WO2022174820A1 - 车辆动力电池保温控制方法及装置 - Google Patents

车辆动力电池保温控制方法及装置 Download PDF

Info

Publication number
WO2022174820A1
WO2022174820A1 PCT/CN2022/076916 CN2022076916W WO2022174820A1 WO 2022174820 A1 WO2022174820 A1 WO 2022174820A1 CN 2022076916 W CN2022076916 W CN 2022076916W WO 2022174820 A1 WO2022174820 A1 WO 2022174820A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
power battery
vehicle
change rate
time
Prior art date
Application number
PCT/CN2022/076916
Other languages
English (en)
French (fr)
Inventor
张巍
Original Assignee
北京车和家信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家信息技术有限公司 filed Critical 北京车和家信息技术有限公司
Publication of WO2022174820A1 publication Critical patent/WO2022174820A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/635Control systems based on ambient temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the embodiments of the present disclosure relate to the technical field of vehicle control, and in particular, to a method and device for thermal insulation control of a power battery of a vehicle.
  • the embodiments of the present disclosure provide a method and device for thermal insulation control of a power battery of a vehicle.
  • embodiments of the present disclosure provide a vehicle power battery thermal insulation control method, the method comprising:
  • the second temperature change rate Based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment in which the vehicle is located, the start time of the vehicle's trip, the initial temperature of the power battery when the vehicle enters a standstill, and The initial time corresponding to when the vehicle enters a standstill, determine the heat preservation start time of the power battery;
  • the power battery warm keeping is controlled.
  • embodiments of the present disclosure provide a vehicle power battery thermal insulation control device, the device comprising:
  • a first determination unit configured to determine a first temperature change rate and a second temperature change rate corresponding to the current scene of the vehicle, wherein the first temperature change rate represents the temperature change rate of the power battery when the vehicle is at rest, the second temperature change rate The rate of change represents the rate of temperature change of the power battery when the vehicle is kept warm;
  • a second determining unit configured to be based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the travel start time of the vehicle, the time when the vehicle enters a standstill The initial temperature of the power battery and the corresponding initial time when the vehicle enters a standstill, determine the heat preservation start time of the power battery;
  • control unit configured to control the thermal insulation of the power battery based on the thermal insulation start time.
  • an embodiment of the present disclosure provides a vehicle control system, the vehicle control system includes: a controller; the controller executes the vehicle power battery heat preservation control method described in the first aspect during operation.
  • embodiments of the present disclosure provide a vehicle, the vehicle comprising: a power battery and the vehicle control system of the third aspect;
  • the power battery is used for keeping warm under the control of the vehicle control system.
  • the first temperature change rate represents the temperature change rate of the power battery when the vehicle is at rest
  • the second temperature change rate represents the temperature change rate of the power battery when the vehicle is kept warm. Then, based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the start time of the vehicle's trip, the initial temperature of the power battery when the vehicle enters a standstill, and the initial time corresponding to the vehicle entering a standstill, Determine the heat preservation start time of the power battery.
  • control the heat preservation of the power battery can determine the temperature change rate when the vehicle is at rest and keep warm corresponding to the current scene of the vehicle, and combine the determined temperature change rate, the ambient temperature of the environment where the vehicle is located, and the power when the vehicle enters the stationary state.
  • the initial temperature of the battery, the travel start time of the vehicle, and the initial time corresponding to when the vehicle enters a stationary state are used to obtain the heat preservation start time of the power battery.
  • FIG. 1 shows a flowchart of a vehicle power battery thermal insulation control method provided by an embodiment of the present disclosure
  • FIG. 2 shows a block diagram of a vehicle power battery thermal insulation control device provided by an embodiment of the present disclosure
  • FIG. 3 shows a block diagram of another vehicle power battery heat preservation control device provided by an embodiment of the present disclosure.
  • the power battery When the vehicle enters a stationary state, the power battery needs to be kept warm to ensure that the temperature of the power battery can be maintained at the temperature required for its performance when the user is using the vehicle, so that the performance of the power battery is not affected by the external ambient temperature.
  • the vehicle entering the stationary state may refer to when the power battery of the vehicle is fully charged or the vehicle enters the parking state.
  • the power battery needs to be kept warm at the right time, so that when the user uses the vehicle, the power battery is kept at a suitable temperature so that it can exert its own performance, so as not to affect the performance of the whole vehicle.
  • the power battery needs to be kept warm at the right time, which can also avoid the power loss caused by the power battery being kept in the heat preservation state for too long.
  • the embodiments of the present disclosure are proposed for how to control the power battery to keep warm at an appropriate time.
  • an embodiment of the present disclosure provides a vehicle power battery thermal insulation control method, as shown in FIG. 1 , the method mainly includes:
  • the first temperature change rate and the second temperature change rate corresponding to the current scene of the vehicle there are at least two timings for determining the first temperature change rate and the second temperature change rate corresponding to the current scene of the vehicle: one is when the power battery of the vehicle is fully charged. The other is when the vehicle enters the parked state. In the above two times, the vehicle is in a stationary state and has not been put into use. In order to ensure that the power battery of the vehicle is at a suitable temperature and exert its performance when the vehicle is in use, it is necessary to determine the appropriate heat preservation start time. The power battery is kept warm.
  • the first temperature change rate represents the temperature change rate of the power battery when the vehicle is at rest
  • the second temperature change rate represents the temperature change rate of the power battery when the vehicle is kept warm.
  • the stationary vehicle refers to the state in which the vehicle is parked and locked after the high voltage is powered off.
  • Vehicle heat preservation means that the power battery of the vehicle is in a state of heat preservation.
  • the process includes the following steps 1 to 2:
  • Step 1 Query the data table that records the correspondence between multiple scenarios and multiple first temperature change rates, and determine the first temperature change rate corresponding to the current scene of the vehicle, wherein each recorded first temperature change rate respectively represents the vehicle When standing, the average temperature change rate of the power battery within a preset time period in the future from a specific time point corresponding to its scene.
  • the current scene of the vehicle may include one or more of the following: the ambient temperature in the environment where the vehicle is located, the current location of the vehicle, the current month, Current time, current temperature of power battery.
  • a data table that records the corresponding relationship between multiple scenes and multiple first temperature change rates is queried, and the data table can be obtained through big data statistics or data simulation.
  • a scenario corresponds to a first rate of temperature change.
  • the statistical process of the data table is described below: First, the data of the scene where the vehicle is in a stationary state and the temperature change rate of the power battery when the vehicle is in a stationary state are calculated.
  • the scene of the statistical data is: the statistical range of the ambient temperature is -20°C ⁇ 30°C.
  • the current location is based on the latitude and longitude information of GPS based on the statistical accuracy, and identifies the province and city where the location is located, including 34 provincial-level administrative regions.
  • the current month that is, the month in which the current day is located, such as May, the statistical precision is one month, and the range is from January to December.
  • the current time that is, the time of the day, such as 14 o'clock, has a statistical precision of 1 hour and a range of 0 to 24 hours.
  • Power battery temperature the statistical range is -20°C ⁇ 50°C.
  • the temperature change rate of the power battery is the temperature change rate of the power battery in the next 12 hours from the current time, with an accuracy of 1°C/h. After the statistical data is obtained, the data is classified according to the scene where the vehicle is located.
  • the average value of the temperature change rate of the power battery corresponding to the scene is determined as the first temperature change rate corresponding to the scene.
  • Table-1 records a data table of the corresponding relationship between multiple scenarios and multiple first temperature change rates.
  • the corresponding average change rate of the temperature of the power battery in the next 12 hours that is, the first temperature change rate (unit °C/h).
  • Step 2 Query the data table that records the correspondence between multiple scenarios and multiple second temperature change rates, and determine the second temperature change rate corresponding to the current scene of the vehicle, wherein each recorded second temperature change rate represents the vehicle respectively.
  • the average temperature change rate of the power battery within a preset time period in the future from a specific time point corresponding to its scene.
  • the scene where the vehicle is currently located may include one or more of the following: the ambient temperature in the environment where the vehicle is located, the current location of the vehicle, the current Month, current time, current temperature of power battery. It can be understood that the current scene of the vehicle used for determining the second rate of temperature change is consistent with the current scene of the vehicle used for determining the first rate of temperature change.
  • a data table that records the correspondence between multiple scenes and multiple second temperature change rates is queried, and the data table can be obtained through big data statistics or data simulation.
  • a scenario corresponds to a second rate of temperature change.
  • the scene of the statistical data is: the statistical range of the ambient temperature is - 20°C ⁇ 30°C.
  • the current location is based on the latitude and longitude information of GPS based on the statistical accuracy, and identifies the province and city where the location is located, including 34 provincial-level administrative regions.
  • the current month that is, the month in which the current day is located, such as May
  • the statistical precision is 1 month
  • the range is from January to December.
  • the current time that is, the time of the day, such as 14 o'clock, has a statistical precision of 1 hour and a range of 0 to 24 hours.
  • the temperature change rate of the power battery is the temperature change rate of the power battery in the next 12 hours from the current time, with an accuracy of 1°C/h.
  • the data is classified according to the scene where the vehicle is located. Then classify the data according to the ambient temperature, the month of the vehicle's standing time, the vehicle's standing time, the vehicle's standing position, and the current temperature of the power battery, and then obtain the temperature change rate of the power battery when the vehicle is kept warm in different scenarios, and then use the same
  • the average value of the temperature change rate of the power battery corresponding to the scene is determined as the second temperature change rate corresponding to the scene.
  • Table-2 records a data table of the corresponding relationship between multiple scenarios and multiple second temperature change rates.
  • the average change rate of the corresponding power battery temperature in the next 12 hours that is, the second temperature change rate (unit °C/h).
  • first temperature change rate and the second temperature change rate both represent the average temperature change rate of the power battery within a preset period of time in the future from a specific time point of the vehicle, the two are used to predict the power battery needs.
  • the temperature and the corresponding initial time when the vehicle enters a standstill determine the start time of the heat preservation of the power battery.
  • the first is that the ambient temperature corresponding to when the vehicle enters the stationary state is the ambient temperature used to finally determine the start time of the heat preservation of the power battery.
  • the ambient temperature corresponding to when the vehicle enters the stationary state is the ambient temperature used to finally determine the start time of the heat preservation of the power battery.
  • the soaking start times corresponding to the completed cycles show the same development trend, for example, the soaking start time is getting closer to or farther away from the travel start time of the vehicle, and the soaking start corresponding to the latest cycle is the same as that of the previous cycle.
  • the development trend of the heat preservation start time is opposite.
  • the heat preservation start time of the previous cycle adjacent to the latest cycle is determined as the heat preservation start time that finally controls the heat preservation of the power battery.
  • the specific determination process for determining the heat preservation start time of the power battery is the same each time.
  • the specific determination process of determining the starting time of heat preservation of the power battery is related to whether it is necessary to heat the power battery before the temperature of the power battery is equal to the ambient temperature. Different judgment results use different methods to determine the starting time of heat preservation.
  • the following describes the specific method of how to determine whether the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature. The methods include at least the following three methods:
  • the first one is based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the travel start time of the vehicle, and the power battery when the vehicle enters a standstill.
  • the initial temperature and the corresponding initial time when the vehicle enters a standstill determine whether the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the method can ensure that the power battery is kept warm before the vehicle starts, so that the temperature of the power battery can be maintained at the optimum temperature, so as to ensure its performance without affecting the power performance of the whole vehicle.
  • the specific process of the method includes the following steps 1 to 6:
  • Step 1 According to the first temperature change rate, the initial temperature, and the ambient temperature, determine a fourth time period for the power battery from the initial temperature to the ambient temperature.
  • the fourth duration represents the duration required for the power battery to heat up or cool down from the initial temperature to the ambient temperature when the vehicle is stationary, and the determination process is: determining the temperature difference between the ambient temperature and the initial temperature, and using the obtained The ratio between the temperature difference value and the first temperature change rate is determined as a fourth time period.
  • t 4 represents the fourth time period
  • T air represents the ambient temperature
  • T 0 represents the initial temperature
  • k 1 represents the first temperature change rate
  • Step 2 According to the second temperature change rate, the target temperature, and the ambient temperature, determine the fifth duration of the power battery from the initial temperature to the target temperature.
  • a target temperature needs to be set, and the target temperature is the preset temperature reached after the power battery is kept warm, which is a maintain temperature.
  • the setting methods of the target temperature include at least the following: The first is that the target temperature is determined by the manufacturer based on the performance of the power battery when the vehicle leaves the factory, and the target temperature is not set regardless of the scene the vehicle is in. changing. The second is that the target temperature is determined by the scene where the vehicle is when the vehicle is stationary, and different scenes correspond to different target temperatures. In this case, the target temperature will vary with different vehicle scenes, so that the performance of the power battery after heat preservation corresponds to the scene where the vehicle is located. The third is that the target temperature is based on the driving habits of the vehicle user, that is to say, after the power battery is kept warm to the target temperature, the output power of the power battery can ensure that the vehicle performance of the vehicle meets the driving habits of the user.
  • the vehicle power battery can be thermally controlled individually based on the driving habits of the vehicle user.
  • the target temperature may be set lower, and when the user's vehicle power demand is high, the target temperature may be set higher.
  • the determination process is: determining the temperature difference between the target temperature and the ambient temperature, and using the obtained The ratio between the difference value and the second temperature change rate is determined as the fifth time period for the power battery to heat up or cool down from the initial temperature to the target temperature.
  • t 5 represents the fifth time period
  • T 2 represents the target temperature
  • T air represents the ambient temperature
  • k 2 represents the second temperature change rate
  • Step 3 Determine the target duration according to the time difference between the start time of the trip and the initial time.
  • the target duration is the time interval from when the vehicle enters a standstill to the departure time of the vehicle, which is determined by the time difference between the travel start time and the initial time corresponding to when the vehicle goes into a standstill.
  • the user sets the expected starting time of the trip when charging the power battery or after the vehicle is parked, and the user can input the starting time of the trip through the terminal or voice input method to set.
  • Step 4 Determine the sum of the fourth duration and the fifth duration, determine whether the difference between the target duration and the sum is greater than a preset threshold, and execute Step 5 or Step 6.
  • Step 5 If it is not greater than that, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the fourth duration represents the duration required for the power battery to heat up or cool down from the initial temperature to the ambient temperature when the vehicle is stationary.
  • the fifth time period represents the time required for the power battery to heat up or cool down from the initial temperature to the target temperature when the vehicle is kept warm.
  • the sum of the fourth duration and the fifth duration is determined. If the difference between the target duration and the sum is not greater than the preset threshold, it means that the power battery is heated or cooled from the initial temperature to the ambient temperature when the vehicle is stationary. The power battery needs to be kept warm, otherwise, when the user uses the vehicle, the power battery cannot be kept warm to the target temperature. At this time, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • Step 6 If it is greater than that, it is determined that the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature.
  • the sum of the fourth duration and the fifth duration is determined, and if the difference between the target duration and the sum is greater than the preset threshold, it means that the power battery is heated or cooled from the initial temperature to the ambient temperature when the power battery vehicle is stationary, And stand at the ambient temperature for a period of time, at this time, in order to reduce power consumption, it is determined that the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature.
  • the second is to determine whether the current power of the power battery is greater than the preset power threshold; if it is greater, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature; The power battery does not need to be kept warm until the ambient temperature is flat.
  • the preset power threshold When it is determined that the current power of the power battery is greater than the preset power threshold, it means that the power battery has enough power to keep the power battery warm, and the power consumed by the heat preservation will not affect the normal use of the vehicle. If the temperature of the power battery is at an appropriate temperature and the power battery is kept warm in time, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the power of the power battery is not very sufficient.
  • the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature. , so that the power battery can be kept warm after the vehicle is lowered to the ambient temperature. In this case, the power consumed by the power battery heat preservation can be saved.
  • the third step is to determine whether a heat preservation instruction is received, wherein the heat preservation instruction is used to indicate that the user expects to keep the power battery warm before the temperature of the power battery is equal to the ambient temperature; The power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature; if not received, it is determined that the power battery does not need to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the user can input the heat preservation instruction manually through the vehicle machine in the vehicle, or through the terminal connected to the vehicle, or through the voice input of the vehicle machine in the vehicle.
  • the heat preservation instruction is used to represent that the user expects to keep the power battery warm between the temperature of the power battery and the ambient temperature.
  • the heat preservation instruction When it is determined that the heat preservation instruction is received, it means that the user pays more attention to the performance of the power battery. Therefore, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature, so as to ensure that the power battery can be at a suitable temperature in time. , keep the power battery warm in time.
  • the heat preservation instruction is not received, it means that the user pays more attention to the power consumption of the power battery heat preservation, and it is determined that the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature.
  • the following describes the specific process of determining the start time of the thermal insulation of the power battery when it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the process includes the following steps 1 to 1 five:
  • Step 1 Determine a target duration based on the time difference between the start time of the trip and the initial time.
  • the target duration is the time interval from when the vehicle enters the stationary state to the departure time of the vehicle, which is determined by the time difference between the travel start time and the initial time corresponding to when the vehicle enters the stationary state.
  • the operation of keeping the power battery warm is carried out within the target time period.
  • Step 2 According to the first temperature change rate, the second temperature change rate, the initial temperature, the target temperature and the target duration, determine the expected temperature reached by the power battery under the influence of the ambient temperature .
  • the vehicle when the vehicle enters the stationary state, it will be stationary at the initial temperature at the time of entering the stationary state. After standing for a period of time, the temperature of the power battery will increase or decrease to the expected temperature under the influence of the ambient temperature.
  • the expected temperature is a temperature between the initial temperature and the ambient temperature. Since the power battery needs to be kept warm before the temperature of the power battery is required to be equal to the ambient temperature, the expected temperature will not be equal to the ambient temperature.
  • the expected temperature can be calculated by the following formula:
  • T 1 represents the expected temperature
  • k 1 represents the first temperature change rate
  • k 2 represents the second temperature change rate
  • t represents the target duration
  • T 2 represents the target temperature
  • T 0 represents the The initial temperature.
  • the target duration t is equal to the sum of the following two durations: one duration is the first duration t 1 , and the first duration is the initial duration of the power battery The amount of time it takes for the temperature to heat up or cool down to the expected temperature. Another duration is the duration t 1 ′ required for the power battery to heat up or cool down from the expected temperature to the target temperature.
  • T 2 T 1 +k 2 t 1 ′.
  • the calculation formula of the above predicted temperature can be obtained by sorting.
  • Step 3 According to the predicted temperature, the initial temperature and the first temperature change rate, determine the first time period required for the power battery to change from the initial temperature to the predicted temperature.
  • the process of determining the first duration is: determining the temperature difference between the expected temperature and the ambient temperature, and determining the ratio between the determined temperature difference and the first temperature change rate as the temperature of the power battery rising from the initial temperature or the first period of time required to cool down to the predicted temperature.
  • the determination process of the first duration can be expressed by the following formula:
  • t 1 represents the first duration
  • T 1 represents the expected temperature of the power battery after heating or cooling under the influence of the ambient temperature
  • T 0 represents the initial temperature
  • k 1 represents the first temperature change rate .
  • Step 4 Determine the difference between the target duration and the first duration as the heat preservation duration of the power battery.
  • the power battery Since the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature, the power needs to be kept warm when the power battery is heated or cooled from the initial temperature to the expected temperature. , the power battery will not be able to keep warm to the target temperature, and the performance of the power battery will be affected.
  • the difference between the target duration and the first duration is determined as the thermal insulation duration of the power battery, which is the duration of the battery thermal insulation process.
  • Step 5 Determine the start time of the heat preservation based on the duration of the heat preservation, the start time of the stroke and the initial time.
  • the specific implementation process of this step includes: determining a target duration based on the time difference between the travel start time and the initial time; determining the difference between the target duration and the keeping warm duration as the keeping warm waiting time duration; according to the initial time and the duration of the incubation waiting time, determine the incubation start time.
  • the target duration is the time interval from when the vehicle enters the stationary state to the vehicle departure time, which is determined by the time difference between the travel start time and the initial time when the vehicle enters the stationary state. The operation of keeping the power battery warm is carried out within the target time period.
  • the difference between the target duration and the heat preservation duration is the heat preservation waiting time.
  • the power battery is not kept warm, but only waiting for the heat preservation operation.
  • the power battery is not directly insulated, but the power battery is kept warm after the heat preservation waiting time. Therefore, the power consumption of the power battery heat preservation can be reduced.
  • the power battery According to the initial time and the waiting time of the heat preservation, determine the start time of the heat preservation. Then, when the current time reaches the heat preservation start time, the power battery can be controlled to keep warm.
  • the vehicle is controlled to enter the sleep state to reduce the energy consumption of the vehicle.
  • the vehicle is controlled to enter the sleep state to reduce the energy consumption of the vehicle.
  • the waiting time for heat preservation is not greater than the preset threshold, it means that the power battery needs to be kept warm after waiting for a long time. In this case, in order to simplify the operation, it is not necessary to control the vehicle to enter the sleep state. When the current time reaches the heat preservation start time, control the The power battery can be kept warm.
  • the process includes the following steps 1 to Step 5:
  • Step 1 Determine a target duration based on the time difference between the start time of the trip and the initial time.
  • the target duration is the time interval from when the vehicle enters the stationary state to the departure time of the vehicle, which is determined by the time difference between the travel start time and the initial time corresponding to when the vehicle enters the stationary state.
  • the operation of keeping the power battery warm is carried out within the target time period.
  • Step 2 According to the ambient temperature, the initial temperature, and the first temperature change rate, determine a third time period required for the power battery to change from the initial temperature to the ambient temperature.
  • the process of determining the third duration is: determining the temperature difference between the ambient temperature and the initial temperature, and determining the ratio between the determined temperature difference and the first temperature change rate as the temperature of the power battery from the initial temperature or the third time period required to warm to the ambient temperature.
  • t 2 represents the third time period
  • T air represents the ambient temperature
  • T 0 represents the initial temperature
  • k 1 represents the first temperature change rate.
  • Step 3 According to the target temperature, the ambient temperature, and the second temperature change rate, determine the second time period required for the power battery to change from the ambient temperature to the target temperature.
  • the power battery After the power battery is cooled or heated from the initial temperature to the ambient temperature, its temperature will remain at the ambient temperature. When the power battery is kept warm, it is also the ambient temperature that the power battery has after cooling or warming up.
  • the process of determining the second duration is: determining the temperature difference between the target temperature and the ambient temperature, and determining the ratio between the determined temperature difference and the second temperature change rate as the temperature of the power battery rising from the ambient temperature or the second length of time required to cool down to the target temperature.
  • t 3 represents the second duration
  • T 2 represents the target temperature
  • T air represents the ambient temperature
  • k 2 represents the second temperature change rate
  • Step 4 Determine the sum of the second duration and the third duration, and determine whether the difference between the target duration and the sum is greater than a preset duration threshold.
  • the difference between the target duration and the sum is the duration that the power battery is maintained at the ambient temperature, during which time the power battery does not need to be kept warm.
  • the purpose of determining whether the difference is greater than the preset duration threshold is to determine again whether it is possible to ensure that the power battery is maintained at the target temperature when the vehicle is in use when the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature.
  • the second duration is determined to be the heat preservation duration of the power battery, and the heat preservation duration can ensure that the power battery is maintained at the target temperature when the vehicle is in use.
  • the difference is not greater than the preset duration threshold, it means that the power battery does not need to be kept warm until the temperature of the power battery is equal to the ambient temperature, and it is impossible to ensure that the power battery is maintained at the target temperature when the vehicle is in use, so the user needs to be notified. .
  • Step 5 Determine the heat preservation start time based on the heat preservation duration, the start time of the trip, and the initial time.
  • the specific implementation process of this step includes: determining a target duration based on the time difference between the travel start time and the initial time; determining the difference between the target duration and the keeping warm duration as the keeping warm waiting time duration; according to the initial time and the duration of the incubation waiting time, determine the incubation start time.
  • the target duration is the time interval from when the vehicle enters the stationary state to the vehicle departure time, which is determined by the time difference between the travel start time and the initial time when the vehicle enters the stationary state. The operation of keeping the power battery warm is carried out within the target time period.
  • the difference between the target duration and the heat preservation duration is the heat preservation waiting time.
  • the power battery is not kept warm, but only waiting for the heat preservation operation.
  • the power battery is not directly insulated, but the power battery is kept warm after the heat preservation waiting time. Therefore, the power consumption of the power battery heat preservation can be reduced.
  • the power battery According to the initial time and the waiting time of the heat preservation, determine the start time of the heat preservation. Then, when the current time reaches the heat preservation start time, the power battery can be controlled to keep warm.
  • the vehicle is controlled to enter the sleep state to reduce the energy consumption of the vehicle.
  • the vehicle is controlled to enter the sleep state to reduce the energy consumption of the vehicle.
  • the waiting time for heat preservation is not greater than the preset threshold, it means that the power battery needs to be kept warm after waiting for a long time. In this case, in order to simplify the operation, it is not necessary to control the vehicle to enter the sleep state. When the current time reaches the heat preservation start time, control the The power battery can be kept warm.
  • the power battery is automatically controlled to keep heat.
  • the power battery's heat preservation operation will be automatically exited. At this time, the power battery's heat preservation is sufficient to ensure the normal performance of the power battery and will not affect the vehicle's performance. performance.
  • the first temperature change rate represents The temperature change rate of the power battery when the vehicle is at rest
  • the second temperature change rate represents the temperature change rate of the power battery when the vehicle is kept warm. Then, based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the start time of the vehicle's trip, the initial temperature of the power battery when the vehicle enters a standstill, and the initial time corresponding to the vehicle entering a standstill, Determine the heat preservation start time of the power battery.
  • control the heat preservation of the power battery can determine the temperature change rate when the vehicle is at rest and keep warm corresponding to the current scene of the vehicle, and combine the determined temperature change rate, the ambient temperature of the environment where the vehicle is located, and the power when the vehicle enters the stationary state.
  • the initial temperature of the battery, the travel start time of the vehicle, and the initial time corresponding to when the vehicle enters a standstill are used to obtain the heat preservation start time of the power battery.
  • another embodiment of the present disclosure further provides a vehicle power battery thermal insulation control device, as shown in FIG. 2 , the device mainly includes:
  • the first determination unit 21 is configured to determine a first temperature change rate and a second temperature change rate corresponding to the current scene of the vehicle, wherein the first temperature change rate represents the temperature change rate of the power battery when the vehicle is at rest, the second temperature change rate The temperature change rate represents the temperature change rate of the power battery when the vehicle is kept warm;
  • the second determination unit 22 is configured to be based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment in which the vehicle is located, the travel start time of the vehicle, and when the vehicle enters a standstill
  • the initial temperature of the power battery and the corresponding initial time when the vehicle enters a standstill determine the start time of the heat preservation of the power battery
  • the control unit 23 is configured to control the heat preservation of the power battery based on the heat preservation start time.
  • the vehicle power battery heat preservation control device when it is necessary to control the heat preservation of the vehicle power battery, firstly determine the first temperature change rate and the second temperature change rate corresponding to the current scene of the vehicle, and the first temperature change rate represents The temperature change rate of the power battery when the vehicle is at rest, and the second temperature change rate represents the temperature change rate of the power battery when the vehicle is kept warm. Then, based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the start time of the vehicle's trip, the initial temperature of the power battery when the vehicle enters a standstill, and the initial time corresponding to the vehicle entering a standstill, Determine the heat preservation start time of the power battery.
  • control the heat preservation of the power battery can determine the temperature change rate when the vehicle is at rest and keep warm corresponding to the current scene of the vehicle, and combine the determined temperature change rate, the ambient temperature of the environment where the vehicle is located, and the power when the vehicle enters the stationary state.
  • the initial temperature of the battery, the travel start time of the vehicle, and the initial time corresponding to when the vehicle enters a stationary state are used to obtain the heat preservation start time of the power battery.
  • the second determining unit 22 includes:
  • the first determination module 221 is configured to determine a target based on the time difference between the start time of the trip and the initial time when it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature duration;
  • the second determination module 222 is configured to determine the influence of the power battery on the ambient temperature according to the first temperature change rate, the second temperature change rate, the initial temperature, the target temperature, and the target duration the expected temperature to be reached, wherein the expected temperature is a temperature between the initial temperature and the ambient temperature, and the target temperature is a preset temperature reached after the power battery is kept warm;
  • a third determination module 223, configured to determine, according to the predicted temperature, the initial temperature, and the first temperature change rate, a first time period required for the power battery to change from the initial temperature to the predicted temperature;
  • the fourth determination module 224 is configured to determine the difference between the target duration and the first duration as the thermal insulation duration of the power battery; based on the thermal insulation duration, the travel start time and the initial time to determine the start time of the incubation.
  • the second determination module 222 is configured to determine the predicted temperature by the following formula
  • T 1 represents the expected temperature
  • k 1 represents the first temperature change rate
  • k 2 represents the second temperature change rate
  • t represents the target duration
  • T 2 represents the target temperature
  • T 0 represents the The initial temperature.
  • a third determination module 223 is configured to determine a temperature difference between the predicted temperature and the ambient temperature; change the temperature difference to the first temperature The ratio between the rates is determined as the first duration.
  • the second determining unit 22 includes:
  • the fifth determination module 225 is configured to determine, according to the target temperature, the ambient temperature, and the second temperature change rate, the second time period required for the power battery to change from the ambient temperature to the target temperature, wherein the The target temperature is a preset temperature reached after the power battery is kept warm;
  • a sixth determination module 226, configured to determine that the second duration is the heat preservation duration of the power battery
  • the seventh determination module 227 is configured to determine the start time of the heat preservation based on the duration of the heat preservation, the start time of the trip, and the initial time.
  • the second determining unit 22 further includes:
  • An eighth determination module 228, configured to determine a target duration based on the time difference between the start time of the trip and the initial time; determine the target duration according to the ambient temperature, the initial temperature, and the first temperature change rate the third duration required by the power battery from the initial temperature to the ambient temperature; determining the sum of the second duration and the third duration; determining whether the difference between the target duration and the sum is greater than The preset duration threshold; if it is greater than that, the sixth determination module 226 is triggered to determine that the second duration is the heat preservation duration of the power battery.
  • a sixth determination module 226 is configured to determine a temperature difference between the ambient temperature and the initial temperature; change the temperature difference to the first temperature The ratio between the rates is determined as the second duration.
  • a seventh determination module 227 is configured to determine a temperature difference between the target temperature and the ambient temperature; change the temperature difference to the second temperature The ratio between the rates is determined as the third duration.
  • the second determining unit 22 further includes:
  • a ninth determination module 229 configured to be based on the first temperature change rate, the second temperature change rate, the ambient temperature of the environment where the vehicle is located, the travel start time of the vehicle, and when the vehicle enters a standstill The initial temperature of the power battery and the corresponding initial time when the vehicle enters a standstill determine whether the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the ninth determination module 229 is specifically configured to determine the power battery from the initial temperature according to the first temperature change rate, the initial temperature, and the ambient temperature. the fourth duration to the ambient temperature; according to the second temperature change rate, the target temperature, and the ambient temperature, determine the fifth duration of the power battery from the initial temperature to the target temperature; according to The time difference between the start time of the trip and the initial time is used to determine the target duration; the sum of the fourth duration and the fifth duration is determined, and whether the difference between the target duration and the sum is greater than The preset threshold; if not greater than, it is determined that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature; if it is greater than, it is determined that the temperature of the power battery is not equal to the ambient temperature The power battery needs to be kept warm.
  • a ninth determination module 229 is configured to determine a temperature difference between the ambient temperature and the initial temperature; change the temperature difference to the first temperature The ratio between the rates is determined as the fourth duration.
  • a ninth determination module 229 is configured to determine a temperature difference between the target temperature and the ambient temperature; change the temperature difference to the second temperature The ratio between the rates is determined as the fifth duration.
  • the second determining unit 22 further includes:
  • the tenth determination module 230 is used to determine whether the current power of the power battery is greater than a preset power threshold; if it is greater, determine that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature; if No more than, it is determined that the power battery does not need to be kept warm before the temperature of the power battery is equal to the ambient temperature.
  • the second determining unit 22 further includes:
  • the eleventh determination module 231 is configured to determine whether a heat preservation instruction is received, wherein the heat preservation instruction is used to indicate that the user expects to keep the power battery warm before the temperature of the power battery is equal to the ambient temperature; , determine that the power battery needs to be kept warm before the temperature of the power battery is equal to the ambient temperature; if not received, determine that the power battery does not need to be kept warm before the temperature of the power battery is equal to the ambient temperature Insulation.
  • the fourth determination module 224 or the eighth determination module 228 is configured to determine a target duration based on the time difference between the travel start time and the initial time; The difference between the duration and the heat preservation duration is determined as the heat preservation waiting time; the heat preservation start time is determined according to the initial time and the heat preservation waiting time.
  • control unit 24 is further configured to determine whether the warm-keeping waiting time is longer than a preset threshold; if it is longer, control the vehicle to enter a sleep state, and when it is detected that the current time reaches The vehicle is woken up to control the power battery to keep warm at the warm start time.
  • both the first temperature change rate and the second temperature change rate involved in the device have corresponding scenes, and both represent a specific time point corresponding to the scene from a specific time point.
  • the average temperature change rate of the power battery within a preset time period in the future; wherein, the scenario includes one or more of the following: the ambient temperature in the environment where the vehicle is located, the current location of the vehicle, the current month, the current Time, the current temperature of the power battery.
  • the vehicle power battery heat preservation control device provided by the embodiment of the second aspect can be used to execute the vehicle power battery heat preservation control method provided by the embodiment of the first aspect.
  • the relevant descriptions in the embodiments of the aspects are not described in detail here.
  • an embodiment of the present disclosure provides a vehicle control system, the vehicle control system includes: a controller; the controller executes the vehicle power battery heat preservation control method described in the first aspect during operation.
  • embodiments of the present disclosure provide a vehicle, the vehicle comprising: a power battery and the vehicle control system of the third aspect;
  • the power battery is used for keeping warm under the control of the vehicle control system.
  • embodiments of the present disclosure may be provided as a method, system, or computer program product. Accordingly, embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, etc. .
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
  • a computing device includes one or more processors (CPUs), input/output interfaces, network interfaces, and memory.
  • processors CPUs
  • input/output interfaces network interfaces
  • memory volatile and non-volatile memory
  • Memory may include non-persistent memory in computer readable media, random access memory (RAM) and/or non-volatile memory in the form of, for example, read only memory (ROM) or flash memory (flash RAM). Memory is an example of a computer-readable medium.
  • RAM random access memory
  • ROM read only memory
  • flash RAM flash memory
  • Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
  • embodiments of the present disclosure may be provided as a method, system or computer program product. Accordingly, embodiments of the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, embodiments of the present disclosure may take the form of a computer program product implemented on one or more computer-usable storage media having computer-usable program code embodied therein, including but not limited to disk storage, CD-ROM, optical storage, etc. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车辆动力电池保温控制方法及装置,涉及车辆控制技术领域。车辆动力电池保温控制方法包括:确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率(101),其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,第二温度变化速率表征车辆保温时动力电池的温度变化速率;基于第一温度变化速率、第二温度变化速率、车辆所处环境的环境温度、车辆的行程开始时间、车辆进入静置时动力电池的初始温度以及车辆进入静置时所对应的初始时间,确定动力电池的保温开始时间(102);基于保温开始时间,控制动力电池保温(103)。

Description

车辆动力电池保温控制方法及装置
相关申请的交叉引用
本申请基于申请号为202110196279.5、申请日为2021年02月22日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开的实施例涉及车辆控制技术领域,特别是涉及一种车辆动力电池保温控制方法及装置。
背景技术
随着新能源汽车的发展,以动力电池为核心能量源的车辆在人们日常生活中应用的越来越广泛,动力电池的性能直接决定车辆的整车性能。动力电池的性能受温度影响较大,动力电池的温度若较低,不仅会造成动力电池的可用电量减少,导致车辆的续航里程减少,而且还会造成动力电池的输出功率减少,从而影响整车的动力性能,导致车辆诸如加速性能、爬坡性能等性能受限。
目前,为了避免动力电池的温度较低,在车辆充电结束后,会对动力电池进行保温操作,该保温操作一般是对动力电池进行固定时长的保温。但是这种保温方式,由于是对动力电池进行固定时长保温,不能保证用户在实际使用车辆时,动力电池处于合适的温度。
发明内容
有鉴于此,本公开的实施例提出了一种车辆动力电池保温控制方法及装置。
第一方面,本公开的实施例提供了一种车辆动力电池保温控制方法,所述方法包括:
确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,所述第二温度变化速率表征车辆保温时动力电池的温度变化速率;
基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定所述动力电池的保温开始时间;
基于所述保温开始时间,控制所述动力电池保温。
第二方面,本公开的实施例提供了一种车辆动力电池保温控制装置,所述装置包括:
第一确定单元,用于确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,所述第二温度变化速率表征车辆保温时动力电池的温度变化速率;
第二确定单元,用于基于所述第一温度变化速率、所述第二温度变化速率、所述车 辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定所述动力电池的保温开始时间;
控制单元,用于基于所述保温开始时间,控制所述动力电池保温。
第三方面,本公开的实施例提供了一种车辆控制系统,所述车辆控制系统包括:控制器;所述控制器在运行时执行第一方面所述的车辆动力电池保温控制方法。
第四方面,本公开的实施例提供了一种车辆,所述车辆包括:动力电池以及第三方面所述的车辆控制系统;
所述动力电池,用于在所述车辆控制系统的控制下,保温。
本公开的实施例提供的车辆动力电池保温控制方法及装置,在需要控制车辆动力电池保温时,首先确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,该第一温度变化速率表征车辆静置时动力电池的温度变化速率,该第二温度变化速率表征车辆保温时动力电池的温度变化速率。然后基于第一温度变化速率、第二温度变化速率、车辆所处环境的环境温度、车辆的行程开始时间、车辆进入静置时动力电池的初始温度以及车辆进入静置时所对应的初始时间,确定动力电池的保温开始时间。之后根据保温开始时间,控制动力电池保温。可见,本公开的实施例能够确定出与车辆当前场景相应的车辆静置和保温时的温度变化速率,并结合所确定的温度变化速率、车辆所处环境的环境温度、车辆进入静置时动力电池的初始温度、车辆的行程开始时间以及车辆进入静置时所对应的初始时间,得到动力电池的保温开始时间。根据保温开始时间控制车辆动力电池在合适的时机保温,从而不仅能够保证用户在使用车辆时动力电池的温度不会影响动力电池的性能,且能够减少动力电池保温所消耗的电能,进而降低动力电池保温的成本。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本公开的实施例的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1示出了本公开的实施例提供的一种车辆动力电池保温控制方法的流程图;
图2示出了本公开的实施例提供的一种车辆动力电池保温控制装置的组成框图;
图3示出了本公开的实施例提供的另一种车辆动力电池保温控制装置的组成框图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
当车辆进入静置状态后,需要对动力电池进行保温,以保证用户在使用车辆时,动力电池的温度能够保持在其性能所需的温度上,使动力电池的性能不受外界环境温度的影响。该车辆进入静置状态可以指车辆的动力电池充电完成时或车辆进入驻车状态。动力电池需要在合适的时机进行保温,以在用户使用车辆时,动力电池保温在合适的温度,使其发挥出其本身性能,从而不至于对整车性能造成影响。另外,动力电池需要在合适的时机进行保温,也能够避免动力电池处于时间过长的保温状态带来的电能损耗。本公开的实施例这是针对如何控制动力电池在合适的时机保温所提出的。
第一方面,本公开的实施例提供了一种车辆动力电池保温控制方法,如图1所示,所述方法主要包括:
101、确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率。
在实际应用中,确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率的时机至少存在如下两种:一种是,车辆的动力电池充电完成时。另一种是,车辆进入驻车状态时。以上的两种时机车辆均处于静置状态,未投入使用,为了保证车辆使用时车辆的动力电池处于合适的温度,发挥其性能,则均需要确定合适的保温开始时间,以在保温开始时间对动力电池进行保温。
为了能够确定出动力电池合适的保温时机,则需要确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率。其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,第二温度变化速率表征车辆保温时动力电池的温度变化速率。车辆静置是指车辆驻车,高压下电后闭锁的状态。车辆保温是指车辆的动力电池处于保温的状态。
下面对如何确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率进行说明,该过程包括如下步骤一至步骤二:
步骤一、查询记载有多个场景与多个第一温度变化速率对应关系的数据表,确定与车辆当前场景相应的第一温度变化速率,其中,记载的每一个第一温度变化速率分别表征车辆静置时,自与其场景对应的特定时间点起,未来预设时间段内动力电池的平均温度变化速率。
确定第一温度变化速率时,首先需要确定车辆当前场景,该车辆当前所处场景可以包括如下中的一种或多种:车辆所处环境中的环境温度、车辆当前所处位置、当前月份、当前时间、动力电池当前温度。
在确定出车辆当前场景时,查询记载有多个场景与多个第一温度变化速率对应关系的数据表,该数据表可以通过大数据统计或数据仿真而得。在该数据表中一个场景对应一个第一温度变化速率。
下面对该数据表的统计过程进行说明:首先统计车辆处于静置状态下,车辆所处的场景以及动力电池温度变化速率的数据,示例性,统计数据的场景为:环境温度的统计范围为-20℃~30℃。当前位置以统计精度以GPS的经纬度信息为准,识别该位置所处的省市区,包括34个省级行政区。当前月份,即当天所处的月份,例如5月份,统计精 度为1个月,范围为1~12月份。当前时间,即当天的时刻,例如14点钟,统计精度为1小时,范围为0~24h。动力电池温度,统计范围为-20℃~50℃。动力电池的温度变化速率,为距离当前时间未来12小时内的动力电池温度变化速率,精度为1℃/h。在得到统计数据后,按照车辆所处场景对数据进行分类。然后按照环境温度、车辆静置时间所处月份、车辆静置时间、车辆静置所处位置以及动力电池当前温度进行数据分类,得到不同场景下车辆静置时动力电池温度变化率,然后将同一场景对应的动力电池温度变化率的平均值确定为该场景对应的第一温度变化速率。
示例性的,如表-1所示,表-1中记载有多个场景与多个第一温度变化速率对应关系的数据表,该表为北京市12月份的19点钟,车辆在各环境温度和动力电池温度下静置时,对应的动力电池温度在未来12小时内的平均变化速率,即第一温度变化率(单位℃/h)。
表-1
Figure PCTCN2022076916-appb-000001
步骤二、查询记载有多个场景与多个第二温度变化速率对应关系的数据表,确定与车辆当前场景相应的第二温度变化速率,其中,记载的每一个第二温度变化速率分别表征车辆保温时,自与其场景对应的特定时间点起,未来预设时间段内动力电池的平均温度变化速率。
确定第二温度变化速率时,首先需要确定车辆当前所处场景,该车辆当前所处场景可以包括如下中的一种或多种:车辆所处环境中的环境温度、车辆当前所处位置、当前月份、当前时间、动力电池当前温度。能够理解地,确定第二温度变化速率所使用的车辆当前场景与确定第一温度变化速率所使用的车辆当前场景一致。
在确定出车辆当前场景时,查询记载有多个场景与多个第二温度变化速率对应关系的数据表,该数据表可以通过大数据统计或数据仿真而得。在该数据表中一个场景对应一个第二温度变化速率。
下面对该数据表的统计过程进行说明:首先统计车辆处于保温状态下,车辆所处的场景以及动力电池温度变化速率的数据,示例性,统计数据的场景为:环境温度的统计范围为-20℃~30℃。当前位置以统计精度以GPS的经纬度信息为准,识别该位置所处的 省市区,包括34个省级行政区。当前月份,即当天所处的月份,例如5月份,统计精度为1个月,范围为1~12月份。当前时间,即当天的时刻,例如14点钟,统计精度为1小时,范围为0~24h。动力电池温度,统计范围为-20℃~50℃。动力电池的温度变化速率,为距离当前时间未来12小时内的动力电池温度变化速率,精度为1℃/h。在得到统计数据后,按照车辆所处场景对数据进行分类。然后按照环境温度、车辆静置时间所处月份、车辆静置时间、车辆静置所处位置以及动力电池当前温度进行数据分类,然后得到不同场景下车辆保温时动力电池温度变化率,然后将同一场景对应的动力电池温度变化率的平均值确定为该场景对应的第二温度变化速率。
示例性的,如表-2所示,表-2中记载有多个场景与多个第二温度变化速率对应关系的数据表,该表为北京市12月份的19点钟,车辆在各环境温度和动力电池温度下保温时,对应的动力电池温度在未来12小时内的平均变化速率,即第二温度变化率(单位℃/h)。
表-2
Figure PCTCN2022076916-appb-000002
需要说明的是,由于第一温度变化速率和第二温度变化速率均是表征车辆自特定时间点起,未来预设时间段内动力电池的平均温度变化速率,因此,二者是预测动力电池需要进行保温的保温时长的依据。
102、基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定所述动力电池的保温开始时间。
在实际应用中,环境温度的确定方法包括如下两种:
第一种,车辆进入静置时所对应的环境温度为最终确定动力电池的保温开始时间所使用的环境温度,此种方法,在车辆进入静置状态时,仅需计算一次动力电池的保温开始时间,并依据该保温开始时间控制动力电池保温。
第二种,由于车辆进入静置后车辆所处的环境温度是随着时间推移发生变动的,因此为了确定出与车辆所处的实时环境温度相应的保温开始时间,则需要周期性动力电池的保温开始时间。每一个周期所使用的环境温度均为当前周期的实时环境温度。然后根 据已完成的各周期对应的保温开始时间,确定最终控制动力电池保温的保温开始时间。
示例性的,已完成的各周期对应的保温开始时间呈现同一发展趋势,比如,保温开始时间越来越接近或越来越远离车辆的行程开始时间,而最新周期对应的保温开始与之前周期的保温开始时间的发展趋势相反,则为了保证及时给动力电池保温,则将与最新周期相邻的上一个周期的保温开始时间确定为最终控制动力电池保温的保温开始时间。
无论环境温度是上述两种的何种,每一次确定动力电池的保温开始时间的具体确定过程均是相同的。
确定动力电池的保温开始时间的具体确定过程,与动力电池的温度与环境温度持平之前是否需要对动力电池保温有关,不同的判断结果采用不同的方法进行保温开始时间的确定。下面对如何确定在动力电池的温度与环境温度持平之前是否需要对动力电池保温的具体方法进行说明,该方法至少包括如下三种:
第一种,基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定在所述动力电池的温度与所述环境温度持平之前是否需要对所述动力电池保温。该方法能够保证车辆出发前动力电池完成保温,使动力电池的温度维持在最适宜的温度,保证其发挥其性能,且不会影响整车的动力性能。
该方法的具体过程包括如下步骤一至步骤六:
步骤一、根据所述第一温度变化速率、所述初始温度、所述环境温度,确定所述动力电池由所述初始温度至所述环境温度的第四时长。
具体的,第四时长表征的是车辆静置时动力电池由初始温度升温或降温至环境温度所需的时长,其确定过程为:确定环境温度与初始温度之间的温度差值,将所得的温度差值与第一温度变化速率之间的比值确定为第四时长。
第四时长的确定过程可通过如下公式表征:
Figure PCTCN2022076916-appb-000003
其中,t 4表征第四时长;T air表征环境温度;T 0表征初始温度;k 1表征第一温度变化速率。
步骤二、根据第二温度变化速率、目标温度、环境温度,确定动力电池由初始温度至目标温度的第五时长。
具体的,动力电池若进行保温,为了维持动力电池的性能在最佳状态,则需要设定一个目标温度,该目标温度为动力电池保温后达到的预设温度,其是动力电池保温后的一个维持温度。
具体的,该目标温度的设定方法至少包括如下几种:第一种是,目标温度在车辆出厂时由厂家基于动力电池的性能确定,无论车辆处于何种场景中,该目标温度均是不变的。第二种是,目标温度是车辆进入静置时,由车辆所处的场景而定,不同的场景对应 不同的目标温度。此种情况的目标温度会随着车辆场景的不同而变动,以使动力电池保温后的性能与车辆所处场景相应。第三种是,目标温度基于车辆用户的驾驶习惯而定,也就是说,动力电池保温至目标温度后,动力电池的输出功率能够保证车辆的整车性能满足用户的驾驶习惯即可。此种方式,能够基于车辆用户的驾驶习惯个性化对车辆动力电池进行保温控制。示例性的,用户对车辆动力需求较低,则目标温度可设定的较低,而用户对车辆动力需求较高时,目标温度可设定的较高。
具体的,第五时长表征的车辆保温时,动力电池由初始温度升温或降温至目标温度所需的时长,其确定过程为:确定目标温度与环境温度之间的温度差值,将所得的温度差值与第二温度变化速率之间的比值,确定为动力电池由初始温度升温或降温至目标温度的第五时长。
第五时长的确定过程可通过如下公式表征:
Figure PCTCN2022076916-appb-000004
其中,t 5表征第五时长;T 2表征目标温度;T air表征环境温度;k 2表征第二温度变化速率。
步骤三、根据行程开始时间与初始时间之间的时间差,确定目标时长。
具体的,该目标时长是自车辆进入静置时开始至车辆出发时间的时间间隔,其通过行程开始时间与车辆进入静置时所对应的初始时间之间的时间差确定。
具体的,该行程开始时间存在如下两种确定方式:一是,用户在给动力电池充电时或车辆驻车后,设定了预期的行程开始时间,该行程开始时间用户可通过终端输入或语音输入的方式来进行设定。二是,通过统计用户在预设时间段内的行程开始,预估出的行程开始时间,此种方式无需用户手动输入,根据用户的行程习惯,便可自动进行行程开始时间的设定。
步骤四、确定所述第四时长和所述第五时长的总和,判断所述目标时长与所述总和之间的差值是否大于预设阈值,执行步骤五或步骤六。
步骤五、若不大于,确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温。
具体的,第四时长表征的是车辆静置时动力电池由初始温度升温或降温至环境温度所需的时长。第五时长表征的车辆保温时,动力电池由初始温度升温或降温至目标温度所需的时长。
具体的,确定第四时长和第五时长的总和,若目标时长与该总和之间的差值不大于预设阈值,则说明车辆静置时动力电池由初始温度升温或降温至环境温度之前,就需要对动力电池保温,否则,在用户使用车辆时,动力电池不能保温到目标温度,此时确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温。
步骤六、若大于,确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
具体的,确定第四时长和第五时长的总和,若目标时长与该总和之间的差值大于预设阈值,则说明动力电池车辆静置时动力电池由初始温度升温或降温至环境温度,并在该环境温度静置了一段时间,此时为了降低电量消耗,则确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
第二种,确定动力电池的当前电量是否大于预设电量阈值;若大于,确定在动力电池的温度与环境温度持平之前需要对所述动力电池保温;若不大于,确定在动力电池的温度与环境温度持平之前不需要对动力电池保温。
在确定动力电池的当前电量大于预设电量阈值时,说明动力电池有足够的电量为动力电池保温,且该保温所耗的电量不会对车辆的正常使用造成影响,此时为了保证动力电池可以及时处于适宜的温度,及时给动力电池进行保温,则确定在动力电池的温度与环境温度持平之前需要对所述动力电池保温。
在确定动力电池的当前电量不大于预设电量阈值时,说明动力电池的电量不是很充足,为了优先保证车辆的正常使用,则确定在动力电池的温度与环境温度持平之前不需要对动力电池保温,以在车辆降低到环境温度以后再对动力电池保温,此种情况可以节约动力电池保温所耗的电量。
第三种,确定是否接收到保温指令,其中,所述保温指令用于表征用户期望在所述动力电池的温度与所述环境温度持平之前对所述动力电池保温;若接收,确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温;若未接收,确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
保温指令用户可通过车辆中的车机手动输入,也可通过与车辆连接的终端输入,也可通过车辆中的车机语音输入。该保温指令用于表征用户期望在动力电池的温度与环境温度持平之间对动力电池保温。
在确定接收到保温指令时,说明用户比较重视动力电池性能,因此确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温,以保证动力电池可以及时处于适宜的温度,及时给动力电池进行保温。
若未接收到保温指令时,说明用户比较重视动力电池保温的电量消耗,则确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
下面对当确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温时,确定所述动力电池的保温开始时间的具体过程进行说明,该过程包括如下步骤一至步骤五:
步骤一、基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长。
具体的,该目标时长是自车辆进入静置状态时开始至车辆出发时间的时间间隔,其通过行程开始时间与车辆进入静置状态时所对应的初始时间之间的时间差确定。对动力电池进行保温的操作在该目标时长内进行。
步骤二、根据所述第一温度变化速率、所述第二温度变化速率、所述初始温度、目标温度以及所述目标时长,确定所述动力电池在所述环境温度的影响下达到的预计温度。
具体的,车辆进入静置状态时,其将以进入静置状态时的初始温度进行静置,静置一段时间后,动力电池的温度将在环境温度的影响下升温或降温至预计温度。该预计温度为初始温度和环境温度之间的一个温度。由于需要动力电池的温度与所述环境温度持平之前需要对动力电池保温,因此该预计温度不会与环境温度相等。
该预计温度可通过如下公式计算而得:
Figure PCTCN2022076916-appb-000005
其中,T 1表征预计温度;k 1表征所述第一温度变化速率;k 2表征所述第二温度变化速率;t表征所述目标时长;T 2表征所述目标温度;T 0表征所述初始温度。
下面对预计温度的计算公式的确定过程进行说明:
由于需要动力电池的温度与所述环境温度持平之前需要对动力电池保温,因此目标时长t等于如下两个时长的加和:一个时长为第一时长t 1,该第一时长是动力电池从初始温度升温或降温至预计温度所需的时长。另一个时长为动力电池从预计温度升温或降温至目标温度所需的持续时长t 1′。目标时长由公式一表达为:t=t 1+t 1′。
第一时长内动力电池从初始温度升温或降温至预计温度时,动力电池未保温,动力电池温度以第一温度变化速率k 1,在第一时长t 1内,由初始温度T 0升温或降温至预计温度T 1,由公式二表达为:T 1=T 0+k 1t 1
持续时长内动力电池从预计温度升温或降温至目标温度时,动力电池保温,动力电池温度以第二温度变化速率k 2,在持续时长t 1′内,由预计温度T 1升温或降温至目标温度T 2,由公式三表达为:T 2=T 1+k 2t 1′。
基于上述公式一至公式三的关系,整理即可得到上述预计温度的计算公式。
步骤三、根据所述预计温度、所述初始温度以及所述第一温度变化速率,确定所述动力电池从所述初始温度至所述预计温度所需的第一时长。
该第一时长的确定过程为:确定预计温度与环境温度之间的温度差值,将所确定的温度差值与第一温度变化速率之间的比值,确定为动力电池从所述初始温度升温或降温至所述预计温度所需的第一时长。
该第一时长的确定过程可通过如下公式表达:
Figure PCTCN2022076916-appb-000006
其中,t 1表征第一时长;T 1表征所述动力电池在所述环境温度的影响下升温或降温后的预计温度;T 0表征所述初始温度;k 1表征所述第一温度变化速率。
步骤四、将所述目标时长与所述第一时长之间的差值,确定为所述动力电池的保温时 长。
由于需要动力电池的温度与所述环境温度持平之前需要对动力电池保温,因此在动力电池从所述初始温度升温或降温至所述预计温度时,就需要对动力保温,否则,在用户使用车辆时,动力电池将不能保温至目标温度,动力电池的性能将受到影响。
为了在用户使用车辆时,动力电池已经保温至目标温度,因此将目标时长与所述第一时长之间的差值,确定为动力电池的保温时长,该保温时长即为电池保温过程的时长。
步骤五、基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间。
该步骤的具体实现过程包括:基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;将所述目标时长与所述保温时长之间的差值,确定为所述保温等待时长;根据所述初始时间和所述保温等待时长,确定保温开始时间。
具体的,目标时长是自车辆进入静置状态时开始至车辆出发时间的时间间隔,其通过行程开始时间与车辆进入静置状态时所对应的初始时间之间的时间差确定。对动力电池进行保温的操作在该目标时长内进行。
具体的,在目标时长和保温时长确定之后,目标时长和保温时长的差值,即为保温等待时长,在保温等待时长内动力电池不保温,仅是等待保温操作。车辆进入静置状态时并未直接对动力电池进行保温,而是在保温等待时长之后,才对动力电池进行保温,因此,能够降低动力电池保温的电能消耗。
根据初始时间和保温等待时长,确定保温开始时间。然后在当前时间达到保温开始时间时,控制动力电池保温即可。
进一步的,为了减少车辆的能耗,需要判断保温等待时长是否大于预设阈值。若判断出保温等待时长大于预设阈值,则说明动力电池需要等待较长的时长才需要保温,此时控制车辆进入休眠状态,以降低车辆的能耗,当检测到当前时间达到保温开始时间时才唤醒车辆控制动力电池保温。若判断出保温等待时长不大于预设阈值,则说明动力电池无效等待较长的时长就需要保温了,此时为了简化操作,无需控制车辆进入休眠状态,在当前时间达到保温开始时间时,控制动力电池保温即可。
下面对当确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温时,确定所述动力电池的保温开始时间的具体过程进行说明,该过程包括如下步骤一至步骤五:
步骤一、基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长。
具体的,该目标时长是自车辆进入静置状态时开始至车辆出发时间的时间间隔,其通过行程开始时间与车辆进入静置状态时所对应的初始时间之间的时间差确定。对动力电池进行保温的操作在该目标时长内进行。
步骤二、根据所述环境温度、所述初始温度、所述第一温度变化速率,确定所述动力电池由所述初始温度至所述环境温度所需的第三时长。
该第三时长的确定过程为:确定环境温度与初始温度之间的温度差值,将所确定的温度差值与第一温度变化速率之间的比值,确定为动力电池由所述初始温度降温或升温至所述环境温度所需的第三时长。该过程可通过如下公式表达:
Figure PCTCN2022076916-appb-000007
其中,t 2表征第三时长;T air表征所述环境温度;T 0表征所述初始温度;k 1表征所述第一温度变化速率。
步骤三、根据所述目标温度、所述环境温度、所述第二温度变化速率,确定所述动力电池由所述环境温度至所述目标温度所需的第二时长。
在动力电池由初始温度降温或升温至环境温度后,其温度将静置在环境温度,对动力电池进行保温时,也是动力电池降温或升温后所具有的环境温度开始进行保温的。
该第二时长的确定过程为:确定目标温度与环境温度之间的温度差值,将所确定的温度差值与第二温度变化速率之间的比值,确定为动力电池由所述环境温度升温或降温至目标温度所需的第二时长。该过程可通过如下公式表达:,
Figure PCTCN2022076916-appb-000008
其中,t 3表征第二时长;T 2表征所述目标温度;所述T air表征所述环境温度;k 2表征所述第二温度变化速率。
步骤四、确定所述第二时长和所述第三时长的加和,确定所述目标时长与所述加和的差值是否大于预设的时长阈值。
目标时长与加和的差值为动力电池维持在环境温度的时长,在该时长内动力电池无需保温。
确定该差值是否大于预设的时长阈值的目的是为了再次确定在动力电池的温度与环境温度持平之前不需要对动力电池保温时,能否保证车辆使用时动力电池维持在目标温度。
若确定该差值大于预设的时长阈值,则确定第二时长为动力电池的保温时长,该保温时长能够保证车辆使用时动力电池维持在目标温度。
若确定该差值不大于预设的时长阈值,则说明在动力电池的温度与环境温度持平之前不需要对动力电池保温,是无法保证车辆使用时动力电池维持在目标温度的,因此需要通知用户。
步骤五:基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间。
该步骤的具体实现过程包括:基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;将所述目标时长与所述保温时长之间的差值,确定为所述保温等待时长;根据所述初始时间和所述保温等待时长,确定保温开始时间。
具体的,目标时长是自车辆进入静置状态时开始至车辆出发时间的时间间隔,其通过行程开始时间与车辆进入静置状态时所对应的初始时间之间的时间差确定。对动力电池进行保温的操作在该目标时长内进行。
具体的,在目标时长和保温时长确定之后,目标时长和保温时长的差值,即为保温等待时长,在保温等待时长内动力电池不保温,仅是等待保温操作。车辆进入静置状态时并未直接对动力电池进行保温,而是在保温等待时长之后,才对动力电池进行保温,因此,能够降低动力电池保温的电能消耗。
根据初始时间和保温等待时长,确定保温开始时间。然后在当前时间达到保温开始时间时,控制动力电池保温即可。
进一步的,为了减少车辆的能耗,需要判断保温等待时长是否大于预设阈值。若判断出保温等待时长大于预设阈值,则说明动力电池需要等待较长的时长才需要保温,此时控制车辆进入休眠状态,以降低车辆的能耗,当检测到当前时间达到保温开始时间时才唤醒车辆控制动力电池保温。若判断出保温等待时长不大于预设阈值,则说明动力电池无效等待较长的时长就需要保温了,此时为了简化操作,无需控制车辆进入休眠状态,在当前时间达到保温开始时间时,控制动力电池保温即可。
103、基于所述保温开始时间,控制所述动力电池保温。
在确定保温开始时间之后,在当前时间达到该保温开始时间时,自动控制动力电池进行保温。
进一步的,若动力电池进行保温后,若时间达到车辆的行程开始时间时,则自动退出动力电池的保温操作,此时动力电池的保温以足够保证动力电池的正常性能,不会影响整车的性能。
本公开的实施例提供的车辆动力电池保温控制方法,在需要控制车辆动力电池保温时, 首先确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,该第一温度变化速率表征车辆静置时动力电池的温度变化速率,该第二温度变化速率表征车辆保温时动力电池的温度变化速率。然后基于第一温度变化速率、第二温度变化速率、车辆所处环境的环境温度、车辆的行程开始时间、车辆进入静置时动力电池的初始温度以及车辆进入静置时所对应的初始时间,确定动力电池的保温开始时间。之后根据保温开始时间,控制动力电池保温。可见,本公开的实施例能够确定出与车辆当前场景相应的车辆静置和保温时的温度变化速率,并结合所确定的温度变化速率、车辆所处环境的环境温度、车辆进入静置时动力电池的初始温度、车辆的行程开始时间以及车辆进入静置时所对应的初始时间,得到动力电池的保温开始时间。根据保温开始时间控制车辆动力电池在合适的时机保温,从而不仅能够保证用户在使用车辆时动力电池的温度不会影响动力电池的性能,且能够减少动力电池保温所消耗的电能,进而降低动力电池保温的成本。
第二方面,依据图1所示的方法,本公开的另一个实施例还提供了一种车辆动力电池保温控制装置,如图2所示,所述装置主要包括:
第一确定单元21,用于确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,所述第二温度变化速率表征车辆保温时动力电池的温度变化速率;
第二确定单元22,用于基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定所述动力电池的保温开始时间;
控制单元23,用于基于所述保温开始时间,控制所述动力电池保温。
本公开的实施例提供的车辆动力电池保温控制装置,在需要控制车辆动力电池保温时,首先确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,该第一温度变化速率表征车辆静置时动力电池的温度变化速率,该第二温度变化速率表征车辆保温时动力电池的温度变化速率。然后基于第一温度变化速率、第二温度变化速率、车辆所处环境的环境温度、车辆的行程开始时间、车辆进入静置时动力电池的初始温度以及车辆进入静置时所对应的初始时间,确定动力电池的保温开始时间。之后根据保温开始时间,控制动力电池保温。可见,本公开的实施例能够确定出与车辆当前场景相应的车辆静置和保温时的温度变化速率,并结合所确定的温度变化速率、车辆所处环境的环境温度、车辆进入静置时动力电池的初始温度、车辆的行程开始时间以及车辆进入静置时所对应的初始时间,得到动力电池的保温开始时间。根据保温开始时间控制车辆动力电池在合适的时机保温,从而不仅能够保证用 户在使用车辆时动力电池的温度不会影响动力电池的性能,且能够减少动力电池保温所消耗的电能,进而降低动力电池保温的成本。
在一些实施例中,如图3所示,第二确定单元22包括:
第一确定模块221,用于当确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温,基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;
第二确定模块222,用于根据所述第一温度变化速率、所述第二温度变化速率、所述初始温度、目标温度以及所述目标时长,确定所述动力电池在所述环境温度的影响下达到的预计温度,其中,所述预计温度为所述初始温度和所述环境温度之间的一个温度,所述目标温度为所述动力电池保温后达到的预设温度;
第三确定模块223,用于根据所述预计温度、所述初始温度以及所述第一温度变化速率,确定所述动力电池从所述初始温度至所述预计温度所需的第一时长;
第四确定模块224,用于将所述目标时长与所述第一时长之间的差值,确定为所述动力电池的保温时长;基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间。
在一些实施例中,如图3所示,第二确定模块222,用于通过如下公式,确定所述预计温度;
所述公式为:
Figure PCTCN2022076916-appb-000009
其中,T 1表征预计温度;k 1表征所述第一温度变化速率;k 2表征所述第二温度变化速率;t表征所述目标时长;T 2表征所述目标温度;T 0表征所述初始温度。
在一些实施例中,如图3所示,第三确定模块223,用于确定所述预计温度与所述环境温度之间的温度差值;将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第一时长。
在一些实施例中,如图3所示,第二确定单元22包括:
第五确定模块225,用于根据目标温度、所述环境温度、所述第二温度变化速率,确定所述动力电池由所述环境温度至所述目标温度所需的第二时长,其中,所述目标温度为所述动力电池保温后达到的预设温度;
第六确定模块226,用于确定所述第二时长为所述动力电池的保温时长;
第七确定模块227,用于基于所述保温时长、所述行程开始时间以及所述初始时间,确 定所述保温开始时间。
在一些实施例中,如图3所示,第二确定单元22还包括:
第八确定模块228,用于基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;根据所述环境温度、所述初始温度、所述第一温度变化速率,确定所述动力电池由所述初始温度至所述环境温度所需的第三时长;确定所述第二时长和所述第三时长的加和;确定所述目标时长与所述加和的差值是否大于预设的时长阈值;若大于,则触发第六确定模块226确定所述第二时长为所述动力电池的保温时长。
在一些实施例中,如图3所示,第六确定模块226,用于确定所述环境温度与所述初始温度之间的温度差值;将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第二时长。
在一些实施例中,如图3所示,第七确定模块227,用于确定所述目标温度与所述环境温度之间的温度差值;将所述温度差值与所述第二温度变化速率之间的比值,确定为所述第三时长。
在一些实施例中,如图3所示,第二确定单元22还包括:
第九确定模块229,用于基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆进入静置时所述动力电池的初始温度以及所述车辆进入静置时所对应的初始时间,确定在所述动力电池的温度与所述环境温度持平之前是否需要对所述动力电池保温。
在一些实施例中,如图3所示,第九确定模块229,具体用于根据所述第一温度变化速率、所述初始温度、所述环境温度,确定所述动力电池由所述初始温度至所述环境温度的第四时长;根据所述第二温度变化速率、所述目标温度、所述环境温度,确定所述动力电池由所述初始温度至所述目标温度的第五时长;根据所述行程开始时间与所述初始时间之间的时间差,确定目标时长;确定所述第四时长和所述第五时长的总和,判断所述目标时长与所述总和之间的差值是否大于预设阈值;若不大于,确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温;若大于,确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
在一些实施例中,如图3所示,第九确定模块229,用于确定所述环境温度与所述初始温度之间的温度差值;将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第四时长。
在一些实施例中,如图3所示,第九确定模块229,用于确定所述目标温度与所述环境 温度之间的温度差值;将所述温度差值与所述第二温度变化速率之间的比值,确定为所述第五时长。
在一些实施例中,如图3所示,第二确定单元22还包括:
第十确定模块230,用于确定所述动力电池的当前电量是否大于预设电量阈值;若大于,确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温;若不大于,确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
在一些实施例中,如图3所示,第二确定单元22还包括:
第十一确定模块231,用于确定是否接收到保温指令,其中,所述保温指令用于表征用户期望在所述动力电池的温度与所述环境温度持平之前对所述动力电池保温;若接收,确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温;若未接收,确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温。
在一些实施例中,如图3所示,第四确定模块224或第八确定模块228,用于基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;将所述目标时长与所述保温时长之间的差值,确定为所述保温等待时长;根据所述初始时间和所述保温等待时长,确定保温开始时间。
在一些实施例中,如图3所示,控制单元24,还用于判断所述保温等待时长是否大于预设阈值;若大于,则控制所述车辆进入休眠状态,并当检测到当前时间达到所述保温开始时间时唤醒车辆控制所述动力电池保温。
在一些实施例中,如图3所示,所述装置所涉及的所述第一温度变化速率和所述第二温度变化速率均存在对应的场景,且均表征与其场景对应的特定时间点起,未来预设时间段内动力电池的平均温度变化速率;其中,所述场景包括如下内容中的一种或多种:车辆所处环境中的环境温度、车辆当前所处位置、当前月份、当前时间、动力电池的当前温度。
第二方面的实施例提供的车辆动力电池保温控制装置,可以用以执行第一方面的实施例所提供的车辆动力电池保温控制方法,相关的用于的含义以及具体的实施方式可以参见第一方面的实施例中的相关描述,在此不再详细说明。
第三方面,本公开的实施例提供了一种车辆控制系统,所述车辆控制系统包括:控制器;所述控制器在运行时执行第一方面所述的车辆动力电池保温控制方法。
第四方面,本公开的实施例提供了一种车辆,所述车辆包括:动力电池以及第三方面所述的车辆控制系统;
所述动力电池,用于在所述车辆控制系统的控制下,保温。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
本领域内的技术人员应明白,本公开的实施例可提供为方法、系统、或计算机程序产品。因此,本公开的实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开的实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照本公开的实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除 可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本公开的实施例可提供为方法、系统或计算机程序产品。因此,本公开的实施例可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本公开的实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种车辆动力电池保温控制方法,包括:
    确定与所述车辆当前场景相应的第一温度变化速率和第二温度变化速率,其中,所述第一温度变化速率表征所述车辆静置时动力电池的温度变化速率,所述第二温度变化速率表征所述车辆保温时动力电池的温度变化速率;
    基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆静置时所述动力电池的初始温度以及所述车辆静置时所对应的初始时间,确定所述动力电池的保温开始时间;
    基于所述保温开始时间,控制所述动力电池保温。
  2. 根据权利要求1所述的方法,其中,当确定在所述动力电池的温度与所述环境温度持平之前需要对所述动力电池保温,则确定所述动力电池的保温开始时间,包括:
    基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;
    根据所述第一温度变化速率、所述第二温度变化速率、所述初始温度、目标温度以及所述目标时长,确定所述动力电池在所述环境温度的影响下达到的预计温度,其中,所述预计温度为所述初始温度和所述环境温度之间的一个温度,所述目标温度为所述动力电池保温达到的预设温度;
    根据所述预计温度、所述初始温度以及所述第一温度变化速率,确定所述动力电池从所述初始温度至所述预计温度所需的第一时长;
    将所述目标时长与所述第一时长之间的差值,确定为所述动力电池的保温时长;
    基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间。
  3. 根据权利要求2所述的方法,其中,确定所述预计温度,包括:
    通过如下公式,确定所述预计温度;
    所述公式为:
    Figure PCTCN2022076916-appb-100001
    其中,T 1表征所述预计温度;k 1表征所述第一温度变化速率;k 2表征所述第二温度变化速率;t表征所述目标时长;T 2表征所述目标温度;T 0表征所述初始温度。
  4. 根据权利要求2所述的方法,其中,确定所述动力电池从所述初始温度至所述预计温度所需的第一时长,包括:
    确定所述预计温度与所述环境温度之间的温度差值;
    将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第一时长。
  5. 根据权利要求1所述的方法,其中,当确定在所述动力电池的温度与所述环境温度持平之前不需要对所述动力电池保温,则确定所述动力电池的保温开始时间,包括:
    根据目标温度、所述环境温度、所述第二温度变化速率,确定所述动力电池由所述环境温度至所述目标温度所需的第二时长,其中,所述目标温度为所述动力电池保温后达到的预设温度;
    确定所述第二时长为所述动力电池的保温时长;
    基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间。
  6. 根据权利要求5所述的方法,还包括:
    基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;
    根据所述环境温度、所述初始温度、所述第一温度变化速率,确定所述动力电池由所述初始温度至所述环境温度所需的第三时长;
    确定所述第二时长和所述第三时长的加和;
    确定所述目标时长与所述加和的差值是否大于预设的时长阈值;
    若大于,则确定所述第二时长为所述动力电池的保温时长。
  7. 根据权利要求6所述的方法,其中,确定所述动力电池由所述初始温度至所述环境温度所需的第三时长,包括:
    确定所述环境温度与所述初始温度之间的温度差值;
    将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第三时长。
  8. 根据权利要求5所述的方法,其中,确定所述动力电池由所述环境温度至所述目标温度所需的第二时长,包括:
    确定所述目标温度与所述环境温度之间的温度差值;
    将所述温度差值与所述第二温度变化速率之间的比值,确定为所述第二时长。
  9. 根据权利要求2或5所述的方法,还包括:
    基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆静置时所述动力电池的初始温度以及所述车辆静置时所对应的初始时间,确定在所述动力电池的温度与所述环境温度持平之前是否需要对所述动力电池保温。
  10. 根据权利要求9所述的方法,其中,确定在所述动力电池的温度与所述环境温度持平之前是否需要对所述动力电池保温,包括:
    根据所述第一温度变化速率、所述初始温度、所述环境温度,确定所述动力电池由所述初始温度至所述环境温度的第四时长;
    根据所述第二温度变化速率、所述目标温度、所述环境温度,确定所述动力电池由所述初始温度至所述目标温度的第五时长;
    根据所述行程开始时间与所述初始时间之间的时间差,确定目标时长;
    确定所述第四时长和所述第五时长的总和,判断所述目标时长与所述总和之间的差值是否大于预设阈值;
    若不大于,确定需要对所述动力电池保温;
    若大于,确定不需要对所述动力电池保温。
  11. 根据权利要求10所述的方法,其中,确定所述动力电池由所述初始温度至所述环境温度的第四时长,包括:
    确定所述环境温度与所述初始温度之间的温度差值;
    将所述温度差值与所述第一温度变化速率之间的比值,确定为所述第四时长。
  12. 根据权利要求10所述的方法,其中,确定所述动力电池由所述初始温度至所述目标温度的第五时长,包括:
    确定所述目标温度与所述环境温度之间的温度差值;
    将所述温度差值与所述第二温度变化速率之间的比值,确定为所述第五时长。
  13. 根据权利要求2或5所述的方法,还包括:
    确定所述动力电池的当前电量是否大于预设电量阈值;
    若大于,确定需要对所述动力电池保温;
    若不大于,确定不需要对所述动力电池保温。
  14. 根据权利要求2或5所述的方法,还包括:
    确定是否接收到保温指令,其中,所述保温指令用于表征用户期望在所述动力电池的温度与所述环境温度持平之前对所述动力电池保温;
    若接收,确定需要对所述动力电池保温;
    若未接收,确定不需要对所述动力电池保温。
  15. 根据权利要求1至7中任一所述的方法,其中,基于所述保温时长、所述行程开始时间以及所述初始时间,确定所述保温开始时间,包括:
    基于所述行程开始时间与所述初始时间之间的时间差,确定目标时长;
    将所述目标时长与所述保温时长之间的差值,确定为所述保温等待时长;
    根据所述初始时间和所述保温等待时长,确定保温开始时间。
  16. 根据权利要求15所述的方法,还包括:
    判断所述保温等待时长是否大于预设阈值;
    若大于,则控制所述车辆进入休眠状态,并当检测到当前时间达到所述保温开始时间时唤醒车辆控制所述动力电池保温。
  17. 根据权利要求1至7中任一所述的方法,其中,所述第一温度变化速率和所述第二温度变化速率均存在对应的场景,且均表征自与其场景对应的特定时间点起,未来预设时间段内动力电池的平均温度变化速率;其中,所述场景包括如下内容中的一种或多种:车辆所处环境中的环境温度、车辆当前所处位置、当前月份、当前时间、动力电池的当前温度。
  18. 一种车辆动力电池保温控制装置,包括:
    第一确定单元,用于确定与车辆当前场景相应的第一温度变化速率和第二温度变化速率,其中,第一温度变化速率表征车辆静置时动力电池的温度变化速率,所述第二温度变化速率表征车辆保温时动力电池的温度变化速率;
    第二确定单元,用于基于所述第一温度变化速率、所述第二温度变化速率、所述车辆所处环境的环境温度、所述车辆的行程开始时间、所述车辆静置时所述动力电池的初始温度以及所述车辆静置时所对应的初始时间,确定所述动力电池的保温开始时间;
    控制单元,用于基于所述保温开始时间,控制所述动力电池保温。
  19. 一种车辆控制系统,其中,所述车辆控制系统包括:控制器;所述控制器在运行时执行权利要求1至17中任一项所述的车辆动力电池保温控制方法。
  20. 一种车辆,包括:动力电池以及权利要求18所述的车辆控制系统;
    所述动力电池,用于在所述车辆控制系统的控制下,保温。
PCT/CN2022/076916 2021-02-22 2022-02-18 车辆动力电池保温控制方法及装置 WO2022174820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110196279.5A CN112937370B (zh) 2021-02-22 2021-02-22 一种车辆动力电池保温控制方法及装置
CN202110196279.5 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022174820A1 true WO2022174820A1 (zh) 2022-08-25

Family

ID=76245064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076916 WO2022174820A1 (zh) 2021-02-22 2022-02-18 车辆动力电池保温控制方法及装置

Country Status (2)

Country Link
CN (1) CN112937370B (zh)
WO (1) WO2022174820A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112937370B (zh) * 2021-02-22 2024-05-14 北京车和家信息技术有限公司 一种车辆动力电池保温控制方法及装置
CN114497779A (zh) * 2022-01-27 2022-05-13 中国第一汽车股份有限公司 一种动力电池温度控制方法、装置、新能源车辆及介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183554A1 (en) * 2011-03-11 2013-07-18 Nissan Motor Co., Ltd. Battery temperature control device
JP2016220310A (ja) * 2015-05-15 2016-12-22 日産自動車株式会社 バッテリー温度制御装置、及び、バッテリーの温度制御方法
CN108878997A (zh) * 2018-06-04 2018-11-23 四川野马汽车股份有限公司 一种基于移动客户端的电动汽车动力电池预热系统及其预热方法
CN109449542A (zh) * 2018-10-30 2019-03-08 北京新能源汽车股份有限公司 一种动力电池预加热方法、装置及汽车
CN110015201A (zh) * 2018-01-31 2019-07-16 蜂巢能源科技有限公司 电动汽车的动力电池保温控制方法、系统及车辆
CN111907375A (zh) * 2020-06-29 2020-11-10 东风商用车有限公司 一种动力电池预热方法及系统
CN112109591A (zh) * 2020-06-12 2020-12-22 上汽通用五菱汽车股份有限公司 电池预热方法、车辆及存储介质
CN112937370A (zh) * 2021-02-22 2021-06-11 北京车和家信息技术有限公司 一种车辆动力电池保温控制方法及装置
CN113928184A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 汽车动力电池组预热方法、系统、汽车、设备及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101449164B1 (ko) * 2012-12-13 2014-10-15 현대자동차주식회사 차량의 배터리 관리방법
CN104393368B (zh) * 2014-09-25 2018-08-21 北京现代汽车有限公司 动力电池加热至可充电温度的剩余加热时间确定方法、装置
US10640004B2 (en) * 2016-01-29 2020-05-05 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methods for charging and warming vehicle components
CN105922880B (zh) * 2016-05-03 2018-10-16 北京新能源汽车股份有限公司 电动汽车动力电池的充电控制方法和控制系统
US10870368B2 (en) * 2018-04-16 2020-12-22 Nio Usa, Inc. Systems and methods of battery thermal management
CN110970687B (zh) * 2018-09-30 2021-05-14 比亚迪股份有限公司 动力电池加热控制方法、装置及车辆
CN111251944B (zh) * 2018-11-30 2022-04-15 比亚迪股份有限公司 车辆及其预约管理系统、预约系统、预约管理方法
US10604028B1 (en) * 2019-02-15 2020-03-31 Wisk Aero Llc Desired departure temperature for a battery in a vehicle
CN112140901B (zh) * 2019-06-28 2022-06-14 北京车和家信息技术有限公司 一种转矩控制方法和装置
CN112319310B (zh) * 2019-08-05 2022-03-25 宁德时代新能源科技股份有限公司 电池组的热管理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183554A1 (en) * 2011-03-11 2013-07-18 Nissan Motor Co., Ltd. Battery temperature control device
JP2016220310A (ja) * 2015-05-15 2016-12-22 日産自動車株式会社 バッテリー温度制御装置、及び、バッテリーの温度制御方法
CN110015201A (zh) * 2018-01-31 2019-07-16 蜂巢能源科技有限公司 电动汽车的动力电池保温控制方法、系统及车辆
CN108878997A (zh) * 2018-06-04 2018-11-23 四川野马汽车股份有限公司 一种基于移动客户端的电动汽车动力电池预热系统及其预热方法
CN109449542A (zh) * 2018-10-30 2019-03-08 北京新能源汽车股份有限公司 一种动力电池预加热方法、装置及汽车
CN112109591A (zh) * 2020-06-12 2020-12-22 上汽通用五菱汽车股份有限公司 电池预热方法、车辆及存储介质
CN111907375A (zh) * 2020-06-29 2020-11-10 东风商用车有限公司 一种动力电池预热方法及系统
CN113928184A (zh) * 2020-06-29 2022-01-14 比亚迪股份有限公司 汽车动力电池组预热方法、系统、汽车、设备及存储介质
CN112937370A (zh) * 2021-02-22 2021-06-11 北京车和家信息技术有限公司 一种车辆动力电池保温控制方法及装置

Also Published As

Publication number Publication date
CN112937370B (zh) 2024-05-14
CN112937370A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022174820A1 (zh) 车辆动力电池保温控制方法及装置
CN111769240B (zh) 电动汽车远程热管理控制方法、装置、系统及存储介质
WO2021223605A1 (zh) 车辆电池的充电保温方法、系统
CN112824139B (zh) 车辆的电池保温方法、系统
JP6009561B2 (ja) 空調管理装置、空調管理方法、および、プログラム
CN105684084B (zh) 具有功率管理的移动数据存储设备
CN107882625B (zh) 一种发动机电子风扇的控制方法及装置
CN108571460A (zh) 风扇转速控制方法和装置
WO2021195840A1 (zh) 电池包温度控制方法及装置、电池管理系统及存储介质
WO2022242166A1 (zh) 蓄热空调扇蓄热控制方法、蓄热空调扇与存储介质
CN107972500A (zh) 动力电池管理系统和包括其的电动汽车
CN107972499A (zh) 一种动力电池管理系统和包括其的电动汽车
CN116142033A (zh) 车辆及其电池预热方法、装置以及存储介质
CN108413478A (zh) 一种控制方法、装置及计算机可读存储介质
CN107972497A (zh) 一种动力电池管理方法
CN107978813A (zh) 动力电池管理方法
EP4170249A9 (en) Air conditioner control method and apparatus, electronic device, and medium
CN110285482B (zh) 蓄热式采暖设备的蓄热控制方法、装置及可读存储介质
US20210094489A1 (en) Unified Automotive Thermal Management Network
US20200124304A1 (en) Control method, control apparatus, and non-transitory computer-readable storage medium for storing program
CN115441097A (zh) 动力电池温度管理方法及装置
CN117445764A (zh) 电池包的热管理方法及装置
CN117734529A (zh) 电池包的热管理方法及装置
CN117507950A (zh) 电池包的热管理方法及装置
CN115339356A (zh) 车辆电池的充电热管理方法、系统、车辆和计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755593

Country of ref document: EP

Kind code of ref document: A1