WO2022172657A1 - 船体制御装置、および、船体制御方法 - Google Patents
船体制御装置、および、船体制御方法 Download PDFInfo
- Publication number
- WO2022172657A1 WO2022172657A1 PCT/JP2022/000457 JP2022000457W WO2022172657A1 WO 2022172657 A1 WO2022172657 A1 WO 2022172657A1 JP 2022000457 W JP2022000457 W JP 2022000457W WO 2022172657 A1 WO2022172657 A1 WO 2022172657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hull
- index
- control
- control device
- parameter
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 39
- 238000004364 calculation method Methods 0.000 claims abstract description 48
- 238000011156 evaluation Methods 0.000 claims description 31
- 238000012545 processing Methods 0.000 description 42
- 238000010586 diagram Methods 0.000 description 20
- 238000004088 simulation Methods 0.000 description 20
- 230000001141 propulsive effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 5
- 238000012821 model calculation Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B49/00—Arrangements of nautical instruments or navigational aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/40—Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H25/00—Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
- B63H25/02—Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
- B63H25/04—Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring automatic, e.g. reacting to compass
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/0206—Control of position or course in two dimensions specially adapted to water vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/40—Control within particular dimensions
- G05D1/43—Control of position or course in two dimensions
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G3/00—Traffic control systems for marine craft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/10—Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B79/00—Monitoring properties or operating parameters of vessels in operation
- B63B79/20—Monitoring properties or operating parameters of vessels in operation using models or simulation, e.g. statistical models or stochastic models
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D2109/00—Types of controlled vehicles
- G05D2109/30—Water vehicles
- G05D2109/34—Water vehicles operating on the water surface
Definitions
- the present invention relates to ship autopilot (automatic navigation control) technology.
- Patent Document 1 describes an autopilot device for ships.
- the autopilot device of Patent Document 1 uses feedback control (PID control) to control the steering angle.
- PID control feedback control
- an object of the present invention is to provide a technique for appropriately setting feedback control according to the hull.
- a hull control device of the present invention includes a hull characteristic parameter setting section, a control parameter calculation section, and an autopilot execution section.
- the hull characteristic parameter setting section sets the hull characteristic parameters of a coupled system of first-order lag and dead time, which integrate the behavior of the steering gear and the behavior of the hull.
- the control parameter calculator uses the hull characteristic parameter to calculate a control parameter for feedback control with respect to the rudder angle of the steering gear.
- the autopilot execution unit uses the control parameters to perform feedback control.
- hull characteristic parameters are set according to the hull, and control parameters are calculated accordingly.
- FIG. 1 is a functional block diagram showing the configuration of an autopilot control section of a hull control system according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram showing the configuration of the hull control system including the hull control device according to the embodiment of the present invention.
- FIG. 3(A) is a diagram showing a target heading and a heading
- FIG. 3(B) is a diagram showing a rudder angle.
- FIG. 4 is a flowchart showing a schematic process from autotuning to autopilot control.
- FIG. 5 is a functional block diagram showing the configuration of the first aspect of the hull characteristic parameter setting section.
- FIG. 6 is a system configuration diagram of a first mode of setting hull characteristic parameters.
- FIG. 1 is a functional block diagram showing the configuration of an autopilot control section of a hull control system according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram showing the configuration of the hull control system including the hull control device according to the embodiment of the
- FIG. 7 is a functional block diagram showing the configuration of the characteristic parameter estimator.
- FIG. 8 is a waveform diagram showing an example of the response waveform of the turning angular velocity for setting the hull characteristic parameter.
- FIG. 9(A) is a flow chart showing a schematic process of the first calculation mode of the maneuverability index
- FIG. 9(B) is a flow chart showing a schematic process of calculating the hull characteristic parameters.
- FIG. 10 is a functional block diagram showing the configuration of the second aspect of the hull characteristic parameter setting section.
- FIG. 11 is a system configuration diagram of a second mode of setting hull characteristic parameters.
- FIG. 12 is a flow chart showing a schematic process of the second calculation mode of the maneuverability index.
- FIG. 13 is a graph showing an example of changes in heading over time.
- FIG. 14(A) is a graph showing changes over time in heading ⁇ H and target heading ⁇ set
- FIG. 14(B) is a graph showing changes over time in set turn rate rset and turning angular velocity rt
- FIG. 14(C) are graphs showing changes in the steering angle ra over time.
- 4 is a flowchart showing a schematic process of calculating control parameters
- FIG. 1 is a functional block diagram showing the configuration of an autopilot control section of a hull control system according to an embodiment of the present invention.
- FIG. 2 is a functional block diagram showing the configuration of the hull control system including the hull control device according to the embodiment of the present invention.
- FIG. 3(A) is a diagram showing a target heading and a heading
- FIG. 3(B) is a diagram showing a rudder angle.
- the hull control system 1 includes a hull control device 10 , a propulsive force generator 91 and a steering gear 92 .
- the hull control system 1 is provided in a hull 90 (see FIG. 3) that performs automatic navigation control (autopilot control).
- the propulsive force generator 91 is composed of an engine or a motor and a propeller or the like driven by this.
- the steering gear 92 is provided near the stern 902 (see FIG. 3) of the hull 90 .
- the hull control device 10 includes an autopilot control unit 20 (referred to as AP control unit 20 in FIG. 2), an operation unit 30, a sensor 40, a rudder angle sensor 42, a display unit 50, and a propulsion force control unit. 60.
- Autopilot control unit 20, operation unit 30, sensor 40, rudder angle sensor 42, display unit 50, and propulsion force control unit 60 are connected by data communication network 100 installed on the hull.
- the operation unit 30 is realized by, for example, a touch panel, physical buttons and switches, and the like.
- the operation unit 30 accepts various operations including autopilot control settings.
- the operation unit 30 outputs operation details to the autopilot control unit 20 .
- the sensor 40 measures the speed v of the vessel (hull) equipped with the hull control device 10, the heading ⁇ H , and other information relating to the movement, attitude, and position of the hull.
- the sensor 40 is realized by a positioning sensor using a GNSS (eg, GPS) positioning signal, an inertial sensor (an acceleration sensor, an angular velocity sensor, etc.), a magnetic sensor, or the like.
- GNSS eg, GPS
- an inertial sensor an acceleration sensor, an angular velocity sensor, etc.
- magnetic sensor or the like.
- the steering angle sensor 42 measures the steering angle ra of the steering 92 (see FIG. 3(B)).
- the steering angle sensor 42 outputs the measured steering angle ra to the autopilot control section 20 .
- the steering angle sensor 42 is implemented by, for example, a sensor that mechanically measures the steering angle, a sensor that electrically and optically measures the steering angle, or the like.
- the display unit 50 is realized by, for example, a liquid crystal panel.
- the display unit 50 displays information related to autopilot control input from the autopilot control unit 20 and the like. Although it is possible to omit the display unit 50, it is preferable to have the display unit 50. With the display unit 50, the user can easily grasp the autopilot control state and the like.
- the propulsive force control unit 60 connects to the propulsive force generation unit 91 .
- the propulsive force generator 91 generates a propulsive force with an output according to the propulsive force control signal from the propulsive force control unit 60 .
- the autopilot control unit 20 is configured by, for example, an arithmetic processing unit such as a CPU and a storage unit.
- the storage unit stores programs to be executed by the autopilot control unit 20 . Also, the storage unit is used when the CPU performs calculations.
- the autopilot control unit 20 executes autopilot control.
- the autopilot control unit 20 also calculates control parameters for autopilot control (proportional coefficient K P for P control, proportional coefficient K D for D control) and a set turn rate r set .
- control parameters for autopilot control proportional coefficient K P for P control, proportional coefficient K D for D control
- a set turn rate r set At this time, the autopilot control unit 20 calculates these control parameters (P control proportional coefficient K P , D control proportional coefficient K D ) and the set turn rate r set , using the hull characteristic parameter (turning performance Set the index K * , the followability index T * , and the dead time L).
- a method of setting hull characteristic parameters (turning index K * , trackability index T * , and dead time L) and a method of calculating control parameters (proportional coefficient KP for P control, proportional coefficient KD for D control) , and the set turn rate r_set will be described in detail later.
- the autopilot control unit 20 connects to the steering gear 92 .
- the autopilot control unit 20 sets a command steering angle ri by autopilot control and outputs it to the steering 92 .
- the steering 92 changes the steering angle ra according to the commanded steering angle ri.
- the heading ⁇ H is the direction in which the bow 901 of the hull 90 faces.
- the target azimuth ⁇ set is the azimuth to which the bow 901 is to be directed by autopilot control.
- the autopilot control unit 20 performs autopilot control so that the heading ⁇ H approaches the target heading ⁇ set , in other words, the argument d ⁇ , which is the difference between the target heading ⁇ set and the heading ⁇ H , approaches zero.
- the commanded steering angle ri is set sequentially as follows. At this time, the steering angle ra measured by the steering angle sensor 42 is fed back to the autopilot control section 20 . Based on this steering angle ra, the autopilot control unit 20 executes feedback control (for example, PID control) using the control parameters described above, sets the command steering angle ri according to the set turn rate rset, Output to the steering gear 92 .
- the P control proportionality coefficient KP and the D control proportionality coefficient KD are specifically set as control parameters by a method to be described later. are also set appropriately.
- the autopilot control unit 20 controls the control parameters (P control proportional coefficient K P , D control proportional coefficient K D ), the set turn rate r set , and the hull characteristic parameter (turning index K * , the followability index T * , and the dead time L) are set. That is, the autopilot control unit 20 sets a hull characteristic parameter of a coupled system of first-order delay and dead time, and calculates and sets a control parameter and a set turn rate from the hull characteristic parameter.
- the autopilot control unit 20 can perform appropriate feedback control according to the shape and size of the hull 90 and the steering gear 92, that is, according to the behavior of the hull 90 and the behavior of the steering gear 92. . Therefore, the hull control device 10 can perform appropriate autopilot control according to the shape and size of the hull 90 and the steering gear 92 .
- the hull 90 when the hull 90 is small and the operation of the steering gear 92 is not so fast as to the operation of the hull 90 , in other words, the hull 90 operates in accordance with the operation of the steering gear 92 . Autopilot control using the settings described below works more effectively when it is easier.
- the autopilot control unit 20 includes a hull characteristic parameter setting unit 21, a set turn rate calculation unit 22, a control parameter calculation unit 23, and an autopilot execution unit 24 (AP execution unit 24 in FIG. ) is provided.
- the hull characteristic parameter setting unit 21 sets hull characteristic parameters estimated by a coupled system of first-order lag and dead time using one of a plurality of types of setting methods. That is, the hull characteristic parameter setting unit 21 sets the turning index K * , the followability index T * , and the dead time L.
- the hull characteristic parameter setting unit 21 outputs the hull characteristic parameters to the set turn rate calculator 22 and the control parameter calculator 23 .
- the set turn rate calculator 22 calculates the set turn rate r set using the hull characteristic parameters (turning index K * , trackability index T * , and dead time L) and the target heading ⁇ set . .
- the set turn rate calculation unit 22 outputs the set turn rate r set to the control parameter calculation unit 23 and the autopilot execution unit 24 .
- the control parameter calculator 23 uses the hull characteristic parameters (turning index K * , tracking index T * , and dead time L) and the set turn rate r set to calculate the control parameter (P control proportional coefficient K P , D control proportional coefficient K D ) is calculated.
- the control parameter calculator 23 outputs the control parameters (P control proportional coefficient K P , D control proportional coefficient K D ) to the autopilot execution unit 24 .
- the autopilot execution unit 24 performs feedback control using the control parameters (P control proportional coefficient K P , D control proportional coefficient K D ) and the set turn rate r set to change the command steering angle ri to Output to the steering gear 92 .
- FIG. 4 is a flowchart showing a schematic process from autotuning to autopilot control.
- the arithmetic processing unit performs predetermined processing and control to obtain hull characteristic parameters (turning index K * , followability index T * , and dead time L). ) is set (S11).
- the arithmetic processing unit uses the hull characteristic parameters to calculate a set turn rate r set (S12).
- the arithmetic processing unit calculates control parameters (proportional coefficient K P for P control, proportional coefficient K D for D control) using the hull characteristic parameter and the set turn rate r set (S13).
- the arithmetic processing unit performs autopilot control using the control parameters and the set turn rate r set (S14).
- FIG. 5 is a functional block diagram showing the configuration of the first aspect of the hull characteristic parameter setting section.
- FIG. 6 is a system configuration diagram of a first mode of setting hull characteristic parameters.
- the hull characteristic parameter setting unit 21 includes a maneuverability index calculator 211 , a steering speed calculator 212 , and a characteristic parameter estimator 213 .
- the heading ⁇ H , the turning angular velocity rt, and the rudder angle ra are input to the maneuverability index calculator 211 .
- These heading ⁇ H , turning angular velocity rt, and rudder angle ra are generated for calculating the operability index, and are obtained by, for example, a Z test (more specifically, a 5° Z test). .
- the heading ⁇ H is input from the sensor 40 to the maneuverability index calculator 211 .
- the turning angular velocity rt is input from the turning angular velocity calculating section 202 to the maneuverability index calculating section 211 .
- a turning angular velocity calculation unit 202 calculates a turning angular velocity rt from the time change rate of the heading ⁇ H measured by the sensor 40 .
- the turning angular velocity calculation unit 202 is implemented by, for example, an arithmetic processing unit that constitutes the autopilot control unit 20 including the hull characteristic parameter setting unit 21 .
- the steering angle ra is input from the steering angle sensor 42 to the maneuverability index calculator 211 . More specifically, the commanded rudder angle determination unit 201 switches the commanded rudder angle ri according to the heading ⁇ H in the Z test. Commanded steering angle determination section 201 is implemented by autopilot control section 20 . The commanded rudder angle determination unit 201 outputs the commanded rudder angle ri to the steering 92 . The steering 92 performs steering angle control according to the commanded steering angle ri. The rudder angle sensor 42 measures the rudder angle (actual rudder angle) ra of the steering 92 and outputs it to the maneuverability index calculator 211 . The steering angle sensor 42 also outputs the steering angle ra to the steering speed calculator 212 .
- the maneuverability index calculator 211 calculates the maneuverability index, that is, the turning index (gain) K and the followability index (time constant) T. Calculate For example, the maneuverability index calculator 211 calculates the maneuverability index (the turning index K and the followability index T) using the known Nomoto model.
- the steering speed calculation unit 212 calculates the steering speed ⁇ ra from the time rate of change of the steering angle ra.
- Characteristic parameter estimation unit 213 uses the maneuverability index (turning index K and followability index T) and the steering speed ⁇ ra to estimate the hull characteristic parameters (turning index (gain) K * , followability index (Time constant) T * and dead time L) are calculated. At this time, the characteristic parameter estimator 213 calculates the hull characteristic parameters using a simulation of the response of the turning angular velocity to the commanded steering angle in steps.
- FIG. 7 is a functional block diagram showing the configuration of the characteristic parameter estimator.
- FIG. 8 is a waveform diagram showing an example of the response waveform of the turning angular velocity for setting the hull characteristic parameter.
- the characteristic parameter estimation unit 213 includes a simulation input value setting unit 231, a Ship model calculation unit 232, and a parameter calculation unit 233.
- the steering speed ⁇ ra is input to the simulation input value setting unit 231 .
- a command steering angle ri is input to the simulation input value setting section 231 .
- the simulation input value setting unit 231 sets the commanded steering angle for simulation in a stepwise manner so that the commanded steering angle ri becomes the maximum value, and sets the simulation input value using a ramp function for the commanded steering angle. .
- the simulation input value setting unit 231 sets the slope of the ramp function by the turning speed ⁇ ra.
- the simulation input value setting section 231 outputs the simulation input value to the Ship model calculation section 232 .
- the Ship model calculation unit 232 applies the simulation input values and the maneuverability index (the turning index K and the followability index T) to the Nomoto model to simulate the turning angular velocity rt.
- a simulation waveform of the time change of the turning angular velocity rt is obtained as shown in FIG.
- the turning angular velocity rt increases over time according to the slope of the ramp function (steering speed ⁇ ra) and the followability index T, and is a value obtained by multiplying the command steering angle ri by the turning index K. It becomes a non-linear waveform peaking out at (Kri).
- the Ship model calculation unit 232 outputs the turning angular velocity rt obtained by the simulation to the parameter calculation unit 233 .
- the parameter calculator 233 calculates the hull characteristic parameters (turning index (gain) K * , tracking index (time constant) T * and the dead time L) are calculated.
- the parameter calculator 233 uses the turning index K of the maneuverability index to calculate the turning index K * of the hull characteristic parameter. For example, the parameter calculator 233 sets the turning index K * of the hull characteristic parameters to the same value as the turning index K of the maneuverability index.
- the parameter calculator 233 calculates the trackability index T * and the dead time L of the hull characteristic parameter using the time during which the turning angular velocity in the simulation waveform of the turning angular velocity rt is a predetermined value. More specifically, the parameter calculator 233 detects the time ta at the first value (the value of aKri in FIG. 8) of the turning angular velocity rt in the simulation waveform. The parameter calculator 233 detects the time tb at the second value (the value of bKri in FIG. 8) of the turning angular velocity rt in the simulation waveform. Note that a and b are values larger than 0 and smaller than 1, and a is smaller than b (a ⁇ b).
- the first value is set near the boundary between a section in which the rate of change in the slope of the waveform changes and a section in which the rate of change in the slope of the waveform is constant.
- the second value is set near the boundary between a section in which the rate of change in the slope of the waveform is constant and a section in which the rate of change in the slope of the waveform changes.
- the time ta and the time tb are changed according to the step width of the commanded steering angle.
- the parameter calculator 233 calculates the trackability index T * of the hull characteristic parameter using the time ta, the time tb, and the following equation.
- T * C 1 (tb ⁇ ta) C 1 is a predetermined constant.
- the parameter calculation unit 233 calculates the dead time L of the hull characteristic parameters using the time ta and time tb and the following equation.
- the characteristic parameter estimation unit 213 can estimate and calculate the hull characteristic parameters according to the shape, size, and performance of the hull 90 and the steering gear 92 .
- FIG. 9(A) is a flow chart showing a schematic process of the first calculation mode of the maneuverability index
- FIG. 9(B) is a flow chart showing a schematic process of calculating the hull characteristic parameters.
- the processor controls the execution of the Z test (S21).
- the arithmetic processing unit measures the heading ⁇ H (S22) and calculates the turning angular velocity rt (S23). Further, the arithmetic processing unit measures the steering angle ra (S24).
- the arithmetic processing unit calculates a maneuverability index using the heading ⁇ H , the turning angular velocity rt, and the rudder angle ra (S25).
- the arithmetic processing unit sets a simulation input value using the turning speed ⁇ ra and the commanded steering angle ri (S261).
- the arithmetic processing unit uses the simulation input value and the operability index to execute the Ship operation (S262).
- the arithmetic processing unit calculates hull characteristic parameters from the response waveform of the turning angular velocity, which is the simulation result (S263).
- FIG. 10 is a functional block diagram showing the configuration of the second aspect of the hull characteristic parameter setting section.
- FIG. 11 is a system configuration diagram of a second mode of setting hull characteristic parameters.
- the hull characteristic parameter setting unit 21A includes a maneuverability index calculator 211A, a steering speed calculator 212, and a characteristic parameter estimator 213.
- the configuration and basic processing of the steering speed calculation unit 212 and the characteristic parameter estimation unit 213 are similar to the configuration of the steering speed calculation unit 212 and the characteristic parameter estimation unit 213 in the hull characteristic parameter setting unit 21 described above. and basic processing, and detailed description thereof will be omitted.
- the waterline length Lpp, the ship width B, and the ship speed v are input to the maneuverability index calculation unit 211A.
- the hull length LL is input by a user or the like, for example, through the operation unit 30 (corresponding to the hull length input unit 31 in FIG. 11).
- the ship width B is input by the user or the like at the operation unit 30 (corresponding to the ship width input unit 32 in FIG. 11).
- the boat speed v is measured by the sensor 40 and input, for example.
- Maneuverability index calculation unit 211A uses waterline length Lpp, ship width B, and ship speed v to calculate a maneuverability index, that is, a turnability index (gain) K and a followability index (time constant). Calculate T.
- the maneuverability index calculation unit 211A includes a turning index calculation unit 2111, a non-dimensionalization unit 2112, a non-dimensional followability index calculation unit 2113, and a dimensionalization unit 2114. Prepare.
- the water line length Lpp and the ship width B are input to the turning index calculation unit 2111 .
- the turning index calculation unit 2111 calculates the turning index K from the waterline length Lpp and the ship width B using the following equation.
- the dimensionless unit 2112 receives the turning index K, the waterline length Lpp, and the boat speed v.
- the non-dimensionalizing unit 2112 non-dimensionalizes the turning index K using the waterline length Lpp and the boat speed v.
- a non-dimensional turning index K' is input to the non-dimensional tracking index calculation unit 2113 .
- the dimensionless followability index calculation unit 2113 calculates a dimensionless followability index T′ from the dimensionless turnability index K′ using the following equation.
- T′ k 2 K′ ⁇ C 4 Note that k2 and C4 are desired constants. This formula is statistically derived from experimental results using a plurality of vessels having the same shape as the hull 90. FIG.
- the non-dimensional followability index T', the length between waterlines Lpp, and the ship speed v are input to the dimensionalization unit 2114.
- the dimensionalization unit 2114 dimensionalizes the dimensionless followability index T′ using the waterline length Lpp and the ship speed v.
- the maneuverability index calculation unit 211A outputs the turnability index K output from the turnability index calculation unit 2111 and the followability index T output from the dimensionalization unit 2114 to the characteristic parameter estimation unit 213.
- the maneuverability index calculator 211A can calculate the maneuverability index according to the shape, size, and performance of the hull 90 and the steering gear 92. Consequently, the characteristic parameter estimator 213 can , hull characteristic parameters corresponding to the shape, size, and performance of the hull 90 and the steering gear 92 can be estimated and calculated.
- the calculation formula for the turning index K and the calculation formula for the dimensionless follow-up index T′ are determined by the water line length Lpp and the ship width B , it is better to change the coefficient to be multiplied by the dimensionless turning index K′.
- the hull characteristic parameter setting unit 21A can set the hull characteristic parameters without performing the Z test.
- FIG. 12 is a flow chart showing a schematic process of the second calculation mode of the maneuverability index.
- the arithmetic processing unit receives the input of the hull length LL (S311) and calculates the waterline length Lpp (S32). Further, the arithmetic processing unit receives input of the ship width B (S312) and measures the ship speed v (S313).
- the arithmetic processing unit calculates a turning index K from the waterline length Lpp and the ship width B (S33).
- the arithmetic processing unit non-dimensionalizes the turning index K using the waterline length Lpp and the boat speed v to calculate a dimensionless turning index K' (S34).
- the arithmetic processing unit calculates a non-dimensional tracking index T' from the non-dimensional turning index K' (S35).
- the arithmetic processing unit converts the dimensionless followability index T' into a dimension and calculates a followability index T (S36).
- FIG. 13 is a graph showing an example of changes in heading over time.
- a two-dot chain line shown in FIG. 13 indicates the time change of the heading when the step function of the upper limit value ra max of the rudder angle ra is input.
- a solid line indicates a straight line for calculating the set turn rate r set .
- ⁇ set is the target orientation.
- the heading does not change during the dead time L, and gradually rises according to the tracking index (time constant) T * of the first-order lag system, turning index K * of the first-order lag system. , and reaches the target heading ⁇ set .
- the set turn rate calculator 22 uses this characteristic to calculate the set turn rate r set . More specifically, the set turn rate calculator 22 calculates the time difference between the control start time and the time to reach the target heading ⁇ set (determined from the hull characteristic parameters of the first-order lag system) and the target heading ⁇ set . , the set turn rate r set is calculated using the following equation.
- r set ⁇ set /f 3 (L, T * , K * , ⁇ set )
- f 3 (L, T * , K * , ⁇ set ) is a constant that defines the time difference between the control start time and the arrival time of the heading to the target heading ⁇ set . That is, the set turn rate calculator 22 sets the slope of the solid line shown in FIG. 13 as the set turn rate r set .
- the set turn rate calculator 22 can set the set turn rate r set to an appropriate value according to the shape, size, and performance of the hull 90 .
- FIG. 14(A) is a graph showing changes over time in the heading ⁇ H and the target heading ⁇ set , where the solid line indicates the heading and the dotted line indicates the target heading.
- FIG. 14B is a graph showing changes over time in the set turn rate r set and the turning angular velocity rt, where the solid line shows the turning angular velocity rt and the dotted line shows the set turn rate r set .
- FIG. 14(C) is a graph showing changes in the steering angle ra over time.
- the control parameter calculator 23 sets evaluation criteria for each of the heading ⁇ H , the turning angular velocity rt, and the rudder angle ra at the time of course change.
- the control parameter calculator 23 sets an evaluation criterion based on the squared error between the overshoot amount M of the heading ⁇ H with respect to the target heading ⁇ set and the target value Mset . That is, the control parameter calculation unit 23 calculates the maximum value in the period in which the heading ⁇ H exceeds the target heading ⁇ set shown in FIG. set.
- the target value M set for the amount of overshoot can be set to the maximum amount of overshoot required to achieve the desired behavior of the hull 90 .
- the control parameter calculator 23 sets the evaluation criteria based on the square error between the turning angular velocity rt and the set turn rate rset. More specifically, the control parameter calculator 23 detects the time when the turning angular velocity rt first reaches the set turn rate rset as time t1 (see FIG. 14B). Further, the control parameter calculator 23 detects the time when the heading ⁇ H reaches the target heading ⁇ set for the first time as time t2 (see FIG. 14A).
- the control parameter calculator 23 sets an evaluation criterion based on the square error between the turning angular velocity rt and the set turn rate rset between time t1 and time t2. More specifically, the control parameter calculator 23 sets the statistical value of the squared error between the turning angular velocity rt and the set turn rate rset between time t1 and time t2 as the evaluation criterion. That is, the control parameter calculator 23 sets the evaluation criteria based on the difference between the turning angular velocity rt and the set turn rate rset in the period between time t1 and time t2 shown in FIG. 14(B).
- control parameter calculator 23 can set appropriate evaluation criteria according to the shape, size, and performance of the hull 90 .
- the control parameter calculator 23 sets an evaluation function using each evaluation criterion described above. Then, the control parameter calculator 23 calculates the control parameters (proportional coefficient K P for P control, proportional coefficient K D for D control) such that the evaluation function is minimized. As a result, the calculated control parameters are appropriate values according to the shape, size, and performance of the hull 90 .
- the control parameter calculator 23 calculates control parameters (proportional coefficient for P control K P , The D control proportional coefficient K D ) is calculated in advance. Then, the control parameter calculator 23 stores each combination as a database.
- the control parameter calculator 23 Upon receiving the hull characteristic parameters (turning index (gain) K * , tracking index (time constant) T * , and dead time L), the control parameter calculator 23 searches the database and calculates the received hull control parameters. (proportional coefficient K P for P control, proportional coefficient K D for D control) corresponding to are read out from the database and output.
- FIG. 15 is a flowchart showing a schematic process of calculating control parameters.
- the arithmetic processing unit calculates the overshoot amount M of the heading ⁇ H with respect to the target heading ⁇ set , and calculates the squared error between the overshoot amount M and the target value Mset (S411).
- the arithmetic processing unit calculates the squared error between the set turn rate rset and the turning angular velocity rt (S412).
- the arithmetic processing unit calculates the square value of the steering angle ra (S413).
- the arithmetic processing unit sets evaluation criteria based on the above calculated values, and sets evaluation functions based on the evaluation criteria (S414).
- the arithmetic processing unit estimates and calculates control parameters using the evaluation function (S415).
- control parameters and the set turn rate r set are set from the hull characteristic parameters set by the combined system of the first-order delay and the dead time.
- the set turn rate r set may be a predetermined value.
- the evaluation function may be set using at least one of the above three types.
- Hull control device 20 Autopilot control unit 21, 21A: Hull characteristic parameter setting unit 22: Set turn rate calculation unit 23: Control parameter calculation unit 24: Autopilot execution unit 30: Operation unit 31: Hull length input unit 32 : Ship width input unit 40: Sensor 42: Rudder angle sensor 50: Display unit 60: Propulsion force control unit 90: Hull 91: Propulsion force generation unit 92: Steering system 100: Data communication network 201: Command rudder angle determination unit 202: Turning angular velocity calculator 211, 211A: Maneuverability index calculator 212: Turning speed calculator 213: Characteristic parameter estimator 231: Simulation input value setter 232: Ship model calculator 233: Parameter calculator 901: Bow 902: Stern 2111: Turning index calculation unit 2112: Non-dimensional unit 2113: Non-dimensional followability index calculation unit 2114: Dimensional unit
Landscapes
- Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Feedback Control In General (AREA)
Abstract
Description
図2に示すように、船体制御システム1は、船体制御装置10、推進力発生部91、および、舵機92を備える。船体制御システム1は、自動航行制御(オートパイロット制御)を行う船体90(図3参照)に備えられている。推進力発生部91は、エンジンまたはモータと、これによって駆動されるプロペラ等とによって構成される。舵機92は、船体90の船尾902(図3参照)付近に備えられる。
オートパイロット制御部20は、例えば、CPU等の演算処理装置と記憶部とによって構成される。記憶部は、オートパイロット制御部20で実行するプログラムを記憶する。また、記憶部は、CPUの演算時に利用される。
図1に示すように、オートパイロット制御部20は、船体特性パラメータ設定部21、設定ターンレート算出部22、制御パラメータ算出部23、および、オートパイロット実行部24(図1では、AP実行部24と記載している。)を備える。
図5は、船体特性パラメータ設定部の第1態様の構成を示す機能ブロック図である。図6は、船体特性パラメータの設定の第1態様のシステム構成図である。
C1は、所定の定数である。
C21およびC22は、所定の定数である。
図10は、船体特性パラメータ設定部の第2態様の構成を示す機能ブロック図である。図11は、船体特性パラメータの設定の第2態様のシステム構成図である。
なお、f1(Lpp)は、水線間長Lppによって決まる定数であり、f2(B)は、船幅Bによって決まる定数であり、C3は所望の定数である。この式は、船体90と同様の形状からなる複数の船舶による実験結果から統計的に導き出されたものである。
なお、k2、C4は、所望の定数である。この式は、船体90と同様の形状からなる複数の船舶による実験結果から統計的に導き出されたものである。
図13は、船首方位の時間変化の一例を示すグラフである。図13に示す二点鎖線は、舵角raの上限値ramaxのステップ関数を入力したときの船首方位の時間変化を示す。実線は、設定ターンレートrsetを算出するための直線を示す。また、θsetは、目標方位である。
なお、f3(L,T*,K*,θset)は、制御開始時間と船首方位の目標方位θsetへの到達時間との時間差を定義する定数である。すなわち、設定ターンレート算出部22は、図13に示す実線の傾きを、設定ターンレートrsetに設定する。
図14(A)は、船首方位θHと目標方位θsetの時間変化を示すグラフであり、実線が船首方位を示し、点線が目標方位を示す。図14(B)は、設定ターンレートrsetと回頭角速度rtとの時間変化を示すグラフであり、実線が回頭角速度rtを示し、点線が設定ターンレートrsetを示す。図14(C)は、舵角raの時間変化を示すグラフである。
制御パラメータ算出部23は、船首方位θHの目標方位θsetに対するオーバシュート量Mと、その目標値Msetとの二乗誤差に基づいて、評価基準に設定する。すなわち、制御パラメータ算出部23は、図14(A)に示す船首方位θHが目標方位θsetを超えた期間における最大値と、その最大値に対する目標値との差に基づいて、評価基準に設定する。
制御パラメータ算出部23は、回頭角速度rtと設定ターンレートrsetとの二乗誤差に基づいて、評価基準に設定する。より具体的には、制御パラメータ算出部23は、回頭角速度rtが設定ターンレートrsetに初めて達した時間を時間t1(図14(B)参照)として検出する。また、制御パラメータ算出部23は、船首方位θHが目標方位θsetに初めて達した時間を時間t2(図14(A)参照)として検出する。
制御パラメータ算出部23は、舵角raの二乗値に基づいて、評価基準を設定する。より具体的には、制御パラメータ算出部23は、舵角raの二乗値の統計値を、評価基準に設定する。すなわち、制御パラメータ算出部23は、図14(C)に示す。基準舵角(舵角ra=0°)に対する舵角raの大きさに基づいて、評価基準を設定する。
20:オートパイロット制御部
21、21A:船体特性パラメータ設定部
22:設定ターンレート算出部
23:制御パラメータ算出部
24:オートパイロット実行部
30:操作部
31:船体長入力部
32:船幅入力部
40:センサ
42:舵角センサ
50:表示部
60:推進力制御部
90:船体
91:推進力発生部
92:舵機
100:データ通信ネットワーク
201:指令舵角決定部
202:回頭角速度算出部
211、211A:操縦性指数算出部
212:転舵速度算出部
213:特性パラメータ推定部
231:シミュレーション入力値設定部
232:Shipモデル演算部
233:パラメータ算出部
901:船首
902:船尾
2111:旋回性指数算出部
2112:無次元化部
2113:無次元化追従性指数算出部
2114:有次元化部
Claims (22)
- 舵機の挙動と船体の挙動を一体とした一次遅れとむだ時間の結合系の船体特性パラメータを設定する船体特性パラメータ設定部と、
前記船体特性パラメータを用いて、前記舵機の舵角に対するフィードバック制御の制御パラメータを算出する制御パラメータ算出部と、
前記制御パラメータを用いて、前記フィードバック制御を行う、オートパイロット実行部と、
を備える、船体制御装置。 - 請求項1に記載の船体制御装置であって、
前記船体特性パラメータを用いて、前記舵角に対する指令舵角の設定ターンレートを算出する設定ターンレート算出部を備え、
前記オートパイロット実行部は、
前記設定ターンレートを用いて、前記フィードバック制御を行う、
船体制御装置。 - 請求項2に記載の船体制御装置であって、
前記設定ターンレート算出部は、
前記船体特性パラメータと目標方位とを用いて、前記設定ターンレートを算出する、
船体制御装置。 - 請求項2または請求項3に記載の船体制御装置であって、
前記制御パラメータ算出部は、
前記舵角、回頭角速度、および、船首方位を評価基準に含む評価関数を用いて、前記制御パラメータを算出する、
船体制御装置。 - 請求項4に記載の船体制御装置であって、
前記制御パラメータ算出部は、
目標方位に対する前記船首方位のオーバシュート量とその目標値との二乗誤差を前記評価基準に含んで、前記制御パラメータを算出する、
船体制御装置。 - 請求項4または請求項5に記載の船体制御装置であって、
前記制御パラメータ算出部は、
前記設定ターンレートと前記回頭角速度との二乗誤差を前記評価基準に含んで、前記制御パラメータを算出する、
船体制御装置。 - 請求項4乃至請求項6のいずれかに記載の船体制御装置であって、
前記制御パラメータ算出部は、
前記舵角の二乗値を前記評価基準に含んで、前記制御パラメータを算出する、
船体制御装置。 - 請求項1乃至請求項7のいずれかに記載の船体制御装置であって、
前記船体特性パラメータ設定部は、
船首方位、回頭角速度、および、前記舵角を用いて、操縦性指数を算出する操縦性指数算出部と、
前記舵角を用いて、転舵速度を算出する転舵速度算出部と、
前記操縦性指数と前記転舵速度とを用いて、前記船体特性パラメータを算出する特性パラメータ推定部と、
を備える、船体制御装置。 - 請求項8に記載の船体制御装置であって、
前記特性パラメータ推定部は、
前記転舵速度と前記操縦性指数とから算出される回頭角速度の時間変化特性を用いて、前記船体特性パラメータを算出する、
船体制御装置。 - 請求項9に記載の船体制御装置であって、
前記特性パラメータ推定部は、
前記時間変化特性における前記回頭角速度がそれぞれに異なる所定値となる2つの時間を用いて、前記船体特性パラメータを算出する、
船体制御装置。 - 請求項10に記載の船体制御装置であって、
前記特性パラメータ推定部は、
前記時間変化特性を用いて、前記船体特性パラメータにおける追従性指数およびむだ時間の少なくとも一方を算出する、
船体制御装置。 - 請求項1乃至請求項7のいずれかに記載の船体制御装置であって、
前記船体特性パラメータ設定部は、
前記船体に対する水線間長、前記船体の幅、および、前記船体の船速を用いて、操縦性指数を算出する操縦性指数算出部と、
前記舵角を用いて、転舵速度を算出する転舵速度算出部と、
前記操縦性指数と前記転舵速度とを用いて、前記船体特性パラメータを算出する特性パラメータ推定部と、
を備える、船体制御装置。 - 請求項12に記載の船体制御装置であって、
前記操縦性指数算出部は、
前記水線間長と前記船体の幅とを用いて、前記操縦性指数における旋回性指数を算出する旋回性指数算出部と、
前記旋回性指数、前記水線間長、および、前記船速を用いて、前記操縦性指数における追従性指数を算出する追従性指数算出部と、
を備える、
船体制御装置。 - 請求項13に記載の船体制御装置であって、
前記操縦性指数算出部は、
前記旋回性指数を無次元化する無次元化部を備え、
前記追従性指数算出部は、
前記無次元化された旋回性指数から、無次元化追従性指数を算出する無次元化追従性指数算出部と、
前記無次元化追従性指数を有次元化する有次元化部と、
を備える、
船体制御装置。 - 舵機の挙動と船体の挙動を一体とした一次遅れとむだ時間の結合系の船体特性パラメータを設定し、
前記船体特性パラメータを用いて、前記舵機の舵角に対するフィードバック制御の制御パラメータを算出し、
前記制御パラメータを用いて、前記フィードバック制御を行う、
船体制御方法。 - 請求項15に記載の船体制御方法であって、
前記船体特性パラメータを用いて、前記舵角に対する指令舵角の設定ターンレートを算出し、
前記設定ターンレートを用いて、前記フィードバック制御を行う、
船体制御方法。 - 請求項16に記載の船体制御方法であって、
前記船体特性パラメータと目標方位とを用いて、前記設定ターンレートを算出する、
船体制御方法。 - 請求項16または請求項17に記載の船体制御方法であって、
前記舵角、回頭角速度、および、船首方位を評価基準に含む評価関数を用いて、前記制御パラメータを算出する、
船体制御方法。 - 請求項16乃至請求項18のいずれかに記載の船体制御方法であって、
船首方位、回頭角速度、および、前記舵角を用いて、操縦性指数を算出し、
前記舵角を用いて、転舵速度を算出し、
前記操縦性指数と前記転舵速度とを用いて、前記船体特性パラメータを算出する、
船体制御方法。 - 請求項19に記載の船体制御方法であって、
前記転舵速度と前記操縦性指数とから算出される回頭角速度の時間変化特性を用いて、前記船体特性パラメータを算出する、
船体制御方法。 - 請求項16乃至請求項18のいずれかに記載の船体制御方法であって、
前記船体に対する水線間長、前記船体の幅、および、前記船体の船速を用いて、操縦性指数を算出し、
前記舵角を用いて、転舵速度を算出し、
前記操縦性指数と前記転舵速度とを用いて、前記船体特性パラメータを算出する、
船体制御方法。 - 請求項21に記載の船体制御方法であって、
前記水線間長と前記船体の幅とを用いて、前記操縦性指数における旋回性指数を算出し、
前記旋回性指数、前記水線間長、および、前記船速を用いて、前記操縦性指数における追従性指数を算出する、
船体制御方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22752490.7A EP4292919A1 (en) | 2021-02-15 | 2022-01-11 | Ship hull control apparatus and ship hull control method |
JP2022581248A JPWO2022172657A1 (ja) | 2021-02-15 | 2022-01-11 | |
US18/365,909 US20230373600A1 (en) | 2021-02-15 | 2023-08-04 | Ship control device and ship control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-021452 | 2021-02-15 | ||
JP2021021452 | 2021-02-15 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/365,909 Continuation-In-Part US20230373600A1 (en) | 2021-02-15 | 2023-08-04 | Ship control device and ship control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172657A1 true WO2022172657A1 (ja) | 2022-08-18 |
Family
ID=82837724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/000457 WO2022172657A1 (ja) | 2021-02-15 | 2022-01-11 | 船体制御装置、および、船体制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230373600A1 (ja) |
EP (1) | EP4292919A1 (ja) |
JP (1) | JPWO2022172657A1 (ja) |
WO (1) | WO2022172657A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55164594A (en) | 1979-06-08 | 1980-12-22 | Japan Radio Co Ltd | Automatic steering device for vessel |
JP5528251B2 (ja) * | 2010-08-04 | 2014-06-25 | 横河電子機器株式会社 | 自動操舵装置 |
-
2022
- 2022-01-11 WO PCT/JP2022/000457 patent/WO2022172657A1/ja active Application Filing
- 2022-01-11 EP EP22752490.7A patent/EP4292919A1/en active Pending
- 2022-01-11 JP JP2022581248A patent/JPWO2022172657A1/ja active Pending
-
2023
- 2023-08-04 US US18/365,909 patent/US20230373600A1/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55164594A (en) | 1979-06-08 | 1980-12-22 | Japan Radio Co Ltd | Automatic steering device for vessel |
JP5528251B2 (ja) * | 2010-08-04 | 2014-06-25 | 横河電子機器株式会社 | 自動操舵装置 |
Non-Patent Citations (4)
Title |
---|
HANE FUYUKI: "A Comprehensive Identification Method for Vessel Motion Parameters", 1 December 2014 (2014-12-01), XP055958611, ISSN: 1881-1760, DOI: 10.2534/jjasnaoe.20.27 * |
OHTSU, KOHEI; HASEGAWA, KAZUHIKO: "Evaluation and prospects of Autopilot", PROCEEDINGS OF THE 3RD SYMPOSIUM ON SHIP MANOEUVRABILITY, THE SOCIETY OF NAVAL ARCHITECTS OF JAPAN, 1 January 1981 (1981-01-01), pages 243 - 278, XP009539022 * |
SAKUMA SHUN: "On the Numerical Method for Analyzing the Steering Quality Indices with the Drift Angle Considered", JOURNAL OF THE JAPAN SOCIETY OF NAVAL ARCHITECTS AND OCEAN ENGINEERS, no. 25, 1 June 2017 (2017-06-01), pages 1 - 7, XP055958615, ISSN: 1880-3717 * |
TATSUYA, IESHIRO: "About the latest automatic steering system "BNAAC"", JOURNAL OF FISHING BOAT AND SYSTEM ENGINEERING ASSOCIATION OF JAPAN, vol. 11, no. 97, pages 46 - 59, XP009538987, ISSN: 1346-9800, Retrieved from the Internet <URL:https://jglobal.jst.go.jp/detail?JGLOBAL_ID=201102285548402276> * |
Also Published As
Publication number | Publication date |
---|---|
US20230373600A1 (en) | 2023-11-23 |
EP4292919A1 (en) | 2023-12-20 |
JPWO2022172657A1 (ja) | 2022-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2386482B1 (en) | Control of a waterjet propelled vessel | |
EP3388329B1 (en) | Ship handling device | |
EP1364870A1 (en) | Method and device for allocating thrust to air or water craft | |
CN110308719B (zh) | 一种水面无人艇路径跟踪控制方法 | |
US6006145A (en) | Method and apparatus for directing a pursuing vehicle to a target with intelligent evasion capabilities | |
RU2292289C1 (ru) | Способ автоматического управления движением судна | |
JP6882243B2 (ja) | 避航支援装置 | |
RU2759068C1 (ru) | Способ автоматической проводки судна | |
JP2004355105A (ja) | 移動体の制御方法及び制御装置 | |
WO2022172657A1 (ja) | 船体制御装置、および、船体制御方法 | |
US11027812B2 (en) | Method for a propulsion arrangement for a marine vessel | |
JP5094800B2 (ja) | 自動操舵装置及び方法 | |
RU2350506C1 (ru) | Способ швартовки судна | |
JP2024150122A (ja) | 航行支援装置、自動着桟システム、航行支援方法、航行支援プログラム | |
JP4260612B2 (ja) | 潮流推定方法および装置並びにこれを用いた航走体の制御方法および装置 | |
JP7069371B2 (ja) | 避航支援装置 | |
Mironenko et al. | Determining and tracking the programmed trajectory of a vessel | |
JP2020187468A (ja) | 制御調整装置 | |
RU2564786C1 (ru) | Способ управления движением судна с компенсацией медленно меняющихся внешних возмущений и система управления движением судна с компенсацией медленно меняющихся внешних возмущений | |
JP2023131821A (ja) | 船体状態推定装置、船体状態推定システム、船体状態推定方法、および、船体状態推定プログラム | |
JP2002362489A (ja) | 潜水艇の操舵ガイダンスシステム | |
JPS63203497A (ja) | 船舶の変針制御装置 | |
JPS608190A (ja) | 舶用自動操舵装置 | |
JPH04205323A (ja) | 飛しょう体の航法計算機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22752490 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022581248 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022752490 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022752490 Country of ref document: EP Effective date: 20230915 |