WO2022172688A1 - 可視光応答型多孔質光触媒体、その製造方法及び用途 - Google Patents

可視光応答型多孔質光触媒体、その製造方法及び用途 Download PDF

Info

Publication number
WO2022172688A1
WO2022172688A1 PCT/JP2022/001155 JP2022001155W WO2022172688A1 WO 2022172688 A1 WO2022172688 A1 WO 2022172688A1 JP 2022001155 W JP2022001155 W JP 2022001155W WO 2022172688 A1 WO2022172688 A1 WO 2022172688A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous photocatalyst
light
water
porous
iron
Prior art date
Application number
PCT/JP2022/001155
Other languages
English (en)
French (fr)
Inventor
森川クラウジオ健治
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2022581269A priority Critical patent/JPWO2022172688A1/ja
Publication of WO2022172688A1 publication Critical patent/WO2022172688A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/10Culture of aquatic animals of fish
    • A01K61/13Prevention or treatment of fish diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation

Definitions

  • the present disclosure provides a visible light responsive porous photocatalyst formed by solidifying alkaline earth metal peroxide with cement, a method for producing the same, a method for breeding fish and shellfish or treating diseases, phytoplankton or pathogenic microorganisms and the use of the visible light-responsive porous photocatalyst in applications for a method for inhibiting or removing the growth of , and a method for decomposing or deodorizing harmful substances.
  • tungsten, indium, vanadium, silver, molybdenum, zinc, etc. are known as substances that exhibit photocatalytic activity. All photocatalysts exhibit photocatalytic activity only at ultraviolet wavelengths of 400 nm or less.
  • titanium oxide When titanium oxide absorbs ultraviolet rays, it generates active oxygen and exhibits photocatalytic activity such as decomposition and sterilization of organic matter. Taking advantage of this effect, titanium oxide is applied to the outer wall to make it more difficult to get dirty.
  • titanium oxide does not exhibit photocatalytic activity with visible light of 400 nm or more, it cannot be used for sterilization and decomposition in living spaces where only visible light such as fluorescent lights is used. be.
  • photocatalysts manufactured by doping technology are not only difficult to process and extremely expensive, but also do not exhibit sufficient photocatalytic activity, so there are no practical ones.
  • the photocatalyst when the photocatalyst is irradiated with ultraviolet rays, the photocatalyst is excited, generating hydroxyl radicals with strong oxidizing power on the surface of the photocatalyst, which oxidatively decomposes harmful substances contained in the fluid to be treated.
  • the hydroxyl radical since the hydroxyl radical has a very short lifetime of about 10-6 seconds, the hydroxyl radical can substantially exist only on the surface of the photocatalyst.
  • An object of the present disclosure is to provide a novel photocatalyst that has a porous structure and exhibits activity in a wide range of light wavelengths including visible light, thereby having higher oxidation resolution than conventional titanium oxide. is.
  • the subject of the present disclosure is a method for breeding or treating diseases of fish and shellfish, a method for suppressing or removing phytoplankton or pathogenic microorganisms, a method for producing hydrogen, and a method for decomposing harmful substances, using the strong oxidative decomposition of the photocatalyst. Or to provide a deodorizing method.
  • the inventor of the present application searched for a substance that absorbs light in a wide wavelength range and exhibits strong photocatalytic activity. As a result, it was surprisingly found that peroxides of alkaline earth metals such as calcium peroxide exhibit visible-light-responsive photocatalytic activity.
  • the present disclosure provides a visible-light-responsive porous photocatalyst formed by solidifying an alkaline earth metal peroxide with cement.
  • the content ratio of the cement in the total solid content may be 17 to 80 (w/w)%.
  • the alkaline earth metal may be calcium
  • the cement may be white cement.
  • the visible light-responsive porous photocatalyst may have the property of floating on the water surface.
  • the visible-light-responsive porous photocatalyst may have the shape of a shell, coral, or pebble.
  • the present disclosure includes a mixing step of mixing a raw material containing an alkaline earth metal peroxide and cement with water, a molding step of molding the mixture obtained in the mixing step, and the molding step A method for producing a visible light responsive porous photocatalyst including a drying step of drying the molded product obtained in .
  • the present disclosure provides a method for breeding or treating diseases of fish and shellfish, a method for inhibiting or removing phytoplankton or pathogenic bacteria, and a method for decomposing or deodorizing harmful substances using the visible light-responsive porous photocatalyst. .
  • the visible light responsive porous photocatalyst of the present disclosure since it has a porous structure in which an alkaline earth metal peroxide exhibiting visible light responsive photocatalytic activity is solidified with cement, it has a wide range of wavelengths. By absorbing light in the region (200 to 1200 nm) and generating more hydroxyl radicals on the increased surface of the photocatalyst, it is possible to perform an oxidative decomposition reaction more efficiently than conventional titanium oxide. In addition, as a result, various organic substances can be decomposed more efficiently than conventional titanium oxide, and high effects such as purification, antifouling, antibacterial, and deodorizing can be obtained.
  • the visible light-responsive porous photocatalyst of the present disclosure is effective in sterilizing pathogenic bacteria against various animals and plants, inactivating viruses, suppressing or removing algal blooms that occur in large numbers in water systems and cause water pollution. It is also extremely effective in applications. In particular, since high photocatalytic activity can be maintained even after long-term use and self-cleaning is also possible, continuous use for a long period of time is possible, and maintenance costs can be kept low.
  • the visible-light-responsive porous photocatalyst of the present disclosure can be produced by a very simple process of mixing raw materials and water, molding, and drying.
  • the above raw materials are also inexpensive and naturally derived substances such as calcium peroxide and cement. Therefore, compared with conventional photocatalysts, the manufacturing cost can be greatly reduced, and there is little adverse effect on the environment.
  • FIG. 11 is a photographic image showing self-cleaning of a visible-light-responsive porous photocatalyst by ultraviolet irradiation (Example 11).
  • (a) shows the state before light irradiation
  • (b) shows the state after light irradiation.
  • the right half is the portion covered with the ultraviolet cut film. (Example 11) (Example 11).
  • FIG. 11 is a photographic image showing a method for breeding fish and shellfish or treating a disease using both a visible light-responsive porous photocatalyst and a polyphenol iron complex capsule (Example 12).
  • (a) shows a porous photocatalyst
  • (b) shows a polyphenol iron complex capsule, respectively.
  • FIG. 2 is a photographic image diagram showing the manufacturing process of polyphenol iron complex capsules and the manufactured capsules.
  • FIG. 1 is a photographic image showing production examples of visible-light-responsive porous photocatalysts with different mixing ratios of calcium peroxide and white cement (Example 1).
  • the amounts of white cement added are 10 g, 5 g, and 2.5 g in order from the left.
  • FIG. 2 is a photographic image showing the stability of visible-light-responsive porous photocatalysts with different mixing ratios of calcium peroxide and white cement when added to water (Example 1).
  • the amounts of white cement added are 10 g, 5 g, 2.5 g, and 0 g in order from the left.
  • FIG. 1 is a photographic image showing production examples of visible-light-responsive porous photocatalysts with different mixing ratios of calcium peroxide and white cement (Example 1).
  • the amounts of white cement added are 10 g, 5 g, 2.5 g, and 0 g in order from the left.
  • FIG. 2 is a photographic image diagram showing production examples of visible-light-responsive porous photocatalysts with different mixing ratios of calcium peroxide and white cement (Example 2).
  • the amounts of white cement added are 10 g, 20 g, 30 g, and 60 g in order from the left.
  • FIG. 4 is a photographic image showing the resolution of methylene blue by ultraviolet irradiation of visible-light-responsive porous photocatalysts with different mixing ratios of calcium peroxide and white cement (Example 2).
  • (a) shows the situation at the start of the test
  • (b) shows the situation after 24 hours
  • (c) shows the situation after 48 hours.
  • FIG. 3 is a photographic image showing an example of producing a visible light-responsive porous photocatalyst with different amounts of foaming agent added (Example 3).
  • the amount of foaming agent added is 0 g, 0.1 g, 0.5 g, and 1.0 g in order from the left.
  • FIG. 10 is a photographic image showing the resolution of methylene blue by ultraviolet irradiation of visible-light-responsive porous photocatalysts with different amounts of foaming agent added (Example 3).
  • FIG. 10 is a photographic image showing the resolution of methylene blue by visible light irradiation of a visible-light-responsive porous photocatalyst (Example 4).
  • (a) shows the state before irradiation with visible light
  • (b) shows the state after irradiation with visible light.
  • FIG. 10 is a photographic image showing the resolution of methylene blue by ultraviolet irradiation of a visible-light-responsive porous photocatalyst (Example 5). In the figure, the upper part shows the state before UV irradiation, and the lower part shows the state after UV irradiation.
  • FIG. 10 is a photographic image showing the effect of inhibiting the growth of algae by sunlight irradiation of a visible-light-responsive porous photocatalyst (Example 6).
  • the left side shows the state at the start of irradiation
  • the right side shows the state after 7 days from the start of irradiation.
  • Example 7 shows the state at the start of irradiation
  • the right side shows the state after 3 days from the start of irradiation.
  • Example 8 shows the upper part shows the state before the sunlight irradiation treatment
  • the lower part shows the state after the sunlight irradiation treatment, (a) showing the dark condition treatment section (control), and (b) showing the sunlight irradiation section.
  • Example 10 is a graph showing the chlorophyll concentration of each treatment plot in the algicidal test of Example 8.
  • the vertical axis indicates chlorophyll concentration ( ⁇ M/mL), and the bar indicates standard deviation.
  • different alphabets attached to the graph indicate that a significant difference was recognized at the 5% level by the LSD method.
  • Example 9 Example 9) which is a photograph image figure which shows the sterilization effect by a visible light responsive porous photocatalyst. In the figure, (a) shows a control group (no porous material added), and (b) shows a group with a porous material added. (Example 10) (Example 10).
  • FIG. 2 is a photographic image showing the methylene blue resolution of a visible-light-responsive porous photocatalyst used in a water tank for 3 months (Test Example 1).
  • (a) shows the dark condition treatment section (control)
  • (b) shows the ultraviolet irradiation section.
  • porous photocatalyst (hereinafter sometimes abbreviated as “porous photocatalyst”) according to the present embodiment means, as shown in FIG. It is a porous body in which a metal peroxide is solidified with cement, and exhibits visible-light-responsive photocatalytic activity.
  • the porous photocatalyst it is preferable to make it a block with a thickness in the range of 0.1 to 10 cm, as this makes it easier for light to reach the inside.
  • it when used in a fish tank or the like, it may be shaped like a shell, coral, pebble, etc. so as not to spoil the scenery.
  • it may be in the form of a coating layer formed on any solid surface.
  • the porous photocatalyst can be pulverized into beads, granules, or powder by pulverizing the massive porous photocatalyst.
  • a plurality of forms of porous photocatalysts can be used in combination.
  • alkaline earth metal peroxides include calcium peroxide, magnesium peroxide, strontium peroxide, barium peroxide, beryllium peroxide, Radium peroxide may be mentioned, but calcium peroxide and magnesium peroxide are preferred, and calcium peroxide is particularly preferred.
  • the peroxide is known to have the property of reacting with water to generate hydrogen peroxide and generate oxygen.
  • the present inventors have surprisingly discovered that the alkaline earth metal peroxide itself exhibits visible light-responsive photocatalytic activity.
  • cement examples include Portland cement, mixed cement, and ecocement.
  • white cement is preferably used among Portland cements.
  • the porous photocatalyst can be basically produced by mixing the peroxide, the cement, and water, and drying. Since the peroxide reacts with water to generate oxygen, the bubbles form a porous structure.
  • the porous photocatalyst has a large surface area and can achieve high reaction efficiency.
  • the material has a specific gravity lighter than that of water and that it floats on the water surface (see FIG. 1(b)).
  • the content weight ratio of the cement in the total solid content of the porous photocatalyst is usually 17 to 80%, preferably 20 to 70%, more preferably 30 to 65%, and particularly preferably 40 to 60%. can be done. If the content weight ratio of the cement is more than the above range, the formation of the porous structure is insufficient, the reaction efficiency is lowered, and the specific gravity of the porous photocatalyst increases and it sinks in water, which is not preferable. On the other hand, if the content weight ratio of the cement is less than the above range, the durability of the porous photocatalyst body is lowered, and it is likely to collapse in water, which is not preferable.
  • the content weight ratio of the cement in the total solid content of the porous photocatalyst is 30 to 60%, only the peroxide and the cement are used as raw materials other than water, and high reaction It is possible to construct the porous photocatalyst having efficiency, floating property on water surface, and durability. These raw materials are particularly safe to the human body and the environment, and are inexpensive. Therefore, the porous photocatalyst composed only of these raw materials has extremely high industrial utility.
  • the content weight ratio of the peroxide in the total solid content of the porous photocatalyst can be usually 20 to 83%, preferably 50 to 75%, more preferably 60 to 70%.
  • the porous photocatalyst may contain other photocatalysts, additives, etc. in addition to the raw materials as long as the above effects are not hindered.
  • optical photocatalysts can be used without limitation as long as they have photocatalytic activity. Specific examples include polyphenol iron complexes and titanium oxide, which will be described later. These other photocatalysts may be used singly or in combination.
  • additives include foaming agents that contribute to the formation of a porous structure by generating gases such as carbon dioxide, oxygen, and nitrogen by heating or reacting with an alkali. These additives may be used alone or in combination of multiple types.
  • the “foaming agent” for example, one or more selected from sodium hydrogen carbonate, ammonium carbonate, powdered aluminum, and aluminum chloride can be used.
  • the weight ratio of the "other photocatalyst" to the total solid content of the porous photocatalyst can usually be 60% or less.
  • the content weight ratio of the "additive” in the total solid content of the porous photocatalyst can be usually 10% or less.
  • the content weight ratio of the "foaming agent" in the total solid content of the porous photocatalyst can usually be 0.4 to 4.0%.
  • the porous photocatalyst absorbs light in a wide wavelength range, including visible light, and exhibits strong photocatalytic activity. Specifically, by irradiating with sunlight or light in a wide wavelength range of 200 to 1200 nm, that is, one or more light selected from ultraviolet light, visible light, and infrared light, it has a strong bactericidal, algicidal and water purification action. is shown.
  • “ultraviolet rays” refer to light in the wavelength range of 380 nm or less. “Visible light” refers to light with a wavelength of 380 to 750 nm, which is the wavelength range visible to the human eye. Specifically, “visible light” includes 380-450 nm (violet light), 450-495 nm (blue light), 495-570 nm (green light), 570-590 nm (yellow light), 590-620 nm (orange light). ), including light in the wavelength range of 620-750 nm (red light). Also, “infrared” refers to light in a wavelength range of 750 nm or more.
  • the porous photocatalyst exhibits strong photocatalytic activity when irradiated with light having a wavelength of 390 to 660 nm among the visible light.
  • the porous photocatalyst exhibits extremely strong photocatalytic activity (algicidal, sterilizing, and water purification effects) when irradiated with yellow to green light having a wavelength of 570 to 590 nm.
  • the porous photocatalyst exhibits strong photocatalytic activity even when irradiated with ultraviolet rays and infrared rays.
  • the porous photocatalyst shows strong activity especially when irradiated with light having a wavelength of 200 to 390 nm.
  • the porous photocatalyst exhibits strong activity especially when irradiated with light having a wavelength of 800 to 1200 nm.
  • the peroxide is poorly soluble in water, oxygen and hydrogen peroxide are gradually eluted over a long period of time. Moreover, the photocatalytic activity is stably maintained for a long period of time.
  • photocatalytic activity decreases, but as shown in FIGS. Self-cleaning is possible by irradiating with light (preferably ultraviolet rays), so that the photocatalytic activity can be recovered.
  • light preferably ultraviolet rays
  • strong light can be light of, for example, 100 cd (candela) or more, preferably 150 cd or more.
  • porous photocatalyst described above can be produced, for example, as follows.
  • the method for producing a visible light-responsive porous photocatalyst includes a mixing step of mixing a raw material containing an alkaline earth metal peroxide and cement with water; and a drying step of drying the molding obtained in the molding step.
  • the peroxide and the cement are mixed so as to have the above content weight ratios in the total solid content of the porous photocatalyst.
  • These raw materials are preferably powdery or granular, and particularly preferably have a particle size of 5 mm or less.
  • the water content can be 50 to 80% by weight, preferably 50 to 70% by weight, based on the total solid content of the raw material.
  • the peroxide reacts with water to generate oxygen.
  • gas is also generated from the foaming agent. These gases form bubbles and form a porous structure.
  • the mixture obtained in (2) above is molded.
  • the shape is not limited, it is preferable to set the thickness in the range of 0.1 to 10 cm, for example, because the light can easily reach the inside of the porous photocatalyst.
  • it may be formed into a shape imitating shells, corals, pebbles, etc. so as not to spoil the landscape.
  • it is preferable to attach a weight so that the porous photocatalyst does not float.
  • the molding means is not particularly limited.
  • the mixture may be applied onto any solid surface to form a photocatalytic coating layer.
  • the drying method is not particularly limited as long as the porous body is solidified, but examples include hot air or blast drying, heat drying, and the like.
  • the drying conditions are also not particularly limited, but for example, at a temperature of 20 to 98° C., preferably 30 to 80° C., more preferably 40 to 60° C., for 1 to 36 hours, preferably 4 to 24 hours, more preferably 6 hours. can be ⁇ 18 hours.
  • a pulverization step and the like may be included.
  • the porous photocatalyst solidified in the drying step is manually pulverized using a hammer, mortar, or the like, or by using a device such as a pulverizer or a bead mill to obtain a pulverized material.
  • the form of the pulverized material include beads, granules, and powder. Since the surface area of the porous photocatalyst pulverized in this way is increased, the contact with algae, microorganisms, organic substances, etc. is enhanced, and the photocatalytic activity can be further improved. Moreover, by mixing the porous photocatalyst in the form of pulverized material with an appropriate resin or binder, it can be used as a photocatalyst coating agent.
  • the porous photocatalyst obtained by the above manufacturing method absorbs light in a wide range of wavelengths, including visible light, and exhibits photocatalytic activity such as strong sterilization, algicidal, organic substance decomposition, and water purification effects. Also, by bringing the porous photocatalyst into contact with water, oxygen and hydrogen peroxide are eluted into the water. These actions and effects are maintained for a long period of time, and self-cleaning is also possible, so that it can be used continuously for a long period of time.
  • porous photocatalyst Since the porous photocatalyst generates hydroxyl radicals, hydrogen peroxide and oxygen on the surface, it is useful for raising fish and shellfish, treating diseases, killing algae, sterilizing, decomposing organic harmful substances or pollutants, and deodorizing. can be used for
  • porous photocatalyst is made from a material that is highly safe for the human body and the environment, and can be used for various purposes such as medicine, food, public health, agriculture, forestry and fisheries, and industry.
  • One form of the method of using the visible-light-responsive porous photocatalyst according to the present embodiment is a method of breeding or treating the disease of fish and shellfish.
  • the porous photocatalyst is used for raising or It can be used for the treatment of diseases.
  • fish and shellfish that are the target of breeding and disease treatment are not particularly limited. Specifically, all aquatic products such as fish, shellfish, crustaceans, and mollusks can be mentioned, regardless of whether they are freshwater organisms or seawater organisms.
  • the "disease" to be treated is not particularly limited as long as it is caused by infection with microorganisms or viruses. This is because hydroxyl radicals and hydrogen peroxide exhibit bactericidal and decomposing effects on all kinds of microorganisms and viruses.
  • a sufficient effect can be exhibited by, for example, irradiating with sunlight for 3 hours or more, preferably 6 hours or more per day. Even when relatively weak light such as an LED or fluorescent lamp is applied, a sufficient effect can be obtained by treatment for 12 hours or more, preferably 20 hours or more per day.
  • the amount of the porous photocatalyst to be used is not particularly limited, and may be an amount that provides the desired effect.
  • the weight of the porous photocatalyst to 1 L of water can be 10 g or more, preferably 20 to 200 g.
  • the duration of the effect of the porous photocatalyst on the pathogenic microorganism differs depending on the content of the peroxide.
  • the photocatalytic action and the oxygen and hydrogen peroxide supplying action of the porous photocatalyst continue for a long period of time, and self-cleaning is possible, so the duration can be, for example, several months to several years. Since the porous photocatalyst is composed of a material that is highly safe for the human body and the environment, there is no problem even if it remains in the water after the service life has passed.
  • the porous photocatalyst achieves the above-mentioned effects just by being left in the fish tank, but a higher effect can be obtained by generating a water flow in the tank with an air pump, agitation, or the like. . This is because, by bringing the water in the entire tank into contact with the porous photocatalyst, it is possible to sterilize and purify the water in the entire breeding environment for the fish and shellfish, and to allow oxygen to spread throughout the entire tank.
  • polyphenol iron is used as a material that supplies divalent iron ions (Fe 2+ ) and at the same time produces sterilization and water purification effects based on Fenton reaction catalytic activity and visible light-responsive photocatalytic activity.
  • Complex capsules can be used together (see Figure 4).
  • a "polyphenol iron complex capsule” is a polyphenol iron complex encapsulated in an alginic acid gel.
  • polyphenol iron complex refers to a reaction product obtained by mixing polyphenols or a raw material thereof with an iron raw material in the presence of water, wherein divalent iron ions (Fe 2+ ) are It forms a complex structure with polyphenols.
  • the polyphenol iron complex is described in Japanese Patent No. 5733781, Japanese Patent No. 5804454, Japanese Patent No. 6057227, Japanese Patent No. 6179957, Japanese Patent No. 6202770, Japanese Patent No. 6340657 and Japanese Patent No. 6478209. ing.
  • Polyphenols is a generic term for phenolic molecules with multiple hydroxy groups. It is a compound contained in most plants, and various types such as flavonoids and phenolic acids are known.
  • Examples of specific compounds include catechins (epicatechin, epigallocatechin, epicatechin gallate, epigallocatechin gallate, etc.), tannic acid, tannin, chlorogenic acid, caffeic acid, neochlorogenic acid, cyanidin, proanthocyanidins, Thearubigin, rutin, flavonoids (quercitrin, anthocyanin, flavanones, flavanols, flavonols, isoflavones, etc.), flavones, chalcones (naringenin chalcone, etc.), xanthophyll, carnosic acid, eriocitrin, nobiletin, tangeretin, magnolol, honokiol, ellagic acid, Lignans, curcumin, coumarin, catechol, procyanidins, theaflavin, rosmarinic acid, xanthone, quercetin, resver
  • polyphenols may be one of the above, or may be a composition consisting of two or more.
  • polyphenol compositions extracted from a certain plant are sometimes called polyphenols with the name of the plant.
  • polyphenols extracted from grapes are called grape polyphenols.
  • a plant body containing polyphenols (hereinafter referred to as “polyphenol-containing plant body”) or a processed product thereof can be used.
  • the “plant body” includes one or more selected from fruit, seed, stem, leaf, outer skin, bud, flower, root, and rhizome of a plant body.
  • polyphenol-containing plants include herbs (lavender, mint, coriander, cumin, sage, lemongrass, mugwort, comfrey, perilla, lemon balm, oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), houttuynia cordata, marigold, grapes, coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, sugar cane, mango, banana, papaya, avocado, apple, cherry (cherry), Guava, olive, potatoes (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon, mulberry, blueberry, poplar, ginkgo biloba , Chrysanthemum, Sunflower, Bamboo, Citrus Fruits (Levender, mint
  • grapes coffee (coffee tree), tea (tea), cacao, acacia, cedar, pine, yuzu, lemon, herbs (lavender, mint, coriander, cumin, sage, perilla, lemongrass, mugwort, comfrey, lemon balm , oregano, catnip, common thyme, dill, dark opal, basil, hyssop, peppermint, lamb's ear, etc.), Houttuynia cordata, marigold, sugar cane, mango, banana, papaya, avocado, apple, cherry, guava, olive, potato (sweet potato, purple potato (sweet potato containing a lot of purple pigment), potato, yam, taro (taro, shrimp, etc.), konjac potato, etc.), persimmon (persimmon), mulberry, blueberry, poplar, ginkgo, chrysanthemum, sunflower, bamboo is preferably used.
  • Processed products of polyphenol-containing plant bodies include dried products of polyphenol-containing plant bodies, juices, extracts, and liquid extracts. Further, the “processed product” may be a product obtained by further drying the squeezed liquid or the extract.
  • “Dried matter” is preferably one that has undergone processing such as crushing, pulverization, or powderization.
  • processing such as crushing, pulverization, or powderization.
  • a powder with a small particle size is preferable.
  • Suitable extraction solvents for the "extract” and “extract” are water, hot water, alcohol (especially ethanol), and hydrous alcohol (especially hydrous ethanol).
  • the residue remaining after extracting the polyphenol-containing plant body or its processed product with water or hot water can also be suitably used.
  • extraction residues include coffee grounds and used tea leaves.
  • Coffee grounds refers to the residue after extracting roasted and ground coffee beans with water or hot water. Coffee grounds contain a large amount of polyphenols, and since they are waste products, the raw material cost can be kept low, so they are suitable as raw materials for supplying polyphenols. In addition, components obtained by extracting roasted and ground coffee beans with water or hot water (so-called components of brewed coffee), coffee beans, their roasted products, ground products, etc., also contain large amounts of polyphenols. , can be preferably used.
  • Tea leaves refers to the residue after extracting tea leaves or their pulverized material with water or hot water. Used tea leaves contain an extremely large amount of polyphenols, and since they are waste products, the cost of raw materials can be kept low, so they are suitable as raw materials for supplying polyphenols.
  • any stems and leaves of the tea tree can be used.
  • Specific examples include green tea (sencha, hereha, stem tea, hojicha, etc.), blue tea (oolong tea, etc.), black tea, black tea (pu-erh tea, etc.), and the like.
  • green tea, black tea, and oolong tea are preferable.
  • components obtained by extracting tea leaves or their pulverized products with water or hot water also contain large amounts of polyphenols. It can be suitably used as a feedstock.
  • a dry distillation solution obtained by thermally decomposing a polyphenol-containing plant or its processed product in a reduced state can also be suitably used as a feedstock for polyphenols.
  • this plant dry distillate contains many reducing organic molecules such as phenols, organic acids, carbonyls, alcohols, amines, basic components, and other neutral components.
  • reducing organic matter refers to an organic matter that has a strong reducing power and has the action of reducing trivalent iron to divalent iron.
  • the dry distillate of the plant is a sticky liquid with a reddish-brown to dark brown appearance.
  • types such as wood vinegar, bamboo vinegar, rice vinegar, etc., depending on the plant body used as the raw material, and any of them can be suitably used.
  • These vegetable dry distillation solutions can be used as they are, but they can also be used as concentrated solutions, diluted solutions, or dried products thereof.
  • iron feedstock any of a bivalent iron feedstock, a trivalent iron feedstock, or a metallic iron feedstock can be used. Also, a plurality of materials can be mixed and used.
  • the "supply material of divalent iron” iron (II) chloride, iron (II) nitrate, iron (II) sulfate, iron (II) hydroxide, iron (II) oxide, iron (II) acetate ,
  • Water-soluble divalent iron compounds such as iron (II) lactate, sodium iron (II) citrate, iron (II) gluconate; water-insoluble divalent iron compounds such as iron (II) carbonate and iron (II) fumarate compounds can be mentioned.
  • feedstock of trivalent iron water-soluble trivalent iron(III) chloride, iron(III) sulfate, iron(III) citrate, ammonium iron(III) citrate, iron(III) EDTA, etc.
  • Iron compounds water-insoluble trivalent iron compounds such as iron(III) oxide, iron(III) nitrate, iron(III) hydroxide, and iron(III) pyrophosphate.
  • iron materials such as smelted iron and alloys can be mentioned as "supply raw materials of metallic iron”.
  • rust can also be used as an iron feedstock.
  • iron feedstock is water-insoluble, it can be used directly as an iron feedstock because it is water-soluble due to the chelating ability of polyphenols.
  • iron feedstocks it is preferable to use a water-soluble divalent iron or trivalent iron compound in order to efficiently produce a polyphenol iron complex.
  • inexpensive iron chloride, iron sulfate, or the like it is preferable to use inexpensive iron chloride, iron sulfate, or the like.
  • natural soil particularly Akadama soil, Kanuma soil, loam, etc.
  • metallic iron as iron supply raw materials.
  • the polyphenol iron complex is obtained by mixing polyphenols or their feedstock with iron feedstock in the presence of water.
  • the mixing ratio of these raw materials is such that the iron feedstock is added in an amount of 0.1 part by weight or more, preferably 1 part by weight in terms of the weight of the iron element, with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. parts or more, more preferably 4 parts by weight or more, still more preferably 10 parts by weight or more, particularly preferably 20 parts by weight or more. If the proportion of the iron element is too small (if the proportion of the polyphenols mixed with respect to the iron element is too high), the excess polyphenols function as radical scavenging substances (scavengers), so the Fenton reaction and photocatalyst May inhibit reactions.
  • scavengers radical scavenging substances
  • the upper limit of the mixing ratio of the iron feedstock is 100 parts by weight or less in terms of the weight of the iron element with respect to 100 parts by weight of the dry weight of the polyphenols or the feedstock of the polyphenols. , preferably 80 parts by weight or less, more preferably 60 parts by weight or less. If the ratio of the iron element is too high (if the mixing ratio of the polyphenols is too low relative to the iron element), the iron ions cannot be maintained in a divalent state, and the efficiency of the Fenton reaction or photocatalytic reaction decreases. I don't like it.
  • the dry weight of the polyphenol-containing plant used as the raw material for extraction is referred to as the "dry weight of the raw material for the polyphenols.
  • the above mixing ratio can be calculated by considering the above as "weight”. For example, it is assumed that dry tea leaves are used as the feedstock for the polyphenols, and an extract obtained by hot water extraction of the tea leaves is reacted with the iron feedstock. In this case, the weight of the dried tea leaves is used as the "dry weight of the polyphenol feedstock" to calculate the mixing ratio with the iron feedstock.
  • the dry weight of the polyphenol-containing plant used as the raw material for processing is referred to as the "dry weight of the raw material for the polyphenols".
  • the above mixing ratio can be calculated.
  • the mixing operation of the raw materials is performed in the presence of water.
  • the presence of water may be any condition as long as the polyphenols and iron can react with each other using water as a medium.
  • the reaction is presumed to be a reaction in which the polyphenol reduces iron ions (the state of Fe 2+ , which is a divalent iron ion) to form a complex.
  • the amount of water should be sufficient to allow at least mixing and stirring of the raw materials, and may be an amount sufficient to wet the mixture of raw materials (polyphenols and iron).
  • plant body juice or plant dry distillation liquid when used as a raw material for polyphenols, it can be directly mixed with the iron raw material and reacted without adding a new medium.
  • simple stirring and mixing with a stirrer, etc. can be performed, but it can also be performed with a mixer, large stirring tank, vortex, shaker, etc.
  • the temperature of the water during mixing should be the temperature at which the water is in a liquid state (for example, 1 to 100°C at 1 atm). It is possible to adopt about room temperature (for example, 10 to 35 ° C.) that does not require heating, but when heating, heating at 40 ° C. or higher, preferably 50 ° C. or higher, generates a polyphenol iron complex. is promoted and suitable.
  • the upper limit of the temperature of water during mixing can be 200 ° C. (in the case of pressurized heating), but from the viewpoint of production costs, the boiling point of normal heating under normal pressure conditions is 100 ° C. or less, preferably 90 ° C. °C or below, more preferably 70°C or below.
  • the reaction conditions of 100° C. or higher it is preferable to carry out the reaction in a closed container in order to suppress thermal decomposition of the polyphenols.
  • the mixing time may be about 10 seconds or more until the polyphenols and iron are sufficiently contacted, but in order to improve uniformity, it is preferably 1 minute or more, more preferably 3 minutes or more, and still more preferably Mixing for 5 minutes or more is desirable.
  • the upper limit of the mixing time is 10 days or less, preferably 7 days or less, more preferably 5 days or less, even more preferably 3 days or less, and particularly preferably 1 day, in order to prevent organic matter from spoiling due to propagation of microorganisms. It is desirable to perform within However, there is no particular upper limit when sterilization is involved.
  • the reaction product (reaction product of polyphenols and iron) obtained through the above mixing treatment has excellent divalent iron ion-supplying activity, Fenton reaction catalytic activity, and photocatalytic activity.
  • the polyphenols convert iron into a divalent iron ion (Fe 2+ ) state to form a complex (that is, a polyphenol iron complex).
  • the supernatant obtained after the reaction or the precipitate in a water-containing state can be used as it is as the polyphenol iron complex in the present embodiment.
  • the separated and collected supernatant or precipitate, the dried product obtained by drying (natural drying, roasting, hot air drying, etc.), and the suspension obtained by further dissolving the dried product in water Turbid matter, its supernatant, etc. can also be used as the polyphenol iron complex in the present embodiment.
  • the polyphenol iron complex capsule is a capsule made of alginic acid gel containing the polyphenol iron complex.
  • alginic acid gel is a gel formed by ionically cross-linking alginic acid molecules with polyvalent cations.
  • the polyphenol iron complex capsule is a core-shell type capsule in which the inner layer containing the polyphenol iron complex is covered with the outer layer of the alginate gel, or a matrix type capsule in which the polyphenol iron complex is dispersed inside the particles of the alginate gel. Capsules.
  • the shape of the polyphenol iron complex capsule may be spherical or non-spherical.
  • the shape of the capsule may be a mononuclear structure having only one inner layer, or a multinuclear structure having two or more inner layers. In any of the above forms, the effect of stabilizing the polyphenol-iron complex and achieving sustained release remains the same.
  • Alginic acid is a heteropolysaccharide composed of D-mannuronic acid (M) and L-guluronic acid (G). Since gelation of alginic acid is caused by cross-linking of guluronic acid moieties, the physical properties of the obtained polyphenol iron complex capsules vary depending on the composition ratio of M and G, that is, the M/G ratio. For example, if alginic acid with a large M/G ratio, that is, with a large mannuronic acid content, is used, the capsule will be soft and easily disintegrated, and if alginic acid with a small M/G ratio, that is, with a large guluronic acid content, is used, the capsule will be hard and disintegrate. It becomes a difficult capsule.
  • the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the size of the polyphenol-iron complex capsule may be appropriately set according to the application, usage environment, etc.
  • a spherical capsule may have a diameter ranging from 1 nm to 1 m.
  • the size may be set so as to prevent accidental ingestion by the target fish.
  • spherical capsules can have a diameter of about 2 to 10 mm.
  • the diameter can be about 10 to 100 mm, and when targeting large fish, the diameter can be about 10 to 100 cm.
  • the polyphenol iron complex capsule may have a shape that imitates aquatic plants, seaweed, shells, coral, pebbles, etc., so as not to spoil the scenery in a fish tank.
  • the size of the capsule may be appropriately set according to the size of actual aquatic plants, seaweed, shells, pebbles, and the like.
  • the content of the alginic acid gel in the polyphenol iron complex capsule is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the polyphenol iron complex in the polyphenol iron complex capsule is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
  • the polyphenol-iron complex capsule may contain components other than the polyphenol-iron complex as long as the above effects are not hindered.
  • examples of the "other ingredients” include nutrients necessary for the growth and proliferation of useful organisms such as animals and plants such as fish and shellfish, algae, and microorganisms.
  • water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron and iron, or compounds thereof; The above are mentioned.
  • the trace element may be contained in the form of a polyphenol complex because it can react with an excessive amount of the polyphenols in the capsule to form a complex.
  • the B vitamins include vitamin B1 , vitamin B2, niacin (vitamin B3), pantothenic acid (vitamin B5 ), vitamin B6 , biotin (vitamin B7 ), folic acid (vitamin B9 ), vitamin B 12 or derivatives thereof.
  • Examples of the trace element compounds include copper sulfate, zinc sulfate, cobalt chloride, manganese chloride, manganese sulfate, sodium molybdate, boric acid, iron chloride, and iron sulfate.
  • the total content of the "other ingredients” and the content of each ingredient in the polyphenol iron complex capsule may be appropriately set according to the application of the capsule, and is not particularly limited.
  • the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
  • Table 1 shows an example of the composition of the B vitamins and the trace elements contained in the polyphenol iron complex capsule for the purpose of raising seafood or treating diseases.
  • the following composition may be concentrated or diluted and contained in the polyphenol iron complex capsule.
  • the polyphenol iron complex capsule exhibits extremely strong photocatalytic activity by irradiating with ultraviolet light, particularly near-ultraviolet light with a wavelength of 200 to 380 nm.
  • the polyphenol iron complex capsule exhibits strong photocatalytic activity when irradiated with visible light, particularly light in the wavelength range of short wavelength violet to blue light (380 to 495 nm).
  • the polyphenol iron complex capsule exhibits strong activity when irradiated with light in the wavelength region of 750 to 1400 nm (particularly around 900 to 1300 nm, more particularly around 1100 to 1300 nm), which is infrared rays, preferably near infrared rays.
  • the porous photocatalyst and the polyphenol iron complex capsule are used together, it is preferable to irradiate light with a wide range of wavelengths, and light with a wavelength of 200 to 1200 nm is particularly preferable.
  • the irradiation time may be the same as in the case of using only the porous photocatalyst.
  • the amount of the polyphenol iron complex capsules added is not particularly limited, and may be an amount that provides the desired effect. Specifically, it can be 0.01 g or more, preferably 0.5 to 50 g, more preferably 1 to 20 g, and particularly preferably 5 to 10 g per liter of water.
  • the polyphenol iron complex capsules described above can be produced, for example, as follows.
  • the polyphenol iron complex is prepared by mixing the polyphenols or the feedstock thereof and the iron feedstock in the presence of water by the method described above.
  • alginate may be any soluble salt of alginic acid, and specific examples include sodium alginate, potassium alginate, and ammonium alginate.
  • the M/G ratio of alginic acid may be appropriately set according to the application and usage environment of the polyphenol iron complex capsule so that the capsule has desired physical properties. Specifically, the M/G ratio of alginic acid can usually be about 0.05 to 5.0.
  • the content of the alginate in the alginic acid aqueous solution is usually 0.001 to 99% by weight, preferably 0.1 to 10% by weight.
  • the content of the polyphenol iron complex in the aqueous alginic acid solution is not particularly limited. For example, it can be 0.0001 to 99% by weight, preferably 0.01 to 10% by weight.
  • the aqueous alginic acid solution may contain components other than the polyphenol iron complex as long as the above effects are not hindered.
  • the "other ingredients" are as described above, for example, water-soluble vitamins such as B vitamins and vitamin C or derivatives thereof; trace elements such as copper, zinc, cobalt, manganese, molybdenum, boron, iron, or one or more selected from the group consisting of the compound;
  • the total content of the "other components" and the content of each component in the aqueous alginic acid solution may be appropriately set according to the application of the polyphenol iron complex capsule, and are not particularly limited.
  • the total content is usually 99% by weight or less, preferably 0.0001 to 95% by weight, more preferably 0.5 to 75% by weight, and even more preferably 5 to 60% by weight.
  • Table 2 shows an example of the composition of the B vitamins and the trace elements in the alginic acid aqueous solution when producing the polyphenol iron complex capsules used for the purpose of breeding seafood or treating diseases.
  • the following composition can also be concentrated or diluted and blended.
  • the aqueous solution of alginic acid (liquid 1) prepared in (2) above is added dropwise into the solution (liquid 2) in which polyvalent cations are dissolved, thereby turning alginic acid into a gel. to produce the polyphenol iron complex capsule (see FIG. 6).
  • a dropping method a conventionally known method may be used.
  • Polyvalent cations include, for example, calcium salts and iron salts. More specifically, calcium chloride, calcium lactate, ferric sulfate, ferric chloride, etc. are preferred, and calcium chloride is particularly preferred because it accelerates gelation. Although the concentration of the polyvalent cation solution is not particularly limited, it can usually be 0.01 to 60% by weight.
  • matrix-type spherical capsules are obtained in which the ingredients such as the polyphenol iron complex are dispersed inside the alginate gel particles.
  • the polyphenol iron complex is added to the inside of the alginate gel film by dropping the above-described polyphenol iron complex and other components from the inner cylinder of the concentric double nozzle and the alginate aqueous solution from the outer cylinder into the polyvalent cation solution. It is also possible to produce core-shell type spherical capsules in which ingredients such as are encapsulated.
  • alginic acid aqueous solution (alginate concentration: about 0.5 to 10% by weight) added with a component such as the above-mentioned polyphenol iron complex was stirred well to form a gel, which was formed into a block of a desired size.
  • Capsules of the desired size can also be produced by subsequent hardening by dipping in a polyvalent cation solution.
  • the alginic acid aqueous solution gelled as described above is placed in a mold of a desired shape made of silicon or the like and allowed to stand for about 20 minutes to 1 hour. By immersing it in water and hardening it, it is also possible to produce irregular shaped capsules in a desired shape imitating aquatic plants, seaweed, shells, corals, pebbles, and the like.
  • the polyphenol iron complex capsules obtained by any of the above manufacturing methods can maintain their action and effect as a Fenton reaction catalyst, ferric ion supplier, or photocatalyst for a long period of time. This is because the alginate gel having a porous structure does not change the function of gradually releasing the polyphenol iron complex and other ingredients into the environment even if the manufacturing method of the capsule is different.
  • such a polyphenol iron complex capsule exhibits a very high effect in breeding fish and shellfish or treating diseases when used in combination with the porous photocatalyst.
  • divalent iron ions are supplied to the fish and shellfish by adding the polyphenol iron complex capsules to the fish and shellfish tank. Further, the hydrogen peroxide generated by the porous photocatalyst is used for the Fenton reaction by the polyphenol iron complex. Furthermore, the visible-light-responsive photocatalytic activity possessed by the polyphenol-iron complex capsule absorbs light of a wide range of wavelengths, thereby exhibiting sterilization and water purification effects. Since these actions and effects are maintained for a long period of time, management costs can be greatly reduced.
  • One mode of using the visible-light-responsive porous photocatalyst according to the present embodiment is a method of suppressing or removing phytoplankton or pathogenic microorganisms.
  • the porous photocatalyst can be used for purposes such as algicidal, sterilizing, inhibiting or removing phytoplankton and pathogenic microorganisms. In the following, these uses may be abbreviated as “algicide, etc.”.
  • target phytoplankton and pathogenic microorganisms include not only algae and bacteria, but also eukaryotic microorganisms, archaea, viruses, and viroids. This is because hydroxyl radicals and hydrogen peroxide exhibit bactericidal and decomposing effects on all kinds of microorganisms and viruses.
  • the target of algicide, etc. is water, and it may be either freshwater or seawater. Specific examples include water tanks in homes and aquariums; fish cages for restaurants, fish farms, transportation, etc.; nutrient tanks for hydroponics, etc.; water in pools, ponds, lakes, dams, sewage treatment plants, etc. be able to.
  • the water may contain other bactericidal components, contaminants, useful organisms, etc., as long as they do not interfere with the above effects.
  • the porous photocatalyst may be added to the water or floated on the surface of the water and irradiated with light.
  • the porous photocatalyst has the property of floating on the water surface, the porous photocatalyst can be floated on the water surface and a large amount of hydroxyl radicals can be generated near the water surface. It is particularly suitable for growth inhibition or elimination (algicide).
  • the amount of the porous photocatalyst to be added in the algaecidal method is not particularly limited, and may be an amount that provides the desired effect. Specifically, the amount to be added can be the same as in the case of raising fish and shellfish or treating diseases.
  • the light and irradiation time for irradiating the porous photocatalyst can be the same as in the case of breeding or treating the disease of the fish and shellfish.
  • One form of usage of the visible-light-responsive porous photocatalyst according to the present embodiment is a method for decomposing or deodorizing organic substances.
  • the porous photocatalyst can be used for decomposing various organic substances.
  • it since it can be suitably used for decomposing organic pollutants and harmful substances, it is useful in one step of environmental purification.
  • pollutants and harmful substances refer to substances that cause water pollution, soil pollution, and air pollution.
  • organic substances that are harmful to the human body and the environment include domestic wastewater, night soil water, industrial wastewater, polluted river and lake water, landfill soil, industrial waste, agricultural land, and factory sites. can.
  • organic substances to be decomposed examples include organic waste such as detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, and proteins. can.
  • organic waste such as detergents, food and drink residues, night soil, feces, pesticides, malodorous substances, waste oils, dioxins, PCBs, DNA, RNA, and proteins.
  • an odorant such as a malodorous substance
  • the porous photocatalyst functions as a deodorant.
  • the porous photocatalyst As a method for decomposing the organic substance using the porous photocatalyst, when the organic substance is liquid or dispersed in water, for example, the porous photocatalyst is dissolved in the liquid or in water. or floated on the surface of the liquid or water, and irradiated with light.
  • the irradiation light and irradiation time can be the same as those for breeding or treating the disease of fish and shellfish described above.
  • the amount of the porous photocatalyst added to the liquid or water can be the same as in the case of raising the fish or shellfish or treating the disease.
  • the porous photocatalyst is formed in the shape of a filter, and the liquid organic substance or water containing the organic substance is passed through the filter while irradiating the filter with light.
  • a method of passing through a porous photocatalyst may also be used.
  • the organic substance is gas or dispersed in the air
  • the gas or air is introduced into the filter while irradiating the filter-like porous photocatalyst with light.
  • a passing method can be adopted.
  • the light to irradiate such a filter-like porous photocatalyst can be the same as for breeding or treating diseases of fish and shellfish described above.
  • the method for decomposing organic substances it is possible to efficiently decompose persistent organic substances. For example, in the case of irradiation with light of 1000 cd, at least 20 g/L of organic substances can be decomposed per day.
  • One mode of using the visible-light-responsive porous photocatalyst according to the present embodiment is a method for producing hydrogen. Due to the strong photocatalytic activity of the porous photocatalyst, water can be oxidatively decomposed into oxygen and hydrogen. That is, according to the present disclosure, there is provided a hydrogen production method including a step of oxidatively decomposing water to generate hydrogen using the porous photocatalyst.
  • the porous photocatalyst may be added to water or floated on the surface of water and irradiated with light.
  • the light and irradiation time with which the porous photocatalyst is irradiated are not particularly limited, and can be as described above.
  • the amount of the porous photocatalyst to be used is not particularly limited.
  • Example 1 Production of visible light responsive porous photocatalyst (1) Porous photocatalysts with different mixing ratios of alkaline earth metal peroxides and cement were manufactured, and their stability in water was investigated.
  • Fig. 7 shows each of the manufactured porous photocatalysts.
  • the amounts of white cement added are 10 g, 5 g, and 2.5 g in order from the left.
  • water was mixed with the raw material and the mixture was heated to generate oxygen bubbles and form a porous structure.
  • no cement was added and the same procedure as described above was performed to obtain a solid material that was not a porous structure.
  • porous photocatalyst by a simple manufacturing process consisting of two steps, a mixing process and a drying process, using only alkaline earth metal peroxides, cement, and water as raw materials.
  • This porous photocatalyst is highly safe to the human body and the environment, and is composed of inexpensive substances, and is therefore expected to have high industrial applicability.
  • the content weight ratio of cement to the total solid content of the porous photocatalyst is 30% or more, the porous structure has stability that does not collapse in water and floats on water surface.
  • Example 2 Production of visible light responsive porous photocatalyst (2) Porous photocatalysts with different mixing ratios of alkaline earth metal peroxides and cement were manufactured, and their stability in water and decomposition of organic substances were investigated.
  • Fig. 9 shows each of the manufactured porous photocatalysts.
  • the amounts of white cement added are 10 g, 20 g, 30 g, and 60 g in order from the left.
  • water was mixed with the raw material and the mixture was heated to generate oxygen bubbles and form a porous structure.
  • FIG. 10 shows the state at the start of the test, (b) shows the situation after 24 hours, and (c) shows the situation after 48 hours.
  • the amounts of white cement added are 10 g, 20 g, 30 g, and 60 g in order from the left.
  • porous photocatalyst did not collapse even when added to water (aqueous methylene blue solution), and no change in shape was observed (see Fig. 10). Also, in all porous photocatalysts, bubbles (oxygen) were generated on the surface in contact with water.
  • porous photocatalysts to which 10 g and 20 g of white cement were added had the property of floating on the water surface.
  • the porous photocatalyst bodies to which 30 g and 60 g of white cement were added sank in water.
  • the blue color of the methylene blue aqueous solution disappeared in all porous photocatalysts after 48 hours, regardless of the presence or absence of water surface floating properties. (See FIG. 10).
  • porous photocatalysts with a cement content weight ratio of 40% or more relative to the total solid content become stable porous structures that do not collapse in water, and generate air bubbles (oxygen) on the surface.
  • the content weight ratio of cement to the total solid content is 60% or less, the porous structure has the property of floating on the water surface (see FIG. 10).
  • Fig. 11 shows each of the manufactured porous photocatalysts.
  • the amount of foaming agent added is 0 g, 0.1 g, 0.5 g, and 1.0 g in order from the left.
  • a porous structure was formed at any amount added.
  • FIG. 12 The results are shown in Fig. 12.
  • (a) is at the start of the test, (b) is after 12 hours, (c) is after 24 hours, and (d) is after 36 hours.
  • the amount of foaming agent added is 0 g, 0.1 g, 0.5 g, and 1.0 g in order from the left.
  • porous photocatalyst did not collapse even when added to water (aqueous methylene blue solution), and no change in shape was observed (see Fig. 12). Also, in all porous photocatalysts, bubbles (oxygen) were generated on the surface in contact with water.
  • the porous photocatalyst had the property of floating on the surface of the water.
  • the blue color of the methylene blue aqueous solution disappeared in all of the porous photocatalysts, indicating that the methylene blue (organic substance) was decomposed by the oxidative decomposition action of the porous photocatalysts irradiated with ultraviolet rays (Fig. 12). reference).
  • a porous photocatalyst can be produced by adding a foaming agent in addition to the alkaline earth metal peroxide and cement. It was also shown that the amount of foaming agent added does not affect the oxygen supply and the decomposition of organic substances by the porous photocatalyst (see FIG. 12).
  • Example 4 Organic Substance Decomposition Effect by Visible Light Irradiation of Visible Light Responsive Porous Photocatalyst The organic substance decomposition effect was confirmed when the porous photocatalyst was irradiated with visible light.
  • FIG. 13 shows the state before visible light irradiation
  • (b) shows the state after visible light irradiation.
  • the left is the group with the addition of the porous material
  • the right is the non-additive treated group (control).
  • Example 5 Organic Substance Decomposition Effect of Visible Light-Responsive Porous Photocatalyst by Ultraviolet Irradiation
  • the porous photocatalyst was irradiated with ultraviolet to examine the decomposition of organic substances.
  • 15 g of calcium peroxide powder (manufactured by Sigma-Aldrich) and 10 g of white cement (manufactured by Kateikagaku Kogyo) were mixed, 20 mL of distilled water was added thereto, and 25 g of a porous photocatalyst was added in the same manner as in Example 2. manufactured the body.
  • FIG. 14 The results are shown in FIG. In FIG. 14, the upper part shows the state before UV irradiation, and the lower part shows the state after UV irradiation.
  • (a) is a dark condition treatment section (control)
  • (b) is an ultraviolet irradiation section.
  • Example 6 Effect of suppressing growth of algae by visible-light-responsive porous photocatalyst Using the porous photocatalyst produced in the same manner as in Example 4, the effect of suppressing growth of algae (phytoplankton) was confirmed.
  • distilled water and 0.5 mL of liquid fertilizer (“Hyponex (registered trademark) undiluted solution” manufactured by Hyponex Japan) were placed in a 1000 mL beaker and left outdoors for 3 days. After that, distilled water containing naturally occurring algae in the beaker was used as the algae species.
  • FIG. 15 The results are shown in FIG. In FIG. 15, the left side shows the state at the start of irradiation, and the right side shows the state 7 days after the start of irradiation.
  • (a) is the non-additive treatment area (control)
  • (b) is the porous material addition area.
  • Example 7 Algicidal effect by visible light responsive porous photocatalyst (1) An algicidal experiment was conducted using a porous photocatalyst produced in the same manner as in Example 4.
  • FIG. 16 The results are shown in FIG. In FIG. 16, the left side shows the state at the start of irradiation, and the right side shows the state 3 days after the start of irradiation.
  • (a) is the non-additive treatment area (control)
  • (b) is the porous material addition area.
  • Example 8 Algicidal effect by visible light responsive porous photocatalyst (2) An algicidal experiment was conducted using a porous photocatalyst produced in the same manner as in Example 4. First, as in Example 7, algae were spontaneously grown in 500 mL distilled water in two 1000 mL beakers. A porous photocatalyst was floated on these beakers (FIG. 17), one beaker was kept in the dark, and the other beaker was irradiated with sunlight for 3 hours.
  • the chlorophyll a concentration in each treatment area was measured.
  • the chlorophyll concentration was measured by the method described in Grimme and Boardman (1972) Biochem. Biophys. Res. Comm. 49: 1617-1623.
  • FIG. 17 the upper part shows the state before the sunlight irradiation treatment, and the lower part shows the state after the sunlight irradiation treatment, (a) showing the dark condition treatment group (control), and (b) showing the sunlight irradiation group.
  • the vertical axis indicates chlorophyll a concentration ( ⁇ M/mL), and the bar indicates standard deviation. Also, different alphabets attached to the graph indicate that a significant difference was recognized at the 5% level by the LSD method.
  • Fig. 17 shows that (a) algae survived in the dark condition treated area, whereas in (b) the sunlight irradiated area, the water became colorless after irradiation and the algae died. Moreover, from FIG. 18, it was found that the chlorophyll concentration before and after the treatment in the dark condition treatment area was almost the same, while the chlorophyll concentration after the treatment decreased significantly in the sunlight irradiation area.
  • porous photocatalyst can kill algae (phytoplankton) by irradiation with sunlight, and that the algicidal action of the porous photocatalyst is due to photocatalytic activity. .
  • Example 9 Bactericidal effect by visible light responsive porous photocatalyst (1) Using the porous photocatalyst produced in the same manner as in Example 4, the bactericidal effect against Escherichia coli was confirmed.
  • FIG. 19 shows a control group (no porous material added), and (b) shows a group with a porous material added. From FIG. 19, it was found that E. coli survived in (a) the control group, whereas E. coli was completely killed in the (b) porous body addition group. From this, it was shown that E. coli can be sterilized in a short time by irradiating the porous photocatalyst with light.
  • Example 10 Bactericidal effect by visible light responsive porous photocatalyst (2) Using the porous photocatalyst produced in the same manner as in Example 4, the bactericidal effect against Escherichia coli was confirmed.
  • FIG. 20 shows the control group (dark condition treatment group), and (b) shows the irradiation treatment group. From FIG. 20, it was found that E. coli survived in (a) the control group, whereas E. coli was completely destroyed in the (b) irradiation-treated group. From this, it was shown that the bactericidal action of the porous photocatalyst is due to the photocatalytic activity.
  • Example 11 Self-cleaning test Using a porous photocatalyst produced in the same manner as in Example 4, it was confirmed that self-cleaning was possible.
  • porous photocatalyst (broken in half), which was also soiled on the surface, was continuously irradiated with visible light (white LED, 470-660 nm, 100000 cd) for 12 hours.
  • FIG. 2 shows the results of self-cleaning with ultraviolet rays
  • FIG. 3 shows the results of self-cleaning with visible light. 2 and 3, (a) shows the state before light irradiation, and (b) shows the state after light irradiation, respectively.
  • the right half is the portion covered with the ultraviolet cut film.
  • Test Example 1 Verification of Sustainability of Photocatalytic Activity
  • a porous photocatalyst produced in the same manner as in Example 4 was used to verify the sustainability of photocatalytic activity.
  • the porous photocatalyst used was one that had been used in a water tank for three months.
  • Example 12 Breeding of fish and shellfish using both visible light-responsive porous photocatalyst and polyphenol iron complex capsule was bred.
  • FIG. 4 shows a porous photocatalyst and (b) shows a polyphenol iron complex capsule, respectively.
  • porous photocatalyst was produced as follows. 15 g of calcium peroxide (manufactured by Sigma-Aldrich) and 10 g of white cement (manufactured by Katei Kagaku Kogyo) were mixed, and 20 mL of distilled water was further added and mixed. This mixture was molded into an oval shape having a thickness of about 30 mm and then dried by hot air drying at 50° C. for 12 hours to obtain one porous photocatalyst.
  • calcium peroxide manufactured by Sigma-Aldrich
  • white cement manufactured by Katei Kagaku Kogyo
  • the resulting porous photocatalyst is white, has a low specific gravity, and floats on the water surface. Two such porous bodies were produced.
  • Polyphenol iron complex capsules were prepared as follows. First, 10 g of dried coffee grounds as a polyphenols feedstock was placed in 900 mL of distilled water and heated under pressure at 120° C. for 20 minutes. This was filtered with filter paper to obtain a coffee grounds extract. 8.71 g of iron (III) chloride (about 3 g as iron element) was added to the coffee grounds extract, distilled water was added to make 1000 mL, and the solution was stirred to obtain a polyphenol iron complex solution.
  • iron (III) chloride about 3 g as iron element
  • the mixing ratio of the polyphenols feedstock (dried coffee grounds) and the iron feedstock (iron (III) chloride) here is about 30% of the iron feedstock as an iron element per 100 parts by weight of the polyphenols feedstock. It becomes the ratio of parts by weight.
  • the polyphenol-iron complex solution contains a polyphenol-iron complex in which iron ions derived from iron chloride (III) are chelated in the form of Fe 2+ by polyphenols extracted from coffee grounds. .
  • the obtained capsules were spherical with a diameter of about 5.0 mm and had a dark brown color. Dark brown is the color of the coffee grounds extract.
  • the capsule contains about 0.04% by weight of polyphenol iron complex in terms of elemental iron.
  • the manufactured capsules were stored in distilled water at 4°C until use.
  • the bacteria density was 5 to 56 cfu/mL in the water tanks using both the porous photocatalyst and the capsules, whereas it was 2.7 ⁇ 10 6 cfu/mL or more in the control area.
  • oxygen and hydrogen peroxide are supplied from the porous photocatalyst, and the polyphenol iron complex is eluted from the capsule, thereby supplying Fe 2+ ions to the fish and shellfish, and promoting health and preventing and treating diseases. and the Fenton reaction occurred, resulting in sterilization, algicidal and water purification effects by hydroxyl radicals.
  • Example 13 Bactericidal effect by combined use of visible light responsive porous photocatalyst and polyphenol iron complex capsule A sterilization test was performed.
  • I prepared two water tanks containing 4L of water. Two porous photocatalysts were floated in one of the water tanks, and 8 g of polyphenol iron complex capsules were added thereto, while neither the porous photocatalysts nor the capsules were added to the other water tank (control group). Both water tanks were continuously irradiated with a visible light LED (470-490 nm) for 12 hours every day, and constantly supplied with oxygen by an air pump.
  • a visible light LED 470-490 nm
  • Oxygen and hydrogen peroxide are eluted from the porous photocatalyst, and polyphenol iron complexes (Fe 2+ ions) are eluted from the polyphenol iron complex capsules into water, and these are highly safe for seafood and the environment. It is matter.
  • hydroxy radicals generated by photocatalytic reaction and Fenton reaction disappear immediately, and there is no concern that they will remain in the bodies of fish and shellfish. Therefore, the method for breeding or treating diseases of fish and shellfish using a porous photocatalyst and a polyphenol iron complex capsule is an excellent method that does not adversely affect fish and shellfish and the environment compared to conventional methods using chemical solutions. It is believed that there is.
  • the visible light responsive porous photocatalyst composed of white cement and calcium peroxide was described, but the present invention is not limited to this. Any combination of porous photocatalysts, such as Portland cement, mixed cement, ecocement, etc., instead of white cement, and magnesium peroxide, etc., instead of calcium peroxide, can also be included in the present disclosure. can.
  • the example in which the porous photocatalyst is floated on the surface of water and irradiated with light has effects such as algicide, sterilization, water purification, and decomposition of organic substances.
  • effects such as algicide, sterilization, water purification, and decomposition of organic substances.
  • pathogenic microorganisms, organic substances, and gaseous organic substances contained in the air can be decomposed by the action of hydroxyl radicals by contacting the porous photocatalyst, so the present disclosure can be applied. can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Water Supply & Treatment (AREA)
  • Animal Behavior & Ethology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Animal Husbandry (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Catalysts (AREA)

Abstract

多孔質の構造を有し、かつ、可視光を含む広域の光波長で活性を示すことで、従来の酸化チタンよりも高い酸化分解能を有する新規の光触媒体を提供する。 アルカリ土類金属の過酸化物をセメントにて固結させてなる可視光応答型多孔質光触媒体は、原料と水を混合し、成形し、乾燥させるという極めて簡潔な工程によって製造することができ、200~1200nmという幅広い波長域の光を吸収して高い光触媒活性を示す。当該光触媒体は、魚介類の飼育又は病気治療方法、植物プランクトン又は病原微生物の増殖抑制又は除去方法、及び有害物質の分解又は消臭方法などに利用できる。

Description

可視光応答型多孔質光触媒体、その製造方法及び用途
 本開示は、アルカリ土類金属の過酸化物をセメントにて固結させてなる可視光応答型多孔質光触媒体、その製造方法、並びに、魚介類の飼育又は病気治療方法、植物プランクトン又は病原微生物の増殖抑制又は除去方法、及び有害物質の分解又は消臭方法の用途における前記可視光応答型多孔質光触媒体の使用、に関する。
 近年、ウイルス(COVID-19、鳥インフルエンザ、豚熱など)やO157のような有害微生物が引き起こす汚染が国内外で社会問題になっている。この状況下、様々な殺菌技術が注目されるようになった。その一つが光触媒である。光触媒は光を当てるだけで有機系の有害物質の分解や殺菌などに利用できることから、手軽で汎用性が高い技術として社会的ニーズが高まっている。
 光触媒活性を示す物質として酸化チタンの他、タングステン、インジウム、バナジウム、銀、モリブデン、亜鉛などが知られている。いずれの光触媒も400nm以下の紫外波長でしか光触媒活性を示さない。
 酸化チタンは紫外線を吸収すると活性酸素を発生させ、有機物の分解や殺菌などの光触媒活性を示す。この効果を利用して、外壁に酸化チタンを塗装し汚れを付きにくくするなどの利用が進んでいる。
 また、可視光での光触媒活性を実現するため、不純物を混入する技術(ドーピング)が試みられている(例えば特許文献1、2参照)。
 一方、過酸化カルシウムは水と接触すると過酸化水素と酸素を発生させるが、水に溶けにくく反応は徐々に進行する。また、乾燥品は安定で、取り扱いが容易であることから、農業など幅広い産業において酸素発生剤として利用されている。
特開平7-303835号公報 特開2006-305532号公報
 しかしながら、酸化チタンは400nm以上の可視光では光触媒活性を示さないため、蛍光灯などの可視光しか利用しない居住空間では殺菌・分解などの利用ができず、適用場面が限られているという問題がある。
 また、ドーピング技術で製造された光触媒は、加工技術が難しく非常に高価になるばかりか、十分な光触媒活性を示さないことから、実用化されているものは存在しない状況である。
 光触媒による有害物質の分解除去等を効果的に行うためには、光触媒体に紫外線を効果的に照射するとともに、光触媒体と被処理流体を効果的に接触させることが必要である。
 また、光触媒体に紫外線が照射されると光触媒体が励起され、光触媒体表面に酸化力の強いヒドロキシラジカルが生成し、これが被処理流体中に含まれる有害物質を酸化分解する。しかし、ヒドロキシラジカルはその寿命が10-6秒程度と極めて短いため、実質的にヒドロキシラジカルは光触媒体の表面のみにしか存在することはできない。
 したがって、光触媒による反応効率を向上させるため、表面積の大きな光触媒体が求められていた。
 本開示の課題は、多孔質の構造を有し、かつ、可視光を含む広域の光波長で活性を示すことで、従来の酸化チタンよりも高い酸化分解能を有する新規の光触媒体を提供することである。
 また、本開示の課題は、当該光触媒体による強力な酸化分解能を利用した、魚介類の飼育又は病気治療方法、植物プランクトン又は病原微生物の増殖抑制又は除去方法、水素製造方法、及び有害物質の分解又は消臭方法を提供することである。
 上記課題を解決するため、本願発明者は、幅広い波長域の光を吸収して強力な光触媒活性を示す物質の探索を行った。その結果、驚くべきことに、過酸化カルシウムをはじめとするアルカリ土類金属の過酸化物が、可視光応答型光触媒活性を示すことを見出した。
 また、当該アルカリ土類金属の過酸化物をセメントにて固結させてなる多孔質体が、優れた酸化分解能を有する可視光応答型多孔質光触媒体として機能することを見出した。これらの知見に基づいて、本開示は完成された。
 すなわち、本開示は、アルカリ土類金属の過酸化物をセメントにて固結させてなる、可視光応答型多孔質光触媒体を提供する。
 ここで、前記可視光応答型多孔質光触媒体は、全固形分における前記セメントの含有比率が17~80(w/w)%であってもよい。
 また、前記可視光応答型多孔質光触媒体は、前記アルカリ土類金属がカルシウムであり、前記セメントがホワイトセメントであってもよい。
 さらに、前記可視光応答型多孔質光触媒体は、水面に浮上する性質を有するものであってもよい。あるいは、前記可視光応答型多孔質光触媒体は、貝殻、サンゴ又は小石の形状を有するものであってもよい。
 次に、本開示は、アルカリ土類金属の過酸化物及びセメントを含む原料と、水と、を混合する混合工程、前記混合工程で得られた混合物を成形する成形工程、並びに、前記成形工程で得られた成形物を乾燥させる乾燥工程、を含む可視光応答型多孔質光触媒体の製造方法を提供する。
 さらに、本開示は、前記可視光応答型多孔質光触媒体を用いる、魚介類の飼育又は病気治療方法、植物プランクトン又は病原菌の増殖抑制又は除去方法、及び有害物質の分解又は消臭方法を提供する。
 本開示の可視光応答型多孔質光触媒体によれば、可視光応答型光触媒活性を示すアルカリ土類金属の過酸化物を、セメントにて固結させてなる多孔質構造を有するため、幅広い波長域(200~1200nm)の光を吸収して、増大した光触媒体表面により多くのヒドロキシラジカルを発生させることで、従来の酸化チタンよりも効率よく酸化分解反応を行うことが可能となる。また、これにより従来の酸化チタンよりも効率よく様々な有機物質を分解し、浄化、防汚、抗菌、消臭等の高い効果を得ることができる。
 また、本開示の可視光応答型多孔質光触媒体は、様々な動植物に対する病原菌の殺菌、ウイルスの不活化、水系で大発生し水質汚染の要因となるアオコ(藻類)の増殖抑制又は除去などの用途にも、極めて有効である。特に、長期間使用した後でも高い光触媒活性を維持できるうえに、セルフクリーニングも可能であることから、長期間継続した利用が可能であり、維持費も低く抑えることができる。
 さらに、本開示の可視光応答型多孔質光触媒体は、原料と水を混合し、成形し、乾燥させる、という極めて簡潔な工程によって製造することができる。また、上記原料も、過酸化カルシウムとセメントという安価かつ天然由来の物質である。それゆえ、従来の光触媒と比べて、製造コストを大幅に抑えることができるうえに、環境への悪影響も少ない。
本実施の形態の可視光応答型多孔質光触媒体の(a)多孔質構造、及び(b)魚介類の水槽における使用、を示す写真像図である。 可視光応答型多孔質光触媒体の紫外線照射によるセルフクリーニングを示す写真像図である(実施例11)。図中、(a)は光照射前、(b)は光照射後、の様子をそれぞれ示す。図2(a)、(b)において、右半分は紫外線カットフィルムで覆った部分である。 可視光応答型多孔質光触媒体の可視光照射によるセルフクリーニングを示す写真像図である(実施例11)。図中、(a)は光照射前、(b)は光照射後、の様子をそれぞれ示す。 可視光応答型多孔質光触媒体とポリフェノール鉄錯体カプセルを併用した魚介類の飼育又は病気の治療方法を示す写真像図である(実施例12)。図中、(a)は多孔質光触媒体、(b)はポリフェノール鉄錯体カプセル、をそれぞれ示す。 ポリフェノール鉄錯体カプセルの製造工程を示す図である。 ポリフェノール鉄錯体カプセルの製造工程と、製造したカプセルを示す写真像図である。 過酸化カルシウムとホワイトセメントの混合比率の異なる可視光応答型多孔質光触媒体の製造例を示す写真像図である(実施例1)。図中、左から順に、ホワイトセメント添加量が10g、5g、2.5gである。 過酸化カルシウムとホワイトセメントの混合比率の異なる可視光応答型多孔質光触媒体を、水に添加したときの安定性を示す写真像図である(実施例1)。図中、左から順に、ホワイトセメント添加量が10g、5g、2.5g、0gである。 過酸化カルシウムとホワイトセメントの混合比率の異なる可視光応答型多孔質光触媒体の製造例を示す写真像図である(実施例2)。図中、左から順に、ホワイトセメント添加量が10g、20g、30g、60gである。 過酸化カルシウムとホワイトセメントの混合比率の異なる可視光応答型多孔質光触媒体の、紫外線照射によるメチレンブルー分解能を示す写真像図である(実施例2)。図中、(a)は試験開始時、(b)は24時間後、(c)は48時間後、の様子をそれぞれ示す。また、図10(a)~(c)において、左から順に、ホワイトセメント添加量が10g、20g、30g、60gである。 発泡剤添加量の異なる可視光応答型多孔質光触媒体の製造例を示す写真像図である(実施例3)。図中、左から順に、発泡剤添加量が0g、0.1g、0.5g、1.0gである。 発泡剤添加量の異なる可視光応答型多孔質光触媒体の、紫外線照射によるメチレンブルー分解能を示す写真像図である(実施例3)。図中、(a)は試験開始時、(b)は12時間後、(c)は24時間後、(d)は36時間後、の様子をそれぞれ示す。また、図12(a)~(d)において、左から順に、ホワイトセメント添加量が0g、0.1g、0.5g、1.0gである。 可視光応答型多孔質光触媒体の可視光照射によるメチレンブルー分解能を示す写真像図である(実施例4)。図中、(a)は可視光照射前、(b)は可視光照射後、の様子をそれぞれ示す。また、図13(a)、(b)において、左は多孔質体添加区、右は無添加処理区(対照)を示す。 可視光応答型多孔質光触媒体の紫外線照射によるメチレンブルー分解能を示す写真像図である(実施例5)。図中、上は紫外線照射前、下は紫外線照射後、の様子を示し、(a)は暗条件処理区(対照)、(b)は紫外線照射区を示す。 可視光応答型多孔質光触媒体の太陽光照射による藻の増殖抑制効果を示す写真像図である(実施例6)。図中、左は照射開始時、右は照射開始7日後、の様子をそれぞれ示し、(a)は無添加処理区(対照)、(b)は多孔質体添加区を示す。 可視光応答型多孔質光触媒体の太陽光照射による殺藻効果を示す写真像図である(実施例7)。図中、左は照射開始時、右は照射開始3日後、の様子をそれぞれ示し、(a)は無添加処理区(対照)、(b)は多孔質体添加区を示す。 可視光応答型多孔質光触媒体の太陽光照射による殺藻効果を示す写真像図である(実施例8)。図中、上は太陽光照射処理前、下は太陽光照射処理後、の様子を示し、(a)は暗条件処理区(対照)、(b)は太陽光照射区を示す。 実施例8の殺藻試験における各処理区のクロロフィル濃度を示すグラフである。縦軸はクロロフィル濃度(μM/mL)、バーは標準偏差を示す。また、グラフに付された異なるアルファベットは、LSD法により5%水準で有意差が認められたことを示す。 可視光応答型多孔質光触媒体による殺菌効果を示す写真像図である(実施例9)。図中、(a)は対照区(多孔質体無添加)、(b)は多孔質体添加区を示す。 可視光応答型多孔質光触媒体による殺菌効果を示す写真像図である(実施例10)。図中、(a)は対照区(暗条件処理区)、(b)は照射処理区を示す。 3カ月間水槽で使用した可視光応答型多孔質光触媒体によるメチレンブルー分解能を示す写真像図である(試験例1)。図中、(a)は暗条件処理区(対照)、(b)は紫外線照射区を示す。
 以下、本実施の形態の可視光応答型多孔質光触媒体について詳しく説明する。
 本実施の形態に係る「可視光応答型多孔質光触媒体」(以下、「多孔質光触媒体」と省略することがある。)とは、図1(a)に示されるように、アルカリ土類金属の過酸化物がセメントにて固結されてなる多孔質体であって、可視光応答型光触媒活性を示すものである。
 この多孔質光触媒体の形状に特に制限はないが、例えば厚さは0.1~10cmの範囲の塊状とすることにより、内部まで光が届きやすくなるので好ましい。また、特に魚介類の水槽等で使用する場合は、景観を壊さないように、貝殻、サンゴ、小石などを模した形状としてもよい。さらに、任意の固体表面上に形成された、コーティング層の形状としてもよい。また、多孔質光触媒体の形態は、塊状の多孔質光触媒体を粉砕することにより、ビーズ状、顆粒状、粉末状の粉砕物とすることができる。また、複数の形態の多孔質光触媒体を、組み合わせて使用することもできる。
 「アルカリ土類金属の過酸化物」(以下、「過酸化物」と省略することがある。)としては、例えば過酸化カルシウム、過酸化マグネシウム、過酸化ストロンチウム、過酸化バリウム、過酸化ベリリウム、過酸化ラジウムが挙げられるが、過酸化カルシウム、過酸化マグネシウムが好ましく、特には過酸化カルシウムが好ましい。
 前記過酸化物は、水と反応して過酸化水素を生成し、酸素を発生する性質が知られている。しかしながら本発明者は、驚くべきことに、前記アルカリ土類金属の過酸化物そのものが、可視光応答型光触媒活性を示すことを発見した。
 「セメント」としては、例えば、ポルトランドセメント、混合セメント、エコセメントなどを挙げることができる。特に、光透過性の観点から、ポルトランドセメントの中でもホワイトセメントが好適に用いられる。また、ホワイトセメントを主成分として、他の種類のセメントやバインダを混合して使用してもよい。
 前記多孔質光触媒体は、基本的に、前記過酸化物と、前記セメントと、水と、を混合し、乾燥することにより製造することができる。前記過酸化物が水と反応することで酸素が発生するため、その気泡により多孔質構造体として形成される。
 このように多孔質構造を有することにより、前記多孔質光触媒体は、表面積が大きくなり高い反応効率を実現できる。特には、比重が水より軽く、水面に浮上する性質を有することが望ましい(図1(b)参照)。
 前記多孔質光触媒体の全固形分における、前記セメントの含有重量比は、通常17~80%、好ましくは20~70%、より好ましくは30~65%、特に好ましくは40~60%とすることができる。前記セメントの含有重量比が上記範囲より多いと、多孔質構造の形成が不十分となり反応効率が低下するうえに、前記多孔質光触媒体の比重が大きくなって水中に沈んでしまうため好ましくない。また、前記セメントの含有重量比が上記範囲より少ないと、前記多孔質光触媒体の耐久性が低下し、水中で崩壊し易くなるため好ましくない。
 なお、前記多孔質光触媒体の全固形分における、前記セメントの含有重量比が、30~60%である場合には、水以外の原料として前記過酸化物と前記セメントのみを用いて、高い反応効率と水面浮上性、耐久性とを兼ね備えた前記多孔質光触媒体を構成することができる。これらの原料は、特に人体及び環境に対する安全性が高く、かつ安価であることから、当該原料のみからなる前記多孔質光触媒体は、産業上の実用性が極めて高いものである。
 一方、前記多孔質光触媒体の全固形分における、前記過酸化物の含有重量比は、通常20~83%、好ましくは50~75%、より好ましくは60~70%とすることができる。
 前記多孔質光触媒体には、上記効果を妨げない限りにおいて、上記原料以外に、他の光触媒、添加剤などが含有されていてもよい。
 「他の光触媒」としては、光触媒活性を有する物質であれば制限なく用いることができる。具体的には、後述するポリフェノール鉄錯体や、酸化チタンなどを挙げることができる。これらの他の光触媒は、単独で用いても、複数種を混合して用いてもよい。
 「添加剤」としては、例えば、加熱又はアルカリとの反応により、二酸化炭素、酸素、窒素などのガスを発生させて、多孔質構造の形成に寄与する発泡剤などを挙げることができる。これらの添加剤は、単独で用いても、複数種を混合して用いてもよい。
 「発泡剤」としては、例えば、炭酸水素ナトリウム、炭酸アンモニウム、粉末アルミニウム、塩化アルミニウムより選ばれた1以上のものを用いることができる。
 前記多孔質光触媒体の全固形分における、前記「他の光触媒」の含有重量比は、通常60%以下とすることができる。また、前記多孔質光触媒体の全固形分における、前記「添加剤」の含有重量比は、通常10%以下とすることができる。前記多孔質光触媒体の全固形分における、前記「発泡剤」の含有重量比は、通常0.4~4.0%とすることができる。
 前記多孔質光触媒体は、可視光を含む幅広い波長域の光を吸収して、強力な光触媒活性を発揮する。具体的には、太陽光や、200~1200nmという幅広い波長域の光、すなわち紫外線、可視光、赤外線から選ばれた1以上の光を照射することにより、強力な殺菌、殺藻及び水質浄化作用が示される。
 本明細書において「紫外線」とは、380nm以下の波長域の光を指す。「可視光」とは、ヒトの目で見える波長域である波長380~750nmの光を指す。具体的には、「可視光」には、380~450nm(紫色光)、450~495nm(青色光)、495~570nm(緑色光)、570~590nm(黄色光)、590~620nm(橙色光)、620~750nm(赤色光)の波長域の光が含まれる。また、「赤外線」とは、750nm以上の波長域の光を指す。
 中でも、前記多孔質光触媒体は、前記可視光のうち390~660nmの波長の光を照射した時に強い光触媒活性を示す。特に570~590nmの波長の黄色乃至緑色光を照射することによって、前記多孔質光触媒体は極めて強い光触媒活性(殺藻、殺菌、水質浄化作用)を示す。
 また、前記多孔質光触媒体は、紫外線及び赤外線を照射した時にも強い光触媒活性を示す。紫外線では、特に200~390nmの波長の光を照射することにより、前記多孔質光触媒体は強い活性を示す。赤外線では特に800~1200nmの波長の光を照射することにより、前記多孔質光触媒体は強い活性を示す。
 前記多孔質光触媒体を水に投入し、前記光を照射すると、前記過酸化物と水との反応によって過酸化水素及び酸素が水中に溶出されるとともに、光触媒活性によりヒドロキシラジカルも生成される。
 前記過酸化物は水に溶けにくいため、酸素及び過酸化水素は長期間にわたり徐々に溶出される。また、光触媒活性も長期間安定に維持される。
 前記多孔質光触媒体の表面に汚れや藻類などが付着すると、光触媒活性が低下するが、図2及び図3に示されるように、強い光(紫外線、可視光、赤外線から選ばれた1以上の光、特に紫外線が好ましい)を照射することによりセルフクリーニングが可能であるため、光触媒活性を回復させることができる。ここで、「強い光」とは、例えば100cd(カンデラ)以上、好ましくは150cd以上の光とすることができる。
 上記した多孔質光触媒体は、例えば下記のようにして製造することができる。
 すなわち、前記可視光応答型多孔質光触媒体の製造方法は、アルカリ土類金属の過酸化物及びセメントを含む原料と、水と、を混合する混合工程;前記混合工程で得られた混合物を成形する成形工程;並びに、前記成形工程で得られた成形物を乾燥させる乾燥工程;を含むものである。
(1)まず、前記過酸化物及び前記セメントを、それぞれ多孔質光触媒体の全固形分における上記の含有重量比となるように混合する。これらの原料は、いずれも粉末状又は粒状のものが好ましく、特には粒径5mm以下のものが好適に用いられる。
 また、上記原料以外の原料(水を除く)を用いる場合は、この段階で混合する。
(2)次に、上記(1)で混合した前記原料に水を加え、混合する。加水率としては、前記原料の全固形分に対して50~80重量%、好ましくは50~70重量%とすることができる。
 このとき、前記過酸化物が水と反応することで酸素が発生する。また、前記発泡剤を含有させる場合は、当該発泡剤からもガスが発生する。これらのガスが気泡となり、多孔質構造を形成させる。
(3)そして、上記(2)で得られた混合物を成形する。形状に制限はないが、例えば厚さは0.1~10cmの範囲とすることにより、前記多孔質光触媒体の内部まで光が届きやすくなるので好ましい。特に魚介類の水槽等で使用する場合は、景観を壊さないように、貝殻、サンゴ、小石などを模した形状に成形してもよい。この場合、多孔質光触媒体が浮上しないよう、重りを付けることが好ましい。また、成形手段にも特に制限はない。例えば、任意の固体表面上に前記混合物を塗布し、光触媒コーティング層を形成してもよい。
(4)さらに、上記(3)で得られた成形物を乾燥させ、固化させる。
 乾燥方法としては多孔質体が固化すればよく、特に限定されないが、例えば熱風又は送風乾燥、加熱乾燥などが挙げられる。また、乾燥条件も特に限定されないが、例えば20~98℃、好ましくは30~80℃、より好ましくは40~60℃の温度で、1~36時間、好ましくは4~24時間、より好ましくは6~18時間とすることができる。
 また、上記工程の他にも、粉砕工程などを含んでいてもよい。粉砕工程は、乾燥工程において固化した多孔質光触媒体を、ハンマーや乳鉢等を用いて手作業で、又は粉砕機、ビーズミル等の装置を用いて粉砕し、粉砕物を得る工程である。粉砕物の形態としては、例えば、ビーズ状、顆粒状、粉末状などが挙げられる。このように粉砕した多孔質光触媒体では、表面積が増大することで、藻類や微生物、有機物質などとの接触性が高まり、光触媒活性をより向上させることができる。また、粉砕物の形態である多孔質光触媒体を、適当な樹脂やバインダーと混合することで、光触媒コーティング剤としても利用できる。
 上記の製造方法により得られた多孔質光触媒体は、可視光を含む幅広い波長域の光を吸収して、強力な殺菌、殺藻、有機物質分解、水質浄化作用などの光触媒活性を発揮する。また、前記多孔質光触媒体を水と接触させることで、水中に酸素及び過酸化水素が溶出される。これらの作用効果は長期間持続されるうえに、セルフクリーニングも可能であるため、長期間継続して使用することができる。
 次に、上記した可視光応答型多孔質光触媒体の使用方法及び効果について説明する。
 前記多孔質光触媒体は、表面にヒドロキシラジカル、過酸化水素及び酸素を発生させるため、魚介類の飼育又は病気治療、殺藻、殺菌、有機系の有害物質又は汚染物質の分解、及び消臭などの用途に利用することができる。
 また、前記多孔質光触媒体は、人体や環境に対して安全性が高い物質を原料としており、医薬、食品、公衆衛生、農林水産業、工業等、様々な用途に用いることができる。
・魚介類の飼育又は病気治療
 本実施の形態に係る可視光応答型多孔質光触媒体の使用方法の一形態として、魚介類の飼育又は病気治療方法が挙げられる。
 前記多孔質光触媒体は、光触媒活性による殺菌、水質浄化(有機物質分解)作用、並びに前記過酸化物と水との反応による酸素及び過酸化水素供給作用、を利用して、魚介類の飼育又は病気の治療のために用いることができる。
 すなわち、魚介類の飼育環境中に前記多孔質光触媒体を投入することによって、魚介類に酸素を供給し、水中に存在する病原微生物や植物プランクトンの増殖を抑制し、もしくは死滅させ、有機系の汚染物質を分解するといった効果が持続的に発揮される。
 これにより、病原微生物に感染した個体の治療が可能となるとともに、他の健康な個体が感染するのを予防することができるうえに、ヒドロキシラジカルや過酸化水素は短時間で分解するため、個体中に残留することもない。また、同時に酸素供給や水質浄化も可能となるため、個体の健康を増進することができ、かつ、水換えや清掃の手間も大幅に削減することができる。
 ここで、飼育及び病気治療の対象となる「魚介類」は特に限定されない。具体的には、淡水生物、海水生物の別を問わず、魚類、貝類、甲殻類、軟体動物などの全ての水産物を挙げることができる。
 治療の対象となる「病気」としては、微生物もしくはウイルスの感染に起因する病気であれば特に限定されない。ヒドロキシラジカルや過酸化水素は、あらゆる種類の微生物やウイルスに対して殺菌作用、分解作用を示すためである。
 前記多孔質光触媒体を用いる魚介類の飼育又は病気治療方法としては、図1(b)に示されるように、有効量の前記多孔質光触媒体を前記魚介類の水槽中に投入し、光照射を行うことによって、飼育又は病気治療を行うことができる。ここで、当該光照射における光及び波長域については、前述の通りである。
 前記光照射時間としては、例えば太陽光照射を1日当たり3時間以上、好ましくは6時間以上行うことによって、十分な効果が発揮される。また、LEDや蛍光灯等の比較的弱い光を照射する場合であっても、例えば1日当たり12時間以上、好ましくは20時間以上の処理によって十分な効果が発揮される。
 前記多孔質光触媒体の使用量は特に限定されず、所望の効果が得られる量とすればよい。具体的には、水1Lに対する前記多孔質光触媒体の重量として、10g以上、好ましくは20~200gとすることができる。
 前記多孔質光触媒体の前記病原微生物に対する効果の持続期間は、前記過酸化物の含有量等に応じて異なる。前記多孔質光触媒体の光触媒作用及び酸素、過酸化水素供給作用は長期間持続し、しかもセルフクリーニングが可能であることから、当該持続期間は、例えば、数カ月間~数年間とすることができる。なお、前記多孔質光触媒体は、人体や環境に対し安全性が高い物質により構成されているため、前記耐用期間が過ぎた後も水中に残存していても問題はない。
 前記多孔質光触媒体は、前記魚介類の水槽中に放置するだけで前述の効果が奏されるが、水槽中でエアポンプや撹拌等によって水流を発生させることによって、より高い効果を得ることができる。水槽全体の水を多孔質光触媒体と接触させることで、前記魚介類の飼育環境全体における殺菌、水質浄化が可能となるとともに、酸素を水槽全体に行き渡らせることができるためである。
前記した魚介類の飼育又は病気治療方法では、二価鉄イオン(Fe2+)を供給すると同時に、フェントン反応触媒活性及び可視光応答型光触媒活性に基づく殺菌及び水質浄化作用を奏する資材として、ポリフェノール鉄錯体カプセルを併用することができる(図4参照)。
 「ポリフェノール鉄錯体カプセル」とは、ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなるものである。
 「ポリフェノール鉄錯体」とは、ポリフェノール類又はその供給原料と、鉄供給原料と、を水存在下にて混合することによって得られた反応生成物であって、二価鉄イオン(Fe2+)がポリフェノール類と錯体構造を形成してなるものである。ポリフェノール鉄錯体については、特許第5733781号公報、特許第5804454号公報、特許第6057227号公報、特許第6179957号公報、特許第6202770号公報、特許第6340657号公報及び特許第6478209号公報に記載されている。
 「ポリフェノール類」とは、複数のヒドロキシ基を有するフェノール性分子の総称である。ほとんどの植物に含有される化合物であり、フラボノイドやフェノール酸など様々な種類が知られている。
 具体的な化合物の例としては、カテキン(エピカテキン、エピガロカテキン、エピカテキンガレート、エピガロカテキンガレートなど)、タンニン酸、タンニン、クロロゲン酸、カフェイン酸、ネオクロロゲン酸、シアニジン、プロアントシアニジン、テアルビジン、ルチン、フラボノイド(ケルシトリン、アントシアニン、フラバノン、フラバノール、フラボノール、イソフラボンなど)、フラボン、カルコン類(ナリンゲニンカルコンなど)、キサントフィル、カルノシン酸、エリオシトリン、ノビレチン、タンジェレチン、マグノロール、ホノキオール、エラグ酸、リグナン、クルクミン、クマリン、カテコール、プロシアニジン、テアフラビン、ロズマリン酸、キサントン、ケルセチン、レスベラトロール、没食子酸、フロロタンニン、などが挙げられる。また、分子内にこれらの化合物を1以上有する化合物(例えば、これらの化合物を含む形で結合し高分子化した複合体)も挙げることができる。
 前記「ポリフェノール類」は、上記のうち1種のみであってもよく、2種以上からなる組成物であってもよい。
 また、ある植物体から抽出したポリフェノール組成物については、その植物体の名称を付したポリフェノールとして呼ぶこともある。例えば、ブドウから抽出したポリフェノール類はブドウポリフェノールと呼ばれる。
 「ポリフェノール類の供給原料」としては、ポリフェノール類を含有する植物体(以下、「ポリフェノール含有植物体」と呼ぶ。)又はその加工品を用いることができる。ここで、「植物体」としては、植物体の果実、種子、茎、葉、外皮、芽、花、根、及び地下茎から選ばれる1以上を挙げることができる。
 「ポリフェノール含有植物体」としては、例えば、ハーブ類(ラベンダー、ミント、コリアンダー、クミン、セージ、レモングラス、ヨモギ、コンフリー、シソ、レモンバーム、オレガノ、キャットニップ、コモンタイム、ディル、ダークオパール、バジル、ヒソップ、ペパーミント、ラムズイヤーなど)、ドクダミ、マリゴールド、ブドウ、コーヒー(コーヒーノキ)、茶(チャノキ)、カカオ、アカシア、スギ、マツ、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ(桜桃)、グァバ、オリーブ、イモ類(サツマイモ、紫イモ(紫色素を多く含有するサツマイモ)、ジャガイモ、ヤマイモ、タロイモ(サトイモ、エビイモなど)、コンニャクイモなど)、柿(カキノキ)、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹、柑橘類(レモン、ライム、オレンジ、グレープフルーツ、ネーブル、ゆず、きんかん、かぼす、夏みかん、はっさく、いよかん、ライム、温州ミカン、シークヮーサー、マンダリンなど)、イチゴ、ブラックベリー、クランベリー、ラズベリー、ビルベリー、ハックルベリー、ウメ、桃、スモモ、ナシ、西洋ナシ、ビワ、キウイフルーツ、マンゴスチン、シシトウ、プルーン、メロン、ドラゴンフルーツ、クコ、カシス、カシュー、ガマズミ、ザクロ、アサイー、アロニア、ナス、トマト、大豆、黒大豆、小豆、サヤインゲン、落花生、黒胡麻、蕎麦、ダッタンソバ、ゴマ、紫キャベツ、ウルシ、ヌルデ、シュンギク、ブロッコリー、ホウレンソウ、コマツナ、ミツバ、オクラ、蕗、タマネギ、モロヘイヤ、シュンギク、ニンニク、紫タマネギ、アスパラガス、パセリ、ユーカリ、ウド、ギムネマ・シルベスタ、センナ、タンポポ、スギナ、シダ(ワラビ、ゼンマイなど)、ナラ、クヌギ、カエデ、セコイヤ、メタセコイヤ、ヒノキ、アカメガシワ、タカノツメ、アマチャ、アケビ、ヤマウコギ、リョウブ、タムシバ、コブシ、サルナシ、シロモジ、クロモジ、コシアブラ、クサギ、ホオノキ、マタタビ、バナバ、ルイボス、ラフマ、クズ、メグスリノキ、ウリン、メルバオ、アオギリ、スオウ、ブラジルボク、メリンジョ、サクラ、モクレン、イェルバ・マテ、メヒルギ、オヒルギ、ヤエヤマヒルギ、ハマザクロ、ニッパヤシ、ヒルギダマシ、ヒルギモドキ、サキシマスオウノキ、ゴボウ、ウコン、レンコン、海藻(海苔、ワカメ、昆布、アオサ、アラメ、サガラメなど)などを挙げることができる。
 中でも、ブドウ、コーヒー(コーヒーノキ)、茶(チャノキ)、カカオ、アカシア、スギ、マツ、ゆず、レモン、ハーブ類(ラベンダー、ミント、コリアンダー、クミン、セージ、シソ、レモングラス、ヨモギ、コンフリー、レモンバーム、オレガノ、キャットニップ、コモンタイム、ディル、ダークオパール、バジル、ヒソップ、ペパーミント、ラムズイヤーなど)、ドクダミ、マリゴールド、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ(桜桃)、グァバ、オリーブ、イモ類(サツマイモ、紫イモ(紫色素を多く含有するサツマイモ)、ジャガイモ、ヤマイモ、タロイモ(サトイモ、エビイモなど)、コンニャクイモなど)、柿(カキノキ)、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹が好適に用いられる。
 ポリフェノール含有植物体の「加工品」としては、ポリフェノール含有植物体の乾燥物、搾汁液、抽出物、抽出液などを挙げることができる。また、前記「加工品」は、搾汁液や抽出液を、さらに乾燥物としたものであってもよい。
 「乾燥物」としては、破砕、粉砕、粉末化などの処理を行ったものが望ましい。また、鉄との反応効率の観点を考慮すると、粒子径の小さい粉末にしたものが好適である。
 「抽出物」及び「抽出液」の抽出溶媒としては、水、熱水、アルコール(特にエタノール)、含水アルコール(特に含水エタノール)が好適である。
 ポリフェノール類の供給原料としては、ポリフェノール含有植物体又はその加工品を水もしくは熱水で抽出し、その後に残った残渣についても、好適に用いることができる。このような抽出残渣としては、例えばコーヒー粕、茶殻などを挙げることができる。
 「コーヒー粕」とは、コーヒー豆の焙煎粉砕物を水又は熱水で抽出した後の残渣を指す。コーヒー粕は、ポリフェノール類を非常に多く含んでいるうえに、廃棄物であるため原料コストが低く抑えられるので、ポリフェノール類の供給原料として好適である。また、コーヒー豆の焙煎粉砕物を水又は熱水で抽出した成分(いわゆる淹れたコーヒーの成分)や、コーヒー豆、その焙煎物、粉砕物なども、ポリフェノール類を多く含んでいるため、好適に用いることができる。
 「茶殻」とは、茶葉又はその粉砕物を水又は熱水で抽出した後の残渣を指す。茶殻は、ポリフェノール類を非常に多く含んでいるうえに、廃棄物であるため原料コストが低く抑えられるので、ポリフェノール類の供給原料として好適である。
 茶殻の原料である「茶葉」としては、チャノキの茎葉を摘んだものであれば如何なるものも用いることができる。具体的には、緑茶(煎茶、番茶、茎茶、ほうじ茶など)、青茶(ウーロン茶など)、紅茶、黒茶(プーアル茶など)などを挙げることができる。中でも、緑茶、紅茶、ウーロン茶が好適である。
 また、茶葉又はその粉砕物を水又は熱水で抽出した成分(いわゆる淹れた茶の成分)や、茶葉、その加工品、粉砕物なども、ポリフェノール類を多く含んでいるため、ポリフェノール類の供給原料として好適に用いることができる。
 なお、ポリフェノール含有植物体又はその加工品を、還元状態で熱分解することによって得られる乾留液(植物乾留液)についても、ポリフェノール類の供給原料として好適に用いることができる。
 この植物乾留液には、ポリフェノール類が多く含まれることに加えて、フェノール類、有機酸、カルボニル類、アルコール類、アミン類、塩基性成分、その他中性成分などの多くの還元性有機物の分子が含まれると推測される。ここで「還元性有機物」とは、還元力が強く、三価鉄を二価鉄に還元する作用を有する有機物を指す。
 植物乾留液は粘りけのある液体で、外見は赤褐色~暗褐色を呈する。原料とする植物体によって木酢液、竹酢液、籾酢液などの種類があり、いずれも好適に用いることができる。これらの植物乾留液は原液のまま用いることもできるが、濃縮液、希釈液、これらの乾燥物として用いることも可能である。
 上記のポリフェノール類の供給原料は、1種のみを用いてもよく、2種以上を混合して用いてもよい。
 「鉄供給原料」としては、二価鉄の供給原料、三価鉄の供給原料、又は金属鉄の供給原料のいずれをも用いることができる。また、複数のものを混合して用いることもできる。
 ここで、「二価鉄の供給原料」としては、塩化鉄(II)、硝酸鉄(II)、硫酸鉄(II)、水酸化鉄(II)、酸化鉄(II)、酢酸鉄(II)、乳酸鉄(II)、クエン酸鉄(II)ナトリウム、グルコン酸鉄(II)など水溶性の二価鉄化合物;炭酸鉄(II)、フマル酸鉄(II)などの水不溶性の二価鉄化合物を挙げることができる。
 「三価鉄の供給原料」としては、塩化鉄(III)、硫酸鉄(III)、クエン酸鉄(III)、クエン酸鉄(III)アンモニウム、EDTA鉄(III)などの水溶性の三価鉄化合物;酸化鉄(III)、硝酸鉄(III)、水酸化鉄(III)、ピロリン酸鉄(III)などの水不溶性の三価鉄化合物を挙げることができる。
 また、これらの三価鉄化合物を多く含む天然原料として、赤玉土、鹿沼土、ローム(アロフェン質の鉄分を多く含む土壌)、ラテライト(酸化鉄(III)を多く含む土壌)、ゲータイト(非結晶質の鉱物を含む土壌)などの土壌;黄鉄鉱、白鉄鉱、菱鉄鉱、磁鉄鉱、針鉄鉱など天然の鉄鉱石;前記鉄鉱石が砂塵化した砂鉄;ヘム鉄、貝殻などの生体由来の物質;なども三価鉄の供給原料として用いることができる。
 また、「金属鉄の供給原料」としては、製錬鉄や合金などの鉄材を挙げることができる。その他、錆びも鉄供給原料として用いることができる。
 なお、上記の鉄供給原料は、水不溶性のものであっても、ポリフェノール類のキレート能によって水溶化するため、鉄供給原料として直接用いることが可能である。
 上記の鉄供給原料のうち、ポリフェノール鉄錯体を効率よく製造するためには、水溶性の二価鉄又は三価鉄の化合物を用いることが好適である。特には安価な塩化鉄、硫酸鉄などを用いることが好適である。また、原料コスト及び安定供給の観点からは、天然物である土壌(特に赤玉土、鹿沼土、ロームなど)、金属鉄を鉄供給原料として用いることが好適である。
 前記ポリフェノール鉄錯体は、ポリフェノール類又はその供給原料と、鉄供給原料と、を水の存在下で混合することによって得られる。
 これら原料の混合比率としては、前記ポリフェノール類、又は、ポリフェノール類の供給原料、の乾燥重量100重量部に対して、前記鉄供給原料を鉄元素の重量換算で0.1重量部以上、好ましくは1重量部以上、より好ましくは4重量部以上、さらに好ましくは10重量部以上、特に好ましくは20重量部以上となるように混合すればよい。鉄元素の割合が少なすぎる場合(鉄元素に対して前記ポリフェノール類の混合割合が多すぎる場合)には、過剰に存在するポリフェノール類がラジカル消去物質(スカベンジャー)として機能するため、フェントン反応や光触媒反応を阻害する可能性がある。
 また、鉄供給原料の混合比率の上限としては、前記ポリフェノール類、又は、ポリフェノール類の供給原料、の乾燥重量100重量部に対して、前記鉄供給原料を鉄元素の重量換算で100重量部以下、好ましくは80重量部以下、より好ましくは60重量部以下となる比率を挙げることができる。鉄元素の割合が多すぎる場合(鉄元素に対して前記ポリフェノール類の混合割合が少なすぎる場合)には、鉄イオンを二価の状態で維持できなくなりフェントン反応や光触媒反応の効率が低下し、好ましくない。
 なお、前記ポリフェノール類の供給原料として、前記ポリフェノール含有植物体の抽出物又は抽出液を用いる場合には、抽出原料として用いた当該ポリフェノール含有植物体の乾燥重量を「前記ポリフェノール類の供給原料の乾燥重量」とみなして、前記混合比率を算出すればよい。例えば、前記ポリフェノール類の供給原料として乾燥茶葉を用い、この茶葉を熱水抽出して得られた抽出液と、鉄供給原料と、を反応させたとする。この場合、当該乾燥茶葉の重量を「前記ポリフェノール類の供給原料の乾燥重量」として用いて、鉄供給原料との混合比率を算出する。
 同様に、前記ポリフェノール類の供給原料として、前記ポリフェノール含有植物体の加工品を用いる場合には、加工原料として用いた当該ポリフェノール含有植物体の乾燥重量を「前記ポリフェノール類の供給原料の乾燥重量」とみなして、上記混合比率を算出すればよい。
 上記原料の混合操作は、水存在下において行われる。ここで水存在下とは、前記ポリフェノール類と鉄が、水を媒質として反応できる条件であればよい。当該反応とは、具体的には、当該ポリフェノール類が鉄イオンを還元状態(二価鉄イオンであるFe2+の状態)にして、錯体を形成する反応であると推測される。
 水の量としては、少なくとも前記原料の混合や撹拌が可能な液量であれば良く、原料(ポリフェノール類と鉄)の混合物が湿潤する程度の量であってもよい。
 なお、ポリフェノール類の供給原料として、植物体搾汁や植物乾留液などを液体のままを用いる場合は、新たに媒質を添加することなく、直接鉄供給原料と混合して反応させることができる。
 混合操作としては、スターラー等で単純な撹拌混合を行えばよいが、ミキサー、大型撹拌槽、ボルテックス、シェーカーなどによっても行うことができる。
 混合時の水の温度としては、水が液体状態である温度(例えば1気圧であれば1~100℃)であればよい。加熱を要さない室温程度(例えば10~35℃)を採用することが可能であるが、加熱する場合、40℃以上、好ましくは50℃以上での加熱を行うことにより、ポリフェノール鉄錯体の生成が促進され好適である。
 混合時の水の温度の上限としては200℃(加圧加熱の場合)を挙げることができるが、製造コストの観点から、常圧条件における通常加熱での沸点である100℃以下、好ましくは90℃以下、さらに好ましくは70℃以下で行うことが望ましい。なお、100℃以上の反応条件においては、ポリフェノール類の熱分解を抑制するために密閉容器内で行う方が好適である。
 混合時間としては、ポリフェノール類と鉄が十分に接触するまで、おおよそ10秒以上行えばよいが、均一性を向上させるためには、好ましくは1分以上、より好ましくは3分以上、さらに好ましくは5分以上の混合処理を行うことが望ましい。
 また、混合時間の上限としては、微生物の繁殖による有機物の腐敗を防止するため、10日以内、好ましくは7日以内、より好ましくは5日以内、さらに好ましくは3日以内、特に好ましくは1日以内で行うことが望ましい。ただし滅菌処理を伴う場合は特に上限はない。
 上記混合処理を経て得られる反応生成物(ポリフェノール類と鉄との反応物)は、優れた二価鉄イオン供給活性、フェントン反応触媒活性及び光触媒活性を有する。当該反応生成物では、ポリフェノール類が鉄を二価鉄イオン(Fe2+)の状態にして、錯体(すなわち、ポリフェノール鉄錯体)を形成しているものと推測される。
 上記混合処理により得られる反応生成物は、反応後に得られた上清や含水状態の沈殿物をそのまま、本実施の形態におけるポリフェノール鉄錯体として用いることができる。また、当該上清又は沈殿物をそれぞれ分離回収した物や、それを乾燥処理(自然乾燥、焙煎、熱風乾燥など)して得られた乾燥物や、当該乾燥物をさらに水に溶いた懸濁物やその上清等についても、本実施の形態におけるポリフェノール鉄錯体として用いることが可能である。
 前記ポリフェノール鉄錯体カプセルは、上記ポリフェノール鉄錯体を含有する、アルギン酸ゲルからなるカプセルである。ここで、「アルギン酸ゲル」とは、アルギン酸分子が多価カチオンによりイオン架橋されることによって形成されるゲルである。
 前記ポリフェノール鉄錯体カプセルは、前記ポリフェノール鉄錯体を含む内層が前記アルギン酸ゲルの外層で覆われているコアシェル型のカプセル、又は、前記アルギン酸ゲルの粒子内部にポリフェノール鉄錯体が分散されているマトリックス型のカプセル、のいずれであってもよい。
 また、前記ポリフェノール鉄錯体カプセルの形状は、球形であっても非球形であってもよい。また、当該カプセルの形状は、前記内層を1つのみ有する単核構造でもよいし、内層を2つ以上有する多核構造であってもよい。上記のいずれの形態であっても、ポリフェノール鉄錯体を安定化し、徐放化できるという効果は変わらない。
 アルギン酸はD-マンヌロン酸(M)とL-グルロン酸(G)とで構成されるヘテロ多糖類である。アルギン酸のゲル化は、グルロン酸部分が架橋されることによって生じるため、MとGの構成比、即ちM/G比によって、得られるポリフェノール鉄錯体カプセルの物性が変化する。例えば、M/G比が大きい、すなわちマンヌロン酸含有量の大きいアルギン酸を用いると、柔らかく崩壊しやすいカプセルとなり、M/G比が小さい、すなわちグルロン酸含有量の大きいアルギン酸を用いると、固く崩壊し難いカプセルとなる。
 したがって、前記アルギン酸のM/G比は、前記ポリフェノール鉄錯体カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、前記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。
 前記ポリフェノール鉄錯体カプセルの大きさは、用途や使用環境などに応じて適宜設定すればよく、例えば球形のカプセルであれば直径1nm~1mの範囲とすることができる。例えば魚介類の水槽で使用する場合、対象とする魚介類による誤飲を防止できるように考慮して大きさを設定すればよい。具体的には、家庭の水槽で飼育される小型の観賞魚を対象とする場合は、球形のカプセルであれば当該カプセルの直径は2~10mm程度とすることができる。また、中型の魚を対象とする場合は直径10~100mm程度、大型の魚を対象とする場合は10~100cm程度とすることができる。
 また、前記ポリフェノール鉄錯体カプセルは、例えば魚介類の水槽内の景観を壊さないように、水草や海藻、貝殻、サンゴ、小石などを模した形状のカプセルとしてもよい。その場合、実際の水草や海藻、貝殻、小石などの大きさに応じて、カプセルの大きさも適宜設定すればよい。
 前記ポリフェノール鉄錯体カプセルにおける前記アルギン酸ゲルの含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。
 前記ポリフェノール鉄錯体カプセルにおける前記ポリフェノール鉄錯体の含有量は、特に限定されない。例えば、0.0001~99重量%、好ましくは0.01~10重量%とすることができる。
 前記ポリフェノール鉄錯体カプセルは、上記効果を妨げない限りにおいて、前記ポリフェノール鉄錯体以外の他の成分を含有していてもよい。当該「他の成分」としては、例えば、魚介類などの動植物、藻類、微生物といった有用生物の成長や増殖に必要な栄養素などが挙げられる。
 具体的には、ビタミンB群、ビタミンCなどの水溶性ビタミン又はその誘導体;銅、亜鉛、コバルト、マンガン、モリブデン、ホウ素、鉄などの微量要素又はその化合物;などからなる群より選ばれた1以上のものが挙げられる。なお、前記微量要素はカプセル中で過剰量の前記ポリフェノール類と反応して錯体を形成し得ることから、ポリフェノール錯体の状態で含有されていてもよい。
 前記ビタミンB群としては、ビタミンB、ビタミンB、ナイアシン(ビタミンB)、パントテン酸(ビタミンB)、ビタミンB、ビオチン(ビタミンB)、葉酸(ビタミンB)、ビタミンB12又はこれらの誘導体などを挙げることができる。
 前記微量要素の化合物としては、硫酸銅、硫酸亜鉛、塩化コバルト、塩化マンガン、硫酸マンガン、モリブデン酸ナトリウム、ホウ酸、塩化鉄、硫酸鉄などを挙げることができる。
 前記ポリフェノール鉄錯体カプセルにおける上記「他の成分」の合計含有量や各成分の含有量は、当該カプセルの用途に応じて適宜設定すればよく、特に限定されない。例えば、合計含有量は通常99重量%以下、好ましくは0.0001~95重量%、より好ましくは0.5~75重量%、さらに好ましくは5~60重量%とすることができる。
 具体例として、魚介類の飼育又は病気治療の目的で前記ポリフェノール鉄錯体カプセルに含有される、前記ビタミンB群及び前記微量要素の組成の一例を以下表1に示す。なお、下記の組成を濃縮又は希釈して前記ポリフェノール鉄錯体カプセルに含有させることもできる。
Figure JPOXMLDOC01-appb-T000001
※上記百分率はすべて重量比を示す。
 また、前記ポリフェノール鉄錯体カプセルに光を照射することによって、光触媒活性も発揮されるため、より強力な殺菌及び水質浄化作用が示される。具体的には、太陽光や、200~1400nmという幅広い波長域の光、すなわち紫外線、可視光、赤外線から選ばれた1以上の光を照射することにより、強力な殺菌及び水質浄化作用が示される。
 好ましくは、紫外線、特には近紫外線である200~380nmの波長の光を照射することにより、前記ポリフェノール鉄錯体カプセルは極めて強い光触媒活性を示す。また、可視光、特には波長の短い紫色光~青色光(380~495nm)の波長域の光を照射することにより、前記ポリフェノール鉄錯体カプセルは強い光触媒活性を示す。また、赤外線、好ましくは近赤外線である750~1400nm(特に900~1300nm付近、さらに特には1100~1300nm付近)の波長域の光を照射した時に、前記ポリフェノール鉄錯体カプセルは強い活性を示す。
 前記ポリフェノール鉄錯体カプセルを魚介類の水槽に添加し、前記光を照射すると、前記ポリフェノール鉄錯体の光触媒活性によりヒドロキシラジカルが生成される。
 したがって、前記多孔質光触媒体と前記ポリフェノール鉄錯体カプセルとを併用する場合には、幅広い波長の光を照射するのが好ましく、特には200~1200nmの波長の光が好ましい。また、照射時間については、前記多孔質光触媒体のみを用いる場合と同様でよい。
 前記ポリフェノール鉄錯体カプセルの添加量は特に限定されず、所望の効果が得られる量とすればよい。具体的には、水1Lに対して0.01g以上、好ましくは0.5~50g、より好ましくは1~20g、特に好ましくは5~10gとすることができる。
 上記したポリフェノール鉄錯体カプセルは、例えば下記のようにして製造することができる。
(1)まず、前述の方法により、前記ポリフェノール類又はその供給原料と、前記鉄供給原料と、を水存在下にて混合することによって、前記ポリフェノール鉄錯体を調製する。
(2)次に、得られた前記ポリフェノール鉄錯体と、アルギン酸塩と、を混合してアルギン酸水溶液(液1)を調製する(図5参照)。
 ここで、「アルギン酸塩」としては、アルギン酸の可溶性塩であればよく、具体的には、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸アンモニウムなどを挙げることができる。
 アルギン酸のM/G比は、ポリフェノール鉄錯体カプセルの用途や使用環境に応じて、当該カプセルが所望の物性となるように適宜設定すればよい。具体的には、上記アルギン酸のM/G比は通常0.05~5.0程度とすることができる。
 前記アルギン酸水溶液における前記アルギン酸塩の含有量は、通常0.001~99重量%であり、好ましくは0.1~10重量%である。
 前記アルギン酸水溶液における前記ポリフェノール鉄錯体の含有量は、特に限定されない。例えば、0.0001~99重量%、好ましくは0.01~10重量%とすることができる。
 前記アルギン酸水溶液には、上記効果を妨げない限りにおいて、ポリフェノール鉄錯体以外の他の成分を含有していてもよい。当該「他の成分」としては、上述の通りであり、例えば、ビタミンB群、ビタミンCなどの水溶性ビタミン又はその誘導体;銅、亜鉛、コバルト、マンガン、モリブデン、ホウ素、鉄などの微量要素又はその化合物;などからなる群より選ばれた1以上のものが挙げられる。
 前記アルギン酸水溶液における上記「他の成分」の合計含有量や各成分の含有量は、前記ポリフェノール鉄錯体カプセルの用途に応じて適宜設定すればよく、特に限定されない。例えば、合計含有量は通常99重量%以下、好ましくは0.0001~95重量%、より好ましくは0.5~75重量%、さらに好ましくは5~60重量%とすることができる。
 具体例として、魚介類の飼育又は病気治療の目的で用いられる前記ポリフェノール鉄錯体カプセルを製造する場合の、前記アルギン酸水溶液における前記ビタミンB群及び前記微量要素の組成の一例を以下表2に示す。なお、下記の組成を濃縮又は希釈して配合することもできる。
Figure JPOXMLDOC01-appb-T000002
※上記百分率はすべて重量比を示す。
(3)そして、図5に示されるように、多価カチオンを溶解させた溶液(液2)中に、上記(2)で調製したアルギン酸水溶液(液1)を滴下することにより、アルギン酸をゲル化させ、前記ポリフェノール鉄錯体カプセル(図6参照)を製造する。滴下方法としては、従来公知の方法により行えばよい。
 「多価カチオン」としては、例えば、カルシウム塩、鉄塩などを挙げることができる。より具体的には、塩化カルシウム、乳酸カルシウム、硫酸鉄、塩化鉄などであり、特にはゲル化が速く進むことから塩化カルシウムが好ましい。前記多価カチオン溶液の濃度は特に限定されないが、通常0.01~60重量%とすることができる。
 上記の方法により、アルギン酸ゲル粒子の内部に、ポリフェノール鉄錯体などの含有成分が分散されてなる、マトリックス型の球形カプセルが得られる。
 あるいは、同心二重ノズルの内筒から上記したポリフェノール鉄錯体などの含有成分を、外筒からアルギン酸塩水溶液を、それぞれ多価カチオン溶液中に滴下することにより、アルギン酸ゲル被膜の内側にポリフェノール鉄錯体などの含有成分が封入されてなる、コアシェル型の球形カプセルを製造することもできる。
 また、上記したポリフェノール鉄錯体などの含有成分を添加したアルギン酸水溶液(アルギン酸塩濃度:0.5~10重量%程度)をよく撹拌することでゲル状とし、これを所望のサイズの塊状に成形した後に、多価カチオン溶液に浸漬して硬化させることにより、所望のサイズのカプセルを製造することもできる。
 さらには、上記のようにゲル状にしたアルギン酸水溶液を、シリコン等により作製した所望の形状の型に入れて20分~1時間程度静置した後に、当該型に入れた状態で多価カチオン溶液に浸漬して硬化させることにより、水草や海藻、貝殻、サンゴ、小石などを模した所望の形状の異形カプセルを製造することもできる。
 上記のうちいずれの製法により得られたポリフェノール鉄錯体カプセルであっても、フェントン反応触媒、二価鉄イオン供給剤又は光触媒としての作用効果を長期間持続させることができる。なぜなら、カプセルの製法が異なっても、多孔質構造を有する前記アルギン酸ゲルが前記ポリフェノール鉄錯体その他の含有成分を環境中に徐々に放出するという機能は変わらないからである。
 また、前記アルギン酸ゲルからの前記ポリフェノール鉄錯体の放出速度をコントロールしたり、前記カプセルの崩壊時期をコントロールしたりすることによって、前記作用効果を持続させる期間を制御することもできる。
 このようなポリフェノール鉄錯体カプセルは、図4に示されるように、前記多孔質光触媒体と併用することによって、魚介類の飼育又は病気治療の用途において非常に高い効果を発揮する。
 具体的には、前記ポリフェノール鉄錯体カプセルを、前記魚介類の水槽に添加することにより、前記魚介類に二価鉄イオンが供給される。また、前記多孔質光触媒体が発生させる過酸化水素が、前記ポリフェノール鉄錯体によるフェントン反応に用いられる。さらに、前記ポリフェノール鉄錯体カプセルが有する可視光応答型光触媒活性により、幅広い波長の光を吸収して殺菌・水質浄化作用が奏される。これらの作用効果は長期間持続されるため、管理コストを極めて少なくすることができる。
・植物プランクトン、病原微生物の増殖抑制又は除去
 本実施の形態に係る可視光応答型多孔質光触媒体の使用方法の一形態として、植物プランクトン又は病原微生物の増殖抑制又は除去方法が挙げられる。
 前記多孔質光触媒体は、植物プランクトンや病原微生物に対する殺藻、殺菌、増殖抑制又は除去といった用途に用いることができる。以下において、これら用途を「殺藻等」と省略することもある。
 ここで、対象となる植物プランクトン、病原微生物としては、藻類やバクテリアだけでなく、真核微生物、古細菌、ウイルス、ウイロイド等を挙げることができる。ヒドロキシラジカルや過酸化水素は、あらゆる種類の微生物やウイルスに対して殺菌作用、分解作用を示すためである。
 当該殺藻等の対象物は水であり、淡水、海水のいずれであってもよい。具体的には、家庭や水族館等の水槽;飲食店、養殖場、輸送用等の生簀;水耕栽培等の養液タンク;プール、池、湖、ダム、下水処理場等の水などを挙げることができる。当該水には、前記効果を妨げない限りにおいて、他の殺菌成分や夾雑物、有用生物等が含まれていてもよい。
 前記多孔質光触媒体を用いる殺藻等の方法としては、前記多孔質光触媒体を前記水中に添加し、又は水面に浮かべ、光照射を行えばよい。前記多孔質光触媒体が水面に浮上する性質を有する場合、前記多孔質光触媒体を水面に浮かべ、水面付近に大量のヒドロキシラジカルを発生させることができるので、水面付近に発生する藻類(アオコ)の増殖抑制又は除去(殺藻)に特に好適である。
 前記殺藻等の方法における前記多孔質光触媒体の添加量は特に限定されず、所望の効果が得られる量とすればよい。具体的には、前記魚介類の飼育又は病気治療の場合と同様の添加量とすることができる。
 前記多孔質光触媒体に対して照射する光及び照射時間についても、前記魚介類の飼育又は病気治療の場合と同様とすることができる。
・有機物質の分解又は消臭
 本実施の形態に係る可視光応答型多孔質光触媒体の使用方法の一形態として、有機物質の分解又は消臭方法が挙げられる。
 前記多孔質光触媒体は、様々な有機物質の分解に用いることができる。特に、有機系の汚染物質や有害物質の分解に好適に用いることができるため、環境浄化の一工程において有用である。
 ここで、汚染物質や有害物質としては、水質汚染、土壌汚濁、大気汚染を引き起こす物質をいう。例えば、生活排水、し尿水、工場排水、汚染された河川や湖沼水、ゴミ廃棄場の土壌、産業廃棄物、農地、工場跡地などに含まれる人体や環境に有害な有機系物質を挙げることができる。
 分解対象となる具体的な有機物質としては、例えば、洗剤、飲食品残渣、し尿、糞便、農薬、悪臭物質、廃油、ダイオキシン、PCB、DNA、RNA、タンパク質など有機性廃棄物などを挙げることができる。特に、悪臭物質などの匂い物質を分解対象とする場合は、前記多孔質光触媒体は消臭剤として機能する。
 前記多孔質光触媒体を用いる前記有機物質の分解方法としては、前記有機物質が液体であるか、水中に分散された状態である場合には、例えば、前記多孔質光触媒体を、前記液体もしくは水中に添加し、又は前記液体の液面もしくは水面に浮かべ、光照射を行えばよい。
 この場合、照射する光及び照射時間については、前記した魚介類の飼育又は病気治療と同様とすることができる。また、前記液体又は水に対する前記多孔質光触媒体の添加量についても、前記魚介類の飼育又は病気治療の場合と同様とすることができる。
 あるいは、前記有機物質の分解方法は、前記多孔質光触媒体をフィルター状に形成し、当該フィルターに光照射を行いながら、前記液体である有機物質又は前記有機物質を含む水を、当該フィルター状の多孔質光触媒体中に通過させる方法でもよい。
 さらに、前記有機物質が気体であるか、空気中に分散された状態である場合には、例えば、前記フィルター状の多孔質光触媒体に光照射を行いながら、前記フィルター中に前記気体又は空気を通過させる方法を採用することができる。
 このようなフィルター状の多孔質光触媒体に照射する光については、前記した魚介類の飼育又は病気治療と同様とすることができる。
 前記有機物質の分解方法によれば、難分解性の有機物質について効率良く分解することができる。例えば、1000cdの光を照射する場合であれば、1日あたり少なくとも20g/L以上の有機物質の分解が可能である。
・水素の製造
 本実施の形態に係る可視光応答型多孔質光触媒体の使用方法の一形態として、水素製造方法が挙げられる。前記多孔質光触媒体の強力な光触媒活性により、水を酸素と水素に酸化分解することができる。すなわち、本開示によれば、前記多孔質光触媒体を用いて、水を酸化分解して水素を発生させる工程を含む、水素製造方法が提供される。
 前記多孔質光触媒体を用いる水素の製造方法としては、例えば、前記多孔質光触媒体を水中に添加し、又は水面に浮かべ、光照射を行えばよい。ここで、前記多孔質光触媒体に対して照射する光及び照射時間は特に限定されず、前述の通りとすることができる。また、前記多孔質光触媒体の使用量についても特に限定されない。
 以下、実施例により本実施の形態を詳しく説明する。
(実施例1)可視光応答型多孔質光触媒体の製造(1)
 アルカリ土類金属の過酸化物とセメントの混合比率の異なる多孔質光触媒体を製造し、水中での安定性を調べた。
 まず、過酸化カルシウム粉末(シグマアルドリッチ社製)20gに、ホワイトセメント(家庭化学工業社製)2.5g、5g、10gを混合した。これに、20mLの蒸留水を添加し、撹拌した。得られた混合物を型に入れ、50℃で12時間熱風乾燥させることにより、直径約7cm、厚さ約3cmの略円盤形状の多孔質光触媒体を製造した。
 製造した各多孔質光触媒体を図7に示す。図7において、左から順に、ホワイトセメント添加量が10g、5g、2.5gである。いずれの混合比率でも、原料に水を混合し、加熱することで酸素の気泡が発生し、多孔質構造体が形成された。なお、対照として、セメント無添加で上記と同様に製造したところ、多孔質構造体ではない固形物が得られた。
 次に、これらの多孔質光触媒体及び対照(セメント無添加)をそれぞれ蒸留水中に添加して、水中での安定性を調べた。結果を図8に示す。図8において、左から順に、ホワイトセメント添加量が10g、5g、2.5g、0gである。
 その結果、ホワイトセメント10g添加したもの(図8の左端)を除いて、すべてが水に添加した途端に崩壊し、粉末となって沈殿した(図8参照)。ホワイトセメント10g添加した多孔質光触媒体(図8の左端)は、水面に浮上する性質を有しており、図1(b)に示されるように、水と接触する表面に気泡(酸素)を発生させた。
 以上から、アルカリ土類金属の過酸化物とセメントと水のみを原料として、混合工程及び乾燥工程の2ステップからなる簡易な製造工程により、多孔質光触媒体を製造することができた。この多孔質光触媒体は、人体及び環境に対して安全性が高く、かつ、安価な物質で構成されているため、産業上の利用可能性が高いものと期待される。特に、多孔質光触媒体の全固形分に対するセメントの含有重量比が30%以上である場合に、水中で崩壊しない安定性と水面浮上性を有する多孔質構造体となることが分かった。
 なお、多孔質光触媒体は水との接触面積が大きいため、過酸化物と水との反応により生成する酸素及び過酸化水素が多く発生すると推測された。発生した過酸化水素はすぐに反応し消失してしまうため、発生量の測定は困難であるが、多孔質光触媒体表面における過酸化水素濃度を試験紙により測定した結果、3ppm以下の過酸化水素が検出された。したがって、水と接触する多孔質光触媒体表面に観察された気泡は、酸素の気泡であると考えられた。
(実施例2)可視光応答型多孔質光触媒体の製造(2)
 アルカリ土類金属の過酸化物とセメントの混合比率の異なる多孔質光触媒体を製造し、水中での安定性と有機物質分解能を調べた。
 まず、過酸化カルシウム粉末(シグマアルドリッチ社製)15gに、ホワイトセメント(家庭化学工業社製)10g、20g、30g及び60gを混合した。これに、25mLの蒸留水を添加し、撹拌した。得られた混合物を型に入れ、50℃で24時間熱風乾燥させることにより、直径約7cm、厚さ約3cmのドーナツ形状の多孔質光触媒体を製造した。
 製造した各多孔質光触媒体を図9に示す。図9において、左から順に、ホワイトセメント添加量が10g、20g、30g、60gである。いずれの混合比率でも、原料に水を混合し、加熱することで酸素の気泡が発生し、多孔質構造体が形成された。
 次に、これらの多孔質光触媒体を用いてメチレンブルーの分解実験を行った。まず、500mLビーカーに3mg/Lメチレンブルー水溶液を200mL入れた。これに上記で製造した多孔質光触媒体を添加して、紫外線(200~375nm、10μW/cm)を48時間連続照射し、メチレンブルーの色調変化を観察した。
 結果を図10に示す。図10において、(a)は試験開始時、(b)は24時間後、(c)は48時間後、の様子をそれぞれ示す。また、図10(a)~(c)において、左から順に、ホワイトセメント添加量が10g、20g、30g、60gである。
 その結果、すべてのセメント含有率において、多孔質光触媒体は、水(メチレンブルー水溶液)に添加しても崩壊せず、形状の変化も見られなかった(図10参照)。また、すべての多孔質光触媒体において、水と接触する表面に気泡(酸素)を発生させた。
 ホワイトセメント10g及び20g添加した多孔質光触媒体(図10の左側2つ)は、水面に浮上する性質を有していた。一方、ホワイトセメント30g及び60g添加した多孔質光触媒体(図10の右側2つ)は、水中に沈んだ。しかしながら、水面浮上性の有無にかかわらず、48時間後にはすべての多孔質光触媒においてメチレンブルー水溶液の青色が消失したことから、多孔質光触媒体の紫外線照射による酸化分解作用によりメチレンブルー(有機物質)が分解されたことが分かった(図10参照)。
 以上から、アルカリ土類金属の過酸化物をセメントにて固結させてなる多孔質光触媒体は、紫外線照射により有機物質を分解できることが示された(図10参照)。ホワイトセメントのみを用いて上記と同様のメチレンブルー分解実験を行ってもメチレンブルーを分解できないことから(データ表示せず)、過酸化カルシウムが光触媒活性を有するものと考えられた。
 また、全固形分に対するセメントの含有重量比が40%以上であるすべての多孔質光触媒体が、水中で崩壊しない安定な多孔質構造体となり、表面に気泡(酸素)を発生させることが分かった。特に、全固形分に対するセメントの含有重量比が60%以下である場合に、水面に浮上する性質を有する多孔質構造体となることが分かった(図10参照)。
(実施例3)可視光応答型多孔質光触媒体の製造(3)
 アルカリ土類金属の過酸化物とセメントに、異なる量の発泡剤を加えて多孔質光触媒体を製造し、水中での安定性と有機物質分解能を調べた。
 まず、過酸化カルシウム粉末(シグマアルドリッチ社製)15gとホワイトセメント(家庭化学工業社製)10gに、発泡剤(アルミニウム粉末、和光純薬株式会社製)を0.1g、0.5g及び1.0g混合した。これに、25mLの蒸留水を添加し、撹拌した。得られた混合物を型に入れ、50℃で24時間熱風乾燥させることにより、直径約7cm、厚さ約3cmのドーナツ形状の多孔質光触媒体を製造した。なお、対照として、発泡剤無添加で上記と同様に製造した。
 製造した各多孔質光触媒体を図11に示す。図11において、左から順に、発泡剤添加量が0g、0.1g、0.5g、1.0gである。いずれの添加量でも、多孔質構造体が形成された。
 次に、これらの多孔質光触媒体を用いてメチレンブルーの分解実験を行った。まず、500mLビーカーに3mg/Lメチレンブルー水溶液を200mL入れた。これに上記で製造した多孔質光触媒体を添加して、紫外線(200~375nm、10μW/cm)を36時間連続照射し、メチレンブルーの色調変化を観察した。
 結果を図12に示す。図12において、(a)は試験開始時、(b)は12時間後、(c)は24時間後、(d)は36時間後、の様子をそれぞれ示す。また、図12(a)~(d)において、左から順に、発泡剤添加量が0g、0.1g、0.5g、1.0gである。
 その結果、すべての発泡剤含有率において、多孔質光触媒体は、水(メチレンブルー水溶液)に添加しても崩壊せず、形状の変化も見られなかった(図12参照)。また、すべての多孔質光触媒体において、水と接触する表面に気泡(酸素)を発生させた。
 すべての発泡剤含有率において、多孔質光触媒体は水面に浮上する性質を有していた。また、36時間後にはすべての多孔質光触媒においてメチレンブルー水溶液の青色が消失したことから、多孔質光触媒体の紫外線照射による酸化分解作用によりメチレンブルー(有機物質)が分解されたことが分かった(図12参照)。
 以上から、アルカリ土類金属の過酸化物とセメント以外に、発泡剤を添加しても多孔質光触媒体を製造できることが分かった。また、発泡剤の添加量は、多孔質光触媒体による酸素供給及び有機物質分解能に影響を与えないことが示された(図12参照)。
(実施例4)可視光応答型多孔質光触媒体の可視光照射による有機物質分解効果
 多孔質光触媒体に可視光照射を行った場合の有機物質分解効果を確認した。
 まず、過酸化カルシウム粉末(シグマアルドリッチ社製)15gに、ホワイトセメント(家庭化学工業社製)10gを混合した。これに、20mLの蒸留水を添加し、撹拌した。得られた混合物を型に入れ、50℃で12時間熱風乾燥させることにより、直径約7cm、厚さ約3cm、重さ25gのドーナツ形状の多孔質光触媒体を製造した。
 次に、この多孔質光触媒体を用いてメチレンブルーの分解実験を行った。まず、2つの200mLビーカーに3mg/Lメチレンブルー水溶液を500mL入れ、一方のビーカーに上記で製造した多孔質光触媒体を浮かべた。そして、両方のビーカーに可視光(白色LED(470~660nm、40000cd))を12時間連続照射し、メチレンブルーの色調変化を観察した。
 結果を図13に示す。図13において、(a)は可視光照射前、(b)は可視光照射後、の様子をそれぞれ示す。また、図13(a)、(b)において、左は多孔質体添加区、右は無添加処理区(対照)である。
 その結果、多孔質体添加区ではメチレンブルー水溶液の青色が消失したことから、多孔質光触媒体の可視光照射による酸化分解作用によりメチレンブルー(有機物質)が分解されたことが分かった。一方、無添加処理区では青色が消失しないことから、メチレンブルーは分解されないことが示された(図13(b)参照)。したがって、多孔質光触媒体は、可視光を照射した場合にも有機物質を分解できることが示された。
(実施例5)可視光応答型多孔質光触媒体の紫外線照射による有機物質分解効果
 多孔質光触媒体に紫外線照射を行って、有機物質分解能を調べた。まず、過酸化カルシウム粉末(シグマアルドリッチ社製)15gとホワイトセメント(家庭化学工業社製)10gを混合し、これに20mLの蒸留水を添加して、実施例2と同様に25gの多孔質光触媒体を製造した。
 次に、この多孔質光触媒体を用いてメチレンブルーの分解実験を行った。まず、500mLビーカーに3mg/Lメチレンブルー水溶液を500mL入れた。これに上記で製造した多孔質光触媒体を浮かべて、紫外線(200~375nm、10μW/cm)を6時間連続照射し(紫外線照射区)、メチレンブルーの色調変化を観察した。対照として、紫外線照射を行わなかったこと以外は上記と同様に処理した暗条件処理区と比較した。
 結果を図14に示す。図14において、上は紫外線照射前、下は紫外線照射後、の様子をそれぞれ示す。また、(a)は暗条件処理区(対照)、(b)は紫外線照射区である。
 その結果、紫外線照射区ではメチレンブルー水溶液の青色が消失したことから、多孔質光触媒体の紫外線照射による酸化分解作用によりメチレンブルー(有機物質)が分解されたことが分かった。一方、暗条件処理区では青色が消失しないことから、メチレンブルーは分解されないことが示された(図14参照)。したがって、多孔質光触媒体による有機物質分解作用は、光触媒活性によるものであることが示された。
(実施例6)可視光応答型多孔質光触媒体による藻の増殖抑制効果
 実施例4と同様にして製造した多孔質光触媒体を用いて、藻(植物プランクトン)の増殖抑制効果を確認した。
 まず、1000mLビーカーに、蒸留水500mLと液体肥料(「ハイポネックス(登録商標)原液」、ハイポネックスジャパン社製)0.5mLを入れ、野外に3日間放置した。その後、ビーカー内で自然発生した藻を含む蒸留水を藻種とした。
 次に、2つの1000mLビーカーに、それぞれ上記の藻種50mLと蒸留水を合わせて500mLとなるように入れ、一方のビーカーに多孔質光触媒体を浮かべた。そして、両方のビーカーに7日間太陽光を照射(7日間の平均照射時間:約9時間)し、藻の発生量を観察した。
 結果を図15に示す。図15において、左は照射開始時、右は照射開始7日後、の様子をそれぞれ示す。また、(a)は無添加処理区(対照)、(b)は多孔質体添加区である。
 その結果、(b)多孔質体添加区では7日後でも水が無色のままであり、藻の増殖が抑制されたことが示された。一方、(a)無添加処理区では水が緑色に濁ったことから、藻の増殖を抑制できず、大量の藻が発生したことが示された(図15参照)。したがって、多孔質光触媒体は、太陽光の照射によって藻(植物プランクトン)の増殖を抑制できることが示された。
(実施例7)可視光応答型多孔質光触媒体による殺藻効果(1)
 実施例4と同様にして製造した多孔質光触媒体を用いて殺藻実験を行った。
 まず、2つの1000mLビーカーに、それぞれ蒸留水500mLと液体肥料(「ハイポネックス(登録商標)原液」、ハイポネックスジャパン社製)0.5mLを入れ、野外に3日間放置したところ、ビーカー内で藻が自然発生した(水が緑色に濁った)。このとき、ビーカー内のクロロフィル濃度を測定した結果、0.08μM/mLであった。上記ビーカーのうち一方に多孔質光触媒体を浮かべた。そして、両方のビーカーに太陽光を3日間照射(3日間の平均照射時間:約9時間)し、藻(植物プランクトン)の状態を観察した。
 結果を図16に示す。図16において、左は照射開始時、右は照射開始3日後、の様子をそれぞれ示す。また、(a)は無添加処理区(対照)、(b)は多孔質体添加区である。
 その結果、(b)多孔質体添加区では3日後に水が無色になり、藻が死滅したことが示された。一方、(a)無添加処理区では緑色の水の濁りがさらに増したことから、藻がさらに増殖したことが示された(図16参照)。したがって、多孔質光触媒体は、太陽光の照射によって藻(植物プランクトン)を死滅させられることが分かった。
(実施例8)可視光応答型多孔質光触媒体による殺藻効果(2)
 実施例4と同様にして製造した多孔質光触媒体を用いて殺藻実験を行った。まず、実施例7と同様にして、2つの1000mLビーカーに入れた500mLの蒸留水に藻を自然発生させた。これらのビーカーに多孔質光触媒体を浮かべ(図17)、一方のビーカーは暗条件とし、もう一方のビーカーに太陽光を3時間照射した。
 また、照射処理後は各処理区のクロロフィルa濃度を測定した。なお、クロロフィル濃度の測定は、Grimme and Boardman (1972) Biochem. Biophys. Res. Comm. 49: 1617-1623に記載の方法により行った。
 結果を図17及び図18に示す。図17において、上は太陽光照射処理前、下は太陽光照射処理後、の様子を示し、(a)は暗条件処理区(対照)、(b)は太陽光照射区を示す。
 図18は、各処理区における処理前及び処理後のクロロフィルa濃度の測定値(n=3の平均値)を示すグラフである。縦軸はクロロフィルa濃度(μM/mL)、バーは標準偏差を示す。また、グラフに付された異なるアルファベットは、LSD法により5%水準で有意差が認められたことを示す。
 図17から、(a)暗条件処理区では藻が生存していたのに対し、(b)太陽光照射区では照射後に水が無色になり、藻が死滅したことが示された。また、図18からは、暗条件処理区における処理前後のクロロフィル濃度はほとんど差がなかったのに対し、太陽光照射区では、処理後のクロロフィル濃度が顕著に低下したことが分かった。
 これらの結果から、多孔質光触媒体は、太陽光の照射によって藻(植物プランクトン)を死滅させられること、そして、多孔質光触媒体による殺藻作用は光触媒活性によるものであること、が示された。
(実施例9)可視光応答型多孔質光触媒体による殺菌効果(1)
 実施例4と同様にして製造した多孔質光触媒体を用いて、大腸菌に対する殺菌効果を確認した。
 まず、2つの1000mLビーカーに1.5×104cfuの腸管出血性大腸菌O157:H7(ATCC43888)を含む菌液500mLを入れ、一方のビーカーに多孔質光触媒体を浮かべた。そして、両方のビーカーの菌液をスターラーで撹拌しながら、可視光(白色LED、470~660nm、1000cd)を24時間連続照射した。対照として、多孔質体無添加の菌液と比較した。
 照射後に、各処理区から100μLの菌液を採取し、大腸菌検出用プレートに塗布した。2日間培養後に、大腸菌の生死を観察した。
 結果を図19に示す。図19において、(a)は対照区(多孔質体無添加)、(b)は多孔質体添加区を示す。図19から、(a)対照区では大腸菌が生存していたのに対し、(b)多孔質体添加区では大腸菌が全滅したことが分かった。このことから、多孔質光触媒体に光照射することにより、短時間で大腸菌を殺菌可能であることが示された。
(実施例10)可視光応答型多孔質光触媒体による殺菌効果(2)
 実施例4と同様にして製造した多孔質光触媒体を用いて、大腸菌に対する殺菌効果を確認した。
 まず、ビーカーに12×104cfuの腸管出血性大腸菌O157:H7(ATCC43888)を含む菌液200mLを入れ、そこに多孔質光触媒体を浮かべた。そして、菌液をスターラーで撹拌しながら、可視光(白色LED、490~660nm、20万Lux)を30分間連続照射した。対照として、可視光照射を行わなかったこと以外は上記と同様に処理した暗条件処理区と比較した。
 照射後に、各処理区から100μLの菌液を採取し、大腸菌検出用プレートに塗布した。2日間培養後に、大腸菌の生死を観察した。
 結果を図20に示す。図20において、(a)は対照区(暗条件処理区)、(b)は照射処理区を示す。図20から、(a)対照区では大腸菌が生存していたのに対し、(b)照射処理区では大腸菌が全滅したことが分かった。このことから、多孔質光触媒体による殺菌作用は光触媒活性によるものであることが示された。
(実施例11)セルフクリーニング試験
 実施例4と同様にして製造した多孔質光触媒体を用いて、セルフクリーニングが可能であることを確認した。
 表面に汚れが付着した多孔質光触媒体の半分を紫外線カットフィルムで覆った状態で、紫外線(250nm、10μW/cm)を24時間連続照射した。
 また、同じく表面に汚れが付着した多孔質光触媒体(半分に割れた物)に、可視光(白色LED、470~660nm、100000cd)を12時間連続照射した。
 結果を図2及び図3に示す。図2は紫外線、図3は可視光によるセルフクリーニングの結果を示す。図2及び図3において、(a)は光照射前、(b)は光照射後、の様子をそれぞれ示す。また、図2(a)、(b)において、右半分は紫外線カットフィルムで覆った部分である。
 いずれの試験においても、光照射後に多孔質光触媒体表面の汚れが消えた(図2及び図3参照)。これらの結果から、紫外線又は可視光照射により、多孔質光触媒体のセルフクリーニング機能が発揮され、表面の汚れを分解し、綺麗な状態を維持できることが分かった。
(試験例1)光触媒活性の持続性の検証
 実施例4と同様にして製造した多孔質光触媒体を用いて、光触媒活性の持続性を検証した。多孔質光触媒体は、3カ月間水槽で利用したものを使用した。
 まず、500mLビーカーに3mg/Lメチレンブルー水溶液を500mL入れた。これに上記の多孔質光触媒体を浮かべて、紫外線(200~375nm、10μW/cm)を12時間連続照射し(紫外線照射区)、メチレンブルーの色調変化を観察した。対照として、紫外線照射を行わなかったこと以外は上記と同様に処理した暗条件処理区と比較した。
 結果を図21に示す。図21において、(a)は暗条件処理区(対照)、(b)は紫外線照射区である。
 その結果、(b)紫外線照射区ではメチレンブルー水溶液の青色が消失したのに対し、(a)暗条件処理区では青色が消失しなかった(図21参照)。このことから、3カ月間使用した後でも、多孔質光触媒体の光触媒活性によりメチレンブルー(有機物質)を分解できることが分かった。したがって、多孔質光触媒体の光触媒活性は長期間(少なくとも3カ月以上)持続されることが示された。
(実施例12)可視光応答型多孔質光触媒体とポリフェノール鉄錯体カプセルを併用した魚介類の飼育
 多孔質光触媒体及び前記したポリフェノール鉄錯体カプセルを併用して、図4に示すように、魚介類の飼育を行った。図4中、(a)は多孔質光触媒体、(b)はポリフェノール鉄錯体カプセル、をそれぞれ示す。
(1)多孔質光触媒体の作製
 まず、次のようにして多孔質光触媒体を作製した。過酸化カルシウム(シグマ アルドリッチ社製)15gとホワイトセメント(家庭化学工業社製)10gを混合し、さらに蒸留水20mLを添加して混合した。この混合物を、厚さ30mm程度の小判形に成形した後、50℃で12時間熱風乾燥により乾燥させ、1個の多孔質光触媒体を得た。
 得られた多孔質光触媒体は、白色で比重が小さく、水面に浮上する。この多孔質体を2個作製した。
(2)ポリフェノール鉄錯体カプセルの作製
 また、次のようにしてポリフェノール鉄錯体カプセルを作製した。まず、ポリフェノール類供給原料としての乾燥させたコーヒー粕10gを、900mLの蒸留水に入れ、これを加圧下で120℃、20分間加熱した。これを濾紙で濾過し、コーヒー粕抽出液とした。当該コーヒー粕抽出液に、塩化鉄(III)8.71g(鉄元素として約3g)を添加し、これに蒸留水を加えて1000mLとし、撹拌することによりポリフェノール鉄錯体溶液を得た。
 なお、ここでのポリフェノール類供給原料(乾燥コーヒー粕)と鉄供給原料(塩化鉄(III))との混合比率は、ポリフェノール類供給原料100重量部に対して鉄供給原料が鉄元素として約30重量部の比率となる。
 上記ポリフェノール鉄錯体溶液中には、コーヒー粕から抽出されたポリフェノール類によって、塩化鉄(III)由来の鉄イオンがFe2+の状態でキレート化されてなるポリフェノール鉄錯体が含まれていると考えられる。
 次に、上記ポリフェノール鉄錯体溶液3mLと、アルギン酸ナトリウム4gと、を300mLの蒸留水に加えて撹拌し、アルギン酸水溶液(液1)を調製した(図5参照)。このアルギン酸水溶液(液1)を、10重量%硫酸カルシウム水溶液(液2)中に、スターラーで撹拌しながら滴下することにより、200gのポリフェノール鉄錯体カプセル(図6参照)を製造した。
 得られたカプセルは、直径約5.0mmの球形で、黒褐色を呈していた。黒褐色はコーヒー粕抽出液の色である。当該カプセルには、鉄元素換算で約0.04重量%のポリフェノール鉄錯体が含まれている。製造後のカプセルは、使用時まで蒸留水中で4℃にて保管した。
(3)魚介類の飼育試験
 4Lの水が入った水槽を2つ用意し、それぞれの水槽にグッピーを10匹ずつ入れて飼育した。一方の水槽には、上記で作製した多孔質光触媒体2個を浮かべ、上記で作製したポリフェノール鉄錯体カプセルを8g添加したが、もう一方の水槽には多孔質光触媒体とカプセルを添加しなかった(対照区)。どちらの水槽も、可視光LED(470~490nm)の連続照射を毎日8時間行うとともに、エアポンプにて常時酸素を供給した。飼育期間は7日間とした。
 飼育期間終了後に、それぞれの水槽から100μLの水を採取し、細菌検出用プレートに塗布して培養し、水槽水中の生菌数を求めた。その結果、多孔質光触媒体とカプセルを併用した水槽では、菌密度が5~56cfu/mLであったのに対し、対照区では2.7×10cfu/mL以上であった。
 このことから、多孔質光触媒体とポリフェノール鉄錯体カプセルを添加し、可視光を照射しながら飼育することで、水槽中の雑菌の増殖を抑制できることが示された。したがって、上記の方法により、魚介類の病気の治療及び予防も可能であることが示された。
 また、多孔質光触媒体とポリフェノール鉄錯体カプセルを添加するだけで、魚介類に障害を与えず、飼育を行うことができた。飼育期間中に、魚介類にポリフェノール鉄錯体による障害は見られず、病気の発生もなかった。また、水槽水が汚れにくくなった。
 これらの結果から、多孔質光触媒体から酸素と過酸化水素が供給され、カプセルからポリフェノール鉄錯体が溶出されることで、魚介類にFe2+イオンが供給され、健康増進及び病気の予防及び治療効果が奏されるとともに、フェントン反応が起こってヒドロキシラジカルによる殺菌、殺藻及び水質浄化効果が奏されたものと考えられる。
 また、可視光LEDを照射することにより、多孔質光触媒体とポリフェノール鉄錯体双方の光触媒活性が発揮され、水槽水の病原微生物を含む菌密度をさらに低下することができたものと考えられる。
(実施例13)可視光応答型多孔質光触媒体とポリフェノール鉄錯体カプセルの併用による殺菌効果
 実施例12と同様にして製造した多孔質光触媒体及びポリフェノール鉄錯体カプセルを併用して、可視光照射による殺菌試験を行った。
 まず、4Lの水が入った水槽を2つ用意した。一方の水槽には、多孔質光触媒体2個を浮かべ、ポリフェノール鉄錯体カプセルを8g添加したが、もう一方の水槽には多孔質光触媒体とカプセルを添加しなかった(対照区)。どちらの水槽も、可視光LED(470~490nm)の連続照射を毎日12時間行うとともに、エアポンプにて常時酸素を供給した。
 試験開始から5日後に、それぞれの水槽から100μLの水を採取し、細菌検出用プレートに塗布して培養し、水槽水中の生菌数を求めた。その結果、対照区の水槽には2.2×10cfuの細菌が増殖していたのに対し、多孔質光触媒体とカプセルを併用した水槽では5×10cfu以下であった。このことから、多孔質光触媒体とカプセルを添加し、可視光を照射するだけで、水槽中の病原微生物を含む雑菌の増殖を抑制できることが示された。
 多孔質光触媒体からは酸素及び過酸化水素が、ポリフェノール鉄錯体カプセルからはポリフェノール鉄錯体(Fe2+イオン)が、それぞれ水中に溶出されるが、これらは魚介類や環境に対して安全性が高い物質である。また、光触媒反応やフェントン反応により発生するヒドロキシラジカルもすぐに消失し、魚介類の体内に残存する心配はない。したがって、多孔質光触媒体とポリフェノール鉄錯体カプセルを用いた魚介類の飼育又は病気治療方法は、薬液を用いた従来の方法に比べて、魚介類や環境に悪影響を与える心配がない優れた方法であると考えられる。
 以上、図面を参照して、本開示の実施の形態及び実施例について詳述してきたが、具体的な構成は、これらに限らず、本開示の要旨を逸脱しない程度の設計的変更は、本開示に含まれる。
 例えば、前記実施例では、ホワイトセメントと過酸化カルシウムとから構成された可視光応答型多孔質光触媒体について説明したが、これに限定されるものではない。ホワイトセメントの代わりにポルトランドセメント、混合セメント、エコセメントなどを用い、また過酸化カルシウムの代わりに過酸化マグネシウムなどを用いた、任意の組み合わせからなる多孔質光触媒体についても、本開示に含めることができる。
 また、例えば、前記実施例では、多孔質光触媒体と、茶葉から抽出したポリフェノール類を用いたポリフェノール鉄錯体を含有するカプセルとの併用例について説明したが、これに限定されるものではない。ブドウ、コーヒー、カカオ、アカシア、スギ、マツ、ゆず、レモン、ハーブ類、ドクダミ、マリゴールド、サトウキビ、マンゴー、バナナ、パパイア、アボカド、リンゴ、サクランボ、グァバ、オリーブ、イモ類、柿、クワ、ブルーベリー、ポプラ、イチョウ、キク、ヒマワリ、竹といったあらゆる種類の植物体由来のポリフェノール類や、カテキン、タンニン酸、タンニン、クロロゲン酸、カフェイン酸、ネオクロロゲン酸、シアニジン、プロアントシアニジン、テアルビジン、ルチン、フラボノイド、フラボン、カルコン類、キサントフィル、カルノシン酸、エリオシトリン、ノビレチン、タンジェレチン、マグノロール、ホノキオール、エラグ酸、リグナン、クルクミン、クマリン、カテコール、プロシアニジン、テアフラビン、ロズマリン酸、キサントン、ケルセチン、レスベラトロール、没食子酸、フロロタンニンといった化合物としてのポリフェノール類を用いたポリフェノール鉄錯体を含有するカプセルも、多孔質光触媒体と組み合わせて用いることができる。
 また、例えば、前記実施例では、多孔質光触媒体を水面に浮上させて、光照射をおこなうことで、殺藻、殺菌、水質浄化、有機物質分解などの作用効果が奏される例について説明したが、これに限定されるものではなく、水中や水底においても光が届く範囲であれば、同等の効果を得ることができる。また、空気中に含まれる病原微生物や有機物質、気体の有機物質に対しても、多孔質光触媒体と接触させることで、ヒドロキシラジカルの働きによって分解可能であることから、本開示を適用することができる。
関連出願の相互参照
 本出願は、2021年2月9日に日本国特許庁に出願された特願2021-019328に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (11)

  1.  アルカリ土類金属の過酸化物をセメントにて固結させてなる、可視光応答型多孔質光触媒体。
  2.  全固形分における前記セメントの含有比率が17~80(w/w)%である、請求項1記載の可視光応答型多孔質光触媒体。
  3.  前記アルカリ土類金属がカルシウムであり、前記セメントがホワイトセメントである、請求項1又は2記載の可視光応答型多孔質光触媒体。
  4.  水面に浮上する性質を有する、請求項1~3のいずれか1項記載の可視光応答型多孔質光触媒体。
  5.  貝殻、サンゴ又は小石の形状を有する、請求項1~3のいずれか1項記載の可視光応答型多孔質光触媒体。
  6.  アルカリ土類金属の過酸化物及びセメントを含む原料と、水と、を混合する混合工程、
     前記混合工程で得られた混合物を成形する成形工程、並びに、
     前記成形工程で得られた成形物を乾燥させる乾燥工程、
     を含む可視光応答型多孔質光触媒体の製造方法。
  7.  前記混合工程における、前記原料の全固形分に対する加水率が、50~80(w/w)%であり、
     前記乾燥工程が、20~98℃で1~36時間の条件で行われる、
     請求項6記載の可視光応答型多孔質光触媒体の製造方法。
  8.  請求項1~5のいずれか1項記載の可視光応答型多孔質光触媒体を用いる、魚介類の飼育又は病気治療方法。
  9.  ポリフェノール鉄錯体がアルギン酸ゲルに封入されてなるポリフェノール鉄錯体カプセルを併用する、請求項8記載の魚介類の飼育又は病気治療方法。
  10.  請求項1~5のいずれか1項記載の可視光応答型多孔質光触媒体を用いる、植物プランクトン又は病原微生物の増殖抑制又は除去方法。
  11.  請求項1~5のいずれか1項記載の可視光応答型多孔質光触媒体を用いる、有害物質の分解又は消臭方法。
PCT/JP2022/001155 2021-02-09 2022-01-14 可視光応答型多孔質光触媒体、その製造方法及び用途 WO2022172688A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022581269A JPWO2022172688A1 (ja) 2021-02-09 2022-01-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021019328 2021-02-09
JP2021-019328 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172688A1 true WO2022172688A1 (ja) 2022-08-18

Family

ID=82837709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001155 WO2022172688A1 (ja) 2021-02-09 2022-01-14 可視光応答型多孔質光触媒体、その製造方法及び用途

Country Status (2)

Country Link
JP (1) JPWO2022172688A1 (ja)
WO (1) WO2022172688A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281204A (ja) * 2005-03-10 2006-10-19 Asahi Kasei Chemicals Corp 光触媒前駆体、それから誘導される光触媒
WO2007026796A1 (ja) * 2005-09-01 2007-03-08 Sekisui Jushi Kabushiki Kaisha 光触媒
CN102336467A (zh) * 2011-06-24 2012-02-01 北京工业大学 用于地下水原位好氧生物修复的释氧材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281204A (ja) * 2005-03-10 2006-10-19 Asahi Kasei Chemicals Corp 光触媒前駆体、それから誘導される光触媒
WO2007026796A1 (ja) * 2005-09-01 2007-03-08 Sekisui Jushi Kabushiki Kaisha 光触媒
CN102336467A (zh) * 2011-06-24 2012-02-01 北京工业大学 用于地下水原位好氧生物修复的释氧材料及其制备方法

Also Published As

Publication number Publication date
JPWO2022172688A1 (ja) 2022-08-18

Similar Documents

Publication Publication Date Title
KR101789359B1 (ko) 환원성 유기물을 원료로 하는 펜톤 반응 촉매
JP5733781B2 (ja) コーヒー粕あるいは茶殻を原料とするフェントン反応触媒
JP6931752B2 (ja) テニスボールを利用した環境浄化具及び用途
JP6478209B2 (ja) 還元性有機物を利用した光触媒
JP6340657B2 (ja) 還元性有機物を利用した光触媒
WO2022172649A1 (ja) ポリフェノール鉄錯体カプセル、過酸化水素カプセル、フェントン反応キット及び魚介類の飼育又は病気治療方法
Nguyen et al. Green synthesis of ZnFe2O4@ ZnO nanocomposites using Chrysanthemum spp. floral waste for photocatalytic dye degradation
JP2017225964A5 (ja)
CN104472603A (zh) 一种天然水体杀菌剂及其制备方法
Noor et al. Degradation of antibiotics in aquaculture wastewater by bio-nanoparticles: A critical review
Zeng et al. Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem
Das et al. Nanophytoremediation technology: A better approach for environmental remediation of toxic metals and dyes from water
WO2022172688A1 (ja) 可視光応答型多孔質光触媒体、その製造方法及び用途
JP2004049148A (ja) 食品等の処理剤
WO2022168519A1 (ja) 光触媒組成物及びその製造方法、並びに消臭剤
Osman et al. Impact of water contamination on tilapia (Oreochromis niloticus) fish yield
JP2015211967A (ja) 還元性有機物を原料とするフェントン反応触媒
JP6179957B2 (ja) 還元性有機物を原料とするフェントン反応触媒
JP2017080741A (ja) 還元性有機物を原料とするフェントン反応触媒
WO2022185706A1 (ja) ラジカル発生組成物、殺菌組成物、及び有機物の分解組成物
Fetouh et al. Potential health risk effects of silver nanoparticles on aquatic ecosystem: Regulations and guidelines
Leal Photo-Degradation of Contaminants as a Way of Remediation of Aquaculture’s Water
Nguyen et al. Recent advances in the biosynthesis of ZnO nanoparticles using floral waste extract for water treatment, agriculture and biomedical engineering
Kumar et al. Application of plant-based nanoparticles in wastewater decontamination
Brindhadevi et al. Bio-fabrication of calcium oxide nanoparticles from Coccinia grandis as a potential photocatalyst for dye degradation with antimicrobial activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752521

Country of ref document: EP

Kind code of ref document: A1