WO2022173061A1 - 開閉弁 - Google Patents
開閉弁 Download PDFInfo
- Publication number
- WO2022173061A1 WO2022173061A1 PCT/JP2022/006015 JP2022006015W WO2022173061A1 WO 2022173061 A1 WO2022173061 A1 WO 2022173061A1 JP 2022006015 W JP2022006015 W JP 2022006015W WO 2022173061 A1 WO2022173061 A1 WO 2022173061A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- elastic
- valve
- hard magnetic
- space
- electromagnet
- Prior art date
Links
- 239000006249 magnetic particle Substances 0.000 description 21
- 239000000696 magnetic material Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 239000002612 dispersion medium Substances 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 9
- 239000000806 elastomer Substances 0.000 description 9
- 230000005389 magnetism Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000013013 elastic material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 229910000583 Nd alloy Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/02—Actuating devices; Operating means; Releasing devices electric; magnetic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K7/00—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
- F16K7/02—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
- F16K7/04—Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
Definitions
- the present invention relates to an on-off valve.
- an electromagnetic valve in which an elastic body is attached to a plate-shaped diaphragm made of a magnetic material (see Patent Document 1, for example).
- the solenoid valve separates the elastic body together with the diaphragm from the opening of the liquid inlet/outlet by the biasing force of the coil spring, thereby opening the solenoid valve.
- the electromagnetic valve causes the diaphragm and the elastic body to approach the opening of the liquid inlet/outlet by the magnetic force generated by the solenoid coil, thereby closing the electromagnetic valve.
- the diaphragm uses an alloy.
- the above-described conventional on-off valve has a rigid valve body, and its application is limited. Therefore, it is difficult to use the above-described conventional on-off valve as an on-off valve that requires flexibility.
- An object of the present invention is to provide an on-off valve with excellent flexibility.
- An on-off valve comprises an elastic space portion containing a hard magnetic elastic body, and an elastic space portion deformation causing element that deforms the elastic space portion by a magnetic force
- the elastic space portion deformation causing element comprises: Attractive force or repulsive force between the elastic space portion deformation causing element and the hard magnetic elastic body due to the magnetic force, a restoring force of at least one of the elastic space portion and the hard magnetic elastic body, and a resultant force of these forces and at least one of which deforms the elastic space to perform an open mode in which the space formed in the elastic space is opened and a closed mode in which the space is closed.
- the elastic space portion includes an elastic space portion body and the hard magnetic elastic body, and the hard magnetic elastic body is fixed to the outside of the elastic space portion body.
- the elastic space portion deformation generating element is provided outside the elastic space portion.
- the elastic space portion is formed of the hard magnetic elastic body, and the elastic space portion deformation causing element is provided outside the elastic space portion.
- the elastic valve body is made of the hard magnetic elastic body.
- the space can be closed in the initial state.
- the space can be opened in the initial state.
- the elastic space may be a tube containing the hard magnetic elastic body.
- the elastic space includes a rotary vane and a rotary vane case, and at least one of the rotary vane and the rotary vane case includes the hard magnetic elastic body.
- the elastic space may include a sheet member, and the sheet member may include the hard magnetic elastic body.
- the elastic space deformation generating element may be an electromagnet.
- FIG. 2 is a diagram schematically showing the essential part of the on-off valve according to the first embodiment of the present invention
- FIG. 6 is a diagram schematically showing a main part of an on-off valve according to a second embodiment of the present invention
- FIG. 10 is a diagram schematically showing a main part of an on-off valve according to a third embodiment of the present invention
- FIG. 11 is a diagram schematically showing a main part of an on-off valve according to a fourth embodiment of the present invention
- FIG. 10 is a diagram schematically showing a main part of an on-off valve according to a fifth embodiment of the present invention
- FIG. 11 is a diagram schematically showing a main part of an on-off valve according to a sixth embodiment of the present invention
- FIG. 11 is a cross-sectional view schematically showing a closed state of an on-off valve according to a seventh embodiment of the present invention
- 7B is a cross-sectional view schematically showing an open state of the on-off valve of FIG. 7A
- FIG. FIG. 11 is a cross-sectional view schematically showing an open state of an on-off valve according to an eighth embodiment of the present invention
- 8B is a cross-sectional view schematically showing a closed state of the on-off valve of FIG. 8A
- FIG. FIG. 20 is a cross-sectional view schematically showing an open state of an on-off valve according to a ninth embodiment of the present invention
- 9B is a cross-sectional view schematically showing a closed state of the on-off valve of FIG. 9A
- FIG. 21 is a cross-sectional view schematically showing a closed state of an on-off valve according to a tenth embodiment of the present invention
- 10B is a cross-sectional view schematically showing an open state of the on-off valve of FIG. 10A
- FIG. FIG. 21 is a cross-sectional view schematically showing an open state of an on-off valve according to an eleventh embodiment of the present invention
- 11B is a cross-sectional view schematically showing a closed state of the on-off valve of FIG. 11A
- FIG. 20 is a cross-sectional view schematically showing an open state of the on-off valve, which is a rotary vane actuator including an on-off valve, according to a twelfth embodiment of the present invention
- 12B is a cross-sectional view schematically showing a closed state of the on-off valve of FIG. 12A;
- FIG. 20 is a cross-sectional view schematically showing an open state of the on-off valve, which is a rotary vane actuator including an on-off valve, according to a twelfth embodiment of the present invention
- 12B is a cross-sectional view schematically showing a closed state of the on-off valve of FIG. 12A
- the on-off valve 1 includes an elastic space containing a hard magnetic elastic body, and an elastic space deformation generating element that deforms the elastic space by magnetic force.
- the elastic space portion deformation causing element has at least one of attractive force or repulsive force between the elastic space portion deformation causing element and the hard magnetic elastic body due to the magnetic force, and at least one of the elastic space portion and the hard magnetic elastic body.
- the elastic space is deformed by at least one of a restoring force and a resultant force of these forces, an open mode in which the space S1 formed in the elastic space is opened, and a closed mode in which the space S1 is closed. ,I do.
- Magneticism includes “hard magnetism” and “soft magnetism”.
- Hard magnetism refers to "the property of having a large coercive force, having spontaneous magnetism, and generating a magnetic force (or magnetic field) by itself".
- a “hard magnetic body” is a so-called magnet, and refers to an "object or substance having hard magnetism”.
- hard magnetic elastic body refers to "an elastic body having hard magnetic properties among hard magnetic bodies”.
- Soft magnetism refers to “the property of responding to a magnetic force (or magnetic field), but not generating a magnetic force (or magnetic field) itself".
- soft magnetic material refers to “an object or substance having soft magnetism”.
- soft magnetic elastic body refers to “an elastic body having soft magnetic properties among soft magnetic bodies”.
- FIG. 1 is a diagram schematically showing the essential parts of an on-off valve 1A according to the first embodiment of the present invention.
- the left side of the drawing shows the initial state and open state of the on-off valve 1A
- the right side of the drawing shows the closed state of the on-off valve 1A.
- the on-off valve 1A has an elastic space 2 containing a hard magnetic elastic body.
- the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
- the elastic space portion 2 is formed by separately forming the elastic space portion body 3 and the hard magnetic elastic body 5 and fixing the elastic space portion body 3 and the hard magnetic elastic body 5 together.
- the elastic space portion 2 includes a laminated portion in which the elastic space portion main body 3 and the hard magnetic elastic body 5 are laminated.
- the elastic space main body 3 is provided with two opposing walls, an opposing wall 3a and an opposing wall 3b.
- the two opposing walls 3a and 3b are walls arranged at positions facing each other across the central axis O1 of the on-off valve 1 (hereinafter also referred to as "the central axis O1").
- the opposing wall 3a is the upper wall and the opposing wall 3b is the lower wall.
- the opposing walls 3a and 3b are not limited to being arranged at positions opposed to each other in the vertical direction, and may be arranged at arbitrary opposing positions around the central axis O1, such as being arranged in the left-right direction (horizontal direction). can be placed.
- the two opposing walls 3a and 3b are spaced apart across the central axis O1.
- a space S1 having a volume V1 is formed between the two opposing walls 3a and 3b.
- the elastic space main body 3 is an elastic tube
- the elastic force of the elastic tube maintains the hollow state of the elastic tube.
- a space S1 can be formed between the two opposing walls 3a and 3b in the initial state of the on-off valve 1A.
- it is preferable that the position of the opposing wall 3a is fixed.
- a distribution object M is distributed in the space S1.
- the on-off valve 1A is a part of the passage R for allowing the circulation object M to circulate.
- Examples of the distribution object M include gas, liquid, fluid, slurry, and powder.
- the hard magnetic elastic body 5 is, for example, a permanent magnet elastic body having both functions of a permanent magnet and an elastic body.
- the hard magnetic elastic body 5 is polarized in the direction of motion (perpendicular to the axis) of the hard magnetic elastic body 5 (elastic space 2).
- the outer surface 5f1 and the inner surface 5f2 of the hard magnetic elastic body 5 have different magnetic poles.
- the outer surface 5f1 of the hard magnetic elastic body 5 is the S pole (N pole)
- the inner surface 5f2 of the hard magnetic elastic body 5 is the N pole (S pole).
- the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3.
- the hard magnetic elastic body 5 is located at one of two positions facing each other across the central axis O1 (the lower wall position in this embodiment), are also positioned on the outside.
- the hard magnetic elastic body 5 is fixed to the outer surface 3 f 1 of the opposing wall 3 b of the elastic space main body 3 .
- outer surface refers to an "outer surface in the axial direction”.
- inner surface refers to an inner surface in the axial direction.
- perpendicular direction refers to a direction perpendicular to the central axis O1.
- outside in the axial direction refers to the side farther from the central axis O1 in the axial direction.
- inside in the axial direction refers to the side closer to the center axis O1 in the axial direction.
- the elastic space portion deformation generating element can deform the elastic space portion 2 by magnetic force.
- the magnetic force is a magnetic force generated between the elastic space portion 2 and the elastic space portion deformation causing element due to the interaction between the hard magnetic elastic body and the elastic space portion deformation causing element.
- the elastic space deformation generating element can be made of a magnetic material.
- the elastic space deformation generating element is the electromagnet 6 .
- the electromagnet 6 is provided outside the elastic space portion 2 .
- the electromagnet 6 is provided outside the elastic space main body 3 at the other of the two positions facing each other across the central axis O1, which is different from the hard magnetic elastic body. .
- the electromagnet 6 is provided outside the opposing wall 3 a of the elastic space body 3 .
- the electromagnet 6 is preferably in contact with the outer surface 3 f 1 of the opposing wall 3 a of the elastic space body 3 .
- the electromagnet 6 can be fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space body 3 .
- the electromagnet 6 does not have to be in contact with the elastic space portion 2 .
- the electromagnet 6 can be spaced from the outer surface 3f1 of the opposing wall 3a of the elastic space main body 3. As shown in FIG. In this embodiment, the position of the electromagnet 6 can be fixed by, for example, fixing the electromagnet 6 to the on-off valve housing or the like.
- the on-off valve 1A can open and close the space S1 by deforming the elastic space portion 2 .
- the on-off valve 1A can be opened and closed by turning the electromagnet 6 ON/OFF. The basic operation of the on-off valve 1A will be described below.
- Initial state Open state
- the initial state of the on-off valve 1A is that the electromagnet 6 is OFF (de-energized state).
- the space S1 is open.
- the space S ⁇ b>1 is maintained by the elastic force of the elastic space body 3 . Therefore, the distribution object M can be distributed in the space S1.
- Closed state closed action (closed mode)
- the electromagnet 6 is turned on (energized state).
- the magnetic pole generated inside the electromagnet 6 is a magnetic pole S(N) different from the magnetic pole N(S) inside the hard magnetic elastic body 5 .
- an attractive force F65a due to magnetic force is generated between the hard magnetic elastic body 5 and the electromagnet 6, as shown on the right side of the drawing.
- the pulling force 65a is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
- the opposing wall 3b of the elastic space main body 3 moves toward the opposing wall 3a.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 finally comes into contact with the inner surface 3f2 of the opposing wall 3b.
- the space S1 is completely closed as shown on the right side of the drawing. That is, when the electromagnet 6 is turned on, the on-off valve 1A is closed as shown on the left side of the drawing. Therefore, the circulation of the circulation object M is cut off.
- Open state open operation (open mode)
- the electromagnet 6 is turned off.
- the on-off valve 1A can be stopped.
- the attracting force F65a disappears, and the restoring force (elastic force) of the elastic space main body 3 becomes dominant.
- the opposing wall 3b of the elastic space main body 3 moves away from the opposing wall 3a. This completely opens the space S1 again. That is, when the electromagnet 6 is turned off, the on-off valve 1A returns to its initial state as shown on the left side of the drawing. Therefore, the circulation object M can be circulated again in the space S1.
- the opening operation of the on-off valve 1A is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
- the opening operation of the on-off valve 1A can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
- the direction of the current flowing through the electromagnet 6 can be reversed from that in the closing operation. Thereby, a repulsive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
- the restoring speed can be increased compared to relying only on the restoring force of the elastic body (elastic space portion 2). Therefore, in the case of the on-off valve 1A, it is preferable to use the repulsive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the opening operation of the on-off valve 1A can be performed only by magnetic force.
- the opening operation of the on-off valve 1A can be performed, as described above, by causing the electromagnet 6 to flow a current in a direction different from that during the closing operation.
- the magnetic pole generated in the electromagnet 6 becomes the same magnetic pole as the magnetic pole inside the hard magnetic elastic body 5 , so that a repulsive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
- the space S1 is opened regardless of the presence or absence of the elastic force of the elastic body (elastic space portion 2).
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1A according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the position of the opposing wall 3a of the elastic space main body 3 is fixed.
- the two opposing walls 3a and 3b can be brought closer to each other and separated from each other without the elastic space main body 3 as a whole following the movement of the hard magnetic elastic body 5.
- the opposing wall 3a can be fixed to a support base, a device (storage case), or a work table (work stage).
- Fixing the position of the opposing wall 3a can be omitted by, for example, applying a constant tension to the elastic space body 3 along the central axis O1. In this case, the two opposing walls 3a and 3b can be moved toward and away from each other without the entire elastic space main body 3 following the movement of the hard magnetic elastic body 5.
- the hard magnetic elastic body 5 can be fixed to at least one of the two opposing walls 3a and 3b.
- the hard magnetic elastic body 5 can be fixed to the outer surface 3f1 of the opposing wall 3a.
- the electromagnet 6 is provided outside the opposing wall 3b of the elastic space main body 3. As shown in FIG.
- the on-off valve 1A After fixing the position of the hard magnetic elastic body 5, at least one of moving the electromagnet 6 in the axial direction and turning the electromagnet 6 on/off is performed. As a result, deformation of the facing wall 3b of the elastic space main body 3 can be caused.
- the method of driving the on-off valve 1A includes, for example, a method of turning on the electromagnet 6 and moving it, and a method of combining ON/OFF control of the electromagnet 6 and movement of the electromagnet 6. . These methods can be applied, for example, when a permanent magnet is used as the elastic space portion deformation generating element. However, the on-off valve 1A can open and close the space S1 by fixing the position of the electromagnet 6 .
- the state on the right side of the drawing can be the initial state of the on-off valve 1A. That is, the elastic space main body 3 can take the state in which the space S1 is closed as shown on the right side of the drawing as an initial state. In this case, the electromagnet 6 is ON in the initial state of the on-off valve 1A.
- the elastic space main body 3 can be set to the initial state shown on the right side of the drawing by the elastic force of the elastic space main body 3 .
- the electromagnet 6 can be turned off in the initial state of the on-off valve 1A.
- the electromagnet 6 is arranged outside the hard magnetic elastic body 5 at a position spaced from the hard magnetic elastic body 5 .
- the opening/closing valve 1A can deform the opposing wall 3b of the elastic space body 3 by turning the electromagnet 6 ON/OFF.
- FIG. 2 is a diagram schematically showing a main part of an on-off valve 1B according to a second embodiment of the invention.
- the left side of the drawing shows the initial state and the closed state of the on-off valve 1B
- the right side of the drawing shows the open state of the on-off valve 1B.
- the on-off valve 1B has an elastic space 2 containing a hard magnetic elastic body.
- the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
- the two opposing walls 3a and 3b of the elastic space body 3 are in contact. Specifically, the inner surface 3f2 of the opposing wall 3a and the inner surface 3f2 of the opposing wall 3b are in contact with each other. That is, the space S1 is closed in the initial state of the on-off valve 1B.
- the elastic space main body 3 is an elastic tube
- the elastic tube is maintained in a completely crushed state by the elastic force of the elastic tube.
- the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3.
- the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3 at one of two positions facing each other across the central axis O1, like the on-off valve 1A. ing. Specifically, it is fixed to the outer surface 3 f 1 of the opposing wall 3 b of the elastic space main body 3 .
- the elastic space portion deformation generating element can deform the elastic space portion 2 by magnetic force.
- the magnetic force is a magnetic force generated between the elastic space portion 2 and the elastic space portion deformation occurrence element due to the interaction between the magnetic elastic body and the elastic space portion deformation occurrence element.
- the elastic space deformation generating element can be made of a magnetic material.
- the elastic space deformation generating element is the electromagnet 6 .
- the electromagnet 6 is provided outside the elastic space portion 2 .
- the on-off valve 1B can open and close the space S1 by deforming the elastic space portion 2 .
- the on-off valve 1B can be opened and closed by turning the electromagnet 6 on and off. The basic operation of the on-off valve 1B will be described below.
- Initial state Close operation (closed mode)
- the electromagnet 6 is OFF in the initial state of the on-off valve 1B.
- the space S1 is closed. Therefore, the circulation of the circulation object M through the space S1 is blocked.
- the space S1 is closed by the elastic force of the elastic space body 3 . Also, when the electromagnet 6 is turned off, the on-off valve 1B can be stopped.
- Open state open operation (open mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is the same magnetic pole N(S) as the magnetic pole N(S) inside the hard magnetic elastic body 5 .
- a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the repulsive force F65r is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
- the facing wall 3a of the elastic space main body 3 and the facing wall 3b of the elastic space main body 3 move away from each other. This opens the space S1.
- the space S1 is formed between two opposing walls 3a and 3b. Therefore, the distribution object M can be distributed in the space S1.
- Closed state (stopped state): Closed operation (closed mode)
- the electromagnet 6 is turned off.
- the on-off valve 1B can be stopped.
- the repulsive force F65r disappears, and the effect of the restoring force (elastic force) of the elastic space main body 3 becomes dominant.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 move toward each other.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
- the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the on-off valve 1B returns to its initial state as shown on the left side of the drawing. Therefore, the circulation of the circulation object M is cut off again.
- the closing operation of the on-off valve 1B is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion body 3 and the hard magnetic elastic body 5).
- the closing operation of the on-off valve 1B can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
- the direction of the current flowing through the electromagnet 6 can be reversed from that in the opening operation.
- an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
- the restoring speed can be increased compared to relying only on the restoring force of the elastic body (elastic space portion 2).
- the closing force can be increased compared to relying only on the restoring force of the elastic body. Therefore, in the case of the on-off valve 1B, it is preferable to use the attractive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the closing operation of the on-off valve 1B can be performed only by magnetic force.
- the closing operation of the on-off valve 1B can be performed by causing the electromagnet 6 to flow a current in the opposite direction to the opening operation.
- an attractive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
- the space S1 is closed regardless of the presence or absence of the elastic force of the elastic body.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1B according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the electromagnet 6 is fixed to the opposing wall 3a of the elastic space main body 3. Thereby, the electromagnet 6 can be moved in the movement direction of the elastic space portion 2 together with the opposing wall 3a.
- the hard magnetic elastic body 5 is fixed to the opposing wall 3b of the elastic space main body 3. As shown in FIG. As a result, the hard magnetic elastic body 5 can be moved in the movement direction of the elastic space portion 2 together with the opposing wall 3b. That is, in the on-off valve 1B, the operation of the on-off valve 1B is realized by moving the hard magnetic elastic body 5 and the electromagnet 6 to mutually free positions. Therefore, the on-off valve 1B can be used without fixing the position of the hard magnetic elastic body 5 or the position of the electromagnet 6.
- the state on the right side of the drawing can be the initial state of the on-off valve 1B. That is, the elastic space main body 3 can take the state in which the space S1 is maintained as the initial state. In this case, the initial state of the on-off valve 1B can be maintained by turning on the electromagnet 6 to generate a repulsive force F65r between the electromagnet 6 and the hard magnetic elastic body 5.
- FIG. When the state in which the space S1 is opened by the elastic force of the elastic space body 3 is defined as the initial state, the electromagnet 6 can be turned off in the initial state of the on-off valve 1B.
- FIG. 3 is a diagram schematically showing a main part of an on-off valve 1C according to a third embodiment of the invention.
- the left side of the drawing shows the initial state and the closed state of the on-off valve 1C
- the right side of the drawing shows the open state of the on-off valve 1C.
- the on-off valve 1C has an elastic space portion 2 containing a hard magnetic elastic body.
- the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
- the two opposing walls 3a and 3b of the elastic space main body 3 are in contact with each other. That is, the space S1 is closed in the initial state of the on-off valve 1C.
- the elastic space main body 3 is an elastic tube
- the elastic tube is maintained in a completely crushed state by the elastic force of the elastic tube.
- the position of the opposing wall 3b is fixed.
- the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3.
- the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3 at the other of two positions facing each other across the central axis O1. Specifically, it is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
- the elastic space deformation generating element is the electromagnet 6.
- the electromagnet 6 is provided outside the elastic space portion 2 .
- the electromagnet 6 is arranged at the other of two positions facing each other across the central axis O1 and outside the elastic space portion 2 .
- the electromagnet 6 is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5. As shown in FIG. In this embodiment, the position of the electromagnet 6 is fixed.
- the on-off valve 1 ⁇ /b>C can open and close the space S ⁇ b>1 by deforming the elastic space portion 2 .
- the on-off valve 1C can be opened and closed by turning the electromagnet 6 on and off. The basic operation of the on-off valve 1C will be described below.
- Initial state Close operation (closed mode)
- the electromagnet 6 is OFF in the initial state of the on-off valve 1C.
- the space S1 is closed. Therefore, the circulation of the circulation object M through the space S1 is blocked.
- the space S ⁇ b>1 is closed by the elastic force of the elastic space body 3 . Also, when the electromagnet 6 is turned off, the on-off valve 1C can be stopped.
- Open state open operation (open mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the pulling force F65a is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
- the opposing wall 3a of the elastic space main body 3 moves away from the opposing wall 3b. This opens the space S1.
- the space S1 is formed between two opposing walls 3a and 3b. Therefore, the distribution object M can be distributed in the space S1.
- Closed state (stopped state): Closed operation (closed mode)
- the electromagnet 6 is turned off.
- the on-off valve 1C can be stopped.
- the attracting force F65a disappears, and the restoring force (elastic force) of the elastic space main body 3 becomes dominant.
- the opposing wall 3a of the elastic space main body 3 moves toward the opposing wall 3b.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 finally comes into contact with the inner surface 3f2 of the opposing wall 3b.
- the space S1 is closed again, as shown on the left side of the drawing.
- the closing operation of the on-off valve 1C is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
- the closing operation of the on-off valve 1C can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
- the restoring speed can be increased compared to relying only on the restoring force of the elastic body (elastic space portion 2).
- the closing force can be increased compared to relying only on the restoring force of the elastic body. Therefore, in the case of the on-off valve 1C, it is preferable to use the repulsive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the closing operation of the on-off valve 1C can be performed only by magnetic force.
- the closing operation of the on-off valve 1C can be performed by causing the electromagnet 6 to flow a current in a direction different from that during the opening operation.
- the magnetic pole generated in the electromagnet 6 becomes the same magnetic pole as the magnetic pole inside the hard magnetic elastic body 5 , so that a repulsive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
- the space S1 is closed regardless of the presence or absence of the elastic force of the elastic body.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1C according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the state on the right side of the drawing can be the initial state of the on-off valve 1C. That is, the elastic space main body 3 can take the state in which the space S1 is maintained as the initial state. In this case, the initial state of the on-off valve 1B can be maintained by turning on the electromagnet 6 to generate an attractive force F65a between the electromagnet 6 and the hard magnetic elastic body 5.
- FIG. When the state in which the space S1 is opened by the elastic force of the elastic space body 3 is defined as the initial state, the electromagnet 6 can be turned off in the initial state of the on-off valve 1C.
- FIG. 4 is a diagram schematically showing a main part of an on-off valve 1D according to a fourth embodiment of the invention.
- the left side of the drawing shows the initial state and open state of the on-off valve 1D
- the right side of the drawing shows the closed state of the on-off valve 1D.
- the on-off valve 1D is a modification of the on-off valve 1C.
- the two opposing walls 3a and 3b are separated across the central axis O1.
- a space S1 is formed between the two opposed walls 3a and 3b of the elastic space body 3 in the initial state of the on-off valve 1D.
- the elastic space main body 3 is an elastic tube
- the elastic force of the elastic tube maintains the hollow state of the elastic tube.
- a space S1 can be formed between the two opposing walls 3a and 3b.
- the on-off valve 1D can open and close the space S1 by deforming the elastic space portion 2. Particularly, in this embodiment, the on-off valve 1D can be opened and closed by turning the electromagnet 6 ON/OFF. The basic operation of the on-off valve 1D will be described below.
- Initial state Open state
- open operation open mode
- the electromagnet 6 is OFF in the initial state of the on-off valve 1D.
- the space S1 is maintained as shown on the left side of the drawing.
- the space S ⁇ b>1 is maintained by the elastic force of the elastic space body 3 . Therefore, the distribution object M can be distributed in the space S1.
- Closed state closed action (closed mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is the same magnetic pole S(N) as the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the repulsive force F65r is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
- the opposing wall 3a of the elastic space main body 3 moves toward the opposing wall 3b.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 finally comes into contact with the inner surface 3f2 of the opposing wall 3b.
- the space S1 is completely closed as shown on the right side of the drawing. That is, when the electromagnet 6 is turned off, the on-off valve 1D is closed as shown on the right side of the drawing. Therefore, the circulation of the circulation object M is cut off.
- Open state (stopped state): Open operation (open mode)
- the electromagnet 6 is turned off.
- the on-off valve 1D can be stopped.
- the repulsive force F65r disappears, and the effect of the restoring force (elastic force) of the elastic space main body 3 becomes dominant.
- the opposing wall 3a of the elastic space main body 3 moves away from the opposing wall 3b. This completely opens the space S1 again. That is, when the electromagnet 6 is turned off, the on-off valve 1D returns to its initial state as shown on the left side of the drawing. Therefore, the circulation object M can be circulated again in the space S1.
- the opening operation of the on-off valve 1D is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
- the opening operation of the on-off valve 1D can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
- the direction of the current flowing through the electromagnet 6 can be reversed from that in the closing operation.
- an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
- the restoring speed can be increased compared to relying only on the restoring force of the elastic body. Therefore, in the case of the on-off valve 1D, it is preferable to use the attractive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the opening operation of the on-off valve 1D can be performed only by magnetic force.
- the opening operation of the on-off valve 1D can be performed, as described above, by causing the electromagnet 6 to flow a current in a direction different from that during the closing operation.
- an attractive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
- the space S1 is opened regardless of the presence or absence of the elastic force of the elastic body.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1D according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the elastic space main body 3 does not exist between the hard magnetic elastic body 5 and the electromagnet 6 (elastic space portion deformation causing element). That is, the elastic space main body 3 is positioned outside the magnetic flux between the hard magnetic elastic body 5 and the electromagnet 6 . Therefore, if the position of the opposing wall 3b of the elastic space main body 3 is not fixed, the elastic space main body 3 as a whole follows the movement of the hard magnetic elastic body 5. As shown in FIG. Therefore, in the case of on-off valves such as the on-off valves 1C and 1D, it is preferable to fix the position of the opposite wall to which the hard magnetic elastic body 5 is not fixed, out of the two opposing walls of the elastic space body. In the on-off valves 1C and 1D, the position of the opposing wall 3b of the elastic space main body 3 is fixed.
- the position of the opposing wall 3b of the elastic space main body 3 is fixed.
- the two opposing walls 3a and 3b can be brought closer to each other and separated from each other without the elastic space main body 3 as a whole following the movement of the hard magnetic elastic body 5.
- the opposing wall 3b can be fixed to a support stand, a device (storage case), a work table (work stage), and an on-off valve housing.
- it is not essential to fix the facing wall 3b.
- Fixing the position of the opposing wall 3b can be omitted by, for example, applying a constant tension along the central axis O1 to the elastic space main body 3 (elastic space 2).
- the two opposing walls 3a and 3b can be moved toward and away from each other without the entire elastic space main body 3 following the movement of the hard magnetic elastic body 5.
- the hard magnetic elastic body 5 is arranged at one or the other (one side) of two positions facing each other across the central axis O1.
- the hard magnetic elastic body 5 can be fixed to either one of the two opposing walls 3a and 3b.
- the hard magnetic elastic body 5 in the on-off valve 1B, can be provided outside the opposing wall 3a.
- the electromagnet 6 can be provided outside the opposing wall 3b of the elastic space main body 3. As shown in FIG.
- the hard magnetic elastic body 5 can be arranged at two positions facing each other across the central axis O1.
- FIG. 5 is a diagram schematically showing a main part of an on-off valve 1E according to a fifth embodiment of the invention.
- the left side of the drawing shows the initial state and the closed state of the on-off valve 1E
- the right side of the drawing shows the open state of the on-off valve 1E.
- the on-off valve 1E has an elastic space 2 containing a hard magnetic elastic body.
- the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
- the two opposing walls 3a and 3b of the elastic space body 3 are in contact. That is, the space S1 is closed in the initial state of the on-off valve 1E.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 are in contact with each other by an attractive force F55a due to magnetic force.
- the elastic space main body 3 is an elastic tube
- the elastic tube is maintained in a completely crushed state by the pulling force F55a.
- the elastic space portion 2 includes two hard magnetic elastic bodies 5a and 5b.
- the two hard magnetic elastic bodies 5a and 5b are fixed to the outer surface 3f1 of the elastic space body 3, respectively.
- the hard magnetic elastic body 5a is fixed to the outer surface 3f1 of the elastic space main body 3 at the other of two positions facing each other across the central axis O1.
- the hard magnetic elastic body 5 a is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
- the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the elastic space main body 3 at one of two positions facing each other across the central axis O1.
- the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the opposing wall 3b of the elastic space main body 3. As shown in FIG.
- the elastic space generating deformation element is the electromagnet 6.
- the on-off valve 1E has two electromagnets 6a and 6b.
- the two electromagnets 6a and 6b are provided outside the elastic space 2, respectively.
- the electromagnet 6a is arranged at the other of two positions facing each other across the central axis O1 and outside the hard magnetic elastic body 5. As shown in FIG. Specifically, the electromagnet 6a is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5a.
- the electromagnet 6b is arranged at one of two positions facing each other across the central axis O1 and outside the hard magnetic elastic body 5. As shown in FIG. Specifically, the electromagnet 6b is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5b.
- the on-off valve 1E can open and close the space S1 by deforming the elastic space portion 2. Particularly, in this embodiment, the on-off valve 1E can be opened and closed by turning the electromagnet 6 on and off. The basic operation of the on-off valve 1E will be described below.
- Initial state Close operation (closed mode)
- the electromagnet 6 is OFF in the initial state of the on-off valve 1E.
- the space S1 is closed. Therefore, the circulation of the circulation object M through the space S1 is blocked.
- the inner surface 5f2 of the hard magnetic elastic body 5a and the inner surface 5f2 of the hard magnetic elastic body 5b are arranged at positions facing each other across the central axis O1.
- the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5a is different from the magnetic pole S(N) generated on the inner surface 5f2 of the hard magnetic elastic body 5b.
- an attractive force F55a due to the magnetic force is generated in each of the hard magnetic elastic bodies 5a and 5b.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 move toward each other due to the attraction force F55a.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 are in contact with each other. Therefore, in the initial state of the on-off valve 1E, the space S1 is closed by the attractive force F55a to the two hard magnetic elastic bodies 5a and 5b. Also, by turning off the electromagnet 6, the on-off valve 1E can be stopped.
- Open state open operation (open mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the attractive force F65a is made stronger than the attractive force F55a for the two hard magnetic elastic bodies 5a and 5b.
- the facing wall 3a of the elastic space main body 3 and the facing wall 3b of the elastic space main body 3 move away from each other. This opens the space S1.
- the space S1 is formed between two opposing walls 3a and 3b. Therefore, the distribution object M can be distributed in the space S1.
- Closed state closed action (closed mode)
- the electromagnet 6 is turned off.
- the on-off valve 1E can be stopped.
- the attractive force F65a disappears, and the influence of the attractive force F55a on the two hard magnetic elastic bodies 5a and 5b becomes dominant.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 move toward each other.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
- the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the on-off valve 1E returns to its initial state as shown on the left side of the drawing. Therefore, the circulation of the circulation object M is cut off again.
- the closing operation of the on-off valve 1E is performed by the attraction force F55a between the hard magnetic elastic bodies 5.
- the closing operation of the on-off valve 1E can also be performed by switching the direction of the electric current of the electromagnet 6, like the other on-off valves.
- the closing operation of the on-off valve 1E can also be performed by reversing the direction of the current flowing through the electromagnet 6 to the opening operation, similarly to the other on-off valves.
- a repulsive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
- the restoring speed can be increased as compared with the attraction force F55a between the hard magnetic elastic bodies 5 alone.
- the closing force can be increased compared to the attraction force F55a between the hard magnetic elastic bodies 5 alone. Therefore, in the case of the on-off valve 1E, it is preferable to use the repulsive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the closing operation of the on-off valve 1E is also performed by applying the elastic force of an elastic body (at least one of the elastic space main body 3 and the hard magnetic elastic body 5), similar to other on-off valves.
- the presence or absence of elastic force of the elastic body is optional.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1E according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the state on the right side of the drawing can be the initial state of the on-off valve 1E. That is, the elastic space main body 3 can take the state in which the space S1 is maintained as the initial state. In this case, the initial state of the on-off valve 1E can be maintained by turning on the electromagnet 6 to generate an attractive force F65a between the electromagnet 6 and the hard magnetic elastic body 5.
- FIG. 6 is a diagram schematically showing a main part of an on-off valve 1F according to a sixth embodiment of the present invention.
- the left side of the drawing shows the initial state and open state of the on-off valve 1F
- the right side of the drawing shows the closed state of the on-off valve 1F.
- the on-off valve 1F is a modification of the on-off valve 1E.
- the two opposing walls 3a and 3b are separated across the central axis O1.
- a space S1 is formed between the two opposing walls 3a and 3b of the elastic space body 3.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 are separated from each other by a magnetic repulsive force F55r. Thereby, the space S1 is maintained in the initial state of the on-off valve 1F.
- the on-off valve 1F can open and close the space S1 by deforming the elastic space portion 2. As shown in FIG. In particular, in this embodiment, the on-off valve 1F can be opened and closed by turning the electromagnet 6 on and off. The basic operation of the on-off valve 1F will be described below.
- Initial state Open state
- Open mode Open operation
- the electromagnet 6 is OFF in the initial state of the on-off valve 1F.
- the space S1 is maintained in the initial state of the on-off valve 1F. Therefore, the distribution object M can be distributed in the space S1.
- the inner surface 5f2 of the hard magnetic elastic body 5a and the inner surface 5f2 of the hard magnetic elastic body 5b are arranged at positions facing each other across the central axis O1.
- the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5a is the same magnetic pole as the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5b.
- Closed state closed action (closed mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is the same magnetic pole S(N) as the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the repulsive force F65r is made stronger than the repulsive force F55r against the two hard magnetic elastic bodies 5a and 5b.
- the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 move toward each other.
- the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
- the space S1 is completely closed as shown on the right side of the drawing. That is, when the electromagnet 6 is turned off, the on-off valve 1F is closed as shown on the right side of the drawing. Therefore, the circulation of the circulation object M is cut off. Therefore, the circulation of the circulation object M is cut off.
- Open state (stopped state): Open operation (open mode)
- the electromagnet 6 is turned off.
- the on-off valve 1F can be stopped.
- the repulsive force F65r disappears, and the influence of the repulsive force F55r on the two hard magnetic elastic bodies 5a and 5b becomes dominant.
- the facing wall 3a of the elastic space body 3 and the facing wall 3b of the elastic space body 3 move away from each other. This completely opens the space S1 again. That is, when the electromagnet 6 is turned off, the on-off valve 1F returns to its initial state as shown on the left side of the drawing. Therefore, the circulation object M can be circulated again in the space S1.
- the opening operation of the on-off valve 1F is performed by the repulsive force F55r between the hard magnetic elastic bodies 5.
- the opening operation of the on-off valve 1F can also be performed by switching the direction of the electric current of the electromagnet 6, like the other on-off valves.
- the opening operation of the on-off valve 1F can also be performed by reversing the direction of the current flowing through the electromagnet 6 to the closing operation, as with the other on-off valves. As a result, an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
- the restoring speed can be increased compared to relying only on the repulsive force F55r between the hard magnetic elastic bodies 5.
- FIG. therefore, in the case of the on-off valve 1F, it is preferable to use the attractive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic body.
- the opening operation of the on-off valve 1F is also performed by applying the elastic force of an elastic body (at least one of the elastic space main body 3 and the hard magnetic elastic body 5), similarly to other on-off valves.
- the presence or absence of elastic force of the elastic body is optional.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1F according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the electromagnet 6 is turned ON/OFF by both the electromagnet 6a and the electromagnet 6b. At least one of 6a and electromagnet 6b can be performed.
- FIG. 7A is a cross-sectional view schematically showing an initial state and a closed state of an on-off valve 1G according to a seventh embodiment of the invention. Also, FIG. 7B is a cross-sectional view schematically showing an open state of the on-off valve 1G.
- the on-off valve 1G has an elastic space 2 containing a hard magnetic elastic body.
- the elastic space portion 2 has two opposing walls, ie, opposing walls 11 and 12 .
- the two opposing walls 11 and 12 are walls arranged at positions facing each other across the central axis O1.
- the opposing wall 11 is a sheet member.
- the opposing wall 11 and the opposing wall 12 are separated from each other across the central axis O1, thereby creating a space of volume V1 between the opposing wall 11 and the opposing wall 12. S1 can be formed.
- the on-off valve 1G becomes a part of the passage R for circulating the object M to be circulated.
- the position of the opposing wall 12 is fixed.
- the opposing wall 11 functions as a valve body
- the opposing wall 12 functions as a valve seat.
- the facing wall 11 includes a hard magnetic elastic body 5 and a facing wall main body 13 .
- the opposing wall body 13 functions as a valve body.
- the opposing wall main body 13 is made of an elastic material that can be deformed and restored. Examples of such elastic materials include natural rubber, synthetic rubber, polymeric elastic bodies, and the like.
- the opposing wall main body 13 is a sheet member.
- the hard magnetic elastic body 5 is fixed to the outer surface 13 f 1 of the opposing wall main body 13 .
- the opposing wall main body 13 can be deformed following the movement of the hard magnetic elastic body 5 that receives the magnetic force.
- the outer surface 5f1 of the hard magnetic elastic body 5 is the N pole
- the inner surface 5f2 of the hard magnetic elastic body 5 is the S pole.
- the inner surface 13f2 of the opposing wall main body 13 is in contact with the inner surface 12f2 of the opposing wall 12 in the initial state of the on-off valve 1G.
- the inner surface 12f2 of the opposing wall 12 functions together with the inner surface 13f2 of the opposing wall main body 13 as a sealing surface capable of opening the space S1.
- the material itself forming the opposing wall 12 does not necessarily have to be responsive to magnetic force (magnetic field). Therefore, the opposing wall 12 can be made of various materials.
- the opposing wall 12 can be made non-magnetic.
- non-magnetic means "the property of not responding to magnetic force (or magnetic field) and not generating magnetic force (or magnetic field) by itself.
- non-magnetic materials include copper, gold, Examples include metals such as silver, zinc, and lead, and non-metals such as resin, glass, ceramic, wood, etc.
- the opposing wall 12 may be made of, for example, a magnetic material.
- the elastic space generating deformation element includes two elastic space generating deformation elements.
- one of the elastic space-generating deformation elements is the electromagnet 6 .
- the electromagnet 6 is provided outside the elastic space portion 2 .
- the electromagnet 6 is arranged at the other of two positions facing each other across the central axis O1 and outside the hard magnetic elastic body 5 . Specifically, the electromagnet 6 is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5.
- a soft magnetic material 7 is provided as another elastic space generating deformation element.
- the soft magnetic body 7 is provided on the facing wall 12 .
- the soft magnetic body 7 is provided inside the opposing wall 12 at the other of two positions facing each other across the central axis O1.
- the addition of the soft magnetic material 7 as another elastic space-generating deformation element can further strengthen the closed state of the on-off valve 1G.
- the soft magnetic body 7 can be omitted.
- the soft magnetic body 7 is made of a soft magnetic metal such as iron, cobalt, nickel, or the like.
- the soft magnetic body 7 can be embedded in the facing wall 12 or arranged on the opposite surface of the facing wall 12 from the inner surface 12f2 (outer surface 12f1 of the facing wall 12).
- the opposing wall main body 13 is distorted toward the opposing wall 12 by an attractive force F75 due to the magnetic force between the hard magnetic elastic body 5 and the soft magnetic body 7.
- FIG. Thereby, the opposing wall main body 13 is in contact with the opposing wall 12 in the initial state of the on-off valve 1G. Therefore, in the on-off valve 1G, the space S1 is closed in the initial state of the on-off valve 1G, as shown in FIG. 7A.
- the electromagnet 6 is obtained by winding a current-carrying coil 62 around a magnetic element (core material) 61 .
- a power source 70 is connected to the energizing coil 62 .
- the direction of current flowing from the power supply 70 can be controlled by a controller 80 such as a computer. Therefore, in this embodiment, the polar orientation of the electromagnet 6 can be controlled by the controller 80 .
- the on-off valve 1G further includes a power source 70 and a controller 80 .
- the electromagnet 6 can generate either an attractive force F65a or a repulsive force F65r due to the magnetic force in relation to the hard magnetic elastic body 5 by changing the direction of the current flowing through the energizing coil 62. .
- an attractive force F65a or a repulsive force F65r due to the magnetic force in relation to the hard magnetic elastic body 5 by changing the direction of the current flowing through the energizing coil 62.
- the on-off valve 1G includes a power supply 70 and a controller 80.
- the elastic space portion 2 is formed by the facing wall 11 and the facing wall 12 .
- the facing wall 11 includes a hard magnetic elastic body 5 and a facing wall main body 13 .
- the opposing wall main body 13 is an elastic sheet member.
- the on-off valve 1G can open and close the space S1 by deforming the elastic space portion 2. Particularly, in this embodiment, the on-off valve 1G can be opened and closed by turning the electromagnet 6 on and off. The basic operation of the on-off valve 1G will be described below.
- Initial state Closed state
- the electromagnet 6 is OFF in the initial state of the on-off valve 1G.
- FIG. 7A when the electromagnet 6 is OFF, the inner surface 13f2 of the opposing wall main body 13 is brought into contact with the inner surface 12f2 of the opposing wall 12 by an attractive force F75a between the hard magnetic elastic body 5 and the soft magnetic body 7. ing. Therefore, in the initial state of the on-off valve 1G, the space S1 is closed by the attractive force F75a between the hard magnetic elastic body 5 and the soft magnetic body 7. As shown in FIG. Also, by turning off the electromagnet 6, the on-off valve 1G can be stopped.
- Open state open operation (open mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the attraction force F65a is made stronger than the attraction force F75a between the hard magnetic elastic body 5 and the soft magnetic body 7.
- FIG. As a result, the inner surface 13f2 of the opposing wall body 13 moves away from the inner surface 12f2 of the opposing wall 12, as shown in FIG. 7B. This opens the space S1. Therefore, the distribution object M can be distributed in the space S1.
- Closed state closed action (closed mode)
- the electromagnet 6 is turned off.
- the on-off valve 1G can be stopped.
- the attractive force F65a disappears, and the influence of the attractive force F75a between the soft magnetic body 7 and the electromagnet 6 becomes dominant.
- the opposing wall 11 moves toward the opposing wall 12 as shown in FIG. 7A.
- the inner surface 13f2 of the opposing wall body 13 finally comes into contact with the inner surface 12f2 of the opposing wall 12.
- FIG. This closes the space S1 again, as shown in FIG. 7A. That is, when the electromagnet 6 is turned off, the on-off valve 1G returns to its initial state as shown in FIG. 7A.
- the closing operation of the on-off valve 1G is performed by the attractive force F75a between the hard magnetic elastic body 5 and the soft magnetic body 7.
- the closing operation of the on-off valve 1G is also performed by switching the direction of the electric current of the electromagnet 6 and adding the magnetic force between the hard magnetic elastic body 5 and the electromagnet 6, as in other on-off valves. It can be carried out.
- the closing operation of the on-off valve 1G is performed by applying the elastic force of an elastic body (at least one of the opposing wall main body 13 and the hard magnetic elastic body 5), similarly to other on-off valves. can be done.
- the closed mode and the open mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
- the on-off valve 1G according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the electromagnet 6 can be turned ON in the initial state.
- the magnetic pole generated inside the electromagnet 6 is the same magnetic pole N(S) as the magnetic pole N(S) inside the hard magnetic elastic body 5 .
- a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the on-off valve 1G can firmly close the passage R in the initial state.
- the elastic space portion 2 can also be formed by the opposing wall 11 and the opposing wall 12, and the opposing wall 11 and the opposing wall 12 can be sheet members. Thereby, the elastic space portion 2 can be provided with a sheet member.
- FIGS. 8A and 8B to 11A and B show an example in which a sheet member is used as the elastic space 2 instead of the tube.
- FIG. 8A is a cross-sectional view schematically showing an initial state and an open state of an on-off valve 1H according to an eighth embodiment of the invention. Also, FIG. 8B is a cross-sectional view schematically showing a closed state of the on-off valve 1H.
- the on-off valve 1H is a modification of the on-off valve 1A already disclosed in FIGS. 1A and 1B.
- the on-off valve 1H is an embodiment in which the elastic space portion 2 is formed by a plurality of sheet members instead of the tube.
- the on-off valve 1 ⁇ /b>H is formed by a facing wall 11 and a facing wall 12 .
- the opposing wall 11 is the upper wall and the opposing wall 12 is the lower wall.
- the opposing walls 11 and 12 are not limited to being arranged at positions opposed to each other in the vertical direction, and may be arranged at arbitrary opposing positions around the central axis O1, such as being arranged in the left-right direction (horizontal direction). can be placed.
- the facing wall 11 includes a hard magnetic elastic body 5 and a facing wall main body 13 . Furthermore, the opposing wall main body 13 is an elastic sheet member. Also, the opposing wall 12 is a sheet member. Further, in the present embodiment, the electromagnet 6 is arranged with a space from the outer surface 12f1 of the opposing wall 12 .
- the basic operation of the on-off valve 1H can be the same as that of the on-off valve 1A.
- the opposing wall 12 can be made of an elastic sheet member.
- the outer surface 5f1 of the hard magnetic elastic body 5 is the N pole
- the inner surface 5f2 of the hard magnetic elastic body 5 is the S pole.
- FIG. 9A is a cross-sectional view schematically showing an initial state and an open state of an on-off valve 1I according to a ninth embodiment of the present invention.
- FIG. 9B is a sectional view schematically showing a closed state of the on-off valve 1I.
- the on-off valve 1I is a modification of the on-off valve 1D disclosed in FIGS. 4A and 4B.
- the on-off valve 1I is an embodiment in which the elastic space portion 2 is formed by a plurality of sheet members instead of the tube.
- the on-off valve 1I is formed by a facing wall 11 and a facing wall 12 .
- the opposing wall 11 is the upper wall and the opposing wall 12 is the lower wall.
- the opposing walls 11 and 12 are not limited to being arranged at positions opposed to each other in the vertical direction, and may be arranged at arbitrary opposing positions around the central axis O1, such as being arranged in the left-right direction (horizontal direction). can be placed.
- the facing wall 11 includes a hard magnetic elastic body 5 and a facing wall main body 13 . Furthermore, the opposing wall main body 13 is an elastic sheet member. Also, the opposing wall 12 is a sheet member.
- the basic operation of the on-off valve 1I can be the same as that of the on-off valve 1D.
- the opposing wall 12 can be made of an elastic sheet member.
- the hard magnetic elastic body 5 has an outer surface 5f1 of the hard magnetic elastic body 5 as an N pole, and an inner surface 5f2 of the hard magnetic elastic body 5 as an S pole.
- FIG. 10A is a cross-sectional view schematically showing an initial state and a closed state of an on-off valve 1J according to the tenth embodiment of the present invention. Also, FIG. 10B is a cross-sectional view schematically showing an open state of the on-off valve 1J.
- the on-off valve 1J is a modification of the on-off valve 1E disclosed in FIGS. 5A and 5B.
- the on-off valve 1J is an embodiment in which the elastic space portion 2 is formed by a plurality of sheet members instead of the tube.
- the on-off valve 1J is formed by a facing wall 11 and a facing wall 12 .
- the facing wall 11 includes a hard magnetic elastic body 5a and a facing wall main body 13a.
- the facing wall 12 includes a hard magnetic elastic body 5b and a facing wall main body 13b.
- the opposing wall main bodies 13a and 13b are respectively elastic sheet members.
- the basic operation of the on-off valve 1J can be the same as that of the on-off valve 1E.
- the outer surface 5f1 of the hard magnetic elastic body 5 is the N pole
- the inner surface 5f2 of the hard magnetic elastic body 5 is the S pole.
- FIG. 11A is a cross-sectional view schematically showing an initial state and an open state of an on-off valve 1K according to an eleventh embodiment of the present invention. Also, FIG. 11B is a cross-sectional view schematically showing a closed state of the on-off valve 1K.
- the on-off valve 1K is a modification of the on-off valve 1J.
- the basic operation of the on-off valve 1K can be the same as that of the on-off valve 1F already disclosed in FIG.
- the outer surface 5f1 of the hard magnetic elastic body 5 is the N pole
- the inner surface 5f2 of the hard magnetic elastic body 5 is the S pole.
- the elastic space portion 2 of the on-off valves 1A to 1F can be formed by the opposing walls 11 and 12, and the opposing walls 11 and 12 can be formed by sheet members. It will be described as an example. Therefore, the on-off valves 1B and 1C other than the on-off valves 1A, 1D to 1F described in the on-off valves 1H to 1K are also formed by the facing wall 11 and the facing wall 12, and the facing wall 11 and the facing wall 12 are formed. Of course, it can be formed by a sheet member.
- FIG. 12A is a rotary vane actuator including an on-off valve 1L according to a twelfth embodiment of the present invention, and is a cross-sectional view schematically showing an initial state and an open state of the on-off valve 1L.
- FIG. 13B is a sectional view schematically showing a closed state of the on-off valve 1L.
- the on-off valve 1L is an example applied to a rotary vane actuator 100 (hereinafter also referred to as "actuator 100").
- 12A and 12B each show a portion of the actuator 100 in cross section perpendicular to the rotation axis O2 of the shaft 103.
- FIG. 1 is an example applied to a rotary vane actuator 100 (hereinafter also referred to as "actuator 100").
- 12A and 12B each show a portion of the actuator 100 in cross section perpendicular to the rotation axis O2 of the shaft 103.
- the actuator 100 includes a case 101, vanes 102, and a shaft 103.
- a cylinder chamber S2 is formed in the case 101 .
- Vane 102 and shaft 103 are arranged in cylinder chamber 100S.
- Vane 102 is fixed relative to shaft 103 . This allows the vanes 102 to rotate the shaft 103 around the rotation axis O2.
- the on-off valve 1L includes an elastic space 2 containing a hard magnetic elastic body.
- the elastic space portion 2 is formed by a case 101 having a hard magnetic elastic body 5 and vanes 102 .
- the hard magnetic elastic body 5 is attached to the inner surface of the cylinder chamber S2 formed in the case 101 .
- the hard magnetic elastic body 5 is attached so as to form a space (gap) S1 between the hard magnetic elastic body 5 and the vane 102 .
- the actuator 100 is provided with an elastic space deformation generating element.
- An electromagnet 6 can be used as the elastic space portion deformation generating element.
- the hard magnetic elastic body 5 can be seated on the vane 102 by an attractive force F65a due to the magnetic force between the electromagnet 6 and the hard magnetic elastic body 5.
- Initial state Open state
- the electromagnet 6 is OFF in the initial state of the on-off valve 1L.
- the space S1 is maintained in the initial state of the on-off valve 1L. Therefore, the distribution object M can be distributed in the space S1.
- An object to be circulated (for example, hydraulic fluid) M input from the inlet (INLET) side of the cylinder chamber S2 flows out to the outlet (OUTLET) side of the cylinder chamber S2 through the space S1.
- the circulating object M that is input from the inlet (INLET) side and acts on the vane 102 does not rotate the shaft 103 . Therefore, the actuator 100 is in a neutral state in which power is not transmitted in the initial state.
- Closed state closed action (closed mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the inner surface 5f2 of the hard magnetic elastic body 5 moves toward the outer surface 102f of the vane 102, as shown in FIG. 12B.
- the inner surface 5f2 of the hard magnetic elastic body 5 finally comes into contact with the outer surface 102f of the vane 102.
- FIG. This completely closes the space S1 as shown in FIG.
- the electromagnet 6 when the electromagnet 6 is turned on, the circulation of the circulation object M is interrupted. At this time, the vane 102 rotates the shaft 103 by the distribution object M input from the inlet (INLET) while maintaining the blocking state between the vane 102 and the hard magnetic elastic body 5 . Therefore, when the electromagnet 6 is in the ON state (energized state), the actuator 100 is in a power transmission state in which the force of the circulation object M acting on the vane 102 is transmitted as power for rotating the shaft 103 .
- Open state (stopped state): Open operation (open mode)
- the electromagnet 6 is turned off.
- the on-off valve 1L can be stopped.
- the attractive force F65a disappears, and the effect of the restoring force (elastic force) of the hard magnetic elastic body 5 becomes dominant.
- the hard magnetic elastic body 5 moves away from the vane 102 as shown in FIG. 12A.
- the actuator 100 is in a neutral state in which the power for rotating the shaft 013 is not transmitted to the vane 102 when the electromagnet 6 is in an OFF state (non-energized state).
- the opening operation of the on-off valve 1L is performed by the elastic force of the elastic space portion 2 (hard magnetic elastic body 5).
- the opening operation of the on-off valve 1L is also performed by switching the direction of the current of the electromagnet 6, as in other on-off valves, by changing the elastic force of the elastic body (elastic space portion 2) and the magnetic force. It can be done by a resultant force.
- the opening operation of the on-off valve 1L can also be performed only by magnetic force by switching the direction of the current of the electromagnet 6, similarly to the other on-off valves.
- the vane 102 can be made of, for example, magnetic metal.
- the on-off valve 1L brings the hard magnetic elastic body 5 into contact with the vane 102 by an attractive force F65a due to the magnetic force between the hard magnetic elastic body 5 and the vane 102. can be done.
- the basic operation of the on-off valve 1L in that case will be described below.
- Initial state Closed operation (closed mode)
- the electromagnet 6 is OFF in the initial state of the on-off valve 1M.
- the space S1 is closed as shown in FIG. 12B. Therefore, the circulation of the circulation object M through the space S1 is blocked.
- an attractive force F53a due to magnetic force is generated on the inner surface 5f2 of the hard magnetic elastic body 5 and the outer surface 102f of the vane 102b.
- the hard magnetic elastic body 5 and the vane 102 are in complete contact. That is, in the initial state of the on-off valve 1L, the space S1 is completely closed. Therefore, when the electromagnet 6 is in the OFF state (non-energized state), the actuator 100 is in a power transmission state in which the force of the distribution object M acting on the vane 102 is transmitted as power for rotating the shaft 103 .
- Open state open operation (open mode) Turn on the electromagnet 6 .
- the magnetic pole generated inside the electromagnet 6 is the same magnetic pole S(N) as the magnetic pole S(N) outside the hard magnetic elastic body 5 .
- a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
- the repulsive force F65r is made stronger than the attractive force F53a between the hard magnetic elastic body 5 and the vane 102b.
- the hard magnetic elastic body 5 and the vane 102 move away from each other. This opens the space S1. Therefore, the distribution object M can be distributed in the space S1. Therefore, the actuator 100 is in a neutral state in which the power for rotating the shaft 013 is not transmitted to the vane 102 when the electromagnet 6 is in the ON state (energized state).
- Closed state closed action (closed mode)
- the electromagnet 6 is turned off.
- the on-off valve 1L can be stopped.
- the repulsive force F65r disappears, and the influence of the attractive force F53a between the hard magnetic elastic body 5 and the vane 102 becomes dominant.
- the space S1 is closed again, as shown in FIG. 12B. That is, when the electromagnet 6 is turned off, the on-off valve 1F returns to its initial state as shown in FIG. 12B. Therefore, the circulation of the circulation object M is cut off again.
- the actuator 100 is again in a power transmission state in which the force of the circulation object M acting on the vane 102 is transmitted as power for rotating the shaft 103 .
- the closing operation of the on-off valve 1L is performed by the attraction force F53a between the hard magnetic elastic body 5 and the vane 102.
- the closing operation of the on-off valve 1L is also performed by switching the direction of the current of the electromagnet 6 and by adding the magnetic force between the hard magnetic elastic body 5 and the electromagnet 6, as in other on-off valves. It can be carried out.
- the closing operation of the on-off valve 1L can also be performed by applying the elastic force of the elastic space portion 2 (hard magnetic elastic body 5), similarly to other on-off valves.
- the closing mode and the opening mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current.
- the on-off valve 1L according to the present embodiment it is possible to intermittently circulate the circulation object M through the space S1.
- the hard magnetic elastic body 5 can be attached to the vane 102 instead of the case 101. Furthermore, the hard magnetic elastic body 5 can be attached to both the case 101 and the vane 102 . That is, in this embodiment, the hard magnetic elastic body 5 can be attached to at least one of the case 101 and the vane 102 .
- the vanes 102 can be rotatably supported with respect to the shaft 103. This allows the vanes 102 to rotate around the shaft 103 .
- the actuator 100 can function as part of a rotary vane pump.
- the on-off valve 1 As described above using various embodiments, according to the on-off valve 1, the attractive force or repulsive force between the elastic space portion deformation generating element and the hard magnetic elastic body due to magnetic force, the elastic space portion 2 and the hard magnetic The elastic space portion 2 is deformed by at least one of the restoring force of at least one of the elastic bodies and the resultant force of these forces to open and close the space S1 formed in the elastic space portion 2. , the circulation object M can be intermittently distributed. Therefore, according to the on-off valve 1, it is possible to provide an on-off valve with excellent flexibility.
- the application range of the on-off valve 1 is expanded due to its excellent flexibility. Furthermore, the valve can be opened and closed with efficient energy consumption, and the on-off valve 1 can be opened and closed more easily than the conventional on-off valve by eliminating parts with high rigidity such as metal. It is easy to control, and it is easy to realize weight reduction of the whole device.
- the elastic space portion 2 includes an elastic space portion main body (3, 13, 101) and a hard magnetic elastic body 5.
- the hard magnetic elastic body 5 is fixed outside the elastic space body (3, 13, 101).
- the elastic space portion deformation generating element (6) is provided outside the elastic space portion 2.
- the elastic space portion 2 is formed by separately forming the elastic space portion body 3 and the hard magnetic elastic body 5 and fixing the elastic space portion body 3 and the hard magnetic elastic body 5 together.
- the elastic space portion 2 can have a laminated structure of the elastic space portion body ( 3 , 13 , 101 ) and the hard magnetic elastic body 5 . If the elastic space portion 2 has a laminated structure, the magnetic force, elastic force, rigidity, and hardness of the elastic space portion 2 can be tuned according to the desired conditions, and the output can be facilitated. can be optimized to
- the elastic space 2 can be formed from the magnetic elastic body.
- the elastic space deformation generating element ( 6 ) is provided outside the elastic space 2 .
- the opposing walls (3a, 13) as a whole can be made of a hard magnetic elastic body without providing the hard magnetic elastic body 5.
- the opposing walls (3a, 13) are multicolored so that at least one layer of the opposing walls (3a, 13) in the direction perpendicular to the axis is laminated as a magnetic elastic body.
- the magnetic force, elastic force, rigidity, and hardness of the elastic space portion 2 can be tuned according to desired conditions, and the output can be easily optimized. Further, in this case, the number of parts of the on-off valve 1 can be reduced by configuring the elastic space portion 2 as a single member.
- the elastic space portion 2 is formed of the magnetic elastic body, as described above, the entire elastic space portion 2 can be formed of the magnetic elastic body. In this case, since it is not necessary to use different elastic materials for each part of the elastic space 2, the on-off valve can have a simple structure.
- the on-off valves (1A, 1D, 1F, 1H, 1I, 1K, 1L) open the space S1 formed in the elastic space portion 2 in the initial state.
- the elastic space portion deformation generating element (6) should be energized (ON) only when closing the space S1. Therefore, in this case, it is possible to improve the energy efficiency when opening and closing the on-off valve 1 .
- the space S1 formed within the elastic space portion 2 is closed in the initial state.
- the elastic space portion deformation generating element (6) should be energized (ON) only when opening the space S1. Therefore, in this case, it is possible to improve the energy efficiency when opening and closing the on-off valve 1 .
- the elastic space portion 2 is a tube containing the hard magnetic elastic body.
- the on-off valve and the passage for circulating the object M can be integrally formed.
- the on-off valve 1 can be manufactured easily and inexpensively.
- the elastic space portion 2 is provided with a sheet member, and the sheet member includes a hard magnetic elastic body (5).
- the on-off valve and the passage for circulating the object M can be integrally formed.
- the on-off valve 1 can be manufactured easily and inexpensively.
- the elastic space portion 2 includes a rotary vane and a rotary vane case, and at least one of the rotary vane and the rotary vane case includes the hard magnetic elastic body.
- power transmission can be easily turned ON/OFF.
- the rotary vane actuator 100 can be used for robot control, for example. Further, the rotary vane actuator 100 can be used as a rotary vane pump as described above.
- each of the on-off valves (1A to 1L) described above mainly uses an electromagnet 6 as the elastic space portion deformation generating element.
- the magnetic force generated between the hard magnetic elastic body ( 5 ) and the elastic space portion deformation generating element can be easily controlled by the current applied to the electromagnet 6 .
- the deformation operation of the elastic space portion 2 can be easily controlled with good responsiveness.
- the hard magnetic elastic body is made of a hard magnetic elastomer.
- a specific example of the hard magnetic elastomer is a silicon elastomer containing magnetized neodymium alloy powder.
- the hard magnetic elastomer for example, non-magnetic particles are dispersed in the dispersion medium M3, fixed, and then magnetized, so that the hard magnetic particles P3 are dispersed in the dispersion medium M3. There are other things.
- the hard magnetic particles P3 are particles having hard magnetism.
- Examples of the hard magnetic material that forms the hard magnetic particles P3 include magnets such as iron-containing alloys of nickel, cobalt, ferrite, and neodymium.
- the hard magnetic elastomer contains a plurality of hard magnetic particles P3.
- the hard magnetic particles P3 contained in the hard magnetic elastomer may be made of the same type of hard magnetic material or two or more different types of hard magnetic material. Further, the size of the hard magnetic particles P3 depends on the shape and size of the hard magnetic elastic body (5), the properties of the dispersion medium M3, the elastic force required for the hard magnetic elastic body (5) (for example, the specifications of the on-off valve).
- the average particle size of the hard magnetic particles P3 contained in the hard magnetic elastomer may be the same or different.
- the average particle size of the hard magnetic particles P3 is, for example, in the range of 0.1 to 150 ⁇ m, preferably in the range of 0.3 to 80 ⁇ m. When the average particle size of the hard magnetic particles P3 exceeds 150 ⁇ m, it becomes difficult to obtain a uniform elastomer.
- the average particle size of the hard magnetic particles P3 is less than 0.1 ⁇ m, it becomes difficult to obtain sufficient deformation of the elastomer by a magnetic field.
- the average particle size means the median value (median size) of the particle size distribution.
- the average particle size is measured using a laser diffraction particle size distribution analyzer, a scanning electron microscope (SEM), or the like.
- the dispersion medium M3 is a medium in which the hard magnetic particles P3 are dispersed.
- the dispersion medium M3 include a medium that gels with the hard magnetic particles P3 dispersed therein.
- examples of such dispersion medium M3 include those containing silicon resin, urethane resin, fluorine resin, acrylic resin, polyester resin, urea resin, and the like. Also, these resins may be combined for use.
- the dispersion medium M3 depends on the shape and size of the hard magnetic elastic body (5), the properties of the hard magnetic particles P3, the elastic force required for the hard magnetic elastic body (5) (for example, the elasticity required for the specifications of the on-off valve).
- the ratio of the hard magnetic particles P3 to the dispersion medium M3 also depends on the shape and size of the hard magnetic elastic body (5), the properties of the hard magnetic particles P3, and the hard magnetic elastic body (Elastic force required for 5) (e.g., elastic force required as the specification of the on-off valve), pressing force required for the hard magnetic elastic body (5) (e.g., the on-off valve required as the specification of the on-off valve (pressing force for satisfying the opening/closing operation), etc., can be selected as appropriate.
- the concentration of the hard magnetic particles P3 is, for example, in the range of 25-95% by weight, preferably in the range of 35-90% by weight. If the concentration of the hard magnetic particles P3 is less than 25% by weight, it becomes difficult to obtain sufficient deformation of the elastomer in the presence of a magnetic field. When the concentration of the hard magnetic particles P3 exceeds 95% by weight, it becomes difficult to disperse them uniformly in the dispersion medium M, and it becomes difficult to obtain the elastic restoring force of the hard magnetic elastic body (5).
- the elastic space portion deformation generating deformation element is a hard magnetic material.
- the hard magnetic material which is a so-called magnet, has a large coercive force, spontaneous magnetization, and the property of generating a magnetic force (or magnetic field) by itself.
- Examples of the hard magnetic material include metals such as iron, nickel and cobalt, metal oxides thereof, alloys containing the above metals, magnets such as metal oxides, and electromagnets. Each of the above embodiments is the electromagnet 6 .
- soft magnetic material examples include metals such as iron, nickel, and cobalt, metal oxides thereof, alloys containing the aforementioned metals, and metal oxides of the aforementioned alloys.
- 1, 1A to 1L on-off valve 1
- 2 elastic space portion
- 3 elastic space portion main body
- 5 hard magnetic elastic body
- 6 electromagnet (elastic space portion deformation causing element)
- 61 magnetic element
- 62 energization Coil
- 7 soft magnetic material
- 100 rotary vane actuator
- S2 cylinder chamber
- 101 case
- 102 vane
- 103 shaft
- S1 space
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrically Driven Valve-Operating Means (AREA)
- Magnetically Actuated Valves (AREA)
Abstract
開閉弁(1A)は、硬磁性弾性体を含む弾性空間部(2)と、磁力によって弾性空間部(2)を変形させる弾性空間部変形生起要素(6)と、を備えており、弾性空間部変形生起要素(6)は、前記磁力による前記弾性空間部変形生起要素と前記硬磁性弾性体との引き合い力もしくは反発力と、前記弾性空間部および前記硬磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって弾性空間部(2)を変形させ、弾性空間部(2)内に形成された空間(S1)を開く開放モードと、前記空間を閉じる閉鎖モードと、を行う。
Description
本発明は、開閉弁に関する。
従来の開閉弁としては、例えば、板状の磁性材料からなるダイヤフラムに弾性体を取り付けた電磁弁がある(例えば、特許文献1参照。)。前記電磁弁は、コイルばねによる付勢力によって前記ダイヤフラムとともに前記弾性体を液体出入口の開口から離間させ、これによって、前記電磁弁は開状態となる。また、前記電磁弁は、ソレノイドコイルが発生する磁力によって前記ダイヤフラムとともに前記弾性体を液体出入口の開口に接近させ、これによって、前記電磁弁は閉状態となる。
しかしながら、上記従来の開閉弁において、ダイヤフラムは合金を用いるものである。このため、上記従来の開閉弁は、弁体が剛性でありその用途は限られている。したがって、上記従来の開閉弁は、可撓性が求められる開閉弁の利用が困難であった。
本発明の目的は、可撓性に優れた開閉弁を提供することである。
本発明に係る開閉弁は、硬磁性弾性体を含む弾性空間部と、磁力によって前記弾性空間部を変形させる弾性空間部変形生起要素と、を備えており、前記弾性空間部変形生起要素は、前記磁力による前記弾性空間部変形生起要素と前記硬磁性弾性体との引き合い力もしくは反発力と、前記弾性空間部および前記硬磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部を変形させ、前記弾性空間部内に形成された空間を開く開放モードと、前記空間を閉じる閉鎖モードと、を行う。
本発明に係る開閉弁において、前記弾性空間部は、弾性空間部本体と、前記硬磁性弾性体とを、備えており、前記硬磁性弾性体は、前記弾性空間部本体の外側に固定されており、前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられている。
本発明に係る開閉弁において、前記弾性空間部の少なくとも一部は、前記硬磁性弾性体によって形成されており、前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられている。
本発明に係る開閉弁において、前記弾性弁体は、前記硬磁性弾性体によって形成されている。
本発明に係る開閉弁は、初期状態において、前記空間が閉じられているものとすることができる。
本発明に係る開閉弁は、初期状態において、前記空間が開かれているものとすることができる。
本発明に係る開閉弁において、前記弾性空間部は、前記硬磁性弾性体を含むチューブであるものとすることができる。
本発明に係る開閉弁において、前記弾性空間部は、ロータリーベーンおよびロータリーベーンケースを備えており、前記ロータリーベーンおよび前記ロータリーベーンケースの少なくともいずれか一方は、前記硬磁性弾性体を含んでいるものとすることができる。
本発明に係る開閉弁において、前記弾性空間部は、シート部材を備えており、前記シート部材は、前記硬磁性弾性体を含むものとすることができる。
本発明に係る開閉弁において、前記弾性空間部変形生起要素は、電磁石であるものとすることができる。
本発明によれば、可撓性に優れた開閉弁を提供することができる。
以下、図面を参照して、本発明の、様々な実施形態に係る開閉弁について、説明を行う。なお、以下の説明において、実質的に同一の構成には、同一の符号を使用する。
本実施形態に係る開閉弁1は、硬磁性弾性体を含む弾性空間部と、磁力によって前記弾性空間部を変形させる弾性空間部変形生起要素と、を備えている。前記弾性空間部変形生起要素は、前記磁力による前記弾性空間部変形生起要素と前記硬磁性弾性体との引き合い力もしくは反発力と、前記弾性空間部および前記硬磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部を変形させ、前記弾性空間部内に形成された空間S1を開く開放モードと、前記空間S1を閉じる閉鎖モードと、を行う。
この明細書中では、用語の意味を次のとおりに定義する。
「磁性」には、「硬磁性」と「軟磁性」とが含まれる。
「硬磁性」とは、「保磁力が大きく、自発磁化性を有し、自ら磁力(又は磁場)を発生する性質」をいう。また、「硬磁性体」とは、いわゆる磁石であり、「硬磁性を有する、物体又は物質」をいう。「硬磁性弾性体」とは、「硬磁性体のうち、硬磁性を有する、弾性体」をいう。
「軟磁性」とは、「磁力(又は磁場)を受けると応答するが、自らは磁力(又は磁場)を発生しない性質」をいう。また、「軟磁性体」とは、「軟磁性を有する、物体又は物質」をいう。更に、「軟磁性弾性体」とは、「軟磁性体のうち、軟磁性を有する、弾性体」をいう。
1:硬磁性弾性体を含むチューブを使用した開閉弁
以下、硬磁性弾性体を含むチューブを使用した開閉弁1について説明をする。
以下、硬磁性弾性体を含むチューブを使用した開閉弁1について説明をする。
まず、弾性空間部変形生起要素と硬磁性弾性体とが弾性空間部本体を挟む位置に配置されている開閉弁を例示する。
<開閉弁1A>
図1は、本発明の第1の実施形態に係る、開閉弁1Aの要部を模式的に示した図である。図1中、図面左側は、開閉弁1Aの初期状態及び開放状態を示し、図面右側は、開閉弁1Aの閉鎖状態を示す。
図1は、本発明の第1の実施形態に係る、開閉弁1Aの要部を模式的に示した図である。図1中、図面左側は、開閉弁1Aの初期状態及び開放状態を示し、図面右側は、開閉弁1Aの閉鎖状態を示す。
図面左側を参照すれば、開閉弁1Aは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と硬磁性弾性体5とを別体に形成し、弾性空間部本体3と硬磁性弾性体5とを固定させることによって形成されている。すなわち、開閉弁1Aは、弾性空間部本体3と、硬磁性弾性体5とを積層させた積層部分を弾性空間部2に含む。
弾性空間部本体3は、対向壁3aと対向壁3bとの2つの対向壁を備えている。2つの対向壁3a,3bは、開閉弁1の中心軸線O1(以下、「中心軸線O1」ともいう。)を挟んで対向する位置に配置された壁である。本実施形態では、例えば、対向壁3aは上壁であり、対向壁3bは下壁である。ただし、対向壁3a及び3bは、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。図面左側に示すように、開閉弁1Aの初期状態において、2つの対向壁3a,3bは中心軸線O1を挟んで離間している。これによって、開閉弁1Aの初期状態において、2つの対向壁3a,3bの間には、容積V1の空間S1が形成されている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、図面左側に示すように、開閉弁1Aの初期状態において、2つの対向壁3a,3bの間には、空間S1を形成することができる。なお、本実施形態では、対向壁3aの位置は固定されていることが好ましい。
空間S1には、流通対象物Mが流通している。本実施形態では、弾性空間部本体3が弾性チューブである場合、開閉弁1Aは、流通対象物Mを流通させるための通路Rの一部となる。流通対象物Mとしては、例えば、気体、液体、流体、スラリー、粉体が挙げられる。
硬磁性弾性体5は、例えば、永久磁石と弾性体との両方の機能を兼ね備えた永久磁石弾性体である。本実施形態では、図面左側に示すように、硬磁性弾性体5は、硬磁性弾性体5(弾性空間部2)の動作方向(軸直方向)において分極している。硬磁性弾性体5の外面5f1と内面5f2とでは、異なる磁極を有している。具体例としては、硬磁性弾性体5の外面5f1がS極(N極)である場合、当該硬磁性弾性体5の内面5f2は、N極(S極)である。
硬磁性弾性体5は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置(本実施形態では、下壁の位置)であって、弾性空間部本体3よりも外側の位置に配置されている。具体的には、硬磁性弾性体5は、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
なお、本明細書において、「外面」とは、「軸直方向外側の面」をいう。また、本明細書において、「内面」とは、軸直方向内側の面をいう。ここで、「軸直方向」とは、中心軸線O1に対して直交する方向をいう。また、「軸直方向外側」とは、軸直方向のうち、中心軸線O1よりも遠い側をいう。さらに、「軸直方向内側」とは、軸直方向のうち、中心軸線O1に近い側をいう。
前記弾性空間部変形生起要素は、磁力によって弾性空間部2を変形させることができる。前記磁力は、硬磁性弾性体と前記弾性空間部変形生起要素との相互作用によって、弾性空間部2と前記弾性空間部変形生起要素との間に生じる磁力である。前記弾性空間部変形生起要素は、磁性体によって構成することができる。本実施形態では、前記弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。
ここで、「外側に設けられている」とは、「外面に固定されていること」、「(固定されることなく)外面に接していること」、「外面に対して間隔を置いて配置されていること」、のいずれか1つの意味を含む。
本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの硬磁性弾性体とは異なる他方の位置であって、弾性空間部本体3よりも外側に設けられている。具体的には、電磁石6は、弾性空間部本体3の対向壁3aの外側に設けられている。より具体的には、電磁石6は、弾性空間部本体3の対向壁3aの外面3f1に接していることが好ましい。例えば、電磁石6は、弾性空間部本体3の対向壁3aの外面3f1に固定することができる。ただし、電磁石6は、弾性空間部2に接していなくてもよい。例えば、電磁石6は、弾性空間部本体3の対向壁3aの外面3f1に対して間隔を置いて配置することができる。なお、本実施形態において、電磁石6の位置は、例えば、当該電磁石6を開閉弁筐体などに固定させることによって、固定させることができる。
(開閉弁1Aの基本動作)
開閉弁1Aは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Aを開閉させることができる。以下、開閉弁1Aの基本的な動作について説明をする。
開閉弁1Aは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Aを開閉させることができる。以下、開閉弁1Aの基本的な動作について説明をする。
初期状態(開放状態):開動作(開放モード)
本実施形態において、開閉弁1Aの初期状態は、電磁石6がOFF(非通電状態)である。本実施形態では、図面左側に示すように、空間S1は開かれている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。
本実施形態において、開閉弁1Aの初期状態は、電磁石6がOFF(非通電状態)である。本実施形態では、図面左側に示すように、空間S1は開かれている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をON(通電状態)にする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と異なる磁極S(N)である。これによって、図面右側に示すように、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、弾性空間部本体3の対向壁3bが対向壁3aに向かって移動する。これによって、特に、本実施形態によれば、図面右側に示すように、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をONにすると、開閉弁1Aは、図面左側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。
電磁石6をON(通電状態)にする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と異なる磁極S(N)である。これによって、図面右側に示すように、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、弾性空間部本体3の対向壁3bが対向壁3aに向かって移動する。これによって、特に、本実施形態によれば、図面右側に示すように、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をONにすると、開閉弁1Aは、図面左側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。
開放状態:開動作(開放モード)
電磁石6をOFFにする。これによって、開閉弁1Aを停止させることができる。このとき、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3bが対向壁3aから離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Aは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Aの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Aの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を開く場合、開閉弁1Aによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Aの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
電磁石6をOFFにする。これによって、開閉弁1Aを停止させることができる。このとき、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3bが対向壁3aから離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Aは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Aの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Aの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を開く場合、開閉弁1Aによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Aの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
また、開閉弁1Aの開動作は、磁力のみによって行うことができる。例えば、開閉弁1Aの開動作は、上述のとおり、電磁石6において、閉動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と同じ磁極になることにより、硬磁性弾性体5と電磁石6との間に反発力が発生する。これによって、空間S1は、弾性体(弾性空間部2)の弾性力の有無にかかわらず、開かれる。
上述のとおり、開閉弁1Aによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Aによれば、空間S1内を通した流通対象物Mの流通を断続的に行うことができる。
なお、開閉弁1Aにおいて、弾性空間部本体3の対向壁3aの位置は固定されている。これによって、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。具体例として、対向壁3aは、支持台、装置(収納ケース)、作業テーブル(作業ステージ)に固定することができる。ただし、本発明によれば、対向壁3aを固定しておくことは必須ではない。対向壁3aの位置の固定は、例えば、弾性空間部本体3に対して、中心軸線O1に沿った一定の張力を加えることによって省略することができる。この場合、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。
また、開閉弁1Aによれば、硬磁性弾性体5は、2つの対向壁3a,3bのうちの、少なくともいずれか一方に固定することができる。例えば、硬磁性弾性体5は、対向壁3aの外面3f1に固定することができる。この場合、電磁石6は、弾性空間部本体3の対向壁3bの外側に設ける。
開閉弁1Aにおいて、硬磁性弾性体5の位置を固定したうえで、電磁石6を軸直方向に移動させるか当該電磁石6のON/OFFを行うかのいずれか少なくとも一方を行っている。これによって、弾性空間部本体3の対向壁3bの変形を生起させることができる。
電磁石6を移動させる場合、開閉弁1Aを駆動させる方法としては、例えば、電磁石6をONにして移動させる方法と、電磁石6のON/OFF制御と当該電磁石6の移動との組み合わせる方法が挙げられる。これらの方法は、例えば、前記弾性空間部変形生起要素として永久磁石を利用する場合に応用することができる。ただし、開閉弁1Aは、電磁石6の位置を固定することによって、空間S1の開放及び閉鎖を行うことができる。
また、開閉弁1Aは、図面右側の状態を初期状態とすることができる。すなわち、弾性空間部本体3は、図面右側のような、空間S1が閉じられた状態を初期状態とすることができる。この場合、開閉弁1Aの初期状態において、電磁石6は、ONである。あるいは、弾性空間部本体3は、当該弾性空間部本体3の弾性力によって、図面右側のような状態を初期状態とすることができる。弾性空間部本体3の弾性力によって空間S1が閉じられた状態を初期状態とする場合、電磁石6は、開閉弁1Aの初期状態において、OFFにすることができる。ただし、この場合、電磁石6は、硬磁性弾性体5の外側であって、当該硬磁性弾性体5に対して間隔を置いた位置に配置する。これによって、開閉弁1Aは、電磁石6のON/OFFによって、弾性空間部本体3の対向壁3bを変形させることができる。
<開閉弁1B>
図2は、本発明の第2の実施形態に係る、開閉弁1Bの要部を模式的に示した図である。図2中、図面左側は、開閉弁1Bの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Bの開放状態を示す。
図2は、本発明の第2の実施形態に係る、開閉弁1Bの要部を模式的に示した図である。図2中、図面左側は、開閉弁1Bの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Bの開放状態を示す。
図面左側を参照すれば、開閉弁1Bは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5と、を備えている。
図面左側に示すように、開閉弁1Bの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。具体的には、対向壁3aの内面3f2と対向壁3bの内面3f2とは接触している。すなわち、開閉弁1Bの初期状態では、空間S1は閉じられている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブは、完全に潰された状態に維持されている。
硬磁性弾性体5は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5は、開閉弁1Aと同様、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
前記弾性空間部変形生起要素は、磁力によって弾性空間部2を変形させることができる。前記磁力は、磁性弾性体と前記弾性空間部変形生起要素との相互作用によって、弾性空間部2と前記弾性空間部変形生起要素との間に生じる磁力である。前記弾性空間部変形生起要素は、磁性体によって構成することができる。本実施形態では、前記弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。
(開閉弁1Bの基本動作)
開閉弁1Bは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Bを開閉させることができる。以下、開閉弁1Bの基本的な動作について説明をする。
開閉弁1Bは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Bを開閉させることができる。以下、開閉弁1Bの基本的な動作について説明をする。
初期状態(閉鎖状態):閉動作(閉鎖モード)
本実施形態において、開閉弁1Bの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は、閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Bを停止させることができる。
本実施形態において、開閉弁1Bの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は、閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Bを停止させることができる。
開放状態:開動作(開放モード)
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と同じ磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と同じ磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態(停止状態):閉動作(閉鎖モード)
電磁石6をOFFにする。これによって、開閉弁1Bを停止させることができる。このとき、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Bは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Bの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Bの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を閉じる場合、開閉弁1Bによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。また、この場合、弾性体の復元力のみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Bの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
電磁石6をOFFにする。これによって、開閉弁1Bを停止させることができる。このとき、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Bは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Bの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Bの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を閉じる場合、開閉弁1Bによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。また、この場合、弾性体の復元力のみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Bの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
また、開閉弁1Bの閉動作は、磁力のみによって行うことができる。例えば、開閉弁1Bの閉動作は、上述のとおり、電磁石6において、開動作の際とは逆向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と異なる磁極になることにより、硬磁性弾性体5と電磁石6との間に引き合い力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、閉じられる。
上述のとおり、開閉弁1Bによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Bによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
なお、開閉弁1Bにおいて、電磁石6は、弾性空間部本体3の対向壁3aに固定されている。これによって、電磁石6は、対向壁3aとともに、弾性空間部2の動作方向に移動させることができる。また、開閉弁1Bにおいて、硬磁性弾性体5は、弾性空間部本体3の対向壁3bに固定されている。これによって、硬磁性弾性体5は、対向壁3bとともに、弾性空間部2の動作方向に移動させることができる。すなわち、開閉弁1Bにおいて、当該開閉弁1Bの動作は、硬磁性弾性体5及び電磁石6を互いに自由な位置に移動させることによって実現される。このため、開閉弁1Bは、硬磁性弾性体5の位置又は電磁石6の位置を固定させることなく、使用することができる。
また、開閉弁1Bは、図面右側の状態を初期状態とすることができる。すなわち、弾性空間部本体3は、空間S1が維持された状態を初期状態とすることができる。この場合、開閉弁1Bの初期状態は、電磁石6をONにして電磁石6と硬磁性弾性体5との間に反発力F65rを生じさせることによって維持することができる。なお、弾性空間部本体3の弾性力によって空間S1が開かれた状態を初期状態とする場合、電磁石6は、開閉弁1Bの初期状態において、OFFにすることができる。
<開閉弁1C>
図3は、本発明の第3の実施形態に係る、開閉弁1Cの要部を模式的に示した図である。図3中、図面左側は、開閉弁1Cの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Cの開放状態を示す。
図3は、本発明の第3の実施形態に係る、開閉弁1Cの要部を模式的に示した図である。図3中、図面左側は、開閉弁1Cの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Cの開放状態を示す。
図面左側を参照すれば、開閉弁1Cは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。
図面左側に示すように、開閉弁1Cの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。すなわち、開閉弁1Cの初期状態では、空間S1は閉じられている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブは、完全に潰された状態に維持されている。なお、本実施形態では、対向壁3bの位置は固定されている。
硬磁性弾性体5は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、弾性空間部本体3の対向壁3aの外面3f1に固定されている。
弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、弾性空間部2よりも外側の位置に配置されている。具体的には、電磁石6は、硬磁性弾性体5の外面5f1に対して間隔を置いて配置されている。本実施形態では、電磁石6の位置は固定されている。
(開閉弁1Cの基本動作)
開閉弁1Cは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Cを開閉させることができる。以下、開閉弁1Cの基本的な動作について説明をする。
開閉弁1Cは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Cを開閉させることができる。以下、開閉弁1Cの基本的な動作について説明をする。
初期状態(閉鎖状態):閉動作(閉鎖モード)
本実施形態において、開閉弁1Cの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。本実施形態では、空間S1は、当該弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Cを停止させることができる。
本実施形態において、開閉弁1Cの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。本実施形態では、空間S1は、当該弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Cを停止させることができる。
開放状態:開動作(開放モード)
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態(停止状態):閉動作(閉鎖モード)
電磁石6をOFFにする。これによって、開閉弁1Cを停止させることができる。このとき、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Cは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Cの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Cの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を閉じる場合、開閉弁1Cによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。また、この場合、弾性体の復元力のみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Cの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
電磁石6をOFFにする。これによって、開閉弁1Cを停止させることができる。このとき、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Cは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Cの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Cの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を閉じる場合、開閉弁1Cによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、復元速度を大きくすることができる。また、この場合、弾性体の復元力のみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Cの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
また、開閉弁1Cの閉動作は、磁力のみによって行うことができる。例えば、開閉弁1Cの閉動作は、上述のとおり、電磁石6において、開動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と同じ磁極になることにより、硬磁性弾性体5と電磁石6との間に反発力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、閉じられる。
上述のとおり、開閉弁1Cによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Cによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
また、開閉弁1Cは、図面右側の状態を初期状態とすることができる。すなわち、弾性空間部本体3は、空間S1が維持された状態を初期状態とすることができる。この場合、開閉弁1Bの初期状態は、電磁石6をONにして電磁石6と硬磁性弾性体5との間に引き合い力F65aを生じさせることによって維持することができる。なお、弾性空間部本体3の弾性力によって空間S1が開かれた状態を初期状態とする場合、電磁石6は、開閉弁1Cの初期状態において、OFFにすることができる。
<開閉弁1D>
図4は、本発明の第4の実施形態に係る、開閉弁1Dの要部を模式的に示した図である。図4中、図面左側は、開閉弁1Dの初期状態及び開放状態を示し、図面右側は、開閉弁1Dの閉鎖状態を示す。開閉弁1Dは、開閉弁1Cの変形例である。
図4は、本発明の第4の実施形態に係る、開閉弁1Dの要部を模式的に示した図である。図4中、図面左側は、開閉弁1Dの初期状態及び開放状態を示し、図面右側は、開閉弁1Dの閉鎖状態を示す。開閉弁1Dは、開閉弁1Cの変形例である。
図面左側に示すように、開閉弁1Dの初期状態において、2つの対向壁3a,3bは中心軸線O1を挟んで離間している。これによって、開閉弁1Dの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、開閉弁1Dの初期状態において、2つの対向壁3a,3bの間には、空間S1を形成することができる。
(開閉弁1Dの基本動作)
開閉弁1Dは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Dを開閉させることができる。以下、開閉弁1Dの基本的な動作について説明をする。
開閉弁1Dは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Dを開閉させることができる。以下、開閉弁1Dの基本的な動作について説明をする。
初期状態(開放状態):開動作(開放モード)
本実施形態において、開閉弁1Dの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は維持されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。
本実施形態において、開閉弁1Dの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は維持されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Dは、図面右側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Dは、図面右側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。
開放状態(停止状態):開動作(開放モード)
電磁石6をOFFにする。これによって、開閉弁1Dを停止させることができる。このとき、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Dは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Dの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Dの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を開く場合、開閉弁1Dによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Dの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
電磁石6をOFFにする。これによって、開閉弁1Dを停止させることができる。このとき、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Dは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Dの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Dの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を開く場合、開閉弁1Dによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Dの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
また、開閉弁1Dの開動作は、磁力のみによって行うことができる。例えば、開閉弁1Dの開動作は、上述のとおり、電磁石6において、閉動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と異なる磁極になることにより、硬磁性弾性体5と電磁石6との間に引き合い力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、開かれる。
上述のとおり、開閉弁1Dによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Dによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
なお、開閉弁1C、1Dにおいて、弾性空間部本体3は、硬磁性弾性体5と電磁石6(弾性空間部変形生起要素)との間に存在しない。すなわち、弾性空間部本体3は、硬磁性弾性体5と電磁石6との間の磁束の外に位置している。このため、弾性空間部本体3の対向壁3bの位置が固定されていない場合、弾性空間部本体3全体が硬磁性弾性体5の移動に追従してしまう。したがって、開閉弁1C、1Dのような開閉弁の場合、弾性空間部本体の2つの対向壁のうち、硬磁性弾性体5が固定されてない対向壁の位置を固定することが好ましい。開閉弁1C、1Dでは、弾性空間部本体3の対向壁3bの位置を固定している。
上述のとおり、開閉弁1C、1Dでは、弾性空間部本体3の対向壁3bの位置を固定している。これによって、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。具体例として、対向壁3bは、支持台、装置(収納ケース)、作業テーブル(作業ステージ)、開閉弁筐体に固定することができる。ただし、本発明によれば、対向壁3bを固定しておくことは必須ではない。対向壁3bの位置の固定は、例えば、弾性空間部本体3(弾性空間部2)に対して、中心軸線O1に沿った一定の張力を加えることによって省略することができる。この場合、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。
なお、開閉弁1A~1Dにおいて、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの一方又は他方(片側)の位置に配置されている。ただし、開閉弁1A~1Dによれば、硬磁性弾性体5は、2つの対向壁3a,3bのうちのいずれか一方に固定することができる。例えば、開閉弁1Bにおいて、硬磁性弾性体5は、対向壁3aの外側に設けることができる。この場合、電磁石6は、弾性空間部本体3の対向壁3bの外側に設けることができる。
また、本発明によれば、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置に配置することができる。
<開閉弁1E>
図5は、本発明の第5の実施形態に係る、開閉弁1Eの要部を模式的に示した図である。図5中、図面左側は、開閉弁1Eの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Eの開放状態を示す。
図5は、本発明の第5の実施形態に係る、開閉弁1Eの要部を模式的に示した図である。図5中、図面左側は、開閉弁1Eの初期状態及び閉鎖状態を示し、図面右側は、開閉弁1Eの開放状態を示す。
図面左側を参照すれば、開閉弁1Eは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。
図面左側に示すように、開閉弁1Eの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。すなわち、開閉弁1Eの初期状態では、空間S1は閉じられている。本実施形態では、後述するように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、磁力による引き合い力F55aによって接触している。例えば、弾性空間部本体3が弾性チューブである場合、上記引き合い力F55aによって、当該弾性チューブは、完全に潰された状態に維持されている。
開閉弁1Eにおいて、弾性空間部2は、2つの硬磁性弾性体5a,5bを備えている。2つの硬磁性弾性体5a,5bは、それぞれ、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5aは、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、硬磁性弾性体5aは、弾性空間部本体3の対向壁3aの外面3f1に固定されている。また、本実施形態では、硬磁性弾性体5bは、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、硬磁性弾性体5bは、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
弾性空間部生起変形要素は、電磁石6である。開閉弁1Eは、2つの電磁石6a,6bを備えている。2つの電磁石6a,6bは、それぞれ、弾性空間部2の外側に設けられている。本実施形態では、電磁石6aは、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、硬磁性弾性体5よりも外側の位置に配置されている。具体的には、電磁石6aは、硬磁性弾性体5aの外面5f1に対して間隔を置いて配置されている。また、本実施形態では、電磁石6bは、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、硬磁性弾性体5よりも外側の位置に配置されている。具体的には、電磁石6bは、硬磁性弾性体5bの外面5f1に対して間隔を置いて配置されている。
(開閉弁1Eの基本動作)
開閉弁1Eは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Eを開閉させることができる。以下、開閉弁1Eの基本的な動作について説明をする。
開閉弁1Eは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Eを開閉させることができる。以下、開閉弁1Eの基本的な動作について説明をする。
初期状態(閉鎖状態):閉動作(閉鎖モード)
本実施形態において、開閉弁1Eの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。このとき、本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極S(N)と異なっている。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による引き合い力F55aが生じている。弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、引き合い力F55aによって互いに近づく向きに移動する。本実施形態では、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは接触している。したがって、開閉弁1Eの初期状態において、空間S1は、2つの硬磁性弾性体5a,5bに対する引き合い力F55aによって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Eを停止させることができる。
本実施形態において、開閉弁1Eの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。このとき、本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極S(N)と異なっている。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による引き合い力F55aが生じている。弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、引き合い力F55aによって互いに近づく向きに移動する。本実施形態では、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは接触している。したがって、開閉弁1Eの初期状態において、空間S1は、2つの硬磁性弾性体5a,5bに対する引き合い力F55aによって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Eを停止させることができる。
開放状態:開動作(開放モード)
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、2つの硬磁性弾性体5a,5bに対する引き合い力F55aよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、2つの硬磁性弾性体5a,5bに対する引き合い力F55aよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は開かれる。具体的には、図面右側に示すように、空間S1は、2つの対向壁3a,3bの間に形成される。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をOFFにする。これによって、開閉弁1Eを停止させることができる。このとき、引き合い力F65aは消滅し、2つの硬磁性弾性体5a,5bに対する引き合い力F55aの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Eは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Eの閉動作は、硬磁性弾性体5どうしの引き合い力F55aによって行われている。ただし、本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、電磁石6に通じる電流の向きを開動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、硬磁性弾性体5どうしの引き合い力F55aのみに依るよりも、復元速度を大きくすることができる。また、この場合、硬磁性弾性体5どうしの引き合い力F55aのみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Eの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。さらに、本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
電磁石6をOFFにする。これによって、開閉弁1Eを停止させることができる。このとき、引き合い力F65aは消滅し、2つの硬磁性弾性体5a,5bに対する引き合い力F55aの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Eは、図面左側に示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Eの閉動作は、硬磁性弾性体5どうしの引き合い力F55aによって行われている。ただし、本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、電磁石6に通じる電流の向きを開動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、硬磁性弾性体5どうしの引き合い力F55aのみに依るよりも、復元速度を大きくすることができる。また、この場合、硬磁性弾性体5どうしの引き合い力F55aのみに依るよりも、閉じる力を大きくすることができる。したがって、開閉弁1Eの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。さらに、本実施形態において、開閉弁1Eの閉動作もまた、他の開閉弁と同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
上述のとおり、開閉弁1Eによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Eによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
また、開閉弁1Eは、図面右側の状態を初期状態とすることができる。すなわち、弾性空間部本体3は、空間S1が維持された状態を初期状態とすることができる。この場合、開閉弁1Eの初期状態は、電磁石6をONにして電磁石6と硬磁性弾性体5との間に引き合い力F65aを生じさせることによって維持することができる。
<開閉弁1F>
図6は、本発明の第6の実施形態に係る、開閉弁1Fの要部を模式的に示した図である。図6中、図面左側は、開閉弁1Fの初期状態及び開放状態を示し、図面右側は、開閉弁1Fの閉鎖状態を示す。開閉弁1Fは、開閉弁1Eの変形例である。
図6は、本発明の第6の実施形態に係る、開閉弁1Fの要部を模式的に示した図である。図6中、図面左側は、開閉弁1Fの初期状態及び開放状態を示し、図面右側は、開閉弁1Fの閉鎖状態を示す。開閉弁1Fは、開閉弁1Eの変形例である。
図面左側に示すように、開閉弁1Fの初期状態において、2つの対向壁3a,3bは中心軸線O1を挟んで離間している。これによって、開閉弁1Fの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。後述するように、本実施形態では、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、磁力による反発力F55rによって離間している。これによって、開閉弁1Fの初期状態において、空間S1は維持されている。
(開閉弁1Fの基本動作)
開閉弁1Fは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Fを開閉させることができる。以下、開閉弁1Fの基本的な動作について説明をする。
開閉弁1Fは、弾性空間部2を変形させることによって、空間S1を開閉させることができる。特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Fを開閉させることができる。以下、開閉弁1Fの基本的な動作について説明をする。
初期状態(開放状態):開動作(開放モード)
本実施形態において、開閉弁1Fの初期状態は、電磁石6がOFFである。図面左側に示すように、開閉弁1Fの初期状態において、空間S1は維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極N(S)と同じ磁極である。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による反発力F55rが生じている。弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、反発力F55rによって互いに離れた位置に離間している。したがって、本実施形態では、空間S1は、反発力F55rによって維持されている。また、電磁石6をOFFにすれば、開閉弁1Fを開放させることができる。
本実施形態において、開閉弁1Fの初期状態は、電磁石6がOFFである。図面左側に示すように、開閉弁1Fの初期状態において、空間S1は維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極N(S)と同じ磁極である。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による反発力F55rが生じている。弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、反発力F55rによって互いに離れた位置に離間している。したがって、本実施形態では、空間S1は、反発力F55rによって維持されている。また、電磁石6をOFFにすれば、開閉弁1Fを開放させることができる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、2つの硬磁性弾性体5a,5bに対する反発力F55rよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図面右側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。したがって、流通対象物Mの流通は、遮断される。
電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、2つの硬磁性弾性体5a,5bに対する反発力F55rよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図面右側に示すように、閉じられる。したがって、流通対象物Mの流通は、遮断される。したがって、流通対象物Mの流通は、遮断される。
開放状態(停止状態):開動作(開放モード)
電磁石6をOFFにする。これによって、開閉弁1Fを停止させることができる。このとき、反発力F65rは消滅し、2つの硬磁性弾性体5a,5bに対する反発力F55rの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Fの開動作は、硬磁性弾性体5どうしの反発力F55rによって行われている。ただし、本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、硬磁性弾性体5どうしの反発力F55rのみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Fの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。さらに、本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
電磁石6をOFFにする。これによって、開閉弁1Fを停止させることができる。このとき、反発力F65rは消滅し、2つの硬磁性弾性体5a,5bに対する反発力F55rの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。このように、本実施形態において、開閉弁1Fの開動作は、硬磁性弾性体5どうしの反発力F55rによって行われている。ただし、本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、硬磁性弾性体5どうしの反発力F55rのみに依るよりも、復元速度を大きくすることができる。したがって、開閉弁1Fの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。さらに、本実施形態において、開閉弁1Fの開動作もまた、他の開閉弁と同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
上述のとおり、開閉弁1Fによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Fによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
なお、開閉弁1E,1Fの説明では、電磁石6のON/OFFは、電磁石6a及び電磁石6bの両方で行っていたが、開閉弁1E,1Fによれば、電磁石6のON/OFFは、電磁石6a及び電磁石6bの少なくとも一方で行うことができる。
また、開閉弁1E,1Fにおいて、硬磁性弾性体5と電磁石6との相互作用は、電磁石6と当該電磁石6に近い硬磁性弾性体5との間の相互作用のみを考慮している。また、電磁石6と当該電磁石6から遠い硬磁性弾性体5との間の相互作用は無視することができると考えられる。
2:硬磁性弾性体を含むシート部材を使用した開閉弁
以下、硬磁性弾性体を含むシート部材を使用した開閉弁1について説明をする。
以下、硬磁性弾性体を含むシート部材を使用した開閉弁1について説明をする。
<開閉弁1G>
図7Aは、本発明の第7実施形態である開閉弁1Gの初期状態及び閉鎖状態を概略的に示す断面図である。また、図7Bは、開閉弁1Gの開放状態を概略的に示す断面図である。
図7Aは、本発明の第7実施形態である開閉弁1Gの初期状態及び閉鎖状態を概略的に示す断面図である。また、図7Bは、開閉弁1Gの開放状態を概略的に示す断面図である。
図7Bを参照すれば、開閉弁1Gは、硬磁性弾性体を含む弾性空間部2を備えている。弾性空間部2は、対向壁11と対向壁12との2つの対向壁を備えている。2つの対向壁11,12は、中心軸線O1を挟んで対向する位置に配置された壁である。本実施形態では、対向壁11は、シート部材である。図7Bに示すように、開閉弁1Gにおいて、対向壁11と、対向壁12とは、中心軸線O1を挟んで離間することによって、対向壁11と対向壁12との間に、容積V1の空間S1を形成することができる。また、この場合、開閉弁1Gは、流通対象物Mを流通させるための通路Rの一部となる。なお、本実施形態では、対向壁12の位置は固定されている。これによって、本実施形態では、対向壁11は、弁体として機能し、対向壁12は、弁座として機能する。
本実施形態において、対向壁11は、硬磁性弾性体5と、対向壁本体13とを備えている。対向壁本体13は、弁体本体として機能する。本実施形態において、対向壁本体13は、変形及び復元が可能な弾性材料からなる。こうした弾性材料としては、例えば、天然ゴム、合成ゴム、高分子弾性体等が挙げられる。また、本実施形態において、対向壁本体13は、シート部材である。硬磁性弾性体5は、対向壁本体13の外面13f1に固定されている。これにより、対向壁本体13は、磁力を受けた硬磁性弾性体5の動きに追従して変形することができる。なお、本実施形態では、硬磁性弾性体5は、硬磁性弾性体5の外面5f1がN極であり、当該硬磁性弾性体5の内面5f2は、S極である。
対向壁本体13の内面13f2は、図7Aに示すように、開閉弁1Gの初期状態において、対向壁12の内面12f2に接触している。対向壁12の内面12f2は、対向壁本体13の内面13f2とともに、空間S1を開放可能な封止面として機能する。本発明によれば、対向壁12を形成する材質自体には、磁力(磁場)に対する応答性は必須ではない。このため、対向壁12には、様々な材質によって形成することができる。対向壁12は、非磁性体とすることができる。ここで、「非磁性」とは、「磁力(又は磁場)を受けても応答することなく、自ら磁力(又は磁場)を発生しない性質という。前記非磁性体としては、例えば、銅、金、銀、亜鉛、鉛等の金属、樹脂、ガラス、セラミック、木材等の非金属が挙げられる。また、対向壁12は、例えば、磁性体とすることができる。
本実施形態では、弾性空間部生起変形要素は、2つの弾性空間部生起変形要素を含む。本実施形態では、一方の弾性空間部生起変形要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、硬磁性弾性体5よりも外側の位置に配置されている。具体的には、電磁石6は、硬磁性弾性体5の外面5f1に対して間隔を置いて配置されている。また、本実施形態では、他の弾性空間部生起変形要素として、軟磁性体7が設けられている。本実施形態では、軟磁性体7は、対向壁12に設けられている。具体的には、軟磁性体7は、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、対向壁12の内部に設けられている。この場合、他の弾性空間部生起変形要素としての、軟磁性体7が追加されたことによって、開閉弁1Gの閉鎖状態を、より強固なものとすることができる。ただし、軟磁性体7は省略することもできる。
本実施形態において、軟磁性体7は、例えば、鉄、コバルト、ニッケル等の軟磁性金属によって形成されている。軟磁性体7は、例えば、対向壁12に埋設し、又は、対向壁12の内面12f2と反対の面(対向壁12の外面12f1)に配置することができる。この場合、対向壁本体13は、硬磁性弾性体5と軟磁性体7との磁力による引き合い力F75によって対向壁12に向かって歪む。これによって、対向壁本体13は、開閉弁1Gの初期状態において、対向壁12に接触している。したがって、開閉弁1Gは、図7Aのとおり、開閉弁1Gの初期状態において、空間S1は閉じられている。
これに対し、本実施形態において、電磁石6は、磁性素子(芯材)61に通電コイル62を巻き付けたものである。本実施形態では、通電コイル62には、電源70が繋がる。電源70から流れる電流の向きは、コンピュータ等のコントローラ80によって制御することができる。従って、本実施形態において、電磁石6の極性の向きは、コントローラ80によって制御することができる。また、本実施形態において、電源70をOFFしたときは、電磁石6の極性は消滅する。すなわち、本実施形態において、開閉弁1Gさらに、電源70及びコントローラ80を備えている。
本実施形態において、電磁石6は、通電コイル62に流す電流の向きを変えることによって、硬磁性弾性体5との関係で、磁力による引き合い力F65aまたは反発力F65rのいずれかを生起させることができる。例えば、硬磁性弾性体5において、硬磁性弾性体5の外面5f1がS極(N極)である場合、電磁石6の磁極がS極(N極)となるように電流を流せば(ON)、硬磁性弾性体5と電磁石6との間には反発力F65rが生じる。また、この場合、反対に、電磁石6の極性がS極(N極)となるように電流を流せば(ON)、磁力F1は、硬磁性弾性体5と電磁石6との間には引き合い力F65aが生じる。そして、通電コイル62への通電を停止すれば(OFF)、磁力による引き合い力F65a又は反発力F65rは消滅する。
本実施形態では、開閉弁1Gは、電源70及びコントローラ80を含む。本実施形態では、弾性空間部2は、対向壁11と対向壁12によって形成されている。対向壁11は、硬磁性弾性体5と対向壁本体13とを備えている。さらに、対向壁本体13は、弾性を有するシート部材である。
(開閉弁1Gの基本動作)
開閉弁1Gは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Gを開閉させることができる。以下、開閉弁1Gの基本的な動作について説明をする。
開閉弁1Gは、弾性空間部2を変形させることによって、空間S1を開閉させることができる、特に、本実施形態では、電磁石6のON/OFFによって、開閉弁1Gを開閉させることができる。以下、開閉弁1Gの基本的な動作について説明をする。
初期状態(閉鎖状態):閉動作(封止モード)
本実施形態において、開閉弁1Gの初期状態は、電磁石6がOFFである。図7Aを参照すれば、電磁石6がOFFの場合、対向壁本体13の内面13f2は、硬磁性弾性体5と軟磁性体7との引き合い力F75aによって対向壁12の内面12f2に対して接触している。したがって、開閉弁1Gの初期状態において、空間S1は、硬磁性弾性体5と軟磁性体7との間の引き合い力F75aによって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Gを停止させることができる。
本実施形態において、開閉弁1Gの初期状態は、電磁石6がOFFである。図7Aを参照すれば、電磁石6がOFFの場合、対向壁本体13の内面13f2は、硬磁性弾性体5と軟磁性体7との引き合い力F75aによって対向壁12の内面12f2に対して接触している。したがって、開閉弁1Gの初期状態において、空間S1は、硬磁性弾性体5と軟磁性体7との間の引き合い力F75aによって閉じられている。また、電磁石6をOFFにすれば、開閉弁1Gを停止させることができる。
開放状態:開動作(開放モード)
電磁石6をONにする。このとき、図7Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、硬磁性弾性体5と軟磁性体7との引き合い力F75aよりも強くする。その結果、図7Bに示すように、対向壁本体13の内面13f2は、対向壁12の内面12f2から離れる向きに移動する。これによって、空間S1は開かれる。したがって、空間S1には、流通対象物Mを流通させることができる。
電磁石6をONにする。このとき、図7Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、硬磁性弾性体5と軟磁性体7との引き合い力F75aよりも強くする。その結果、図7Bに示すように、対向壁本体13の内面13f2は、対向壁12の内面12f2から離れる向きに移動する。これによって、空間S1は開かれる。したがって、空間S1には、流通対象物Mを流通させることができる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をOFFにする。これによって、開閉弁1Gを停止させることができる。このとき、引き合い力F65aは消滅し、軟磁性体7と電磁石6との間の引き合い力F75aの影響が支配的となる。その結果、図7Aに示すように、対向壁11は、対向壁12に近づく向きに移動する。これによって、対向壁本体13の内面13f2は、最終的に、対向壁12の内面12f2に接触する。これによって、図7Aに示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Gは、図7Aに示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Gの閉動作は、硬磁性弾性体5と軟磁性体7との引き合い力F75aによって行われている。ただし、本実施形態において、開閉弁1Gの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、硬磁性弾性体5と電磁石6との磁力を付加することによって行うことができる。さらに、本実施形態において、開閉弁1Gの閉動作は、他の開閉弁と同様、弾性体(対向壁本体13及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことができる。
電磁石6をOFFにする。これによって、開閉弁1Gを停止させることができる。このとき、引き合い力F65aは消滅し、軟磁性体7と電磁石6との間の引き合い力F75aの影響が支配的となる。その結果、図7Aに示すように、対向壁11は、対向壁12に近づく向きに移動する。これによって、対向壁本体13の内面13f2は、最終的に、対向壁12の内面12f2に接触する。これによって、図7Aに示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Gは、図7Aに示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。このように、本実施形態において、開閉弁1Gの閉動作は、硬磁性弾性体5と軟磁性体7との引き合い力F75aによって行われている。ただし、本実施形態において、開閉弁1Gの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、硬磁性弾性体5と電磁石6との磁力を付加することによって行うことができる。さらに、本実施形態において、開閉弁1Gの閉動作は、他の開閉弁と同様、弾性体(対向壁本体13及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことができる。
上述のとおり、開閉弁1Gによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Gによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
なお、開閉弁1Gによれば、初期状態において、電磁石6をONとすることができる。このとき、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と同じ磁極N(S)とする。この場合、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。これによって、開閉弁1Gは、初期状態において、通路Rを強固に閉じることができる。
さらに、上述した、各開閉弁1A~1Fもまた、弾性空間部2を、対向壁11と対向壁12とによって形成するとともに、対向壁11と対向壁12とをシート部材とすることができる。これによって、弾性空間部2は、シート部材を備えるものとすることができる。図8A,B~図11A,Bには、弾性空間部2をチューブに代えて、シート部材とした場合の、一例を示す。
<開閉弁1H>
図8Aは、本発明の第8実施形態である開閉弁1Hの初期状態及び開放状態を概略的に示す断面図である。また、図8Bは、開閉弁1Hの閉鎖状態を概略的に示す断面図である。
図8Aは、本発明の第8実施形態である開閉弁1Hの初期状態及び開放状態を概略的に示す断面図である。また、図8Bは、開閉弁1Hの閉鎖状態を概略的に示す断面図である。
開閉弁1Hは、図1A,Bに開示済みの開閉弁1Aの変形例である。開閉弁1Hは、弾性空間部2をチューブに代えて、複数のシート部材によって形成した実施形態である。本実施形態では、開閉弁1Hは、対向壁11と対向壁12とによって形成されている。本実施形態では、対向壁11は上壁であり、対向壁12は下壁である。ただし、対向壁11及び12は、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。対向壁11は、硬磁性弾性体5と対向壁本体13とを備えている。さらに、対向壁本体13は、弾性を有するシート部材である。また、対向壁12は、シート部材である。また、本実施形態では、電磁石6は、対向壁12の外面12f1に対して間隔を置いて配置されている。開閉弁1Hの基本動作は、開閉弁1Aと同じとすることができる。なお、対向壁12は、弾性を有するシート部材とすることができる。なお、本実施形態では、硬磁性弾性体5は、硬磁性弾性体5の外面5f1がN極であり、当該硬磁性弾性体5の内面5f2は、S極である。
<開閉弁1I>
図9Aは、本発明の第9実施形態である開閉弁1Iの初期状態及び開放状態を概略的に示す断面図である。また、図9Bは、開閉弁1Iの閉鎖状態を概略的に示す断面図である。
図9Aは、本発明の第9実施形態である開閉弁1Iの初期状態及び開放状態を概略的に示す断面図である。また、図9Bは、開閉弁1Iの閉鎖状態を概略的に示す断面図である。
開閉弁1Iは、図4A,Bに開示済みの開閉弁1Dの変形例である。開閉弁1Iは、弾性空間部2をチューブに代えて、複数のシート部材によって形成した実施形態である。本実施形態では、開閉弁1Iは、対向壁11と対向壁12とによって形成されている。本実施形態では、対向壁11は上壁であり、対向壁12は下壁である。ただし、対向壁11及び12は、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。対向壁11は、硬磁性弾性体5と対向壁本体13とを備えている。さらに、対向壁本体13は、弾性を有するシート部材である。また、対向壁12は、シート部材である。開閉弁1Iの基本動作は、開閉弁1Dと同じとすることができる。なお、対向壁12は、弾性を有するシート部材とすることができる。また、本実施形態では、硬磁性弾性体5は、硬磁性弾性体5の外面5f1がN極であり、当該硬磁性弾性体5の内面5f2は、S極である。
<開閉弁1J>
図10Aは、本発明の第10実施形態である開閉弁1Jの初期状態及び閉鎖状態を概略的に示す断面図である。また、図10Bは、開閉弁1Jの開放状態を概略的に示す断面図である。
図10Aは、本発明の第10実施形態である開閉弁1Jの初期状態及び閉鎖状態を概略的に示す断面図である。また、図10Bは、開閉弁1Jの開放状態を概略的に示す断面図である。
開閉弁1Jは、図5A,Bに開示済みの開閉弁1Eの変形例である。開閉弁1Jは、弾性空間部2をチューブに代えて、複数のシート部材によって形成した実施形態である。本実施形態では、開閉弁1Jは、対向壁11と対向壁12とによって形成されている。対向壁11は、硬磁性弾性体5aと対向壁本体13aとを備えている。対向壁12は、硬磁性弾性体5bと対向壁本体13bとを備えている。さらに、対向壁本体13a,13bは、それぞれ、弾性を有するシート部材である。開閉弁1Jの基本動作は、開閉弁1Eと同じとすることができる。なお、本実施形態では、硬磁性弾性体5は、硬磁性弾性体5の外面5f1がN極であり、当該硬磁性弾性体5の内面5f2は、S極である。
<開閉弁1K>
図11Aは、本発明の第11実施形態である開閉弁1Kの初期状態及び開放状態を概略的に示す断面図である。また、図11Bは、開閉弁1Kの閉鎖状態を概略的に示す断面図である。
図11Aは、本発明の第11実施形態である開閉弁1Kの初期状態及び開放状態を概略的に示す断面図である。また、図11Bは、開閉弁1Kの閉鎖状態を概略的に示す断面図である。
開閉弁1Kは、開閉弁1Jの変形例である。この場合、開閉弁1Kの基本動作は、図6で開示済みの開閉弁1Fと同じとすることができる。なお、本実施形態では、硬磁性弾性体5は、硬磁性弾性体5の外面5f1がN極であり、当該硬磁性弾性体5の内面5f2は、S極である。
開閉弁1H~1Kは、開閉弁1A~1Fの弾性空間部2を、対向壁11と対向壁12とによって形成するとともに、対向壁11と対向壁12とをシート部材によって形成することができることを例示的に説明するものである。したがって、開閉弁1H~1Kで説明した開閉弁1A,1D~1F以外の、開閉弁1B及び1Cについても、対向壁11と対向壁12とによって形成するとともに、対向壁11と対向壁12とをシート部材によって形成することができることはもちろんである。
3:ロータリーベーンアクチュエータに適用した開閉弁
以下、ロータリーベーンアクチュエータに適用した開閉弁1について説明をする。
以下、ロータリーベーンアクチュエータに適用した開閉弁1について説明をする。
<開閉弁1L>
図12Aは、本発明の第12実施形態である開閉弁1Lを含むロータリーベーンアクチュエータであって、開閉弁1Lの初期状態及び開放状態を概略的に示す断面図である。また、図13Bは、開閉弁1Lの閉鎖状態を概略的に示す断面図である。
図12Aは、本発明の第12実施形態である開閉弁1Lを含むロータリーベーンアクチュエータであって、開閉弁1Lの初期状態及び開放状態を概略的に示す断面図である。また、図13Bは、開閉弁1Lの閉鎖状態を概略的に示す断面図である。
開閉弁1Lは、ロータリーベーンアクチュエータ100(以下、「アクチュエータ100」ともいう。)に適用した例である。図12A、12Bは、それぞれ、アクチュエータ100の一部を、シャフト103の回転軸線O2に対して直交する断面で示している。
本実施形態において、アクチュエータ100は、ケース101、ベーン102と、シャフト103とを備えている。ケース101には、シリンダ室S2が形成されている。ベーン102およびシャフト103は、シリンダ室100Sに配置されている。ベーン102は、シャフト103に対して固定されている。これによって、ベーン102は、シャフト103を回転軸線O2の周りに回転させることができる。
図12Aを参照すれば、本実施形態では、開閉弁1Lは、硬磁性弾性体を含む弾性空間部2を備えている。弾性空間部2は、硬磁性弾性体5を備えるケース101とベーン102とによって形成されている。本実施形態では、ケース101に形成されたシリンダ室S2の内面には、硬磁性弾性体5が取り付けられている。硬磁性弾性体5は、硬磁性弾性体5とベーン102との間に空間(隙間)S1を形成するように取り付けられている。
さらに、アクチュエータ100は、弾性空間部変形生起要素を備えている。前記弾性空間部変形生起要素には、電磁石6を用いることができる。これによって、図12Bに示すように、硬磁性弾性体5は、電磁石6と硬磁性弾性体5との磁力による引き合い力F65aによって、ベーン102に対して着座させることができる。
(開閉弁1Lの基本動作)
以下に、開閉弁1Lの基本的な動作について説明をする。
以下に、開閉弁1Lの基本的な動作について説明をする。
初期状態(開放状態):開動作(開放モード)
本実施形態において、開閉弁1Lの初期状態は、電磁石6がOFFである。図12Aを参照すれば、開閉弁1Lの初期状態において、空間S1は維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。シリンダ室S2のインレット(INLET)側から入力された流通対象物(例えば、作動液)Mは、空間S1を通して、シリンダ室S2のアウトレット(OUTLET)側に流出する。このとき、インレット(INLET)側から入力され、ベーン102に作用する流通対象物Мは、シャフト103を回転させない。したがって、アクチュエータ100は、初期状態において、動力を伝達しないニュートラル状態となる。
本実施形態において、開閉弁1Lの初期状態は、電磁石6がOFFである。図12Aを参照すれば、開閉弁1Lの初期状態において、空間S1は維持されている。したがって、空間S1には、流通対象物Mを流通させることができる。シリンダ室S2のインレット(INLET)側から入力された流通対象物(例えば、作動液)Mは、空間S1を通して、シリンダ室S2のアウトレット(OUTLET)側に流出する。このとき、インレット(INLET)側から入力され、ベーン102に作用する流通対象物Мは、シャフト103を回転させない。したがって、アクチュエータ100は、初期状態において、動力を伝達しないニュートラル状態となる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をONにする。図12Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。その結果、図12Bに示すように、硬磁性弾性体5の内面5f2は、ベーン102の外面102fに近づく向きに移動する。これによって、硬磁性弾性体5の内面5f2は、最終的に、ベーン102の外面102fに接触する。これによって、図12Bに示すように、空間S1は完全に閉じられる。したがって、電磁石6をONにすると、流通対象物Mの流通は、遮断される。このとき、ベーン102は、硬磁性弾性体5との間の封鎖状態を維持したまま、インレット(INLET)側から入力された流通対象物Mによってシャフト103を回転させる。したがって、アクチュエータ100は、電磁石6のON状態(通電状態)において、ベーン102に作用する流通対象物Mの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。
電磁石6をONにする。図12Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。その結果、図12Bに示すように、硬磁性弾性体5の内面5f2は、ベーン102の外面102fに近づく向きに移動する。これによって、硬磁性弾性体5の内面5f2は、最終的に、ベーン102の外面102fに接触する。これによって、図12Bに示すように、空間S1は完全に閉じられる。したがって、電磁石6をONにすると、流通対象物Mの流通は、遮断される。このとき、ベーン102は、硬磁性弾性体5との間の封鎖状態を維持したまま、インレット(INLET)側から入力された流通対象物Mによってシャフト103を回転させる。したがって、アクチュエータ100は、電磁石6のON状態(通電状態)において、ベーン102に作用する流通対象物Mの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。
開放状態(停止状態):開動作(開放モード)
電磁石6をOFFにする。これによって、開閉弁1Lを停止させることができる。このとき、引き合い力F65aは消滅し、硬磁性弾性体5の復元力(弾性力)の影響が支配的となる。その結果、図12Aに示すように、硬磁性弾性体5がベーン102から離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Lは、図12Aに示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、ベーン102に対してシャフト013を回転させる動力を伝達しないニュートラル状態となる。このように、本実施形態において、開閉弁1Lの開動作は、弾性空間部2(硬磁性弾性体5)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Lの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、弾性体(弾性空間部2)の弾性力と、磁力との合力によって行うことができる。また、本実施形態において、開閉弁1Lの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、磁力のみによって行うことができる。
電磁石6をOFFにする。これによって、開閉弁1Lを停止させることができる。このとき、引き合い力F65aは消滅し、硬磁性弾性体5の復元力(弾性力)の影響が支配的となる。その結果、図12Aに示すように、硬磁性弾性体5がベーン102から離れる向きに移動する。これによって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、開閉弁1Lは、図12Aに示すように、初期状態に復帰する。したがって、空間S1には、流通対象物Mを再び流通させることができる。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、ベーン102に対してシャフト013を回転させる動力を伝達しないニュートラル状態となる。このように、本実施形態において、開閉弁1Lの開動作は、弾性空間部2(硬磁性弾性体5)の弾性力によって行われている。ただし、本実施形態において、開閉弁1Lの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、弾性体(弾性空間部2)の弾性力と、磁力との合力によって行うことができる。また、本実施形態において、開閉弁1Lの開動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、磁力のみによって行うことができる。
ところで、ベーン102は、例えば、磁性を有した金属によって形成することができる。この場合、図12Bに示すように、開閉弁1Lは、初期状態において、硬磁性弾性体5とベーン102との磁力による引き合い力F65aによって、硬磁性弾性体5をベーン102に対して接触させることができる。以下に、その場合の開閉弁1Lの基本的な動作について説明をする。
初期状態(開放状態):閉動作(閉鎖モード)
本実施形態において、開閉弁1Mの初期状態は、電磁石6がOFFである。本実施形態では、図12Bに示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。このとき、本実施形態では、本実施形態では、硬磁性弾性体5の内面5f2と、ベーン102bの外面102fには、それぞれ、磁力による引き合い力F53aが生じている。これによって、本実施形態では、硬磁性弾性体5と、ベーン102とは完全に接触している。すなわち、開閉弁1Lの初期状態において、空間S1は、完全に閉じられている。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、ベーン102に作用する流通対象物Мの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。
本実施形態において、開閉弁1Mの初期状態は、電磁石6がOFFである。本実施形態では、図12Bに示すように、空間S1は閉じられている。したがって、空間S1を通した流通対象物Mの流通は、遮断されている。このとき、本実施形態では、本実施形態では、硬磁性弾性体5の内面5f2と、ベーン102bの外面102fには、それぞれ、磁力による引き合い力F53aが生じている。これによって、本実施形態では、硬磁性弾性体5と、ベーン102とは完全に接触している。すなわち、開閉弁1Lの初期状態において、空間S1は、完全に閉じられている。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、ベーン102に作用する流通対象物Мの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。
開放状態:開動作(開放モード)
電磁石6をONにする。このとき、図12Aに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、硬磁性弾性体5とベーン102bとの間の引き合い力F53aよりも強くする。その結果、図12Aに示すように、硬磁性弾性体5と、ベーン102とは、互いに離れる向きに移動する。これによって、空間S1は開かれる。したがって、空間S1には、流通対象物Mを流通させることができる。したがって、アクチュエータ100は、電磁石6のON状態(通電状態)において、ベーン102に対してシャフト013を回転させる動力を伝達しないニュートラル状態となる。
電磁石6をONにする。このとき、図12Aに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、硬磁性弾性体5とベーン102bとの間の引き合い力F53aよりも強くする。その結果、図12Aに示すように、硬磁性弾性体5と、ベーン102とは、互いに離れる向きに移動する。これによって、空間S1は開かれる。したがって、空間S1には、流通対象物Mを流通させることができる。したがって、アクチュエータ100は、電磁石6のON状態(通電状態)において、ベーン102に対してシャフト013を回転させる動力を伝達しないニュートラル状態となる。
閉鎖状態:閉動作(閉鎖モード)
電磁石6をOFFにする。これによって、開閉弁1Lを停止させることができる。このとき、反発力F65rは消滅し、硬磁性弾性体5とベーン102との間の引き合い力F53aの影響が支配的となる。その結果、図12Bに示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図12Bに示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、再び、ベーン102に作用する流通対象物Mの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。このように、本実施形態において、開閉弁1Lの閉動作は、硬磁性弾性体5とベーン102との間の引き合い力F53aによって行われている。ただし、本実施形態において、開閉弁1Lの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、硬磁性弾性体5と電磁石6との磁力を付加することによって行うことができる。さらに、本実施形態において、開閉弁1Lの閉動作もまた、他の開閉弁と同様、弾性空間部2(硬磁性弾性体5)の弾性力を付加することによって行うことができる。
電磁石6をOFFにする。これによって、開閉弁1Lを停止させることができる。このとき、反発力F65rは消滅し、硬磁性弾性体5とベーン102との間の引き合い力F53aの影響が支配的となる。その結果、図12Bに示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、開閉弁1Fは、図12Bに示すように、初期状態に復帰する。したがって、流通対象物Mの流通は、再び遮断される。したがって、アクチュエータ100は、電磁石6のOFF状態(非通電状態)において、再び、ベーン102に作用する流通対象物Mの力を、シャフト103を回転させる動力として伝達する動力伝達状態となる。このように、本実施形態において、開閉弁1Lの閉動作は、硬磁性弾性体5とベーン102との間の引き合い力F53aによって行われている。ただし、本実施形態において、開閉弁1Lの閉動作もまた、他の開閉弁と同様、電磁石6の電流の向きを切り替えることによって、硬磁性弾性体5と電磁石6との磁力を付加することによって行うことができる。さらに、本実施形態において、開閉弁1Lの閉動作もまた、他の開閉弁と同様、弾性空間部2(硬磁性弾性体5)の弾性力を付加することによって行うことができる。
上述のとおり、開閉弁1Lによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電流の向きを切り替えることによって、閉鎖モードと開放モードとが繰り返される。これによって、本実施形態に係る開閉弁1Lによれば、空間S1を通した流通対象物Mの流通を断続的に行うことができる。
また、開閉弁1Lにおいて、硬磁性弾性体5は、ケース101に代えて、ベーン102に取り付けることができる。さらに、硬磁性弾性体5は、ケース101とベーン102との両方に取り付けることができる。すなわち、本実施形態において、硬磁性弾性体5は、ケース101とベーン102との少なくともいずれか一方に取り付けることができる。
さらに、アクチュエータ100において、ベーン102は、シャフト103に対して回転可能に支持することができる。これによって、ベーン102は、シャフト103の周りを回転させることができる。この場合、アクチュエータ100は、ロータリーベーンポンプの一部として機能させることができる。
以上、様々な実施形態を用いて説明したとおり、開閉弁1によれば、磁力による弾性空間部変形生起要素と硬磁性弾性体との引き合い力もしくは反発力と、弾性空間部2および前記硬磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部2を変形させ、弾性空間部2内に形成された空間S1の開放及び閉鎖を行うことによって、流通対象物Mの流通を断続的に行うことができる。したがって、開閉弁1によれば、可撓性に優れた開閉弁を提供することができる。
また、開閉弁1は、可撓性に優れることにより、その適用範囲が拡大される。さらに、効率的なエネルギー消費で弁の開閉を行うことができ、また、開閉弁1は、金属等の剛性の高い部分が削減されることにより、従来の開閉弁に比べて、弁の開閉が制御し易く、装置全体の軽量化を実現しやすい。
また、上記各実施形態に係る、開閉弁1において、弾性空間部2は、弾性空間部本体(3、13、101)と、硬磁性弾性体5とを、備えている。硬磁性弾性体5は、弾性空間部本体(3、13、101)の外側に固定されている。また、弾性空間部変形生起要素(6)は、弾性空間部2の外側に設けられている。この場合、弾性空間部2は、弾性空間部本体3と硬磁性弾性体5とを別体に形成し、弾性空間部本体3と硬磁性弾性体5とを固定させることによって形成されている。これによって、弾性空間部2は、弾性空間部本体(3、13、101)と、硬磁性弾性体5との積層構造とすることができる。弾性空間部2を積層構造とすれば、当該弾性空間部2の、磁力、弾性力、剛性、硬度を所望の条件に合わせて、当該弾性空間部(2)をチューニングすることができ出力を容易に最適化することができる。
本発明によれば、弾性空間部2の少なくとも一部は、前記磁性弾性体によって形成することができる。このとき、前記弾性空間部変形生起要素(6)は、弾性空間部2の外側に設けられていることが好ましい。具体例としては、硬磁性弾性体5を設けることなく、対向壁(3a,13)全体を硬磁性弾性体で形成することができる。また、他の具体例としては、対向壁(3a,13)の軸直方向の少なくとも1層が磁性弾性体として積層された積層構造となるように、当該対向壁(3a,13)を多色成形することができる。この場合、弾性空間部2の、磁力、弾性力、剛性、硬度を所望の条件に合わせて、当該弾性空間部2をチューニングすることができ出力を容易に最適化することができる。また、この場合、弾性空間部2が単一の部材として構成されることにより、開閉弁1の部品点数を削減することができる。
また、弾性空間部2を前記磁性弾性体によって形成する場合、上述のとおり、弾性空間部2全体は、前記磁性弾性体によって形成することができる。この場合、弾性空間部2の部分ごとに、弾性材料を使い分ける必要がないため、簡易な構成の開閉弁とすることができる。
また、開閉弁(1A、1D,1F、1H、1I、1K、1L)は、初期状態において、弾性空間部2内に形成された空間S1が開かれている。この場合、弾性空間部変形生起要素(6)は、空間S1を閉じるときだけ、通電(ON)すればよい。したがって、この場合、開閉弁1の開閉時のエネルギー効率を向上させることができる。
これに対し、開閉弁(1B、1C、1E,1G、1J)は、初期状態において、弾性空間部2内に形成された空間S1が閉じられている。この場合、弾性空間部変形生起要素(6)は、空間S1を開くときだけ、通電(ON)すればよい。したがって、この場合、開閉弁1の開閉時のエネルギー効率を向上させることができる。
また、開閉弁(1A~1F)において、弾性空間部2は、前記硬磁性弾性体を含むチューブである。この場合、チューブ部材を用いることによって、開閉弁と、流通対象物Mを流通させるための通路とを一体的に形成することができる。また、この場合、既存のチューブ部材を用いた場合、開閉弁1を容易かつ安価に製造することができる。
また、開閉弁(1G~1K)において、弾性空間部2は、シート部材を備えており、前記シート部材は、硬磁性弾性体(5)を含んでいる。この場合、シート部材を組み合わせることによって、開閉弁と、流通対象物Mを流通させるための通路とを一体的に形成することができる。また、この場合、既存のシート部材を用いた場合、開閉弁1を容易かつ安価に製造することができる。
また、開閉弁1Lにおいて、弾性空間部2は、ロータリーベーンおよびロータリーベーンケースを備えており、前記ロータリーベーンおよび前記ロータリーベーンケースの少なくともいずれか一方は、前記硬磁性弾性体を含んでいる。この場合、動力伝達のON/OFFを容易に行うことができる。なお、ロータリーベーンアクチュエータ100は、例えば、ロボット制御に用いることができる。また、ロータリーベーンアクチュエータ100は、上述のとおり、ロータリーベーンポンプとして用いることができる。
また、上述の各開閉弁(1A~1L)は、前記弾性空間部変形生起要素として主として、電磁石6を用いている。この場合、硬磁性弾性体(5)及び弾性空間部変形生起要素の間に生じる磁力を、電磁石6に印加する電流により簡易に制御できる。また、この場合、弾性空間部2の変形動作を、簡易にかつ応答性良く制御することができる。
本実施形態では、前記硬磁性弾性体は、硬磁性エラストマからなる。前記硬磁性エラストマの具体例としては、着磁されたネオジム合金粉末を含有するシリコンエラストマが挙げられる。また、前記硬磁性エラストマとしては、例えば、非磁性粒子を分散媒M3中に分散し固定化したのちに着磁操作して、硬磁性粒子P3が分散媒M3中に分散された状態に作製されたものが挙げられる。
(硬磁性粒子)
硬磁性粒子P3は、硬磁性を有する粒子である。硬磁性粒子P3を形成する硬磁性体としては、例えば、ニッケル、コバルト、フェライト、ネオジムの鉄含有合金等の磁石等が挙げられる。前記硬磁性エラストマには、複数の硬磁性粒子P3が含まれる。前記硬磁性エラストマに含まれる硬磁性粒子P3は、同種の硬磁性体であっても、2種以上の異なる硬磁性体であってもよい。また、硬磁性粒子P3の大きさは、硬磁性弾性体(5)の形状・大きさ、分散媒M3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。前記硬磁性エラストマに含まれる硬磁性粒子P3の平均粒子径は、同一であっても、異なっていてもよい。硬磁性粒子P3の平均粒子径としては、例えば、0.1~150μmの範囲、好ましくは、0.3~80μmの範囲の平均粒子径である。硬磁性粒子P3の平均粒子径が、150μmを上回る場合、均一なエラストマが得られにくくなる。また、硬磁性粒子P3の平均粒子径が、0.1μmを下回る場合、磁場によるエラストマの十分な変形が得られにくくなる。本発明において、平均粒子径とは、粒子径分布の中央値(メジアン径)を意味する。平均粒子径は、レーザー回折式粒度分布測定装置または走査型電子顕微鏡(SEM)などを用いて測定する。
硬磁性粒子P3は、硬磁性を有する粒子である。硬磁性粒子P3を形成する硬磁性体としては、例えば、ニッケル、コバルト、フェライト、ネオジムの鉄含有合金等の磁石等が挙げられる。前記硬磁性エラストマには、複数の硬磁性粒子P3が含まれる。前記硬磁性エラストマに含まれる硬磁性粒子P3は、同種の硬磁性体であっても、2種以上の異なる硬磁性体であってもよい。また、硬磁性粒子P3の大きさは、硬磁性弾性体(5)の形状・大きさ、分散媒M3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。前記硬磁性エラストマに含まれる硬磁性粒子P3の平均粒子径は、同一であっても、異なっていてもよい。硬磁性粒子P3の平均粒子径としては、例えば、0.1~150μmの範囲、好ましくは、0.3~80μmの範囲の平均粒子径である。硬磁性粒子P3の平均粒子径が、150μmを上回る場合、均一なエラストマが得られにくくなる。また、硬磁性粒子P3の平均粒子径が、0.1μmを下回る場合、磁場によるエラストマの十分な変形が得られにくくなる。本発明において、平均粒子径とは、粒子径分布の中央値(メジアン径)を意味する。平均粒子径は、レーザー回折式粒度分布測定装置または走査型電子顕微鏡(SEM)などを用いて測定する。
(分散媒)
分散媒M3は、硬磁性粒子P3が分散している媒質である。分散媒M3としては、例えば、硬磁性粒子P3を分散させた状態でゲル化するものが挙げられる。こうした分散媒M3としては、例えば、シリコン樹脂、ウレタン樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂等を含むものが挙げられる。また、これらの樹脂を複合化して使用してもよい。分散媒M3は、硬磁性弾性体(5)の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。更に、分散媒M3に対して硬磁性粒子P3が占める割合(硬磁性粒子P3の濃度)も、硬磁性弾性体(5)の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。硬磁性粒子P3の濃度としては、例えば、25~95重量%の範囲、好ましくは、35~90重量%の範囲の濃度である。硬磁性粒子P3の濃度が、25重量%を下回る場合、磁場存在下でのエラストマの十分な変形が得られにくくなる。また、硬磁性粒子P3の濃度が、95重量%を上回る場合、分散媒Mに均一に分散させることが困難となったり、硬磁性弾性体(5)の弾性復元力が得られにくくなる。
分散媒M3は、硬磁性粒子P3が分散している媒質である。分散媒M3としては、例えば、硬磁性粒子P3を分散させた状態でゲル化するものが挙げられる。こうした分散媒M3としては、例えば、シリコン樹脂、ウレタン樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂等を含むものが挙げられる。また、これらの樹脂を複合化して使用してもよい。分散媒M3は、硬磁性弾性体(5)の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。更に、分散媒M3に対して硬磁性粒子P3が占める割合(硬磁性粒子P3の濃度)も、硬磁性弾性体(5)の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体(5)に要求される弾性力(例えば、開閉弁の仕様として要求される弾性力)、硬磁性弾性体(5)に要求される押圧力(例えば、開閉弁の仕様として要求される、開閉弁の開閉動作を満たすための押圧力)等に応じて、適宜、選択することができる。硬磁性粒子P3の濃度としては、例えば、25~95重量%の範囲、好ましくは、35~90重量%の範囲の濃度である。硬磁性粒子P3の濃度が、25重量%を下回る場合、磁場存在下でのエラストマの十分な変形が得られにくくなる。また、硬磁性粒子P3の濃度が、95重量%を上回る場合、分散媒Mに均一に分散させることが困難となったり、硬磁性弾性体(5)の弾性復元力が得られにくくなる。
本実施形態において、前記弾性空間部変形生起変形要素は、硬磁性体である。前記硬磁性体は、いわゆる磁石であり、保磁力が大きく、自発磁化性を有し、自ら磁力(又は磁場)を発生する性質を有している。前記硬磁性体としては、例えば、鉄、ニッケル、コバルト等の金属、その金属酸化物、前述の金属を含む合金、金属酸化物等の磁石、電磁石が挙げられる。上記各実施形態は、電磁石6である。
(軟磁性体)
軟磁性体としては、例えば、鉄、ニッケル、コバルト等の金属、その金属酸化物、前述の金属を含む合金、前述の合金の金属酸化物等が挙げられる。
軟磁性体としては、例えば、鉄、ニッケル、コバルト等の金属、その金属酸化物、前述の金属を含む合金、前述の合金の金属酸化物等が挙げられる。
上述したところは、本発明のいくつかの実施形態について説明を行ったにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。上述した各実施形態に採用された様々な構成は、互いに組み合わせて使用することができる。また、上述した各実施形態に採用された様々な構成は、相互に適宜、置き換えることができる。
1,1A~1L:開閉弁1, 2:弾性空間部, 3:弾性空間部本体, 5:硬磁性弾性体, 6:電磁石(弾性空間部変形生起要素), 61:磁性素子, 62:通電コイル, 7:軟磁性体, 100:ロータリーベーンアクチュエータ, S2:シリンダ室, 101:ケース, 102:ベーン, 103:シャフト, S1:空間
Claims (10)
- 硬磁性弾性体を含む弾性空間部と、磁力によって前記弾性空間部を変形させる弾性空間部変形生起要素と、を備えており、
前記弾性空間部変形生起要素は、前記磁力による前記弾性空間部変形生起要素と前記硬磁性弾性体との引き合い力もしくは反発力と、前記弾性空間部および前記硬磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部を変形させ、前記弾性空間部内に形成された空間を開く開放モードと、前記空間を閉じる閉鎖モードと、を行う、開閉弁。 - 前記弾性空間部は、弾性空間部本体と、前記硬磁性弾性体とを、備えており、
前記硬磁性弾性体は、前記弾性空間部本体の外側に固定されており、
前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられている、請求項1に記載された開閉弁。 - 前記弾性空間部の少なくとも一部は、前記硬磁性弾性体によって形成されており、
前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられている、請求項1に記載された開閉弁。 - 前記弾性空間部は、前記硬磁性弾性体によって形成されている、請求項3に記載された開閉弁。
- 初期状態において、前記空間が閉じられている、請求項1乃至4のいずれか1項に記載された開閉弁。
- 初期状態において、前記空間が開かれている、請求項1乃至4のいずれか1項に記載された開閉弁。
- 前記弾性空間部は、前記硬磁性弾性体を含むチューブである、請求項1乃至6のいずれか1項に記載された開閉弁。
- 前記弾性空間部は、ロータリーベーンおよびロータリーベーンケースを備えており、前記ロータリーベーンおよび前記ロータリーベーンケースの少なくともいずれか一方は、前記硬磁性弾性体を含んでいる、請求項1乃至6のいずれか1項に記載された開閉弁。
- 前記弾性空間部は、シート部材を備えており、前記シート部材は、前記硬磁性弾性体を含む、請求項1乃至6のいずれか1項に記載された開閉弁。
- 前記弾性空間部変形生起要素は、電磁石である、請求項1乃至9のいずれか1項に記載された開閉弁。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-022136 | 2021-02-15 | ||
JP2021022136A JP2022124394A (ja) | 2021-02-15 | 2021-02-15 | 開閉弁 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022173061A1 true WO2022173061A1 (ja) | 2022-08-18 |
Family
ID=82838394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006015 WO2022173061A1 (ja) | 2021-02-15 | 2022-02-15 | 開閉弁 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022124394A (ja) |
WO (1) | WO2022173061A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226380A (ja) * | 1988-07-13 | 1990-01-29 | Tokyo Tatsuno Co Ltd | ピンチバルブ |
JPH1137333A (ja) * | 1997-07-22 | 1999-02-12 | Rinnai Corp | ラッチ式電磁弁 |
JP2002188743A (ja) * | 2000-12-25 | 2002-07-05 | Smc Corp | 自己保持型電磁弁 |
JP2007250824A (ja) * | 2006-03-16 | 2007-09-27 | Fujitsu Ltd | 硬磁性ナノ粒子、その製造方法、磁性流体および磁気記録媒体 |
JP2009004008A (ja) * | 2007-06-20 | 2009-01-08 | Ns Solutions Corp | 記憶装置用破壊装置及び記憶装置破壊方法 |
US20120275929A1 (en) * | 2011-04-27 | 2012-11-01 | Aptina Imaging Corporation | Ferrofluid control and sample collection for microfluidic application |
CN208237130U (zh) * | 2018-04-11 | 2018-12-14 | 珠海优特智厨科技有限公司 | 夹管阀 |
JP2020085227A (ja) * | 2018-11-30 | 2020-06-04 | 日本ペイントホールディングス株式会社 | 吸着装置及び吸盤 |
JP2020143686A (ja) * | 2019-03-04 | 2020-09-10 | 学校法人早稲田大学 | アクチュエータシステム |
-
2021
- 2021-02-15 JP JP2021022136A patent/JP2022124394A/ja active Pending
-
2022
- 2022-02-15 WO PCT/JP2022/006015 patent/WO2022173061A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0226380A (ja) * | 1988-07-13 | 1990-01-29 | Tokyo Tatsuno Co Ltd | ピンチバルブ |
JPH1137333A (ja) * | 1997-07-22 | 1999-02-12 | Rinnai Corp | ラッチ式電磁弁 |
JP2002188743A (ja) * | 2000-12-25 | 2002-07-05 | Smc Corp | 自己保持型電磁弁 |
JP2007250824A (ja) * | 2006-03-16 | 2007-09-27 | Fujitsu Ltd | 硬磁性ナノ粒子、その製造方法、磁性流体および磁気記録媒体 |
JP2009004008A (ja) * | 2007-06-20 | 2009-01-08 | Ns Solutions Corp | 記憶装置用破壊装置及び記憶装置破壊方法 |
US20120275929A1 (en) * | 2011-04-27 | 2012-11-01 | Aptina Imaging Corporation | Ferrofluid control and sample collection for microfluidic application |
CN208237130U (zh) * | 2018-04-11 | 2018-12-14 | 珠海优特智厨科技有限公司 | 夹管阀 |
JP2020085227A (ja) * | 2018-11-30 | 2020-06-04 | 日本ペイントホールディングス株式会社 | 吸着装置及び吸盤 |
JP2020143686A (ja) * | 2019-03-04 | 2020-09-10 | 学校法人早稲田大学 | アクチュエータシステム |
Also Published As
Publication number | Publication date |
---|---|
JP2022124394A (ja) | 2022-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6040752A (en) | Fail-safe actuator with two permanent magnets | |
TW526629B (en) | Magnet movable electromagnetic actuator | |
US7455075B2 (en) | Servo valve with miniature embedded force motor with stiffened armature | |
JP6755290B2 (ja) | 吸着装置及び吸盤 | |
US7481415B2 (en) | Multi-force actuator valve with multiple operating modes | |
JP2011513979A (ja) | 電磁動作機構 | |
JP6122972B2 (ja) | 電磁アクチュエータ及び電磁弁装置 | |
JPH0213197B2 (ja) | ||
SE528932C2 (sv) | Elektromagnetisk ventilenhet | |
US10024453B2 (en) | Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility | |
WO2022173061A1 (ja) | 開閉弁 | |
WO2022173060A1 (ja) | ポンプ | |
JP3426160B2 (ja) | 流量調節弁 | |
JPH11287346A (ja) | ソレノイドバルブ | |
US11118702B2 (en) | Valve with energy-saving electrodynamic actuator | |
JP2005245047A (ja) | リニアアクチュエータ | |
JP2968226B2 (ja) | 電磁弁 | |
JP3426161B2 (ja) | 被駆動体の直線駆動装置 | |
CN209990987U (zh) | 一种用于燃气控制阀的双线圈电磁阀 | |
JP3251085B2 (ja) | 電磁弁 | |
CN110925447B (zh) | 双阀瓣磁性截止调节阀 | |
CA2240876A1 (en) | Fail-safe actuator with two permanent magnets | |
JPH10299936A (ja) | 3位置バルブ | |
WO2012066540A2 (en) | Linear proportional valve | |
JP2004015997A (ja) | 電磁制御型リニアアクチュエータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752883 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22752883 Country of ref document: EP Kind code of ref document: A1 |