WO2022172568A1 - 溶融金属の脱硫方法 - Google Patents
溶融金属の脱硫方法 Download PDFInfo
- Publication number
- WO2022172568A1 WO2022172568A1 PCT/JP2021/045104 JP2021045104W WO2022172568A1 WO 2022172568 A1 WO2022172568 A1 WO 2022172568A1 JP 2021045104 W JP2021045104 W JP 2021045104W WO 2022172568 A1 WO2022172568 A1 WO 2022172568A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concentration
- slag
- molten metal
- potential difference
- current density
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 39
- 239000002184 metal Substances 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000003009 desulfurizing effect Effects 0.000 title claims abstract description 9
- 239000002893 slag Substances 0.000 claims abstract description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 83
- 229910052742 iron Inorganic materials 0.000 claims description 40
- 238000006477 desulfuration reaction Methods 0.000 claims description 24
- 230000023556 desulfurization Effects 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000012546 transfer Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000004020 conductor Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011823 monolithic refractory Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/5229—Manufacture of steel in electric furnaces in a direct current [DC] electric arc furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0087—Treatment of slags covering the steel bath, e.g. for separating slag from the molten metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D11/00—Arrangement of elements for electric heating in or on furnaces
- F27D11/08—Heating by electric discharge, e.g. arc discharge
- F27D11/10—Disposition of electrodes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D99/00—Subject matter not provided for in other groups of this subclass
- F27D99/0001—Heating elements or systems
- F27D99/0006—Electric heating elements or system
- F27D2099/003—Bombardment heating, e.g. with ions or electrons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method for removing sulfur in molten metal by a reaction between molten metal filled in a reaction vessel such as a ladle or topedo and slag added onto the molten metal.
- [R] represents that the element R is dissolved in the molten iron
- (R) represents the form of the element R in the slag.
- the reached concentration and the treatment time (arrival time) required to reach the reached concentration have been determined by equilibrium theory and reaction kinetics, respectively.
- the equilibrium S concentration is determined by the sulfide capacity determined from the composition of the slag represented by CaO—SiO 2 —Al 2 O 3 —MgO system, the oxygen activity of the metal, and the S distribution ratio L S ( ⁇ ) and the amount of slag input.
- the desulfurization rate is accelerated by (1) increasing the proportion of basic oxides in the slag, (2) reducing the oxygen activity in the molten iron by Al, which has a strong deoxidizing power, (3) increasing the overall mass transfer coefficient k by gas stirring;
- the slag composition in the current desulfurization treatment is controlled within a composition range that maximizes the sulfide capacity (method 1).
- the gas agitation is improved to the point where problems such as re-oxidation of molten steel due to scattering of bare metal and entrainment of air, pick-up of nitrogen, etc. can be tolerated (means 3).
- the oxygen activity in molten iron is uniquely determined by Al concentration and temperature (means 2). Therefore, it is difficult to improve the desulfurization reaction rate more than ever by the conventional improvement method.
- Non-Patent Document 1 if the slag metal reaction including the desulfurization reaction is considered to be an electrochemical reaction that exchanges electrons at the interface, by applying a current voltage from the outside to the slag metal interface, It is described that the reaction further progresses from the equilibrium concentration determined by the above sulfide capacity, oxygen activity, temperature, and slag input amount.
- Patent Document 1 proposes a method of reducing the equilibrium nitrogen concentration by arranging electrodes so that the molten steel side is negative (cathode) and the slag side is positive (anode), and a voltage is applied to the slag metal interface. It is
- Non-Patent Document 1 has no specific description of how to control the applied current or voltage and what effect was obtained at that time, and the desulfurization reaction based on Non-Patent Document 1 is difficult to control.
- Patent Document 1 since the technique disclosed in Patent Document 1 is a method of controlling voltage (so-called constant voltage control), when the electrode immersed in the molten iron and the slag comes into contact with the molten iron due to the fluctuation of the surface of the molten iron that occurs when stirring is involved, the resistance A voltage of several tens of volts is applied to molten iron with a resistance of almost 0 ⁇ . This causes a very large current to flow through the circuit. It would be unrealistic to implement equipment protection measures such as wiring, power supply capacity, and breaker function to allow this. If such a device cannot be implemented, there is a risk of equipment failure, and it cannot be a practical means of operation.
- Patent Document 1 describes the current value
- the area necessary for calculating the current density should be taken as the cross-sectional area of the container, and the immersion in the slag or metal. It is unclear whether it should be taken with the electrode that is Moreover, since the information of each area is also unknown, it is impossible to perform constant current control based on the information of Patent Document 1.
- the present invention has been made in view of the above circumstances. It is an object of the present invention to propose a method for improving and efficiently desulfurizing molten metal in a short period of time.
- the molten metal desulfurization method of the present invention which advantageously solves the above problems, uses a DC power source, the electrode in contact with the molten metal is used as a negative electrode, and the electrode in contact with only the molten slag is used as a positive electrode.
- the target is the reached equilibrium S concentration [S] ea when the potential difference is applied, depending on the reached equilibrium S concentration [S] e0 before applying the potential difference. It is characterized in that the applied current density Ja is determined so that the S concentration [S] ft or less.
- the method for desulfurizing molten metal according to the present invention includes: (a) The molten metal is molten iron, and in determining the applied current density J a (A/m 2 ), it was obtained from the reached equilibrium S concentration [S] e0 (mass ppm) before applying the potential difference.
- the applied current density can be determined according to the slag conditions and the target S concentration. Therefore, the equilibrium S concentration can be reduced without applying excessive current. Furthermore, it is possible to obtain the effect of increasing the overall mass transfer coefficient, and it becomes possible to efficiently desulfurize the molten metal to a lower concentration in a shorter time than before with the same slag volume. .
- (a) is a schematic diagram showing an example of an apparatus suitable for the method of the present invention
- (b) is a schematic diagram showing another example of an apparatus suitable for the method of the present invention.
- 4 is a graph showing the effect of the S concentration [S] e0 before applying a potential difference on the relationship between the applied current density J a and the S concentration [S] ea at equilibrium.
- 4 is a graph showing the relationship between the overall mass transfer coefficient k of S between slag and molten iron and the applied current density Ja.
- FIG. 1(a) is a schematic diagram showing an example of an apparatus suitable for use in a method for desulfurizing molten metal according to one embodiment of the present invention.
- FIG. 1(b) is a schematic diagram showing another example of an apparatus suitable for use in the method of desulfurizing molten metal.
- Molten metals include molten iron and copper alloys. In particular, it is preferable to use molten iron as the molten metal.
- molten iron refers to molten metal mainly composed of Fe, including molten pig iron, molten cold iron sources, and molten steel.
- embodiments of the present invention will be described using molten iron as an example.
- a container 1 such as a ladle lined with an insulating refractory 2 is filled with molten iron 3, and slag 4 is added thereon.
- a conductive material 5 is placed on the slag 4 side and the molten iron 3 side (at the bottom of the furnace in the example of FIG.
- the lead wire 6 connected to the conductive material 5 arranged on the slug 4 side is connected to the + side (positive electrode) of the DC stabilized power supply 7 .
- the lead wire 6 connected to the conductive material 5 placed on the molten iron 3 side is connected to the - side (negative electrode) of the DC stabilized power supply 7 .
- the conductive material 5 on the side of the molten iron 3 is placed on the furnace bottom, but it may be on the furnace wall.
- the conductive material 5 placed on the side of the molten iron 3 may be in contact with the slag 4 partially.
- the shortest distance L1 from the tip of the conductive substance 5 immersed in the slag 4 side to the slag-molten iron interface is smaller than the shortest distance L2 between the surfaces of the conductive substances 5 in the slag 4.
- Al 2 O 3 -based bricks or monolithic refractories are often used in steelmaking. Other non-conductive refractories may be substituted for this.
- a graphite shaft or MgO-C refractory can be used as the conductive refractory 5.
- Other substances may be substituted as long as they are conductive and do not melt in the molten iron temperature range (1300 to 1700° C.).
- An injection lance or a bottom-blown porus may be added to the device, and gas may be blown into the molten iron 3 through these to give agitation to the bath.
- %S)/[mass%S] and may be obtained from this and the amount of slag.
- (mass%S) represents the S concentration in the slag
- [mass%S] represents the S concentration in the molten iron.
- similar conditions can be selected from slag composition, molten iron composition, treatment temperature, and the like.
- step 2 the S concentration reached equilibrium [S] ea (mass ppm) when a potential difference is applied is calculated by the following equation (3) using the A value and the B value determined in step 1.
- the target S concentration [S ] ft It is possible to obtain information on the minimum required applied current density Ja to achieve the following. In addition, it is preferable that the equilibrium reaching S concentration [S] ea when the potential difference is applied is smaller than the target S concentration [S] ft at the end of the desulfurization treatment.
- the applied current density J a can be estimated to be about 20 A/m 2 or more.
- the applied current density J a is preferably 1000 A/m 2 or less.
- the area A is filled in the container. It is preferable to adopt the contact area (m 2 ) between the slag and the molten iron.
- the accurate contact area is often unknown due to stirring of molten iron, etc., so the inner diameter cross-sectional area of the device at the slag-molten iron interface position ( m 2 ) can be used in the calculation. This is because the slag 4 itself behaves as a positive electrode (anode) and the molten iron 3 itself behaves as a negative electrode (cathode) through the conductive material.
- the inventor has confirmed that changing the cross-sectional area ratios of the tip portions of the conductive material 5 on the slag 4 side and the molten iron 3 side does not affect the ultimate S concentration or the desulfurization rate.
- the system slag was added onto molten iron at 1400°C to 1650°C.
- the slag is connected to the + pole (positive pole) of the external power supply through the graphite shaft, and the molten iron is connected to the - pole (negative pole) of the external power supply through the MgO-C brick, respectively. caused a current to flow through the circuit.
- the slag composition and the oxygen activity of the molten iron were adjusted so that the equilibrium reaching S concentration [S] e0 before applying the potential difference was 11.0, 8.0, 5.5, 4.5 and 3.8 mass ppm. , temperature and input slag amount were adjusted.
- the applied current density J a (A/m 2 ) is obtained by obtaining the A value and the B value from the discriminants 1) to 5) above, and obtaining the equilibrium reached S concentration [S] ea when the potential difference is applied.
- the applied current density J min (A/m 2 ) that gives the target S concentration [S] ft is obtained by the above procedures 1 and 2, a) less than the obtained value J min , b) obtained value J min
- the applied current density Ja was set so as to have three patterns of 1000 A/m 2 or more and c) 1000 A/m 2 or more, and current was supplied from a DC stabilized power supply.
- the current to be applied is the set current value I a (A), and this current was maintained during the desulfurization treatment time ta (min).
- the cross-sectional area A of the upper end of the portion filled with molten iron was 0.018 to 18 m 2 and the amount of molten iron was 6.8 kg to 280 t.
- Table 2 shows test conditions and results. In the Judgment column, tests in which the attained S concentration [S] fa is equal to or less than the target S concentration [S] ft are indicated by " ⁇ ", and tests in which the attained S concentration [S] fa is greater than the target S concentration [S] ft are indicated by " ⁇ ”. ⁇ ”.
- Table 2 shows the equilibrium S concentration [S] ea when a potential difference is applied, the ratio of the overall mass transfer coefficients of desulfurization k a /k 0 (-), the treatment time ta and the desulfurization rate -d [S] / dt. (mass ppm/min) is also shown.
- the treatment time ta is obtained by dividing the equilibrium reached S concentration [S] ea and the integrated mass transfer coefficient ka when the potential difference is applied into the linear expression (above) of the time change of the S concentration [S] involved in the desulfurization reaction. Predict the change in S concentration [S] over time by substituting and ta.
- the present invention it is possible to reduce the reached S concentration per the same processing time while suppressing power consumption, and it is possible to reduce the production cost. It is suitable not only for desulfurization of molten metal, but also for refining where electrochemical reaction at the interface is dominant.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
非特許文献1に開示の技術は、印加電流または電圧をどのように制御するのか、その際どのような効果が得られたのかの具体的な記載がなく、非特許文献1を基に脱硫反応の制御を行うことは困難である。
(a)前記溶融金属が溶鉄であって、前記印加電流密度Ja(A/m2)を決定するにあたり、電位差を印加する前の平衡到達S濃度[S]e0(mass ppm)から求めた表1に記載の係数に基づき、下記(1)式および(2)式を用いて、A値およびB値を決定する手順1と、手順1で決定したA値とB値とにより、下記(3)式を用いて電位差を印加した時の平衡到達S濃度[S]ea(mass ppm)を計算し、計算された平衡到達S濃度[S]eaが目標S濃度[S]ft(mass ppm)以下となるように前記印加電流密度Jaを決定する手順2と、を含むこと、
(b)前記印加電流密度Jaを1000A/m2以下とすること、
などがより好ましい解決手段になり得るものと考えられる。
A=A0+A1・Ja-A2・Ja 2+A3・Ja 3 ・・・(1)
-B=B0+B1・Ja-B2・Ja 2+B3・Ja 3 ・・・(2)
[S]ea=exp(-B/A) ・・・(3)
まず、スラグ4と溶鉄3の間の脱硫反応において、電位差を印加する前の平衡到達S濃度[S]e0(mass ppm)を求める。これは、上述のように用いるスラグ4のサルファイドキャパシティーと溶鉄の酸素活量、温度に加え、用いるスラグ4の量から決定することができる。計算方法は論文等で既に公知であり、当業者であれば容易に計算できるため、ここでは詳細は説明しない。たとえば、非特許文献2で提案されているサルファイドキャパシティーの式中のスラグの理論的光学塩基度に、非特許文献3で提示されている酸化物の理論的光学塩基度を用いて計算することができる。
A=A0+A1・Ja-A2・Ja 2+A3・Ja 3 ・・・(1)
-B=B0+B1・Ja-B2・Ja 2+B3・Ja 3 ・・・(2)
A=6.4408×10-2+3.6497×10-4・Ja-3.8200×10-7・Ja 2+1.8218×10-10・Ja 3
-B=1.1981×10-1+2.3088×10-4・Ja-1.4831×10-7・Ja 2+5.2189×10-11・Ja 3
2)10mass ppm≧[S]e0>6mass ppmの場合
A=7.4338×10-2+3.1714×10-4・Ja-2.9497×10-7・Ja 2+1.3469×10-10・Ja 3
-B=1.2493×10-1+2.1868×10-4・Ja-1.3061×10-7・Ja 2+4.3146×10-11・Ja 3
3)6mass ppm≧[S]e0>5mass ppmの場合
A=8.1965×10-2+2.8943×10-4・Ja-2.4923×10-7・Ja 2+1.1083×10-10・Ja 3
-B=1.2833××10-1+2.2380×10-4・Ja-1.5197×10-7・Ja 2+5.8263×10-11・Ja 3
4)5mass ppm≧[S]e0>4mass ppmの場合
A=1.0012×10-1+2.4337×10-4・Ja-1.8788×10-7・Ja 2+8.3450×10-10・Ja 3
-B=1.4139××10-1+2.0718×10-4・Ja-1.4623×10-7・Ja 2+6.2218×10-11・Ja 3
5)4mass ppm≧[S]e0の場合
A=1.4236×10-1+1.6594×10-4・Ja-9.1710×10-8・Ja 2+4.0404×10-10・Ja 3
-B=1.7774×10-1+1.4833×10-4・Ja-7.9567×10-8・Ja 2+3.4848×10-11・Ja 3
[S]ea=exp(-B/A) ・・・(3)
図1(a)の構成の装置を用い、CaO-Al2O3二元系スラグ、CaO-Al2O3-MgO三元系スラグ、またはCaO-Al2O3-SiO2-MgO四元系スラグを1400℃~1650℃の溶鉄上に添加した。スラグには黒鉛シャフトを通じて外部電源の+極(正極)に、溶鉄にはMgO-C煉瓦を通じて外部電源の-極(負極)にそれぞれ導線を接続し、直流安定化電源を用いて定電流印加法により回路に電流を流した。
2 耐火物(絶縁性)
3 溶鉄
4 スラグ
5 導電性物質
6 導線
7 直流安定化電源
Claims (3)
- 直流電源を用い、溶融金属に接する電極を負極とし、溶融スラグのみに接する電極を正極として、両電極を通じて前記溶融スラグと前記溶融金属との間に電位差を付与する溶融金属の脱硫方法において、
電位差を印加する前の平衡到達S濃度[S]e0に応じて、電位差を印加した時の平衡到達S濃度[S]eaが目標S濃度[S]ft以下となるように印加電流密度Jaを決定することを特徴とする溶融金属の脱硫方法。 - 前記溶融金属が溶鉄であって、前記印加電流密度Ja(A/m2)を決定するにあたり、
電位差を印加する前の平衡到達S濃度[S]e0(mass ppm)から求めた表1に記載の係数に基づき、下記(1)式および(2)式を用いて、A値およびB値を決定する手順1と、
手順1で決定したA値とB値とにより、下記(3)式を用いて電位差を印加した時の平衡到達S濃度[S]ea(mass ppm)を計算し、計算された平衡到達S濃度[S]eaが目標S濃度[S]ft(mass ppm)以下となるように前記印加電流密度Jaを決定する手順2と、を含むことを特徴とする請求項1に記載の溶融金属の脱硫方法。
A=A0+A1・Ja-A2・Ja 2+A3・Ja 3 ・・・(1)
-B=B0+B1・Ja-B2・Ja 2+B3・Ja 3 ・・・(2)
[S]ea=exp(-B/A) ・・・(3)
- 前記印加電流密度Jaを1000A/m2以下とすることを特徴とする請求項2に記載の溶融金属の脱硫方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/272,396 US20240076756A1 (en) | 2021-02-10 | 2021-12-08 | Method for desulfurizing molten metal |
KR1020237026337A KR20230128104A (ko) | 2021-02-10 | 2021-12-08 | 용융 금속의 탈황 방법 |
EP21925812.6A EP4265743A4 (en) | 2021-02-10 | 2021-12-08 | METHOD FOR DESULFURIZATION OF METAL MELTS |
JP2022502954A JP7211550B2 (ja) | 2021-02-10 | 2021-12-08 | 溶融金属の脱硫方法 |
CN202180093330.8A CN116829741A (zh) | 2021-02-10 | 2021-12-08 | 熔融金属的脱硫方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021019594 | 2021-02-10 | ||
JP2021-019594 | 2021-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022172568A1 true WO2022172568A1 (ja) | 2022-08-18 |
Family
ID=82838618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/045104 WO2022172568A1 (ja) | 2021-02-10 | 2021-12-08 | 溶融金属の脱硫方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240076756A1 (ja) |
EP (1) | EP4265743A4 (ja) |
JP (1) | JP7211550B2 (ja) |
KR (1) | KR20230128104A (ja) |
CN (1) | CN116829741A (ja) |
TW (1) | TWI808638B (ja) |
WO (1) | WO2022172568A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH049420A (ja) | 1990-04-27 | 1992-01-14 | Nippon Steel Corp | 溶鋼の脱窒方法 |
JPH093515A (ja) * | 1995-06-14 | 1997-01-07 | Nippon Steel Corp | 低珪素濃度溶銑の脱硫方法 |
CN102399937A (zh) * | 2010-09-07 | 2012-04-04 | 鞍钢股份有限公司 | 钢液电化学脱硫方法及装置 |
JP2020180319A (ja) * | 2019-04-24 | 2020-11-05 | Jfeスチール株式会社 | 溶融金属の脱硫方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101658901B (zh) * | 2008-03-10 | 2014-10-29 | 王宇新 | 避免球铁铁液在浇注过程中发生球化衰退和降低浇注温度的处理方法及专用浇注设备 |
CN102719617A (zh) * | 2011-03-29 | 2012-10-10 | 鞍钢股份有限公司 | 铁碳熔体电化学脱碳方法及装置 |
US10287644B2 (en) * | 2011-08-12 | 2019-05-14 | Jfe Steel Corporation | Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method |
CN111996330A (zh) * | 2020-07-10 | 2020-11-27 | 海盐中达金属电子材料有限公司 | 一种中频感应炉多渣法冶炼精密或特种合金脱硫、氧工艺 |
-
2021
- 2021-12-08 EP EP21925812.6A patent/EP4265743A4/en active Pending
- 2021-12-08 US US18/272,396 patent/US20240076756A1/en active Pending
- 2021-12-08 WO PCT/JP2021/045104 patent/WO2022172568A1/ja active Application Filing
- 2021-12-08 KR KR1020237026337A patent/KR20230128104A/ko not_active Application Discontinuation
- 2021-12-08 JP JP2022502954A patent/JP7211550B2/ja active Active
- 2021-12-08 CN CN202180093330.8A patent/CN116829741A/zh active Pending
-
2022
- 2022-02-08 TW TW111104478A patent/TWI808638B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH049420A (ja) | 1990-04-27 | 1992-01-14 | Nippon Steel Corp | 溶鋼の脱窒方法 |
JPH093515A (ja) * | 1995-06-14 | 1997-01-07 | Nippon Steel Corp | 低珪素濃度溶銑の脱硫方法 |
CN102399937A (zh) * | 2010-09-07 | 2012-04-04 | 鞍钢股份有限公司 | 钢液电化学脱硫方法及装置 |
JP2020180319A (ja) * | 2019-04-24 | 2020-11-05 | Jfeスチール株式会社 | 溶融金属の脱硫方法 |
Non-Patent Citations (3)
Title |
---|
D. J. SOSINSKY ET AL., METALL. TRANS., vol. 17B, 1986, pages 331 |
See also references of EP4265743A4 |
TAKASHI NAKAMURA ET AL., BULLETIN OF THE JAPAN INSTITUTE OF METALS, vol. 50, no. 5, 1986, pages 456 - 461 |
Also Published As
Publication number | Publication date |
---|---|
EP4265743A1 (en) | 2023-10-25 |
US20240076756A1 (en) | 2024-03-07 |
JPWO2022172568A1 (ja) | 2022-08-18 |
TWI808638B (zh) | 2023-07-11 |
CN116829741A (zh) | 2023-09-29 |
JP7211550B2 (ja) | 2023-01-24 |
KR20230128104A (ko) | 2023-09-01 |
TW202231880A (zh) | 2022-08-16 |
EP4265743A4 (en) | 2024-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2765475C1 (ru) | Способ производства кислотоустойчивой трубопроводной стали высокой чистоты | |
JP6798575B2 (ja) | 溶融金属の脱硫方法 | |
JP4257368B2 (ja) | 高清浄度鋼の製造方法 | |
CN104673960B (zh) | 一种转炉溅渣护炉的方法 | |
JP2006206957A (ja) | マンガン系合金鉄製造時に発生するスラグからのマンガン回収方法 | |
JP4464343B2 (ja) | アルミキルド鋼の製造方法 | |
JP7211550B2 (ja) | 溶融金属の脱硫方法 | |
JP2020011261A (ja) | 微細酸化物分散金属塊の製造装置及び製造方法 | |
JP2008285709A (ja) | 真空脱ガス工程における復硫現象を抑制する低硫鋼の二次精錬方法 | |
US4560405A (en) | Process for desulfurizing molten steel | |
RU2815873C1 (ru) | Способ десульфурации расплавленного металла | |
Goto et al. | Control aspects of the Mitsubishi continuous process | |
EP3940088A1 (en) | Method of manufacturing titanium-containing ultra-low-carbon steel | |
JP4404025B2 (ja) | 低窒素鋼の溶製方法 | |
JP4641022B2 (ja) | 高清浄度鋼の製造方法 | |
KR20000043436A (ko) | 전로의 용강 탕면높이 측정방법 | |
JP7541655B1 (ja) | 溶鉄の脱燐方法 | |
JP2002146429A (ja) | オーステナイト系高Mnステンレス鋼の製造方法 | |
JP5387045B2 (ja) | 軸受鋼の製造方法 | |
JP2023136438A (ja) | フェロニッケルの製造方法 | |
JPS6191315A (ja) | 取鍋精錬炉の操業方法 | |
JP2002131272A (ja) | スラグ中酸素活量測定プローブおよびスラグ中酸素活量測定方法 | |
KR20230173189A (ko) | 용강의 처리 방법 및 강의 제조 방법 | |
JP2021112762A (ja) | 鋼の連続鋳造方法 | |
JP2968183B2 (ja) | 電気弧光式溶解炉 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022502954 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21925812 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18272396 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202317048524 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2021925812 Country of ref document: EP Effective date: 20230717 |
|
ENP | Entry into the national phase |
Ref document number: 20237026337 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020237026337 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180093330.8 Country of ref document: CN |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023015782 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112023015782 Country of ref document: BR Kind code of ref document: A2 Effective date: 20230804 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |