WO2022173060A1 - ポンプ - Google Patents

ポンプ Download PDF

Info

Publication number
WO2022173060A1
WO2022173060A1 PCT/JP2022/006014 JP2022006014W WO2022173060A1 WO 2022173060 A1 WO2022173060 A1 WO 2022173060A1 JP 2022006014 W JP2022006014 W JP 2022006014W WO 2022173060 A1 WO2022173060 A1 WO 2022173060A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
space
pump
magnetic
force
Prior art date
Application number
PCT/JP2022/006014
Other languages
English (en)
French (fr)
Inventor
裕之 坂本
允啓 亀▲崎▼
裴之 ▲張▼
Original Assignee
日本ペイントコーポレートソリューションズ株式会社
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイントコーポレートソリューションズ株式会社, 学校法人早稲田大学 filed Critical 日本ペイントコーポレートソリューションズ株式会社
Publication of WO2022173060A1 publication Critical patent/WO2022173060A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C5/00Rotary-piston machines or pumps with the working-chamber walls at least partly resiliently deformable

Definitions

  • the present invention relates to pumps.
  • a flexible tube is supported by a support, and a rotor having a plurality of magnets arranged in a circumferential direction is rotated so that a magnetic sheet arranged opposite to the rotor rotates the tube from the outside.
  • a peristaltic pump provided with a pressing mechanism that transports a fluid in a flow path formed in the tube by pressing and deforming the tube according to the rotation of the rotor (see, for example, Patent Document 1). .
  • the magnetic sheet repeatedly slides on the surface of the tube along the direction in which the tube extends, so a shear force acts on the tube along the direction in which the tube extends. For this reason, the above-described conventional pump has problems such as the possibility that the tube may be deformed or broken over time.
  • An object of the present invention is to provide a pump that reduces the action of shear force and has excellent durability.
  • a pump according to the present invention includes an elastic space portion including a magnetic elastic body, and an elastic space portion deformation causing element that deforms the elastic space portion by magnetic force. At least an attractive force or a repulsive force between the magnetic elastic body and the elastic space portion deformation occurrence element, a restoring force of at least one of the elastic space portion and the magnetic elastic body, and a resultant force of these forces Either one deforms the elastic space portion to perform an expansion mode in which the space formed in the elastic space portion is restored or increased, and a contraction mode in which the space is reduced or restored.
  • the elastic space includes an elastic space body and the magnetic elastic body, the magnetic elastic body is fixed to the outside of the elastic space body, and the magnetic elastic body is fixed to the outside of the elastic space body.
  • the elastic space portion deformation generating element may be provided outside the elastic space portion.
  • the magnetic elastic body may be arranged only at one position in the extending direction of the elastic space.
  • the magnetic elastic bodies may be arranged at a plurality of positions in the extending direction of the elastic space.
  • At least part of the elastic space is formed of the magnetic elastic body, and the elastic space-generating deformation element is provided outside the elastic space. be able to.
  • the elastic space may be formed of the magnetic elastic body.
  • the elastic space may have a plurality of portions formed by the magnetic elastic body in the extending direction of the elastic space. can.
  • the elastic space deformation generating element may be an electromagnet.
  • a pump according to the present invention includes a space portion, an elastic film including a magnetic elastic body, and an elastic film deformation causing element that deforms the elastic film by a magnetic force, and the elastic film is formed in the space portion.
  • the elastic membrane deformation-causing element closes the opening formed by the magnetic force, and the elastic membrane deformation-causing element has an attractive force or a repulsive force between the magnetic elastic body and the elastic membrane deformation-causing element due to the magnetic force, and at least an expansion mode in which the elastic membrane is deformed by at least one of one restoring force and a resultant force of these forces to restore or increase the volume of the space formed in the space; and the volume of the space. and a shrink mode that reduces or restores .
  • the elastic membrane includes an elastic membrane body and the magnetic elastic body, the magnetic elastic body is fixed to the outer surface of the elastic membrane body, and the elastic membrane deforms.
  • the generating element can be provided outside the magnetoelastic body.
  • At least part of the elastic membrane may be formed of the magnetic elastic body, and the elastic membrane deformation causing element may be provided outside the magnetic elastic body. can.
  • the space may be formed of the magnetic elastic body.
  • the elastic membrane deformation causing element may be an electromagnet.
  • the space formed in the elastic space portion can be reduced in the initial state.
  • the space formed in the elastic space portion can be expanded in the initial state.
  • the space formed in the space portion can be reduced in the initial state.
  • the space formed in the space portion can be expanded in the initial state.
  • the pump according to the present invention can be a hard magnetic elastic body.
  • the magnetic elastic body may be a soft magnetic elastic body.
  • FIG. 6 is a diagram schematically showing a main part of a pump according to a second embodiment of the invention
  • FIG. 10 is a diagram schematically showing a main part of a pump according to a third embodiment of the invention
  • FIG. 11 is a diagram schematically showing a main part of a pump according to a fourth embodiment of the invention
  • FIG. 11 is a diagram schematically showing the essential parts of a pump according to a fifth embodiment of the present invention
  • FIG. 11 is a diagram schematically showing a main part of a pump according to a sixth embodiment of the present invention
  • FIG. 6 is a diagram schematically showing a main part of a pump according to a second embodiment of the invention
  • FIG. 10 is a diagram schematically showing a main part of a pump according to a third embodiment of the invention
  • FIG. 11 is a diagram schematically showing a main part of a pump according to a fourth embodiment of the invention
  • FIG. 11 is a diagram schematically showing the essential parts of a pump according to a
  • FIG. 11 is a diagram schematically showing a main part of a pump according to a seventh embodiment of the invention.
  • FIG. 11 is a diagram schematically showing the essential parts of a pump according to an eighth embodiment of the present invention;
  • FIG. 21 is a diagram schematically showing the essential parts of a pump according to a ninth embodiment of the present invention;
  • FIG. 20 is a cross-sectional view schematically showing an expanded state of the pump, which is a hydraulic balloon actuator to which the pump of the ninth embodiment of the present invention is applied.
  • 10B is a cross-sectional view of the balloon actuator of FIG. 10A, schematically illustrating a contracted state of the pump;
  • FIG. 21 is a cross-sectional view schematically showing an expanded state of a pump according to a tenth embodiment of the present invention
  • 11B is a schematic cross-sectional view of the pump of FIG. 11A in a contracted state
  • FIG. FIG. 11B is an example of a hydraulic actuator to which the pump of FIG. 11A is applied, and is a cross-sectional view schematically showing the operation of the hydraulic actuator in chronological order.
  • 13 is a cross-sectional view schematically showing an example of a layout that can be selected by the hydraulic actuator of FIG. 12
  • FIG. FIG. 21 is a cross-sectional view schematically showing a contracted state of the pump according to the eleventh embodiment of the present invention
  • FIG. 14B is a schematic cross-sectional view of the expanded state of the pump of FIG. 14A;
  • FIG. 21 is a cross-sectional view schematically showing an expanded state of a pump according to a twelfth embodiment of the present invention;
  • Figure 15B is a cross-sectional view schematically showing a contracted state of the pump of Figure 15A;
  • the pump 1 includes an elastic space portion 2 containing a magnetic elastic body, and an elastic space portion deformation generating element that deforms the elastic space portion 2 by magnetic force.
  • the elastic space portion deformation occurrence element includes an attractive force or repulsion force between the magnetic elastic body and the elastic space portion deformation occurrence element due to the magnetic force, a restoring force of at least one of the elastic space portion 2 and the magnetic elastic body, An expansion mode that deforms the elastic space portion 2 by at least one of the resultant force of these forces and restores or increases the space S1 formed in the elastic space portion 2, and a reduction mode that reduces or restores the space S1. mode and do.
  • Magneticism includes “soft magnetism” and “hard magnetism”.
  • Soft magnetism refers to “the property of responding to a magnetic force (or magnetic field), but not generating a magnetic force (or magnetic field) itself".
  • soft magnetic material refers to “an object or substance having soft magnetism”.
  • soft magnetic elastic body refers to “an elastic body having soft magnetic properties among soft magnetic bodies”.
  • Hard magnetism refers to "the property of having a large coercive force, having spontaneous magnetism, and generating a magnetic force (or magnetic field) by itself".
  • a “hard magnetic body” is a so-called magnet, and refers to an "object or substance having hard magnetism”.
  • hard magnetic elastic body refers to "an elastic body having hard magnetic properties among hard magnetic bodies”.
  • a soft magnetic elastic body can be used as the magnetic elastic body.
  • a pump 1 using a soft magnetic elastic body will be described below.
  • FIG. 1 is a diagram schematically showing main parts of a pump 1A according to a first embodiment of the invention.
  • the left side of the drawing shows the initial state (stopped state) of the pump 1A
  • the right side of the drawing shows the pumping state of the pump 1A.
  • the pump 1A has an elastic space 2 containing a soft magnetic elastic body.
  • the elastic space portion 2 includes an elastic space portion main body 3 and a soft magnetic elastic body 4 .
  • the soft magnetic elastic body 4 is, for example, an elastic body containing iron powder.
  • the elastic space portion 2 is formed by separately forming the elastic space portion body 3 and the soft magnetic elastic body 4 and fixing the elastic space portion body 3 and the soft magnetic elastic body 4 together. there is That is, in the pump 1A, the elastic space portion 2 includes a laminated portion in which the elastic space portion main body 3 and the soft magnetic elastic body 4 are laminated.
  • the elastic space main body 3 is provided with two opposing walls, an opposing wall 3a and an opposing wall 3b.
  • the two opposing walls 3a and 3b are walls arranged at positions facing each other across the center axis O1 of the pump 1 (hereinafter also referred to as "the center axis O1").
  • the opposing wall 3a is the upper wall and the opposing wall 3b is the lower wall.
  • the opposing walls 3a and 3b are not limited to being arranged at positions opposed to each other in the vertical direction, and may be arranged at arbitrary opposing positions around the central axis O1, such as being arranged in the left-right direction (horizontal direction). can be placed.
  • the two opposing walls 3a and 3b are spaced apart across the central axis O1.
  • a space S1 having a volume V1 is formed between the two opposing walls 3a and 3b.
  • the elastic space main body 3 is an elastic tube
  • the elastic force of the elastic tube maintains the hollow state of the elastic tube.
  • a space S1 can be formed between the two opposing walls 3a and 3b in the initial state of the pump 1A.
  • a transport object M is arranged in the space S1.
  • Examples of the object to be transported M include gas, liquid, fluid, slurry, and powder.
  • the object to be conveyed M can be conveyed along the central axis O1 by deformation of the elastic space main body 3 .
  • the soft magnetic elastic body 4 is fixed to the outer surface 3f1 of the elastic space main body 3.
  • the soft magnetic elastic body 4 is arranged at one of two positions facing each other across the central axis O1 and outside the elastic space main body 3 .
  • the soft magnetic elastic body 4 is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
  • outer surface refers to an "outer surface in the axial direction”.
  • inner surface refers to an inner surface in the axial direction.
  • perpendicular direction refers to a direction perpendicular to the central axis O1.
  • outside in the axial direction refers to the side farther from the central axis O1 in the axial direction.
  • inside in the axial direction refers to the side closer to the center axis O1 in the axial direction.
  • the elastic space portion deformation generating element can deform the elastic space portion 2 by magnetic force.
  • the magnetic force is a magnetic force generated between the elastic space portion 2 and the elastic space portion deformation occurrence element due to the interaction between the magnetic elastic body and the elastic space portion deformation occurrence element.
  • the elastic space deformation generating element can be made of a magnetic material.
  • the elastic space deformation generating element is the electromagnet 6 .
  • the electromagnet 6 is provided outside the elastic space portion 2 .
  • the electromagnet 6 is provided outside the elastic space main body 3 at the other of the two positions facing each other across the central axis O1, which is different from the soft magnetic elastic body 4.
  • the electromagnet 6 is provided outside the opposing wall 3 b of the elastic space body 3 . More specifically, the electromagnet 6 is in contact with the outer surface 3 f 1 of the opposing wall 3 b of the elastic space main body 3 .
  • the electromagnet 6 can be fixed to the outer surface 3 f 1 of the opposing wall 3 b of the elastic space body 3 .
  • the electromagnet 6 does not have to be in contact with the elastic space portion 2 .
  • the electromagnet 6 can be spaced from the outer surface 3f1 of the opposing wall 3b of the elastic space main body 3. As shown in FIG. In addition, in this embodiment, the position of the electromagnet 6 is fixed by, for example, fixing the electromagnet 6 to a pump housing or the like.
  • the pump 1A can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1A can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1A will be described below.
  • Initial state Open operation (extended mode)
  • the initial state of the pump 1A is that the electromagnet 6 is OFF (non-energized state).
  • the space S1 is maintained as shown on the left side of the drawing.
  • the space S ⁇ b>1 is maintained by the elastic force of the elastic space body 3 .
  • the pump 1A can discharge the transport object M that has been placed in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 finally contacts the inner surface 3f2 of the opposing wall 3b.
  • the space S1 is completely closed as shown on the right side of the drawing. Therefore, the pump 1A can discharge the object M to be conveyed along the central axis O1 without leaving any space S1.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6.
  • the pump 1A according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the position of the opposing wall 3b of the elastic space main body 3 is preferably fixed with respect to the electromagnet 6.
  • the two opposing walls 3a and 3b can be repeatedly moved toward and away from each other without the entire elastic space main body 3 following the movement of the soft magnetic elastic body 4 and moving away from the electromagnet 6.
  • the opposing wall 3b can be fixed to a support base, a device (storage case), a work table (work stage), or a pump housing.
  • Fixing the position of the opposing wall 3b can be omitted by, for example, applying a constant tension along the central axis O1 to the elastic space main body 3. As shown in FIG. In this case, the two opposing walls 3a and 3b can be moved closer to each other and away from each other without the entire elastic space main body 3 following the deformation of the opposing walls 3a and 3b.
  • the soft magnetic elastic body 4 can be fixed to at least one of the two opposing walls 3a and 3b.
  • the soft magnetic elastic body 4 can be fixed to the outer surface 3f1 of the opposing wall 3b.
  • the electromagnet 6 is provided outside the opposing wall 3a of the elastic space main body 3. As shown in FIG.
  • the pump 1A expands and contracts the space S1 by fixing the position of the electromagnet 6.
  • the space S1 can be expanded and contracted.
  • the pump 1A when the position of the soft magnetic elastic body 4 is fixed, if the electromagnet 6 is moved in the direction perpendicular to the axis and the electromagnet 6 is turned ON/OFF, the opposing wall 3b of the elastic space main body 3 is deformed. can be generated.
  • the method of driving the pump 1A includes, for example, a method of turning on the electromagnet 6 and moving it, and a method of combining ON/OFF control of the electromagnet 6 and movement of the electromagnet 6. These methods can be applied, for example, when a permanent magnet is used as the elastic space portion deformation generating element.
  • FIG. 2 is a diagram schematically showing a main part of a pump 1B according to a second embodiment of the invention.
  • the left side of the drawing shows the initial state of the pump 1B
  • the right side of the drawing shows the pumping state of the pump 1B.
  • Pump 1B is a modification of pump 1A.
  • the elastic space portion 2 includes a laminated portion in which the elastic space portion main body 3 and the soft magnetic elastic body 4 are laminated.
  • the elastic space portion 2 of the pump 1B is formed of a soft magnetic elastic body (magnetic elastic body).
  • the elastic space portion 2 of the pump 1B only the elastic space portion 2 facing the electromagnet 6 (for example, the facing wall 2a) may be formed of the soft magnetic elastic material.
  • the pump 1B also includes, in the elastic space portion 2, a laminated portion in which the elastic space portion main body 3 and the soft magnetic elastic body 4 are laminated.
  • the pump 1B has an elastic space portion 2.
  • the elastic space portion 2 has two opposed walls, ie, an opposed wall 2a and an opposed wall 2b.
  • the two opposing walls 2a and 2b are walls arranged at positions facing each other across the central axis O1.
  • the opposing wall 2a is the upper wall and the opposing wall 2b is the lower wall.
  • the opposing walls 2a and 2b are not limited to being arranged at positions opposed to each other in the vertical direction, and may be placed at arbitrary opposing positions around the central axis O1, such as being arranged in the left-right direction (horizontal direction). can be placed.
  • the two opposing walls 2a and 2b are spaced apart across the central axis O1.
  • a space S1 is formed between the two opposing walls 2a and 2b in the initial state of the pump 1B.
  • the elastic space portion 2 is an elastic tube
  • the hollow state of the elastic tube is maintained by the elastic force of the elastic tube.
  • a space S1 can be formed between the two opposing walls 2a and 2b in the initial state of the pump 1B.
  • the position of the opposing wall 2b is fixed.
  • the elastic space portion 2 is made of a soft magnetic elastic body.
  • the two opposing walls 2a and 2b are made of a soft magnetic elastic material.
  • an electromagnet (elastic space portion deformation generating element) 6 is provided outside the elastic space portion 2, similar to the pump 1A. Specifically, the electromagnet 6 is provided outside the opposing wall 2 b of the elastic space portion 2 . More specifically, the electromagnet 6 is in contact with the outer surface 2f1 of the opposing wall 2b of the elastic space portion 2. As shown in FIG. For example, the electromagnet 6 can be fixed to the outer surface 2f1 of the opposing wall 2b of the elastic space portion 2. As shown in FIG. However, the electromagnet 6 does not have to be in contact with the elastic space portion 2 .
  • the electromagnet 6 can be spaced apart from the outer surface 2f1 of the opposing wall 2b of the elastic space 2. As shown in FIG. Also in this embodiment, the position of the electromagnet 6 is fixed. The position of the electromagnet 6 can be fixed by, for example, fixing the electromagnet 6 to a pump housing or the like.
  • the pump 1B can discharge (transport) the object M to be transported by deforming the elastic space portion 2 .
  • the pump 1B can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1B will be described below.
  • Initial state Open operation (extended mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1B.
  • the space S1 is maintained similarly to the pump 1A.
  • the space S ⁇ b>1 is maintained by the elastic force of the elastic space portion 2 .
  • the pump 1B can discharge the transport object M that has been placed in the space S1 along the central axis O1.
  • the inner surface 2f2 of the opposing wall 2a finally contacts the inner surface 2f2 of the opposing wall 2b.
  • the space S1 is completely closed as shown on the right side of the drawing. Therefore, the pump 1B can discharge the object M to be conveyed along the central axis O1 without leaving any space S1.
  • the pump 1B by alternately switching ON and OFF of the electromagnet 6, the expansion mode and the contraction mode are repeated.
  • the pump 1B according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the position of the opposing wall 2b of the elastic space 2 is preferably fixed with respect to the electromagnet 6.
  • the two opposing walls 2a and 2b can be repeatedly moved toward and away from each other without causing the entire elastic space portion 2 to follow the movement of the soft magnetic elastic body 4 and move away from the electromagnet 6.
  • the opposing wall 2b can be fixed to a support base, a device (storage case), a work table (work stage), or a pump housing.
  • Fixing the position of the opposing wall 2b can be omitted by, for example, applying a constant tension along the central axis O1 to the elastic space portion 2.
  • FIG. the two opposing walls 2a and 2b can be made to approach and separate from each other without the elastic space portion 2 as a whole following the deformation of the opposing walls 2a and 2b.
  • the pump B expands and contracts the space S1 by fixing the position of the electromagnet 6 .
  • the space S1 can be expanded and contracted.
  • the opposing wall 2b of the elastic space portion 2 can be moved by moving the electromagnet 6 in the direction perpendicular to the axis and controlling the ON/OFF of the electromagnet 6. deformation can occur.
  • moving the electromagnet 6 the method of driving the pump 1B is the same as in the case of the pump 1A.
  • FIG. 3 is a diagram schematically showing a main part of a pump 1C according to a third embodiment of the invention.
  • the left side of the drawing shows the initial state and pumping state of the pump 1C
  • the right side of the drawing shows the filling state of the pump 1C.
  • the pump 1C includes, in the elastic space 2, a laminated portion in which the elastic space main body 3 and the soft magnetic elastic body 4 are laminated.
  • the soft magnetic elastic body 4 is located on the same side as the electromagnet 6 and outside the elastic space main body 3 among the two positions facing each other across the central axis O1. ing.
  • the soft magnetic elastic body 4 is positioned outside the elastic space main body 3 and is fixed to the outer surface 3f1 of the opposing wall 3b of the elastic space main body 3 located on the same side as the electromagnet 6. ing.
  • the two opposing walls 3a and 3b of the elastic space main body 3 are in contact with each other. That is, the space S1 is closed in the initial state of the pump 1C.
  • the elastic space main body 3 is an elastic tube
  • the elastic tube is maintained in a completely crushed state by the elastic force of the elastic tube.
  • the pump 1 ⁇ /b>C can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1C can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1C will be described below.
  • Initial state Close operation (reduced mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1C.
  • the space S1 is closed.
  • the space S ⁇ b>1 is closed by the elastic force of the elastic space body 3 .
  • the pump 1C can be stopped.
  • the inner surface 3f2 of the opposing wall 3b of the elastic space body 3 finally contacts the inner surface 3f2 of the opposing wall 3a.
  • the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the pump 1C returns to its initial state as shown on the left side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the pump 1C by alternately switching ON and OFF of the electromagnet 6, the expansion mode and the contraction mode are repeated.
  • the pump 1C according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • a hard magnetic elastic body can be used as the magnetic elastic body.
  • Each embodiment of the pump 1 using a hard magnetic elastic body will be described below.
  • FIG. 4 is a diagram schematically showing a main part of a pump 1D according to a fourth embodiment of the invention.
  • the left side of the drawing shows the initial state and pumping state of the pump 1D
  • the right side of the drawing shows the filling state of the pump 1D.
  • the pump 1D has an elastic space 2 containing a hard magnetic elastic body.
  • the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
  • the elastic space portion 2 is formed by separately forming the elastic space portion body 3 and the hard magnetic elastic body 5 and fixing the elastic space portion body 3 and the hard magnetic elastic body 5 together.
  • the elastic space portion 2 includes a laminated portion in which the elastic space portion main body 3 and the hard magnetic elastic body 5 are laminated.
  • the hard magnetic elastic body 5 is, for example, a permanent magnet elastic body having both functions of a permanent magnet and an elastic body.
  • the hard magnetic elastic body 5 is polarized in the direction of motion (perpendicular to the axis) of the hard magnetic elastic body 5 (elastic space 2).
  • the outer surface 5f1 and the inner surface 5f2 of the hard magnetic elastic body 5 have different magnetic poles.
  • the outer surface 5f1 of the hard magnetic elastic body 5 is the S pole (N pole)
  • the inner surface 5f2 of the hard magnetic elastic body 5 is the N pole (S pole).
  • the two opposing walls 3a and 3b of the elastic space main body 3 are in contact with each other.
  • the inner surface 3f2 of the opposing wall 3a and the inner surface 3f2 of the opposing wall 3b of the opposing wall 3a are in contact with each other. That is, the space S1 is closed in the initial state of the pump 1D.
  • the elastic space main body 3 is an elastic tube
  • the elastic tube is maintained in a completely crushed state by the elastic force of the elastic tube.
  • the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3.
  • the hard magnetic elastic body 5 is located at the other of two positions facing each other across the central axis O1, which is different from the elastic space portion deformation generating element, and is located on the outer surface 3f1 of the elastic space portion main body 3. is fixed to Specifically, it is fixed to the outer surface 3 f 1 of the opposing wall 3 b of the elastic space main body 3 .
  • the elastic space deformation generating element is the electromagnet 6.
  • the electromagnet 6 is provided outside the elastic space portion 2 .
  • the electromagnet 6 is arranged at one of two positions facing each other across the central axis O1 and outside the elastic space portion 2 .
  • the electromagnet 6 is fixed to the outer surface 3f1 of the elastic space main body 3. As shown in FIG. Specifically, it is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
  • the pump 1 ⁇ /b>D can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1D can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1D will be described below.
  • Initial state (stopped state): Close operation (reduced mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1D.
  • the space S1 is closed.
  • the space S ⁇ b>1 is closed by the elastic force of the elastic space body 3 .
  • the pump 1D can be stopped.
  • the magnetic pole generated inside the electromagnet 6 is the same magnetic pole N(S) as the magnetic pole N(S) inside the hard magnetic elastic body 5 .
  • a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
  • the repulsive force F65r is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
  • the facing wall 3a of the elastic space main body 3 and the facing wall 3b of the elastic space main body 3 move away from each other. This increases (extends) the space S1.
  • This increase in space S1 opens the space S1 completely. Therefore, the space S1 can be filled with new objects M to be transported.
  • the pump 1D can discharge the transport object M arranged in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
  • the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the pump 1D returns to its initial state as shown on the left side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the closing operation of the pump 1D is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
  • the closing operation of the pump 1D can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
  • the direction of the current flowing through the electromagnet 6 can be reversed from that in the opening operation.
  • an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
  • a stronger feeding force can be generated than depending only on the restoring force of the elastic body (elastic space portion 2).
  • the restoring speed can be increased compared to relying only on the restoring force of the elastic body.
  • the closing operation of the pump 1D can be performed only by magnetic force.
  • the closing operation of the pump 1D can be performed by applying current in a direction different from that during the opening operation.
  • an attractive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
  • the space S1 is closed regardless of the presence or absence of the elastic force of the elastic body.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current of the electromagnet 6.
  • the pump 1D according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the electromagnet 6 is fixed to the opposing wall 3a of the elastic space main body 3.
  • the electromagnet 6 can be moved in the movement direction of the elastic space portion 2 together with the opposing wall 3a.
  • the hard magnetic elastic body 5 is fixed to the opposing wall 3b of the elastic space main body 3. As shown in FIG. As a result, the hard magnetic elastic body 5 can be moved in the movement direction of the elastic space portion 2 together with the opposing wall 3b. That is, in the pump 1D, the operation of the pump 1D is realized by moving the hard magnetic elastic body 5 and the electromagnet 6 to mutually free positions. Therefore, the pump 1D can be used without fixing the position of the hard magnetic elastic body 5 or the position of the electromagnet 6.
  • the pump 1D can take a state in which the space S1 is maintained as an initial state.
  • FIG. 5 is a diagram schematically showing main parts of a pump 1E according to a fifth embodiment of the invention.
  • the left side of the drawing shows the initial state of the pump 1E
  • the right side of the drawing shows the pumping state of the pump 1E.
  • Pump 1E is a modification of pump 1D.
  • a space S1 is formed between the two opposing walls 3a and 3b of the elastic space body 3.
  • the elastic space main body 3 is an elastic tube
  • the elastic force of the elastic tube maintains the hollow state of the elastic tube.
  • a space S1 can be formed between the two opposing walls 3a and 3b in the initial state of the pump 1E.
  • the pump 1E can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1E can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1E will be described below.
  • Initial state Open operation (extended mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1E.
  • the space S1 is open.
  • the space S ⁇ b>1 is maintained by the elastic force of the elastic space body 3 .
  • Discharge state closed operation (reduction mode) Turn on the electromagnet 6 .
  • the magnetic pole generated inside the electromagnet 6 is a magnetic pole S(N) different from the magnetic pole N(S) inside the hard magnetic elastic body 5 .
  • an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
  • the pulling force F65a is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
  • the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 move toward each other. As a result, the space S1 is reduced (reduced).
  • the object to be conveyed M placed in the space S1 is pressure-fed to the outside of the space S1 along the center axis O1. Therefore, the pump 1E can discharge the transport object M arranged in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
  • the space S1 is completely closed as shown on the right side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the opening operation of the pump 1E is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
  • the opening operation of the pump 1E can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
  • the restoring speed can be increased compared to relying only on the restoring force of the elastic space portion 2 .
  • the opening operation of the pump 1E can be performed only by magnetic force.
  • the opening operation of the pump 1E can be performed by applying current in a direction different from that during the closing operation.
  • the magnetic pole generated in the electromagnet 6 becomes the same magnetic pole as the magnetic pole inside the hard magnetic elastic body 5 , so that a repulsive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
  • the space S1 is opened regardless of the presence or absence of the elastic force of the elastic body.
  • the pump 1E by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6, the expansion mode and the contraction mode are repeated.
  • the pump 1E according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • FIG. 6 is a diagram schematically showing a main part of a pump 1F according to a sixth embodiment of the invention.
  • the left side of the drawing shows the initial state and pumping state of the pump 1F
  • the right side of the drawing shows the filling state of the pump 1F.
  • the pump 1F has an elastic space 2 containing a hard magnetic elastic body.
  • the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
  • the two opposing walls 3a and 3b of the elastic space main body 3 are in contact. That is, the space S1 is closed in the initial state of the pump 1F.
  • the elastic space main body 3 is an elastic tube
  • the elastic tube is maintained in a completely crushed state by the elastic force of the elastic tube.
  • the position of the opposing wall 3b is fixed.
  • the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3.
  • the hard magnetic elastic body 5 is fixed to the outer surface 3f1 of the elastic space main body 3 at one of two positions facing each other across the central axis O1. Specifically, it is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
  • the elastic space deformation generating element is the electromagnet 6.
  • the electromagnet 6 is provided outside the elastic space portion 2 .
  • the electromagnet 6 is arranged at one of two positions facing each other across the central axis O1 and outside the elastic space portion 2 .
  • the electromagnet 6 is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5. As shown in FIG. In this embodiment, the position of the electromagnet 6 is fixed.
  • the pump 1F can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1F can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1F will be described below.
  • Initial state Close operation (reduced mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1F.
  • the space S1 is closed.
  • the space S ⁇ b>1 is closed by the elastic force of the elastic space body 3 .
  • the pump 1F can be stopped.
  • the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
  • an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
  • the pulling force F65a is made stronger than the elastic force (restoring force) of the elastic space main body 3 .
  • the opposing wall 3a of the elastic space main body 3 moves away from the opposing wall 3b. This increases (extends) the space S1.
  • This increase in space S1 opens the space S1 completely. Therefore, the space S1 can be filled with new objects M to be transported.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space body 3 finally contacts the inner surface 3f2 of the opposing wall 3b.
  • the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the pump 1F returns to its initial state as shown on the left side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the closing operation of the pump 1F is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
  • the closing operation of the pump 1F can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
  • the direction of the current flowing through the electromagnet 6 can be reversed from that in the opening operation.
  • a repulsive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
  • a stronger feeding force can be generated than depending only on the restoring force of the elastic body (elastic space portion 2).
  • the restoring speed can be increased compared to relying only on the restoring force of the elastic space portion 2 .
  • the closing operation of the pump 1F can be performed only by magnetic force.
  • the closing operation of the pump 1F can be performed by applying a current in a direction different from that during the opening operation.
  • the magnetic pole generated in the electromagnet 6 becomes the same magnetic pole as the magnetic pole inside the hard magnetic elastic body 5 , so that a repulsive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
  • the space S1 is closed regardless of the presence or absence of the elastic force of the elastic body.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current of the electromagnet 6.
  • the pump 1F according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the pump 1F can take the state in which the space S1 is maintained as the initial state.
  • FIG. 7 is a diagram schematically showing main parts of a pump 1G according to a seventh embodiment of the invention.
  • the left side of the drawing shows the initial state and filling state of the pump 1G
  • the right side of the drawing shows the pumping state of the pump 1G.
  • Pump 1G is a modification of pump 1F.
  • a space S1 is formed between the two opposing walls 3a and 3b of the elastic space body 3.
  • the elastic space main body 3 is an elastic tube
  • the elastic force of the elastic tube maintains the hollow state of the elastic tube.
  • a space S1 can be formed between the two opposing walls 3a and 3b in the initial state of the pump 1G.
  • the pump 1 ⁇ /b>G can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1G can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1G will be described below.
  • Initial state Open operation (extended mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1G.
  • the space S1 is maintained as shown on the left side of the drawing.
  • the space S ⁇ b>1 is maintained by the elastic force of the elastic space body 3 .
  • the object to be conveyed M placed in the space S1 is pressure-fed to the outside of the space S1 along the center axis O1. Therefore, the pump 1G can discharge the transport object M that has been placed in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 finally contacts the inner surface 3f2 of the opposing wall 3b.
  • the space S1 is completely closed as shown on the right side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the opening operation of the pump 1G is performed by the elastic force of the elastic space portion 2 (at least one of the elastic space portion main body 3 and the hard magnetic elastic body 5).
  • the opening operation of the pump 1G can be performed by the resultant force of the elastic force of the elastic space portion 2 and the magnetic force.
  • the direction of the current flowing through the electromagnet 6 can be reversed from that in the closing operation.
  • an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
  • a stronger suction force can be generated than depending only on the restoring force of the elastic body (elastic space portion 2).
  • the restoring speed can be increased compared to relying only on the restoring force of the elastic space portion 2 .
  • the opening operation of the pump 1G can be performed only by magnetic force.
  • the opening operation of the pump 1G can be performed by applying a current in a direction different from that during the closing operation.
  • the magnetic pole generated in the electromagnet 6 is the same as the magnetic pole inside the hard magnetic elastic body 5 , an attractive force is generated between the hard magnetic elastic body 5 and the electromagnet 6 .
  • the space S1 is opened regardless of the presence or absence of the elastic force of the elastic body.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6, or by switching the direction of the current of the electromagnet 6.
  • the pump 1G according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the elastic space body 3 does not exist between the hard magnetic elastic body 5 and the electromagnet 6 (elastic space deformation generating element). That is, the elastic space main body 3 is positioned outside the magnetic field between the hard magnetic elastic body 5 and the electromagnet 6 . Therefore, if the position of the opposing wall 3b of the elastic space main body 3 is not fixed, the elastic space main body 3 as a whole follows the movement of the hard magnetic elastic body 5. As shown in FIG. Therefore, in the case of pumps such as pumps 1F and 1G, it is preferable to fix the position of the opposing wall to which the hard magnetic elastic body 5 is not fixed, out of the two opposing walls of the elastic space main body. In the pumps 1F and 1G, the position of the opposing wall 3b of the elastic space main body 3 is fixed.
  • the position of the opposing wall 3b of the elastic space main body 3 is fixed.
  • the two opposing walls 3a and 3b can be brought closer to each other and separated from each other without the elastic space main body 3 as a whole following the movement of the hard magnetic elastic body 5.
  • the opposing wall 3b can be fixed to a support base, a device (storage case), a work table (work stage), or a pump housing.
  • it is not essential to fix the facing wall 3b.
  • Fixing the position of the opposing wall 3b can be omitted by, for example, applying a constant tension along the central axis O1 to the elastic space main body 3 (elastic space 2).
  • the two opposing walls 3a and 3b can be moved toward and away from each other without the entire elastic space main body 3 following the movement of the hard magnetic elastic body 5.
  • the hard magnetic elastic body 5 is arranged at one or the other (one side) of two positions facing each other across the central axis O1.
  • the hard magnetic elastic body 5 can be fixed to either one of the two opposing walls 3a, 3b.
  • the hard magnetic elastic body 5 in the pump 1A, can be provided outside the facing wall 3a.
  • the electromagnet 6 can be provided outside the opposing wall 3b of the elastic space main body 3. As shown in FIG.
  • the hard magnetic elastic body 5 can be arranged at two positions facing each other across the central axis O1.
  • FIG. 8 is a diagram schematically showing a main part of a pump 1H according to an eighth embodiment of the invention.
  • the left side of the drawing shows the initial state and pumping state of the pump 1H
  • the right side of the drawing shows the filling state of the pump 1H.
  • the pump 1H has an elastic space 2 containing a hard magnetic elastic body.
  • the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
  • the two opposing walls 3a and 3b of the elastic space main body 3 are in contact with each other. That is, the space S1 is closed in the initial state of the pump 1H.
  • the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 are in contact with each other by an attractive force F55a due to magnetic force.
  • the elastic space main body 3 is an elastic tube
  • the elastic tube is maintained in a completely crushed state by the pulling force F55a.
  • the elastic space portion 2 includes two hard magnetic elastic bodies 5a and 5b.
  • the two hard magnetic elastic bodies 5a and 5b are fixed to the outer surface 3f1 of the elastic space body 3, respectively.
  • the hard magnetic elastic body 5a is fixed to the outer surface 3f1 of the elastic space main body 3 at one of two positions facing each other across the central axis O1.
  • the hard magnetic elastic body 5 a is fixed to the outer surface 3 f 1 of the opposing wall 3 a of the elastic space main body 3 .
  • the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the elastic space main body 3 at the other of two positions facing each other across the central axis O1.
  • the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the opposing wall 3b of the elastic space main body 3. As shown in FIG.
  • the elastic space generating deformation element is the electromagnet 6.
  • the pump 1H has two electromagnets 6a, 6b.
  • the two electromagnets 6a and 6b are provided outside the elastic space 2, respectively.
  • the electromagnet 6a is arranged at one of two positions facing each other across the central axis O1 and outside the hard magnetic elastic body 5. As shown in FIG. Specifically, the electromagnet 6a is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5a.
  • the electromagnet 6b is arranged at the other of two positions facing each other across the central axis O1 and outside the hard magnetic elastic body 5. As shown in FIG. Specifically, the electromagnet 6b is spaced apart from the outer surface 5f1 of the hard magnetic elastic body 5b.
  • the pump 1H can discharge (convey) the conveying object M by deforming the elastic space portion 2 .
  • the pump 1H can be driven by turning the electromagnet 6 ON/OFF. The basic operation of the pump 1H will be described below.
  • Initial state Close operation (reduced mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1H.
  • the space S1 is closed.
  • the space S1 is closed by the elastic force of the elastic space portion 2 and the attracting force F55a due to the magnetic force.
  • the inner surface 5f2 of the hard magnetic elastic body 5a and the inner surface 5f2 of the hard magnetic elastic body 5b are arranged at positions facing each other across the central axis O1.
  • the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5a is different from the magnetic pole S(N) generated on the inner surface 5f2 of the hard magnetic elastic body 5b.
  • an attractive force F55a due to the magnetic force is generated in each of the hard magnetic elastic bodies 5a and 5b.
  • the elastic recovery force (not shown) of the elastic space portion 2 also acts on the elastic space portion 2 . That is, in the present embodiment, the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 are brought into contact with each other by the resultant force of the elastic force of the elastic space 2 and the attractive force F55a due to the magnetic force. move closer.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 are in contact with each other. Therefore, in the initial state of the pump 1H, the space S1 is closed by the attractive force F55a to the two hard magnetic elastic bodies 5a and 5b. Also, by turning off the electromagnet 6, the pump 1H can be stopped.
  • the magnetic pole generated inside the electromagnet 6 is a magnetic pole N(S) different from the magnetic pole S(N) outside the hard magnetic elastic body 5 .
  • an attractive force F65a is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
  • the attractive force F65a is made stronger than the attractive force F55a for the two hard magnetic elastic bodies 5a and 5b.
  • the facing wall 3a of the elastic space main body 3 and the facing wall 3b of the elastic space main body 3 move away from each other. This increases (extends) the space S1.
  • This increase in space S1 opens the space S1 completely. Therefore, the space S1 can be filled with new objects M to be transported.
  • the pump 1H can discharge the transport object M that has been placed in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other.
  • the space S1 is closed again, as shown on the left side of the drawing. That is, when the electromagnet 6 is turned off, the pump 1H returns to its initial state as shown on the left side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving anything in the space S1.
  • the closing operation of the pump 1H is performed by the attraction force F55a between the hard magnetic elastic bodies 5.
  • the closing operation of the pump 1H can also be performed by switching the direction of the current of the electromagnet 6, like the other pumps.
  • the closing operation of the pump 1H can also be performed by reversing the direction of the current flowing through the electromagnet 6 in at least one of the electromagnets 6a and 6b, as in the other pumps. can. Thereby, a repulsive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 . In this case, a stronger feeding force can be generated than depending only on the restoring force of the elastic body (elastic space portion 2).
  • the restoring speed can be increased compared to relying only on the restoring force of the elastic space portion 2 . Therefore, in the case of the pump 1H, it is preferable to use the repulsive force between the electromagnet 6 and the hard magnetic elastic body 5 together with the restoring force of the elastic space portion 2 .
  • the closing operation of the pump 1H is also performed by applying the elastic force of an elastic body (at least one of the elastic space body 3 and the hard magnetic elastic body 5) as in other pumps.
  • an elastic body at least one of the elastic space body 3 and the hard magnetic elastic body 5
  • the presence or absence of elastic force of the elastic body is arbitrary.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current of the electromagnet 6.
  • the pump 1H according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the pump 1H can take a state in which the space S1 is maintained as an initial state.
  • FIG. 9 is a diagram schematically showing a main part of a pump 1I according to a ninth embodiment of the invention.
  • the left side of the drawing shows the initial state and filling state of the pump 1I
  • the right side of the drawing shows the pumping state of the pump 1I.
  • Pump 1I is a modification of pump 1H.
  • a space S1 is formed between the two opposing walls 3a and 3b of the elastic space body 3.
  • the opposing wall 3a of the elastic space main body 3 and the opposing wall 3b of the elastic space main body 3 are separated from each other by a magnetic repulsive force F55r. Thereby, the space S1 is maintained in the initial state of the pump 1I.
  • the pump 1I can discharge (convey) the object M to be conveyed by deforming the elastic space portion 2. Particularly, in this embodiment, the pump 1I can be driven by turning the electromagnet 6 ON/OFF. .
  • the basic operation of the pump 1I will be described below.
  • Initial state Open operation (extended mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1I.
  • the space S1 is maintained in the initial state of the pump 1I.
  • the inner surface 5f2 of the hard magnetic elastic body 5a and the inner surface 5f2 of the hard magnetic elastic body 5b are arranged at positions facing each other across the central axis O1.
  • the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5a is the same magnetic pole as the magnetic pole N(S) generated on the inner surface 5f2 of the hard magnetic elastic body 5b.
  • the space S1 is reduced (reduced). Due to the reduction of the space S1, the object to be conveyed M placed in the space S1 is pressure-fed to the outside of the space S1 along the center axis O1. Therefore, the pump 1I can discharge the transport object M that has been placed in the space S1 along the central axis O1.
  • the inner surface 3f2 of the opposing wall 3a of the elastic space main body 3 and the inner surface 3f2 of the opposing wall 3b of the elastic space main body 3 finally come into contact with each other. As a result, the space S1 is completely closed as shown on the right side of the drawing. Therefore, the object to be transported M can be discharged along the central axis O1 without leaving the space S1.
  • the opening operation of the pump 1I is performed by the repulsive force F55r between the hard magnetic elastic bodies 5.
  • the opening operation of the pump 1I can also be performed by switching the direction of the current of the electromagnet 6, like the other pumps.
  • the opening operation of the pump 1I can also be performed in at least one of the electromagnets 6a and 6b by reversing the direction of the current flowing through the electromagnets 6 to the direction of the closing operation, as in the other pumps. can.
  • an attractive force can be generated between the electromagnet 6 and the hard magnetic elastic body 5 .
  • the opening operation of the pump 1I is also performed by applying the elastic force of an elastic body (at least one of the elastic space body 3 and the hard magnetic elastic body 5) as in other pumps.
  • an elastic body at least one of the elastic space body 3 and the hard magnetic elastic body 5
  • the presence or absence of elastic force of the elastic body is optional.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current of the electromagnet 6.
  • the pump 1I according to the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1 along the central axis O1.
  • the electromagnet 6 is turned ON/OFF by both the electromagnet 6a and the electromagnet 6b. It can be done with at least one of the electromagnets 6b.
  • the soft magnetic elastic body 4 and the hard magnetic elastic body 5 are arranged in one of the extending directions of the elastic space portion 2 in the extending direction of the elastic space portion 2.
  • the “extending direction of the elastic space portion 2 ” refers to a direction parallel to the central axis O ⁇ b>1 of the pump 1 . That is, the soft magnetic elastic body 4 or the hard magnetic elastic body 5 can be arranged only at one position in the direction in which the central axis O1 extends (hereinafter also referred to as "axial direction").
  • the hard magnetic elastic body 5 can be arranged only at one position in the axial direction. An example of this will be described below.
  • reference numeral 10 is a hydraulic balloon actuator to which the pump 1I is applied, and is a cross-sectional view schematically showing the expanded state of the pump 1I.
  • FIG. 10B is a cross-sectional view schematically showing the balloon actuator 10 and the contracted state of the pump 1I.
  • the balloon actuator 10 includes a pump device 11 , a balloon device (actuating device) 12 , and a communication passage 13 connecting the pump device 11 and the balloon device 12 .
  • balloon actuator 10 comprises an elastic tube 14 .
  • the external shape of the balloon actuator 10 is basically shaped by the elastic tube 14 .
  • the elastic tube 14 is made of an elastic material that can be deformed and restored. Examples of such elastic materials include natural rubber, synthetic rubber, polymeric elastic bodies, and the like.
  • the elastic tube 14 is a sealed elastic tube.
  • the elastic tube 14 has its inner space S10 sealed.
  • the elastic tube 14 is composed of a pump chamber portion 141, a balloon portion (working chamber portion) 142, and a communicating passage portion 143.
  • the pump chamber portion 141 corresponds to the elastic space main body 3 .
  • a space (pump chamber space) S1 is formed inside the pump chamber portion 141 .
  • the balloon portion 142 corresponds to the balloon device 12 .
  • a second space (working chamber space) S2 is formed inside the balloon portion 142 .
  • the communicating path portion 143 corresponds to the communicating path 13 . Inside the communication path portion 143, a third space S3 is formed that communicates the space S1 and the second space S2.
  • the internal space S10 of the elastic tube 14 is formed by the space S1, the second space S2 and the third space S3. Further, in the present embodiment, the elastic tube 14 has an orifice-shaped third space S3.
  • the channel cross-sectional area of the third space S3 (the cross-sectional area of the third space S3 in the axial direction) is equal to the pressure receiving cross-sectional area of the space S1 (the cross-sectional area of the space S1 in the axial direction) and the second space. It is smaller than the pressure-receiving cross-sectional area of S2 (the area of the cross section of the second space S2 in the direction perpendicular to the axis). That is, the elastic tube 14 is an orificed elastic tube.
  • Various transport objects M can be circulated in the internal space S10. In this embodiment, the object to be conveyed M is filled with working fluid.
  • the pump chamber portion 141 of the elastic tube 14 has two opposing walls, an opposing wall 141a and an opposing wall 141b.
  • the two opposing walls 141a and 141b are walls arranged at positions facing each other across the central axis O1.
  • the opposing wall 141a is the upper wall and the opposing wall 141b is the lower wall.
  • the opposing walls 141a and 141b are not limited to being arranged at positions facing each other in the vertical direction. can be placed.
  • the two opposing walls 141a and 141b are spaced apart across the central axis O1.
  • a space S1 is formed between the two opposing walls 141a and 141b.
  • the space S1 is maintained by a repulsive force F55r against the two hard magnetic elastic bodies 5a and 5b.
  • a space S1 can be formed between the two opposing walls 141a and 141b.
  • the magnetic elastic body is the hard magnetic elastic body 5.
  • the hard magnetic elastic body 5 is fixed to the outer surface 141 f 1 of the pump chamber portion 141 .
  • the balloon actuator 10 comprises two hard magnetic elastic bodies 5a and 5b.
  • the two hard magnetic elastic bodies 5a and 5b are fixed to the outer surface 141f1 of the pump chamber portion 141.
  • the hard magnetic elastic body 5 a is fixed to the outer surface 141 f 1 of the opposing wall 141 a of the pump chamber portion 141 .
  • the hard magnetic elastic body 5b is fixed to the outer surface 141f1 of the opposing wall 141b of the pump chamber portion 141. As shown in FIG.
  • the pump device 11 corresponds to the pump 1I.
  • the pump chamber portion 141 of the elastic tube 14 corresponds to the elastic space main body 3 of the pump 1I. That is, the opposing wall 141a of the pump chamber portion 141 corresponds to the opposing wall 3a of the elastic space main body 3, and the opposing wall 141b of the pump chamber portion corresponds to the opposing wall 3b of the elastic space main body 3. Therefore, in the pump device 11 as well, the hard magnetic elastic body 5a is fixed to the outer surface 3f1 of the elastic space main body 3a, and the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the elastic space main body 3b. That is, the pump device 11 includes the pump chamber portion 141 of the elastic tube 14 and the hard magnetic elastic body 5 as the elastic space portion 2 of the pump 1I.
  • the elastic space portion deformation generating element is the electromagnet 6 .
  • the electromagnet 6 is obtained by winding an energizing coil 62 around a magnetic element (core material) 61 .
  • the power supply 7 is connected to the energizing coil 62 .
  • the direction of current flowing from the power supply 7 can be controlled by a controller 8 such as a computer. Therefore, in this embodiment, the change in magnetic pole of the electromagnet 6 can be controlled by the controller 8 . Further, in this embodiment, when the power supply 7 is turned off, the magnetic poles of the electromagnet 6 disappear.
  • the electromagnet 6 can generate an attractive force F65a or a repulsive force F65r due to the magnetic force in relation to the hard magnetic elastic body 5 by changing the direction of the current flowing through the energizing coil 62.
  • F65a an attractive force
  • F65r a repulsive force
  • the pump device 11 includes a power source 7 and a controller 8 . That is, in this embodiment, the pump 1I further includes a power supply 7 and a controller 8. As shown in FIG. In the initial state of the pump device 11, the space S1 is maintained as part of the internal space S10. In the present embodiment, the internal space S10 is filled with the object M to be transported. Therefore, the space S1 is filled with the objects M to be transported.
  • the balloon actuator 10 can control the balloon device 12 by driving the pump device 11 .
  • Balloon actuator 10 can expand balloon portion 142 by squeezing pump chamber portion 141 of elastic tube 14 .
  • the balloon actuator 10 can restore the balloon portion 142 by releasing the compression of the pump chamber portion 141 .
  • the balloon portion 142 can also be deflated. The basic operation of the balloon actuator 10 will be described below.
  • Initial state Open operation (extended mode)
  • the initial state of the balloon actuator 10 is that the electromagnet 6 is OFF.
  • the space S1 is maintained in the initial state of the balloon actuator 10.
  • the space S1 is maintained by the repulsive force F55r generated between the two hard magnetic elastic bodies 5a and 5b. Space S1 is thereby maintained in the initial state.
  • the pump 1I is maintained in a state capable of discharging the transport object M having the volume V1.
  • Balloon expansion state closed motion (collapse mode) Turn on the electromagnet 6 .
  • the magnetic pole generated inside the electromagnet 6 is the same magnetic pole S(N) as the magnetic pole S(N) of the outer surface 5f1 of the hard magnetic elastic body 5.
  • FIG. 10B a repulsive force F65r is generated between the hard magnetic elastic body 5 and the electromagnet 6 due to the magnetic force.
  • the repulsive force F65r is made stronger than the repulsive force F55r against the two hard magnetic elastic bodies 5a and 5b.
  • the opposing wall 141a of the pump chamber portion 141 and the opposing wall 141b of the pump chamber portion 141 move toward each other.
  • the space S1 is reduced (reduced).
  • the object to be transported M placed in the space S1 is pressure-fed to the second space S2 through the third space S3. Therefore, the balloon actuator 10 can expand the balloon portion 142 of the elastic tube 14 by turning on the electromagnet 6 .
  • the inner surface 141f2 of the opposing wall 141a of the pump chamber portion 141 and the inner surface 141f2 of the opposing wall 141b of the pump chamber portion 141 are finally in contact. This completely closes the space S1 as shown in FIG. 10B. Therefore, the object to be transported M can be transported to the second space S2 of the balloon portion 142 without leaving any space S1.
  • Balloon contraction state opening movement (expansion mode)
  • the electromagnet 6 is turned off.
  • the repulsive force F65r disappears, and the influence of the repulsive force F55r on the two hard magnetic elastic bodies 5a and 5b becomes dominant.
  • FIG. 10A the opposing wall 141a of the pump chamber portion 141 and the opposing wall 141b of the pump chamber portion 141 move away from each other. This increases (restores) the space S1.
  • This increase in space S1 opens the space S1 completely. That is, when the electromagnet 6 is turned off, the space S1 returns to its initial state as shown in FIG. 10A. Therefore, all the objects to be transported M pumped to the second space S2 are returned to the space S1. This allows the balloon portion 142 to be restored to its initial state.
  • the expansion mode and the contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current of the electromagnet 6.
  • the expansion and contraction of the balloon portion 142 can be continuously repeated by using the balloon portion 142 as an actuator.
  • the soft magnetic elastic body 4 and the hard magnetic elastic body 5 can be arranged at a plurality of positions in the extending direction of the elastic space part 2 .
  • the hard magnetic elastic body 5 can be arranged at a plurality of positions in the axial direction. An example of this will be described below.
  • FIG. 11A is a cross-sectional view schematically showing the expanded state of the pump 1J, which is the tenth embodiment of the present invention.
  • FIG. 11B is a cross-sectional view schematically showing a reduced state of the pump 1J.
  • the power supply 7 and the controller 8 are omitted in FIGS. 11A and 11B.
  • the pump 1J is a so-called peristaltic pump.
  • the pump 1J can be used as a conveying device.
  • the pump 1J will be described as a conveying device.
  • the pump 1J has an elastic space 2 containing a hard magnetic elastic body.
  • the elastic space portion 2 includes an elastic space portion main body 3 and a hard magnetic elastic body 5 .
  • the elastic space main body 3 is provided with two opposing walls, ie, the opposing wall 3a and the opposing wall 3b.
  • a space S1 is formed between the two opposing walls 3a and 3b of the elastic space body 3. As shown in FIG.
  • the hard magnetic elastic body 5 includes two hard magnetic elastic bodies, a hard magnetic elastic body 5a and a hard magnetic elastic body 5b.
  • the two hard magnetic elastic bodies 5a and 5b are fixed to the outer surface 3f1 of the elastic space body 3, respectively.
  • the hard magnetic elastic body 5a is fixed to the outer surface 3f1 of the opposing wall 3a of the elastic space main body 3.
  • the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the opposing wall 3b of the elastic space main body 3. As shown in FIG.
  • the hard magnetic elastic bodies 5 are arranged at a plurality of positions in the extending direction of the elastic space portion 2 .
  • a plurality of hard magnetic elastic bodies 5a are arranged on the outer surface 3f1 of the facing wall 3a of the elastic space body 3 at intervals in the extending direction of the facing wall 3a.
  • a plurality of hard magnetic elastic bodies 5b are arranged on the outer surface 3f1 of the facing wall 3b of the elastic space body 3 at intervals in the extending direction of the facing wall 3b.
  • the hard magnetic elastic body 5a and the hard magnetic elastic body 5b are arranged at positions facing each other across the central axis O1.
  • the elastic space main body 3 is formed by an elastic tube 14 .
  • a space S1 is thereby formed inside the elastic tube 14 .
  • the space S1 forms a transport path for circulating the object M to be transported.
  • the pump 1J can be constructed by using a plurality of pumps 1I.
  • the pump 1J can be formed by axially connecting a plurality of pumps 1I.
  • the pump 1J locally compresses the elastic tube 14 at an arbitrary position in the axial direction and moves the arbitrary position along the axial direction, thereby moving the conveying object M carried in from one side in the axial direction. It can be carried out to the other side.
  • the pump 1J can carry in a new transport object M from one side in the axial direction by releasing the compression of the elastic tube 14 .
  • the magnetic pole inside the hard magnetic elastic body 5a and the magnetic pole inside the hard magnetic elastic body 5b are the same magnetic pole N(S) as in the pump 1I. The basic operation of the pump 1J will be described below.
  • Initial state Open operation (extended mode) All the electromagnets 6 are OFF in the initial state of the pump 1J. As shown in FIG. 11A, the space S1 is maintained in the initial state of the pump 1J. In the present embodiment, in the initial state, by maintaining the space S1, the transport target object M having the volume V1 can be discharged.
  • Conveyance state combination of closing operation (reduction mode) and opening operation (expansion mode)
  • a predetermined electromagnet 6 is turned on.
  • all the electromagnets 6 arranged in the axial direction can be turned ON/OFF independently.
  • the hard magnetic elastic body 5 with the electromagnet 6 turned on has repulsion against the hard magnetic elastic body 5a and the electromagnet 6a.
  • Both the force F65r and the repulsive force F65r against the hard magnetic elastic bodies 5b and the electromagnet 6b are larger than the repulsive force F55r against the hard magnetic elastic bodies 5a and 5b.
  • any electromagnet 6 arranged in the axial direction can be locally compressed in the axial direction.
  • the electromagnet 6 is turned off, the compression of the elastic tube 14 is released, and the compressed portion can be restored to the expanded portion by the repulsive force F55r. Therefore, when an arbitrary electromagnet 6 out of the plurality of electromagnets 6 arranged in the axial direction is turned ON/OFF, the object to be conveyed M arranged in the space S1 is moved from one side in the axial direction to the other side in the axial direction. can be transported.
  • an arbitrary electromagnet 6 arranged in the axial direction is alternately turned on and off, or the current of the electromagnet 6 is By switching the orientation of , expansion and contraction modes are repeated in each pump 1I.
  • the object to be conveyed M placed in the space S1 can be continuously conveyed from one side in the axial direction toward the other side in the axial direction.
  • the pump 1J is composed of a plurality of pumps, and the plurality of pumps is composed only of the pump 1I.
  • other pumps can be used for the plurality of pumps.
  • any one of the pumps 1A to 1H described above can be used for the plurality of pumps.
  • the plurality of pumps may be composed of any one of pumps 1A to 1H, or composed of two or more different pumps of pumps 1A to 1I. good too.
  • FIG. 12 is a hydraulic balloon actuator 20 to which the pump 1J is applied, and is a sectional view schematically showing the operation of the balloon actuator 20 in chronological order.
  • the balloon actuator 20 is a modification of the balloon actuator 10.
  • the balloon actuator 20 has a pump device 15 arranged at the communication path 13 of the balloon actuator 10 .
  • the balloon actuator 20 includes a pump device 15 , a first balloon device (first actuation device) 16 and a second balloon device (second actuation device) 17 .
  • the pump device 15 connects the first balloon device 16 and the second balloon device 17 .
  • the pump device 15 also includes a power source 7 and a controller 8, similar to the balloon actuator 10 shown in FIG. 10A and elsewhere. In FIG. 12, the power supply 7 and controller 8 are omitted.
  • the balloon actuator 20 includes an elastic tube 14, similar to the balloon actuator 10 shown in FIG. 10A and elsewhere.
  • the external shape of the balloon actuator 20 is basically formed by the elastic tube 14 .
  • the elastic tube 14 is formed by a pump chamber portion 141 , a first balloon portion (working chamber portion) 145 and a second balloon portion (working chamber portion) 146 .
  • a space (pump chamber space) S1 is formed inside the pump chamber portion 141 .
  • a second space (working chamber space) S5 is formed inside the first balloon portion 145 .
  • a third space (working chamber space) S6 is formed inside the second balloon portion 146 .
  • the space S1 communicates the second space S5 and the third space S6.
  • the internal space S10 of the elastic tube 14 is formed by the space S1, the second space S5 and the third space S6.
  • the elastic tube 14 is an orifice-equipped elastic tube.
  • the passage cross-sectional area of the space S1 is smaller than the pressure-receiving cross-sectional area of the second space S5 and the pressure-receiving cross-sectional area of the third space S6.
  • Various transport objects M can be circulated in the internal space S10.
  • the object to be conveyed M is filled with working fluid.
  • the magnetic elastic body is the hard magnetic elastic body 5.
  • the hard magnetic elastic body 5 includes hard magnetic elastic bodies 5a and 5b.
  • the two hard magnetic elastic bodies 5a and 5b are arranged at positions facing each other across the central axis O1.
  • the pump device 15 corresponds to the pump 1J.
  • the pump chamber portion 141 of the elastic tube 14 corresponds to the elastic space portion 2 of the pump 1J.
  • the opposing wall 141a of the pump chamber portion 141 corresponds to the opposing wall 3a of the elastic space main body 3, and the opposing wall 141b of the pump chamber portion corresponds to the opposing wall 3b of the elastic space main body 3. Therefore, in the pump device 15, the hard magnetic elastic body 5a is fixed to the outer surface 3f1 of the elastic space main body 3a, and the hard magnetic elastic body 5b is fixed to the outer surface 3f1 of the elastic space main body 3b. That is, the pump device 15 includes the pump chamber portion 141 of the elastic tube 14 and the hard magnetic elastic body 5 as the elastic space portion 2 of the pump 1J.
  • the pump 1J arranged in the pump device 15 of the balloon actuator 20 is a peristaltic pump, as described above.
  • the balloon actuator 20 can expand the second balloon portion 146 while deflating the first balloon portion 145 by driving the pump device 15 .
  • the balloon actuator 20 can expand the first balloon portion 145 and contract the second balloon portion 146 by driving the pump device 15 .
  • the basic operation of the balloon actuator 20 will be described below, taking the case of expanding the second balloon portion 146 as an example.
  • the pump 1J can hold the object to be conveyed M in a pressurized state at the center of the space S1 in the axial direction.
  • the pump 1J pumps (carries out) the other object M to be conveyed from one side in the axial direction to the other side in the axial direction, thereby expanding the third space S6. can.
  • This allows balloon actuator 20 to inflate second balloon portion 146 .
  • the pump 1J moves the object M remaining in the second space S5 of the first balloon portion 145 to the third They can be pumped sequentially to the space S6. Further, according to the balloon actuator 20, the above operations (a) to (f) can be performed by the pump 1J so that the object to be conveyed M is directed toward the first balloon portion 145. FIG. This allows the pump 1J to inflate the first balloon portion 145 in the space S1 by following a path opposite to the above path.
  • FIG. 13 is a cross-sectional view schematically showing an example of layouts that can be selected by the balloon actuator 20.
  • the pump 1J has hard magnetic elastic bodies 5 at four positions along the axial direction.
  • a main body (elastic space) of the pump 1J is formed of an elastic tube 14 and a hard magnetic elastic body 5.
  • the pump 1J can be freely deformed as the balloon actuator 20 as a whole. Therefore, as shown in FIG. 13, the pump 1J can have flexibility in layout when the balloon actuator 20 (pump 1I) is installed. Furthermore, the high degree of layout freedom allows the balloon actuator 20 (pump 1J) to be designed in a shape applicable to various environments.
  • FIG. 14A is a cross-sectional view schematically showing an expanded state of the pump 1K of the eleventh embodiment of the invention.
  • FIG. 14B is a cross-sectional view schematically showing a reduced state of pump 1K.
  • the power supply 7 and the controller 8 are omitted in FIGS. 14A and 14B.
  • pump 1K is a so-called peristaltic pump.
  • the pump 1K can be used as a conveying device.
  • the pump 1H will be described as a conveying device.
  • the pump 1K has a plurality of pumps 1H.
  • a plurality of pumps 1H are arranged at intervals in the axial direction.
  • the pump 1K can be configured by using a plurality of pumps 1H.
  • the elastic space main body of the pump 1K is formed by the elastic tube 14 together with the elastic space main body (3) of the pump 1H.
  • a space S1 is formed inside the elastic tube 14 .
  • the space S1 forms a transport path for circulating various objects M to be transported.
  • the pump 1K Similar to the pump 1J, the pump 1K locally compresses the elastic tube 14 at an arbitrary position in the axial direction and moves the arbitrary position along the axial direction, thereby conveying an object carried in from one side in the axial direction.
  • the object M can be carried out to the other side in the axial direction.
  • the pump 1K can carry in a new object M to be conveyed from one side in the axial direction by releasing the compression of the elastic tube 14 .
  • the magnetic pole S(N) inside the hard magnetic elastic body 5a and the magnetic pole N(S) inside the hard magnetic elastic body 5b are different magnetic poles. The basic operation of the pump 1K will be described below.
  • Initial state Close operation (reduced mode) All the electromagnets 6 are OFF in the initial state of the pump 1K.
  • the space S1 is closed.
  • an attractive force F55a is generated by the magnetic force in each of the hard magnetic elastic bodies 5a and 5b.
  • the inner surface 141f2 of the opposing wall 141a of the elastic tube 14 and the inner surface 141f2 of the opposing wall 141a of the elastic tube 14 are in contact with each other by an attractive force F55a. Therefore, in the initial state of the pump 1K, the space S1 is closed by the attractive force F55a to the two hard magnetic elastic bodies 5a and 5b.
  • a predetermined electromagnet 6 is turned on.
  • all electromagnets 6 arranged in the axial direction can be turned ON/OFF independently.
  • the attraction to the hard magnetic elastic body 5a and the electromagnet 6a both the force F65a and the attractive force F65a to the hard magnetic elastic body 5b and the electromagnet 6b are larger than the attractive force F55a to the hard magnetic elastic bodies 5a and 5b.
  • any electromagnet 6 arranged in the axial direction can be expanded locally in the axial direction. Further, when the electromagnet 6 is turned off, the expansion of the elastic tube 14 is released, and the expanded portion can be restored to the compressed portion by the attracting force F55a. Therefore, when an arbitrary electromagnet 6 out of the plurality of electromagnets 6 arranged in the axial direction is turned ON/OFF, the object to be conveyed M arranged in the space S1 is moved from one side in the axial direction to the other side in the axial direction. can be transported.
  • an arbitrary electromagnet 6 arranged in the axial direction is alternately turned on and off, or the current of the electromagnet 6 is By switching the orientation of the , expansion and contraction modes are repeated in each pump 1H.
  • the pump 1K according to the present embodiment it is possible to continuously convey the object to be conveyed M placed in the space S1 from one side in the axial direction toward the other side in the axial direction.
  • the pump 1K it is assumed that the electromagnet 6 is turned ON/OFF by both the electromagnet 6a and the electromagnet 6b. At least one of the electromagnet 6a and the electromagnet 6b should be performed. Also, in the above description, the pump 1K is composed of a plurality of pumps, and the plurality of pumps is composed only of the pump 1H. However, other pumps, like pump 1J, can be used for the plurality of pumps.
  • the attractive force or repulsive force between the magnetic elastic body and the elastic space portion deformation element due to the magnetic force, and the restoring force of at least one of the elastic space portion 2 and the magnetic elastic body and the resultant force of these forces deforms the elastic space portion 2 to expand and contract the space S1 formed in the elastic space portion 2, so that the object to be conveyed in the space S1 is An object M can be transported. Therefore, the pumps 1A to 1K can convey the object M to be conveyed while keeping the elastic space portion 2 compressed without moving the compressed portion along the axial direction. Therefore, according to the pumps 1A to 1K, it is possible to reduce the action of the shear force along the axial direction on the elastic space 2 and provide a pump having excellent durability.
  • the objects M to be conveyed can be conveyed with efficient energy consumption by ON/OFF control of the magnetic force generated between the magnetic elastic body and the magnetic elastic body deformation generating element (6).
  • the pumps 1A to 1K control expansion and contraction of the elastic space 2 by ON/OFF control of the magnetic force generated between the magnetic elastic bodies (4, 5) and the magnetic elastic body deformation generating element (6). can do. As a result, the control of the pump is facilitated, and the object to be conveyed M can be conveyed with efficient energy consumption.
  • the pumps 1A to 1K use the elastic space portion 2 and the magnetic elastic bodies (4, 5) as members for conveying the object M to be conveyed, so they are excellent in flexibility. In this case, a degree of freedom can be given to the layout when arranging the pumps 1A to 1K. Therefore, according to the pumps 1A-1K, the range of application is expanded. Further, since the pumps 1A to 1K convey the object M to be conveyed by deformation of the elastic space portion 2, the object to be conveyed M can be conveyed with efficient energy consumption. In particular, if an elastic tube is used as the elastic space portion 2 or the elastic space portion main body 3, the pump can be manufactured using existing members.
  • the elastic space portion 2 includes an elastic space portion main body 3 and magnetic elastic bodies (4, 5).
  • the magnetic elastic bodies ( 4 , 5 ) are fixed to the outside of the elastic space body 3 .
  • the elastic space portion deformation generating element (6) is provided outside the elastic space portion 2.
  • the elastic space portion 2 is formed by separately forming the elastic space portion body 3 and the soft magnetic elastic body 4 and fixing the elastic space portion body 3 and the soft magnetic elastic body 4 together.
  • the elastic space portion 2 can have a laminated structure of the elastic space portion main body 3 and the magnetic elastic bodies (4, 5). If the elastic space portion 2 has a laminated structure, the elastic space portion 2 can be tuned by adjusting the magnetic force, elastic force, rigidity, and hardness of the elastic space portion 2 to desired conditions.
  • the magnetic elastic bodies (4, 5) are arranged only at one position in the extending direction (axial direction) of the elastic space portion 2 in the axial direction.
  • the pump can be operated by magnetic force and has a simple structure.
  • the magnetic elastic bodies (4, 5) are arranged at a plurality of positions in the axial direction.
  • the elastic space portion 2 is compressed and released from the compression in the axial direction perpendicular to the axial direction. can be repeated. Therefore, according to the pumps 1J to 1K, it is possible to provide a peristaltic pump that can be operated by magnetic force. This can also be realized by forming a plurality of portions in the extending direction of the elastic space portion 2 with an elastic material.
  • the space S1 formed within the elastic space portion 2 expands in the initial state.
  • the elastic space deformation generating element (6) should be energized (ON) only when the space S1 is reduced. Therefore, in this case, the energy efficiency during pump operation can be improved.
  • the space S1 formed within the elastic space portion 2 is reduced in the initial state.
  • the elastic space deformation generating element (6) should be energized (ON) only when the space S1 is increased. Therefore, in this case, the energy efficiency during pump operation can be improved.
  • the elastic space portion 2 can be formed of a hard magnetic elastic body or a hard magnetic elastic body, like the pump 1B.
  • the entire elastic space portion 2 (elastic tube 14) can be made of a magnetic elastic body.
  • the elastic space 2 (elastic tube 14) is arranged so that at least one layer in the direction perpendicular to the axis of the elastic space 2 (elastic tube 14) is laminated as a magnetic elastic body. ) can be multicolor molded.
  • the elastic space portion 2 can be tuned by adjusting the magnetic force, elastic force, rigidity, and hardness of the elastic space portion 2 to desired conditions. Further, in this case, the number of parts of the pump can be reduced by configuring the elastic space portion 2 as a single member.
  • the elastic space portion 2 can be entirely made of a magnetic elastic body, like the pump 1B.
  • the pump since it is not necessary to use different elastic materials for each part of the elastic space 2, the pump can have a simple structure.
  • a plurality of portions in the extending direction of the elastic space portion 2 can be formed from the magnetic elastic body.
  • the pumps 1J to 1K according to the above embodiments can be manufactured without using the hard magnetic elastic body 5. Therefore, in this case, the pumps 1J to 1K can be manufactured while reducing the number of parts.
  • the elastic space portion deformation generating element is the electromagnet 6.
  • the magnetic force generated between the magnetic elastic body and the elastic space portion deformation generating element can be easily controlled by ON/OFF control of the current applied to the electromagnet 6 . Further, in this case, the operation of the elastic space portion 2 can be easily controlled with good responsiveness.
  • the elastic space portion deformation generating element can be a so-called magnet.
  • the magnet include electromagnets as well as permanent magnets.
  • the permanent magnet is preferably movable relative to the magnetic elastic body.
  • Each of the above-described embodiments is a pump that causes pumping action by deforming the elastic space.
  • the pump can be made to generate a pumping action by deforming the elastic membrane attached to the space.
  • a pump using an elastic membrane will be described.
  • the pump 1L includes a space 31, an elastic film 32 containing a magnetic elastic body, and an elastic film deformation causing element that deforms the elastic film 32 by magnetic force.
  • the elastic film 32 closes the opening A1 formed in the space 31 .
  • the pump 1 ⁇ /b>L includes a space portion 31 and an elastic membrane 32 as the elastic space portion 2 .
  • the elastic membrane deformation-causing element includes an attractive force or a repulsive force between the magnetic elastic body and the elastic membrane deformation-causing element due to the magnetic force, a restoring force of at least one of the elastic membrane 32 and the magnetic elastic body, and these forces. and at least one of the elastic membrane 32 is deformed to restore or increase the space S1 formed in the space 31, and the contraction mode reduces or restores the space S1. .
  • FIG. 15A is a cross-sectional view schematically showing the expanded state of the pump 1L according to the twelfth embodiment of the present invention.
  • FIG. 15B is a cross-sectional view schematically showing a reduced state of the pump 1L.
  • the space 31 of the pump 1L is a pipe.
  • the space S ⁇ b>1 is an internal passage formed inside the space 31 .
  • the space S1 forms a transport path for circulating the object M to be transported.
  • the side wall of the space portion 31 is formed with an opening A1 through which the space S1 communicates with the outside world.
  • the space 31 is not limited to being made of an elastic material.
  • the space 31 can be made of a highly rigid material such as metal. In this case, it is preferable to use a non-magnetic metal as the metal forming the space 31 from the viewpoint of pump control.
  • the pump 1L includes an intake valve 37 and an exhaust valve 38.
  • the intake valve 37 and the discharge valve 38 are arranged in the space S ⁇ b>1 of the space portion 31 .
  • An opening A1 formed in the space S1 is located between the intake valve 37 and the exhaust valve 38. As shown in FIG. The opening A1 is closed by the elastic membrane 32 .
  • the space S1 is a space (pump chamber) defined by the space 31, the suction valve 37, the discharge valve 38, and the elastic membrane 32 in the internal passage formed in the space 31. .
  • the elastic membrane 32 includes an elastic membrane main body 33 and a hard magnetic elastic body 35 .
  • the hard magnetic elastic body 35 is fixed to the outer surface 33 f 1 of the elastic film main body 33 .
  • the elastic membrane deformation generating element is provided outside the hard magnetic elastic body 35 .
  • the elastic film 32 is formed by separately forming the elastic film body 33 and the hard magnetic elastic body 35 and fixing the elastic film body 33 and the hard magnetic elastic body 35 together. That is, in the pump 1L, the elastic film 32 includes a laminated portion in which the elastic film main body 33 and the hard magnetic elastic body 35 are laminated.
  • the elastic membrane main body 33 is made of an elastic material that can be deformed and restored.
  • elastic materials include natural rubber, synthetic rubber, polymeric elastic bodies, and the like.
  • the elastic membrane deformation generating element can deform the elastic membrane 32 by magnetic force.
  • the magnetic force is a magnetic force generated between the elastic film 32 and the elastic space deformation generating element due to the interaction between the magnetic elastic body and the elastic space deformation generating element.
  • the elastic space portion deformation generating element can be composed of a magnetic material including magnets such as electromagnets and permanent magnets.
  • the elastic membrane deformation generating element is the electromagnet 6 .
  • the electromagnet 6 is provided outside the elastic membrane 32 . Specifically, the electromagnet 6 is spaced apart from the outer surface 35 f 1 of the hard magnetic elastic body 35 . However, the electromagnet 6 may be in contact with the outer surface 35 f 1 of the hard magnetic elastic body 35 .
  • the pump 1L can discharge (transport) the object M to be transported by deforming the elastic membrane 32.
  • the pump 1L can be driven by turning the electromagnet 6 ON/OFF. An example of the basic operation of the pump 1L will be described below.
  • Initial state Open operation (extended mode)
  • the electromagnet 6 is OFF in the initial state of the pump 1L.
  • the space S1 is maintained.
  • the space S ⁇ b>1 is maintained by the elastic force of the elastic membrane 32 .
  • the object to be transported M placed in the space S1 opens the discharge valve 38 and is pressure-fed to the outside of the space S1. Therefore, the pump 1L can discharge the transport object M that has been placed in the space S1 to the outside of the space S1.
  • the electromagnet 6 When increasing the space S1, according to the pump 1L, the electromagnet 6 can generate a magnetic pole opposite to that in the closing operation. As a result, an attractive force due to magnetic force can be generated between the hard magnetic elastic body 35 and the electromagnet 6 . In this case, a stronger suction force can be generated than depending only on the restoring force of the elastic body (elastic membrane 32). Also, in this case, the restoration speed can be increased. Thus, in the case of the pump 1L, it is preferable to use the attractive force between the electromagnet 6 and the hard magnetic elastic body 35 together with the restoring force of the elastic membrane 32 .
  • the expansion mode and contraction mode are repeated by alternately switching ON and OFF of the electromagnet 6 or by switching the direction of the current.
  • the pump 1L of the present embodiment it is possible to continuously discharge (convey) the conveying object M arranged in the space S1.
  • the pump 1L As described above, according to the pump 1L, the attractive force or the repulsive force between the magnetic elastic body and the elastic membrane deformation causing element (6) due to the magnetic force, the restoring force of at least one of the elastic membrane 32 and the magnetic elastic body, The elastic film 32 is deformed by at least one of the resultant force of these forces, and the space S1 formed in the space portion 31 is expanded and contracted, thereby conveying the object M in the space S1. can be transported. Therefore, the pump 1 ⁇ /b>L can convey the object M to be conveyed without moving the compressed portion along the extending direction of the space 31 while keeping the elastic membrane 32 compressed. Therefore, according to the pump 1L, it is possible to reduce the action of the shear force acting on the elastic membrane 32 along the extending direction of the space 31 and to provide a pump having excellent durability.
  • the pump 1L since the pump 1L does not need to move the compressed portion along the extending direction of the space 31 while the elastic membrane 32 is being compressed, the magnetic elastic body and the elastic membrane deformation causing element (6)
  • the object to be conveyed M can be conveyed with efficient energy consumption by the ON/OFF control of the magnetic force generated between and.
  • the pump 1L can control expansion and contraction of the elastic membrane 32 by ON/OFF control of the magnetic force generated between the magnetoelastic body and the elastic membrane deformation generating element (6). As a result, the control of the pump 1L is facilitated, and the object to be conveyed M can be conveyed with efficient energy consumption.
  • the pump 1L uses the elastic film 32 and the magnetic elastic body as members for transporting the object M to be transported, and thus has excellent flexibility.
  • the pump 1L conveys the object M to be conveyed by deformation of the elastic membrane 32, the object M to be conveyed can be conveyed with efficient energy consumption.
  • the pump can be manufactured using existing members.
  • the elastic membrane 32 includes an elastic membrane main body 33 and a magnetic elastic body (35).
  • the magnetic elastic body ( 35 ) is fixed outside the elastic membrane main body 33 .
  • the elastic space deformation generating element (6) is provided outside the elastic membrane 32.
  • the elastic film 32 is formed by forming an elastic film body 33 and a hard magnetic elastic body 35 separately, and fixing the elastic film body 33 and the hard magnetic elastic body 35 together.
  • the space part 31 can have a laminated structure of the elastic film main body 33 and the magnetic elastic body (5). If the space portion 31 has a laminated structure, the magnetic force, elastic force, rigidity, and hardness of the space portion 31 can be tuned according to desired conditions.
  • the pump 1L has an expanded space S1 in the initial state.
  • the electromagnet 6 should be energized (ON) only when the space S1 is to be reduced. Therefore, also in this case, the energy efficiency during pump operation can be improved.
  • the pump 1L can be assumed to have a reduced space S1 in the initial state. In this case, the electromagnet 6 needs to be energized only when the volume V1 of the space S1 is increased. Therefore, in this case, the energy efficiency during pump operation can be improved.
  • the elastic membrane deformation generating element is the electromagnet 6.
  • the magnetic force generated between the magnetic elastic body and the elastic membrane deformation generating element can be easily controlled by the current applied to the electromagnet 6 .
  • the operation of the elastic membrane 32 can be easily controlled with good responsiveness.
  • the elastic film 32 can be formed of the magnetic elastic body.
  • the entire elastic film 32 can be made of a magnetic elastic material.
  • the elastic film 32 can be multi-colored molded so that at least one layer of the elastic film 32 in the direction perpendicular to the axis is laminated as a magnetic elastic body.
  • the elastic space portion 2 (the elastic film 32 in this embodiment) can be tuned by adjusting the magnetic force, elastic force, rigidity, and hardness of the elastic space portion 2 to desired conditions.
  • the elastic film 32 can be formed of a magnetic elastic material. In this case, the number of parts of the pump can be reduced by configuring the elastic membrane 32 as a single member.
  • the elastic membrane deformation-causing element can also be a so-called magnet.
  • the magnet include electromagnets as well as permanent magnets.
  • the permanent magnet is movable relative to the elastic membrane 32 (magnetic elastic body).
  • the magnetic elastic body is a hard magnetic elastic body.
  • a hard magnetic elastic body generates magnetic force (or magnetic field) by itself. Therefore, in this case, the energy efficiency during pump operation can be improved.
  • the hard magnetic elastic body is made of a hard magnetic elastomer.
  • a specific example of the hard magnetic elastomer is a silicon elastomer containing magnetized neodymium alloy powder.
  • the hard magnetic elastomer for example, particles having no spontaneous magnetization are dispersed in the dispersion medium M3, fixed, and then magnetized, so that the hard magnetic particles P3 are dispersed in the dispersion medium M3. and those manufactured in
  • the hard magnetic particles P3 are particles having hard magnetism.
  • Examples of the hard magnetic material that forms the hard magnetic particles P3 include magnets such as iron-containing alloys of nickel, cobalt, ferrite, and neodymium.
  • the hard magnetic elastomer contains a plurality of hard magnetic particles P3.
  • the hard magnetic particles P3 contained in the hard magnetic elastomer may be made of the same type of hard magnetic material or two or more different types of hard magnetic material. Further, the size of the hard magnetic particles P3 depends on the shape and size of the hard magnetic elastic body 5, the properties of the dispersion medium M3, and the elastic force required for the hard magnetic elastic body 5 (for example, the elasticity required for pump specifications).
  • the average particle size of the hard magnetic particles P3 contained in the hard magnetic elastomer may be the same or different.
  • the average particle size of the hard magnetic particles P3 is, for example, in the range of 0.1 to 150 ⁇ m, preferably in the range of 0.3 to 80 ⁇ m. When the average particle size of the hard magnetic particles P3 exceeds 150 ⁇ m, it becomes difficult to obtain a uniform elastomer. Further, when the average particle size of the hard magnetic particles P3 is less than 0.1 ⁇ m, it becomes difficult to obtain sufficient deformation of the elastomer by a magnetic field.
  • the average particle size means the median value (median size) of the particle size distribution. The average particle size is measured using a laser diffraction particle size distribution analyzer, a scanning electron microscope (SEM), or the like.
  • the dispersion medium M3 is a medium in which the hard magnetic particles P3 are dispersed.
  • examples of the dispersion medium M3 include a medium that gels with the hard magnetic particles P3 dispersed therein.
  • examples of such dispersion medium M3 include those containing silicon resin, urethane resin, fluorine resin, acrylic resin, polyester resin, urea resin, and the like. Also, these resins may be combined for use.
  • the dispersion medium M3 is determined by the shape and size of the hard magnetic elastic body 5, the properties of the hard magnetic particles P3, the elastic force required for the hard magnetic elastic body 5 (for example, the elastic force required as the specifications of the pump), the hard magnetic It can be appropriately selected depending on the pressing force required for the elastic body 5 (for example, the pressing force for satisfying the discharge pressure of the pump, which is required as the specifications of the pump). Furthermore, the ratio of the hard magnetic particles P3 to the dispersion medium M3 (concentration of the hard magnetic particles P3) also depends on the shape and size of the hard magnetic elastic body 5, the properties of the hard magnetic particles P3, and the requirements for the hard magnetic elastic body 5.
  • the concentration of the hard magnetic particles P3 is, for example, in the range of 25-95% by weight, preferably in the range of 35-90% by weight. If the concentration of the hard magnetic particles P3 is less than 25% by weight, it becomes difficult to obtain sufficient deformation of the elastomer in the presence of a magnetic field. On the other hand, if the concentration of the hard magnetic particles P3 exceeds 95% by weight, it becomes difficult to disperse them uniformly in the dispersion medium M, and the elastic restoring force of the hard magnetic elastic body 5 becomes difficult to obtain.
  • the elastic space portion deformation element is a hard magnetic material.
  • the hard magnetic material which is a so-called magnet, has a large coercive force, spontaneous magnetization, and the property of generating a magnetic force (or magnetic field) by itself.
  • the hard magnetic material include metals such as iron, nickel and cobalt, metal oxides thereof, alloys containing the above metals, magnets such as metal oxides, and electromagnets.
  • the hard magnetic body is an electromagnet 6 .
  • the electromagnet 6 is obtained by winding a current-carrying coil 62 around a magnetic element (core material) 61 .
  • the power supply 7 is connected to the energizing coil 62 .
  • the direction of current flowing from the power supply 7 can be controlled by a controller 8 such as a computer. Therefore, in this embodiment, the polar orientation of the electromagnet 6 can be controlled by the controller 8 . Further, in this embodiment, the polarity of the electromagnet 6 disappears when the power supply 7 is turned off.
  • the magnetic elastic body can be a soft magnetic elastic body.
  • a soft magnetic elastomer can be used as the soft magnetic elastic body.
  • the soft magnetic elastomer responds to receiving a magnetic force (or magnetic field), but has the property of not generating a magnetic force (or magnetic field) itself unless it receives a magnetic field from the outside.
  • a specific example of the soft magnetic elastomer is a silicon elastomer containing iron powder.
  • examples of the soft magnetic elastomer include those containing soft magnetic particles P1 and a dispersion medium M1.
  • the soft magnetic particles P1 are particles having soft magnetism.
  • Examples of the soft magnetic material forming the soft magnetic particles P1 include metals such as iron, nickel, and cobalt, metal oxides thereof, alloys containing the aforementioned metals, and metal oxides of the aforementioned alloys.
  • the soft magnetic elastomer contains a plurality of soft magnetic particles P1.
  • the soft magnetic particles P1 contained in the soft magnetic elastomer may be the same type of soft magnetic material or two or more different types of soft magnetic material. Further, the size of the soft magnetic particles P1 depends on the shape and size of the soft magnetic elastic body 4, the properties of the dispersion medium M1, and the elastic force required for the soft magnetic elastic body 4 (for example, the elasticity required as pump specifications).
  • the average particle size of the soft magnetic particles P1 contained in the soft magnetic elastomer may be the same or different.
  • the average particle size of the soft magnetic particles P1 is, for example, in the range of 0.1 to 150 ⁇ m, preferably in the range of 0.3 to 80 ⁇ m. When the average particle size of the soft magnetic particles P1 exceeds 150 ⁇ m, it becomes difficult to obtain a uniform elastomer. Moreover, when the average particle diameter of the soft magnetic particles P1 is less than 0.1 ⁇ m, it becomes difficult to obtain sufficient deformation of the elastomer by a magnetic field.
  • the dispersion medium M1 is a medium in which the soft magnetic particles P1 are dispersed.
  • the dispersion medium M1 include a medium that gels while the soft magnetic particles P1 are dispersed.
  • examples of such a dispersion medium include those containing silicon resin, urethane resin, fluorine resin, acrylic resin, polyester resin, urea resin, and the like. Also, these resins may be combined for use.
  • the dispersion medium M1 is the shape and size of the soft magnetic elastic body 4, the properties of the soft magnetic particles P1, the elastic force required for the soft magnetic elastic body 4 (for example, the elastic force required as the specifications of the pump), the soft magnetic It can be appropriately selected depending on the pressing force required for the elastic body 4 (for example, the pressing force for satisfying the discharge pressure of the pump, which is required as the specification of the pump).
  • the ratio of the soft magnetic particles P1 to the dispersion medium M1 is also required for the shape and size of the soft magnetic elastic body 4, the properties of the soft magnetic particles P1, and the soft magnetic elastic body 4 elastic force (for example, elastic force required as specifications of the pump), pressing force required for the soft magnetic elastic body 4 (for example, pressing force for satisfying the discharge pressure of the pump, which is required as the specification of the pump ), etc., can be selected as appropriate.
  • the concentration of the soft magnetic particles P1 is, for example, 25 to 95% by weight, preferably 35 to 90% by weight, relative to the total weight of the soft magnetic material.
  • the concentration of the soft magnetic particles P1 exceeds 95% by weight, it becomes difficult to uniformly disperse them in the dispersion medium M, and it becomes difficult to obtain the restoring force of the suction cups. Also, if the concentration of the soft magnetic particles P1 is less than 25% by weight, it becomes difficult to sufficiently deform the elastomer in the presence of a magnetic field.
  • the present invention it is possible to provide a pump with reduced shear force and excellent durability.
  • the present invention is also energy efficient and, in supportless embodiments, has broader applicability than conventional peristaltic pumps with rigid tube supports.
  • the flexibility of the elastic space portion 2, or in the case of the pump 1L the space portion 31 is made elastic, so that there is a degree of freedom in the layout when installing the pumps. can have In this case, the tube support can be omitted.
  • the electromagnet 6 is turned off in the initial state in consideration of energy efficiency.
  • the electromagnet 6 can be turned ON in the initial state.
  • the initial shape of the elastic space portion 2 is the elastic force of the elastic space portion 2 or the force between the two hard magnetic elastic bodies 5a and 5b. It is maintained by the attractive force F55a or the repulsive force F55r generated by the magnetic force.
  • the shape of the elastic space portion 2 in its initial state is such that at least one of the magnetic force, the elastic space portion (elastic space portion main body), and the magnetic elastic body is under tension when it is not subjected to an external force such as a magnetic force. It can be maintained by at least one of (elastic force) and the internal pressure from the conveying object M filled in the space S1, or a combination thereof. Therefore, in such a case, the attractive force F65a or the repulsive force F65r generated between the elastic space and the elastic space deformation generating element that causes deformation of the elastic space exceeds the attractive force F65a or the repulsive force F65r.
  • the attractive force F65a or the repulsive force F65r is a force that exceeds the force that attempts to maintain the shape of the elastic space portion 2 in its initial state. The same applies to the elastic membrane 32 in the pump 1L.
  • 1, 1A-1L pump, 2: elastic space, 3: elastic space main body, 4: soft magnetic elastic body, 5: hard magnetic elastic body, 6: electromagnet, 32: elastic membrane, 33: elastic membrane main body, 35: hard magnetic elastic body, 61: magnetic element, 62: current-carrying coil, S1: space

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

ポンプ(1)は、磁性弾性体を含む弾性空間部(2)と、磁力によって弾性空間部(2)を変形させる弾性空間部変形生起要素(6)と、を備えている。要素(2)は、磁力によって弾性空間部(2)を変形させ、弾性空間部(2)内に形成された空間(S1)を復元または増加させる拡張モードと、空間(S2)を減少または復元させる縮小モードと、を行う。

Description

ポンプ
 本発明は、ポンプに関する。
 従来のポンプには、可撓性のチューブを支持体によって支持し、複数の磁石を周方向に配置したロータを回転させることによって、前記ロータと反対に配置された磁性シートが前記チューブを外から押圧し、当該チューブをロータの回転に応じて変形させることによって、前記チューブに形成された流路内の流体を輸送する、押圧機構を備えた蠕動ポンプがある(例えば、特許文献1参照。)。
特開2019-190335号公報
 しかしながら、上記従来のポンプは、前記磁性シートが前記チューブの表面を当該チューブの延在方向に沿って繰り返し摺動するため、前記チューブにチューブ延在方向に沿ったせん断力が作用する。このため、上記従来のポンプには、前記チューブが経時的に変形、破断する恐れがあるなどの問題があった。
 本発明の目的は、せん断力の作用を軽減し耐久性に優れたポンプを提供することである。
 本発明に係るポンプは、磁性弾性体を含む弾性空間部と、磁力によって前記弾性空間部を変形させる弾性空間部変形生起要素と、を備えており、前記弾性空間部変形生起要素は、前記磁力による前記磁性弾性体と前記弾性空間部変形生起要素との引き合い力もしくは反発力と、前記弾性空間部および前記磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部を変形させ、前記弾性空間部内に形成された空間を復元または増加させる拡張モードと、前記空間を減少または復元させる縮小モードと、を行う。
 本発明に係るポンプにおいて、前記弾性空間部は、弾性空間部本体と、前記磁性弾性体とを、備えており、前記磁性弾性体は、前記弾性空間部本体の外側に固定されており、前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられているものとすることができる。
 本発明に係るポンプにおいて、前記磁性弾性体は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の1つの位置にのみ配置されているものとすることができる。
 本発明に係るポンプにおいて、前記磁性弾性体は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の複数の位置に配置されているものとすることができる。
 本発明に係るポンプにおいて、前記弾性空間部の少なくとも一部は、前記磁性弾性体によって形成されており、前記弾性空間部生起変形要素は、前記弾性空間部の外側に設けられているものとすることができる。
 本発明に係るポンプにおいて、前記弾性空間部は、前記磁性弾性体によって形成されているものとすることができる。
 本発明に係るポンプにおいて、前記弾性空間部は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の複数の部分を前記磁性弾性体によって形成しているものとすることができる。
 本発明に係るポンプにおいて、前記弾性空間部変形生起要素は、電磁石であるものとすることができる。
 本発明に係るポンプは、空間部と、磁性弾性体を含む弾性膜と、磁力によって前記弾性膜を変形させる弾性膜変形生起要素と、を備えており、前記弾性膜は、前記空間部に形成された開口部を閉じており、前記弾性膜変形生起要素は、前記磁力による前記磁性弾性体と前記弾性膜変形生起要素との引き合い力もしくは反発力と、前記弾性膜および前記磁性弾性体の少なくとも1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性膜を変形させ、前記空間部内に形成された空間の容積を復元または増加させる拡張モードと、前記空間の容積を減少または復元させる縮小モードと、を行う。
 本発明に係るポンプにおいて、前記弾性膜は、弾性膜本体と、前記磁性弾性体とを、備えており、前記磁性弾性体は、前記弾性膜本体の外面に固定されており、前記弾性膜変形生起要素は、前記磁性弾性体の外側に設けられているものとすることができる。
 本発明に係るポンプにおいて、前記弾性膜の少なくとも一部は、前記磁性弾性体によって形成されており、前記弾性膜変形生起要素は、前記磁性弾性体の外側に設けられているものとすることができる。
 本発明に係るポンプにおいて、前記空間部は、前記磁性弾性体によって形成されているものとすることができる。
 本発明に係るポンプにおいて、前記弾性膜変形生起要素は、電磁石であるものとすることができる。
 本発明に係るポンプは、初期状態において、前記弾性空間部内に形成された空間が縮小しているものとすることができる。
 本発明に係るポンプは、初期状態において、前記弾性空間部内に形成された空間が拡張しているものとすることができる。
 本発明に係るポンプは、初期状態において、前記空間部内に形成された空間が縮小しているものとすることができる。
 本発明に係るポンプは、初期状態において、前記空間部内に形成された空間が拡張しているものとすることができる。
 本発明に係るポンプにおいて、硬磁性弾性体であるものとすることができる。
 本発明に係るポンプにおいて、前記磁性弾性体は、軟磁性弾性体であるものとすることができる。
 本発明によれば、せん断力の作用を軽減し耐久性に優れたポンプを提供することができる。
本発明の第1の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第2の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第3の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第4の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第5の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第6の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第7の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第8の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第9の実施形態に係る、ポンプの要部を模式的に示した図である。 本発明の第9実施形態であるポンプを適用した油圧式のバルーンアクチュエータであって、前記ポンプの拡張状態を概略的に示す断面図である。 図10Aのバルーンアクチュエータであって、前記ポンプの縮小状態を概略的に示す断面図である。 本発明の第10実施形態であるポンプの拡張状態を概略的に示す断面図である。 図11Aのポンプの縮小状態を概略的に示す断面図である。 図11Aのポンプを適用した油圧式アクチュエータの一例であって、当該油圧式アクチュエータの動作を概略的かつ時系列に示す断面図である。 図12の油圧式アクチュエータによって選択し得るレイアウトの一例を概略的に示す断面図である。 本発明の第11実施形態であるポンプの縮小状態を概略的に示す断面図である。 図14Aのポンプの拡張状態を概略的に示す断面図である。 本発明の第12実施形態であるポンプの拡張状態を概略的に示す断面図である。 図15Aのポンプの縮小状態を概略的に示す断面図である。
 以下、図面を参照して、本発明の、様々な実施形態に係るポンプについて、説明を行う。なお、以下の説明において、実質的に同一の構成には、同一の符号を使用する。
 本実施形態に係るポンプ1は、磁性弾性体を含む弾性空間部2と、磁力によって弾性空間部2を変形させる弾性空間部変形生起要素と、を備えている。前記弾性空間部変形生起要素は、前記磁力による前記磁性弾性体と前記弾性空間部変形生起要素との引き合い力もしくは反発力と、弾性空間部2および前記磁性弾性体の少なくとも1つの復元力と、これらの力の合力との、少なくともいずれか1つによって弾性空間部2を変形させ、弾性空間部2内に形成された空間S1を復元または増加させる拡張モードと、空間S1を減少または復元させる縮小モードと、を行う。
 この明細書中では、用語の意味を次のとおりに定義する。
 「磁性」には、「軟磁性」と「硬磁性」とが含まれる。
 「軟磁性」とは、「磁力(又は磁場)を受けると応答するが、自らは磁力(又は磁場)を発生しない性質」をいう。また、「軟磁性体」とは、「軟磁性を有する、物体又は物質」をいう。更に、「軟磁性弾性体」とは、「軟磁性体のうち、軟磁性を有する、弾性体」をいう。
 「硬磁性」とは、「保磁力が大きく、自発磁化性を有し、自ら磁力(又は磁場)を発生する性質」をいう。また、「硬磁性体」とは、いわゆる磁石であり、「硬磁性を有する、物体又は物質」をいう。「硬磁性弾性体」とは、「硬磁性体のうち、硬磁性を有する、弾性体」をいう。
1:軟磁性弾性体を使用したポンプ
 磁性弾性体には、軟磁性弾性体を使用することができる。以下、軟磁性弾性体を使用したポンプ1について説明をする。
<ポンプ1A>
 図1は、本発明の第1の実施形態に係る、ポンプ1Aの要部を模式的に示した図である。図1中、図面左側は、ポンプ1Aの初期状態(停止状態)を示し、図面右側は、ポンプ1Aの圧送状態を示す。
 図面左側を参照すれば、ポンプ1Aは、軟磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、軟磁性弾性体4とを、備えている。軟磁性弾性体4は、例えば、鉄粉を含有させた弾性体である。本実施形態では、弾性空間部2は、弾性空間部本体3と軟磁性弾性体4とを別体に形成し、弾性空間部本体3と軟磁性弾性体4とを固定させることによって形成されている。すなわち、ポンプ1Aは、弾性空間部本体3と、軟磁性弾性体4とを積層させた積層部分を弾性空間部2に含む。
 弾性空間部本体3は、対向壁3aと対向壁3bとの2つの対向壁を備えている。2つの対向壁3a,3bは、ポンプ1の中心軸線O1(以下、「中心軸線O1」ともいう。)を挟んで対向する位置に配置された壁である。本実施形態では、例えば、対向壁3aは上壁であり、対向壁3bは下壁である。ただし、対向壁3a及び3bは、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。図面左側に示すように、ポンプ1Aの初期状態において、2つの対向壁3a,3bは中心軸線O1を挟んで離間している。これによって、ポンプ1Aの初期状態において、2つの対向壁3a,3bの間には、容積V1の空間S1が形成されている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、図面左側に示すように、ポンプ1Aの初期状態において、2つの対向壁3a,3bの間には、空間S1を形成することができる。なお、本実施形態では、対向壁3bの位置は固定されていることが好ましい。
 空間S1には、搬送対象物Mが配置されている。搬送対象物Mとしては、例えば、気体、液体、流体、スラリー、粉体が挙げられる。搬送対象物Mは、後述のとおり、弾性空間部本体3の変形によって中心軸線O1に沿って搬送させることができる。
 軟磁性弾性体4は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、軟磁性弾性体4は、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部本体3よりも外側の位置に配置されている。具体的には、軟磁性弾性体4は、弾性空間部本体3の対向壁3aの外面3f1に固定されている。
 なお、本明細書において、「外面」とは、「軸直方向外側の面」をいう。また、本明細書において、「内面」とは、軸直方向内側の面をいう。ここで、「軸直方向」とは、中心軸線O1に対して直交する方向をいう。また、「軸直方向外側」とは、軸直方向のうち、中心軸線O1よりも遠い側をいう。さらに、「軸直方向内側」とは、軸直方向のうち、中心軸線O1に近い側をいう。
 前記弾性空間部変形生起要素は、磁力によって弾性空間部2を変形させることができる。前記磁力は、磁性弾性体と前記弾性空間部変形生起要素との相互作用によって、弾性空間部2と前記弾性空間部変形生起要素との間に生じる磁力である。前記弾性空間部変形生起要素は、磁性体によって構成することができる。本実施形態では、前記弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。
 ここで、「外側に設けられている」とは、「外面に固定されていること」、「(固定されることなく)外面に接していること」、「外面に対して間隔を置いて配置されていること」、のいずれか1つの意味を含む。
 本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの軟磁性弾性体4とは異なる他方の位置であって、弾性空間部本体3よりも外側に設けられている。具体的には、電磁石6は、弾性空間部本体3の対向壁3bの外側に設けられている。より具体的には、電磁石6は、弾性空間部本体3の対向壁3bの外面3f1に接している。例えば、電磁石6は、弾性空間部本体3の対向壁3bの外面3f1に固定することができる。ただし、電磁石6は、弾性空間部2に接していなくてもよい。例えば、電磁石6は、弾性空間部本体3の対向壁3bの外面3f1に対して間隔を置いて配置することができる。なお、本実施形態において、電磁石6の位置は、例えば、当該電磁石6をポンプ筐体などに固定させることによって、固定されている。
(ポンプ1Aの基本動作)
 ポンプ1Aは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Aを駆動させることができる。以下、ポンプ1Aの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Aの初期状態は、電磁石6がOFF(非通電状態)である。本実施形態では、図面左側に示すように、空間S1は維持されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。
 圧送状態:閉動作(縮小モード)
 電磁石6をON(通電状態)にする。これによって、図面右側に示すように、軟磁性弾性体4と電磁石6との間には磁力による引き合い力F64が生じる。引き合い力F64は、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、空間S1が減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Aは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、本実施形態によれば、図面右側に示すように、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。したがって、ポンプ1Aは、空間S1に余すことなく、中心軸線O1に沿って搬送対象物Mを吐出することができる。
 停止状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Aを停止させることができる。このとき、引き合い力F64は消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1は増加(復元)する。この空間S1の増加によって、空間S1は再び完全に開かれる。すなわち、電磁石6をOFFにすると、ポンプ1Aは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 上述のとおり、ポンプ1Aによれば、電磁石6のON、OFFを交互に切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Aによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 なお、ポンプ1Aにおいて、弾性空間部本体3の対向壁3bの位置は電磁石6に対し固定されていることが好ましい。これによって、弾性空間部本体3全体が軟磁性弾性体4の移動に追従して電磁石6から離れてしまうことなく、2つの対向壁3a,3bを繰り返し、互いに接近及び離間させることができる。具体例として、対向壁3bは、支持台、装置(収納ケース)、作業テーブル(作業ステージ)、ポンプ筐体に固定することができる。ただし、本発明によれば、対向壁3bを固定しておくことは必須ではない。対向壁3bの位置の固定は、例えば、弾性空間部本体3に対して、中心軸線O1に沿った一定の張力を加えることによって省略することができる。この場合、弾性空間部本体3全体が対向壁3a,3bの変形に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。
 また、ポンプ1Aによれば、軟磁性弾性体4は、2つの対向壁3a,3bのうちの、少なくともいずれか一方に固定することができる。例えば、軟磁性弾性体4は、対向壁3bの外面3f1に固定することができる。この場合、電磁石6は、弾性空間部本体3の対向壁3aの外側に設けられる。
 さらに、本実施形態に係るポンプ1Aは、電磁石6の位置を固定することによって、空間S1の拡大及び縮小を行っている。しかしながら、これとは反対に、弾性空間部本体3の対向壁3aの位置を固定することによって、空間S1の拡大及び縮小を行なうことができる。例えば、ポンプ1Aにおいて、軟磁性弾性体4の位置を固定した場合、電磁石6を軸直方向に移動させるとともに当該電磁石6のON/OFFを行えば、弾性空間部本体3の対向壁3bの変形を生起させることができる。
 電磁石6を移動させる場合、ポンプ1Aを駆動させる方法としては、例えば、電磁石6をONにして移動させる方法と、電磁石6のON/OFF制御と当該電磁石6の移動との組み合わせる方法が挙げられる。これらの方法は、例えば、前記弾性空間部変形生起要素として永久磁石を利用する場合に応用することができる。
<ポンプ1B>
 次いで、図2は、本発明の第2の実施形態に係る、ポンプ1Bの要部を模式的に示した図である。図2中、図面左側は、ポンプ1Bの初期状態を示し、図面右側は、ポンプ1Bの圧送状態を示す。ポンプ1Bは、ポンプ1Aの変形例である。上述のように、図1のポンプ1Aは、弾性空間部本体3と軟磁性弾性体4とを積層させた積層部分を弾性空間部2に含む。これに対し、ポンプ1Bの弾性空間部2は、軟磁性弾性体(磁性弾性体)によって形成されている。ただし、ポンプ1Bの弾性空間部2は、電磁石6に対向する弾性空間部2(例えば、対向壁2a)のみが軟磁性弾性体によって形成されていてもよい。この場合、ポンプ1Bもまた、ポンプ1Aと同様、弾性空間部本体3と軟磁性弾性体4とを積層させた積層部分を弾性空間部2に含む。
 図面左側を参照すれば、ポンプ1Bは、弾性空間部2を備えている。弾性空間部2は、対向壁2aと対向壁2bとの2つの対向壁を備えている。2つの対向壁2a,2bは、中心軸線O1を挟んで対向する位置に配置された壁である。本実施形態では、対向壁2aは上壁であり、対向壁2bは下壁である。ただし、対向壁2a及び2bは、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。図面左側に示すように、ポンプ1Bの初期状態において、2つの対向壁2a,2bは中心軸線O1を挟んで離間している。これによって、ポンプ1Bの初期状態において、2つの対向壁2a,2bの間には、空間S1が形成されている。例えば、弾性空間部2が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、ポンプ1Bの初期状態において、2つの対向壁2a,2bの間には、空間S1を形成することができる。なお、本実施形態では、対向壁2bの位置は固定されている。
 本実施形態では、弾性空間部2の少なくとも一部は、軟磁性弾性体によって形成されている。本実施形態では、2つの対向壁2a,2bは、軟磁性弾性体によって形成されている。
 また、図面左側を参照すれば、電磁石(弾性空間部変形生起要素)6は、ポンプ1Aと同様に、弾性空間部2の外側に設けられている。具体的には、電磁石6は、弾性空間部2の対向壁2bの外側に設けられている。より具体的には、電磁石6は、弾性空間部2の対向壁2bの外面2f1に接している。例えば、電磁石6は、弾性空間部2の対向壁2bの外面2f1に固定することができる。ただし、電磁石6は、弾性空間部2に接していなくてもよい。例えば、電磁石6は、弾性空間部2の対向壁2bの外面2f1に対して間隔を置いて配置することができる。なお、本実施形態においても、電磁石6の位置は固定されている。電磁石6の位置は、例えば、当該電磁石6をポンプ筐体などに固定させることによって固定させることができる。
(ポンプ1Bの基本動作)
 ポンプ1Bは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Bを駆動させることができる。以下、ポンプ1Bの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Bの初期状態は、電磁石6がOFFである。図面左側に示すように、本実施形態において、空間S1は、ポンプ1Aと同様、維持されている。実施形態では、空間S1は、弾性空間部2の弾性力によって維持されている。
 圧送状態:閉動作(縮小モード)
 電磁石6をONにする。これによって、図面右側に示すように、弾性空間部(軟磁性弾性体)2と電磁石6との間には磁力による引き合い力F62が生じる。引き合い力F62は、弾性空間部2の弾性力(復元力)よりも強くする。その結果、弾性空間部2の対向壁2aが対向壁2bに向かって移動する。これによって、空間S1が減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Bは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、本実施形態によれば、図面右側に示すように、対向壁2aの内面2f2は最終的に対向壁2bの内面2f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。したがって、ポンプ1Bは、空間S1に余すことなく、中心軸線O1に沿って搬送対象物Mを吐出することができる。
 停止状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Bを停止させることができる。このとき、引き合い力F62は消滅し、弾性空間部2の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部2の対向壁2aが対向壁2bから離れる向きに移動する。これによって、空間S1は増加(復元)する。この空間S1の増加によって、空間S1は、再び完全に開かれている。すなわち、電磁石6をOFFにすると、ポンプ1Bは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 上述のとおり、ポンプ1Bによれば、電磁石6のON、OFFを交互に切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Bによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 なお、ポンプ1Bにおいて、弾性空間部2の対向壁2bの位置は電磁石6に対し固定されていることが好ましい。これによって、弾性空間部2全体が軟磁性弾性体4の移動に追従して電磁石6から離れてしまうことなく、2つの対向壁2a,2bを繰り返し、互いに接近及び離間させることができる。具体例として、対向壁2bは、支持台、装置(収納ケース)、作業テーブル(作業ステージ)、ポンプ筐体に固定することができる。ただし、本発明によれば、対向壁2bを固定しておくことは必須ではない。対向壁2bの位置の固定は、例えば、弾性空間部2に対して、中心軸線O1に沿った一定の張力を加えることによって省略することができる。この場合、弾性空間部2全体が対向壁2a,2bの変形に追従することなく、2つの対向壁2a,2bは、互いに接近及び離間させることができる。
 また、本実施形態に係るポンプBは、電磁石6の位置を固定することによって、空間S1の拡大及び縮小を行っている。しかしながら、これとは反対に、弾性空間部2の対向壁2aの位置を固定することによって、空間S1の拡大及び縮小を行なうことができる。例えば、ポンプ1Bにおいて、弾性空間部2の対向壁2aの位置を固定した場合、電磁石6を軸直方向に移動させるとともに当該電磁石6をON/OFF制御すれば、弾性空間部2の対向壁2bの変形を生起させることができる。電磁石6を移動させる場合、ポンプ1Bを駆動させる方法は、ポンプ1Aの場合と同様である。
<ポンプ1C>
 次いで、図3は、本発明の第3の実施形態に係る、ポンプ1Cの要部を模式的に示した図である。図3中、図面左側は、ポンプ1Cの初期状態及び圧送状態を示し、図面右側は、ポンプ1Cの充填状態を示す。
 ポンプ1Cは、ポンプ1Aと同様、弾性空間部本体3と軟磁性弾性体4とを積層させた積層部分を弾性空間部2に含む。ただし、本実施形態では、軟磁性弾性体4は、中心軸線O1を挟んで対向する2つの位置のうちの電磁石6と同じ側にあって、弾性空間部本体3よりも外側の位置に配置されている。具体的には、軟磁性弾性体4は、弾性空間部本体3よりも外側の位置にあって、電磁石6にと同じ側に位置する弾性空間部本体3の対向壁3bの外面3f1に固定されている。
 図面左側に示すように、ポンプ1Cの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。すなわち、ポンプ1Cの初期状態では、空間S1は閉じられている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブは、完全に潰された状態に維持されている。なお、本実施形態では、対向壁3bの位置は固定されていることが好ましい。
(ポンプ1Cの基本動作)
 ポンプ1Cは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Cを駆動させることができる。以下、ポンプ1Cの基本的な動作について説明をする。
 初期状態:閉動作(縮小モード)
 本実施形態において、ポンプ1Cの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。本実施形態では、空間S1は、当該弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、ポンプ1Cを停止させることができる。
 充填状態:開動作(拡張モード)
 電磁石6をONにする。これによって、軟磁性弾性体4と電磁石6との間には磁力による引き合い力F64が生じる。引き合い力F64は、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、弾性空間部本体3の対向壁3bが対向壁3aから離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 圧送状態:閉動作(縮小モード)
 電磁石6をOFFにする。これによって、引き合い力F64は消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3bが対向壁3aに向かって移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Cは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面左側に示すように、本実施形態において、弾性空間部本体3の対向壁3bの内面3f2は最終的に対向壁3aの内面3f2と接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、ポンプ1Cは、図面左側に示すように、初期状態に復帰する。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。
 上述のとおり、ポンプ1Cによれば、電磁石6のON、OFFを交互に切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Cによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
2:硬磁性弾性体を使用したポンプ
 磁性弾性体には、硬磁性弾性体を使用することができる。以下、硬磁性弾性体を使用したポンプ1の各実施形態について説明をする。
(1)次に、弾性空間部変形生起要素と硬磁性弾性体とが弾性空間部本体を挟む位置に配置されているポンプを例示する。
<ポンプ1D>
 図4は、本発明の第4の実施形態に係る、ポンプ1Dの要部を模式的に示した図である。図4中、図面左側は、ポンプ1Dの初期状態及び圧送状態を示し、図面右側は、ポンプ1Dの充填状態を示す。
 図面左側を参照すれば、ポンプ1Dは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5と、を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と硬磁性弾性体5とを別体に形成し、弾性空間部本体3と硬磁性弾性体5とを固定させることによって形成されている。すなわち、ポンプ1Dは、ポンプ1Aと同様、弾性空間部本体3と、硬磁性弾性体5とを積層させた積層部分を弾性空間部2に含む。硬磁性弾性体5は、例えば、永久磁石と弾性体との両方の機能を兼ね備えた永久磁石弾性体である。本実施形態では、図面右側に示すように、硬磁性弾性体5は、硬磁性弾性体5(弾性空間部2)の動作方向(軸直方向)において分極している。硬磁性弾性体5の外面5f1と内面5f2とでは、異なる磁極を有している。具体例としては、硬磁性弾性体5の外面5f1がS極(N極)である場合、当該硬磁性弾性体5の内面5f2は、N極(S極)である。
 図面左側に示すように、ポンプ1Dの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。具体的には、対向壁3aの内面3f2と当該対向壁3aの対向壁3bの内面3f2とは接触している。すなわち、ポンプ1Dの初期状態では、空間S1は閉じられている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブは、完全に潰された状態に維持されている。
 硬磁性弾性体5は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの弾性空間部変形生起要素とは異なる他方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
 弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部2よりも外側の位置に配置されている。本実施形態では、電磁石6は、弾性空間部本体3の外面3f1に固定されている。具体的には、弾性空間部本体3の対向壁3aの外面3f1に固定されている。
(ポンプ1Dの基本動作)
 ポンプ1Dは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Dを駆動させることができる。以下、ポンプ1Dの基本的な動作について説明をする。
 初期状態(停止状態):閉動作(縮小モード)
 本実施形態において、ポンプ1Dの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は、閉じられている。本実施形態では、空間S1は、当該弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、ポンプ1Dを停止させることができる。
 充填状態:開動作(拡張モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と同じ磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 圧送状態:閉動作(縮小モード)
 電磁石6をOFFにする。これによって、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的になる。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Dは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面左側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、ポンプ1Dは、図面左側に示すように、初期状態に復帰する。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。このように、本実施形態において、ポンプ1Dの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、ポンプ1Dの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を減少させる場合、ポンプ1Dによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い送圧力を生起させることができる。また、この場合、弾性体の復元力のみに依るよりも、復元速度を大きくすることができる。このように、ポンプ1Dの場合、弾性体の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
 また、ポンプ1Dの閉動作は、磁力のみによって行うことができる。例えば、ポンプ1Dの閉動作は、開動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と異なる磁極になることにより、硬磁性弾性体5と電磁石6との間に引き合い力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、閉じられる。
 上述のとおり、ポンプ1Dによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Dによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 なお、ポンプ1Dにおいて、電磁石6は、弾性空間部本体3の対向壁3aに固定されている。これによって、電磁石6は、対向壁3aとともに、弾性空間部2の動作方向に移動させることができる。また、ポンプ1Dにおいて、硬磁性弾性体5は、弾性空間部本体3の対向壁3bに固定されている。これによって、硬磁性弾性体5は、対向壁3bとともに、弾性空間部2の動作方向に移動させることができる。すなわち、ポンプ1Dにおいて、当該ポンプ1Dの動作は、硬磁性弾性体5及び電磁石6を互いに自由な位置に移動させることによって実現される。このため、ポンプ1Dは、硬磁性弾性体5の位置又は電磁石6の位置を固定させることなく、使用することができる。
 また、ポンプ1Dは、空間S1が維持された状態を初期状態とすることができる。
<ポンプ1E>
 図5は、本発明の第5の実施形態に係る、ポンプ1Eの要部を模式的に示した図である。図5中、図面左側は、ポンプ1Eの初期状態を示し、図面右側は、ポンプ1Eの圧送状態を示す。ポンプ1Eは、ポンプ1Dの変形例である。
 図面左側に示すように、ポンプ1Eの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、ポンプ1Eの初期状態において、2つの対向壁3a,3bの間には、空間S1を形成することができる。
(ポンプ1Eの基本動作)
 ポンプ1Eは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Eを駆動させることができる。以下、ポンプ1Eの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Eの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は開かれている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。
 吐出状態:閉動作(縮小モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の内側の磁極N(S)と異なる磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Eは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面右側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。
 停止状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Eを停止させることができる。このとき、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。すなわち、電磁石6をOFFにすると、ポンプ1Eは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。このように、本実施形態において、ポンプ1Eの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、ポンプ1Eの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を拡張させる場合、ポンプ1Eによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い吸圧力を生起させることができる。また、この場合、弾性空間部2の復元力のみに依るよりも、復元速度を大きくすることができる。このように、ポンプ1Eの場合、弾性空間部2の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
 また、ポンプ1Eの開動作は、磁力のみによって行うことができる。例えば、ポンプ1Eの開動作は、閉動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と同じ磁極になることにより、硬磁性弾性体5と電磁石6との間に反発力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、開かれる。
 上述のとおり、ポンプ1Eによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Eによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
(2)次いで、弾性空間部変形生起要素と硬磁性弾性体とが弾性空間部本体の外側の片寄った位置に配置されているポンプを例示する。
<ポンプ1F>
 図6は、本発明の第6の実施形態に係る、ポンプ1Fの要部を模式的に示した図である。図6中、図面左側は、ポンプ1Fの初期状態及び圧送状態を示し、図面右側は、ポンプ1Fの充填状態を示す。
 図面左側を参照すれば、ポンプ1Fは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。
 図面左側に示すように、ポンプ1Fの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。すなわち、ポンプ1Fの初期状態では、空間S1は閉じられている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブは、完全に潰された状態に維持されている。なお、本実施形態では、対向壁3bの位置は固定されている。
 硬磁性弾性体5は、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、弾性空間部本体3の対向壁3aの外面3f1に固定されている。
 弾性空間部変形生起要素は、電磁石6である。電磁石6は、弾性空間部2の外側に設けられている。本実施形態では、電磁石6は、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部2よりも外側の位置に配置されている。具体的には、電磁石6は、硬磁性弾性体5の外面5f1に対して間隔を置いて配置されている。本実施形態では、電磁石6の位置は固定されている。
(ポンプ1Fの基本動作)
 ポンプ1Fは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Fを駆動させることができる。以下、ポンプ1Fの基本的な動作について説明をする。
 初期状態:閉動作(縮小モード)
 本実施形態において、ポンプ1Fの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。本実施形態では、空間S1は、当該弾性空間部本体3の弾性力によって閉じられている。また、電磁石6をOFFにすれば、ポンプ1Fを停止させることができる。
 充填状態:開動作(拡張モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 圧送状態:閉動作(縮小モード)
 電磁石6をOFFにする。これによって、引き合い力F65aは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Fは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面左側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、ポンプ1Fは、図面左側に示すように、初期状態に復帰する。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。このように、本実施形態において、ポンプ1Fの閉動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、ポンプ1Fの閉動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を減少させる場合、ポンプ1Fによれば、電磁石6に通じる電流の向きを開動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い送圧力を生起させることができる。また、この場合、弾性空間部2の復元力のみに依るよりも、復元速度を大きくすることができる。このように、ポンプ1Fの場合、弾性空間部2の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
 また、ポンプ1Fの閉動作は、磁力のみによって行うことができる。例えば、ポンプ1Fの閉動作は、開動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と同じ磁極になることにより、硬磁性弾性体5と電磁石6との間に反発力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、閉じられる。
 上述のとおり、ポンプ1Fによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Fによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 また、ポンプ1Fは、空間S1が維持された状態を初期状態とすることができる。
<ポンプ1G>
 図7は、本発明の第7の実施形態に係る、ポンプ1Gの要部を模式的に示した図である。図7中、図面左側は、ポンプ1Gの初期状態及び充填状態を示し、図面右側は、ポンプ1Gの圧送状態を示す。ポンプ1Gは、ポンプ1Fの変形例である。
 図面左側に示すように、ポンプ1Gの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。例えば、弾性空間部本体3が弾性チューブである場合、前記弾性チューブの弾性力によって、当該弾性チューブの中空状態を維持させている。これによって、ポンプ1Gの初期状態において、2つの対向壁3a,3bの間には、空間S1を形成することができる。
(ポンプ1Gの基本動作)
 ポンプ1Gは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Gを駆動させることができる。以下、ポンプ1Gの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Gの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は維持されている。本実施形態では、空間S1は、弾性空間部本体3の弾性力によって維持されている。
 圧送状態:閉動作(縮小モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性空間部本体3の弾性力(復元力)よりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aが対向壁3bに向かって移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Gは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面右側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2は最終的に対向壁3bの内面3f2と接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。
 充填状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Gを停止させることができる。このとき、反発力F65rは消滅し、弾性空間部本体3の復元力(弾性力)の影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aが対向壁3bから離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。すなわち、電磁石6をOFFにすると、ポンプ1Gは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。このように、本実施形態において、ポンプ1Gの開動作は、弾性空間部2(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力によって行われている。ただし、本実施形態において、ポンプ1Gの開動作は、弾性空間部2の弾性力と、磁力との合力によって行うことができる。空間S1を拡張させる場合、ポンプ1Gによれば、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い吸圧力を生起させることができる。また、この場合、弾性空間部2の復元力のみに依るよりも、復元速度を大きくすることができる。このように、ポンプ1Gの場合、弾性空間部2の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
 また、ポンプ1Gの開動作は、磁力のみによって行うことができる。例えば、ポンプ1Gの開動作は、閉動作の際とは異なる向きに電流を流すことにより行うことができる。この場合、電磁石6に発生する磁極が硬磁性弾性体5の内側の磁極と同じ磁極になることにより、硬磁性弾性体5と電磁石6との間に引き合い力が発生する。これによって、空間S1は、弾性体の弾性力の有無にかかわらず、開かれる。
 上述のとおり、ポンプ1Gによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Gによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 なお、ポンプ1F、1Gにおいて、弾性空間部本体3は、硬磁性弾性体5と電磁石6(弾性空間部変形生起要素)との間に存在しない。すなわち、弾性空間部本体3は、硬磁性弾性体5と電磁石6との間の磁界の外に位置している。このため、弾性空間部本体3の対向壁3bの位置が固定されていない場合、弾性空間部本体3全体が硬磁性弾性体5の移動に追従してしまう。したがって、ポンプ1F、1Gのようなポンプの場合、弾性空間部本体の2つの対向壁のうち、硬磁性弾性体5が固定されてない対向壁の位置を固定することが好ましい。ポンプ1F、1Gでは、弾性空間部本体3の対向壁3bの位置を固定している。
 上述のとおり、ポンプ1F、1Gでは、弾性空間部本体3の対向壁3bの位置を固定している。これによって、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。具体例として、対向壁3bは、支持台、装置(収納ケース)、作業テーブル(作業ステージ)、ポンプ筐体に固定することができる。ただし、本発明によれば、対向壁3bを固定しておくことは必須ではない。対向壁3bの位置の固定は、例えば、弾性空間部本体3(弾性空間部2)に対して、中心軸線O1に沿った一定の張力を加えることによって省略することができる。この場合、弾性空間部本体3全体が硬磁性弾性体5の移動に追従することなく、2つの対向壁3a,3bは、互いに接近及び離間させることができる。
 なお、ポンプ1D~1Gにおいて、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置のうちの一方又は他方(片側)の位置に配置されている。ただし、ポンプ1D~1Gによれば、硬磁性弾性体5は、2つの対向壁3a,3bのうちのいずれか一方に固定することができる。例えば、ポンプ1Aにおいて、硬磁性弾性体5は、対向壁3aの外側に設けることができる。この場合、電磁石6は、弾性空間部本体3の対向壁3bの外側に設けることができる。
 また、本発明によれば、硬磁性弾性体5は、中心軸線O1を挟んで対向する2つの位置に配置することができる。
<ポンプ1H>
 図8は、本発明の第8の実施形態に係る、ポンプ1Hの要部を模式的に示した図である。図8中、図面左側は、ポンプ1Hの初期状態及び圧送状態を示し、図面右側は、ポンプ1Hの充填状態を示す。
 図面左側を参照すれば、ポンプ1Hは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。
 図面左側に示すように、ポンプ1Hの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bは接している。すなわち、ポンプ1Hの初期状態では、空間S1は閉じられている。本実施形態では、後述するように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、磁力による引き合い力F55aによって接触している。例えば、弾性空間部本体3が弾性チューブである場合、上記引き合い力F55aによって、当該弾性チューブは、完全に潰された状態に維持されている。
 ポンプ1Hにおいて、弾性空間部2は、2つの硬磁性弾性体5a,5bを備えている。2つの硬磁性弾性体5a,5bは、それぞれ、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5aは、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、硬磁性弾性体5aは、弾性空間部本体3の対向壁3aの外面3f1に固定されている。また、本実施形態では、硬磁性弾性体5bは、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、弾性空間部本体3の外面3f1に固定されている。具体的には、硬磁性弾性体5bは、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
 弾性空間部生起変形要素は、電磁石6である。ポンプ1Hは、2つの電磁石6a,6bを備えている。2つの電磁石6a,6bは、それぞれ、弾性空間部2の外側に設けられている。本実施形態では、電磁石6aは、中心軸線O1を挟んで対向する2つの位置のうちの一方の位置であって、硬磁性弾性体5よりも外側の位置に配置されている。具体的には、電磁石6aは、硬磁性弾性体5aの外面5f1に対して間隔を置いて配置されている。また、本実施形態では、電磁石6bは、中心軸線O1を挟んで対向する2つの位置のうちの他方の位置であって、硬磁性弾性体5よりも外側の位置に配置されている。具体的には、電磁石6bは、硬磁性弾性体5bの外面5f1に対して間隔を置いて配置されている。
(ポンプ1Hの基本動作)
 ポンプ1Hは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる。特に、本実施形態では、電磁石6のON/OFFによってポンプ1Hを駆動させることができる。以下、ポンプ1Hの基本的な動作について説明をする。
 初期状態:閉動作(縮小モード)
 本実施形態において、ポンプ1Hの初期状態は、電磁石6がOFFである。本実施形態では、図面左側に示すように、空間S1は閉じられている。本実施形態では、空間S1は、弾性空間部2の弾性力と磁力による引き合い力F55aとによって閉じられている。具体的には、本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極S(N)と異なっている。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による引き合い力F55aが生じている。また、本実施形態では、弾性空間部2には、弾性空間部2の弾性回復力(図示省略)も作用している。即ち、本実施形態では、弾性空間部2の弾性力と磁力による引き合い力F55aとの合力により、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。本実施形態では、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは接触している。したがって、ポンプ1Hの初期状態において、空間S1は、2つの硬磁性弾性体5a,5bに対する引き合い力F55aによって閉じられている。また、電磁石6をOFFにすれば、ポンプ1Hを停止させることができる。
 充填状態:開動作(拡張モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と異なる磁極N(S)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による引き合い力F65aが生じる。引き合い力F65aは、2つの硬磁性弾性体5a,5bに対する引き合い力F55aよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。
 圧送状態:閉動作(縮小モード)
 電磁石6をOFFにする。これによって、引き合い力F65aは消滅し、2つの硬磁性弾性体5a,5bに対する引き合い力F55aの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Hは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面左側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面左側に示すように、空間S1は再び閉じられる。すなわち、電磁石6をOFFにすると、ポンプ1Hは、図面左側に示すように、初期状態に復帰する。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出させることができる。このように、本実施形態において、ポンプ1Hの閉動作は、硬磁性弾性体5どうしの引き合い力F55aによって行われている。ただし、本実施形態において、ポンプ1Hの閉動作もまた、他のポンプと同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、ポンプ1Hの閉動作もまた、他のポンプと同様、電磁石6a,6bの少なくとも一方において、電磁石6に通じる電流の向きを開動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に反発力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い送圧力を生起させることができる。また、この場合、弾性空間部2の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、ポンプ1Hの場合、弾性空間部2の復元力と併せ、電磁石6と硬磁性弾性体5との反発力を用いることが好ましい。
 さらに、本実施形態において、ポンプ1Hの閉動作もまた、他のポンプと同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
 上述のとおり、ポンプ1Hによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Hによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 また、ポンプ1Hは、空間S1が維持された状態を初期状態とすることができる。
<ポンプ1I>
 図9は、本発明の第9の実施形態に係る、ポンプ1Iの要部を模式的に示した図である。図9中、図面左側は、ポンプ1Iの初期状態及び充填状態を示し、図面右側は、ポンプ1Iの圧送状態を示す。ポンプ1Iは、ポンプ1Hの変形例である。
 図面左側に示すように、ポンプ1Iの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。後述するように、本実施形態では、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、磁力による反発力F55rによって離間している。これによって、ポンプ1Iの初期状態において、空間S1は維持されている。
(ポンプ1Iの基本動作)
 ポンプ1Iは、弾性空間部2を変形させることによって、搬送対象物Mを吐出(搬送)させることができる、特に、本実施形態では、電磁石6のON/OFFによってポンプ1Iを駆動させることができる。以下、ポンプ1Iの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Iの初期状態は、電磁石6がOFFである。図面左側に示すように、ポンプ1Iの初期状態において、空間S1は維持されている。本実施形態では、硬磁性弾性体5aの内面5f2と、硬磁性弾性体5bの内面5f2とは、中心軸線O1を挟んで対向する位置に配置されている。加えて、本実施形態では、硬磁性弾性体5aの内面5f2に生じる磁極N(S)は、硬磁性弾性体5bの内面5f2に生じる磁極N(S)と同じ磁極である。これによって、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による反発力F55rが生じている。弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、反発力F55rによって互いに離れた位置に離間している。したがって、本実施形態では、空間S1は、反発力F55rによって維持されている。また、電磁石6をOFFにすれば、ポンプ1Iを停止させることができる。
 圧送状態:閉動作(縮小モード)
 電磁石6をONにする。このとき、図面右側に示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、2つの硬磁性弾性体5a,5bに対する反発力F55rよりも強くする。その結果、図面右側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに近づく向きに移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、中心軸線O1に沿って当該空間S1の外部に圧送される。したがって、ポンプ1Iは、空間S1に配置されていた搬送対象物Mを中心軸線O1に沿って吐出することができる。特に、図面右側に示すように、本実施形態において、弾性空間部本体3の対向壁3aの内面3f2と、当該弾性空間部本体3の対向壁3bの内面3f2とは、最終的に接触する。これによって、図面右側に示すように、空間S1は完全に閉じられる。したがって、搬送対象物Mは、空間S1に余すことなく、中心軸線O1に沿って吐出することができる。
 停止状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Iを停止させることができる。このとき、反発力F65rは消滅し、2つの硬磁性弾性体5a,5bに対する反発力F55rの影響が支配的となる。その結果、図面左側に示すように、弾性空間部本体3の対向壁3aと、当該弾性空間部本体3の対向壁3bとは、互いに離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、空間S1は完全に開かれる。すなわち、電磁石6をOFFにすると、ポンプ1Iは、図面左側に示すように、初期状態に復帰する。したがって、空間S1には、新たな搬送対象物Mを充填させることができる。このように、本実施形態において、ポンプ1Iの開動作は、硬磁性弾性体5どうしの反発力F55rによって行われている。ただし、本実施形態において、ポンプ1Iの開動作もまた、他のポンプと同様、電磁石6の電流の向きを切り替えることによって行うことができる。本実施形態において、ポンプ1Iの開動作もまた、他のポンプと同様、電磁石6a、6bの少なくとも一方において、電磁石6に通じる電流の向きを閉動作の場合とは逆にすることによって行うことができる。これによって、電磁石6と硬磁性弾性体5との間に引き合い力を発生させることができる。この場合、弾性体(弾性空間部2)の復元力のみに依るよりも、強い吸圧力を生起させることができる。また、この場合、弾性空間部2の復元力のみに依るよりも、復元速度を大きくすることができる。したがって、ポンプ1Iの場合、弾性空間部2の復元力と併せ、電磁石6と硬磁性弾性体5との引き合い力を用いることが好ましい。
 さらに、本実施形態において、ポンプ1Iの開動作もまた、他のポンプと同様、弾性体(弾性空間部本体3及び硬磁性弾性体5の少なくとも1つ)の弾性力を付加することによって行うことが可能であるが、弾性体の弾性力の有無は任意である。
 上述のとおり、ポンプ1Iによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Iによれば、空間S1内に配置された搬送対象物Mを中心軸線O1に沿って連続的に吐出(搬送)することができる。
 なお、ポンプ1H,1Iの説明では、電磁石6のON/OFFは、電磁石6a及び電磁石6bの両方で行っていたが、ポンプ1H,1Iによれば、電磁石6のON/OFFは、電磁石6a及び電磁石6bの少なくとも一方で行うことができる。
 なお、ポンプ1H,1Iにおいて、硬磁性弾性体5と電磁石6との相互作用は、電磁石6と当該電磁石6に近い硬磁性弾性体5との間の相互作用のみを考慮している。また、電磁石6と当該電磁石6から遠い硬磁性弾性体5との間の相互作用は無視することができると考えられる。
 ところで、上述の各実施形態を用いて説明したように、軟磁性弾性体4、硬磁性弾性体5は、弾性空間部2の延在方向において、当該弾性空間部2の延在方向の1つの位置にのみ配置することができる。ここで、「弾性空間部2の延在方向」とは、ポンプ1の中心軸線O1に対して平行な方向をいう。すなわち、軟磁性弾性体4又は硬磁性弾性体5は、中心軸線O1が延びる方向(以下、「軸線方向」ともいう。)の1つの位置にのみ配置することができる。例えば、硬磁性弾性体5は、軸線方向の1つの位置にのみ配置することができる。以下、その一例について説明をする。
<バルーンアクチュエータ>
 図10A中、符号10は、ポンプ1Iを適用した油圧式のバルーンアクチュエータであって、ポンプ1Iの拡張状態を概略的に示す断面図である。図10Bは、バルーンアクチュエータ10であって、ポンプ1Iの縮小状態を概略的に示す断面図である。
 バルーンアクチュエータ10は、ポンプ装置11と、バルーン装置(作動装置)12と、ポンプ装置11とバルーン装置12とを連結している連通路13と、を備えている。本実施形態では、バルーンアクチュエータ10は、弾性チューブ14を備えている。バルーンアクチュエータ10の外観形状は、基本的に、弾性チューブ14によって形作られている。弾性チューブ14は、変形及び復元が可能な弾性材料からなる。こうした弾性材料としては、例えば、天然ゴム、合成ゴム、高分子弾性体等が挙げられる。本実施形態において、弾性チューブ14は、密封型の弾性チューブである。弾性チューブ14は、その内側の内部空間S10が密封されている。
 本実施形態において、弾性チューブ14は、ポンプ室部分141と、バルーン部分(作動室部分)142と、連通路部分143とによって構成されている。本実施形態において、ポンプ室部分141は、弾性空間部本体3に相当する。ポンプ室部分141の内側には、空間(ポンプ室空間)S1が形成されている。また、本実施形態において、バルーン部分142は、バルーン装置12に相当する。バルーン部分142の内側には、第2空間(作動室空間)S2が形成されている。さらに、本実施形態において、連通路部分143は、連通路13に相当する。連通路部分143の内側には、空間S1と第2空間S2とを連通している第3空間S3が形成されている。本実施形態では、弾性チューブ14の内部空間S10は、空間S1、第2空間S2および第3空間S3によって形成されている。また、本実施形態において、弾性チューブ14は、第3空間S3をオリフィス形状としている。弾性チューブ14は、第3空間S3の流路断面積(第3空間S3の軸直方向断面の面積)が空間S1の受圧断面積(空間S1の軸直方向方向断面の面積)及び第2空間S2の受圧断面積(第2空間S2の軸直方向断面の面積)よりも小さい。すなわち、弾性チューブ14は、オリフィス付き弾性チューブである。内部空間S10には、様々な搬送対象物Mを流通させることができる。本実施形態では、搬送対象物Mとして、作動液が充填されている。
 図10Aを参照すれば、弾性チューブ14のポンプ室部分141は、対向壁141aと対向壁141bとの2つの対向壁を備えている。2つの対向壁141a,141bは、中心軸線O1を挟んで対向する位置に配置された壁である。本実施形態では、対向壁141aは上壁であり、対向壁141bは下壁である。ただし、対向壁141a及び141bは、上下方向の対向する位置に配置される場合に限定されるものではなく、左右方向(水平方向)に配置するなど、中心軸線O1の周りの任意の対向位置に配置することができる。図10Aに示すように、バルーンアクチュエータ10の初期状態において、2つの対向壁141a,141bは中心軸線O1を挟んで離間している。これによって、弾性チューブ14の初期状態において、2つの対向壁141a,141bの間には、空間S1が形成されている。空間S1は、2つの硬磁性弾性体5a,5bに対する反発力F55rによって維持されている。これによって、ポンプ装置11の初期状態において、2つの対向壁141a,141bの間には、空間S1を形成することができる。
 本実施形態において、前記磁性弾性体は、硬磁性弾性体5である。本実施形態では、硬磁性弾性体5は、ポンプ室部分141の外面141f1に固定されている。本実施形態では、バルーンアクチュエータ10は、2つの硬磁性弾性体5a,5bを備えている。2つの硬磁性弾性体5a,5bは、ポンプ室部分141の外面141f1に固定されている。具体的には、硬磁性弾性体5aは、ポンプ室部分141の対向壁141aの外面141f1に固定されている。また、硬磁性弾性体5bは、ポンプ室部分141の対向壁141bの外面141f1に固定されている。
 言い換えれば、バルーンアクチュエータ10において、ポンプ装置11は、ポンプ1Iに相当する。例えば、ポンプ装置11において、弾性チューブ14のポンプ室部分141は、ポンプ1Iの弾性空間部本体3に相当する。すなわち、ポンプ室部分141の対向壁141aは、弾性空間部本体3の対向壁3aに相当し、ポンプ室部分の対向壁141bは、弾性空間部本体3の対向壁3bに相当する。したがって、ポンプ装置11もまた、硬磁性弾性体5aが弾性空間部本体3aの外面3f1に固定され、硬磁性弾性体5bが弾性空間部本体3bの外面3f1に固定されている。すなわち、ポンプ装置11は、ポンプ1Iの弾性空間部2として、弾性チューブ14のポンプ室部分141と、硬磁性弾性体5とを備えている。
 本実施形態において、弾性空間部変形生起要素は、電磁石6である。本実施形態では、電磁石6は、磁性素子(芯材)61に通電コイル62を巻き付けたものである。本実施形態では、通電コイル62には、電源7が繋がる。電源7から流れる電流の向きは、コンピュータ等のコントローラ8によって制御することができる。従って、本実施形態において、電磁石6の磁極の変化は、コントローラ8によって制御することができる。また、本実施形態において、電源7をOFFしたときは、電磁石6の磁極は消滅する。
 本実施形態において、電磁石6は、通電コイル62に流す電流の向きを変えることによって、硬磁性弾性体5との関係で、磁力による引き合い力F65aまたは反発力F65rを生起させることができる。例えば、硬磁性弾性体5において、硬磁性弾性体5の外面5f1がS極(N極)である場合、電磁石6の磁極がS極(N極)となるように電流を流せば(ON)、硬磁性弾性体5と電磁石6との間には反発力F65rが生じる。また、反対に、電磁石6の磁極がN極(S極)となるように電流を流せば(ON)、硬磁性弾性体5と電磁石6との間には引き合い力F65aが生じる。そして、通電コイル62への通電を停止すれば(OFF)、磁力による引き合い力F65a又は反発力F65rは消滅する。
 さらに、本実施形態では、ポンプ装置11は、電源7及びコントローラ8を備えている。すなわち、本実施形態では、ポンプ1Iはさらに、電源7及びコントローラ8を備えている。ポンプ装置11の初期状態において、空間S1は、内部空間S10の一部として維持されている。本実施形態では、内部空間S10には、搬送対象物Mが充填されている。したがって、空間S1には、搬送対象物Mが充填されている。
(バルーンアクチュエータ10の基本動作)
 バルーンアクチュエータ10は、ポンプ装置11を駆動させることによって、バルーン装置12を制御することができる。バルーンアクチュエータ10は、弾性チューブ14のポンプ室部分141を圧搾することによって、バルーン部分142を拡張させることができる。また、バルーンアクチュエータ10は、ポンプ室部分141の圧搾を解除することによって、バルーン部分142を復元させることができる。ポンプ室部分141を拡張することによって、バルーン部分142を収縮させることもできる。以下に、バルーンアクチュエータ10の基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、バルーンアクチュエータ10の初期状態は、電磁石6がOFFである。図10Aに示すように、バルーンアクチュエータ10の初期状態をおいて、空間S1は維持されている。本実施形態では、空間S1は、2つの硬磁性弾性体5a,5bに生じる反発力F55rによって維持されている。これによって、空間S1は、初期状態において、維持されている。ポンプ1Iは、初期状態において、空間S1を維持することで、容積V1の搬送対象物Mを吐出可能な状態に維持されている。
 バルーン拡張状態:閉動作(縮小モード)
 電磁石6をONにする。このとき、図10Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体5の外面5f1の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体5と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、2つの硬磁性弾性体5a,5bに対する反発力F55rよりも強くする。その結果、図10Bに示すように、ポンプ室部分141の対向壁141aと、当該ポンプ室部分141の対向壁141bとは、互いに近づく向きに移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、第3空間S3を通して第2空間S2に圧送される。したがって、バルーンアクチュエータ10は、電磁石6のONによって、弾性チューブ14のバルーン部分142を拡張させることができる。特に、図10Bに示すように、本実施形態において、ポンプ室部分141の対向壁141aの内面141f2と、当該ポンプ室部分141の対向壁141bの内面141f2とは、最終的に接触する。これによって、図10Bに示すように、空間S1は完全に閉じられる。したがって、搬送対象物Mは、空間S1に余すことなく、バルーン部分142の第2空間S2に搬送することができる。
 バルーン縮小状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、反発力F65rは消滅し、2つの硬磁性弾性体5a,5bに対する反発力F55rの影響が支配的となる。その結果、図10Aに示すように、ポンプ室部分141の対向壁141aと、当該ポンプ室部分141の対向壁141bとは、互いに離れる向きに移動する。これによって、空間S1が増加(復元)する。この空間S1の増加によって、空間S1は完全に開かれる。すなわち、電磁石6をOFFにすると、図10Aに示すように、空間S1は、初期状態に復帰する。したがって、空間S1には、第2空間S2に圧送された搬送対象物Mがすべて帰還する。これによって、バルーン部分142を初期状態に復元させることができる。
 上述のとおり、バルーンアクチュエータ10によれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、バルーンアクチュエータ10によれば、バルーン部分142をアクチュエータとして、当該バルーン部分142の拡張及び縮小を連続的に繰り返すことができる。
 ところで、軟磁性弾性体4、硬磁性弾性体5は、弾性空間部2の延在方向において、当該弾性空間部2の延在方向の複数の位置に配置することができる。例えば、硬磁性弾性体5は、軸線方向の複数の位置に配置することができる。以下、その一例について説明をする。
<ポンプ1J>
 図11Aは、本発明の第10実施形態であるポンプ1Jの拡張状態を概略的に示す断面図である。図11Bは、ポンプ1Jの縮小状態を概略的に示す断面図である。図11A,11Bでは、電源7およびコントローラ8は、省略されている。
 ポンプ1Jは、いわゆる蠕動運動型ポンプである。ポンプ1Jは、搬送装置として使用することができる。本実施形態では、ポンプ1Jを搬送装置として説明する。
 ポンプ1Jは、硬磁性弾性体を含む弾性空間部2を備えている。本実施形態では、弾性空間部2は、弾性空間部本体3と、硬磁性弾性体5とを、備えている。さらに、本実施形態では、弾性空間部本体3は、対向壁3aと対向壁3bとの2つの対向壁を備えている。本実施形態では、ポンプ1Jの初期状態において、弾性空間部本体3の、2つの対向壁3a,3bの間には、空間S1が形成されている。
 また、ポンプ1Jにおいて、硬磁性弾性体5は、硬磁性弾性体5aと硬磁性弾性体5bとの2つの硬磁性弾性体を備えている。2つの硬磁性弾性体5a,5bは、それぞれ、弾性空間部本体3の外面3f1に固定されている。本実施形態では、硬磁性弾性体5aは、弾性空間部本体3の対向壁3aの外面3f1に固定されている。また、本実施形態では、硬磁性弾性体5bは、弾性空間部本体3の対向壁3bの外面3f1に固定されている。
 さらに、ポンプ1Jにおいて、硬磁性弾性体5は、弾性空間部2の延在方向において、当該弾性空間部2の延在方向の複数の位置に配置されている。本実施形態では、複数の硬磁性弾性体5aが、弾性空間部本体3の対向壁3aの外面3f1に、当該対向壁3aの延在方向に間隔を置いて配置されている。また、本実施形態では、複数の硬磁性弾性体5bが、弾性空間部本体3の対向壁3bの外面3f1に、当該対向壁3bの延在方向に間隔を置いて配置されている。本実施形態では、硬磁性弾性体5aと硬磁性弾性体5bとは、中心軸線O1を挟んで対向する位置に配置されている。
 本実施形態において、弾性空間部本体3は、弾性チューブ14によって形成されている。これによって、空間S1は、弾性チューブ14の内側に形成されている。空間S1は、搬送対象物Mを流通させるための搬送路を形成している。ポンプ1Jは、複数のポンプ1Iを利用することで構成することができる。例えば、ポンプ1Jは、複数のポンプ1Iを軸線方向に連結させることによって形成することができる。
(ポンプ1Jの基本動作)
 ポンプ1Jは、弾性チューブ14を軸線方向の任意の位置で局所的に圧搾するとともに当該任意の位置を軸線方向に沿って移動させることによって、軸線方向一方側から搬入した搬送対象物Mを軸線方向他方側に搬出することができる。また、ポンプ1Jは、弾性チューブ14の圧搾を解除することによって、新たな搬送対象物Mを軸線方向一方側から搬入させることができる。ポンプ1Jにおいて、硬磁性弾性体5aの内側の磁極と、硬磁性弾性体5bの内側の磁極は、ポンプ1Iと同様、同じ磁極N(S)である。以下に、ポンプ1Jの基本的な動作について説明をする。
 初期状態:開動作(拡張モード)
 ポンプ1Jの初期状態は、全ての電磁石6がOFFである。図11Aに示すように、ポンプ1Jの初期状態において、空間S1は維持されている。本実施形態では、初期状態において、空間S1を維持することで、容積V1の搬送対象物Mを吐出可能な状態に維持されている。
 搬送状態:閉動作(縮小モード)及び開動作(拡張モード)の併用
 所定の電磁石6をONにする。ポンプ1Jでは、軸線方向に配置された全ての電磁石6はそれぞれ独立して、ON/OFFさせることができる。例えば、図11Bを参照すれば、軸線方向に配置された複数の硬磁性弾性体5のうち、電磁石6をONにした硬磁性弾性体5の部分では、硬磁性弾性体5a及び電磁石6aに対する反発力F65rと、硬磁性弾性体5b及び電磁石6bに対する反発力F65rとはいずれも、硬磁性弾性体5a,5bに対する反発力F55rよりも大きい。したがって、軸線方向に配置された任意の電磁石6をONにすれば、弾性チューブ14の一部を、軸線方向において局所的に圧搾することができる。また、電磁石6をOFFにすれば、弾性チューブ14の圧搾は解除され、当該圧搾部分を反発力F55rによって拡張部分に復元させることができる。したがって、軸線方向に配置された複数の電磁石6のうちの、任意の電磁石6をON/OFFすれば、空間S1に配置された搬送対象物Mを、軸線方向一方側から当該軸線方向他方側に搬送することができる。
 上述のとおり、ポンプ1Jによれば、軸線方向に配置された複数の電磁石6のうち、当該軸線方向に配置された任意の電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、個々のポンプ1Iにおいて拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Jによれば、空間S1内に配置された搬送対象物Mを軸線方向一方側から当該軸線方向他方側に向かって連続的に搬送することができる。
 なお、ポンプ1Jにおいて、電磁石6のON/OFFは、電磁石6a及び電磁石6bの両方で行われることを前提としているが、ポンプ1Jによれば、電磁石6のON/OFFは、電磁石6a及び電磁石6bの少なくとも一方で行われていればよい。
 また、上記説明では、ポンプ1Jは複数のポンプで構成されており、当該複数のポンプは、ポンプ1Iのみで構成されている。しかしながら、前記複数のポンプには、他のポンプを使用することができる。例えば、前記複数のポンプには、上述した、ポンプ1Aからポンプ1Hまでのいずれかのポンプを使用することができる。例えば、前記複数のポンプは、ポンプ1Aからポンプ1Hまでのいずれか1種のポンプで構成されていてもよいし、ポンプ1Aからポンプ1Iまでのいずれか2種以上の異なるポンプで構成されていてもよい。
<バルーンアクチュエータ>
 図12は、ポンプ1Jを適用した油圧式のバルーンアクチュエータ20であって、当該バルーンアクチュエータ20の動作を概略的かつ時系列に示す断面図である。
 バルーンアクチュエータ20は、バルーンアクチュエータ10の変形例である。バルーンアクチュエータ20は、バルーンアクチュエータ10の連通路13の位置に、ポンプ装置15を配置したものである。
 バルーンアクチュエータ20は、ポンプ装置15と、第1バルーン装置(第1作動装置)16と、第2バルーン装置(第2作動装置)17と、を備えている。ポンプ装置15は、第1バルーン装置16と、第2バルーン装置17と、を連結している。また、ポンプ装置15は、図10Aなどに示すバルーンアクチュエータ10と同様、電源7およびコントローラ8を備えている。図12では、電源7およびコントローラ8は、省略されている。さらに、本実施形態では、バルーンアクチュエータ20は、図10Aなどに示すバルーンアクチュエータ10と同様、弾性チューブ14を備えている。
 バルーンアクチュエータ20の外観形状は、基本的に、弾性チューブ14によって形作られている。本実施形態において、弾性チューブ14は、ポンプ室部分141と、第1バルーン部分(作動室部分)145と、第2バルーン部分(作動室部分)146とによって形成されている。ポンプ室部分141の内側には、空間(ポンプ室空間)S1が形成されている。第1バルーン部分145の内側には、第2空間(作動室空間)S5が形成されている。第2バルーン部分146の内側には、第3空間(作動室空間)S6が形成されている。空間S1は、第2空間S5と第3空間S6とを連通させている。本実施形態では、弾性チューブ14の内部空間S10は、空間S1、第2空間S5および第3空間S6によって形成されている。また、本実施形態において、弾性チューブ14は、オリフィス付き弾性チューブである。弾性チューブ14は、空間S1の流路断面積が第2空間S5の受圧断面積及び第3空間S6の受圧断面積よりも小さい。内部空間S10には、様々な搬送対象物Mを流通させることができる。本実施形態では、搬送対象物Mとして、作動液が充填されている。
 磁性弾性体は、硬磁性弾性体5である。本実施形態では、簡略化のために、3つの硬磁性弾性体5が軸線方向に配置されている。硬磁性弾性体5は、硬磁性弾性体5a,5bを含む。2つの硬磁性弾性体5a,5bは、中心軸線O1を挟んで対向する位置に配置されている。言い換えれば、バルーンアクチュエータ20において、ポンプ装置15は、ポンプ1Jに相当する。例えば、ポンプ装置15において、弾性チューブ14のポンプ室部分141は、ポンプ1Jの弾性空間部2に相当する。すなわち、ポンプ室部分141の対向壁141aは、弾性空間部本体3の対向壁3aに相当し、ポンプ室部分の対向壁141bは、弾性空間部本体3の対向壁3bに相当する。したがって、ポンプ装置15もまた、硬磁性弾性体5aが弾性空間部本体3aの外面3f1に固定され、硬磁性弾性体5bが弾性空間部本体3bの外面3f1に固定されている。すなわち、ポンプ装置15は、ポンプ1Jの弾性空間部2として、弾性チューブ14のポンプ室部分141と、硬磁性弾性体5とを備えている。
 (バルーンアクチュエータ20の基本動作)
 バルーンアクチュエータ20のポンプ装置15に配置されたポンプ1Jは、上述のとおり、蠕動運動型ポンプである。バルーンアクチュエータ20は、ポンプ装置15を駆動させることによって、第1バルーン部分145を縮小させる一方、第2バルーン部分146を拡張させることができる。また、バルーンアクチュエータ20は、ポンプ装置15を駆動させることによって、第1バルーン部分145を拡張させる一方、第2バルーン部分146を縮小させることができる。以下、第2バルーン部分146を拡張させる場合を例として、バルーンアクチュエータ20の基本的な動作について説明をする。
 (a)ポンプ1Jの初期状態において、全ての電磁石6はOFFである。したがって、空間S1の軸線方向一方側は、第2空間S5に近い硬磁性弾性体5の反発力F55rによって開かれている。また、空間S1の軸線方向他方側も、第3空間S6に近い硬磁性弾性体5の反発力F55rによって開かれている。さらに、空間S1の軸線方向中央も、軸線方向中央に位置する硬磁性弾性体5の反発力F55rによって開かれている。すなわち、ポンプ1Jの初期状態において、空間S1は維持されており、第2空間S5と第3空間S6とを連通させている。
 (b)バルーンアクチュエータ20を動作させる際には、まず、第3空間S6に近い硬磁性弾性体5に反発力F65rが生じるように、当該硬磁性弾性体5に対応する電磁石6をONにする。これによって、空間S1の軸線方向他方側を閉じることができる。
 (c)次いで、第2空間S5に近い硬磁性弾性体5に反発力F65rが生じるように、当該硬磁性弾性体5に対応する電磁石6をONにする。これによって、空間S1の軸線方向一方側を閉じることができる。空間S1の軸線方向両側を閉じることによって、当該空間S1の軸線方向中央には、容積V1が減少した空間S1が形成される。
 上記(a)~(c)の動作によって、ポンプ1Jは、空間S1の軸線方向中央で、搬送対象物Mを加圧状態に保持することができる。
 (d)次いで、第3空間S6に近い硬磁性弾性体5に対応する電磁石6をOFFにする。これによって、空間S1の軸線方向他方側を開くことができる。空間S1の軸線方向他方側が開かれることによって、空間S1の軸線方向中央で圧縮されていた搬送対象物Mは、第3空間S6に向かって圧送(搬出)される。
 (e)次いで、空間S1の軸線方向中央に位置する硬磁性弾性体5に反発力F65rが生じるように、当該硬磁性弾性体5に対応する電磁石6をONにする。これによって、空間S1の空間S1の軸線方向中央を閉じることができる。空間S1の軸線方向中央が閉じられることによって、空間S1の軸線方向中央で圧縮されていた搬送対象物Mは、第3空間S6に向かってさらに圧送される。
 (f)次いで、第3空間S6に近い硬磁性弾性体5に反発力F65rが生じるように、当該硬磁性弾性体5に対応する電磁石6をONにする。これによって、空間S1の軸線方向他方側を閉じることができる。したがって、空間S1の軸線方向中央で圧縮されていた搬送対象物Mの全ては、第2空間S5に圧送される。
 上記(a)~(f)の動作によって、ポンプ1Jは、軸線方向一方側から軸線方向他方側に向かって他搬送対象物Mの圧送(搬出)をし、第3空間S6を拡張させることができる。これによって、バルーンアクチュエータ20は、第2バルーン部分146を膨張させることができる。
 また、ポンプ1Jは、上記(f)の動作ののち、上記(b)~(f)の動作を繰り返せば、第1バルーン部分145の第2空間S5に残った搬送対象物Mを、第3空間S6に順次圧送することができる。また、バルーンアクチュエータ20によれば、ポンプ1Jによって、搬送対象物Mが第1バルーン部分145に向かうように、上記(a)~(f)の動作を行うことができる。これによって、ポンプ1Jは、空間S1において、上記経路と反対の経路を辿ることによって、第1バルーン部分145を膨張させることができる。
 図13は、バルーンアクチュエータ20によって選択し得るレイアウトの一例を概略的に示す断面図である。なお、図13において、ポンプ1Jは、軸線方向に沿った4か所の位置に、硬磁性弾性体5を備えている。ポンプ1Jの本体(弾性空間部)は、弾性チューブ14および硬磁性弾性体5によって形成されている。このため、図13に示すように、ポンプ1Jは、バルーンアクチュエータ20全体として、自由に変形させることができる。したがって、ポンプ1Jは、図13に示すように、バルーンアクチュエータ20(ポンプ1I)を設置する際のレイアウトに自由度を持たせることができる。さらには、レイアウトの自由度が高いことにより、バルーンアクチュエータ20(ポンプ1J)をさまざまな環境に適用可能な形状に設計することができる。
<ポンプ1K>
 図14Aは、本発明の第11実施形態であるポンプ1Kの拡張状態を概略的に示す断面図である。図14Bは、ポンプ1Kの縮小状態を概略的に示す断面図である。図14A,14Bでは、電源7およびコントローラ8は、省略されている。
 ポンプ1Kは、ポンプ1Jと同様、いわゆる蠕動運動型ポンプである。ポンプ1Kは、搬送装置として使用することができる。本実施形態では、ポンプ1Hを搬送装置として説明する。ポンプ1Kは、複数のポンプ1Hを備えている。複数のポンプ1Hは、軸線方向に間隔を置いて配置されている。ポンプ1Kは、複数のポンプ1Hを利用することで構成することができる。ポンプ1Kの弾性空間部本体は、ポンプ1Hの弾性空間部本体(3)とともに、弾性チューブ14によって形成されている。空間S1は、弾性チューブ14の内側に形成されている。空間S1は、様々な搬送対象物Mを流通させるための搬送路を形成している。
(ポンプ1Kの基本動作)
 ポンプ1Kは、ポンプ1Jと同様、弾性チューブ14を軸線方向の任意の位置で局所的に圧搾するとともに当該任意の位置を軸線方向に沿って移動させることによって、軸線方向一方側から搬入した搬送対象物Mを軸線方向他方側に搬出することができる。また、ポンプ1Kは、ポンプ1Jと同様、弾性チューブ14の圧搾を解除することによって、新たな搬送対象物Mを軸線方向一方側から搬入させることができる。ポンプ1Kにおいて、硬磁性弾性体5aの内側の磁極S(N)と、硬磁性弾性体5bの内側の磁極N(S)は、異なる磁極である。以下に、ポンプ1Kの基本的な動作について説明をする。
 初期状態:閉動作(縮小モード)
 ポンプ1Kの初期状態は、全ての電磁石6がOFFである。本実施形態では、図14Aに示すように、空間S1は閉じられている。本実施形態では、硬磁性弾性体5aと硬磁性弾性体5bとには、それぞれ、磁力による引き合い力F55aが生じている。本実施形態では、弾性チューブ14の対向壁141aの内面141f2と、当該弾性チューブ14の対向壁141aの内面141f2とは、引き合い力F55aによって接触している。したがって、ポンプ1Kの初期状態において、空間S1は、2つの硬磁性弾性体5a,5bに対する引き合い力F55aによって閉じられている。
 搬送状態:開動作(拡張モード)及び開動作(拡張モード)の併用
 所定の電磁石6をONにする。ポンプ1Kでは、軸線方向に配置された全ての電磁石6はそれぞれ独立して、ON/OFFさせることができる。例えば、図14Bを参照すれば、軸線方向に配置された複数の硬磁性弾性体5のうち、電磁石6をONにした硬磁性弾性体5の部分では、硬磁性弾性体5a及び電磁石6aに対する引き合い力F65aと、硬磁性弾性体5b及び電磁石6bに対する引き合い力F65aとはいずれも、硬磁性弾性体5a,5bに対する引き合い力F55aよりも大きい。したがって、軸線方向に配置された任意の電磁石6をONにすれば、弾性チューブ14の一部を、軸線方向において局所的に拡張させることができる。また、電磁石6をOFFにすれば、弾性チューブ14の拡張は解除され、当該拡張部分を引き合い力F55aによって圧搾部分に復元させることができる。したがって、軸線方向に配置された複数の電磁石6のうちの、任意の電磁石6をON/OFFすれば、空間S1に配置された搬送対象物Mを、軸線方向一方側から当該軸線方向他方側に搬送することができる。
 上述のとおり、ポンプ1Kによれば、軸線方向に配置された複数の電磁石6のうち、当該軸線方向に配置された任意の電磁石6のON、OFFを交互に切り替えることによって、もしくは電磁石6の電流の向きを切り替えることによって、個々のポンプ1Hにおいて拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Kによれば、空間S1内に配置された搬送対象物Mを軸線方向一方側から当該軸線方向他方側に向かって連続的に搬送することができる。
 なお、ポンプ1Kにおいて、電磁石6のON/OFFは、電磁石6a及び電磁石6bの両方で行われることを前提としているが、ポンプ1Kによれば、電磁石6のON/OFFは、ポンプ1Jと同様、電磁石6a及び電磁石6bの少なくとも一方で行われていればよい。また、上記説明では、ポンプ1Kは複数のポンプで構成されており、当該複数のポンプは、ポンプ1Hのみで構成されている。しかしながら、前記複数のポンプには、ポンプ1Jと同様、他のポンプを使用することができる。
 上記各実施形態に係るポンプ1A~1Kによれば、磁力による磁性弾性体と弾性空間部変形要素との引き合い力もしくは反発力と、弾性空間部2および磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力との、少なくともいずれか1つによって弾性空間部2を変形させ、当該弾性空間部2内に形成された空間S1の拡張及び縮小を行うことによって、空間S1の搬送対象物Mを搬送することができる。このため、ポンプ1A~1Kは、弾性空間部2を圧搾させた状態のまま、当該圧搾部分を軸線方向に沿って移動させることなく、搬送対象物Mを搬送することができる。したがって、ポンプ1A~1Kによれば、弾性空間部2への軸線方向に沿ったせん断力の作用を軽減し耐久性に優れたポンプを提供することができる。
 また、上記各実施形態に係るポンプ1A~1Kは、弾性空間部2を圧搾させた状態のまま、当該圧搾部分を軸線延在方向に沿って移動させる必要がないため、弾性空間部2に含まれる磁性弾性体と磁性弾性体変形生起要素(6)との間に生じる磁力のON/OFF制御によって効率的なエネルギー消費で搬送対象物Mを搬送することができる。また、ポンプ1A~1Kは、磁性弾性体(4,5)と磁性弾性体変形生起要素(6)との間に生じる磁力のON/OFF制御によって弾性空間部2の拡張動作および縮小動作を制御することができる。これによって、ポンプの制御が容易になるとともに、効率的なエネルギー消費で搬送対象物Mを搬送することができる。
 また、ポンプ1A~1Kは、搬送対象物Mを搬送する部材として、弾性空間部2および磁性弾性体(4,5)を使用していることから、可撓性に優れる。この場合、ポンプ1A~1Kを配置する際のレイアウトに自由度を持たせることができる。したがって、ポンプ1A~1Kによれば、その適用範囲が拡大される。また、ポンプ1A~1Kは、弾性空間部2の変形によって搬送対象物Mの搬送を行うため、効率的なエネルギー消費で搬送対象物Mを搬送することができる。特に、弾性空間部2又は弾性空間部本体3として弾性チューブを用いれば、既存の部材を用いてポンプを製造することができる。
 また、上記各実施形態に係る、ポンプ1A、1C~1Kにおいて、弾性空間部2は、弾性空間部本体3と、磁性弾性体(4,5)とを、備えている。前記磁性弾性体(4,5)は、弾性空間部本体3の外側に固定されている。また、前記弾性空間部変形生起要素(6)は、弾性空間部2の外側に設けられている。この場合、弾性空間部2は、弾性空間部本体3と軟磁性弾性体4とを別体に形成し、弾性空間部本体3と軟磁性弾性体4とを固定させることによって形成されている。これによって、弾性空間部2は、弾性空間部本体3と、磁性弾性体(4,5)との積層構造とすることができる。弾性空間部2を積層構造とすれば、当該弾性空間部2の、磁力、弾性力、剛性、硬度を所望の条件に合わせて、当該弾性空間部2をチューニングすることができる。
 また、ポンプ1A~1Iによれば、磁性弾性体(4,5)は、弾性空間部2の延在方向(軸線方向)において、当該軸線方向の1つの位置にのみ配置されている。この場合、ポンプ1A~1Iのように、磁力によって動作可能であり、また、簡易な構成のポンプとなる。
 また、上記各実施形態に係るポンプ1J~1Kによれば、磁性弾性体(4,5)は、軸線方向において、当該軸線方向の複数の位置に配置されている。ポンプ1J~1Kによれば、軸線方向に沿った任意の位置を局所的に、当該軸線方向に移動させながら、弾性空間部2の圧搾および当該圧搾の解放を当該軸線方向に対して軸直方向に繰り返させることができる。したがって、ポンプ1J~1Kによれば、磁力によって動作可能な蠕動運動型ポンプを提供することができる。また、このことは、弾性空間部2の延在方向の複数の部分を弾性体によって形成することによっても実現される。
 上記各実施形態に係るポンプ1A、1B、1E、1G、1I、1Jは、初期状態において、弾性空間部2内に形成された空間S1が拡張している。この場合、弾性空間部変形生起要素(6)は、空間S1を減少させるときだけ、通電(ON)すればよい。したがって、この場合、ポンプ動作時のエネルギー効率を向上させることができる。
 また、上記各実施形態に係るポンプ1C、1D、1F、1H、1Kは、初期状態において、弾性空間部2内に形成された空間S1が縮小している。この場合、弾性空間部変形生起要素(6)は、空間S1を増加させるときだけ、通電(ON)すればよい。したがって、この場合、ポンプ動作時のエネルギー効率を向上させることができる。
 ところで、上記各実施形態に係る、ポンプ1A、1C~1Kにおいて、弾性空間部2の少なくとも一部は、ポンプ1Bと同様、硬磁性弾性体または硬磁性弾性体によって形成することができる。具体例としては、弾性空間部2(弾性チューブ14)全体を磁性弾性体で形成することができる。また、他の具体例としては、弾性空間部2(弾性チューブ14)の軸直方向の少なくとも1層が磁性弾性体として積層された積層構造となるように、当該弾性空間部2(弾性チューブ14)を多色成形することができる。この場合、弾性空間部2の、磁力、弾性力、剛性、硬度を所望の条件に合わせて、当該弾性空間部2をチューニングすることができる。また、この場合、弾性空間部2が単一の部材として構成されることにより、ポンプの部品点数を削減することができる。
 また、弾性空間部2は、ポンプ1Bのように、弾性空間部2全体を磁性弾性体によって形成することができる。この場合、弾性空間部2の部分ごとに、弾性材料を使い分ける必要がないため、簡易な構成のポンプとすることができる。
 また、弾性空間部2は、弾性空間部2の延在方向において、当該弾性空間部の延在方向の複数の部分を前記磁性弾性体によって形成することができる。この場合、硬磁性弾性体5を用いることなく、上記各実施形態に係る、ポンプ1J~1Kを製造することができる。したがって、この場合、部品点数を削減しつつ、ポンプ1J~1Kを製造することができる。
 上記各実施形態に係るポンプ1A~1Kにおいて、弾性空間部変形生起要素は、電磁石6である。磁性弾性体及び弾性空間部変形生起要素の間に生じる磁力を、電磁石6に印加する電流をON/OFF制御によって簡易に制御できる。また、この場合、弾性空間部2の動作を、簡易にかつ応答性良く制御することができる。
 なお、ポンプ1A~1Kにおいて、弾性空間部変形生起要素は、いわゆる、磁石とすることができる。前記磁石としては、電磁石の他、例えば、永久磁石が挙げられる。弾性空間部変形生起要素として永久磁石を用いる場合、当該永久磁石は、磁性弾性体に対して相対移動可能とすることが好ましい。
 上述した各実施形態は、弾性空間部を変形させることによってポンプ動作を生起させるポンプである。一方、磁性弾性体を用いれば、空間部に取り付けられた弾性膜を変形させることによってポンプ動作を生起させるポンプとすることができる。次に、弾性膜を用いたポンプについて説明をする。
 本実施形態に係るポンプ1Lは、空間部31と、磁性弾性体を含む弾性膜32と、磁力によって弾性膜32を変形させる弾性膜変形生起要素と、を備えている。弾性膜32は、空間部31に形成された開口A1を閉じている。本実施形態では、ポンプ1Lは、弾性空間部2として、空間部31と、弾性膜32とを備えている。前記弾性膜変形生起要素は、前記磁力による前記磁性弾性体と前記弾性膜変形生起要素との引き合い力もしくは反発力と、弾性膜32および前記磁性弾性体の少なくとも1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって弾性膜32を変形させ、空間部31内に形成された空間S1を復元または増加させる拡張モードと、空間S1を減少または復元させる縮小モードと、を行う。
 図15Aは、本発明の第12実施形態であるポンプ1Lの拡張状態を概略的に示す断面図である。図15Bは、ポンプ1Lの縮小状態を概略的に示す断面図である。
 図15Aを参照すれば、本実施形態では、ポンプ1Lの空間部31は配管である。空間S1は、空間部31の内側に形成されている内部通路である。空間S1は、搬送対象物Mを流通させるための搬送路を形成している。本実施形態では、空間部31の側壁には、空間S1を外界に通じさせる開口A1が形成されている。空間部31は、弾性材料によって形成されるものに限定されない。例えば、空間部31は、金属などの剛性の高い材料によって形成することができる。この場合、空間部31を構成する金属としては非磁性の金属を用いることがポンプ制御の観点から好ましい。
 本実施形態において、ポンプ1Lは、吸入弁37と、排出弁38とを備えている。吸入弁37及び排出弁38は、空間部31の空間S1に配置されている。空間S1に形成された開口A1は、吸入弁37と排出弁38との間に位置している。開口A1は、弾性膜32によって閉じられている。本実施形態では、空間S1は、空間部31に形成された前記内部通路のうち、空間部31、吸入弁37及び排出弁38、並びに、弾性膜32によって区画された空間(ポンプ室)である。
 弾性膜32は、弾性膜本体33と、硬磁性弾性体35とを、備えている。硬磁性弾性体35は、弾性膜本体33の外面33f1に固定されている。弾性膜変形生起要素は、硬磁性弾性体35の外側に設けられている。本実施形態では、弾性膜32は、弾性膜本体33と硬磁性弾性体35とを別体に形成し、弾性膜本体33と硬磁性弾性体35とを固定させることによって形成されている。すなわち、ポンプ1Lは、弾性膜本体33と、硬磁性弾性体35とを積層させた積層部分を弾性膜32に含む。
 本実施形態において、弾性膜本体33は、変形及び復元が可能な弾性材料からなる。こうした弾性材料としては、例えば、天然ゴム、合成ゴム、高分子弾性体等が挙げられる。
 弾性膜変形生起要素は、磁力によって弾性膜32を変形させることができる。前記磁力は、磁性弾性体と前記弾性空間部変形生起要素との相互作用によって、弾性膜32と前記弾性空間部変形生起要素との間に生じる磁力である。前記弾性空間部変形生起要素は、ポンプ1A~1Kと同様、電磁石、永久磁石などの磁石を含む磁性体によって構成することができる。本実施形態では、前記弾性膜変形生起要素は、電磁石6である。本実施形態において、電磁石6は、弾性膜32の外側に設けられている。具体的には、電磁石6は、硬磁性弾性体35の外面35f1に対して間隔を置いて配置している。ただし、電磁石6は、硬磁性弾性体35の外面35f1に接していてもよい。
(ポンプ1Lの基本動作)
 ポンプ1Lは、弾性膜32を変形させることによって、搬送対象物Mを吐出(搬送)させることができる、特に、本実施形態では、電磁石6のON/OFFによって駆動させることができる。以下に、ポンプ1Lの基本的な動作の一例について説明をする。
 初期状態:開動作(拡張モード)
 本実施形態において、ポンプ1Lの初期状態は、電磁石6がOFFである。本実施形態では、空間S1は維持されている。本実施形態では、空間S1は、弾性膜32の弾性力によって維持されている。
 圧送状態:閉動作(縮小モード)
 電磁石6をONにする。このとき、図15Bに示すように、電磁石6の内側に生じる磁極は、硬磁性弾性体35の外側の磁極S(N)と同じ磁極S(N)である。これによって、硬磁性弾性体35と電磁石6との間には磁力による反発力F65rが生じる。反発力F65rは、弾性膜32の弾性力(復元力)よりも強くする。その結果、図15Bに示すように、弾性膜32が空間S1に向かって移動する。これによって、空間S1は減少(縮小)する。この空間S1の減少によって、空間S1に配置されていた搬送対象物Mは、排出弁38を開いて当該空間S1の外部に圧送される。したがって、ポンプ1Lは、空間S1に配置されていた搬送対象物Mを空間S1の外部に吐出することができる。
 充填状態:開動作(拡張モード)
 電磁石6をOFFにする。これによって、ポンプ1Lを停止させることができる。このとき、反発力F65rは消滅し、弾性膜32の復元力(弾性力)の影響が支配的となる。その結果、図15Aに示すように、弾性膜32が空間S1から離れる向きに移動する。これによって、空間S1が増加(拡張)する。この空間S1の増加によって、吸入弁37が開かれる。すなわち、電磁石6をOFFにすると、ポンプ1Lは、図15Aに示すように、初期状態に復帰する。したがって、空間S1には、吸入弁37を通して新たな搬送対象物Mを充填させることができる。なお、空間S1を増加させる場合、ポンプ1Lによれば、電磁石6において閉動作の場合とは反対の磁極を発生させることができる。これによって、硬磁性弾性体35と電磁石6との間に磁力による引き合い力を発生させることができる。この場合、弾性体(弾性膜32)の復元力のみに依るよりも、強い吸圧力を生起させることができる。また、この場合、復元速度を大きくすることができる。このように、ポンプ1Lの場合、弾性膜32の復元力と併せ、電磁石6と硬磁性弾性体35との引き合い力を用いることが好ましい。
 上述のとおり、ポンプ1Lによれば、電磁石6のON、OFFを交互に切り替えることによって、もしくは電流の向きを切り替えることによって、拡張モードと縮小モードとが繰り返される。これによって、本実施形態に係るポンプ1Lによれば、空間S1内に配置された搬送対象物Mを連続的に吐出(搬送)することができる。
 上述のとおり、ポンプ1Lによれば、磁力による磁性弾性体と弾性膜変形生起要素(6)との引き合い力もしくは反発力と、弾性膜32および磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力との、少なくともいずれか1つによって弾性膜32を変形させ、空間部31内に形成された空間S1を拡張及び縮小モードと、を行うことによって、空間S1の搬送対象物Mを搬送することができる。このため、ポンプ1Lは、弾性膜32を圧搾させた状態のまま、当該圧搾部分を空間部31の延在方向に沿って移動させることなく、搬送対象物Mを搬送することができる。したがって、ポンプ1Lによれば、弾性膜32への空間部31の延在方向に沿ったせん断力の作用を軽減し耐久性に優れたポンプを提供することができる。
 また、ポンプ1Lは、弾性膜32を圧搾させた状態のまま、当該圧搾部分を空間部31の延在方向に沿って移動させる必要がないため、磁性弾性体と弾性膜変形生起要素(6)との間に生じる磁力のON/OFF制御によって効率的なエネルギー消費で搬送対象物Mを搬送することができる。また、ポンプ1Lは、磁性弾性体と弾性膜変形生起要素(6)との間に生じる磁力のON/OFF制御によって弾性膜32の拡張動作および縮小動作を制御することができる。これによって、ポンプ1Lの制御が容易になるとともに、効率的なエネルギー消費で搬送対象物Mを搬送することができる。
 また、ポンプ1Lは、搬送対象物Mを搬送する部材として、弾性膜32および磁性弾性体を使用していることから、可撓性に優れる。また、ポンプ1Lは、弾性膜32の変形によって搬送対象物Mの搬送を行うため、効率的なエネルギー消費で搬送対象物Mを搬送することができる。特に、本実施形態のように、空間部31として配管を用いれば、既存の部材を用いてポンプを製造することができる。
 また、上記各実施形態に係る、ポンプ1Lにおいて、弾性膜32は、弾性膜本体33と、磁性弾性体(35)とを、備えている。磁性弾性体(35)は、弾性膜本体33の外側に固定されている。また、前記弾性空間部変形生起要素(6)は、弾性膜32の外側に設けられている。この場合、弾性膜32は、弾性膜本体33と硬磁性弾性体35とを別体に形成し、弾性膜本体33と硬磁性弾性体35とを固定させることによって形成されている。これによって、空間部31は、弾性膜本体33と、磁性弾性体(5)との積層構造とすることができる。空間部31を積層構造とすれば、当該空間部31の、磁力、弾性力、剛性、硬度を所望の条件に合わせてチューニングすることができる。
 ポンプ1Lは、初期状態において、空間S1が拡張している。この場合、電磁石6は、空間S1を減少させるときだけ、通電(ON)すればよい。したがって、この場合も、ポンプ動作時のエネルギー効率を向上させることができる。また、ポンプ1Lは、初期状態において、空間S1が縮小しているものとすることができる。この場合、電磁石6は、空間S1の容積V1を増加させるときだけ、通電すればよい。したがって、この場合、ポンプ動作時のエネルギー効率を向上させることができる。
 また、ポンプ1Lにおいて、弾性膜変形生起要素は、電磁石6としている。この場合、磁性弾性体及び弾性膜変形生起要素の間に生じる磁力を、電磁石6に印加する電流によって簡易に制御できる。また、この場合、弾性膜32の動作を、簡易にかつ応答性良く制御することができる。
 なお、ポンプ1Lにおいて、弾性膜32の少なくとも一部は、前記磁性弾性体によって形成することができる。具体例としては、弾性膜32全体を磁性弾性体で形成することができる。また、他の具体例としては、弾性膜32の軸直方向の少なくとも1層が磁性弾性体として積層された積層構造となるように、当該弾性膜32を多色成形することができる。この場合、弾性空間部2(本実施形態では、弾性膜32)の、磁力、弾性力、剛性、硬度を所望の条件に合わせて、当該弾性空間部2をチューニングすることができる。また、ポンプ1Lは、弾性膜32を磁性弾性体によって形成することができる。この場合、弾性膜32が単一の部材として構成されることにより、ポンプの部品点数を削減することができる。
 なお、ポンプ1Lにおいて、弾性膜変形生起要素も、いわゆる、磁石とすることができる。前記磁石としては、電磁石の他、例えば、永久磁石が挙げられる。弾性膜変形生起要素として永久磁石を用いる場合、当該永久磁石は、弾性膜32(磁性弾性体)に対して相対移動可能とすることが好ましい。
 また、上記の各実施形態において、磁性弾性体は、硬磁性弾性体である。硬磁性弾性体は、自ら磁力(又は磁場)を発生する。したがって、この場合、ポンプ動作時のエネルギー効率を向上させることができる。
 本実施形態では、前記硬磁性弾性体は、硬磁性エラストマからなる。前記硬磁性エラストマの具体例としては、着磁されたネオジム合金粉末を含有するシリコンエラストマが挙げられる。また、前記硬磁性エラストマとしては、例えば、自発磁化を有しない粒子を分散媒M3中に分散し固定化したのちに着磁操作して、硬磁性粒子P3が分散媒M3中に分散された状態に作製されたものが挙げられる。
(硬磁性粒子)
 硬磁性粒子P3は、硬磁性を有する粒子である。硬磁性粒子P3を形成する硬磁性体としては、例えば、ニッケル、コバルト、フェライト、ネオジムの鉄含有合金等の磁石等が挙げられる。前記硬磁性エラストマには、複数の硬磁性粒子P3が含まれる。前記硬磁性エラストマに含まれる硬磁性粒子P3は、同種の硬磁性体であっても、2種以上の異なる硬磁性体であってもよい。また、硬磁性粒子P3の大きさは、硬磁性弾性体5の形状・大きさ、分散媒M3の性質、硬磁性弾性体5に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、硬磁性弾性体5に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。前記硬磁性エラストマに含まれる硬磁性粒子P3の平均粒子径は、同一であっても、異なっていてもよい。硬磁性粒子P3の平均粒子径としては、例えば、0.1~150μmの範囲、好ましくは、0.3~80μmの範囲の平均粒子径である。硬磁性粒子P3の平均粒子径が、150μmを上回る場合、均一なエラストマが得られにくくなる。また、硬磁性粒子P3の平均粒子径が、0.1μmを下回る場合、磁場によるエラストマの十分な変形が得られにくくなる。本発明において、平均粒子径とは、粒子径分布の中央値(メジアン径)を意味する。平均粒子径は、レーザー回折式粒度分布測定装置または走査型電子顕微鏡(SEM)などを用いて測定する。
(分散媒)
 分散媒M3は、硬磁性粒子P3が分散している媒質である。分散媒M3としては、例えば、硬磁性粒子P3を分散させた状態でゲル化するものが挙げられる。こうした分散媒M3としては、例えば、シリコン樹脂、ウレタン樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂等を含むものが挙げられる。また、これらの樹脂を複合化して使用してもよい。分散媒M3は、硬磁性弾性体5の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体5に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、硬磁性弾性体5に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。更に、分散媒M3に対して硬磁性粒子P3が占める割合(硬磁性粒子P3の濃度)も、硬磁性弾性体5の形状・大きさ、硬磁性粒子P3の性質、硬磁性弾性体5に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、硬磁性弾性体5に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。硬磁性粒子P3の濃度としては、例えば、25~95重量%の範囲、好ましくは、35~90重量%の範囲の濃度である。硬磁性粒子P3の濃度が、25重量%を下回る場合、磁場存在下でのエラストマの十分な変形が得られにくくなる。また、硬磁性粒子P3の濃度が、95重量%を上回る場合、分散媒Mに均一に分散させることが困難となったり、硬磁性弾性体5の弾性復元力が得られにくくなる。
 本実施形態において、弾性空間部変形要素は、硬磁性体である。前記硬磁性体は、いわゆる磁石であり、保磁力が大きく、自発磁化性を有し、自ら磁力(又は磁場)を発生する性質を有している。前記硬磁性体としては、例えば、鉄、ニッケル、コバルト等の金属、その金属酸化物、前述の金属を含む合金、金属酸化物等の磁石、電磁石が挙げられる。本実施形態では、例えば、図10Aを参照すれば、前記硬磁性体は、電磁石6である。電磁石6は、磁性素子(芯材)61に通電コイル62を巻き付けたものである。本実施形態では、通電コイル62には、電源7が繋がる。電源7から流れる電流の向きは、コンピュータ等のコントローラ8によって制御することができる。従って、本実施形態において、電磁石6の極性の向きは、コントローラ8によって制御することができる。また、本実施形態において、電源7をOFFしたときは、電磁石6の極性は消滅する。
 また、上記の各実施形態において、磁性弾性体は、軟磁性弾性体とすることができる。
 前記軟磁性弾性体としては、軟磁性エラストマが挙げられる。前記軟磁性エラストマは、磁力(又は磁場)を受けると応答するが、外部から磁場を受けない限り、自らは磁力(又は磁場)を発生しない性質を有している。前記軟磁性エラストマの具体例としては、鉄粉を含有するシリコンエラストマが挙げられる。また、前記軟磁性エラストマとしては、例えば、軟磁性粒子P1と分散媒M1とを含むものが挙げられる。
(軟磁性粒子)
 軟磁性粒子P1は、軟磁性を有する粒子である。軟磁性粒子P1を形成する軟磁性体としては、例えば、鉄、ニッケル、コバルト等の金属、その金属酸化物、前述の金属を含む合金、前述の合金の金属酸化物等が挙げられる。前記軟磁性エラストマには、複数の軟磁性粒子P1が含まれる。前記軟磁性エラストマに含まれる軟磁性粒子P1は、同種の軟磁性体であっても、2種以上の異なる軟磁性体であってもよい。また、軟磁性粒子P1の大きさは、軟磁性弾性体4の形状・大きさ、分散媒M1の性質、軟磁性弾性体4に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、軟磁性弾性体4に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。前記軟磁性エラストマに含まれる軟磁性粒子P1の平均粒子径は、同一であっても、異なっていてもよい。軟磁性粒子P1の平均粒子径としては、例えば、0.1~150μmの範囲、好ましくは、0.3~80μmの範囲の平均粒子径である。軟磁性粒子P1の平均粒子径が、150μmを超える場合、均一なエラストマが得にくくなる。また、軟磁性粒子P1の平均粒子径が、0.1μmを下回る場合、磁場によるエラストマの十分な変形が得られにくくなる。
(分散媒)
 分散媒M1は、軟磁性粒子P1が分散している媒質である。分散媒M1としては、例えば、軟磁性粒子P1を分散させた状態でゲル化するものが挙げられる。こうした分散媒としては、例えば、シリコン樹脂、ウレタン樹脂、フッ素樹脂、アクリル樹脂、ポリエステル樹脂、尿素樹脂等を含むものが挙げられる。また、これらの樹脂を複合化して使用してもよい。分散媒M1は、軟磁性弾性体4の形状・大きさ、軟磁性粒子P1の性質、軟磁性弾性体4に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、軟磁性弾性体4に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。更に、分散媒M1に対して軟磁性粒子P1が占める割合(軟磁性粒子P1の濃度)も、軟磁性弾性体4の形状・大きさ、軟磁性粒子P1の性質、軟磁性弾性体4に要求される弾性力(例えば、ポンプの仕様として要求される弾性力)、軟磁性弾性体4に要求される押圧力(例えば、ポンプの仕様として要求される、ポンプの吐出圧を満たすための押圧力)等に応じて、適宜、選択することができる。軟磁性粒子P1の濃度としては、軟磁性体の総重量に対し、例えば、25~95重量%の範囲、好ましくは、35~90重量%の範囲の濃度である。軟磁性粒子P1の濃度が、95重量%を上回る場合、分散媒Mに均一に分散させにくくなったり、吸盤の復元力が得られにくくなる。また、軟磁性粒子P1の濃度が、25重量%を下回る場合、磁場存在下でのエラストマの変形が十分に得られにくくなる。
 上述のとおり、本発明によれば、せん断力の作用を軽減し耐久性に優れたポンプを提供することができる。また、本発明は、エネルギー効率が良く、支持体を用いない実施形態では、剛体であるチューブ支持体を備える従来の蠕動ポンプに比べ、適用範囲が広い。例えば、ポンプ1A~1Kの場合、弾性空間部2が可撓性を有することによって、あるいは、ポンプ1Lの場合、空間部31に弾性を持たせることによって、ポンプを設置する際のレイアウトに自由度を持たせることができる。この場合、チューブ支持体を省略することができる。
 上述したところは、本発明のいくつかの実施形態について説明を行ったにすぎず、特許請求の範囲に従えば、様々な変更が可能となる。
 上記各実施形態に係る、ポンプ1A~1Lでは、エネルギー効率を考慮して、電磁石6は、初期状態でOFFとしている。ただし、本発明によれば、電磁石6は、初期状態でONとすることができる。
 また、例えば、ポンプ1A~1Kにおいて、説明の簡略のため、弾性空間部2の初期状態の形状は、当該弾性空間部2の弾性力、又は、2つの硬磁性弾性体5a,5bの間に生じる、磁力による引き合い力F55aもしくは反発力F55rによって維持されている。
 しかしながら、実際には、弾性空間部2の初期状態の形状は、磁力等の外力を受けない状態において、上記磁力、弾性空間部(弾性空間部本体)および磁性弾性体の少なくともいずれか1つの張力(弾性力)と、空間S1に充填された搬送対象物Mからの内圧と、の少なくともいずれか1つ、または、これらの組み合わせによって維持することができる。したがって、こうした場合、弾性空間部の変形を生起させる、当該弾性空間部と弾性空間部変形生起要素との間に生じる、引き合い力F65aまたは反発力F65rは、引き合い力F65aまたは反発力F65rを超える力に限定されない。すなわち、本発明において、引き合い力F65aまたは反発力F65rとは、弾性空間部2の初期状態の形状を維持しようとする力を超える力である。このことは、ポンプ1Lにおいて、弾性膜32についても同様である。
 上述した各実施形態に採用された様々な構成は、互いに組み合わせて使用することができる。さらに、上述した各実施形態に採用された様々な構成は、相互に適宜、置き換えることができる。
 1,1A~1L:ポンプ, 2:弾性空間部, 3:弾性空間部本体, 4:軟磁性弾性体, 5:硬磁性弾性体, 6:電磁石, 32:弾性膜,     33:弾性膜本体, 35:硬磁性弾性体, 61:磁性素子, 62:通電コイル, S1:空間

Claims (19)

  1.  磁性弾性体を含む弾性空間部と、磁力によって前記弾性空間部を変形させる弾性空間部変形生起要素と、を備えており、
     前記弾性空間部変形生起要素は、前記磁力による前記磁性弾性体と前記弾性空間部変形生起要素との引き合い力もしくは反発力と、前記弾性空間部および前記磁性弾性体の少なくともいずれか1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性空間部を変形させ、前記弾性空間部内に形成された空間を復元または増加させる拡張モードと、前記空間を減少または復元させる縮小モードと、を行う、ポンプ。
  2.  前記弾性空間部は、弾性空間部本体と、前記磁性弾性体とを、備えており、
     前記磁性弾性体は、前記弾性空間部本体の外側に固定されており、
     前記弾性空間部変形生起要素は、前記弾性空間部の外側に設けられている、請求項1に記載されたポンプ。
  3.  前記磁性弾性体は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の1つの位置にのみ配置されている、請求項2に記載されたポンプ。
  4.  前記磁性弾性体は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の複数の位置に配置されている、請求項2に記載されたポンプ。
  5.  前記弾性空間部の少なくとも一部は、前記磁性弾性体によって形成されており、
     前記弾性空間部生起変形要素は、前記弾性空間部の外側に設けられている、請求項1に記載されたポンプ。
  6.  前記弾性空間部は、前記磁性弾性体によって形成されている、請求項5に記載されたポンプ。
  7.  前記弾性空間部は、前記弾性空間部の延在方向において、当該弾性空間部の延在方向の複数の部分を前記磁性弾性体によって形成している、請求項5に記載されたポンプ。
  8.  前記弾性空間部変形生起要素は、電磁石である、請求項1乃至7のいずれか1項に記載されたポンプ。
  9.  空間部と、磁性弾性体を含む弾性膜と、磁力によって前記弾性膜を変形させる弾性膜変形生起要素と、を備えており、
     前記弾性膜は、前記空間部に形成された開口部を閉じており、
     前記弾性膜変形生起要素は、前記磁力による前記磁性弾性体と前記弾性膜変形生起要素との引き合い力もしくは反発力と、前記弾性膜および前記磁性弾性体の少なくとも1つの復元力と、これらの力の合力と、の少なくともいずれか1つによって前記弾性膜を変形させ、前記空間部内に形成された空間の容積を復元または増加させる拡張モードと、前記空間の容積を減少または復元させる縮小モードと、を行う、ポンプ。
  10.  前記弾性膜は、弾性膜本体と、前記磁性弾性体とを、備えており、
     前記磁性弾性体は、前記弾性膜本体の外面に固定されており、
     前記弾性膜変形生起要素は、前記磁性弾性体の外側に設けられている、請求項9に記載されたポンプ。
  11.  前記弾性膜の少なくとも一部は、前記磁性弾性体によって形成されており、
     前記弾性膜変形生起要素は、前記磁性弾性体の外側に設けられている、請求項9に記載されたポンプ。
  12.  前記空間部は、前記磁性弾性体によって形成されている、請求項11に記載されたポンプ。
  13.  前記弾性膜変形生起要素は、電磁石である、請求項9乃至12のいずれか1項に記載されたポンプ。
  14.  初期状態において、前記弾性空間部内に形成された空間が縮小している、請求項1乃至8のいずれか1項に記載されたポンプ。
  15.  初期状態において、前記弾性空間部内に形成された空間が拡張している、請求項1乃至8のいずれか1項に記載されたポンプ。
  16.  初期状態において、前記空間部内に形成された空間が縮小している、請求項9乃至13のいずれか1項に記載されたポンプ。
  17.  初期状態において、前記空間部内に形成された空間が拡張している、請求項9乃至13のいずれか1項に記載されたポンプ。
  18.  前記磁性弾性体は、硬磁性弾性体である、請求項1乃至17のいずれか1項に記載されたポンプ。
  19.  前記磁性弾性体は、軟磁性弾性体である、請求項1乃至17のいずれか1項に記載されたポンプ。
     
PCT/JP2022/006014 2021-02-15 2022-02-15 ポンプ WO2022173060A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022135 2021-02-15
JP2021022135A JP2022124393A (ja) 2021-02-15 2021-02-15 ポンプ

Publications (1)

Publication Number Publication Date
WO2022173060A1 true WO2022173060A1 (ja) 2022-08-18

Family

ID=82838395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006014 WO2022173060A1 (ja) 2021-02-15 2022-02-15 ポンプ

Country Status (2)

Country Link
JP (1) JP2022124393A (ja)
WO (1) WO2022173060A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132528A1 (en) * 2022-12-19 2024-06-27 Trelleborg Sealing Solutions Germany Gmbh Tube with embedded magnetic particles and associated pumping device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298209U (ja) * 1976-01-20 1977-07-23
JPS5360704A (en) * 1976-11-12 1978-05-31 Chukyo Electric Co Tubular diaphragm pumps
JPH0196481A (ja) * 1987-10-07 1989-04-14 Matsushita Electric Ind Co Ltd ポンプ
JP2014114772A (ja) * 2012-12-11 2014-06-26 Aquatech Co Ltd マイクロポンプ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298209U (ja) * 1976-01-20 1977-07-23
JPS5360704A (en) * 1976-11-12 1978-05-31 Chukyo Electric Co Tubular diaphragm pumps
JPH0196481A (ja) * 1987-10-07 1989-04-14 Matsushita Electric Ind Co Ltd ポンプ
JP2014114772A (ja) * 2012-12-11 2014-06-26 Aquatech Co Ltd マイクロポンプ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024132528A1 (en) * 2022-12-19 2024-06-27 Trelleborg Sealing Solutions Germany Gmbh Tube with embedded magnetic particles and associated pumping device

Also Published As

Publication number Publication date
JP2022124393A (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
US7481415B2 (en) Multi-force actuator valve with multiple operating modes
US7455075B2 (en) Servo valve with miniature embedded force motor with stiffened armature
US5717259A (en) Electromagnetic machine
WO2022173060A1 (ja) ポンプ
US4747577A (en) Gate valve with magnetic closure for use with vacuum equipment
JP6755290B2 (ja) 吸着装置及び吸盤
US20120175974A1 (en) Compact electromechanical mechanism and devices incorporating the same
US9702477B1 (en) Power versatile and energy efficient electric coaxial valve
CN104303248A (zh) 操作机构以及具备该操作机构的电力用开闭装置
US5711347A (en) Double solenoid latching ball valve with a hollow ball
US10024453B2 (en) Dual acting solenoid valve using bi-stable permanent magnet activation for energy efficiency and power versatility
US20140107589A1 (en) Electromagnetically actuated valve and related methods of use
WO2017158485A1 (en) Enhanced electroactive actuator using nonlinear loading techniques
US20150345519A1 (en) Magnetohydrodynamic actuator
JPWO2015111354A1 (ja) 電磁アクチュエータ及び電磁弁装置
CN105736800A (zh) 一种微小型单线圈驱动自锁阀
WO2006125259A1 (en) Magnetically actuated valve
WO2022173061A1 (ja) 開閉弁
CN110410575A (zh) 一种面向微流控芯片的移动式电磁驱动微阀
JP3426161B2 (ja) 被駆動体の直線駆動装置
CN114278762B (zh) 基于柔性磁石的多状态电磁三通微阀
CN114278763B (zh) 基于柔性磁石的多状态双稳态电磁三通微阀
JP2002036199A (ja) マイクロマシンおよびマイクロマシンシステム
JPH10249776A (ja) 把持装置
WO2020257912A1 (en) Magnetic valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752882

Country of ref document: EP

Kind code of ref document: A1