, y facilita la conducción del calor a través de las primeras hacia el exterior del motor de compresión, tal y como se aprecia con las flechas de la figura 5.
Así, pues con la primera realización práctica de la invención se obtienen las siguientes ventajas:
Estado de la técnica Primera realización
Bobina dos capas Bobina monocapa
Bobina con ancho de bobinado estrecho Bobina con ancho doble de bobinado Entrehierro con poca altura Entrehierro con doble de altura Entrehierro con más separación Entrehierro más estrecho Saturación magnética elevada en piezas Menor saturación magnética en piezas polares polares
Concentración del calor en zonas Menor concentración del calor en zonas adyacentes al entrehierro adyacentes al entrehierro
Baja capacidad de disipación térmicas Alta capacidad de disipación térmica Elevadas pérdidas por compresión de Menores pérdidas por compresión de potencia potencia
Riesgo de sobrecarga térmica y Reducción de la sobrecarga térmica y del destrucción de la bobina riesgo de destrucción de la bobina
Figure imgf000012_0001
En una segunda realización práctica de la invención, será necesario modificar las medidas del hilo plano del bobinado (1), aunque manteniendo siempre la misma sección. Además, se mantiene el mismo número de espiras para no modificar la longitud ni tampoco la resistencia eléctrica, hasta conseguir que el nuevo ancho de bobinado sea el doble del modelo original. Así, en el ejemplo de la figura 6A se observa como una bobina (1) que tuviera, por ejemplo, 3 mm de ancho de bobinado, formada por 20 espiras de hilo plano, con dimensiones 0.15 x 0.45 mm, es decir una sección de 0.0675 mm2 (FIG.6A) se pasaría a un ancho de bobinado de 6 mm, luego las medidas del hilo serían 0.3 x 0.225 mm (FIG.6B).
Esto permitiría mantener las 20 espiras y la resistencia y la masa del hilo se conservarían invariables. El entrehierro (2) se reduciría en la diferencia entre 0.45 y 0.225, es decir en 0.225 mm, y habría que redimensionar su altura para adaptarlo al nuevo tamaño de la bobina (1).
Así, pues con la segunda realización práctica de la invención se obtienen las siguientes ventajas:
Estado de la técnica Segunda realización
Bobina monocapa hilo plano Bobina monocapa hilo plano modificado Bobina con ancho de bobinado estrecho Bobina con ancho doble de bobinado Entrehierro con poca altura Entrehierro con doble de altura Entrehierro con más separación Entrehierro más estrecho Saturación magnética elevada en piezas Menor saturación magnética en piezas polares polares
Concentración del calor en zonas Menor concentración del calor en zonas adyacentes al entrehierro adyacentes al entrehierro Baja capacidad de disipación térmicas Alta capacidad de disipación térmica Elevadas pérdidas por compresión de Menores pérdidas por compresión de potencia potencia
Riesgo de sobrecarga térmica y Reducción de la sobrecarga térmica y del destrucción de la bobina riesgo de destrucción de la bobina El método de fabricación de un altavoz electrodinámico para bocina con disipación térmica que se configurará para incrementar la disipación térmica en modelos de altavoz para medias y altas frecuencias comprende un bobinado (1), un entrehierro (2) y un circuito magnético (3) que comprende, a su vez, unas piezas polares (4) enfrentadas al bobinado (1) y que se caracteriza por que comprende duplicar la superficie radiante de calor del bobinado (1) en una única capa.
Y a su vez, comprenderá la duplicación de la altura del bobinado (1) de sección circular en el entrehierro (2), y duplicar el ancho del bobinado (1) de sección rectangular en el entrehierro (2).

Claims

REIVINDICACIONES
1.- Altavoz electrodinámico para bocina con disipación térmica que estando configurado para incrementar la disipación térmica en modelos de altavoz para medias y altas frecuencias comprende un bobinado (1), un entrehierro (2) y un circuito magnético (3) que comprende a su vez unas piezas polares (4) enfrentadas al bobinado (1) y que se caracteriza por que el incremento de la disipación térmica se obtiene mediante el duplicado de la superficie radiante de calor en una única capa de bobinado (1).
2 - El altavoz de acuerdo con la reivindicación 1 donde el hilo que compone el devanado de la bobina (1) es de sección circular, bicapa y el duplicado de la superficie radiante se obtiene duplicando la altura del bobinado (1), pasando a una realización monocapa en el entrehierro (2), que se alarga en la misma proporción que la bobina.
3.- El altavoz de acuerdo con la reivindicación 1 donde el hilo que compone el devanado de la bobina (1) es de sección rectangular, monocapa y el duplicado de la superficie radiante se obtiene duplicando el ancho del bobinado (1) en el entrehierro (2).
4.- Un método de fabricación de un altavoz de cámara de compresión de acuerdo con una cualquiera de las reivindicaciones 1 a 3 que estando configurado para incrementar la disipación térmica en modelos de altavoz para medias y altas frecuencias comprende un bobinado (1), un entrehierro (2) y un circuito magnético (3) que comprende, a su vez, unas piezas polares (4) enfrentadas al bobinado (1) y que se caracteriza por que comprende duplicar la superficie radiante de calor del bobinado (1) en una única capa.
5.- El método de fabricación de acuerdo con la reivindicación 4 que comprende duplicar la altura del bobinado (1) de sección circular en el entrehierro (2).
6.- El método de fabricación de acuerdo con la reivindicación 4 que comprende duplicar el ancho del bobinado (1) de sección rectangular en el entrehierro (2).
PCT/ES2022/070083 2021-02-19 2022-02-18 Altavoz electrodinámico para bocina con disipación térmica mejorado y método de fabricación WO2022175580A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/547,314 US20240236577A9 (en) 2021-02-19 2022-02-18 Electrodynamic loudspeaker for horn with improved thermal dissipation and manufacturing method
EP22707789.8A EP4307714A2 (en) 2021-02-19 2022-02-18 Electrodynamic loudspeaker for horn with improved thermal dissipation and manufacturing method
CN202280029354.1A CN117441348A (zh) 2021-02-19 2022-02-18 具有改进的散热功能的电动喇叭扬声器及制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202130137A ES2921773A1 (es) 2021-02-19 2021-02-19 Altavoz electrodinamico de bobina movil y su metodo de fabricacion
ESP202130137 2021-02-19

Publications (2)

Publication Number Publication Date
WO2022175580A2 true WO2022175580A2 (es) 2022-08-25
WO2022175580A3 WO2022175580A3 (es) 2022-11-24

Family

ID=78516614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2022/070083 WO2022175580A2 (es) 2021-02-19 2022-02-18 Altavoz electrodinámico para bocina con disipación térmica mejorado y método de fabricación

Country Status (5)

Country Link
US (1) US20240236577A9 (es)
EP (1) EP4307714A2 (es)
CN (1) CN117441348A (es)
ES (1) ES2921773A1 (es)
WO (1) WO2022175580A2 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533132A (en) 1995-01-23 1996-07-02 Jbl Incorporated Loudspeaker thermal management structure
US5748760A (en) 1995-04-18 1998-05-05 Harman International Industries, Inc. Dual coil drive with multipurpose housing
US20030081808A1 (en) 2001-10-30 2003-05-01 Jason Kemmerer Loudspeaker having cooling system
US6665414B1 (en) 1999-09-27 2003-12-16 Pioneer Corporation Speaker system and cooling device therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991286A (en) * 1975-06-02 1976-11-09 Altec Corporation Heat dissipating device for loudspeaker voice coil
US8542865B2 (en) * 2007-03-09 2013-09-24 Robert M. O'Neill Transducer motor structure and inside-only voice coil for use in loudspeakers
US9445201B2 (en) * 2013-11-21 2016-09-13 Harman International Industries, Inc. Inverted dual coil transducer
CN204598302U (zh) * 2015-04-28 2015-08-26 广州市迪士普音响科技有限公司 一种气流源强制散热扬声器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533132A (en) 1995-01-23 1996-07-02 Jbl Incorporated Loudspeaker thermal management structure
US5748760A (en) 1995-04-18 1998-05-05 Harman International Industries, Inc. Dual coil drive with multipurpose housing
US6665414B1 (en) 1999-09-27 2003-12-16 Pioneer Corporation Speaker system and cooling device therefor
US20030081808A1 (en) 2001-10-30 2003-05-01 Jason Kemmerer Loudspeaker having cooling system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENTROPY, vol. 16, 2014, pages 5891 - 5900
THE JOURNAL OF AUDIO ENGINEERING SOCIETY, vol. 40, 1992

Also Published As

Publication number Publication date
CN117441348A (zh) 2024-01-23
US20240236577A9 (en) 2024-07-11
ES2921773A1 (es) 2022-08-31
WO2022175580A3 (es) 2022-11-24
US20240137706A1 (en) 2024-04-25
EP4307714A2 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
ES2286821T3 (es) Activador de doble bobina con alojamiento multifuncion.
US9872107B2 (en) Electrodynamic transducer with back cover for heat dissipation
CN109313977A (zh) 电感器及其安装结构
ES2386020T3 (es) Reactor no lineal de núcleo de composite y circuito de recepción de energía por inducción
WO2022175580A2 (es) Altavoz electrodinámico para bocina con disipación térmica mejorado y método de fabricación
JP2008021688A (ja) リアクトル用コア
JP3737927B2 (ja) 複合磁気ヘッド
ES1302726U (es) Altavoz electrodinamico de bobina movil
GB2313976A (en) Dissipating voice coil heat through loudspeaker diaphragm via heat conductive bobbin and subcone
JP2020027946A (ja) 外へ向けて延出する放熱翼及び/または放熱孔を有する静止型電動機の鉄心の外枠装置
KR100692256B1 (ko) 마이크로스피커의 방열구조
JP2009105164A (ja) トランス
TW202131601A (zh) 馬達總成及馬達轉子
JP2019070455A (ja) 磁性流体熱機関
JP4541035B2 (ja) モータ
ES2298565T3 (es) Permeametro para medir caracteristicas magneticas a elevadas temperaturas.
JP2017041497A (ja) リアクトル
US5664023A (en) Low TCR wire in high power audio coils
KR102409711B1 (ko) 스피커용 음압개선 방열장치
JP6519416B2 (ja) リアクトル
JP4135216B2 (ja) 吊り上げ電磁石
WO2024160945A1 (en) Electromagnetic device with improved refrigeration
JP5516923B2 (ja) リアクトル、およびコンバータ
JP2013201721A (ja) スピーカ用磁気回路
WO2014097455A1 (ja) トランス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18547314

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202327062708

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022707789

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022707789

Country of ref document: EP

Effective date: 20230919

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22707789

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 202280029354.1

Country of ref document: CN