WO2022174619A1 - 壁挂式空调室内机 - Google Patents

壁挂式空调室内机 Download PDF

Info

Publication number
WO2022174619A1
WO2022174619A1 PCT/CN2021/127554 CN2021127554W WO2022174619A1 WO 2022174619 A1 WO2022174619 A1 WO 2022174619A1 CN 2021127554 W CN2021127554 W CN 2021127554W WO 2022174619 A1 WO2022174619 A1 WO 2022174619A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
wall
section
indoor unit
conditioner indoor
Prior art date
Application number
PCT/CN2021/127554
Other languages
English (en)
French (fr)
Inventor
李英舒
张蕾
李伟伟
张鹏
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022174619A1 publication Critical patent/WO2022174619A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • F24F13/14Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre
    • F24F13/1413Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers built up of tilting members, e.g. louvre using more than one tilting member, e.g. with several pivoting blades

Definitions

  • the invention relates to the technical field of air conditioning, in particular to a wall-mounted air conditioner indoor unit.
  • the air conditioner When the air conditioner operates in the cooling mode, the density of the cold air tends to sink due to the relatively large density of the cold air; when the air conditioner operates in the heating mode, the density of the hot air tends to rise relatively small. Therefore, the air conditioner needs to blow the cooler air upwards as much as possible when cooling, and blow the hot air toward the ground as much as possible when heating, so that the cold or hot air can spread more evenly in the indoor space, making the cooling and heating speed faster, and the cooling and heating effect Better, the user's feeling of hot and cold is better.
  • An object of the present invention is to provide a wall-mounted air conditioner indoor unit that overcomes the above problems or at least partially solves the above problems.
  • the purpose of the present invention is to strengthen the downward blowing effect of the wall-mounted air conditioner indoor unit, so that the downward blowing direction is closer to the vertical direction.
  • the present invention provides a wall-mounted air conditioner indoor unit, which includes:
  • a shell which is provided with an air outlet that opens forward and downward;
  • the air duct includes a front air duct wall and a rear air duct wall arranged at intervals in the front and rear, and the outlet ends of the front air duct wall and the rear air duct wall are respectively connected with the upper end and the lower end of the air outlet, so as to be used for directing the airflow of the housing towards the air outlet; and
  • the rear air duct wall includes a main body section and a turning section, and the turning section is connected to the air outlet end of the main body section and is bent and extended downward compared with the main body section, so that the air flows out of the main body section after the air flows out. , which bends and flows downward along the turning section; and
  • the turning section is in a convex curved shape.
  • the turning section is a convex arc, and the axis of the arc is parallel to the transverse direction of the air outlet.
  • the main body section is in a concave curved shape as a whole, and the part connecting with the turning section is a concave arc shape, and the axis of the arc part is parallel to the lateral direction of the air outlet.
  • the ratio of the diameter of the arc-shaped portion where the main body section and the turning section meet to the diameter of the turning section is between 2 and 3.
  • the air inlet end of the turning section is tangent to the air outlet end of the main body section.
  • the included angle between the air outlet direction of the turning section and the air outlet direction of the main body section is between 45° and 55°.
  • the turning section and the bottom wall of the casing are connected by an outwardly protruding protruding section.
  • the front air duct wall includes a first section extending from the upper front to the lower rear and a second section extending forward from the lower end of the first section to the upper end of the air outlet;
  • the second segment is in a convex arc shape, and its axis is parallel to the transverse direction of the air outlet.
  • the included angle between the air outlet direction of the second section and the air inlet direction is less than 45°.
  • the wall-mounted air conditioner indoor unit further includes an air deflector, and the air deflector includes:
  • the air deflector body is rotatably arranged at the air outlet;
  • the multi-layer inner air deflector is arranged on the inner side of the air deflector body, and is fixed to the air deflector body at intervals along the direction away from the inner surface of the air deflector body, so as to be connected with the air deflector body.
  • the bodies jointly guide the supply air flow.
  • the air duct includes a front air duct wall and a rear air duct wall arranged at intervals in the front and rear, so that the rear air duct wall includes a main body section and a turning section, and the turning section is connected with the air outlet end of the main section.
  • the main body section it is bent and extended downward, so that after the airflow flows out of the main body section, it is bent and flows downward along the turning section.
  • the Coanda effect also known as the Coanda effect
  • when there is surface friction between the fluid and the surface of the object it flows through it can also be said to be fluid viscosity
  • the fluid will flow along the surface of the object .
  • the airflow will continue to flow along the surface of the turning segment. This makes the outlet direction of the airflow have a downward turn, so as to be closer to the vertical downward direction, which is more conducive to reaching the ground. Especially when the air conditioner is heating, the foot-warming experience can be achieved by blowing downwards.
  • the wall-mounted air conditioner indoor unit of the present invention specifically defines the shape of the turning section, the shape of the main section, and important dimensions and angle parameters, so as to achieve the optimal "wind direction turning" effect. Specifically, it is necessary to make the bending angle of the turning section larger, so that the angle of the wind direction turning is larger, which is closer to the vertical direction; If the air flow is too large, the airflow cannot be well attached to the surface of the turning section, but the total amount of airflow that finally completes the turning is too small.
  • the present invention sets the turning section into a convex curved shape (for example, an arc shape), so that when the airflow flows along the surface of the convex curved turning section, the turning angle is continuously increased, so that the final air outlet The angle is closer to the vertical downward direction.
  • a convex curved shape for example, an arc shape
  • the present invention makes the "wind direction turning" take into account both the angle and the air volume.
  • the turning section and the bottom wall of the casing are connected by an outwardly protruding protruding section, so that after the supply air flow flows out of the turning section, it relies on the Coanda effect to move along the protruding section.
  • the outlet section flows out of the air outlet, and the supply air flow turns downward further after flowing through the protruding section, so that the air outlet direction is closer to the vertical direction.
  • the front air duct wall includes a first section extending from the upper front to the lower rear and a second section extending forward from the lower end of the first section to the upper end of the air outlet, and the first section is formed.
  • the second section is a convex arc, so that the air flow on the surface of the front air duct wall gradually rises along the second section, so that the upward angle of the air supply air flow is larger.
  • FIG. 1 is a schematic cross-sectional view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • Fig. 2 is the structural representation of the air duct outlet part in the wall-mounted air conditioner indoor unit shown in Fig. 1;
  • Fig. 3 is the angle labeling schematic diagram of the air duct shown in Fig. 2;
  • Fig. 4 is a state schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 1 when it is operating in a cooling mode;
  • Fig. 5 is a state schematic diagram of the indoor unit of the wall-mounted air conditioner shown in Fig. 1 when it is operating in a heating mode;
  • FIG. 6 is a schematic view of the state of the wall-mounted air conditioner indoor unit shown in FIG. 1 when it operates in a maximum air outlet mode.
  • the wall-mounted air conditioner indoor unit will be described below with reference to FIGS. 1 to 6 .
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention .
  • the flow direction of the supply air flow is indicated by arrows in the figure.
  • first”, “second”, etc. are used for descriptive purposes only, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features defined as “first”, “second” etc. may expressly or implicitly include at least one of such features, ie including one or more of such features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined. When a feature "comprises or includes” one or some of the features it covers, unless specifically described otherwise, this indicates that other features are not excluded and that other features may be further included.
  • the terms “installed”, “connected”, “connected”, “fixed”, “coupled” and other terms should be interpreted in a broad sense, for example, it may be a fixed connection or a detachable connection, or It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined .
  • installed may be a fixed connection or a detachable connection, or It can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two elements or the interaction relationship between the two elements, unless otherwise clearly defined .
  • FIG. 1 is a schematic cross-sectional view of a wall-mounted air conditioner indoor unit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an outlet portion of an air duct 20 in the wall-mounted air conditioner indoor unit shown in FIG. 1
  • FIG. 3 is shown in FIG. 2
  • a schematic diagram of the angle of the air duct 20 is marked.
  • An embodiment of the present invention provides a wall-mounted air conditioner indoor unit.
  • the wall-mounted air conditioner indoor unit is the indoor part of the split wall-mounted room air conditioner, which is used to regulate indoor air, such as cooling/heating, dehumidification, introducing fresh air, and so on.
  • the wall-mounted air conditioner indoor unit may generally include a casing 10 and an air duct 20 .
  • the housing 10 is provided with an air outlet 12 which is open to the front and downward.
  • the casing 10 defines a accommodating space for accommodating components of the wall-mounted air conditioner indoor unit.
  • the air outlet 12 may be opened at the lower part of the front side of the housing 10 so as to be opened forward and downward.
  • the air outlet 12 is used to discharge the airflow in the housing 10 to the indoor environment, so as to adjust the indoor air.
  • the exhausted airflow refers to the airflow that is acted by the fan in the housing 10 to accelerate the airflow that flows through the air outlet 12 and is used to adjust the indoor environment, such as cold air in the cooling mode, hot air in the heating mode, and fresh air in the mode. of fresh air, etc.
  • the casing 10 can be in the shape of a long strip whose longitudinal direction is horizontally arranged, and the air outlet 12 can be in a long strip shape whose longitudinal direction is parallel to the longitudinal direction of the casing 10 .
  • the air duct 20 includes a front air duct wall 200 and a rear air duct wall 100 which are arranged at intervals in the front and rear.
  • the air flow of the housing 10 is directed to the air outlet 12 .
  • the rear air duct wall 100 includes a main body section 110 and a turning section 120 (BC section), the turning section 120 is connected to the air outlet end of the main body section 110 and is bent and extended downward compared with the main body section 110, so that the airflow can flow from the main body section. After 110 flows out, it bends and flows downward along the turning section 120 .
  • the dashed arrows near the rear air duct wall 100 indicate the airflow direction assuming that the turning section 120 is not provided, and the solid arrows indicate the airflow direction after the turning section 120 is provided.
  • the air deflector at the air outlet is not convenient to guide the air outflow in a vertically upward or nearly vertical upward direction. Therefore, the upward angle of the outlet air flow is very limited, and the upward blowing distance of the air flow is difficult to increase.
  • the airflow flows downwardly along the turning section 120 after flowing out from the main body section 110 .
  • the Coanda effect of the fluid also known as the Coanda effect
  • the airflow will continue to flow along the surface of the turning section 120 due to its viscosity. This makes the outlet direction of the airflow have a downward turn, so as to be closer to the vertical downward direction, which is more conducive to reaching the ground.
  • the air conditioner is heating, the foot-warming experience can be achieved by blowing downwards.
  • the shape of the turning section 120 , the shape of the main body section 110 , as well as important dimension and angle parameters are specially limited, so as to realize the optimal “wind direction”. Turn” effect. That is, it is necessary to make the turning angle of the turning section 120 larger, so that the wind direction turns at a larger angle, which is closer to the vertical downward direction; at the same time, it is necessary to ensure a strong enough Coanda effect to avoid the bending of the turning section 120 Too large a turning angle causes the airflow to not adhere well to the surface of the turning section 120 , and on the contrary, the total amount of airflow that finally completes the turning is too small.
  • the turning section 120 is convexly curved, so that when the airflow flows along the surface of the convexly curved turning section 120, it is continuously turned downward, so that the final air outlet angle is closer to in the vertical downward direction.
  • the turning section 120 can be in the shape of a convex arc, and the axis of the arc is parallel to the transverse direction of the air outlet.
  • the lateral direction of the air outlet 12 refers to the lateral direction of the housing 10 , that is, the direction perpendicular to the paper surface in each of the drawings in FIGS. 1 to 3 .
  • the main body section 110 can be in a concave curved shape as a whole, and the part that joins the turning section 120 is in a concave arc shape, and the axis of the arc part is parallel to the direction of the air outlet 12 .
  • the transition between the main body section 110 and the turning section 120 is smoother.
  • the rest of the main body section 110 may also be formed by connecting one arc or multiple arcs.
  • the ratio of the diameter of the arc portion where the main body section 110 and the turning section 120 meet the diameter of the turning section 120 can be between 2 and 3, including the end value, preferably set between 1.5 and 2.5, so that the airflow
  • the turning direction of the flow from the main body section 110 to the turning section 120 is more stable, so as to avoid that the diameter difference between the two is too large or too small to cause unstable airflow.
  • the surface of the object is often set as a plane and a larger angle of turning is set, in order to obtain a larger angle of turning of the fluid.
  • the inventor of the present invention found that if the turning section 120 is set as a plane, it also has a certain Coanda effect, but when the angle of the turning section 120 is larger, the airflow is easier to detach from the surface, and instead, the airflow at the final bending and turning changes. few.
  • the angle ⁇ between the tangential direction of the main body section 110 and the air outlet direction of the main body section (the tangential direction of point B) is limited between 45° and 55° (this angle is the angle at which the airflow is turned due to the addition of the turning section 120), so that The airflow can not only have a better turning effect, but also ensure a good Coanda effect, so that the total amount of airflow participating in the Coanda (turning) is more. All in all, the embodiments of the present invention make the "wind direction turning" take into account both the turning angle and the total air volume.
  • the air inlet end of the turning section 120 can be made tangent to the air outlet end of the main body section 110 , so that the transition between the two is smoother, which is beneficial to enhance the Coanda effect of the airflow. .
  • the turning section 120 (section BC) and the bottom wall 101 of the housing 10 can be connected by an outwardly protruding protruding section 130 (section CD), so as to After the airflow flows out of the turning section 120 (BC section), at least a part of it can continue to turn downward along the surface of the protruding section 130 to increase the downward blowing angle of the airflow, and the downward blowing direction is closer to the vertical direction.
  • the front air duct wall 200 may include a first section 210 (ie, the EF section) extending from the upper front to the lower rear, and a first section 210 extending from the lower end of the first section 210 to the lower end.
  • the front extends (including extending straight forward, extending forward upward, or extending forward downward) to the second segment 220 (ie, the FG segment) at the upper end of the air outlet 12 .
  • the second segment 220 is made into a convex arc shape, and its axis is parallel to the lateral direction of the air outlet 12 , that is, parallel to the direction of the paper surface.
  • the airflow on the surface of the front air duct wall 200 relies on the Coanda effect to gradually rise along the second section 220, so that the upward angle of the air supply air flow is larger.
  • the air conditioner performs cooling and upward blowing, it is beneficial to increase the upward angle of the airflow and increase the upward blowing distance.
  • the included angle ⁇ between the air outlet direction and the air inlet direction of the second section 220 can be made smaller than 45°, so as to avoid the excessive turning angle causing the airflow to detach from the surface of the second section 220 too much, and instead make the final bending and turning Air flow decreases.
  • the wall-mounted air conditioner indoor unit of the embodiment of the present invention may be an indoor part of a split wall-mounted room air conditioner that utilizes a vapor compression refrigeration cycle system for cooling/heating.
  • a heat exchanger 30 and a fan 40 are provided inside the casing 10 .
  • the heat exchanger 30 and the throttling device are connected with the compressor, the condenser and other refrigeration elements arranged in the air conditioner outdoor unit casing 10 through pipelines to form a vapor compression refrigeration cycle system.
  • the indoor air enters the interior of the casing 10 through the air inlet 11 at the top of the casing 10 , and after the forced convection heat exchange with the heat exchanger 30 is completed, heat exchange air is formed, and then guided by the air duct 20 Blow down to the air outlet 12 .
  • the fan 40 is preferably a cross-flow fan whose axis is parallel to the longitudinal direction of the casing 10 , and is disposed at the inlet of the air duct 20 .
  • the heat exchanger 30 may be a three-stage heat exchanger, which surrounds the fan 40 in front of and above the fan 40 to make its heat exchange efficiency higher.
  • the wall-mounted air conditioner indoor unit may further include an air guide plate 60 for guiding the upper and lower air outlet directions of the air outlet 12 .
  • the air guide plate 60 for guiding the upper and lower air outlet directions of the air outlet 12 .
  • the aforementioned blowing up/down blowing effect can be enhanced. That is, when the air deflector 60 guides the airflow downward, the rear air duct wall 100 can play an auxiliary downward blowing function, which is beneficial to blowing the airflow downward.
  • the front air duct wall 200 can play an auxiliary upward blowing role, which is beneficial to the upward blowing of the airflow.
  • the wind deflector 60 may include a wind deflector body 61 and multi-layer inner wind deflectors 62 and 63 .
  • the air deflector body 61 is rotatably disposed at the air outlet 12 (around the y-axis), the multi-layer inner air deflectors 62 and 63 are arranged on the inner side of the air deflector body 61, and the multi-layer inner air deflectors 62 and 63 are arranged along the The directions away from the inner surface of the air deflector body 61 are sequentially fixed to the air deflector body 61 at intervals, so as to guide the air flow together with the air deflector body 61 .
  • the wind deflector 60 may further include at least one connecting portion for connecting and fixing the wind deflector body 61 and the multi-layer inner wind deflectors 62 and 63 .
  • the multi-layer inner air deflectors 62 and 63 are arranged at intervals from the air deflector body 61.
  • the supply air flow can not only be guided by the air deflector body 61, but also enter the air deflector.
  • the interval between the main body 61 and its adjacent inner air guide plates 62 and 63 and the interval between each adjacent two inner air guide plates 62 and 63 make the air supply air flow still regulated by the multi-layer inner air guide plates 62 and 63 .
  • the guidance realizes the multi-level guidance of the air supply air, so that the direction of the air supply air discharged from the air outlet 12 is unified, and the air supply air is combed more smoothly, thereby improving the comfort of the user.
  • the number of inner air guide plates can be set to two, the inner air guide plates 62 and 63 are respectively arranged on the inner side of the air guide plate body 61 at intervals.
  • the inner air deflector 63 which is farthest from the air deflector body 61 can use its inner surface to guide at least a part of the supply air flow, and the rest of the supply air flow can enter the two inner air guide plates in turn.
  • the gaps between the plates 62 and 63 and the gaps between the inner wind deflectors 62 and 63 located at the rear and the wind deflector body 61 are aligned with the inner surfaces of the inner wind deflectors 62 and 63 and the wind deflector body 61 .
  • the rest of the supply air is re-directed, making the air blowing in a certain direction more layered.
  • the inventor found through simulation and testing that the direction and wind speed of the air supply airflow jointly derived by the air deflector body 61 and the multi-layer inner air deflectors 62 and 63 (after being separated from the air deflector 60 and then converging together) are more It is stable and has better air gathering effect.
  • the wind speed at the far end of the air outlet increases, and the air supply distance is longer.
  • the air outlet is guided more smoothly, and the loss of air volume is small, which can completely offset the increase of multiple inner air guide plates 62 , 63 and the increased wind resistance loss is even better than the air outlet efficiency of a single guide plate, so the wall-mounted air conditioner indoor unit of this embodiment achieves an unexpected technical effect.
  • a wind deflector that can swing up and down is generally provided at the air outlet.
  • This adjustment method has certain drawbacks.
  • the air deflector can only guide the air flow close to its inner surface, but cannot guide the air flow away from its inner surface. Therefore, this may cause the air flow out of the air outlet to be chaotic, the air flow is not smooth, and the user sense of experience.
  • the wall-mounted air conditioner indoor unit of the present embodiment adds multiple layers of inner air guide plates 62 and 63 fixed to the air guide plate body 61 at intervals on the inner side of the air guide plate body 61 .
  • the multi-layer inner air deflectors 62, 63 and the inner surface of the air deflector body 61 jointly guide the supply air flow, so that the airflow blown in a certain direction is more layered. It is smoother and the overall direction and wind speed are more stable, which makes the wind gathering effect of the air supply air flow better, the air outlet efficiency is higher, and the user experience is improved.
  • the orthographic projection of the inner air deflector 62 adjacent to the air deflector body 61 falls on the air deflector body 61 . And in the direction away from the inner surface of the air deflector body 61 , the orthographic projections of the other inner air deflectors to the upper layer fall on the inner air deflector of the upper layer.
  • the inner air deflector 62 adjacent to the air deflector body 61 can be set to be the same size as the air deflector body 61 , or be smaller than the width of the air deflector body 61 , and be opposite to the air deflector body 61 , so that the air deflector body 61 can wrap the inner air deflectors 62 and 63 .
  • the other inner air guide plates can be set to be the same size as the inner air guide plates on the upper layer, or they can be smaller than the width of the air guide plate body 61, and are opposite to the inner air guide plates on the upper layer, so that the upper layer is opposite to the inner air guide plate on the upper layer.
  • the inner air deflector can wrap the inner air deflector of the next layer.
  • the inner air deflector or the air deflector body 61 at the outer layer can receive the air supply air flow that leaks from the inner air deflector at the inner layer, ensuring that The supply air flow can be guided by multiple layers and finally be discharged from the air outlet 12 .
  • the air deflector body 61 and the ends on the same side of the multi-layer inner air deflectors 62 and 63 may also be configured to be on the same plane.
  • One end of the air deflector body 61 and the multi-layer inner air deflectors 62 and 63 are in the same plane, and the other ends of the air deflector body 61 and the multi-layer inner air deflectors 62 and 63 are in the same plane, so that the air deflector 60 is in the same plane.
  • the appearance is more beautiful.
  • the width of the air deflector body 61 is greater than the width of the inner air deflector 62 adjacent to it, and the widths of the multi-layer inner air deflectors 62 and 63 are in sequence along the direction away from the inner surface of the air deflector body 61 . decrease.
  • both ends of the inner air deflector of the outer layer have dislocation sections extending out of the inner air deflector of the inner layer.
  • the air supply air leaked by the inner air deflector of the inner layer is more convenient for the air supply air to enter the gap between the two inner air deflectors, and finally ensures that the air supply air can enter between every two adjacent inner air deflectors Clearance.
  • the width of the air deflector body 61 is greater than the width of the adjacent inner air deflector 62.
  • the dislocation sections of the adjacent inner air guide plates 62 are used to receive the supply air flow that leaks from the inner air guide plates 62 of the inner layer.
  • the inner side surfaces of the air deflector body 61 and each of the inner air deflectors 62 and 63 may also be configured as concentric arc surfaces.
  • the inner surfaces of the air deflector body 61 and each inner air deflector 62, 63 can also be configured as concentric arc surfaces, so that the air flowing through the air deflector body 61 and the inner surfaces of the multi-layer inner air deflectors 62, 63 can be The supply air flow is better absorbed, making the guiding effect better.
  • the ratio of the distance between the air deflector body 61 and its adjacent inner air deflectors 62 and 63 and the arc length of the inner surface of the air deflector body 61 can also be configured to be between 1/5 and 1/3, For example, 1/5, 1/4, or 1/3, etc.
  • the distance between each inner air deflector 62 , 63 and the adjacent inner air deflector 62 , 63 of the next layer is the arc length of the inner air deflector 62 , 63
  • the ratio is between 1/5 and 1/3, such as 1/5, 1/4 or 1/3, etc.
  • the distance between the air deflector body 61 and its adjacent inner air deflectors 62 and 63 and the ratio of the arc lengths of the inner surface of the air deflector body 61 can also be the same as the distance between the inner air deflectors 62 and 63 of each layer adjacent to it.
  • the ratio of the distance between the inner wind deflectors 62 and 63 of the next layer and the arc lengths of the inner wind deflectors 62 and 63 is configured to be the same.
  • the longer the arc length the stronger the wind guiding ability, so the air deflector body 61 or the inner air deflector 62, 63 with the longer arc length through the above definition
  • the larger the distance corresponding to the inner surface of the air the greater the flow of the supply air flow, and the more reasonable the distribution of the supply air flow to the air deflector body 61 and each inner air deflector 62, 63, so as to guide the air supply airflow more. Make the air supply air combing more smoothly.
  • the inner surfaces of the wind deflector body 61 and the multi-layer inner wind deflectors 62 and 63 can also be set to be flat.
  • the plate-shaped air deflector body 61 and the multi-layer inner air deflectors 62 and 63 can basically guide more air flow, but the arc-shaped inner surface achieves better technical effect. .
  • Fig. 4 is a state schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 1 when operating in a cooling mode
  • Fig. 5 is a state schematic diagram of the wall-mounted air conditioner indoor unit shown in Fig. 1 when operating in a heating mode
  • Fig. 6 is a state diagram shown in Fig. 1 Schematic diagram of the state of the indoor unit of the wall-mounted air conditioner when it is running in the maximum air outlet mode.
  • the air deflector 60 can be rotated to the upward blowing position in which the air deflector body 61 and the inner surfaces of the inner air deflectors 62 and 63 face upward, so as to guide the supply air flow forward or upward. .
  • This blow-up position is particularly useful in cooling mode.
  • the air deflector 60 can be rotated to a downward blowing position in which the air deflector body 61 and the inner surfaces of the inner air deflectors 62 and 63 face rearward, so as to guide the supply air flow downward.
  • This blow-down position is particularly useful in heating mode.
  • the air deflector 60 can be rotated to a position where the air deflector body 61 is substantially parallel to the front air duct wall 200 and the rear air duct wall 100 , so as to minimize the resistance to airflow and achieve the maximum air volume air supply.
  • the wall-mounted air conditioner indoor unit may further include an outer air guide plate 50 , and the outer air guide plate 50 is movably disposed at the air outlet 12 for opening and closing the air outlet 12 .
  • the outer air deflector 50 can be rotatably mounted on the housing 10 , and the rotation axis x is located at the rear air duct wall 100 , so as to move to a position directly below the housing 10 to completely open the air outlet 12 .

Abstract

一种壁挂式空调室内机,其包括:风道,包括前后间隔设置的前风道壁和后风道壁,前风道壁和后风道壁的出口端分别与出风口的上端和下端相接,以用于将壳体的气流导向出风口;且后风道壁包括主体段和转折段,转折段与主体段的出风端相接且相比主体段向下弯折延伸,以便气流从主体段流出后,沿转折段向下弯折流动;且转折段为外凸的弯曲形。本发明强化了壁挂式空调室内机的下吹风效果,使下吹方向更接近于竖直方向。

Description

壁挂式空调室内机 技术领域
本发明涉及空气调节技术领域,特别涉及一种壁挂式空调室内机。
背景技术
空调运行制冷模式时,由于冷空气密度相对较大有下沉趋势;空调运行制热模式时,热空气密度相对较小有上升趋势。因此,空调在制冷时需要将较冷风尽量向上吹,在制热时需要将热风尽量朝地面吹,以使冷风或热风在室内空间扩散更加均匀,使制冷制热速度更快,制冷制热效果更好,用户的冷热感受更佳。
现有的各种壁挂式空调室内机通常仅仅设置一个朝向前下方开设的出风口,并利导风板、摆叶等各种导风结构来引导送风气流的出风方向,实现向上吹风或向下吹风。但是,当前的各种导风结构的导风角度比较有限,仅能实现向斜上方或斜下方送风,冷风或热风还是难以抵达屋顶或地板区域,影响制冷或制热效果。
发明内容
本发明的目的是要提供一种克服上述问题或者至少部分地解决上述问题的壁挂式空调室内机。
本发明的目的是要强化壁挂式空调室内机的下吹风效果,使下吹方向更接近于竖直方向。
特别地,本发明提供了一种壁挂式空调室内机,其包括:
壳体,其开设有朝前下方敞开的出风口;
风道,包括前后间隔设置的前风道壁和后风道壁,所述前风道壁和所述后风道壁的出口端分别与所述出风口的上端和下端相接,以用于将所述壳体的气流导向所述出风口;且
所述后风道壁包括主体段和转折段,所述转折段与所述主体段的出风端相接且相比所述主体段向下弯折延伸,以便气流从所述主体段流出后,沿所述转折段向下弯折流动;且
所述转折段为外凸的弯曲形。
可选地,所述转折段为外凸的弧形,该弧形的轴线平行于所述出风口的 横向方向。
可选地,所述主体段整体为后凹弯曲形,其与所述转折段相接的部分为内凹的弧形,且该弧形部分的轴线平行于所述出风口的横向方向。
可选地,所述主体段和所述转折段相接的弧形部分的直径与所述转折段的直径之比在2至3之间。
可选地,所述转折段的进风端与所述主体段的出风端相切。
可选地,所述转折段的出风方向与所述主体段的出风方向的夹角处于45°至55°之间。
可选地,所述转折段与所述壳体的底壁之间通过一外凸的凸出段连接。
可选地,所述前风道壁包括从前上方朝后下方延伸的第一段和从所述第一段下端向前延伸至所述出风口上端的第二段;且
所述第二段为外凸的弧形,且其轴线平行于所述出风口的横向方向。
可选地,所述第二段的出风方向与进风方向的夹角小于45°。
可选地,壁挂式空调室内机还包括导风板,所述导风板包括:
导风板本体,可转动地设置于所述出风口处;
多层内导风板,设置于所述导风板本体的内侧,并且沿远离所述导风板本体内表面的方向依次间隔地固定于所述导风板本体,以便与所述导风板本体共同引导送风气流。
本发明的壁挂式空调室内机中,风道包括前后间隔设置的前风道壁和后风道壁,使后风道壁包括主体段和转折段,转折段与主体段的出风端相接且相比主体段向下弯折延伸,以便气流从主体段流出后,沿转折段向下弯折流动。根据康达效应(又称附壁效应),当流体与它流过的物体表面之间存在表面摩擦时(也可以说是流体粘性),只要曲率不大,流体就会顺着该物体表面流动。因此,虽然转折段的方向相比主体段具有一定角度向下的转折,但气流仍将沿着转折段的表面继续流动。这便使得气流的出风方向具有向下的转折,从而更加接近竖直向下的方向,以更有利于直达地面。特别是当空调进行制热时,通过朝下吹风能够实现暖足体验。
进一步地,本发明的壁挂式空调室内机特别对转折段的形状、主体段的形状以及重要的尺寸、角度参数进行特别限定,以便实现最优的“风向转折”效果。具体就是,既要使转折段弯折的角度更大,以使风向转折的角度更大,更接近于竖直方向;同时又要保证足够强的附壁效应,避免因转折段弯折角 度太大导致气流无法很好地贴附于转折段的表面,反而使最终完成转折的气流总量过少。
具体地,本发明将转折段设置为外凸的弯曲形(例如弧形),以使气流在沿该外凸弯曲形的转折段表面流动时,使转折角度不断增加,使其最终的出风角度更加接近于竖直向下的方向。并且,为了避免因转折的角度过大,使气流容易脱离转折段表面,反而导致最终参与转折的气流量变少,本发明还特别将转折段的出风方向与主体段的出风方向的夹角限定在45°至55°之间(该角度也就是因增设转折段使气流转向的角度),以使气流既有一个更好的转向效果,又保证具有良好的附壁效应,使参与附壁(转向)的气流量更多。总之,本发明使“风向转折”在角度和风量两方面得到兼顾。
进一步地,本发明的壁挂式空调室内机中,使转折段与壳体的底壁之间通过一外凸的凸出段连接,以便使送风气流流出转折段后,依靠附壁效应沿凸出段流出出风口,送风气流在流经凸出段后进一步向下转折,使出风方向更加接近竖直方向。
进一步地,本发明的壁挂式空调室内机中,使前风道壁包括从前上方朝后下方延伸的第一段和从第一段下端向前延伸至出风口上端的第二段,并使第二段为外凸的弧形,以使前风道壁表面的气流沿其第二段逐渐上扬,使送风气流上扬角度更大,在空调进行制冷上吹风时,利于提高气流的上扬角度。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的壁挂式空调室内机的示意性剖视图;
图2是图1所示壁挂式空调室内机中的风道出口部分的结构示意图;
图3是图2所示风道的角度标注示意图;
图4是图1所示壁挂式空调室内机在运行制冷模式时的状态示意图;
图5是图1所示壁挂式空调室内机在运行制热模式时的状态示意图;
图6是图1所示壁挂式空调室内机在运行最大出风模式时的状态示意图。
具体实施方式
下面参照图1至图6来描述本发明实施例的壁挂式空调室内机。其中,“前”、“后”、“上”、“下”、“顶”、“底”、“内”、“外”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。图中用箭头示意了送风气流的流动方向。
术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征,也即包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。当某个特征“包括或者包含”某个或某些其涵盖的特征时,除非另外特别地描述,这指示不排除其它特征和可以进一步包括其它特征。
除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”“耦合”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。本领域的普通技术人员,应该可以根据具体情况理解上述术语在本发明中的具体含义。
图1是根据本发明一个实施例的壁挂式空调室内机的示意性剖视图;图2是图1所示壁挂式空调室内机中的风道20出口部分的结构示意图;图3是图2所示风道20的角度标注示意图。
本发明实施例的提供了一种壁挂式空调室内机。壁挂式空调室内机为分体壁挂式房间空调器的室内部分,用于调节室内空气,例如制冷/制热、除湿、引入新风等等。
如图1至图3所示,本发明实施例的壁挂式空调室内机一般性地可包括壳体10和风道20。
其中,壳体10开设有朝前下方敞开的出风口12。壳体10限定有用于容纳壁挂式空调室内机各部件的容纳空间。出风口12可开设于壳体10的前侧下部,以便朝前下方敞开。出风口12用于将壳体10内的气流排向室内环境, 以对室内空气进行调节。所排出的气流指的是被壳体10内的风机作用,以加速流过出风口12的、用于调节室内环境的气流,例如制冷模式下的冷风、制热模式下的热风以及新风模式下的新风气流等等。壳体10可为长度方向水平设置的长条状,出风口12可为长度方向平行于壳体10的长度方向的长条状。
风道20包括前后间隔设置的前风道壁200和后风道壁100,前风道壁200和后风道壁100的出口端分别与出风口12的上端和下端相接,以用于将壳体10的气流导向出风口12。并且,后风道壁100包括主体段110和转折段120(BC段),转折段120与主体段110的出风端相接且相比主体段110向下弯折延伸,以便气流从主体段110流出后,沿转折段120向下弯折流动。
图2中,后风道壁100附近的虚线箭头所示意的是假设未设置转折段120时的气流方向,实心箭头示意的是设置了转折段120后的气流方向。
发明人认识到,现有的壁挂式空调室内机受制于内部风机、换热器等布局,通常会将出风口开设于壳体的前侧下部,且使其朝前下方敞开。在这样的方案中,由于受到壳体前部的阻碍,出风口处的导风板并不方便将出风气流以竖直向上或接近竖直向上的方向引导。因此,出风气流的上扬角度十分受限,气流的上吹距离难以提升。
本发明实施例中,由于在后风道壁100设置了主体段110和转折段120,气流从主体段110流出后,沿转折段120向下弯折流动。根据流体的康达效应(又称附壁效应),当流体与它流过的物体表面之间存在表面摩擦时(也可以说是流体粘性),只要曲率不大,流体就会顺着该物体表面流动。因此,本实施例中,虽然转折段120的方向相比主体段110具有一定角度向下的转折,但气流由于粘性,仍将沿着转折段120的表面继续流动。这便使得气流的出风方向具有向下的转折,从而更加接近竖直向下的方向,以更有利于直达地面。特别是当空调进行制热时,通过朝下吹风能够实现暖足体验。
特别地,在本发明实施例中,如图2和图3所示,对转折段120的形状、主体段110的形状以及重要的尺寸、角度参数进行特别限定,以便能实现最优的“风向转折”效果。即,既要使转折段120弯折的角度更大,以使风向转折的角度更大,更接近竖直向下的方向;同时又要保证足够强的附壁效应,避免因转折段120弯折角度太大导致气流无法很好地贴附于转折段120的表面,反而使最终完成转折的气流总量过少。
本发明实施例中,使转折段120为外凸的弯曲形,以使气流在沿该外凸弯曲形的转折段120的表面流动时,不断向下转向,使其最终的出风角度更加接近于竖直向下的方向。在一些具体的结构中,可使转折段120为外凸的弧形,该弧形的轴线平行于所述出风口的横向方向。出风口12的横向方向指的是壳体10的横向方向,也就是图1至图3的各图中,垂直于纸面的方向。
如图2和图3所示,可使主体段110整体为后凹弯曲形,其与转折段120相接的部分为内凹的弧形,且该弧形部分的轴线平行于出风口12的横向方向,以使主体段110与转折段120的过渡更加平缓。主体段110其余部分也可为一段弧形或者多段弧形相接构成。
进一步地,可使主体段110和转折段120相接的弧形部分的直径与转折段120的直径之比在2至3之间,包括端点值,优选设置为1.5至2.5之间,以便气流在从主体段110流向转折段120的转向方向更加平稳,避免两者直径相差过大或过小导致气流不稳定。
其他领域一些现有的利用“康达效应”的应用结构中,常常将物体表面设置为平面且设置一个较大的角度转折,以期使流体获得更大角度的转向。而本发明的发明人发现,假如将转折段120设置为平面同样具有一定的附壁效应,但当转折段120的角度较大时,气流比较容易脱离表面,反而使最终弯折转折的气流量变少。
为此,本发明实施例中,为了避免因转折的角度过大使气流容易脱离转折段表面,反而导致最终参与转折的气流量变少,本发明实施例特别将转折段120的出风方向(C点的切线方向)与主体段的110出风方向(B点的切线方向)的夹角α限定在45°至55°之间(该角度也就是因增设转折段120使气流转向的角度),以使气流既具有一个更好的转向效果,又能保证具有良好的附壁效应,使参与附壁(转向)的气流总量更多。总而言之,本发明实施例使“风向转折”在转折角度和总风量两方面得到兼顾。
在本发明的一些实施例中,如图2所示,可使转折段120的进风端与主体段110的出风端相切,以使两者过渡更加平缓,利于增强气流的附壁效果。
在本发明的一些实施例中,如图2所示,可使转折段120(BC段)与壳体10的底壁101之间通过一外凸的凸出段130(CD段)连接,以便气流流出转折段120(BC段)后,其至少一部分还能继续沿凸出段130的表面 继续向下转向,以增大气流的下吹角度,下吹方向更加接近竖直方向。
在本发明的一些实施例中,如图1至图3所示,可使前风道壁200包括从前上方朝后下方延伸的第一段210(即EF段)和从第一段210下端向前延伸(包括向正前方延伸、向前上方延伸或者向前下方延伸)至出风口12上端的第二段220(即FG段)。并且,使第二段220为外凸的弧形,且其轴线平行于出风口12的横向方向,即平行于纸面方向。
本发明实施例通过使第二段220为外凸的弧形,以使前风道壁200表面的气流依靠附壁效应,沿其第二段220逐渐上扬,使送风气流上扬角度更大,在空调进行制冷上吹风时,利于提高气流的上扬角度,提升上吹距离。
进一步地,可使第二段220的出风方向与进风方向的夹角θ小于45°,以避免转折角度过大导致气流过多脱离第二段220的表面,反而使最终弯折转折的气流量变少。
本发明实施例的壁挂式空调室内机可为利用蒸气压缩制冷循环系统进行制冷/制热的分体壁挂式房间空调器的室内部分。如图1所示,壳体10的内部设有换热器30和风机40。换热器30、节流装置与设置于空调室外机壳体10内的压缩机、冷凝器以及其他的制冷元件通过管路连接,构成一蒸气压缩制冷循环系统。
在风机40的作用下,室内空气经壳体10顶部的进风口11进入壳体10的内部,与换热器30完成强制对流换热后,形成热交换风,然后再在风道20的引导下吹向出风口12。
风机40优选为轴线平行于壳体10的长度方向的贯流风机,其设置在风道20的进口处。换热器30可为三段式换热器,其在风机40的前方和上方包围风机40,以使其换热效率更高。
在一些实施例中,如图1所示,壁挂式空调室内机还可包括导风板60,用于引导出风口12的上下出风方向。通过风道20与导风板60相配合,可强化其前述上吹/下吹效果。即,当导风板60将气流向下引导时,后风道壁100能发挥辅助下吹作用,利于气流向下吹出。当导风板60将气流向上引导时,前风道壁200能发挥的辅助上吹作用,利于气流向上吹出。
导风板60可包括导风板本体61和多层内导风板62、63。导风板本体61可(绕y轴)转动地设置于出风口12处,多层内导风板62、63设置于导风板本体61的内侧,并且多层内导风板62、63沿远离导风板本体61内表 面的方向依次间隔地固定于导风板本体61,以便与导风板本体61共同引导送风气流。
具体地,该导风板60还可以包括至少一个连接部,用于将导风板本体61和多层内导风板62、63连接固定。
多层内导风板62、63与导风板本体61间隔设置,当导风板本体61转动某一位置时,送风气流不仅能被导风板本体61所导向,而且能够进入导风板本体61和与其相邻的内导风板62、63之间间隔以及各相邻两内导风板62、63之间间隔,使得送风气流还能被多层内导风板62、63所导向,实现了送风气流多层次的导向,使得从出风口12排出的送风气流方向统一,送风气流被梳理地更加顺畅,进而提高了用户的舒适度。
在一些具体的实施例中,如图1所示,内导风板的数量可以设置成两个,分别内导风板62、63,两者依次间隔地设置于导风板本体61的内侧。在送风气流的流动方向上,与导风板本体61距离最远的内导风板63可以利用其内表面导向至少一分部送分气流,其余送风气流可以依次进入两个内导风板62、63之间的间隙和位于靠后的内导风板62、63和导风板本体61之间的间隙,利用该内导风板62、63和导风板本体61的内表面对其余送风气流再次导向,使得向某一方向吹出的气流更加有层次感。
此外,发明人通过仿真和试验后发现:利用导风板本体61和多层内导风板62、63共同导出(脱离导风板60后又汇聚在一起)的送风气流的方向和风速更加稳定,聚风效果更佳,在制冷时出风远端风速增加,送风距离更远,在制热时出风引导更顺畅,风量损失小,完全能够抵消由于增加多个内导风板62、63而增加的风阻损失,甚至优于单导板的出风效率,因此本实施例的壁挂式空调室内机取得了意料不到的技术效果。
需要说明的是,上述举例仅是为了更清楚地描述本实施例的技术方案,并非对内导风板62、63的具体数量进行限定,本领域技术人员应当可以理解,本实施例中所述内导风板62、63的数量还可以为三个、四个或更多,不一而足。
现有技术中,为了调节空调室内机的送风方向,一般是在出风口处设置可以上下摆动的导风板。但是这种调节方式具有一定的缺陷。导风板仅能对靠近其内表面的气流进行导向,而无法对远离其内表面的气流进行导向,因此,这可能导致了从出风口排出的出风气流杂乱无章,气流梳理不顺畅,降 低用户的体验感。
为了克服上述现有技术的缺陷,本实施例的壁挂式空调室内机在导风板本体61的内侧增加了多层间隔地且固定于导风板本体61的内导风板62、63,利用多层内导风板62、63和导风板本体61的内表面共同对送风气流导向,使得向某一方向吹出的气流更加有层次感,并且由于送风气流更多的导向,气流梳理更顺畅,整体的方向和风速更加稳定,使得送风气流的聚风效果更佳,出风效率更高,提高了用户的体验感。
在一些实施例中,与导风板本体61相邻的内导风板62向导风板本体61的正投影落在导风板本体61上。并且在远离导风板本体61内表面的方向上,其余各内导风板向上一层的正投影落在上一层的内导风板上。
在本实施例中,与导风板本体61相邻的内导风板62可以设置成与导风板本体61大小相等,也可以小于导风板本体61宽度,并且与导风板本体61相对,以使得导风板本体61可以包裹住该内导风板62、63。
同理,其余各内导风板可以设置成与其上一层的内导风板大小相等,也可以小于导风板本体61宽度,并与其上一层的内导风板相对,使得上一层的内导风板可以包裹住下一层的内导风板。
通过上述限定后,在导风板60导风时,处于较外层的内导风板或导风板本体61可以承接住从较内层的内导风板漏过的送风气流,确保了送风气流能够受到多层导向,最终排出出风口12。
在一些实施例中,导风板本体61和多层内导风板62、63同侧端部还可以配置成处于同一平面上。
导风板本体61和多层内导风板62、63的一端处于同一平面,导风板本体61和多层内导风板62、63的另外一端处于同一平面,以使得导风板60的外形更加美观。
在一些实施例中,导风板本体61的宽度大于与其相邻的内导风板62的宽度,并且多层内导风板62、63的宽度沿远离导风板本体61内表面的方向依次减小。
也即,对于较内层的内导风板,较外层的内导风板的两端具有扩展出较内层的内导风板的错位区段,利用该错位区段不仅可以承接住从较内层的内导风板漏过的送风气流,而且便于送风气流进入两个内导风板之间的间隙,最终确保送风气流能够进入每两个相邻内导风板之间的间隙。
同理,对于与导风板本体61相邻的内导风板62导风板本体61的宽度大于与其相邻的内导风板62的宽度,导风板本体61的两端具有扩展出与其相邻的内导风板62的错位区段,利用该错位区段承接住从较内层的内导风板62漏过的送风气流。
进一步地,导风板本体61和各内导风板62、63的内侧表面还可以配置成同心圆弧面。
在流体力学中,根据康达效应的原理,当流体由偏离原本流动方向改为随着凸出的物体表面流动的倾向,当流体与它流过的物体表面之间存在表面摩擦时,只要曲率不大,流体就会顺着该物体表面流动。
因此,将导风板本体61和各内导风板62、63的内侧表面还可以配置成同心圆弧面可以使得流经导风板本体61和多层内导风板62、63内表面的送风气流更好地被吸附,使得导向作用更佳。
进一步地,导风板本体61和与其相邻的内导风板62、63的间距与导风板本体61内表面的弧长之比还可以配置成处于1/5至1/3之间,例如,1/5、1/4或者1/3等。
在远离导风板本体61内表面的方向上,每层内导风板62、63距其相邻的下一层内导风板62、63的间距与该内导风板62、63弧长之比在1/5至1/3之间例如1/5、1/4或者1/3等。
优选地,导风板本体61和与其相邻的内导风板62、63的间距导风板本体61内表面的弧长之比还可以与每层内导风板62、63距其相邻的下一层内导风板62、63的间距与该内导风板62、63弧长之比配置成相同。
对于导风板本体61和内导风板62、63,弧长越长,其导风能力越强,因此通过上述限定使得弧长越长的导风板本体61或内导风板62、63气内表面对应的间距越大,送风气流流量越大,更加合理地将送风气流分配给导风板本体61和各内导风板62、63,以对送风气流更多地引导,使送风气流梳理更顺畅。
当然,在本领域技术人员知晓本实施例的技术方案后还可以将导风板本体61和多层内导风板62、63的内表面设置成平面。与上述实施例相比,平板状的导风板本体61和多层内导风板62、63基本上可以实现更多地引导送风气流,但是圆弧状的内表面取得的技术效果更佳。
图4是图1所示壁挂式空调室内机在运行制冷模式时的状态示意图;图 5是图1所示壁挂式空调室内机在运行制热模式时的状态示意图;图6是图1所示壁挂式空调室内机在运行最大出风模式时的状态示意图。
如图4所示,导风板60可转动至使导风板本体61和各内导风板62、63的内表面朝上的上吹位置,以将送风气流朝前或朝前上方引导。该上吹位置特别适用于制冷模式。
如图5所示,导风板60可转动至使导风板本体61和各内导风板62、63的内表面朝后的下吹位置,以将送风气流向下引导。该下吹位置特别适用于制热模式。
如图6所示,导风板60可转动至是使其导风板本体61与前风道壁200和后风道壁100大致平行的位置,以使其对气流的阻力最小,实现最大风量送风。
需要说明的是,上述举例仅是为了更加清楚地描述本实施例的导风板60的工作原理,并非用于限定导风板60处于何种位置时壁挂式空调室内机必然要处于何种调温模式(制热或者制冷)。用户可以根据实际情况任意调节导风板60的工作位置,例如,在制热模式下将导风板60调节至上吹位置,在制冷模式下将导风板60调节至下吹位置等,在此不作赘述。
在一些实施例中,该壁挂式空调室内机还可以包括外导风板50,外导风板50可动地设置于出风口12处,用于开闭出风口12。具体地,可使外导风板50可转动地安装于壳体10,转动轴线x位于后风道壁100处,以便运动至位于壳体10正下方的位置,以彻底打开出风口12。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种壁挂式空调室内机,包括:
    壳体,其开设有朝前下方敞开的出风口;
    风道,包括前后间隔设置的前风道壁和后风道壁,所述前风道壁和所述后风道壁的出口端分别与所述出风口的上端和下端相接,以用于将所述壳体的气流导向所述出风口;且
    所述后风道壁包括主体段和转折段,所述转折段与所述主体段的出风端相接且相比所述主体段向下弯折延伸,以便气流从所述主体段流出后,沿所述转折段向下弯折流动;且
    所述转折段为外凸的弯曲形。
  2. 根据权利要求1所述的壁挂式空调室内机,其中
    所述转折段为外凸的弧形,该弧形的轴线平行于所述出风口的横向方向。
  3. 根据权利要求2所述的壁挂式空调室内机,其中
    所述主体段整体为后凹弯曲形,其与所述转折段相接的部分为内凹的弧形,且该弧形部分的轴线平行于所述出风口的横向方向。
  4. 根据权利要求3所述的壁挂式空调室内机,其中
    所述主体段和所述转折段相接的弧形部分的直径与所述转折段的直径之比在2至3之间。
  5. 根据权利要求1所述的壁挂式空调室内机,其中
    所述转折段的进风端与所述主体段的出风端相切。
  6. 根据权利要求1所述的壁挂式空调室内机,其中
    所述转折段的出风方向与所述主体段的出风方向的夹角处于45°至55°之间。
  7. 根据权利要求1所述的壁挂式空调室内机,其中
    所述转折段与所述壳体的底壁之间通过一外凸的凸出段连接。
  8. 根据权利要求1所述的壁挂式空调室内机,其中
    所述前风道壁包括从前上方朝后下方延伸的第一段和从所述第一段下端向前延伸至所述出风口上端的第二段;且
    所述第二段为外凸的弧形,且其轴线平行于所述出风口的横向方向。
  9. 根据权利要求8所述的壁挂式空调室内机,其中
    所述第二段的出风方向与进风方向的夹角小于45°。
  10. 根据权利要求1所述的壁挂式空调室内机,还包括导风板,所述导风板包括:
    导风板本体,可转动地设置于所述出风口处;
    多层内导风板,设置于所述导风板本体的内侧,并且沿远离所述导风板本体内表面的方向依次间隔地固定于所述导风板本体,以便与所述导风板本体共同引导送风气流。
PCT/CN2021/127554 2021-02-19 2021-10-29 壁挂式空调室内机 WO2022174619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110189192.5A CN114963332B (zh) 2021-02-19 2021-02-19 壁挂式空调室内机
CN202110189192.5 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022174619A1 true WO2022174619A1 (zh) 2022-08-25

Family

ID=82930261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127554 WO2022174619A1 (zh) 2021-02-19 2021-10-29 壁挂式空调室内机

Country Status (2)

Country Link
CN (1) CN114963332B (zh)
WO (1) WO2022174619A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728351B1 (ko) * 2006-07-27 2007-06-13 주식회사 대우일렉트로닉스 더블-플랩형 승강식 유동가이드유닛을 구비한 벽걸이형에어컨 및 그 제어방법
JP2014095496A (ja) * 2012-11-08 2014-05-22 Panasonic Corp 空気調和機の室内機
CN106322508A (zh) * 2015-06-25 2017-01-11 青岛海尔智能技术研发有限公司 一种空调室内机及空调组件
CN207262572U (zh) * 2017-10-02 2018-04-20 广东美的制冷设备有限公司 空调室内机和空调器
CN207422594U (zh) * 2017-09-30 2018-05-29 广东美的制冷设备有限公司 空调器和导风结构
CN108317600A (zh) * 2018-01-12 2018-07-24 青岛海尔空调器有限总公司 壁挂式空调室内机
CN110056960A (zh) * 2019-04-30 2019-07-26 青岛海尔空调器有限总公司 壁挂式空调室内机
CN111442368A (zh) * 2019-01-17 2020-07-24 青岛海尔空调器有限总公司 吊顶式空调室内机
CN211822778U (zh) * 2020-02-26 2020-10-30 青岛海尔空调器有限总公司 壁挂式空调室内机及其导风板
CN212252857U (zh) * 2020-03-24 2020-12-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116874B2 (ja) * 1997-10-14 2000-12-11 ダイキン工業株式会社 空気調和装置の空気吹出口構造
JP3677388B2 (ja) * 1998-04-15 2005-07-27 松下エコシステムズ株式会社 浴室暖房換気乾燥ユニット用給排気グリル
JP4549053B2 (ja) * 2003-11-28 2010-09-22 シャープ株式会社 空気調和機
JP5786849B2 (ja) * 2012-12-28 2015-09-30 ダイキン工業株式会社 天井設置型室内機
CN104976744B (zh) * 2014-04-14 2017-11-28 海尔集团公司 空调器室内机风道结构
CN105864896B (zh) * 2016-05-27 2019-02-01 珠海格力电器股份有限公司 空调室内机及空调器
CN106679140A (zh) * 2017-02-28 2017-05-17 广东美的制冷设备有限公司 一种空调导风板、空调
CN107388371B (zh) * 2017-08-01 2020-11-03 青岛海尔空调器有限总公司 壁挂式空调室内机
CN207262565U (zh) * 2017-10-02 2018-04-20 广东美的制冷设备有限公司 空调室内机和空调器
CN107940576A (zh) * 2017-12-19 2018-04-20 广东美的制冷设备有限公司 空调室内机及具有其的空调器
CN108397820B (zh) * 2018-01-12 2020-03-31 青岛海尔空调器有限总公司 壁挂式空调室内机
KR102296710B1 (ko) * 2019-03-19 2021-09-02 엘지전자 주식회사 공기 조화기의 실내기
CN209926560U (zh) * 2019-05-31 2020-01-10 广东美的制冷设备有限公司 导风结构及壁挂式空调器
CN210399155U (zh) * 2019-06-18 2020-04-24 青岛海尔空调器有限总公司 柜式空调器室内机
CN111288551B (zh) * 2020-03-02 2023-06-16 青岛海尔空调电子有限公司 嵌入式空调
CN112032847B (zh) * 2020-08-18 2022-03-29 青岛海尔空调器有限总公司 壁挂式空调室内机
CN212511479U (zh) * 2020-08-18 2021-02-09 广东美的制冷设备有限公司 壁挂式空调室内机及空调器
CN112113278B (zh) * 2020-10-15 2022-07-19 青岛海尔空调器有限总公司 壁挂式空调室内机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728351B1 (ko) * 2006-07-27 2007-06-13 주식회사 대우일렉트로닉스 더블-플랩형 승강식 유동가이드유닛을 구비한 벽걸이형에어컨 및 그 제어방법
JP2014095496A (ja) * 2012-11-08 2014-05-22 Panasonic Corp 空気調和機の室内機
CN106322508A (zh) * 2015-06-25 2017-01-11 青岛海尔智能技术研发有限公司 一种空调室内机及空调组件
CN207422594U (zh) * 2017-09-30 2018-05-29 广东美的制冷设备有限公司 空调器和导风结构
CN207262572U (zh) * 2017-10-02 2018-04-20 广东美的制冷设备有限公司 空调室内机和空调器
CN108317600A (zh) * 2018-01-12 2018-07-24 青岛海尔空调器有限总公司 壁挂式空调室内机
CN111442368A (zh) * 2019-01-17 2020-07-24 青岛海尔空调器有限总公司 吊顶式空调室内机
CN110056960A (zh) * 2019-04-30 2019-07-26 青岛海尔空调器有限总公司 壁挂式空调室内机
CN211822778U (zh) * 2020-02-26 2020-10-30 青岛海尔空调器有限总公司 壁挂式空调室内机及其导风板
CN212252857U (zh) * 2020-03-24 2020-12-29 青岛海尔空调器有限总公司 壁挂式空调室内机

Also Published As

Publication number Publication date
CN114963332B (zh) 2023-05-16
CN114963332A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2021190201A1 (zh) 空调室内机
CN106482230A (zh) 一种混流空调
CN107076430A (zh) 空气调节机
CN106152442B (zh) 空调器的导风组件及空调器
WO2021190200A1 (zh) 空调室内机
WO2022247543A1 (zh) 壁挂式空调室内机
CN106662341A (zh) 空调机的室内机
CN112460687A (zh) 换热器及空调器
WO2023130769A1 (zh) 壁挂式空调室内机
WO2022174619A1 (zh) 壁挂式空调室内机
WO2023197569A1 (zh) 立式空调室内机
CN216307996U (zh) 壁挂式空调室内机
CN218721861U (zh) 立式空调室内机
WO2023082632A1 (zh) 壁挂式空调室内机
CN216744630U (zh) 壁挂式空调室内机
CN216308160U (zh) 壁挂式空调室内机
WO2021218292A1 (zh) 离心风机及具有该离心风机的窗机空调
CN211650516U (zh) 窗式空调器
CN114963328B (zh) 壁挂式空调室内机
WO2022174618A1 (zh) 壁挂式空调室内机
CN108375108B (zh) 壁挂式空调室内机
CN218120145U (zh) 导风板和壁挂式空调室内机
CN106482231A (zh) 一种混流空调
CN218120143U (zh) 导风板和壁挂式空调室内机
CN216308171U (zh) 壁挂式空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926333

Country of ref document: EP

Kind code of ref document: A1