WO2022172873A1 - ロボットシステム及びワーク供給方法 - Google Patents

ロボットシステム及びワーク供給方法 Download PDF

Info

Publication number
WO2022172873A1
WO2022172873A1 PCT/JP2022/004451 JP2022004451W WO2022172873A1 WO 2022172873 A1 WO2022172873 A1 WO 2022172873A1 JP 2022004451 W JP2022004451 W JP 2022004451W WO 2022172873 A1 WO2022172873 A1 WO 2022172873A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
work
chuck
gripping mechanism
approach
Prior art date
Application number
PCT/JP2022/004451
Other languages
English (en)
French (fr)
Inventor
瑞起 多湖
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to CN202280012380.3A priority Critical patent/CN116940451A/zh
Priority to DE112022000313.8T priority patent/DE112022000313T5/de
Priority to JP2022580607A priority patent/JPWO2022172873A1/ja
Publication of WO2022172873A1 publication Critical patent/WO2022172873A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39322Force and position control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39529Force, torque sensor in wrist, end effector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40582Force sensor in robot fixture, base
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/405866-DOF force sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40599Force, torque sensor integrated in joint

Definitions

  • the present invention relates to a robot system and a workpiece supply method.
  • the workpiece to be processed is often supplied by a robot device to the chuck mechanism equipped on the machine tool.
  • the robot device supplies the workpiece to the chuck mechanism
  • the robot device moves to the taught position in a posture taught in advance, strikes the workpiece against the chuck surface, and waits for completion of chucking.
  • a robot system includes a robot device for supplying a work to a machine tool, a work gripping mechanism attached to the tip of an arm of the robot device, and a device for detecting an external force applied to the work gripping mechanism. It comprises a force sensor and a control device that controls the robot device.
  • the control device relates to a control unit that controls the robot device to correct the position and orientation of the workpiece gripping mechanism with respect to the machine tool based on the output of the force sensor, and the corrected position and orientation of the workpiece gripping mechanism. and a storage unit for storing data.
  • FIG. 1 is a perspective view of a robot device of a robot system according to one embodiment.
  • FIG. 2 is a diagram showing the hand of FIG. 1 together with the workpiece and the chuck mechanism of the machine tool.
  • FIG. 3 is a mechanical block diagram of the robot system according to one embodiment.
  • FIG. 4 is a flow chart showing a work supply procedure under the control of the operation control section of FIG.
  • FIG. 5 is a supplementary illustration of steps S2-S4 in FIG.
  • FIG. 6 is a supplementary illustration of steps S6-S12 in FIG.
  • FIG. 7 is a supplementary illustration of step S13 in FIG.
  • FIG. 8 is a perspective view of a robot device in which force sensors are installed in joints as a modification of this embodiment.
  • FIG. 9 is a perspective view of a robot device in which a force sensor is installed on a base as a modification of this embodiment.
  • the robot device 1 that constitutes the robot system according to the present embodiment has an articulated arm mechanism 10 .
  • the multi-joint arm mechanism 10 is provided by a vertical multi-joint type having, for example, six degrees of freedom, and a rotary joint 12 for turning is installed on a base 11 .
  • the revolute joint 12 includes a revolute joint 14, a link 13, a revolute joint 16, a link 15, a revolute joint 17, and revolute joints 18-1, 18-2, and 18-3 of orthogonal three axes.
  • the wrist portion 18 is sequentially connected.
  • the multi-joint arm mechanism 10 is not limited to a vertical multi-joint type, and may be a polar coordinate type or a SCARA type rotary joint mechanism.
  • a coordinate system based on the base 11 is called a robot coordinate system (X0, Y0, Z0).
  • a mount 20 is attached to the wrist portion 18 .
  • a workpiece gripping mechanism (hereinafter referred to as a hand) 2 as an end effector is attached to the mount 20 via a force sensor 4 .
  • the hand 2 has a pair of fingers 22 and 23 and a hand body 21 that supports the pair of fingers 22 and 23 so that they can be opened and closed.
  • an orthogonal coordinate system based on the hand 2 is called a hand coordinate system (X1, Y1, Z1).
  • the hand coordinate system (X1, Y1, Z1) defines, for example, the gripping center of the fingers 22 and 23 as the origin, the Z1 axis parallel to the front-rear direction of the hand 2, and the X1 and Y1 axes perpendicular to the Z1 axis.
  • An axis is defined.
  • a motion control unit for example, according to a task program described in the robot coordinate system (X0, Y0, Z0), rotates the rotation joints 12, 14, 16, 17, 18-1, 18-2, 18-3.
  • the trajectory of the reference point (for example, the origin of the hand coordinate system) is calculated to control the rotation of the rotary joints 12, 14, 16, 17, 18-1, 18-2, and 18-3, and to open and close the chuck mechanism 3. , and performs various processes such as converting the position and orientation on the hand coordinate system (X1, Y1, Z1) into expressions on the robot coordinate system (X0, Y0, Z0).
  • the task program describes a work supply procedure, for example, picking up the work W, moving the chuck mechanism 3 to the approach position and setting the attitude to the approach posture, pressing the work W against the chuck surface 34 of the chuck mechanism 3, hand 2, the posture correction of the work W, the chuck closing operation of the chuck mechanism 3, the position correction of the work W, and the separation of the hand 2 from the chuck mechanism 3 are executed in that order.
  • the force sensor 4 detects the external force applied to the hand 2 by separating it into an external force component applied parallel to the X1 axis, an external force component applied parallel to the Y1 axis, and an external force component applied parallel to the Z1 axis.
  • the force sensor 4 may detect torque around each of the X1-axis, Y1-axis, and Z1-axis as the external force applied to the hand 2 .
  • the above-described force sensor 4 does not always need to be located between the mount 20 and the workpiece gripping mechanism 2.
  • the external force component applied parallel to the X1 axis of the hand coordinate system described later, the external force component applied parallel to the Y1 axis, and the external force component applied parallel to the Z1 axis At least one of the rotary joints 12, 14, 16, 17, 18-1, 18-3 of the multi-joint arm mechanism 10 or A plurality of them may be installed, or they may be attached on the base 11 .
  • the force sensor 4 is located at one or a plurality of positions near the force sensors FS1 to FS6 of the rotary joints 12, 14, 16, 17, 18-1, 18-3 of the multi-joint arm mechanism 10. installed in each.
  • the force sensor 4 is mounted on the base 11 in the vicinity of the force sensor FS7 as shown in FIG.
  • the workpiece W can be gripped by closing the fingers 22 and 23 .
  • the workpiece W gripped by the fingers 22 and 23 is moved by the operation of the articulated arm mechanism 10 and supplied to the chuck mechanism 3 of the machine tool 5 .
  • the chuck mechanism 3 is supported by three claw portions 31, 32, and 33 interlocking with the base 30 so as to be able to approach and move away from each other.
  • An orthogonal coordinate system based on the chuck mechanism 3 is called a chuck coordinate system (X2, Y2, Z2).
  • the chuck coordinate system (X2, Y2, Z2) has the origin at the center where the movement center lines of the three claws 31, 32, and 33 intersect, and the Y2 axis is defined perpendicular to the chuck surface 34, and the origin is set with respect to the Y2 axis.
  • X2-axis and Z2-axis are defined so as to be orthogonal to each other.
  • a work coordinate system (Xw, Yw, Zw) with the work W as a reference is defined.
  • the center of the workpiece W is the origin, the center line is the Zw axis, and the Xw axis and the Yw axis are defined so as to be orthogonal to the Zw axis.
  • the workpiece W is cylindrical.
  • the Xw-Yw plane of the work W should be parallel to the X2-Y2 plane of the chuck mechanism 3, that is, the end face of the work W should be aligned with the chuck of the chuck mechanism 3.
  • a posture (approach posture) that is parallel to the surface 34 the Zw axis of the work W is moved to a position (approach position) that overlaps the Z2 axis of the chuck mechanism 3, and the work is moved in parallel with the Z2 axis of the chuck mechanism 3.
  • the hand 2 is brought close to the chuck surface 34 of the chuck mechanism 3 together with W, and the end surface of the work W is pressed against the chuck surface 34 to bring the work W into close contact with the chuck surface 34 . detain.
  • the force sensor 4 moves the Z1 axis perpendicular to the chuck surface 34.
  • An external force component EF (X1) acting parallel to the X1 axis and an external force component EF (Y1) acting parallel to the Y1 axis are detected along with the external force component EF (Z1) acting parallel to the X1 axis.
  • the hand 2 Based on the external force component EF (X1), the hand 2 is rotated around the Y1 axis orthogonal thereto, and based on the external force component EF (Y1), the hand 2 is rotated around the X1 axis orthogonal thereto, thereby obtaining the external force component EF ( X1) can be reduced and also the external force component EF(Y1) can be reduced.
  • the posture of the hand 2 is corrected such that both the external force component EF(X1) and the external force component EF(Y1) are zero or less than a predetermined threshold.
  • the end face of the work W becomes parallel to the chuck surface 34 due to the posture correction.
  • the end surface of the work W is pressed against the chuck surface 34. - ⁇ At this time, the end surface of the work W comes into close contact with the chuck surface 34 .
  • the center line (Zw axis) of the workpiece W deviates from the Z2 axis perpendicular to the chuck surface .
  • the work W is pushed eccentrically by the claws 31, 32, and 33 without being pushed evenly.
  • the force sensor 4 detects an external force component EF(X1) applied parallel to the X1 axis and an external force component EF(Y1) applied parallel to the Y1 axis.
  • the external force component EF (X1) is reduced, and the hand 2 is moved parallel to the Y1 axis based on the external force component EF (Y1).
  • the external force component EF(Z1) can be reduced.
  • the position of the hand 2 is corrected so that both the external force component EF(X1) and the external force component EF(Y1) are zero or less than a predetermined threshold. In this state, chucking is completed in the correct position and posture.
  • the posture is corrected as described above, and then the position is corrected, and the hand position is adjusted based on the posture when chucking is completed (chucking completion posture) and the position when chucking is completed (chucking completion position).
  • the approach position and approach posture are calculated.
  • the approach posture matches the chuck completion posture, and the approach position is parallel to the Z2 axis in the direction away from the chuck surface 34 with respect to the chuck completion position. It is calculated as a position shifted by a predetermined distance.
  • the robot system includes the above-described robot device 1 and a robot control device 6 that controls the robot device 1 .
  • a robot device 1 has an articulated arm mechanism 10 , a hand 2 , a force sensor 4 and a rotary encoder 40 .
  • the rotary encoder 40 individually detects the rotation angles of the rotary joints 12, 14, 16, 17, 18-1, 18-2, 18-3 of the multi-joint arm mechanism 10.
  • FIG. Based on the rotation angles of the rotary joints 12, 14, 16, 17, 18-1, 18-2, and 18-3 detected by the rotary encoder 40, the origin position of the hand coordinate system on the robot coordinate system is calculated by forward kinematics. be able to.
  • position data the rotation angles of the rotary joints 12, 14, 16, 17, 18-1, 18-2, 18-3 detected by the rotary encoder 40 or a set of data representing them will simply be referred to as position data.
  • This position data is supplied to the motion control section 61 that controls the motion of the articulated arm mechanism 10 .
  • the motion control unit 61 moves the hand 2 to a work stocker (not shown), grips the work W with the hand 2 and picks it up from the work stocker, moves the hand 2 to the approach position in the approach posture, and moves the work W to the chuck surface 34 .
  • the hand 2 is moved so as to press against the chuck mechanism 3, the claws 31, 32, and 33 of the chuck mechanism 3 are closed, the workpiece W is released from the hand 2, and the hand 2 is separated from the chuck mechanism 3.
  • Rotational joints 12, 14, 16, 17, 18-1, 18-2, 18-3 are rotated under feedback control using position data and force data in accordance with a task program described together with positions, postures, and trajectories. , and the chuck mechanism 3 is opened and closed.
  • the position data is supplied to the storage unit 65 and is stored with a status code such as completion of chucking supplied from the operation control unit 61 attached thereto.
  • the approach position/orientation calculation unit 64 calculates the approach position and approach orientation of the hand 2 based on the chuck completion orientation and chuck completion position data stored in the storage unit 65 .
  • the force sensor 4 detects an external force applied to the hand 2 for each of three orthogonal axes (X1, Y1, Z1), and stores data ( These are collectively referred to as force data) are output.
  • the force data is supplied to the motion control section 61 , posture correction calculation section 62 and position correction calculation section 63 .
  • the posture correction calculator 62 slightly moves the hand 2 in a direction corresponding to the polarity of the external force component EF(X1) around the Y1 axis orthogonal to the X1 axis so as to reduce the external force component EF(X1) applied parallel to the X1 axis. and the polarity of the external force component EF (Y1) around the X1 axis orthogonal to the Y1 axis so as to reduce the external force component EF (Y1) applied parallel to the Y1 axis.
  • the motion control unit 61 controls the rotary joints 12, 14, 16, 17, 18-1, and 18 that realize the rotation of the hand 2 by ⁇ Y1 and ⁇ X1 while maintaining the origin of the hand coordinate system on the robot coordinate system. -2, 18-3 are calculated, and the rotational joints 12, 14, 14, 18-3 are rotated by the calculated rotational angles. It controls actuators 16, 17, 18-1, 18-2 and 18-3.
  • the rotation of the unit angle ( ⁇ Y1) and the unit angle ( ⁇ X1) is repeated until the external force component EF(X1) and the external force component EF(Y1) become zero values or less than a predetermined threshold.
  • the position correction calculator 63 moves the hand 2 by a minute unit distance ( ⁇ X1 ), and similarly move the hand 2 slightly in a direction parallel to the Y1 axis and in which the external force component EF (Y1) acts parallel to the Y1 axis so as to reduce the external force component EF (Y1) acting parallel to the Y1 axis.
  • Position correction data for moving by a unit distance ( ⁇ Y1) is determined and supplied to the operation control section 61 .
  • the motion control unit 61 controls the rotary joints 12, 14, 16, 17, 18-1, 18-2 that realize the movement of the hand 2 by ⁇ X1 and the movement of ⁇ Y1 so that the hand coordinate system on the robot coordinate system translates.
  • FIG. 4 shows the work supply procedure by the operation control unit 61 .
  • the motion control unit 61 controls the rotary joints 12, 14, 16, 17, 18-1, 18-2, and 18-3 to move the hand 2 to a work stocker (not shown) and grip the work W with the hand 2.
  • S1 a previously taught approach position
  • X00, Y00, Z00 a previously taught approach posture
  • S2 a previously taught approach posture
  • FIG. 5B the hand 2 is moved parallel to the Z2 axis in a direction approaching the chuck surface 34 to press the workpiece W against the chuck surface 34 (S3).
  • force control is performed so that the external force component EF (Z1) applied parallel to the Z1 axis does not exceed the danger threshold so that the workpiece W is not pressed against the chuck surface 34 with an excessively strong force.
  • the motion control unit 61 adjusts the force (pressing force) parallel to the Z2 axis from the external force components EF(Z1), EF(X1), and EF(Y1) to an appropriate threshold value set lower than the danger threshold. to determine whether the pressing force is equal to or greater than the appropriate threshold. Further, the distance (impact distance) D between the position of the hand 2 when the workpiece W collides with the chuck mechanism 3 and the hand 2 stops and the expected position of pressing completion is calculated, and the impingement distance D is determined to be a predetermined value. It is determined whether or not it is within the allowable range (S4).
  • step S6 when the end surface of the workpiece W is not parallel to the chuck surface 34 as illustrated in FIG. A parallel external force component EF(Y1) is detected.
  • the posture correction calculation unit 62 moves the hand 2 in a direction corresponding to the polarity of the external force component EF (X1) around the Y1 axis orthogonal to the X1 axis so as to reduce the external force component EF (X1) applied parallel to the X1 axis.
  • Posture correction data for rotating by a minute unit angle ( ⁇ Y1) is generated and supplied to the motion control section 61 .
  • the motion control unit 61 controls the articulated arm mechanism 10 according to the supplied posture correction data to rotate the hand 2 by a unit angle ( ⁇ Y1) around the Y1 axis.
  • the posture correction calculation unit 62 in order to reduce the external force component EF(Y1) applied parallel to the Y1 axis, the external force component EF(Y1) is rotated in a direction corresponding to the polarity of the external force component EF(Y1) around the X1 axis perpendicular to the Y1 axis.
  • Attitude correction data for rotating the hand 2 by a small unit angle ( ⁇ X1) is generated and supplied to the motion control section 61 .
  • the motion control unit 61 controls the articulated arm mechanism 10 according to the supplied attitude correction data to rotate the hand 2 by a unit angle ( ⁇ X1) around the X1 axis.
  • This posture correction processing is repeated until the external force component EF(X1) and the external force component EF(Y1) become zero or less than a predetermined threshold. As a result, the end face of the work W becomes parallel to the chuck surface 34 as shown in FIG.
  • a control signal for closing the chuck is supplied from the operation control unit 61 to the chuck mechanism 3.
  • the claw portions 31, 32, 33 of the chuck mechanism 3 are interlocked and moved toward the center.
  • the work W is misaligned with respect to the chuck surface 34 , that is, when the center line (Zw axis) of the work W is aligned with the Z2 axis of the chuck mechanism 3 .
  • the work W is not pushed evenly by the claws 31, 32, 33, but is pushed eccentrically.
  • the force sensor 4 detects an external force component EF(X1) applied parallel to the X1 axis and an external force component EF(Y1) applied parallel to the Y1 axis.
  • the position correction calculator 63 moves the hand in a direction parallel to the X1 axis to which the external force component EF(X1) is applied, that is, in a direction to absorb misalignment. 2 by a small unit distance (.DELTA.X1) is generated and supplied to the motion control section 61.
  • FIG. 6B the motion control unit 61 controls the articulated arm mechanism 10 according to the supplied position correction data to move the hand 2 by a unit distance ( ⁇ X1) parallel to the X1 axis.
  • the position correction calculation unit 63 absorbs the direction in which the external force component EF (Y1) is applied parallel to the Y1 axis so as to reduce the external force component EF (Y1) applied parallel to the Y1 axis, that is, the misalignment.
  • Position correction data for moving the hand 2 in the direction by a small unit distance ( ⁇ Y1) is generated and supplied to the motion control section 61 .
  • the motion control unit 61 controls the articulated arm mechanism 10 according to the supplied position correction data to move the hand 2 by a unit distance ( ⁇ Y1) parallel to the Y1 axis. This position correction processing is repeated until the external force component EF(X1) and the external force component EF(Y1) become zero or less than a predetermined threshold value.
  • the operation control unit 61 determines completion of supply of the workpiece W to the chuck mechanism 3 (S10).
  • the chuck status code is supplied from the operation control unit 61 to the storage unit 65 .
  • the position data at that time is attached with a chuck completion status code and stored in the storage unit 65 (S11).
  • the motion control unit 61 controls the hand 2 to release the work W, and controls the articulated arm mechanism 10 to move the work W held by the chuck mechanism 3 away from the work W.
  • the hand 2 is released (S12).
  • step S13 the approach position/orientation calculation unit 64 performs chucking on the robot coordinate system based on the chucking completion position data (joint angle data set) stored in the storage unit 65.
  • a complete position (X01, Y01, Z01) and a chuck complete posture ( ⁇ X01, Y01, Z01) are obtained, and the hand 2 is determined from the chuck complete position (X01, Y01, Z01) and chuck complete posture ( ⁇ X01, Y01, Z01). are calculated and stored in the storage unit 65 .
  • the approach posture for example, the chuck completion posture ( ⁇ X01, Y01, Z01) is maintained. is calculated at a position shifted by a predetermined distance in the direction away from the chuck surface.
  • step S14 it is determined by the operation control unit 61 whether or not the number of supplied works W has reached the planned number. is terminated.
  • the number of supplied works W has not reached the planned number (S14; NOS)
  • the next work W is gripped by the hand 2 (S15).
  • the lot number of the work W is read, and it is determined whether or not the work W has the same lot number as the first work W whose posture and position have been corrected. The same lot number indicates that the works W were manufactured under the same conditions, and there is a high possibility that the outer dimensions, materials, etc. of the works W are relatively uniform.
  • step S13 based on the chuck completion position and chuck completion posture are applied.
  • the hand 2 gripping the workpiece W is moved to the calculated approach position in the approach posture (S17). Then, the process returns to step S3, the hand 2 approaches the chuck surface 34 from that position and posture, and the workpiece W is pressed against the chuck surface 34. As shown in FIG.
  • the posture correction in step S6 and the position correction in step S8 are substantially unnecessary.
  • the time required for correcting the position and posture of the hand 2 after moving to the taught approach posture and the taught approach position is at least shortened compared to the case where the position and posture of the hand 2 are corrected. Therefore, it is possible to shorten the cycle time of workpiece supply. Furthermore, even when position correction and posture correction are performed, the amount of correction is smaller than when the position and posture of the hand 2 are corrected after moving to the taught approach posture and the taught approach position.
  • the external force applied to the work W, the hand 2, the articulated arm mechanism 10, and the chuck mechanism 3 is reduced, and wear and tear of them can be suppressed. Further, the gap between the workpiece W and the chuck surface 34 of the chuck mechanism 3 of the machine tool 5 can be reduced to eliminate the deterioration of machining accuracy.
  • the taught approach posture and the taught approach position are set in advance using the master work W, and the master work W used for teaching is in the center of the tolerance of the work W used in actual mass production.
  • the master work W is not in the center of the tolerance of the work used for mass production, it is necessary to correct the error each time during mass production, and the cycle time will be extended by the correction time.
  • the approach position and approach attitude calculated from the corrected chuck completion position and chuck completion attitude are used as the approach position and approach attitude for the workpiece W manufactured in the same lot.
  • step S16 when the lot number of the workpiece W is different from the lot number of the workpiece W whose position and attitude are corrected, that is, when it is manufactured in a different lot, the workpiece W whose position and attitude are corrected has tolerances and grip deviations. Assuming that there is a high possibility of being different from those of , the process returns to step S2, moves to the taught approach position with the taught approach posture, and performs position correction and posture correction from those positions and postures.
  • the approach posture and approach position are not limited to this, and are based on the chucking completion position and chucking completion posture of the previous work W.
  • a position may be calculated, the approach posture and approach position may be applied to the current workpiece W, and the approach posture and approach position may be calculated and applied repeatedly in this way.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

目的は、ワークの位置や姿勢の補正に要する時間を短縮してワーク供給のサイクルタイムの短縮を図ることにある。ロボットシステムは、工作機械5に対してワークWを供給するためのロボット装置1と、ロボット装置のアーム先端に取り付けられるハンド2と、ハンドにかかる外力を検出するための力覚センサ4と、ロボット装置を制御するロボット制御装置6とを具備する。ロボット制御装置は、力覚センサの出力に基づいて、工作機械に対するハンドの位置と姿勢とを補正するためにロボット装置を制御する動作制御部61と、補正されたハンドの位置と姿勢とに関するデータを記憶する記憶部65とを有する。

Description

ロボットシステム及びワーク供給方法
 本発明は、ロボットシステム及びワーク供給方法に関する。
 工作機械が装備するチャック機構に、加工対象であるワークをロボット装置により供給することが多い。チャック機構へロボット装置がワークを供給する際、ロボット装置は事前に教示された姿勢で、教示された位置まで移動し、チャック面に対してワークを突き当てて、チャック完了を待機する。
 しかし、ワーク外形の公差により、ワークが大きければ工作機械のチャック面とハンドが把持するワーク間で過大な外力が働き、ワークが小さければチャック面とワークとの間に隙間が生じてしまう。また、ハンドが把持したワークの中心線がチャックの中心線に対して一致していない場合にはチャックを閉じた際にワークを把持しているハンドが押さえつけられ、ロボット装置のアームのリンク及び回転関節、ハンド、さらにチャック機構に過大な外力が生じる。それにより、ロボット装置のリンク及び回転関節、ロボットハンド、工作機械のチャック機構が損傷するおそれがある。また、チャック面とワークの間に隙間があると加工の際にワークが振動し、高精度な加工が行えないという問題も生じる。
 そのためロボットのハンドが把持したワークをカメラで撮像し、チャック面に対するワークの姿勢を補正する方法が存在する。しかし、この補正方法では、ワークが鋳物である等の理由により、検出されたワークが真円でない場合に、チャックの中心線とワークの中心線とが一致しない可能性が考えられる。また、ワークの把持位置からチャックへの突き当て面までの距離やワークの底面の傾きはカメラでは正確に検出出来ないためチャック面とワークの間に過大な外力や隙間が生じる可能性がある。
 また、ロボット機構部のモータの電流値を監視し、電流値から検出した外乱値に基づいてロボットの姿勢を補正する方法が存在する。しかし、この補正方法ではワークの外力をモータの電流値で検出した場合には多少の誤差が含まれるので、完全にハンドとチャックの間の力を最小限に抑えるのは難しい。また、ロボットの姿勢によってモータの電流値の検出しやすさが変化するので、決まった姿勢でしかワークの保持が行えなくなる欠点も存在する。
 一般的に、教示されたアプローチ位置や姿勢にワークをセットした後にワークを工作機械のチャック機構に接近させるが、その際に上述のチャック面に対するワークの位置や姿勢の調整が必要とされるので、調整時間に応じてサイクルタイムが長期化してしまう。
 ワークの位置や姿勢の補正に要する時間を短縮してワーク供給のサイクルタイムの短縮を図ることが望まれている。
 さらに、ハンドによるワークの把持ズレ及びワーク外形の公差によりハンド等が受ける外力を小さくし、工作機械のチャック面に対するワークの隙間を低減して両者の密接性を向上ことが望まれている。
 本開示の一態様に係るロボットシステムは、工作機械に対してワークを供給するためのロボット装置と、ロボット装置のアーム先端に取り付けられるワーク把持機構と、ワーク把持機構にかかる外力を検出するための力覚センサと、ロボット装置を制御する制御装置とを具備する。制御装置は、力覚センサの出力に基づいて、工作機械に対するワーク把持機構の位置と姿勢とを補正するためにロボット装置を制御する制御部と、補正されたワーク把持機構の位置と姿勢とに関するデータを記憶する記憶部とを有する。
 本態様によれば、補正されたワーク把持機構の位置と姿勢とに関するデータを記憶するので、この記憶された位置と姿勢とを再現できるので、位置と姿勢との補正にかかる時間を短縮してサイクルタイムの短縮を図ることができる。
図1は一実施形態に係るロボットシステムのロボット装置の斜視図である。 図2は図1のハンドをワーク及び工作機械のチャック機構とともに示す図である。 図3は一実施形態に係るロボットシステムの機構ブロック図である。 図4は図1の動作制御部の制御によるワーク供給手順を示す流れ図である。 図5は図4の工程S2-S4の補足説明図である。 図6は図4の工程S6-S12の補足説明図である。 図7は図4の工程S13の補足説明図である。 図8は本実施形態の変形例として力覚センサを関節に設置したロボット装置の斜視図である。 図9は本実施形態の変形例として力覚センサを基台に設置したロボット装置の斜視図である。
 以下、図面を参照しながら本開示の実施形態を説明する。以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。
 図1に示すように、本実施形態に係るロボットシステムを構成するロボット装置1は、多関節アーム機構10を有する。多関節アーム機構10は、例えば6軸の自由度を有する垂直多関節型により提供され、基台11に旋回用の回転関節12が設置される。この回転関節12には、回転関節14と、リンク13と、回転関節16と、リンク15と、回転関節17と、直交3軸の回転関節18-1,18-2,18-3から構成される手首部18とが順次接続される。多関節アーム機構10としては垂直多関節型に限定されることはなく、極座標型やスカラ型の他の型の回転関節機構であってもよい。基台11を基準とした座標系をロボット座標系(X0,Y0,Z0)と称する。
 手首部18にはマウント20が取り付けられる。マウント20には、力覚センサ4を介してエンドエフェクタとしてのワーク把持機構(以下、ハンドと称する)2が取り付けられる。
 ハンド2は、一対のフィンガ22、23と、一対のフィンガ22、23を連動して開閉自在に支持するハンド本体21とを有する。ここで、ハンド2を基準とした直交座標系をハンド座標系(X1,Y1,Z1)と称する。ハンド座標系(X1,Y1,Z1)は例えばフィンガ22、23の把持中心をその原点として、ハンド2の前後方向と平行にZ1軸が規定され、Z1軸に直交する2軸にX1軸,Y1軸が規定される。
 後述の動作制御部は例えばロボット座標系(X0,Y0,Z0)で記述されたタスクプログラムに従って回転関節12,14,16,17,18―1,18-2,18-3の変位角度及び手先基準点(例えばハンド座標系の原点)の軌道を計算して回転関節12,14,16,17,18―1,18-2,18-3の回転を制御し、またチャック機構3のチャック開閉を制御するとともに、ハンド座標系(X1,Y1,Z1)上での位置や姿勢をロボット座標系(X0,Y0,Z0)上での表現に変換する等の各種処理を実行する。タスクプログラムにはワーク供給手順が記述され、例えばワークWのピックアップ、チャック機構3へのアプローチ位置への移動及びアプローチ姿勢への姿勢設定、チャック機構3のチャック面34へのワークWの押し付け、ハンド2と共にワークWの姿勢補正、チャック機構3のチャック閉動作、ワークWの位置補正、チャック機構3からハンド2の離脱の各動作がその順番で実行される。
 力覚センサ4は、ハンド2にかかる外力を、X1軸に平行にかかる外力成分、Y1軸に平行にかかる外力成分、Z1軸に平行にかかる外力成分に分離して検出する。力覚センサ4は、ハンド2にかかる外力としてX1軸、Y1軸、Z1軸の各軸周りのトルクを検出するものであってもよい。
 上述の力覚センサ4は必ずマウント20とワーク把持機構2の間にある必要はなく、後述のハンド座標系のX1軸に平行にかかる外力成分、Y1軸に平行にかかる外力成分、Z1軸に平行にかかる外力成分を直接的または座標変換処理を介して間接的に取得できる限りにおいて、多関節アーム機構10の回転関節12,14,16,17,18-1,18-3の少なくとも一若しくは複数に設置してもよく、または基台11上に取り付けていてもよい。例えば力覚センサ4は図8に示すように多関節アーム機構10の回転関節12,14,16,17,18-1,18-3のフォースセンサFS1-FS6の近傍位置の一箇所もしくは複数個所各々に設置される。また、力覚センサ4は図9に示すように基台11上のフォースセンサFS7の近傍位置に取り付けられる。
 図2(a)、図2(b)、図2(c)に示すように、フィンガ22、23を閉じることによりワークWを把持することができる。フィンガ22、23で把持したワークWは多関節アーム機構10の動作により移動され、工作機械5のチャック機構3に供給される。チャック機構3は3つの爪部31、32、33がベース30に連動して接近・離反自在に支持される。チャック機構3を基準とした直交座標系をチャック座標系(X2,Y2,Z2)と称する。チャック座標系(X2,Y2,Z2)は3つの爪部31、32、33の移動中心線が交差する中心を原点として、Y2軸がチャック面34に垂直に既定され、Y2軸に対して原点において直交するようにX2軸,Z2軸が既定される。説明の便宜上、ワークWを基準としたワーク座標系(Xw,Yw,Zw)が既定される。例えばワークWが円柱形であれば、ワークWの中心を原点、中心線をZw軸として、Zw軸に直交するようにXw軸,Yw軸が既定される。ここでは説明の便宜上ワークWは円柱形であると仮定する。
 ワークWを工作機械5のチャック機構3に供給するに際して、理想的には、ワークWのXw-Yw面がチャック機構3のX2-Y2面に平行、つまりワークWの端面がチャック機構3のチャック面34に平行になる姿勢(アプロ―チ姿勢)で、ワークWのZw軸がチャック機構3のZ2軸に重なった位置(アプローチ位置)に移動し、そのままチャック機構3のZ2軸と平行にワークWとともにハンド2をチャック機構3のチャック面34に接近させ、ワークWの端面をチャック面34に押し付けて密接させた状態で、爪部31,32,33を閉じてワークWをチャック機構3で拘止する。
 ワークWの端面をチャック面34に押し付けた際、ワークWのXw-Yw面がチャック機構3のX2-Y2面に平行でなかったとき、力覚センサ4によりチャック面34に垂直なZ1軸に平行にかかる外力成分EF(Z1)とともに、X1軸に平行にかかる外力成分EF(X1)とY1軸に平行にかかる外力成分EF(Y1)とが検出される。外力成分EF(X1)に基づいてそれに直交するY1軸回りにハンド2を回転させ、外力成分EF(Y1)に基づいてそれに直交するX1軸回りにハンド2を回転させることにより、外力成分EF(X1)を減少させ、また外力成分EF(Y1)を減少させることができる。典型的には外力成分EF(X1)と外力成分EF(Y1)とが共にゼロ値又は所定の閾値未満になるように、ハンド2の姿勢を補正する。
 姿勢補正によりワークWの端面がチャック面34に平行な状態になる。その状態でワークWの端面をチャック面34に押し付ける。このときワークWの端面は、チャック面34に密接する。そしてチャック機構3の爪部31,32,33を中心に向かって連動移動(チャック動作)させた際、ワークWの中心線(Zw軸)がチャック面34に垂直なZ2軸に対してずれていたとき、ワークWは爪部31,32,33により均等に押されること無く偏心して押される。従って力覚センサ4によりX1軸に平行にかかる外力成分EF(X1)とY1軸に平行にかかる外力成分EF(Y1)とが検出される。外力成分EF(X1)に基づいてハンド2をX1軸と平行に移動させることで外力成分EF(X1)を減少させ、外力成分EF(Y1)に基づいてハンド2をY1軸と平行に移動させることで外力成分EF(Z1)を減少させることができる。典型的には外力成分EF(X1)と外力成分EF(Y1)とが共にゼロ値又は所定の閾値未満になるように、ハンド2の位置を補正する。この状態で正しい位置及び姿勢でチャックが完了する。
 本実施形態では、上述のように姿勢補正し、そして位置補正して、チャックが完了した時の姿勢(チャック完了姿勢)と、チャックが完了した時の位置(チャック完了位置)とに基づいてハンド2のアプローチ位置、アプローチ姿勢を計算する。直線的にワークWをチャック面34に接近可能な簡易的なケースでは、アプローチ姿勢はチャック完了姿勢に一致し、アプローチ位置はチャック完了位置に対してZ2軸に平行にチャック面34から離れる方向に所定距離だけシフトさせた位置として計算される。
 当該ワークWに対して次に供給されるべきワークW、さらにそれ以降のワークWに対してチャック完了姿勢に基づいて求めたアプローチ姿勢で、チャック完了位置に基づいて求めたアプローチ位置に移動し、ワークWをチャック面に押し付けることにより、ハンド2の位置及び姿勢の補正が不要になり、又は教示されたアプローチ姿勢、教示されたアプローチ位置に移動した後にハンド2の位置及び姿勢を補正する場合よりもそれら補正に要する時間を少なくとも短縮することができる。したがって、ワーク供給のサイクルタイムの短縮を図ることができるようになる。さらにワークW、ハンド2、多関節アーム機構10、さらにチャック機構3に加わる外力を小さくすることができ、また工作機械5のチャック面34に対するワークWの隙間を低減することができる。
 図3に示すように、本実施形態に係るロボットシステムは、上述のロボット装置1と、ロボット装置1を制御するロボット制御装置6とからなる。ロボット装置1は、多関節アーム機構10、ハンド2、力覚センサ4及びロータリエンコーダ40を有する。ロータリエンコーダ40は、多関節アーム機構10の回転関節12,14,16,17,18―1,18-2,18-3の回転角を個別に検出する。ロータリエンコーダ40で検出した回転関節12,14,16,17,18―1,18-2,18-3の回転角から順運動学によりロボット座標系上でのハンド座標系の原点位置を計算することができる。ここでは説明の便宜上、ロータリエンコーダ40で検出した回転関節12,14,16,17,18―1,18-2,18-3の回転角又はそれを表すデータのセットを単に位置データと称する。この位置データは、多関節アーム機構10の動作を制御する動作制御部61に供給される。
 動作制御部61は、図示しないワークストッカにハンド2を移動し、ワークWをハンド2で把持してワークストッカからピックアップし、ハンド2をアプローチ位置にアプローチ姿勢で移動し、ワークWをチャック面34に押し付けるようにハンド2を移動し、さらにチャック機構3の爪部31,32,33を閉じ、そしてハンド2からワークWをリリースし、ハンド2をチャック機構3から離脱するまでの一連の動作が位置、姿勢、軌道とともに記述されたタスクプログラムに従って位置データ及び力データを用いたフィードバック制御のもとで回転関節12,14,16,17,18―1,18-2,18-3を回転させ、またチャック機構3を開閉させる。
 また位置データは記憶部65に供給され、動作制御部61から供給されるチャック完了等のステータスコードを付帯され、記憶される。アプローチ位置姿勢計算部64は、記憶部65に記憶されたチャック完了姿勢とチャック完了位置のデータとに基づいてハンド2のアプローチ位置とアプローチ姿勢とを計算する。
 力覚センサ4はハンド2にかかる外力を直交3軸(X1、Y1、Z1)の各軸ごとに検出し、その外力成分EF(X1)、EF(Y1)、EF(Z1)を表すデータ(これらを力データと総称する)を出力する。力データは動作制御部61,姿勢補正計算部62、位置補正計算部63に供給される。
 姿勢補正計算部62は、X1軸に平行にかかる外力成分EF(X1)を減少させるようにX1軸に直交するY1軸回りに外力成分EF(X1)の極性に応じた方向にハンド2を微小な単位角度(ΔθY1)だけ回転させる姿勢補正データと、同様にY1軸に平行にかかる外力成分EF(Y1)を減少させるようにY1軸に直交するX1軸回りに外力成分EF(Y1)の極性に応じた方向にハンド2を微小な単位角度(ΔθX1)だけ回転させる姿勢補正データとを決定し、動作制御部61に供給する。動作制御部61は、ロボット座標系上でのハンド座標系の原点を維持した状態でハンド2のΔθY1の回転及びΔθX1の回転を実現させる回転関節12,14,16,17,18―1,18-2,18-3の回転角を計算し、計算した回転角だけ回転関節12,14,16,17,18―1,18-2,18-3が回転するように回転関節12,14,16,17,18―1,18-2,18-3各々のアクチュエータを制御する。外力成分EF(X1)及び外力成分EF(Y1)がゼロ値又は所定の閾値未満になるまで単位角度(ΔθY1)及び単位角度(ΔθX1)の回転が繰り返される。
 位置補正計算部63は、X1軸に平行にかかる外力成分EF(X1)を減少させるようにX1軸に平行であって外力成分EF(X1)がかかる方向にハンド2を微小な単位距離(ΔX1)だけ移動させる位置補正データと、同様にY1軸に平行にかかる外力成分EF(Y1)を減少させるようにY1軸に平行であって外力成分EF(Y1)がかかる方向にハンド2を微小な単位距離(ΔY1)だけ移動させる位置補正データとを決定し、動作制御部61に供給する。動作制御部61は、ロボット座標系上でのハンド座標系が並進するようにハンド2をΔX1の移動とΔY1の移動を実現させる回転関節12,14,16,17,18―1,18-2,18-3の回転角を計算し、計算した回転角だけ回転関節12,14,16,17,18―1,18-2,18-3が回転するように回転関節12,14,16,17,18,19各々のアクチュエータを制御する。外力成分EF(X1)及び外力成分EF(Y1)がゼロ値又は所定の閾値未満になるまで単位距離(ΔX1)及び単位距離(ΔY1)の移動が繰り返される。
 図4には動作制御部61によるワーク供給の手順が示されている。動作制御部61は、回転関節12,14,16,17,18―1,18-2,18-3を制御して図示しないワークストッカにハンド2を移動し、ハンド2でワークWを把持する(S1)。図5(a)示すようにハンド2を予め教示されたアプローチ位置(X00,Y00,Z00)に、予め教示されたアプローチ姿勢(θX00,θY00,θZ00)で移動する(S2)。図5(b)示すようにハンド2をZ2軸と平行にチャック面34に接近する方向に移動し、ワークWをチャック面34に押し付ける(S3)。このときワークWがチャック面34に過度に強い力で押し付けられることのないように、Z1軸に平行にかかる外力成分EF(Z1)が危険閾値を超えないように力制御が実施される。
 この押し付けに際して、動作制御部61は、外力成分EF(Z1)、EF(X1)、EF(Y1)からZ2軸と平行な力(押し付け力)を、上記危険閾値よりも低く設定される適正閾値と比較し、押し付け力が適正閾値以上であるか否かを判定する。またワークWがチャック機構3に衝突してハンド2が停止したときのハンド2の位置と押し付け完了の予定位置との間の距離(突き当て距離)Dを計算して突き当て距離Dが所定の許容範囲内であるか否かを判定する(S4)。押し付け力が適正閾値に達しないとき、ハンド2によるワークWの把持角度が予定角度に比して過大である事態やワークWの形状寸法等の交差が過大である事態等が想定される。また突き当て距離Dが所定の許容範囲DAから外れているとき、図5(c)に例示するようにハンド2によるワークWの把持位置が予定位置や角度に比して過大である事態やワークWの形状寸法等の交差が過大である事態が想定される。押し付け力が適正閾値に達しない、突き当て距離Dが許容範囲DAから外れている、のいずれか一方又は両方が判定されたとき(S4;NO)、動作制御部61の制御により図示しないディスプレイにワークWがNGである等のエラーメッセージを表示し(S5)、当該動作を一旦終了して、ユーザからの再稼働の指示を待機する。押し付け力が適正閾値以上であり、且つ突き当て距離Dが許容範囲DA内であるとき(S4;YES)、次の工程S6に移行する。
 工程S6において、図5(b)に例示したようにワークWの端面がチャック面34に平行でなかったとき、力覚センサ4によりX1軸に平行にかかる外力成分EF(X1)とY1軸に平行にかかる外力成分EF(Y1)とが検出される。姿勢補正計算部62では、X1軸に平行にかかる外力成分EF(X1)を減少させるように、X1軸に直交するY1軸回りに外力成分EF(X1)の極性に応じた方向にハンド2を微小な単位角度(ΔθY1)だけ回転させる姿勢補正データを発生して、動作制御部61に供給する。動作制御部61は供給された姿勢補正データに従って多関節アーム機構10を制御してハンド2をY1軸回りに単位角度(ΔθY1)だけ回転させる。同様に、姿勢補正計算部62では、Y1軸に平行にかかる外力成分EF(Y1)を減少させるように、Y1軸に直交するX1軸回りに外力成分EF(Y1)の極性に応じた方向にハンド2を微小な単位角度(ΔθX1)だけ回転させる姿勢補正データを発生して、動作制御部61に供給する。動作制御部61は供給された姿勢補正データに従って多関節アーム機構10を制御してハンド2をX1軸回りに単位角度(ΔθX1)だけ回転させる。この姿勢補正の処理は、外力成分EF(X1)及び外力成分EF(Y1)がゼロ値又は所定の閾値未満になるまで繰り返される。それにより図6(a)に示すようにワークWの端面がチャック面34に平行になり、ワークWの端面がチャック面34に密接する。
 次の工程S7において、動作制御部61からチャック機構3へチャック閉の制御信号が供給される。それによりチャック機構3の爪部31,32,33が連動して中心に向かって移動する。このとき、図6(a)に示すように、チャック面34に対してワークWが芯ズレを生じているとき、つまりワークWの中心線(Zw軸)がチャック機構3のZ2軸に対してずれていたとき、ワークWは爪部31,32,33により均等に押されず、偏心して押される。それにより力覚センサ4によりX1軸に平行にかかる外力成分EF(X1)とY1軸に平行にかかる外力成分EF(Y1)とが検出される。位置補正計算部63では、X1軸に平行にかかる外力成分EF(X1)を減少させるようにX1軸に平行であって外力成分EF(X1)がかかる方向、つまり芯ズレを吸収する方向にハンド2を微小な単位距離(ΔX1)だけ移動させる位置補正データを発生して、動作制御部61に供給する。図6(b)に示すように、動作制御部61は供給された位置補正データに従って多関節アーム機構10を制御してハンド2をX1軸と平行に単位距離(ΔX1)だけ移動させる。同様に、位置補正計算部63では、Y1軸に平行にかかる外力成分EF(Y1)を減少させるようにY1軸に平行であって外力成分EF(Y1)がかかる方向、つまり芯ズレを吸収する方向にハンド2を微小な単位距離(ΔY1)だけ移動させる位置補正データを発生して、動作制御部61に供給する。動作制御部61は供給された位置補正データに従って多関節アーム機構10を制御してハンド2をY1軸と平行に単位距離(ΔY1)だけ移動させる。この位置補正の処理は、外力成分EF(X1)及び外力成分EF(Y1)がゼロ値又は所定の閾値未満になるまで繰り返される。それにより図6(b)に示すようにワークWの中心線(Zw)がチャック機構3のZ2軸に一致する。このように芯ズレが吸収され、チャック機構3からチャック閉端の検出信号を受信したとき(S9)、動作制御部61はワークWのチャック機構3への供給の完了を判定する(S10)。
 ワークWのチャック機構3への供給が完了したとき、動作制御部61から記憶部65にチャックのステータスコードが供給される。その時の位置データはチャック完了のステータスコードを付帯され、記憶部65に記憶される(S11)。図6(c)に示すように、動作制御部61はハンド2を制御して、ワークWを開放させるとともに、多関節アーム機構10を制御して、チャック機構3に拘止されたワークWからハンド2を離脱させる(S12)。
 次に、工程S13において、図7に示すように、アプローチ位置姿勢計算部64により、記憶部65に記憶されたチャック完了時の位置データ(関節角度データセット)に基づいてロボット座標系上のチャック完了位置(X01,Y01,Z01)とチャック完了姿勢(θX01,Y01,Z01)とが求められ、チャック完了位置(X01,Y01,Z01)とチャック完了姿勢(θX01,Y01,Z01)とからハンド2のアプローチ位置とアプローチ姿勢とが計算され、記憶部65に記憶される。アプローチ姿勢としては例えばチャック完了姿勢(θX01,Y01,Z01)が維持される、また、アプローチ位置としては、例えばチャック完了位置(X01,Y01,Z01)を、チャック面34に垂直なZ2軸と平行にチャック面から離反する方向に所定距離だけシフトさせた位置に計算される。
 工程S14において、動作制御部61によりワークWの供給数が予定数に達しているか否か判定され、ワークWの供給数が予定数に達していればタスク完了として(S14;YES)、当該処理が終了される。ワークWの供給数が予定数に達していないとき(S14;NOS)、次のワークWをハンド2で把持する(S15)。例えばワークWのロット番号を読み取り、当該ワークWが、姿勢補正や位置補正をされた最初のワークWと同じロット番号であるか否かが判定される。同じロット番号はそれらワークWが同じ条件で製造されたものであることを表しており、ワークWの外形寸法や素材等が比較的均一である可能性が高い。
 当該次のワークWが、姿勢補正や位置補正をされた最初のワークWと同じロット番号であるとき(S16;YES)、教示されたアプローチ位置及びアプローチ姿勢に代えて、位置補正及び姿勢補正されたチャック完了位置及びチャック完了姿勢に基づいて工程S13で計算されたアプローチ位置及びアプローチ姿勢が適用される。ワークWを把持したハンド2は、当該計算されたアプローチ位置にアプローチ姿勢で移動される(S17)。そして工程S3にリターンして、その位置及び姿勢からハンド2がチャック面34に接近し、ワークWがチャック面34に押し付けられる。
 当該次のワークWは位置補正及び姿勢補正されたワークWと同じロットであるので、外形寸法の交差は比較的近似しており、またストッカには同じ状態で整然と並んでいて把持ズレも近似していることが多いので、工程S6の姿勢補正や工程S8の位置補正が実質的に不要になる。または、教示されたアプローチ姿勢、教示されたアプローチ位置に移動した後にハンド2の位置及び姿勢を補正する場合よりもそれら補正に要する時間が少なくとも短縮される。従ってワーク供給のサイクルタイムの短縮を図ることができる。さらに位置補正及び姿勢補正が行われた場合であっても、教示されたアプローチ姿勢、教示されたアプローチ位置に移動した後にハンド2の位置及び姿勢を補正するよりも、補正量は小さくなる。それにより、ワークW、ハンド2、多関節アーム機構10、さらにチャック機構3に加わる外力が小さくなり、それらの消耗を抑えることができる。また、工作機械5のチャック機構3のチャック面34に対するワークWの隙間を低減して加工精度の低下を解消することができる。
 つまり、教示されたアプローチ姿勢、教示されたアプローチ位置はマスターのワークWを用いて予め設定されており、教示に用いたマスターのワークWが実際の量産に用いられるワークWの公差の中央にいる保証はなく、マスターのワークWが量産に用いられるワークの公差の中央になかった場合は、量産時にその誤差をその都度補正する必要があり、その補正時間分だけサイクルタイムが延びてしまう。しかしワークWで位置補正及び姿勢補正した以降は、それと同じロットで製造されたワークWに対してはアプローチ位置及びアプローチ姿勢として、当該補正したチャック完了位置及びチャック完了姿勢から計算したアプローチ位置及びアプローチ姿勢を適用することにより、補正時間の短縮を図ることができる。
 工程S16において、当該ワークWのロット番号が、位置補正及び姿勢補正したワークWのロット番号と異なるとき、つまり別ロットで製造されているとき、公差や把持ズレが位置補正及び姿勢補正したワークWに対するそれらと相違する可能性が高いものとして、工程S2にリターンし、教示されたアプローチ姿勢で、教示されたアプローチ位置に移動し、それら位置及び姿勢からの位置補正及び姿勢補正を実行する。
 同一ロットのワークWに対しては同じアプローチ姿勢及びアプローチ位置を適用するものとしたが、それに限定されることはなく、直前のワークWのチャック完了位置及びチャック完了姿勢に基づいてアプローチ姿勢及びアプローチ位置を計算し、当該アプローチ姿勢及びアプローチ位置を今回のワークWに適用し、このように繰り返しアプローチ姿勢及びアプローチ位置を計算し適用するものであってもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1…ロボット装置、2…ハンド、3…チャック機構、4…力覚センサ、5…工作機械、6…ロボット制御装置、10…多関節アーム機構、12,14,16,17,18―1,18-2,18-3…回転関節、18…手首部、61…動作制御部、62…姿勢補正計算部、63…位置補正計算部、64…アプローチ位置姿勢計算部、65…記憶部。

Claims (6)

  1.  工作機械に対してワークを供給するためのロボット装置と、
     前記ロボット装置のアーム先端に取り付けられるワーク把持機構と、
     前記ワーク把持機構にかかる外力を検出するための力覚センサと、
     前記ロボット装置を制御する制御装置と、を具備し、
     前記制御装置は、
      前記力覚センサの出力に基づいて、前記工作機械に対する前記ワーク把持機構の位置と姿勢とを補正するために前記ロボット装置を制御する制御部と、
      前記補正された前記ワーク把持機構の位置と姿勢とに関するデータを記憶する記憶部とを有する、ロボットシステム。
  2.  前記制御装置は、前記記憶された前記ワーク把持機構の位置と姿勢とに関するデータに基づいて前記工作機械に対する前記ワーク把持機構のアプローチ位置とアプローチ姿勢とを計算するアプローチ位置姿勢計算部をさらに有し、
     前記記憶部は、前記計算されたアプローチ位置とアプローチ姿勢とに関するデータを記憶する、請求項1記載のロボットシステム。
  3.  前記制御部は、前記記憶されたアプローチ位置とアプローチ姿勢とを、前記ワークに続く他のワークに対して適用するために前記ロボット装置を制御する、請求項2記載のロボットシステム。
  4.  前記制御部は、前記力覚センサの出力に基づいて前記ロボット装置を制御し、前記工作機械のチャック機構のチャック面の垂直中心線に平行に前記ワーク把持機構を移動し前記チャック面に前記ワークを所定の力で押し付けながら前記垂直中心線に直交する方向にかかる力を減少するように前記ワーク把持機構の姿勢を補正するとともに、前記チャック機構の閉動作に伴って前記垂直中心線に直交する方向にかかる力を減少するように前記垂直中心線に直交する方向に沿って前記ワーク把持機構の位置を補正する、請求項1乃至3のいずれか一項記載のロボットシステム。
  5.  ロボット装置と、前記ロボット装置のアーム先端に取り付けられるワーク把持機構と、前記ワーク把持機構にかかる外力を検出するための力覚センサと、前記ロボット装置を制御する制御装置とを有するロボットシステムにより工作機械に対してワークを供給するためのワーク供給方法において、
     前記制御装置が前記力覚センサの出力に基づいて前記ロボット装置を制御して、前記工作機械のチャック機構のチャック面の垂直中心線に平行に前記ワーク把持機構を移動し前記チャック面に前記ワークを所定の力で押し付ける工程と、
     前記制御装置が前記力覚センサの出力に基づいて前記ロボット装置を制御して、前記チャック面に前記ワークを押し付けながら前記垂直中心線に直交する方向にかかる力を減少するように前記ワーク把持機構の姿勢を補正する工程と、
     前記制御装置が前記力覚センサの出力に基づいて前記ロボット装置を制御して、前記チャック機構の閉動作に伴って前記垂直中心線に直交する方向にかかる力を減少するように前記垂直中心線に直交する方向に沿って前記ワーク把持機構の位置を補正する工程とを備えた、ワーク供給方法。
  6.  前記制御装置が前記補正された前記ワーク把持機構の位置と姿勢とに基づいて前記工作機械に対する前記ワーク把持機構のアプローチ位置とアプローチ姿勢とを計算する工程と、
     前記制御装置が前記ロボット装置を制御して、前記計算されたアプローチ位置とアプローチ姿勢とを前記ワークに続く他のワークに対して適用する工程とをさらに備える、請求項5記載のワーク供給方法。
PCT/JP2022/004451 2021-02-12 2022-02-04 ロボットシステム及びワーク供給方法 WO2022172873A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280012380.3A CN116940451A (zh) 2021-02-12 2022-02-04 机器人系统以及工件供给方法
DE112022000313.8T DE112022000313T5 (de) 2021-02-12 2022-02-04 Robotersystem und Werkstückzuführungsverfahren
JP2022580607A JPWO2022172873A1 (ja) 2021-02-12 2022-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021020699 2021-02-12
JP2021-020699 2021-02-12

Publications (1)

Publication Number Publication Date
WO2022172873A1 true WO2022172873A1 (ja) 2022-08-18

Family

ID=82837565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004451 WO2022172873A1 (ja) 2021-02-12 2022-02-04 ロボットシステム及びワーク供給方法

Country Status (5)

Country Link
JP (1) JPWO2022172873A1 (ja)
CN (1) CN116940451A (ja)
DE (1) DE112022000313T5 (ja)
TW (1) TW202231424A (ja)
WO (1) WO2022172873A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116175256A (zh) * 2023-04-04 2023-05-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法
JP7436750B1 (ja) 2022-10-20 2024-02-22 ファナック株式会社 ロボットの制御装置、制御方法及びシステム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084838A (ja) * 2014-10-23 2016-05-19 ファナック株式会社 除振装置及びロボットを搭載した位置決め装置
JP2016168651A (ja) * 2015-03-13 2016-09-23 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム及び記録媒体
JP2019136860A (ja) * 2018-02-13 2019-08-22 キヤノン株式会社 ロボットの制御装置、制御方法、ロボットシステム、プログラム及び記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084838A (ja) * 2014-10-23 2016-05-19 ファナック株式会社 除振装置及びロボットを搭載した位置決め装置
JP2016168651A (ja) * 2015-03-13 2016-09-23 キヤノン株式会社 ロボット制御方法、ロボット装置、プログラム及び記録媒体
JP2019136860A (ja) * 2018-02-13 2019-08-22 キヤノン株式会社 ロボットの制御装置、制御方法、ロボットシステム、プログラム及び記録媒体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436750B1 (ja) 2022-10-20 2024-02-22 ファナック株式会社 ロボットの制御装置、制御方法及びシステム
WO2024084665A1 (ja) * 2022-10-20 2024-04-25 ファナック株式会社 ロボットの制御装置、制御方法及びシステム
CN116175256A (zh) * 2023-04-04 2023-05-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法
CN116175256B (zh) * 2023-04-04 2024-04-30 杭州纳志机器人科技有限公司 一种推车式机器人上下料自动定位方法

Also Published As

Publication number Publication date
CN116940451A (zh) 2023-10-24
DE112022000313T5 (de) 2023-10-12
TW202231424A (zh) 2022-08-16
JPWO2022172873A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2022172873A1 (ja) ロボットシステム及びワーク供給方法
JP6484213B2 (ja) 複数のロボットを含むロボットシステム、ロボット制御装置、及びロボット制御方法
JP5765355B2 (ja) ロボットピッキングシステム及び被加工物の製造方法
JP6351293B2 (ja) ロボットシステム、および物品の製造方法
US20190275678A1 (en) Robot control device, robot, robot system, and robot control method
JP6153316B2 (ja) ロボットシステム及びロボットシステムの制御方法
JP7204354B2 (ja) ロボットシステム、ロボットシステムの制御方法、ロボットシステムを用いた物品の製造方法、プログラム及び記録媒体
JPH08505091A (ja) 冗長軸を使用して対象物上の形態をトラッキングするためのシステム並びに方法
JP4287788B2 (ja) 自走式ロボットハンド
US10328582B2 (en) Process system including robot that transfers workpiece to process machine
JP2015000455A (ja) ロボット装置及びロボット装置の制御方法
JPS6358505A (ja) ロボツト制御装置
WO2018066601A1 (ja) ロボットシステム及びその運転方法
JPH05261682A (ja) 産業用ロボットのキャリブレーション方式
JP6366665B2 (ja) ロボット装置、組立装置、把持ハンド、および物品の製造方法
US11878423B2 (en) Robot system
JP2008254097A (ja) 複数ロボット間の相対位置計算方法
JP2002036155A (ja) ロボットのエンドエフェクタ
JP2017127932A (ja) ロボット装置、ロボット制御方法、部品の製造方法、プログラム及び記録媒体
JP2019089144A (ja) 倣い加工装置
JP2014104528A (ja) ロボットシステム及びロボットシステムの制御方法
JP2000006069A (ja) ロボットの制御方法
JPH06297364A (ja) 位置合せ装置
JP2015221490A (ja) ロボット装置の制御方法及びロボット装置
US20230286146A1 (en) Control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022580607

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022000313

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202280012380.3

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22752697

Country of ref document: EP

Kind code of ref document: A1