WO2022174766A1 - 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 - Google Patents
可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 Download PDFInfo
- Publication number
- WO2022174766A1 WO2022174766A1 PCT/CN2022/076406 CN2022076406W WO2022174766A1 WO 2022174766 A1 WO2022174766 A1 WO 2022174766A1 CN 2022076406 W CN2022076406 W CN 2022076406W WO 2022174766 A1 WO2022174766 A1 WO 2022174766A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium alloy
- powder
- selective melting
- alloy powder
- laser selective
- Prior art date
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 126
- 239000000843 powder Substances 0.000 title claims abstract description 95
- 238000002844 melting Methods 0.000 title claims abstract description 86
- 230000008018 melting Effects 0.000 title claims abstract description 86
- 238000002360 preparation method Methods 0.000 title claims abstract description 25
- 238000007639 printing Methods 0.000 title description 2
- 238000000034 method Methods 0.000 claims abstract description 39
- 238000010146 3D printing Methods 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims abstract description 14
- 239000010936 titanium Substances 0.000 claims abstract description 14
- 238000001035 drying Methods 0.000 claims abstract description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 238000010891 electric arc Methods 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims description 29
- 229910045601 alloy Inorganic materials 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000003723 Smelting Methods 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 18
- 238000010298 pulverizing process Methods 0.000 claims description 17
- 229910052720 vanadium Inorganic materials 0.000 claims description 14
- 238000004140 cleaning Methods 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 238000005242 forging Methods 0.000 claims description 12
- 239000011261 inert gas Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- PTXMVOUNAHFTFC-UHFFFAOYSA-N alumane;vanadium Chemical compound [AlH3].[V] PTXMVOUNAHFTFC-UHFFFAOYSA-N 0.000 claims description 8
- 230000033001 locomotion Effects 0.000 claims description 7
- 238000000889 atomisation Methods 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 230000009471 action Effects 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 241001062472 Stokellia anisodon Species 0.000 claims description 2
- 239000013590 bulk material Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001338 liquidmetal Inorganic materials 0.000 claims 1
- 229910000756 V alloy Inorganic materials 0.000 abstract description 16
- 238000007873 sieving Methods 0.000 abstract 1
- 238000005406 washing Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 33
- 239000000463 material Substances 0.000 description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 14
- 229910000883 Ti6Al4V Inorganic materials 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 238000003801 milling Methods 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000009689 gas atomisation Methods 0.000 description 7
- 230000006698 induction Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000010309 melting process Methods 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000003917 TEM image Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 239000004484 Briquette Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000009690 centrifugal atomisation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/10—Pre-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/03—Making non-ferrous alloys by melting using master alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
- C22C1/0458—Alloys based on titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/36—Process control of energy beam parameters
- B22F10/366—Scanning parameters, e.g. hatch distance or scanning strategy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0848—Melting process before atomisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/20—Refractory metals
- B22F2301/205—Titanium, zirconium or hafnium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/10—Micron size particles, i.e. above 1 micrometer up to 500 micrometer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the invention belongs to the technical field of titanium alloy material manufacturing, and relates to a titanium alloy powder that can be used for laser selective melting 3D printing, a laser selective melting titanium alloy and its preparation.
- Titanium element accounts for about 0.6% of the total mass of the earth's crust, second only to the content of aluminum, iron and magnesium elements, and is a widely used metal material.
- the density of titanium alloy is 4.5g/mm 3 (about half of that of superalloy and steel), and its strength is high. While meeting the design strength requirements of the material, the weight of the material is greatly reduced, and good economic and environmental benefits are achieved. , so it is widely used in aviation, aerospace, military and biomedicine and other industrial fields.
- Titanium alloys represented by Ti-6Al-4V have low density, high specific strength (about 3.5 times that of stainless steel), excellent corrosion resistance (about 15 times that of ordinary stainless steel), and a wide range of service temperatures (- 196 °C ⁇ 600 °C), good biocompatibility and other advantages, its tensile strength is usually 800 ⁇ 1200MPa, and the elongation is 8 ⁇ 16%.
- Due to the low thermal conductivity of titanium alloys it is easy to cause local temperature rise during the turning process, resulting in sticking of the tool and local work hardening of the material, making machining difficult and reducing the durability of the tool.
- the elastic modulus of titanium alloy is small, about half of that of iron, and there is a certain amount of deformation and rebound in the machining process, which is easy to cause machining accuracy errors.
- the production efficiency and material utilization rate of titanium alloys are low and the processing cycle is long, which seriously restricts the application of titanium alloys in the defense industry and other fields.
- SLM Selective Laser Melting
- the properties of the Ti-6Al-4V alloy produced by SLM processing have a large anisotropy: there are obvious differences in the tensile curves of the material parallel to the stacking direction (Z) and perpendicular to the stacking direction (X-Y). Poor plasticity and anisotropy make the Ti-6Al-4V alloy fabricated by SLM cannot be widely used in fields such as aerospace. Although subsequent heat treatment can improve the elongation of the material and reduce the anisotropy of the material, the heat treatment significantly increases the production cost and limits the application of the material.
- Chinese Patent No. 202010797495.0 discloses a 3D printing fine-grained titanium alloy and a preparation method thereof. By adding boron and carbon elements, the grains of the alloy can be refined to a certain extent, and the elongation of the alloy can be increased to about 11%.
- this material has three shortcomings: first, expensive boron element is required; second, the material needs to be heat treated at 600-700 °C after 3D printing; third, the material strength is insufficient, the yield strength during transverse sampling is only 801MPa, and the tensile strength is only 801MPa. The strength is only 851MPa; the yield strength during longitudinal sampling is only 811MPa, and the tensile strength is only 868MPa.
- the purpose of the present invention is to provide a titanium alloy powder that can be used for laser selective melting 3D printing, laser selective melting titanium alloy and its preparation.
- the obtained alloy does not need subsequent heat treatment after SLM forming, and can obtain ideal plasticity when it is formed into a shape. and isotropic, and meet the design strength requirements of titanium alloys for aviation.
- the SLM titanium alloy obtained by the invention has a tensile strength of about 939 MPa, a yield strength of about 840 MPa, a total elongation at break of about 13.98%, and a tensile strength parallel to the piled direction of about 939 MPa when it is formed.
- the yield strength is about 836MPa, and the total elongation at break is about 13.07%.
- One of the technical solutions of the present invention provides a titanium alloy powder that can be used for SLM processing and can include the following elemental components by weight percentage: Al 2.0-4.5%, V 3.0-4.5%, the rest are Ti and unavoidable impurities.
- Al is 2.0-4.5%
- V is 3.0-4.5%
- the rest is Ti.
- the content of Al is 2.0, 2.5, 3.0, 3.5, 4.0 or 4.5, etc.
- the content of V is 3.0, 3.5, 4.0 or 4.5, etc., but not limited to the listed values, and other unlisted values within the numerical range The same applies.
- the titanium alloy powder that can be used for SLM processing includes the following elemental components by weight percentage: Al 7.0-8.0%, V 4.0-4.5%, and the rest is Ti and inevitable impurities. Specifically, in each element composition, Al 2.0 ⁇ 4.5%, V 4.0 ⁇ 4.5%, Fe ⁇ 0.25%, C ⁇ 0.08%, N ⁇ 0.05%, H ⁇ 0.015%, O ⁇ 0.13%, and the rest are Ti .
- the second technical solution of the present invention provides a preparation method of laser selective melting of titanium alloy, comprising the following steps:
- the sponge titanium and vanadium-aluminum intermediate alloy are mixed according to the element metering ratio, pressed into a block and then used as a smelting electrode for vacuum smelting to obtain a titanium alloy ingot, and then the titanium alloy ingot is forged into a powder bar;
- step (1) the preparation process of the pulverizing rod is specifically:
- step (1-1) adopting vacuum consumable electric arc furnace to smelt the obtained smelting electrode in step (1-1) under vacuum protection to obtain a titanium alloy ingot;
- step (1-1) the proportion of vanadium in the vanadium-aluminum master alloy is in the range of 40% to 70%.
- the number of times of smelting is at least three times.
- the smelting electrode is first melted as a consumable electrode to obtain a primary ingot, and the primary ingot is inverted and used as a consumable electrode for secondary smelting in a vacuum consumable arc furnace to obtain a secondary ingot,
- the finished ingot is obtained by inverting the secondary ingot and smelting it three times in a vacuum consumable arc furnace as a consumable electrode.
- step (1-3) the diameter of the obtained bar stock is 120 mm, and the diameter of the obtained bar blank is 53 mm.
- step (2) the titanium alloy powder preparation process is as follows:
- Electrode induction gas atomizing pulverizing equipment can be used, or other such as second-stream atomization, centrifugal atomization, rotating electrode atomization can be used) chemical preparation), and use inert gas protection;
- step (2-1) the cleaning and drying process is specifically as follows: using alcohol as a cleaning medium for cleaning for 15-30 minutes, and then drying at 120° C. for 2 hours;
- step (2-2) the gas atomization process conditions in the pulverizing process are as follows: the working pressure of the high-pressure inert gas of the atomizing nozzle is 35-45 bar, the bar feed rate is 40-60 mm/min, the melting of the pulverizing bar Heating power 20 ⁇ 40KW.
- the third technical solution of the present invention is to provide a laser selective melting of titanium alloy, which is produced by using the above-mentioned titanium alloy powder and SLM 3D printing.
- the fourth technical solution of the present invention is to provide a method for preparing the above-mentioned titanium alloy by laser selective melting of titanium alloy, specifically:
- the titanium alloy powder bed is melted and stacked layer by layer by using laser selective melting equipment to obtain laser selective melting titanium alloy bulk, which is the target product.
- step (3) the preparation process of the titanium alloy block is specifically:
- (3-2) Preheat the substrate of the laser selective melting equipment, and use the laser to selectively scan and melt the titanium alloy powder bed under the inert gas protection environment.
- the powder silo rises by one layer, and the reciprocating motion of the scraper is used to lay new titanium alloy powder layers.
- the laser is controlled to use the cross-scanning method to rotate 67° after each layer is scanned, and then scan the next layer. The operation is repeated until all preset slices are completed, and the titanium alloy block of the target size is obtained by stacking layer by layer, which is the target product.
- step (3-2) the substrate is preheated to 75-110°C.
- the parameters of the laser selective melting equipment are: the power of the laser is 250-350W, and the diameter of the laser beam is about 0.1mm;
- the cross-scanning method is adopted and each layer is rotated by 67°, the scanning speed is 100-1500mm/s, the scanning distance is 0.09-0.15mm, the thickness of each titanium alloy powder layer is 30-60 microns, and the oxygen content is less than 1300ppm.
- the invention optimizes the alloy composition for the laser selective melting process, changes the content of Al and V alloy elements on the basis of the Ti6Al4V alloy system, the micro deformation mechanism of the titanium alloy can be regulated by the Al element, and the phase transition temperature of the titanium alloy can be regulated by the V element. , and finally obtain a high elongation and isotropic titanium alloy.
- the titanium alloy parts printed by SLM 3D directly meet the design requirements of aviation titanium alloys, such as the standard "GJB2218A-2008-Aeronautical Titanium and Titanium Alloy Bars and Forging Billets" (tensile strength Not less than 895MPa, elongation not less than 10%).
- the present invention has the following advantages:
- the elongation of the laser selective melting Ti-Al-V series titanium alloy proposed by the present invention is significantly higher than that of the laser selective melting Ti6Al4V alloy: the tensile strength along the direction perpendicular to the stacking direction is not less than 939MPa, the yield strength is not less than 840MPa, and the fracture The total elongation is 13.98%; the tensile strength parallel to the stacking direction is not less than 939MPa, the yield strength is not less than 836MPa, and the total elongation at break is 13.07%.
- Fig. 1 is the scanning electron microscope photograph and particle size statistical distribution of the Ti-Al-V series titanium alloy powder prepared by the present invention
- FIG. 2 is the drawing result of the laser selective melting Ti-Al-V alloy obtained in the present invention and the comparative example.
- FIG. 3 is the grain orientation distribution diagram of the laser selective melting Ti-Al-V alloy obtained in the present invention and Comparative Example 1.
- FIG. 3 is the grain orientation distribution diagram of the laser selective melting Ti-Al-V alloy obtained in the present invention and Comparative Example 1.
- FIG. 5 is the texture of the laser selective melting Ti-Al-V alloy obtained in the present invention and Comparative Example 1.
- FIG. 5 is the texture of the laser selective melting Ti-Al-V alloy obtained in the present invention and Comparative Example 1.
- FIG. 6 shows the tensile properties of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 7 shows the metallographic microstructure of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 8 shows the EBSD scanning result of the laser selective melting of the Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 9 shows the texture of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 10 shows the transmission electron micrograph of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- a high plasticity and isotropic laser selective melting of Ti-4Al-4V titanium alloy, its elemental composition is: aluminum Al: 3.89wt%, V: 3.61wt%, the rest is Ti alloy and inevitable impurities, Its specific preparation process is as follows:
- the sponge titanium and vanadium-aluminum master alloy (the content of V is 58%) were weighed. After the weighing, the vanadium-aluminum master alloy and sponge were weighed.
- the titanium is mixed uniformly to make a mixture, and the mixture is pressed into a long strip by a hydraulic press. After that, the briquette is welded on the smelting electrode in a plasma welding chamber protected by low-pressure argon gas to obtain a consumable electrode. Then install and fix the consumable electrode on the vacuum melting equipment, and pump the vacuum melting equipment to vacuum.
- the finished ingot is taken out of the smelting furnace.
- both ends of the finished ingot are turned flat with a lathe, and the skin of the finished ingot is removed by turning to obtain a Finished ingots for forging requirements.
- the finished ingot is forged twice with a forging press.
- the forging temperature range is 800°C to 950°C (about 850°C in this example).
- the turned milling bar was ultrasonically cleaned, the cleaning medium was alcohol, and the cleaning time was 15 min. After the cleaning was completed, the milling bar was placed in an oven, and the oven temperature was set to 120 °C for 2 hours for drying. After the drying of the bar is completed, the bar for pulverizing is sent to the high-frequency induction melting furnace of the electrode induction melting gas atomization equipment by the lifting and rotating mechanism of the electrode induction melting gas atomizing powder making equipment.
- the melting furnace of the electrode induction melting gas atomization equipment is evacuated and filled with high-purity protective inert gas after the vacuuming is completed. Start the heating power supply, and the rods for milling are melted under the heating action of the annular induction coil in the melting furnace. At the same time, the rod used for milling rotates slowly during the melting process, and a certain feed rate is maintained to ensure that an uninterrupted metal solution can be obtained.
- the feed rate of the rod is 40 mm/min.
- the molten beam droplets fall into a specially designed atomizer close-coupled nozzle that connects the melting furnace to the atomizing chamber.
- the nozzle of the electrode induction melting gas atomization equipment is fed with high-pressure inert gas, and the working pressure of the high-pressure inert gas of the nozzle is set to 35 ⁇ 45bar.
- the gas flow of the high-speed airflow can be adjusted by adjusting the nozzle gap and the working pressure of the high-pressure inert gas.
- the high-speed airflow will impact and break the molten metal continuously flowing out of the tightly coupled nozzle, making it atomized into fine metal droplets.
- the metal droplets fall into the atomizing chamber, and the flying droplets become spherical droplets under the action of surface tension.
- the droplets are rapidly cooled and solidified into metal powder in the atomizing chamber.
- the titanium alloy metal powder is sieved, and then the metal powder is classified and collected by means of an airflow classification system, and finally the titanium alloy powder shown in FIG. 1 is obtained.
- the titanium alloy powder obtained by the gas atomization process has a high degree of spheroidization, the powder diameter distribution range is 5.5-124.5 ⁇ m, and the average powder particle size is 34.61 ⁇ m.
- the titanium alloy powder was first dried, and the oven temperature was set to 100 °C for 2 hours. After that, pour the dried titanium alloy powder into a sieve with an aperture of 53 ⁇ m and sieve it to obtain powder that meets the standard of "BD32/T3599-2019 Powder for Laser Selection of Titanium Alloy Parts".
- the screened titanium alloy powder is placed in the powder feeding cylinder of the laser selective melting equipment.
- the selective melting equipment is cleaned, and the gas cleaning operation reduces the oxygen content in the laser selective melting equipment to below 1300ppm to avoid oxidation of titanium alloys during the 3D printing process.
- the import of 3D printing slice data can be carried out at the same time.
- pre-powder can be carried out, which can ensure good fusion between the first powder layer and the substrate.
- the 3D printing work can be carried out.
- the argon gas has been kept in to ensure that the oxygen content of the equipment is always at the normal working level.
- the parameters of the laser selective melting equipment are set as follows: the laser power is 300W, the scanning speed is 1200mm/s, the thickness of the powder layer is 30 ⁇ m, the spot diameter is 0.07mm, the scanning distance is 0.12mm, and the scanning method is cross-scanning .
- the specific 3D printing process can be described as: after the laser heat source completes the scanning of the previous layer of metal powder, the substrate drops by one layer thickness (30 ⁇ m), the powder feeding cylinder rises by one layer thickness (30 ⁇ m), and the scraper motion is used to realize a new powder layer Spread the powder. After powder coating is completed, the laser adjusts the angle of the scanning path.
- the adjustment method is to rotate 67° relative to the scanning path of the previous layer, then start the scanning of the next layer, and repeat the powder coating-scanning operation until all preset slices are completed.
- the metal block of 12*12*80mm 3 is finally obtained through the layer-by-layer accumulation of metal powder. After the 3D printing is completed, the titanium alloy block and the substrate are separated by wire cutting.
- the titanium alloy block was subjected to wire cutting to obtain metal tensile specimens, and the tensile properties of the tensile specimens were tested.
- the test results are shown in Figure 2. It can be seen from Figure 2 that the laser selective melting of the Ti-Al-V titanium alloy obtained in this example has good elongation when it is formed into a shape, and the elongation parallel to the stacking direction and the elongation perpendicular to the stacking direction in Example 1. The ratios are basically the same, indicating that Example 1 has good isotropy.
- the tensile strength perpendicular to the stacking direction of the material obtained in this example is 939MPa, the yield strength is 840MPa, and the total elongation at break is 13.98%; the tensile strength parallel to the stacking direction is 939MPa, and the yield strength is 836MPa.
- the total elongation at break was 13.07%, and the elongation of this alloy was significantly higher than that of the 3D printed Ti6Al4V alloy in Comparative Example 1.
- the high elongation of the alloy obtained in this example is related to the microstructure change caused by the adjustment of alloying elements.
- Al alloying element is an important ⁇ -phase stabilizing element in titanium alloys.
- the average value of the short axis width of the crystal grains in this example is 2.35 ⁇ m, and the The short axis of the grain is wider, which increases the effective movement length of dislocations during the deformation process of the material, so the material has a higher elongation rate when it is formed into a shape.
- the reduction of Al alloying elements will cause the weakening of grain texture.
- the maximum strength of the texture is only 2.69.
- the weaker texture of the material indicates that the grain orientation distribution is random, so it can be activated during the deformation process.
- slip systems There are many slip systems, and the increase of slip systems makes the deformation process of the material more uniform, so the material in Example 1 has the characteristics of high elongation and isotropic mechanical properties.
- the laser selective melting powder is Ti-6Al-4V alloy powder prepared by Falcon Rapid Manufacturing Technology Co., Ltd. in Wuxi City, Jiangsu province.
- the alloy powder number is R56400, and its element composition is Ti Bal, Al 5.50 ⁇ 6.75wt%, V 3.50 ⁇ 4.50wt%, Fe ⁇ 0.16wt%, Y ⁇ 0.005wt%, powder diameter is 15 ⁇ 53 ⁇ m.
- the titanium alloy powder was first dried, and the oven temperature was set to 100°C and the holding time was 2 hours. After that, the dried titanium alloy powder was poured into a sieve with an aperture of 53 ⁇ m and sieved. The screened titanium alloy powder is placed in the powder feeding cylinder of the laser selective melting equipment. Next, install the substrate used by the 3D printing equipment and calibrate the substrate working platform. After the substrate installation is completed, close the working chamber door of the laser selective melting equipment. Then, the laser selective melting equipment is turned on, and the substrate is preheated by using the laser selective melting equipment, and the preheating temperature is set to 100° C. and the holding time is 30 minutes.
- high-purity argon gas was introduced into the laser selection equipment, and high-purity argon was used to purge the laser selection melting equipment.
- the purge operation reduced the oxygen content in the equipment to below 1000ppm to avoid the occurrence of titanium alloys in the 3D printing process. oxidation.
- the import of 3D printing slice data can be carried out at the same time.
- pre-powder can be performed, which can ensure good fusion between the first powder layer and the substrate. After the pre-powder preparation is completed, the 3D printing work can be carried out.
- the argon gas is always supplied to ensure that the oxygen content of the equipment is always at a normal working level.
- the parameters of the laser selective melting equipment in the 3D printing process are set as follows: the laser power is 500W, the scanning speed is 1200mm/s, the thickness of the powder layer is 30 ⁇ m, the spot diameter is 0.07mm, the scanning distance is 0.12mm, and the scanning method is cross-scanning .
- the specific 3D printing process can be described as: after the laser heat source completes the scanning of the previous layer of metal powder, the substrate drops by one layer thickness (30 ⁇ m), the powder feeding cylinder rises by one layer thickness (30 ⁇ m), and the reciprocating motion of the scraper is used to realize new powder. Layers of powder.
- the laser adjusts the angle of the scanning path.
- the adjustment method is to rotate 67° relative to the scanning path of the previous layer, then start the scanning of the next layer, and repeat the powder coating-scanning operation until all preset slices are completed.
- the metal bulk sample of 12*12*80mm 3 is finally obtained by stacking metal powder layer by layer. After printing, the titanium alloy bulk material and the substrate are separated by wire cutting.
- the titanium alloy bulk obtained in the comparative example was wire-cut to obtain a metal tensile specimen, and the tensile properties of the tensile specimen were tested.
- the test results are shown in Figure 2. It can be seen from Fig. 2 that the elongation at break of the Ti-6Al-4V titanium alloy obtained in this comparative example by selective melting of the Ti-6Al-4V titanium alloy is significantly lower than that of the titanium alloy in Example 1, and it is parallel to the stacking direction in Comparative Example 1. The elongation is significantly lower than the elongation perpendicular to the stacking direction, indicating that Comparative Example 1 has great anisotropy.
- the tensile strength perpendicular to the stacking direction of the alloy in this comparative example is 1151MPa, the yield strength is 1043MPa, and the total elongation at break is 9.8%; the tensile strength parallel to the stacking direction is 1163MPa, the yield strength is 1064MPa, But the total elongation at break is only 5.1%.
- the low elongation of 3D printed Ti-6Al-4V alloy is determined by its microstructure characteristics. As shown in FIG. 3 , the crystal grains in Comparative Example 1 are mostly slender and needle-shaped, and the grain width in Comparative Example 1 is smaller than that in Example 1. As shown in FIG.
- the crystal grains in Comparative Example 1 The average value of the short-axis width of the grains is 1.79 ⁇ m, which is lower than the average value of the short-axis width of the crystal grains (2.35 ⁇ m) in the examples.
- the smaller grain width limits the distance of dislocation movement during tensile deformation, which in turn reduces the elongation at break of the material.
- the smaller grain width means that there are more grain boundaries in Comparative Example 1.
- the grain boundaries hinder the movement of dislocations and cause dislocations to accumulate at the grain boundaries.
- the accumulated dislocations cause high stress concentration and accelerate Failure of the specimen during stretching, resulting in a decrease in elongation.
- the 3D printed titanium alloy in Comparative Example 1 has a strong texture.
- the maximum texture strength is 4.53, which is higher than that in Example 1. Therefore, the Comparative Example Compared with the grains in Example 1, the grains of 1 have an obvious preferred orientation. When stretched in the direction of the grain orientation that is favorable for slip activation, the material has a high elongation, while the direction of When stretched in the direction of the activated grain orientation, the material has low plasticity. Therefore, the strong texture characteristics of the microstructure in Comparative Example 1 make it have significant anisotropy in Comparative Example 1.
- the Ti-6Al-4V alloy powder and most of the processes used in Comparative Example 2 are the same as in Comparative Example 1, except that in this Comparative Example, after the titanium alloy 3D printing is completed, it is placed in a box-type heat treatment furnace for heat treatment.
- the temperature was 730°C.
- the tensile specimens processed by wire cutting are placed in the heat treatment furnace, and kept at 730°C for 2 hours.
- the power of the heat treatment furnace is turned off, and the titanium alloy tensile specimens are cooled with the furnace. After reaching room temperature, take out the tensile specimen after heat treatment, use sandpaper to smooth the tensile specimen after heat treatment, and then carry out the tensile property test.
- the elongation parallel to the stacking direction of the heat-treated 3D printed titanium alloy obtained in this comparative example is comparable to the elongation parallel to the stacking direction in Example 1, but the elongation perpendicular to the stacking direction in this comparative example is significantly lower than Elongation perpendicular to the stacking direction in Example 1.
- the elongation perpendicular to the stacking direction in this comparative example is significantly lower than the elongation parallel to the stacking direction, indicating that the comparative example 2 still has great anisotropy.
- the tensile results are shown in Figure 2.
- the tensile strength perpendicular to the stacking direction is 1063MPa, the yield strength is 999MPa, and the total elongation at break is only 5%; the tensile strength parallel to the stacking direction is 1072MPa, and the yield strength is 1025MPa. , the total elongation at break is 13.9%. It can be seen from the tensile results that the alloy in Comparative Example 2 does not have the isotropic characteristics in Example 1 even after high temperature heat treatment, and the elongation along the vertical stacking direction in Comparative Example 2 is significantly lower than that in Example 1. elongation in the stacking direction. Therefore, the comparison results show that the 3D printed titanium alloy in Example 1 is highly innovative.
- Example 1 Compared with Example 1, most of the parts are the same, except that in this example, in the titanium alloy, the weight percent composition of each element component is adjusted to: Al 2.0%, V 4.5%, and the rest are Ti and inevitable impurities element.
- Example 2 Compared with Example 1, most of the parts are the same, except that in this example, the weight percent composition of each element component in the titanium alloy is adjusted to: Al 4.5%, V 3.0%, and the rest are Ti and inevitable impurities element.
- This embodiment provides a high-intensity laser selective melting of Ti-8Al-4V titanium alloy, and its elemental composition is detected as: Al: 7.93wt%, V: 4.03wt%, Fe: 0.044wt%, C: 0.0093wt%, N: 0.015wt%, H: 0.0031wt%, O: 0.090wt%, the rest are Ti alloy and inevitable impurities, and the specific preparation process is the same as that of the titanium alloy in Example 1.
- FIG. 6 shows the tensile properties of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 7 shows the metallographic microstructure of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 8 shows the EBSD scanning result of the laser selective melting of the Ti-Al-V alloy obtained in Example 4 of the present invention.
- the upper part is the calibration of the main ⁇ ' phase
- the lower part is the morphology of the primary ⁇ phase grains deduced according to the phase transition crystallographic relationship of ⁇ ' phase.
- FIG. 9 shows the texture of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- FIG. 10 shows the transmission electron micrograph of the laser selective melting Ti-Al-V alloy obtained in Example 4 of the present invention.
- the yield strength of the Ti-8Al-4V titanium alloy obtained in Example 4 is 1109 MPa, the maximum tensile strength is 1240 MPa, and the fracture strain is 7.3%.
- the Ti-8Al-4V titanium alloy obtained in Example 4 is a coarse columnar crystal.
- the lath width of the Ti-8Al-4V titanium alloy obtained in Example 4 is 2.29 ⁇ 1.07 ⁇ m.
- the Ti-8Al-4V titanium alloy obtained in Example 4 has a strong texture.
- the lath width of the secondary ⁇ ′ phase of the Ti-8Al-4V titanium alloy obtained in Example 4 was 0.2 ⁇ m.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及可用于激光选区熔化3D打印的钛合金粉末、激光选区熔化钛合金及其制备,其中,所用钛合金粉末包括按重量百分比计的以下元素组分:Al 2.0~4.5%,V 3.0~4.5%,其余为Ti和不可避免的杂质;制备时,将海绵钛和Al-V合金混料压制成块作为熔炼电极,采用真空自耗电弧炉熔炼3次后,获得均匀性良好的钛合金铸锭,将铸锭锻造两次加工成制粉用棒材。制粉棒材经清洗烘干、雾化、筛分、气流分级等过程,加工制得SLM钛合金粉末。借助激光选区熔化设备对钛合金粉末逐层熔化堆积,最终获得激光选区熔化钛合金块材。与现有技术相比,本发明制备的激光选区熔化钛合金不需要后续热处理,在成形态时具备优异的塑性和拉伸性能各向同性等。
Description
本发明属于钛合金材料制造技术领域,涉及可用于激光选区熔化3D打印的钛合金粉末、激光选区熔化钛合金及其制备。
钛元素约占地壳总质量的0.6%,仅次于铝、铁、镁元素含量,是一种应用广泛的金属材料。钛合金密度为4.5g/mm
3(约为高温合金和钢的一半左右),且强度高,在满足材料设计强度需求的同时,极大降低了材料的重量,实现了良好的经济和环境效益,因此在航空、航天、军工和生物医学等工业领域广泛应用。以Ti-6Al-4V为代表的钛合金具有低密度、高的比强度(约为不锈钢的3.5倍)、优良的抗腐蚀性能(约为普通不锈钢的15倍左右)、服役温度范围广(-196℃~600℃)、良好的生物相容性等优点,其拉伸强度通常在800~1200MPa,延伸率在8~16%。然而,钛合金导热系数低,在车削加工过程中易引起局部温升,造成粘刀和材料局部加工硬化,使机加工困难并且降低刀具的耐用度。另外钛合金的弹性模量小,约为铁的一半,机械加工过程中存在一定的变形回弹量,易于造成加工精度误差。在实际的生产过程中,钛合金生产效率和材料利用率均较低且加工周期长,严重制约了钛合金在国防工业等领域的应用。
近年来,作为极具发展前景及应用优势的一种3D打印技术,激光选区熔化成形技术(Selective Laser Melting,简称SLM)因其数字化一体化近净成形、加工自由度高、不受零件复杂程度限制、材料利用率高等优点,为钛合金复杂构件的快速制造提供了新的解决途径。SLM利用激光热源按照预设路径逐层熔化粉末层,进而获得致密度高的近净成形零部件,实现锻铸造等传统工艺无法达到的要求。然而,与传统锻铸件相比,SLM加工制造的Ti-6Al-4V合金成形态部件塑性差,拉伸延伸率一般低于8%。另外SLM加工制造的Ti-6Al-4V合金的性能存在较大的各 向异性:平行于堆积方向(Z)和垂直于堆积方向(X-Y)上材料的拉伸曲线存在明显差异。塑性差和各向异性使得目前SLM加工制造的Ti-6Al-4V合金无法在如航空航天等领域广泛应用。尽管后续热处理可以提升材料的延伸率并降低材料的各向异性,但是热处理显著增加了生产成本,限制了该材料的应用。
如中国专利202010797495.0公开了一种3D打印细晶钛合金及其制备方法,其通过硼、碳元素的掺入,能够在一定程度上细化合金的晶粒,提高合金延伸率至约11%。但是,该材料有三个不足:一,需要使用昂贵的硼元素;二,3D打印后需要对材料进行600~700℃下热处理;三,材料强度不足,横向取样时屈服强度仅为801MPa,抗拉强度仅为851MPa;纵向取样时屈服强度仅为811MPa,抗拉强度仅为868MPa。
发明内容
本发明的目的就是为了提供一种可用于激光选区熔化3D打印的钛合金粉末、激光选区熔化钛合金及其制备,所得合金SLM成形之后不需要进行后续热处理,成形态时即可获得理想的塑性和各向同性,且满足航空用钛合金设计强度要求。
本发明所得SLM钛合金在成形态时沿垂直于堆积方向的抗拉强度约为939MPa,屈服强度约为840MPa,断裂总延伸率约为13.98%;平行于堆积方向的抗拉强度约为939MPa,屈服强度约为836MPa,断裂总延伸率约为13.07%。
本发明的目的可以通过以下技术方案来实现:
本发明的技术方案之一提供了一种可用于SLM加工的钛合金粉末可包括按重量百分比计的以下元素组分:Al 2.0~4.5%,V 3.0~4.5%,其余为Ti和不可避免的杂质。具体的,各元素组分中,Al 2.0~4.5%,V 3.0~4.5%,Fe≤0.25%,C≤0.08%,N≤0.05%,H≤0.015%,O≤0.13%,其余为Ti。其中,Al的含量为2.0、2.5、3.0、3.5、4.0或4.5等,V的含量为3.0、3.5、4.0或4.5等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
在另一种实施方式中,可用于SLM加工的钛合金粉末,包括按重量百分比计的以下元素组分:Al 7.0~8.0%,V 4.0~4.5%,其余为Ti和不可避免的杂质。具体来说,各元素组分中,Al 2.0~4.5%,V 4.0~4.5%,Fe≤0.25%,C≤0.08%,N≤0.05%,H≤0.015%,O≤0.13%,其余为Ti。
本发明的技术方案之二提供了一种激光选区熔化钛合金的制备方法,包括以下 步骤:
(1)制粉棒材制备:
将海绵钛和钒铝中间合金按照元素计量比混料,压制成块后作为熔炼电极真空熔炼,得到钛合金铸锭,再将钛合金铸锭锻造成制粉棒材;
(2)钛合金粉末制备:
将制粉棒材清洗烘干后,熔融、雾化,得到钛合金粉末。
进一步的,步骤(1)中,制粉棒材的制备过程具体为:
(1-1)将海绵钛与钒铝中间合金按元素计量比混料,再用液压机进行致密化压制成块,接着,在氩气保护的等离子体焊接室内将所得压块焊接在熔炼电极上;
(1-2)采用真空自耗电弧炉对步骤(1-1)所得熔炼电极在真空保护下进行熔炼,得到钛合金铸锭;
(1-3)采用锻压机对所得钛合金铸锭进行两道次自由锻造,其中,优选的,第一道次锻造成较大直径的棒料,第二道次锻造成较小直径的棒胚,再经车床等加工后,得到制粉棒材。
更进一步的,步骤(1-1)中,所述钒铝中间合金中钒的比例在40%~70%范围内。
更进一步的,步骤(1-2)中,熔炼次数为至少三次。优选的,三次熔炼过程中,熔炼电极先作为自耗电极熔化获得一次铸锭,将一次铸锭倒置并作为自耗电极在真空自耗电弧炉中进行二次熔炼获得二次锭,将二次锭倒置并作为自耗电极在真空自耗电弧炉进行三次熔炼获得成品铸锭。
更进一步的,步骤(1-3)中,所得棒料的直径为120mm,所得棒胚的直径为53mm。
进一步的,步骤(2)中,钛合金粉末制备过程具体为:
(2-1)将制粉棒材清洗烘干后,置于雾化制粉设备(可以采用电极感应气雾化制粉设备,也可以采用其他如二流雾化、离心雾化、旋转电极雾化等技术制备)中,并采用惰性气体保护;
(2-2)在合适的真空条件及保护气体条件下对制粉棒材加热、熔化,熔融的金属液落入雾化器喷嘴中并连续流出雾化器喷嘴,紧耦合喷嘴(即雾化器喷嘴)通入高压气体,高速气流冲击金属液,将金属液体雾化破碎成大量细小的液滴,金属液滴在雾化室内冷却凝固,并在表面张力的作用下形成球形金属粉末;
(2-3)所得金属粉末再经筛分、分级并收集后,得到粒径15-53微米的钛合金粉末。
更进一步的,步骤(2-1)中,清洗烘干过程具体为:采用酒精作为清洗介质清洗15-30min,然后在120℃下保温2h烘干;
步骤(2-2)中,制粉过程中气雾化工艺条件具体为:雾化喷嘴高压惰性气体的工作压力35~45bar,棒材进给速率40~60mm/min,制粉棒材的熔化加热功率20~40KW。
本发明的技术方案之三在于提供了一种激光选区熔化钛合金,其采用如上述的钛合金粉末并经SLM 3D打印而成。
本发明的技术方案之四在于提供了一种上述钛合金的激光选区熔化钛合金的制备方法,具体为:
采用激光选区熔化设备对钛合金粉末床层进行逐层熔化堆积,得到激光选区熔化钛合金块材,即为目的产物。
进一步的,步骤(3)中,钛合金块体的制备过程具体为:
(3-1)将钛合金粉末烘干、过筛后置于激光选区熔化设备的送粉缸内;
(3-2)对激光选区熔化设备的基板预热,在惰性气体保护环境下,利用激光对钛合金粉末床层进行选择性扫描熔化,且每层扫描完成后,基板下降一个层厚,送粉仓上升一个层厚,并采用刮刀往复运动进行新的钛合金粉末铺层,加工过程中,控制激光器采用交叉扫描方式每扫完一层后即旋转67°再进行下一层的扫描,如此重复操作直至完成所有预设切片,并逐层堆积获得目标尺寸的钛合金块体,即为目的产物。
更进一步的,步骤(3-2)中,基板先被预热至75~110℃。
更进一步的,加工过程中,激光选区熔化设备参数为:激光器的功率为250~350W,激光束直径约为0.1mm;
采用交叉扫描方式且每扫完一层旋转67°,扫描速度为100~1500mm/s,扫描间距为0.09~0.15mm,每层钛合金粉末层的厚度为30~60微米、氧含量小于1300ppm。
本发明针对激光选区熔化工艺进行合金成分优化,在Ti6Al4V合金体系的基础上改变Al和V合金元素的含量,通过Al元素可以调控钛合金微观变形机制,通过V元素可以调控钛合金的相变温度,最终获得高延伸率且性能各向同性钛合 金。通过对合金成分的优化,使用SLM 3D打印而成的钛合金零件直接满足航空用钛合金的设计要求,例如标准《GJB2218A-2008-航空用钛及钛合金棒材和锻坯》(抗拉强度不低于895MPa,延伸率不小于10%)。
与现有技术相比,本发明具有以下优点:
(1)本发明提出的激光选区熔化Ti-Al-V系钛合金的延伸率较激光选区熔化Ti6Al4V合金显著提高:沿垂直于堆积方向的抗拉强度不小于939MPa,屈服强度不小于840MPa,断裂总延伸率为13.98%;平行于堆积方向的抗拉强度不小于939MPa,屈服强度不小于836MPa,断裂总延伸率为13.07%。
(2)本发明提出的激光选区熔化钛合金大幅改善材料的各向异性。
图1为本发明所制得Ti-Al-V系钛合金粉末的扫描电子显微镜照片及粒径统计分布;
图2为本发明所得激光选区熔化Ti-Al-V合金与对比例的拉伸结果。
图3为本发明所得激光选区熔化Ti-Al-V合金与对比例1的晶粒取向分布图。
图4为本发明所得激光选区熔化Ti-Al-V合金与对比例1晶粒短轴宽度尺寸分布柱状图。
图5为本发明所得激光选区熔化Ti-Al-V合金与对比例1的织构。
图6显示本发明实施例4所得激光选区熔化Ti-Al-V合金的拉伸性能。
图7显示本发明实施例4所得激光选区熔化Ti-Al-V合金的金相显微组织。
图8显示本发明实施例4所得激光选区熔化Ti-Al-V合金的EBSD扫描结果。
图9显示本发明实施例4所得激光选区熔化Ti-Al-V合金的织构。
图10显示本发明实施例4所得激光选区熔化Ti-Al-V合金的透射电子显微照片。
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例,且对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
以下实施例和对比例中,如无特别说明的原料或处理技术,则表明均为本领域的常规市售原料或常规处理技术。
实施例1
一种高塑性且各向同性激光选区熔化Ti-4Al-4V钛合金,检测得其元素成分为:铝Al:3.89wt%,V:3.61wt%,其余部分为Ti合金和不可避免的杂质,其具体制备过程如下:
(1)制粉用棒材的加工
首先按照元素质量百分比Al为4%和V为4%的配比,对海绵钛和钒铝中间合金(V的含量为58%)进行称重,称重完成之后,把钒铝中间合金和海绵钛混合均匀制成混料,使用液压机将混料压制成长条状压块,之后,在低压氩气保护的等离子体焊接室中将压块焊接在熔炼电极上,获得自耗电极。接着将自耗电极安装固定在真空熔炼设备上,把真空熔炼设备抽至真空。之后,将自耗电极接电源负极,水冷铜结晶器接电源正极,通电后两极间产生弧光放电,电弧产生的高温使自耗电极熔化,电极熔滴落在水冷铜结晶器内并进行凝固,从而获得一次铸锭。将经平头处理的一次铸锭倒置再次焊接于熔炼电极上,重复操作真空熔炼设备获得二次铸锭,之后将经平头处理的二次铸锭倒置并焊接于熔炼电极上进行第三次熔炼,获得成品铸锭。待成品铸锭冷却至200℃以下后,将成品铸锭取出熔炼炉,当成品铸锭冷却至室温,用车床将成品铸锭的两端车削平整,并车削去除成品铸锭的表皮,获得符合锻造要求的成品铸锭。利用锻压机对成品铸锭进行两次锻造,锻造时锻造温度范围为800℃~950℃(本实施例采用850℃左右),当第一次热锻完成后可获得直径为120mm的棒料,再经过第二次热锻获得直径为53mm的棒胚,通过车床车削第二次锻造完成的棒胚最终获得直径为50mm制粉用棒材,完成制粉用棒材的加工。
(2)气雾化粉末的获取
使用车床将制粉用棒材靠近气雾化器喷嘴的一端车削为圆锥形,圆锥形的棒材端部有利于棒材熔化时熔滴的汇聚。将车削后的制粉棒材进行超声波清洗,清洗介质为酒精,清洗时间为15min,清洗完成之后,将制粉用棒材放置于烘箱中,烘箱温度设置为120℃保温2小时进行烘干。棒材烘干完成后,制粉用棒材被电极感应熔化气雾化制粉设备的升降旋转机构送入电极感应熔化气雾化设备的高频感应熔化炉中。将电极感应熔化气雾化设备的熔化炉抽真空,抽真空完成后充入高纯保护 惰性气体。启动加热电源,制粉用棒材在熔化炉中环形感应线圈的加热作用下熔化,制粉用棒材的加热功率为20~40KW(本实施例控制在30KW左右)。同时制粉用棒材在熔化的过程中缓慢旋转,并且保持一定的进给速率以保证可以获得不间断的金属溶液,棒材的进给速率为40mm/min。熔化的束流熔滴落入特制的雾化器紧耦合喷嘴中,喷嘴连接熔化炉和雾化室。同时电极感应熔化气雾化设备的喷嘴通入高压惰性气体,喷嘴高压惰性气体的工作压力设置为35~45bar,通过调整喷嘴缝隙和高压惰性气体的工作压力可以调节高速气流的气体流量。高速气流将连续流出紧耦合喷嘴的金属液冲击破碎,使其雾化成细微的金属液滴,金属液滴落入雾化室内,飞行的液滴受表面张力的作用变为球形液滴,球形液滴在雾化室内快速冷却凝固成为金属粉末。钛合金金属粉末经过筛分,再借助气流分级系统将金属粉末进行分级并收集,最终获得如图1所示的钛合金粉末。如图1所示,气雾化工艺制取的钛合金粉末球形化程度高,粉末直径分布范围为5.5~124.5μm,平均粉末颗粒尺寸为34.61μm。
(3)激光选区熔化过程
在激光选区熔化3D打印之前,首先将钛合金粉末进行烘干,烘箱温度设置为100℃保温时间为2小时。之后,将烘干的钛合金粉末倒入孔径为53μm的筛子过筛,以获得满足《BD32/T3599-2019钛合金零件激光选区用粉末》标准的粉末。将筛选后的钛合金粉末放置于激光选区熔化设备的送粉缸内。接着,安装好3D打印设备所使用的基板并校准基板工作平台,基板调试完成后,关闭激光选区熔化设备的工作腔门。然后,开启激光选区熔化设备,利用激光选区熔化设备对基板进行预热,预设温度设置为100℃保温时间为30min,同时将激光选区设备通入高纯氩气,利用高纯氩气对激光选区熔化设备进行洗气,洗气操作使激光选区熔化设备内的氧含量降低至1300ppm以下,避免钛合金在3D打印过程中发生氧化。在通入氩气降低设备氧含量的过程中,可同时开展3D打印切片数据的导入工作。当氧含量满足设备要求且3D打印文件导入完成之后,可进行预铺粉,预铺粉可以保证第一层粉末层与基板之间良好的熔合。当预铺粉准备工作完成之后,即可开展3D打印工作,3D打印过程中一直保持氩气的通入,保证设备氧含量一直处于正常工作水平。3D打印过程中激光选区熔化设备的参数设定为:激光功率为300W、扫描速度为1200mm/s、铺粉层厚为30μm、光斑直径为0.07mm、扫描间距为0.12mm,扫描方式为交叉扫描。具体的3D打印过程可描述为:当激光热源完成上一层金属粉末的 扫描之后,基板下降一个层厚(30μm),送粉缸上升一个层厚(30μm),利用刮刀运动实现新的粉末层铺粉。铺粉完成后,激光器调整扫描路径的角度,调整方式为相对于前一层扫描路径进行67°的旋转,之后开始下一层的扫描,重复铺粉-扫描操作直至完成所有预设切片。通过金属粉末的逐层堆积最终获得12*12*80mm
3的金属块材,3D打印完成后利用线切割将钛合金块材和基板分离。
对钛合金块材进行线切割加工,制得金属拉伸试样,并对拉伸试样开展拉伸性能测试,测试结果如图2所示。由图2可知,本实施例得到的激光选区熔化Ti-Al-V系钛合金成形态时就具备良好的延伸率,并且实施例1中平行于堆积方向的延伸率与垂直于堆积方向的延伸率基本一致,说明实施例1具有良好的各向同性。本实施例所得的材料成形态时沿垂直于堆积方向的抗拉强度为939MPa,屈服强度为840MPa,断裂总延伸率为13.98%;平行于堆积方向的抗拉强度为939MPa,屈服强度为836MPa,断裂总延伸率为13.07%,该合金的延伸率显著高于对比例1中3D打印的Ti6Al4V合金。本实施例中所得合金的高延伸率与合金元素调整引起的微观组织变化有关,Al合金元素是重要的钛合金α相稳定元素,α相稳定元素Al的减少造成晶粒呈短棒状分布,如图3所示,并且Al合金元素的减少使得晶粒短轴宽度相较于对比例1有所增加,如图4所示,本实施例中晶粒短轴宽度的平均值为2.35μm,晶粒短轴较宽,使得材料变形过程中位错的有效运动长度增加,因此成形态时材料具有较高的延伸率。此外,Al合金元素的降低会造成晶粒织构的弱化,如图5所示,织构最大强度仅为2.69,材料织构较弱说明晶粒取向分布随机,因此在变形过程中可以激活更多的滑移系,滑移系的增多使得材料变形过程较为均匀,故而实施例1中材料具有高延伸率和力学性能各向同性的特点。
对比例1
对比例1中,激光选区熔化粉末选用的是江苏省无锡市飞而康快速制造科技有限责任公司制备的Ti-6Al-4V合金粉末,合金粉末编号为R56400,其元素成分为Ti Bal,Al 5.50~6.75wt%,V 3.50~4.50wt%,Fe≤0.16wt%,Y≤0.005wt%,粉末直径为15~53μm。
(1)激光选区熔化过程
与实施例中激光选区熔化过程相似,在激光选区熔化3D打印之前,首先将钛合金粉末进行烘干,烘箱温度设置为100℃保温时间为2小时。之后,将烘干的钛合金粉末倒入孔径为53μm的筛子过筛。将筛选后的钛合金粉末放置于激光选区熔 化设备的送粉缸内。接着,安装好3D打印设备所使用的基板并校准基板工作平台,基板安装完成之后,关闭激光选区熔化设备工作腔门。然后,开启激光选区熔化设备,利用激光选区熔化设备对基板进行预热,预热温度设置为100℃保温时间为30min。同时将激光选区设备通入高纯氩气,利用高纯氩气对激光选区熔化设备进行洗气,洗气操作使设备内的氧含量降低至1000ppm以下,以避免钛合金在3D打印过程中发生氧化。在通入氩气降低设备氧含量的过程中,可同时开展3D打印切片数据的导入工作。当激光选区熔化设备的氧含量满足要求且3D打印文件导入完成之后,可进行预铺粉,预铺粉可以保证第一层粉末层与基板之间存在良好的熔合。当预铺粉准备工作完成之后,即可开展3D打印工作,3D打印过程中始终保持氩气的通入,以保证设备氧含量一直处于正常工作水平。3D打印过程中激光选区熔化设备的参数设定为:激光功率为500W、扫描速度为1200mm/s、铺粉层厚为30μm、光斑直径为0.07mm、扫描间距为0.12mm、扫描方式为交叉扫描。具体的3D打印过程可描述为:当激光热源完成上一层金属粉末的扫描之后,基板下降一个层厚(30μm),送粉缸上升一个层厚(30μm),利用刮刀往复运动实现新的粉末层铺粉。铺粉完成后,激光器调整扫描路径的角度,调整方式为相对于前一层扫描路径进行67°的旋转,之后开始下一层的扫描,重复铺粉-扫描操作直至完成所有预设切片。通过金属粉末逐层堆积最终获得12*12*80mm
3的金属块材试样,打印完成后利用线切割将钛合金块材和基板分离。
对对比例中获得的钛合金块材进行线切割,进而制得金属拉伸试样,并对拉伸试样开展拉伸性能测试,测试结果如图2所示。由图2可知,本对比例得到的激光选区熔化Ti-6Al-4V钛合金成形态时的断裂延伸率明显低于实施例1中钛合金的断裂延伸率,并且对比例1中平行于堆积方向的延伸率显著低于垂直于堆积方向的延伸率,说明对比例1具有很大的各向异性。本对比例中的合金成形态时沿垂直于堆积方向的抗拉强度为1151MPa,屈服强度为1043MPa,断裂总延伸率为9.8%;平行于堆积方向的抗拉强度为1163MPa,屈服强度为1064MPa,但断裂总延伸率仅为5.1%。3D打印Ti-6Al-4V合金延伸率较低是由其微观组织特征决定的。如图3所示,对比例1中晶粒多呈细长的针状分布,并且对比例1中晶粒宽度小于实施例1中的晶粒宽度,如图4所示,对比例1中晶粒短轴宽度平均值为1.79μm,低于实施例中晶粒短轴宽度平均值(2.35μm)。较小的晶粒宽度限制了拉伸变形过程中位错运动的距离,进而降低了材料的断裂延伸率。同时较小的晶粒宽度意味着 对比例1中存在较多的晶界,晶界阻碍位错运动,并造成位错在晶界处塞积,塞积的位错引起高的应力集中,加速拉伸过程中试样的失效,进而造成延伸率降低。此外,对比例1中的3D打印钛合金具备较强的织构,如图5所示,其织构最大强度为4.53,该织构强度高于实施例1中的织构强度,因此对比例1的晶粒相较于实施例1中的晶粒具有明显的择优取向,当沿利于发生滑移激活的晶粒取向的方向拉伸时,材料具有高的延伸率,而沿不利于滑移激活的晶粒取向的方向拉伸时,材料具有低的塑性。因此,对比例1中微观组织较强的织构特征使得对比例1中具有显著的各向异性。
对比例2
对比例2中所用Ti-6Al-4V合金粉末及绝大部分工艺与对比例1都相同,除了本对比例中,在钛合金3D打印完成后将其放入箱式热处理炉中进行热处理,热处理温度为730℃。当热处理炉温度升高至730℃时,将线切割加工的拉伸试样放入热处理炉内,在730℃温度下保温2h,之后关闭热处理炉的电源,钛合金拉伸试样随炉冷却至室温,取出热处理后的拉伸试样,使用砂纸把热处理之后的拉伸试样打磨光滑,然后开展拉伸性能测试。
本对比例所得热处理态3D打印钛合金沿平行于堆积方向的延伸率与实施例1中沿平行于堆积方向的延伸率相当,但是本对比例中沿垂直于堆积方向的延伸率却显著低于实施例1中沿垂直于堆积方向的延伸率。此外,本对比例中垂直于堆积方向的延伸率显著低于平行于堆积方向的延伸率,说明对比例2仍具有很大的各向异性。拉伸结果如图2所示,沿垂直于堆积方向的抗拉强度为1063MPa,屈服强度为999MPa,断裂总延伸率仅为5%;平行于堆积方向的抗拉强度为1072MPa,屈服强度为1025MPa,断裂总延伸率为13.9%。由拉伸结果可知即使通过高温热处理对比例2中的合金仍不具备实施例1中各向同性的特点,且对比例2中沿垂直于堆积方向的延伸率显著低于实施例1中沿垂直于堆积方向的延伸率。因此,对比结果表明实施例1中的3D打印钛合金具有很高的创新性。
实施例2:
与实施例1相比,绝大部分都相同,除了本实施例中,钛合金中,各元素组分的重量百分比组成调整为:Al 2.0%、V 4.5%、其余为Ti和不可避免的杂质元素。
实施例3:
与实施例1相比,绝大部分都相同,除了本实施例中,钛合金中,各元素组分 的重量百分比组成调整为:Al 4.5%、V 3.0%、其余为Ti和不可避免的杂质元素。
实施例4
本实施例提供一种高强度激光选区熔化Ti-8Al-4V钛合金,检测得其元素成分为:Al:7.93wt%,V:4.03wt%,Fe:0.044wt%,C:0.0093wt%,N:0.015wt%,H:0.0031wt%,O:0.090wt%,其余部分为Ti合金和不可避免的杂质,其具体制备过程和实施例1的钛合金的制备过程相同。
对实施例4得到的Ti-8Al-4V钛合金进行表征,表征结果参见图6到图10。图6显示本发明实施例4所得激光选区熔化Ti-Al-V合金的拉伸性能。图7显示本发明实施例4所得激光选区熔化Ti-Al-V合金的金相显微组织。图8显示本发明实施例4所得激光选区熔化Ti-Al-V合金的EBSD扫描结果。在图8中,上半部分是对主α′相的标定,下半部分是根据β→α′相的相变晶体学关系,反推出的初生β相晶粒的形貌。图9显示本发明实施例4所得激光选区熔化Ti-Al-V合金的织构。图10显示本发明实施例4所得激光选区熔化Ti-Al-V合金的透射电子显微照片。
从图6可知,实施例4得到的Ti-8Al-4V钛合金的屈服强度为1109MPa,最大拉伸强度为1240MPa,且断裂应变为7.3%。从图7可知,实施例4得到的Ti-8Al-4V钛合金是粗大柱状晶体。从图8可知,实施例4得到的Ti-8Al-4V钛合金的板条宽度(lath width)为2.29±1.07微米。从图9可知,实施例4得到的Ti-8Al-4V钛合金具有较强的织构。从图10可知,实施例4得到的Ti-8Al-4V钛合金的次α′相的板条宽度(lath width)为0.2微米。
从上述数据可知,与对比例1相比,当Al含量增加到8%时,初生晶粒为粗大柱状晶,织构逐渐增强,材料的各项异性逐渐增强。当Al含量增加到8%时,位错滑移方式仍然是平面滑移,因此所得钛合金塑性和Al含量为6%时的钛合金的塑性差异不大。随着Al含量从6%增加到8%,钛合金材料的强度上升,塑性略有下降。强度上升的原因可能在于主相和次相马氏体板条都逐渐变细。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (10)
- 一种可用于激光选区熔化3D打印的钛合金粉末,其特征在于,包括按重量百分比计的以下元素组分:Al 2.0~4.5%,V 3.0~4.5%,其余为Ti和不可避免的杂质;或者,包括按重量百分比计的以下元素组分:Al 7.0~8.0%,V 4.0~4.5%,其余为Ti和不可避免的杂质。
- 如权利要求1所述的一种可用于激光选区熔化3D打印的钛合金粉末的制备方法,其特征在于,包括以下步骤:(1)制粉棒材制备:将海绵钛和钒铝中间合金按照元素计量比混料,压制成块后作为熔炼电极真空熔炼,得到钛合金铸锭,再将钛合金铸锭锻造成制粉棒材;(2)钛合金粉末制备:将制粉棒材清洗烘干后,熔融、雾化,得到钛合金粉末,即为目的产物。
- 根据权利要求2所述的一种可用于激光选区熔化3D打印的钛合金粉末的制备方法,其特征在于,步骤(1)中,制粉棒材的制备过程具体为:(1-1)将海绵钛与钒铝中间合金按元素计量比混料,再用液压机进行致密化压制成块,接着,在氩气保护的等离子体焊接室内将所得压块焊接在熔炼电极上;(1-2)采用真空自耗电弧炉对步骤(1-1)所得熔炼电极在真空保护下进行熔炼,得到钛合金铸锭;(1-3)采用锻压机对所得钛合金铸锭进行两道次自由锻造,即得到制粉棒材。
- 根据权利要求3所述的一种可用于激光选区熔化3D打印的钛合金粉末的制备方法,其特征在于,步骤(1-1)中,所述钒铝中间合金中钒的比例在40%~70%范围内;步骤(1-2)中,熔炼次数为至少三次;步骤(1-3)中,所得棒料的直径为120mm,所得棒胚的直径为53mm。
- 根据权利要求2所述的一种可用于激光选区熔化3D打印的钛合金粉末的制备方法,其特征在于,步骤(2)中,钛合金粉末制备过程具体为:(2-1)将制粉棒材清洗烘干后,置于雾化制粉设备中,并采用惰性气体保护;(2-2)对制粉棒材加热、熔化,熔融的金属液落入雾化器喷嘴中并连续流出雾化器喷嘴,雾化器喷嘴通入高压惰性气体,以将金属液体雾化破碎成大量细小的液滴并在雾化室内冷却凝固,进而在在表面张力的作用下形成金属粉末;(2-3)所得金属粉末再经筛分、分级并收集后,得到粒径15~53微米的钛合金粉末。
- 根据权利要求5所述的一种可用于激光选区熔化3D打印的钛合金粉末的制备方法,其特征在于,步骤(2-1)中,清洗烘干过程具体为:采用酒精作为清洗介质清洗15~30min,然后在120℃下保温2h烘干;步骤(2-2)中,制粉时,雾化工艺条件具体为:雾化喷嘴内所通高压惰性气体工作压力为35~45bar,制粉棒材的进给速率为40~60mm/min,制粉棒材熔化的加热功率为20~40KW。
- 一种激光选区熔化钛合金,其特征在于,其采用如权利要求1所述的钛合金粉末并经激光选区熔化3D打印而成。
- 如权利要求7所述的一种激光选区熔化钛合金的制备方法,其特征在于,采用激光选区熔化设备对所述钛合金粉末的床层进行逐层熔化堆积,得到激光选区熔化钛合金块材,即为目的产物。
- 根据权利要求7所述的一种激光选区熔化钛合金的制备方法,其特征在于,钛合金块体的制备过程具体为:(3-1)将钛合金粉末烘干、过筛后置于激光选区熔化设备的送粉缸内;(3-2)对激光选区熔化设备的基板预热,在惰性气体保护环境下,利用激光对钛合金粉末床层进行选择性扫描熔化,且每层扫描完成后,基板下降一个层厚,送粉缸上升一个层厚,并采用刮刀往复运动进行新的钛合金粉末铺层,加工过程中,控制激光器采用交叉扫描方式每扫完一层后即旋转67°再进行下一层的扫描,如此重复操作直至完成所有预设切片,并逐层堆积获得目标尺寸的钛合金块体,即为目的产物。
- 根据权利要求9所述的一种激光选区熔化钛合金的制备方法,其特征在于,步骤(3-2)中,基板先被预热至75~110℃;加工过程中,激光选区熔化设备参数为:激光器的功率为250~350W,激光束直径约为0.1mm;采用交叉扫描方式且每扫完一层旋转67°,扫描速度为100~1500mm/s,扫描 间距为0.09~0.15mm,每层钛合金粉末层的厚度为30~60微米、氧含量小于1300ppm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/351,892 US20240123502A1 (en) | 2021-02-20 | 2023-07-13 | Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110192512.2 | 2021-02-20 | ||
CN202110192512.2A CN112981177B (zh) | 2021-02-20 | 2021-02-20 | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/351,892 Continuation US20240123502A1 (en) | 2021-02-20 | 2023-07-13 | Titanium alloy powder for selective laser melting 3d printing, selective laser melted titanium alloy and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022174766A1 true WO2022174766A1 (zh) | 2022-08-25 |
Family
ID=76393700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/076406 WO2022174766A1 (zh) | 2021-02-20 | 2022-02-16 | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240123502A1 (zh) |
CN (1) | CN112981177B (zh) |
WO (1) | WO2022174766A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116219226A (zh) * | 2023-03-16 | 2023-06-06 | 承德天大钒业有限责任公司 | 一种增材制造用tc4钛合金粉体及其制备方法 |
CN118621166A (zh) * | 2024-08-09 | 2024-09-10 | 山东昱锟高合新材料有限公司 | 一种成分均匀性钛合金铸锭纯净化熔炼工艺 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112981177B (zh) * | 2021-02-20 | 2022-09-02 | 上海交通大学 | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 |
CN113510242A (zh) * | 2021-06-22 | 2021-10-19 | 上海航翼高新技术发展研究院有限公司 | 一种耐750℃钛基复合材料筒形件的快速成形方法 |
CN114029507B (zh) * | 2021-11-08 | 2023-04-07 | 福州大学 | 一种微束等离子选区熔化成形方法及设备 |
CN115433851B (zh) * | 2022-10-20 | 2024-01-16 | 西北工业大学 | 一种低成本高强韧3D打印Ti-Fe-O合金的制备方法 |
CN115889812B (zh) * | 2022-11-23 | 2024-04-02 | 上海交通大学 | 一种增材制造高强塑钛合金及其制备方法和应用 |
CN115846682B (zh) * | 2022-12-07 | 2024-07-02 | 国营芜湖机械厂 | 一种基于选区激光熔化成形的高疲劳寿命ta15钛合金制备工艺方法 |
CN116275102B (zh) * | 2023-02-24 | 2024-06-21 | 国营芜湖机械厂 | 一种飞机弹射座椅摇臂的快速成形方法 |
CN116618685B (zh) * | 2023-07-26 | 2023-09-26 | 赣州海盛硬质合金有限公司 | 一种精密加工用合金数控刀片及其制备工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110551956A (zh) * | 2019-07-03 | 2019-12-10 | 西北工业大学 | 一种tc4钛合金的加工方法 |
WO2020091858A1 (en) * | 2018-10-31 | 2020-05-07 | Arconic Inc. | Additively manufactured articles with lattice supports and methods and systems for production thereof |
CN111515381A (zh) * | 2020-05-18 | 2020-08-11 | 中国科学院金属研究所 | 一种激光增材制造用高强高韧钛合金粉末及其制备方法 |
CN111957962A (zh) * | 2020-08-13 | 2020-11-20 | 飞而康快速制造科技有限责任公司 | 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置 |
CN112981177A (zh) * | 2021-02-20 | 2021-06-18 | 上海交通大学 | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106493350A (zh) * | 2016-10-25 | 2017-03-15 | 黑龙江省科学院高技术研究院 | 一种3d打印用球形钛合金粉末的制备方法 |
CN110756806B (zh) * | 2019-11-13 | 2022-05-17 | 北京工业大学 | 一种基于激光选区熔化技术的Ti/Al异种合金的成形方法 |
-
2021
- 2021-02-20 CN CN202110192512.2A patent/CN112981177B/zh active Active
-
2022
- 2022-02-16 WO PCT/CN2022/076406 patent/WO2022174766A1/zh active Application Filing
-
2023
- 2023-07-13 US US18/351,892 patent/US20240123502A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020091858A1 (en) * | 2018-10-31 | 2020-05-07 | Arconic Inc. | Additively manufactured articles with lattice supports and methods and systems for production thereof |
CN110551956A (zh) * | 2019-07-03 | 2019-12-10 | 西北工业大学 | 一种tc4钛合金的加工方法 |
CN111515381A (zh) * | 2020-05-18 | 2020-08-11 | 中国科学院金属研究所 | 一种激光增材制造用高强高韧钛合金粉末及其制备方法 |
CN111957962A (zh) * | 2020-08-13 | 2020-11-20 | 飞而康快速制造科技有限责任公司 | 一种用于钛合金成型的激光选区熔化的增材制造方法及增材制造装置 |
CN112981177A (zh) * | 2021-02-20 | 2021-06-18 | 上海交通大学 | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116219226A (zh) * | 2023-03-16 | 2023-06-06 | 承德天大钒业有限责任公司 | 一种增材制造用tc4钛合金粉体及其制备方法 |
CN118621166A (zh) * | 2024-08-09 | 2024-09-10 | 山东昱锟高合新材料有限公司 | 一种成分均匀性钛合金铸锭纯净化熔炼工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN112981177A (zh) | 2021-06-18 |
CN112981177B (zh) | 2022-09-02 |
US20240123502A1 (en) | 2024-04-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022174766A1 (zh) | 可用于激光选区熔化3d打印的钛合金粉末、激光选区熔化钛合金及其制备 | |
CN112935252B (zh) | 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法 | |
CN108941588B (zh) | 一种激光成形用镍基高温合金粉末的制备方法 | |
CN105543747B (zh) | 一种保留有Laves相的增材制造镍基高温合金的制备方法 | |
CN109072344B (zh) | 钛、铝、钒和铁的bcc材料及由其制成的产品 | |
CN109175376A (zh) | 增材制造钛及钛合金件的后处理方法 | |
CN111778433B (zh) | 一种3d打印用铝合金粉末材料及其制备方法与应用 | |
TW202106893A (zh) | 球形鉭-鈦合金粉末,包含彼之產品及製備彼之方法 | |
CN111872386B (zh) | 一种高强度铝镁合金的3d打印工艺方法 | |
WO2020133680A1 (zh) | 一种超短周期高强度-高延展性镍铝青铜合金及制备方法 | |
CN111014703B (zh) | 一种用于激光熔覆的镍基合金粉末的制备方法 | |
CN114939654B (zh) | 一种用于激光增材制造的高熵合金粉末及其制备方法、应用 | |
CN113293325B (zh) | 一种高强Ti185合金的制备方法 | |
US20230191489A1 (en) | Method for producing an aluminium alloy part | |
CN112222413A (zh) | 一种梯度结构高熵合金的冷轧复合激光增材制造工艺方法 | |
CN115369299B (zh) | 一种高比重含能双相高熵合金及其制备方法 | |
CN113817935A (zh) | 一种高纯净镍基高温合金及其球形粉末的制备方法 | |
CN114606413A (zh) | 一种增材制造用高温合金及其用途 | |
CN107952966A (zh) | 球形钛铝基合金粉末的制备方法 | |
US20230191488A1 (en) | Method for producing an aluminium alloy part | |
CN108044123B (zh) | 一种具有定向凝固组织的Nb-Si-Ti合金制备方法 | |
CN116949320A (zh) | 一种3d打印用高温合金粉末、制备方法及打印方法 | |
CN113523282A (zh) | 一种通过3d打印制备细小等轴晶钛合金的方法 | |
CN111842914A (zh) | 一种高强度铝铜合金的3d打印工艺方法 | |
CN114682784B (zh) | 一种SLM用1900MPa级超高强钢的低成本粉末制备方法与打印方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22755539 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22755539 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2024) |