WO2022172489A1 - 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置 - Google Patents

空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置 Download PDF

Info

Publication number
WO2022172489A1
WO2022172489A1 PCT/JP2021/030298 JP2021030298W WO2022172489A1 WO 2022172489 A1 WO2022172489 A1 WO 2022172489A1 JP 2021030298 W JP2021030298 W JP 2021030298W WO 2022172489 A1 WO2022172489 A1 WO 2022172489A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
dioxide adsorbent
air conditioning
adsorbent
polymer compound
Prior art date
Application number
PCT/JP2021/030298
Other languages
English (en)
French (fr)
Inventor
悠香子 明山
明子 香村
賢輝 信長
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21925737.5A priority Critical patent/EP4292703A1/en
Priority to AU2021427706A priority patent/AU2021427706A1/en
Priority to CN202180093250.2A priority patent/CN116867570A/zh
Publication of WO2022172489A1 publication Critical patent/WO2022172489A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3248Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one type of heteroatom selected from a nitrogen, oxygen or sulfur, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/04Processes using organic exchangers
    • B01J41/07Processes using organic exchangers in the weakly basic form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J41/00Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/08Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
    • B01J41/12Macromolecular compounds
    • B01J41/14Macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/15Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by chemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to carbon dioxide adsorbents, adsorption devices, and air conditioners for air conditioning.
  • Carbon dioxide adsorbents that adsorb or release carbon dioxide are known.
  • a carbon dioxide adsorbent is provided in an air conditioner, for example, and used for the purpose of controlling the concentration of carbon dioxide in the air.
  • This air conditioner takes in indoor air, removes carbon dioxide with a carbon dioxide adsorbent, and purifies the air.
  • the carbon dioxide adsorbent is regenerated by releasing carbon dioxide at a predetermined timing.
  • the carbon dioxide adsorbent disclosed in Patent Document 1 requires heating for regeneration. During this heating, if the carbon dioxide adsorbent undergoes deterioration such as shrinkage (hereinafter also simply referred to as deterioration), the adsorption performance may decrease. In addition, carbon dioxide adsorbents are desired to have a further increase in the amount of carbon dioxide adsorbed.
  • the present disclosure is a carbon dioxide adsorbent for air conditioning that repeatedly adsorbs and releases carbon dioxide, in which the amount of carbon dioxide adsorbed is increased, and the carbon dioxide adsorbent is deteriorated when the carbon dioxide adsorbent is regenerated by heating.
  • the purpose is to prevent
  • a porous carbon dioxide adsorbent is composed of a polymer compound having a chemical structure in which a functional group containing an amine group that is at least a primary amine group is bonded, it is contained in the gas It was confirmed that carbon dioxide can be abundantly adsorbed and that the carbon dioxide adsorbed by the polymer compound can be released at a relatively low temperature.
  • the present disclosure is based on such findings.
  • the carbon dioxide adsorbent for air conditioning has a chemical structure in which at least a functional group containing an amine group that is a primary amine group is bonded, and A ratio d of stress d at 10% deformation in a dry state and stress w at 10% deformation in a wet state containing a polymer compound that adsorbs carbon dioxide and releases it when heated, is formed in a porous state /w is a value in the range of 1 or more and 10 or less.
  • carbon dioxide can be abundantly adsorbed by a polymer compound having a chemical structure in which a functional group containing an amine group, which is at least a primary amine group, is bonded. Moreover, since the carbon dioxide adsorbent is porous, the contact area of the carbon dioxide adsorbent with carbon dioxide can be increased. Thereby, the carbon dioxide adsorbent can adsorb abundant carbon dioxide. In addition, since the carbon dioxide adsorbent has a ratio d/w in the range of 1 or more and 10 or less, for example, after adsorbing water, the shape change such as shrinkage that occurs when the adsorbed water volatilizes due to heating is small. .
  • the shape of the carbon dioxide adsorbent can be stably maintained, and the carbon dioxide adsorbent is less likely to be damaged. Therefore, it is possible to realize a carbon dioxide adsorbent that is resistant to deterioration even when heated and has excellent adsorption performance.
  • the amine group may be located at the end of a branched chain in the chemical structure. As a result, it is possible to prevent the amine group from becoming difficult to adsorb carbon dioxide molecules due to steric hindrance caused by the chemical structure of the polymer compound. Therefore, carbon dioxide can be adsorbed on the carbon dioxide adsorbent more efficiently.
  • the chemical structure may contain an aromatic ring directly or indirectly bonded to the amine group. This makes it easier to arrange the aromatic ring in the vicinity of the amine group. Therefore, the hydrophobicity of the aromatic ring can suppress adsorption of water molecules contained in the air to the hydrophilic amine group. Therefore, the carbon dioxide adsorption selectivity of the carbon dioxide adsorbent can be improved. In addition, since the reaction between the amine group and the water molecule can be suppressed, the heating temperature for heating the carbon dioxide adsorbent can be lowered when the carbon dioxide adsorbent is regenerated.
  • the molecular weight of the functional group may be in the range of 70 or more and 200 or less.
  • the hydrophobic property of the aromatic ring can be easily exhibited to the amine group.
  • the density of amine groups in the carbon dioxide adsorbent can be appropriately maintained.
  • the polymer compound may contain at least a polystyrene-based resin skeleton.
  • the adsorption performance of the carbon dioxide adsorbent can be further improved.
  • the carbon dioxide adsorbent can be used in a solid state within the temperature range in which the carbon dioxide adsorbent is used in air conditioners by including the polystyrene resin skeleton in the polymer compound. can. This makes it possible to improve the handleability of the carbon dioxide adsorbent compared to, for example, the case where the carbon dioxide adsorbent is a liquid or the like. Also, for example, it is possible to suppress volatilization of the carbon dioxide adsorbent during use.
  • the surface shape of the carbon dioxide adsorbent can be changed to easily increase the contact area of the carbon dioxide adsorbent with carbon dioxide.
  • the amine-supported amount may be a value in the range of 2.0 mmol/g or more.
  • a powder having an average particle diameter in the range of 300 ⁇ m or more and 1.3 mm or less may be used. This can further increase the specific surface area of the carbon dioxide adsorbent. Therefore, the carbon dioxide adsorbent can be easily brought into contact with carbon dioxide. As a result, the carbon dioxide adsorption performance of the carbon dioxide adsorbent can be favorably improved.
  • the average particle size of the carbon dioxide adsorbent can be set to a relatively large value, for example, when an adsorption device is configured by holding the powdery carbon dioxide adsorbent in a holder, the air can pass through the ventilation part of the holder. It is possible to reduce the falling off of the carbon dioxide adsorbent. Therefore, it is possible to improve the handleability of the carbon dioxide adsorbent.
  • the stress at 10% deformation may be a value in the range of 5 ⁇ 10 6 Pa or more and 14 ⁇ 10 6 Pa or less.
  • moderate strength can be imparted to the carbon dioxide adsorbent. Therefore, for example, when an adsorption device is constructed using a carbon dioxide adsorbent, it is possible to prevent the carbon dioxide adsorbent from coming off due to cracking or chipping.
  • the carbon dioxide adsorbent can be configured to have an appropriate density. As a result, the porosity of the carbon dioxide adsorbent can be favorably maintained.
  • An adsorption device in one aspect of the present disclosure includes any of the carbon dioxide adsorbents described above.
  • an air conditioner according to an aspect of the present disclosure includes the adsorption device, a blower mechanism that generates an airflow passing through the adsorption device, and the carbon dioxide adsorbent in the adsorption device that releases carbon dioxide to the and a regeneration mechanism that regenerates the carbon dioxide adsorbent.
  • FIG. 1 is a perspective view of an indoor unit of an air conditioner according to the first embodiment.
  • FIG. 2 is a diagram showing a polymer compound contained in the carbon dioxide adsorbent of FIG. 1.
  • FIG. 3 is a diagram showing a polymer compound according to the second embodiment.
  • FIG. 4 is a diagram showing a polymer compound according to the third embodiment.
  • FIG. 5 is a diagram showing a polymer compound according to the fourth embodiment.
  • FIG. 6 is a diagram showing a polymer compound according to the fifth embodiment.
  • FIG. 7 is a diagram showing a polymer compound according to the sixth embodiment.
  • FIG. 8 is a diagram showing a polymer compound according to the seventh embodiment.
  • FIG. 9 is a diagram showing a polymer compound according to the eighth embodiment.
  • FIG. 10 is a diagram showing a polymer compound according to the ninth embodiment.
  • FIG. 11 is a diagram showing a polymer compound according to the tenth embodiment.
  • FIG. 1 is a perspective view of an indoor unit 10 of an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 shown in FIG. 1 controls the concentration of carbon dioxide in indoor air. That is, the air conditioner 1 increases or decreases the concentration of carbon dioxide in the indoor air.
  • the air conditioner 1 includes, as an example, an indoor unit 10 and an outdoor unit (not shown).
  • refrigerant circulates between the indoor unit 10 and the outdoor unit.
  • the indoor unit 10 includes a heat exchanger 2 that exchanges heat between a refrigerant and indoor air, and an air blowing mechanism 3 that takes in indoor air, exchanges heat with the heat exchanger 2, and then discharges the air.
  • the indoor unit 10 includes an adsorption device 4 having a carbon dioxide adsorbent 5 for air conditioning, and a regeneration mechanism 6 that releases carbon dioxide from the carbon dioxide adsorbent 5 in the adsorption device 4 to regenerate the carbon dioxide adsorbent 5. and As will be described later, the indoor unit 10 adsorbs and removes carbon dioxide from the indoor air with the carbon dioxide adsorbent 5 . Further, the indoor unit 10 regenerates the carbon dioxide adsorbent 5 by releasing the carbon dioxide adsorbed on the carbon dioxide adsorbent 5 by the regeneration mechanism 6 . As a result, the air conditioner 1 regenerates the carbon dioxide adsorbent 5 while repeatedly using it.
  • the regeneration mechanism 6 releases carbon dioxide adsorbed on the carbon dioxide adsorbent 5 by heating the carbon dioxide adsorbent 5 .
  • the heat exchanger 2 and the blower mechanism 3 serve as the regeneration mechanism 6 as an example. Therefore, the air conditioner 1 does not need to have a separate regeneration mechanism 6 to regenerate the carbon dioxide adsorbent 5 .
  • the heat exchanger 2 heats the air by exchanging heat between the refrigerant and the air.
  • the blower mechanism 3 blows heated air to the adsorption device 4 .
  • the adsorption device 4 is arranged in the middle of the air flow passage provided inside the indoor unit 10 .
  • the air blowing mechanism 3 generates an air current passing through the adsorption device 4 by using the air flowing through the air flow passage.
  • the adsorption device 4 carries a carbon dioxide adsorbent 5 .
  • the adsorption device 4 has a holder that holds the carbon dioxide adsorbent 5 in contact with air.
  • the adsorption device 4 is a filter that removes carbon dioxide from the air.
  • the carbon dioxide adsorbent 5 includes a polymer compound 7 (see FIG. 2) that repeatedly adsorbs carbon dioxide and releases it when heated.
  • the carbon dioxide adsorbent 5 is porous.
  • the carbon dioxide adsorbent 5 adsorbs carbon dioxide by chemical adsorption.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 is, for example, a value in the range of 0.06 mol/kg or more and 3.91 mol/kg or less. In another example, the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 is a value in the range of 2.0 mol/kg or more and 3.91 mol/kg or less.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
  • the carbon dioxide adsorbent 5 releases the adsorbed carbon dioxide by being heated at a relatively low temperature (for example, a temperature in the range of 40° C. or higher and 100° C. or lower). Since the carbon dioxide adsorbent 5 can be regenerated at a low temperature in this way, the energy required for regeneration can be reduced. Moreover, it is possible to prevent the adsorption performance of the carbon dioxide adsorbent 5 from deteriorating due to heating. In addition, it is possible to prevent the indoor unit 10 from being affected by the heating temperature for heating the carbon dioxide adsorbent 5 .
  • the carbon dioxide adsorbent 5 is powder containing a plurality of spherical particles.
  • the carbon dioxide adsorbent 5 of the present embodiment is powder having an average particle diameter in the range of 300 ⁇ m or more and 1.3 mm or less.
  • the carbon dioxide adsorbent 5 is easier to handle as the average particle diameter increases.
  • the smaller the average particle diameter the more the specific surface area of the carbon dioxide adsorbent 5 is improved.
  • the average particle diameter can be measured by Coulter counter method, laser diffraction method, image analysis method, or the like. For example, according to the Coulter Counter method, the average particle size is calculated as a 50% volume average particle size.
  • the carbon dioxide adsorbent 5 has a pore volume of 0.2 ml/g or more. As a result, the pore volume can be secured to some extent, and the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 can be easily set to an abundant amount of 2 mol/kg or more. Moreover, the upper limit of this pore volume is, for example, 2 ml/g. Moreover, the pore diameter of the carbon dioxide adsorbent 5 is a value in the range of 1 nm or more and 200 nm or less. The bulk density of the carbon dioxide adsorbent 5 is a value in the range of 0.3 g/cm 3 or more and 0.9 g/cm 3 or less. Moreover, the specific surface area of the carbon dioxide adsorbent 5 is a value in the range of 6 m 2 /g or more and 100 m 2 /g or less.
  • the carbon dioxide adsorbent 5 of the present embodiment has a stress at 10% deformation in the range of 5 ⁇ 10 6 Pa or more and 14 ⁇ 10 6 Pa or less.
  • the stress at 10% deformation referred to here refers to the deformation strength against a compressive displacement of 10% of the particle diameter.
  • the stress at 10% deformation of the carbon dioxide adsorbent 5 can be measured, for example, by the following method. In the measurement, the particles of the carbon dioxide adsorbent 5 are dried at normal temperature in a desiccator kept at a humidity of 20% or less to obtain a dry state, and the particles of the carbon dioxide adsorbent 5 within 5 days after being removed from the desiccator are to be measured.
  • the carbon dioxide adsorbent 5 has a ratio d/w between the stress d at 10% deformation in a dry state and the stress w at 10% deformation in a wet state in the range of 1 or more and 10 or less. In another example, the carbon dioxide adsorbent 5 has a ratio d/w of 2 or more and 10 or less. In another example, the carbon dioxide adsorbent 5 has a ratio d/w of 3 or more and 10 or less.
  • the dry state referred to here refers to the state within 5 days after being removed from the desiccator after being dried at room temperature in a desiccator kept at a humidity of 20% or less, as described above.
  • the dry state refers to the state of the carbon dioxide adsorbent 5 dried in a desiccator under an atmosphere of normal temperature and humidity of 20%.
  • the wet state refers to the state of the carbon dioxide adsorbent 5 in which a water film forms on the stage when it is immersed in water until immediately before measurement and placed on the stage of the microparticle crushing force measuring device.
  • the wet state refers to a state in which the water content of the carbon dioxide adsorbent 5 is saturated.
  • Normal temperature refers to a temperature in the range of 5°C or higher and 35°C or lower as defined in JIS Z 8703:1983.
  • FIG. 2 is a diagram showing the polymer compound 7 contained in the carbon dioxide adsorbent 5 of FIG.
  • FIG. 2 schematically shows the structure of the polymer compound 7 including a partial chemical structure.
  • the carbon dioxide adsorbent 5 includes a polymer compound 7 having a chemical structure in which at least functional groups 7b containing amine groups, which are primary amine groups, are bonded.
  • this polymer compound 7 has a base material 7a forming a molecular skeleton and a functional group 7b that is chemically bonded to the base material 7a and contains an amine group.
  • the amine group is, for example, desirably a primary amine group, but may be a secondary amine group.
  • Functional group 7b in this embodiment includes a CH 2 —NH 2 group as an example.
  • the functional group 7b is bonded as a side chain to the main chain of the base material 7a.
  • the base material 7a includes a resin skeleton composed of one or more resins.
  • the base material 7a of the present embodiment includes at least a polystyrene (PS) resin skeleton as the resin skeleton.
  • PS polystyrene
  • the amine group is located at the end of the branched chain in the chemical structure of the polymer compound 7.
  • the chemical structure of polymer compound 7 also includes an aromatic ring (eg, a benzene ring) directly or indirectly bonded to an amine group.
  • the hydrophobicity of the aromatic ring prevents water molecules from approaching the amine group. For example, the closer the distance between the aromatic ring and the amine group, the better.
  • the branched chain described above may be derived from either the main chain (for example, the main chain of the base material 7a) or the side chain of the chemical structure of the polymer compound 7. In other words, the polymer compound 7 of this embodiment shown in FIG.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 using this polymer compound 7 is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
  • the polymer compound 7 has a structure in which an amine group is bonded to a base material 7a forming a molecular skeleton via a hydrophobic group (an example of an aromatic ring) having higher hydrophobicity than an amine group. Therefore, the carbon dioxide adsorbent 5 can be regenerated at a relatively low temperature due to the action of this hydrophobic group. Also, the carbon dioxide adsorbent 5 is kept solid within the operating temperature range of the air conditioner 1 . Therefore, even if the carbon dioxide adsorbent 5 is heated during regeneration, decomposition and volatilization of the amine groups are prevented.
  • the carbon dioxide adsorbent 5 is kept solid within the operating temperature range of the air conditioner 1, a binder for binding and holding the polymer compound 7, for example, is unnecessary. As a result, it is possible to prevent the pores of the carbon dioxide adsorbent 5 from being clogged with the binder and the adsorption performance of the carbon dioxide adsorbent 5 to deteriorate.
  • the carbon dioxide adsorbent 5 of the present embodiment has an amine-supported amount in the range of 2.0 mmol/g or more.
  • the carbon dioxide adsorbent 5 has an amine loading in the range of 2.5 mmol/g or more.
  • the carbon dioxide adsorbent 5 is designed to have an improved carbon dioxide adsorption amount.
  • the amount of amine supported by the carbon dioxide adsorbent 5 can be measured by, for example, a quantitative analysis method such as titration, or a CHN elemental analysis method.
  • the object to be measured is combusted with oxygen to generate H2O , CO2 , and NOx. It also reduces NOx to N2 .
  • each gas of H 2 O, CO 2 and N 2 is separated by a column and introduced into a detector (TCD (Thermal Conductivity Detector)).
  • TCD Thermal Conductivity Detector
  • the contents of carbon, hydrogen, and nitrogen to be measured are measured, and the amount of amine supported is calculated.
  • the amine group is an NH2 group
  • the amount of amine supported is calculated based on the following formulas 2 and 3.
  • the value of the ratio d/w may vary depending on the manufactured product. For example, when the degree of polymerization of the polymer compound 7 becomes relatively low due to fluctuations in the raw material of the polymer compound 7 or the manufacturing conditions, the heat resistance of the product becomes insufficient, and shrinkage or the like occurs during drying. It is presumed that this is because
  • the polymer compound 7 in a dry state has a lightness L* and a chromaticity a* defined by the CIE1976L*a*b* color system between the ratio d/w.
  • the ratio d/w of the carbon dioxide adsorbent 5 using the polymer compound 7 is roughly determined when the lightness L* and the chromaticity a* are determined.
  • each of the lightness L* and chromaticity a* in the dry state of the polymer compound 7 contained in the carbon dioxide adsorbent 5 having the target value ratio d/w is grasped as a reference value, and the dioxide Among the polymer compounds 7 to be used in the production of the carbon adsorbent 5, the results of comparing the lightness L* and chromaticity a* in the dry state with the respective reference values were selected and selected.
  • the carbon dioxide adsorbent 5 having the ratio d/w of the target value can be obtained with some efficiency.
  • each value of lightness L* and chromaticity a* referred to here is a value measured by a reflection method using a C light source.
  • a spectral color difference meter such as "SE6000" manufactured by Nippon Denshoku Industries Co., Ltd. can be used.
  • the carbon dioxide adsorbent 5 having the ratio d/w of the target value may be obtained by directly measuring the d/w of the product to be inspected.
  • the air conditioner 1 is driven in either a first mode for reducing the carbon dioxide concentration in the indoor air or a second mode for increasing the carbon dioxide concentration in the indoor air.
  • indoor air is blown toward the carbon dioxide adsorbent 5 by the blowing mechanism 3 in the indoor unit 10 .
  • the carbon dioxide adsorbent 5 adsorbs carbon dioxide contained in the air.
  • the concentration of carbon dioxide in the room decreases to, for example, 1000 ppm or less.
  • the carbon dioxide adsorbent 5 is regenerated by the regeneration mechanism 6 to release carbon dioxide. This increases the carbon dioxide concentration in the room.
  • the carbon dioxide adsorbent for air conditioning that repeatedly adsorbs and releases carbon dioxide
  • the amount of carbon dioxide adsorbed can be increased, and the carbon dioxide adsorbent is regenerated by heating. It can prevent deterioration.
  • the polymer compound 7 having the chemical structure in which the functional group 7b containing an amine group, which is at least a primary amine group, is bonded abundantly adsorbs carbon dioxide. can.
  • the carbon dioxide adsorbent 5 is porous, the contact area of the carbon dioxide adsorbent 5 with carbon dioxide can be increased. Thereby, the carbon dioxide adsorbent 5 can adsorb abundant carbon dioxide.
  • the carbon dioxide adsorbent 5 has a ratio d/w in the range of 1 to 10, for example, after adsorbing water, a shape change such as shrinkage occurs when the adsorbed water is volatilized by heating. is small. Therefore, even if the carbon dioxide adsorbent 5 is heated, the shape of the carbon dioxide adsorbent 5 can be stably maintained, and the carbon dioxide adsorbent 5 is less likely to be damaged. Therefore, it is possible to realize the carbon dioxide adsorbent 5 that is resistant to deterioration even when heated and has excellent adsorption performance.
  • the carbon dioxide adsorbent 5 can prevent cracking and damage to the porous structure when dried by heating after adsorbing water. Moreover, in order to maintain the shape of the carbon dioxide adsorbent 5, it is not necessary to compress the material of the carbon dioxide adsorbent 5 excessively. Therefore, it is possible to prevent the porous structure of the carbon dioxide adsorbent 5 from being damaged by the densification due to compression.
  • the amine group is located at the end of the branched chain in the chemical structure of the polymer compound 7.
  • steric hindrance caused by the chemical structure of the polymer compound 7 can prevent the amine groups from becoming difficult to adsorb carbon dioxide molecules. Therefore, it is possible to cause the carbon dioxide adsorbent 5 to adsorb carbon dioxide more efficiently.
  • the chemical structure of polymer compound 7 includes an aromatic ring directly or indirectly bonded to an amine group. This makes it easier to arrange the aromatic ring in the vicinity of the amine group. Therefore, when the carbon dioxide contained in the air is adsorbed by the carbon dioxide adsorbent 5, water molecules contained in the air are adsorbed by the hydrophilic amine groups, thereby inhibiting the adsorption of carbon dioxide by the polymer compound 7. can be suppressed by the aromatic ring. Thereby, the selection range of the carbon dioxide adsorbent 5 can be improved. In addition, since water is less likely to adhere to the polymer compound 7, the heating temperature for heating the carbon dioxide adsorbent 5 during regeneration of the carbon dioxide adsorbent 5 can be lowered.
  • the molecular weight of the functional group 7b is a value in the range of 70 or more and 200 or less.
  • the hydrophobic property of the aromatic ring can be easily exhibited to the amine group.
  • the density of amine groups in the carbon dioxide adsorbent 5 can be appropriately maintained.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent 5 can be easily set to an abundant amount of 2 mol/kg or more.
  • the polymer compound 7 contains at least a polystyrene-based resin skeleton.
  • the adsorption performance of the carbon dioxide adsorbent 5 can be further improved.
  • polystyrene since polystyrene has a relatively high melting point, the inclusion of the skeleton of the polystyrene-based resin in the polymer compound 7 allows the carbon dioxide adsorbent 5 to be solidified within the temperature range in which the carbon dioxide adsorbent 5 is used in the air conditioner 1. can be used in the state of This makes it possible to improve the handleability of the carbon dioxide adsorbent 5 compared to, for example, the case where the carbon dioxide adsorbent 5 is liquid or the like.
  • the carbon dioxide adsorbent 5 can be prevented from volatilizing during use.
  • the surface shape of the carbon dioxide adsorbent 5 can be changed to easily increase the contact area of the carbon dioxide adsorbent 5 with carbon dioxide.
  • the carbon dioxide adsorbent 5 of the present embodiment has an amine-supported amount in the range of 2.0 mmol/g or more. Thereby, abundant amine groups can be present in the carbon dioxide adsorbent 5 . Therefore, the carbon dioxide adsorption performance of the carbon dioxide adsorbent 5 can be further improved.
  • the carbon dioxide adsorbent 5 is a powder having an average particle size in the range of 300 ⁇ m or more and 1.3 mm or less. Thereby, the specific surface area of the carbon dioxide adsorbent 5 can be further increased. Therefore, the carbon dioxide adsorbent 5 can be easily brought into contact with carbon dioxide. As a result, the carbon dioxide adsorption performance of the carbon dioxide adsorbent 5 can be favorably improved.
  • the average particle size of the carbon dioxide adsorbent 5 can be set to a relatively large value, for example, when the adsorption device 4 is configured by holding the powdery carbon dioxide adsorbent 5 in a holder, ventilation of the holder It is possible to reduce the falling of the carbon dioxide adsorbent 5 through the part. Therefore, the handleability of the carbon dioxide adsorbent 5 can be improved.
  • the carbon dioxide adsorbent 5 has a stress in the range of 5 ⁇ 10 6 Pa or more and 14 ⁇ 10 6 Pa or less at 10% deformation. Thereby, appropriate strength can be imparted to the carbon dioxide adsorbent 5 . Therefore, for example, when the adsorption device 4 is constructed using the carbon dioxide adsorbent 5, it is possible to prevent the carbon dioxide adsorbent 5 from coming off due to cracking or chipping. Also, by setting the stress during deformation to a value within the above range, the carbon dioxide adsorbent 5 can be configured to have an appropriate density. As a result, the porosity of the carbon dioxide adsorbent 5 can be maintained well.
  • the air conditioner 1 continues to maintain the carbon dioxide concentration in the room at a low concentration, the carbon dioxide generated during regeneration of the carbon dioxide adsorbent 5 may be discharged outdoors.
  • Other embodiments of the polymer compound contained in the carbon dioxide adsorbent 5 are exemplified below.
  • FIG. 3 is a diagram showing a polymer compound 17 according to the second embodiment.
  • the polymer compound 17 shown in FIG. 3 has a base material 17a forming a molecular skeleton and linear side chains containing functional groups 17b.
  • the base material 17a includes at least a polystyrene (PS)-based resin skeleton as a resin skeleton.
  • PS polystyrene
  • the polymer compound 17 has at least an amine group, which is a primary amine group, located at the end of a branched chain in the chemical structure of the polymer compound 17 . Therefore, like the polymer compound 7, the steric hindrance of the chemical structure of the polymer compound 17 prevents the carbon dioxide molecules from approaching the amine groups with difficulty, making it easier to exhibit the carbon dioxide adsorption performance.
  • FIG. 4 is a diagram showing a polymer compound 27 according to the third embodiment.
  • FIG. 5 is a diagram showing a polymer compound 37 according to the fourth embodiment.
  • FIG. 6 is a diagram showing a polymer compound 47 according to the fifth embodiment.
  • the polymer compounds 27, 37, 47 each contain an amine group in which the functional groups 27b, 37b, 47b are tertiary amine groups.
  • FIG. 7 is a diagram showing a polymer compound 57 according to the sixth embodiment.
  • FIG. 8 is a diagram showing a polymer compound 67 according to the seventh embodiment.
  • Functional groups 57b and 67b of polymer compounds 57 and 67, respectively, contain amine groups that are primary amine groups, but the chemical structures of polymer compounds 57 and 67 do not contain aromatic rings.
  • Polymer compounds 57 and 67 each have an amine group located at the end of a branched chain in the chemical structure of polymer compounds 57 and 67 .
  • FIG. 9 is a diagram showing a polymer compound 77 according to the eighth embodiment.
  • the polymer compound 77 partially includes the chemical structure shown in FIG.
  • the functional group 77 b of the polymer compound 77 includes an amine group, which is a primary amine group, and the amine group is located in the middle of the branch chain in the chemical structure of the polymer compound 77 .
  • This branched chain may be linear or branched into other branched chains.
  • FIG. 10 is a diagram showing a polymer compound 87 according to the ninth embodiment.
  • FIG. 11 shows a polymer compound 97 according to the tenth embodiment.
  • Polymer compounds 87 and 97 have a resin skeleton containing a polyurethane (PU) resin.
  • a functional group 87b of the polymer compound 87 includes an amine group, which is a primary amine group.
  • a functional group 97b of the polymer compound 97 includes an amine group, which is a secondary amine group.
  • the functional group 97b may have a heterocyclic structure containing nitrogen atoms of amine groups.
  • the present disclosure is not limited to the above embodiments, and the configuration can be changed, added, or deleted without departing from the scope of the present disclosure.
  • Applications of carbon dioxide adsorbents for air conditioning and air conditioners are not limited to indoor applications, and may be other applications such as factory exhaust gas treatment applications, agricultural facility applications, vehicle-mounted applications, and the like.
  • the adsorbent is a powder, the particles of the adsorbent need not be uniform in shape and size.
  • blower mechanism 4 adsorption device 5 carbon dioxide adsorbent 6 regeneration mechanism 7, 17, 27, 37, 47, 57, 67, 77, 87, 97 polymer compound 7b, 17b, 27b, 37b, 47b, 57b, 67b, 77b, 87b, 97b functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Central Air Conditioning (AREA)
  • Gas Separation By Absorption (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

空気調和用の二酸化炭素吸着材は、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有し、繰り返し二酸化炭素を吸着し且つ加熱されることにより放出する高分子化合物を含み、多孔質状に形成される。乾燥状態における10%変形時応力dと、湿潤状態における10%変形時応力wとの比率d/wが、1以上10以下の範囲の値である。

Description

空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置
 本開示は、空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置に関する。
 二酸化炭素を吸着又は放出する二酸化炭素吸着材が知られている。特許文献1に開示されるように、二酸化炭素吸着材は、例えば空気調和装置に備えられ、空気中の二酸化炭素濃度を制御する目的で用いられる。この空気調和装置では、室内の空気を取り込み、二酸化炭素吸着材により二酸化炭素を除去して空気を清浄化する。二酸化炭素吸着材は、所定のタイミングで二酸化炭素を放出させて再生される。
特開2019-90546号公報
 特許文献1に開示される二酸化炭素吸着材は、再生するために加熱が必要である。この加熱の際、二酸化炭素吸着材が収縮等の変質(以下、単に変質とも称する。)を生じると、吸着性能が低下するおそれがある。また二酸化炭素吸着材には、二酸化炭素吸着量の更なる増大が望まれている。
 そこで本開示は、繰り返し二酸化炭素を吸着及び放出する空気調和用の二酸化炭素吸着材において、二酸化炭素吸着量を増大させると共に、二酸化炭素吸着材を加熱により再生する際に二酸化炭素吸着材が変質するのを防止することを目的とする。
 本願発明者らの検討結果により、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物により多孔質状の二酸化炭素吸着材を構成した場合、気体に含まれる二酸化炭素を豊富に吸着できると共に、比較的低温で当該高分子化合物が吸着した二酸化炭素を放出できることが確認された。本開示は、このような知見に基づくものである。
 即ち、上記課題を解決するために、本開示の一態様に係る空気調和用の二酸化炭素吸着材は、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有し、繰り返し二酸化炭素を吸着し且つ加熱されることにより放出する高分子化合物を含み、多孔質状に形成され、乾燥状態における10%変形時応力dと、湿潤状態における10%変形時応力wとの比率d/wが、1以上10以下の範囲の値である。
 上記構成を有する二酸化炭素吸着材によれば、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物により、二酸化炭素を豊富に吸着できる。また、二酸化炭素吸着材が多孔質状に形成されているため、二酸化炭素吸着材の二酸化炭素に対する接触面積を増大させることができる。これにより、二酸化炭素吸着材は、豊富な二酸化炭素を吸着できる。また、この二酸化炭素吸着材は、比率d/wが1以上10以下の範囲の値であるため、例えば、水を吸着後、加熱により吸着水が揮発する際に起こる収縮等の形状変化が小さい。よって、二酸化炭素吸着材を加熱しても、二酸化炭素吸着材の形態を安定して維持でき、二酸化炭素吸着材に損傷が生じにくい。従って、加熱しても変質しにくく且つ優れた吸着性能を有する二酸化炭素吸着材を実現できる。
 前記官能基は、前記アミン基が前記化学構造における分枝鎖の末端に位置していてもよい。これにより、高分子化合物の化学構造に起因する立体障害により、アミン基が二酸化炭素分子を吸着しにくくなるのを抑制できる。よって、二酸化炭素吸着材に二酸化炭素を更に効率よく吸着させることができる。
 前記化学構造は、前記アミン基に直接又は間接的に結合した芳香環を含んでいてもよい。これにより、アミン基の近傍に芳香環を配置し易くできる。このため、芳香環の疎水性によって、親水性のアミン基に空気に含まれる水分子が吸着されるのを抑制できる。従って、二酸化炭素吸着材の二酸化炭素吸着選択性を向上できる。また、アミン基と水分子の反応を抑制できるため、二酸化炭素吸着材の再生時に二酸化炭素吸着材を加熱する加熱温度を低温にできる。
 前記化学構造が前記芳香環を含む場合、前記官能基の分子量が、70以上200以下の範囲の値であってもよい。これにより、芳香環による疎水性をアミン基に対して発揮し易くできる。また、二酸化炭素吸着材中におけるアミン基の密度を適度に保持できる。
 前記高分子化合物は、少なくともポリスチレン系樹脂の骨格を含んでいてもよい。前記高分子化合物がポリスチレン系樹脂の骨格を含むことにより、二酸化炭素吸着材の吸着性能を更に向上できる。また、ポリスチレンは比較的融点が高いため、高分子化合物がポリスチレン系樹脂の骨格を含むことで、二酸化炭素吸着材が空気調和装置で用いられる温度範囲において、二酸化炭素吸着材を固体の状態で使用できる。これにより、例えば二酸化炭素吸着材が液体等である場合に比べて、二酸化炭素吸着材の取扱性を向上できる。また、例えば二酸化炭素吸着材が使用中に揮発するのを抑制できる。また、二酸化炭素吸着材の表面形状を変化させ、二酸化炭素吸着材の二酸化炭素に対する接触面積を増大し易くできる。
 アミン担持量が2.0mmol/g以上の範囲の値であってもよい。これにより、二酸化炭素吸着材中に豊富なアミン基を存在させることができる。よって、二酸化炭素吸着材の二酸化炭素の吸着性能を一層向上できる。
 平均粒径が300μm以上1.3mm以下の範囲の値である粉体であってもよい。これにより、二酸化炭素吸着材の比表面積を更に増大できる。よって、二酸化炭素吸着材を二酸化炭素に接触し易くできる。結果として、二酸化炭素吸着材の二酸化炭素の吸着性能を良好に向上できる。また、二酸化炭素吸着材の平均粒径を比較的大きい値に設定できるので、例えば、粉体状の二酸化炭素吸着材をホルダで保持して吸着デバイスを構成する場合に、ホルダの通気部分を通って二酸化炭素吸着材が脱落するのを低減できる。よって、二酸化炭素吸着材の取扱性を向上できる。
 10%変形時応力が、5×10Pa以上14×10Pa以下の範囲の値であってもよい。これにより、二酸化炭素吸着材に適度な強度を付与できる。よって、例えば二酸化炭素吸着材を用いて吸着デバイスを構成する際に、二酸化炭素吸着材の割れや欠け等による脱落を防止できる。また、当該変形時応力を上記範囲の値に設定することで、適度な密度を有するように二酸化炭素吸着材を構成できる。その結果、二酸化炭素吸着材の多孔性を良好に維持できる。
 本開示の一態様における吸着デバイスは、上記したいずれかの二酸化炭素吸着材を備える。また、本開示の一態様における空気調和装置は、上記吸着デバイスと、前記吸着デバイスを通過する気流を発生させる送風機構と、前記吸着デバイス内の前記二酸化炭素吸着材に二酸化炭素を放出させて前記二酸化炭素吸着材を再生させる再生機構と、を備える。
図1は、第1実施形態に係る空気調和装置の室内機の斜視図である。 図2は、図1の二酸化炭素吸着材が含む高分子化合物を示す図である。 図3は、第2実施形態に係る高分子化合物を示す図である。 図4は、第3実施形態に係る高分子化合物を示す図である。 図5は、第4実施形態に係る高分子化合物を示す図である。 図6は、第5実施形態に係る高分子化合物を示す図である。 図7は、第6実施形態に係る高分子化合物を示す図である。 図8は、第7実施形態に係る高分子化合物を示す図である。 図9は、第8実施形態に係る高分子化合物を示す図である。 図10は、第9実施形態に係る高分子化合物を示す図である。 図11は、第10実施形態に係る高分子化合物を示す図である。
 以下、図面を参照して各実施形態を説明する。
 (第1実施形態)
 図1は、第1実施形態に係る空気調和装置1の室内機10の斜視図である。図1に示される空気調和装置1は、室内の空気中の二酸化炭素濃度を制御する。即ち、空気調和装置1は、室内の空気中の二酸化炭素濃度を増減させる。空気調和装置1は、一例として、室内機10と、不図示の室外機とを備える。空気調和装置1では、冷媒が室内機10と室外機との間を循環する。室内機10は、冷媒と室内の空気とを熱交換する熱交換器2と、室内の空気を取り込んで熱交換器2により熱交換した後に排出する送風機構3とを備える。
 また室内機10は、空気調和用の二酸化炭素吸着材5を備える吸着デバイス4と、吸着デバイス4内の二酸化炭素吸着材5に二酸化炭素を放出させて二酸化炭素吸着材5を再生させる再生機構6とを備える。室内機10は、後述するように、二酸化炭素吸着材5により、室内の空気中から二酸化炭素を吸着して除去する。また室内機10は、再生機構6により、二酸化炭素吸着材5に吸着した二酸化炭素を放出させることで、二酸化炭素吸着材5を再生する。これにより空気調和装置1は、二酸化炭素吸着材5を繰り返し使用しながら再生させる。
 再生機構6は、二酸化炭素吸着材5を加熱することで二酸化炭素吸着材5に吸着した二酸化炭素を放出させる。本実施形態の空気調和装置1では、一例として熱交換器2と送風機構3とが再生機構6を兼ねる。このため空気調和装置1は、二酸化炭素吸着材5を再生するために別途の再生機構6を備える必要がない。二酸化炭素吸着材5を再生する際、熱交換器2は、冷媒と空気との間で熱交換して空気を加熱する。送風機構3は、加熱された空気を吸着デバイス4に送風する。
 一例として、吸着デバイス4は、室内機10内に設けられた空気流通路の途中に配置される。送風機構3は、空気流通路を流通する空気により、吸着デバイス4を通過する気流を発生させる。吸着デバイス4は、二酸化炭素吸着材5を担持する。吸着デバイス4は、二酸化炭素吸着材5を空気と接触可能に保持するホルダを有する。吸着デバイス4は、空気中の二酸化炭素を除去するフィルターである。
 二酸化炭素吸着材5は、繰り返し二酸化炭素を吸着し且つ加熱されることにより放出する高分子化合物7(図2参照)を含む。二酸化炭素吸着材5は、多孔質状に形成されている。二酸化炭素吸着材5は、化学吸着により二酸化炭素を吸着する。二酸化炭素吸着材5の二酸化炭素吸着量は、一例として0.06mol/kg以上3.91mol/kg以下の範囲の値である。また別の例では、二酸化炭素吸着材5の二酸化炭素吸着量は、2.0mol/kg以上3.91mol/kg以下の範囲の値である。また別の例では、二酸化炭素吸着材5の二酸化炭素吸着量は、2.79mol/kg以上3.91mol/kg以下の範囲の値である。二酸化炭素吸着材5は、比較的低温(一例として、40℃以上100℃以下の範囲の温度)で加熱されることで、吸着した二酸化炭素を放出する。このように二酸化炭素吸着材5は、低温で再生できるため、再生に必要なエネルギーを低減できる。また、加熱により二酸化炭素吸着材5の吸着性能が低下するのを防止できる。また、二酸化炭素吸着材5を加熱する加熱温度により室内機10が影響を受けるのを抑制できる。
 一例として、二酸化炭素吸着材5は、複数の球状粒子を含む粉体である。本実施形態の二酸化炭素吸着材5は、平均粒径が300μm以上1.3mm以下の範囲の値である粉体である。例えば、二酸化炭素吸着材5は、平均粒径が大きいほど取扱性が向上する。また例えば、平均粒径が小さいほど二酸化炭素吸着材5の比表面積が向上する。ここで平均粒径は、コールターカウンター法、レーザ回折法、画像解析法等により測定できる。例えば、コールターカウンター法によれば、平均粒径は、50%体積平均粒径として算出される。
 また二酸化炭素吸着材5は、細孔容積が0.2ml/g以上の範囲の値である。これにより、細孔容積をある程度大きく確保し、二酸化炭素吸着材5の二酸化炭素吸着量を2mol/kg以上の豊富な量に設定し易くできる。また、この細孔容積の上限値は、例えば2ml/gである。また二酸化炭素吸着材5の細孔径は、1nm以上200nm以下の範囲の値である。また二酸化炭素吸着材5の嵩密度は、0.3g/cm以上0.9g/cm以下の範囲の値である。また二酸化炭素吸着材5の比表面積は、6m/g以上100m/g以下の範囲の値である。
 また本実施形態の二酸化炭素吸着材5は、10%変形時応力が、5×10Pa以上14×10Pa以下の範囲の値である。ここで言う10%変形時応力とは、粒子径の10%の圧縮変位に対する変形強度を指す。二酸化炭素吸着材5の10%変形時応力は、例えば以下の方法で測定できる。測定に際し、湿度20%以下に保たれたデシケータ内で常温乾燥させて乾燥状態とし、このデシケータから取り出して5日以内の二酸化炭素吸着材5の粒子を測定対象とする。微小粒圧壊力測定装置((株)ナノシーズ製「NA-A100型」)、を用い、二酸化炭素吸着材5の粒子をステージ上に散布し、圧壊針で粒子を押し潰して粒子の圧縮変位と試験力とを計測する。このとき、JIS Z 8844:2019に準拠する方法に基づき、二酸化炭素吸着材5の粒子の粒径が10%変化したときの試験力を測定する。その後、この測定値を用いて、以下の式1に基づいて10%変形時応力を求める。
 [式1]
 10%変形時応力(Pa)=粒子の粒径が10%変化したときの試験力(N)/圧縮前に計測した粒子の粒子径によって求めた相当円の面積(m
 二酸化炭素吸着材5は、10%変形時応力が、5×10Pa以上14×10Pa以下の範囲の値であることにより、粉体状に構成される際に吸着デバイス4から粉落ちしにくく、且つ、多孔性が低下しにくい密度となるように構成される。
 また二酸化炭素吸着材5は、乾燥状態における10%変形時応力dと、湿潤状態における10%変形時応力wとの比率d/wが、1以上10以下の範囲の値である。別の例では、二酸化炭素吸着材5は、比率d/wが、2以上10以下の範囲の値である。また別の例では、二酸化炭素吸着材5は、比率d/wが、3以上10以下の範囲の値である。
 ここで言う乾燥状態とは、上記したように、湿度20%以下に保たれたデシケータ内で常温乾燥させ、このデシケータから取り出して5日以内の状態を指す。言い換えると乾燥状態とは、デシケータ内で常温且つ湿度20%の雰囲気下で乾燥させた二酸化炭素吸着材5の状態を指す。また湿潤状態とは、測定直前まで水に浸漬し、微小粒圧壊力測定装置のステージに載置したときにステージ上に水膜が生じる二酸化炭素吸着材5の状態を指す。言い換えると湿潤状態とは、二酸化炭素吸着材5の含水量が飽和した状態を指す。また常温とは、JIS Z 8703:1983に規定される5℃以上35℃以下の範囲の温度を指す。
 図2は、図1の二酸化炭素吸着材5が含む高分子化合物7を示す図である。図2では、高分子化合物7の構造を部分的な化学構造を含めて模式的に図示している。図2に示すように、二酸化炭素吸着材5は、少なくとも1級アミン基であるアミン基を含む官能基7bが結合した化学構造を有する高分子化合物7を含む。具体的にこの高分子化合物7は、分子骨格をなす基材7aと、基材7aに化学結合してアミン基を含む官能基7bとを有する。アミン基は、例えば、1級アミン基であることが望ましいが、2級アミン基であってもよい。本実施形態の官能基7bは、一例としてCH-NH基を含む。本実施形態では、基材7aの主鎖に対し、官能基7bが側鎖として結合している。基材7aは、1種以上の樹脂により構成される樹脂骨格を含む。本実施形態の基材7aは、この樹脂骨格として、少なくともポリスチレン(PS)系樹脂の骨格を含む。上記の通り、二酸化炭素吸着材5は多孔質状に形成されているため、その細孔内にも官能基7bが存在している。これにより、二酸化炭素吸着材5は、細孔内でも二酸化炭素を吸着する。
 本実施形態の官能基7bは、アミン基が、高分子化合物7の化学構造における分枝鎖の末端に位置している。また高分子化合物7の化学構造は、アミン基に直接又は間接的に結合した芳香環(一例としてベンゼン環)を含む。二酸化炭素吸着材5では、芳香環の疎水性により、アミン基に水分子が近づきにくくなるように図られている。例えば、芳香環とアミン基との距離は、近い方が望ましい。上記した分枝鎖は、高分子化合物7の化学構造が有する主鎖(例えば基材7aの主鎖)又は側鎖のいずれに由来するものでもよい。図2に示す本実施形態の高分子化合物7は、言い換えると基材7aにベンジルアミン(BZA)が結合した固体高分子である。この高分子化合物7を用いた二酸化炭素吸着材5の二酸化炭素吸着量は、2.79mol/kg以上3.91mol/kg以下の範囲の値である。
 高分子化合物7は、分子骨格をなす基材7aに、アミン基よりも高い疎水性を有する疎水性基(一例として芳香環)を介してアミン基が結合された構造を有する。よって二酸化炭素吸着材5は、この疎水基の作用により、比較的低温にて再生できる。また二酸化炭素吸着材5は、空気調和装置1の駆動温度範囲内において固体に保たれる。従って、二酸化炭素吸着材5が再生時に加熱されても、アミン基の分解や揮発が防止される。また、空気調和装置1の駆動温度範囲内において二酸化炭素吸着材5が固体に保たれるため、例えば高分子化合物7を結合して保持するためのバインダが不要である。これにより、二酸化炭素吸着材5の細孔がバインダにより閉塞して二酸化炭素吸着材5の吸着性能が低下するのを回避できる。
 本実施形態の二酸化炭素吸着材5は、アミン担持量が2.0mmol/g以上の範囲の値である。また別の例では、二酸化炭素吸着材5は、アミン担持量が2.5mmol/g以上の範囲の値である。これにより、二酸化炭素吸着材5は、二酸化炭素吸着量の向上が図られている。二酸化炭素吸着材5のアミン担持量は、例えば滴定等の定量分析法や、CHN元素分析法により測定可能である。
 具体的にCHN元素分析法では、測定対象を酸素で燃焼させ、HO、CO、及びNOを発生させる。また、NOをNに還元する。そして、HO、CO、Nの各ガスをカラムにより分離して検出器(TCD(Thermal Conductivity Detector))に導入する。これにより、測定対象の炭素、水素、及び窒素の含有量を測定し、アミン担持量を算出する。ここでCHN元素分析法では、アミン基がNH基である場合、以下の式2及び式3に基づいてアミン担持量が算出される。
 [式2]
 測定対象の1級アミン含有量(質量%)=測定対象の窒素含有量(質量%)×16(NH分子量)/{14(窒素原子量)×官能基中の窒素原子数}
 [式3]
 アミン担持量(mmol/g)=測定対象の1級アミン含有量(質量%)/{16(NH分子量)×100}×1000
 二酸化炭素吸着材5は、広い面積で気体と接触するように吸着デバイス4により保持されることが望ましい。このため吸着デバイス4には、二酸化炭素吸着材5に気体(空気)を連続的に接触させるように気体を流通させる流路が形成されていてもよい。
 図2に示す化学構造の高分子化合物7を用いて二酸化炭素吸着材5を製造する場合、製造品によっては比率d/wの値がばらつくことがある。このばらつきは、例えば、高分子化合物7の原料や製造条件の変動等により高分子化合物7の重合度が比較的低くなった場合に製造品の耐熱性が不足し、乾燥する際に収縮等が生じるためであると推察される。
 ここで本願発明者らの検討により、乾燥状態における高分子化合物7は、CIE1976L*a*b*表色系により規定される明度L*及び色度a*が、比率d/wとの間に相関関係を有しており、明度L*及び色度a*が定まれば、高分子化合物7を用いた二酸化炭素吸着材5の比率d/wも概ね定まることが分かっている。
 このため、例えば、目標値の比率d/wを有する二酸化炭素吸着材5に含まれる高分子化合物7の乾燥状態における明度L*及び色度a*の各々を基準値として把握しておき、二酸化炭素吸着材5の製造に用いようとする高分子化合物7のうち、乾燥状態における明度L*及び色度a*を各々の基準値と比較した結果が許容範囲内のものを選別し、選別した高分子化合物7を用いた製造品の比率d/wを確認することで、目標値の比率d/wを有する二酸化炭素吸着材5をある程度効率よく得ることができる。明度L*の基準値としては、70以上100以下の範囲の値を例示できる。また色度a*の基準値としては、-1以上3以下の範囲の値を例示できる。ここで言う明度L*及び色度a*の各値は、C光源を用いて反射法で測定した値である。測定に際しては、例えば日本電色工業(株)製分光色差計「SE6000」等の分光色差計を利用できる。なお、検査対象の製造品のd/wを直接測定することで、目標値の比率d/wを有する二酸化炭素吸着材5を得てもよい。
 空気調和装置1は、一例として、室内の空気中の二酸化炭素濃度を低減する第1モードと、室内の空気中の二酸化炭素濃度を増大させる第2モードのいずれかで駆動される。第1モードでの駆動時には、室内機10において、室内の空気が送風機構3により二酸化炭素吸着材5に向けて送風される。これにより、二酸化炭素吸着材5は、空気に含まれる二酸化炭素を吸着する。二酸化炭素吸着材5が室内の二酸化炭素を吸着することで、室内の二酸化炭素濃度は、例えば1000ppm以下に減少する。また第2モードでの駆動時には、二酸化炭素吸着材5が再生機構6により再生させられ、二酸化炭素を放出する。これにより、室内の二酸化炭素濃度が上昇する。
 以上に説明したように、繰り返し二酸化炭素を吸着及び放出する空気調和用の二酸化炭素吸着材において、二酸化炭素吸着量を増大できると共に、二酸化炭素吸着材を加熱により再生する際に二酸化炭素吸着材が変質するのを防止できる。上記構成を有する空気調和用の二酸化炭素吸着材5によれば、少なくとも1級アミン基であるアミン基を含む官能基7bが結合した化学構造を有する高分子化合物7により、二酸化炭素を豊富に吸着できる。また、二酸化炭素吸着材5が多孔質状に形成されているため、二酸化炭素吸着材5の二酸化炭素に対する接触面積を増大させることができる。これにより、二酸化炭素吸着材5は、豊富な二酸化炭素を吸着できる。また、この二酸化炭素吸着材5は、比率d/wが、1以上10以下の範囲の値であるため、例えば、水を吸着後、加熱により吸着水が揮発する際に起こる収縮等の形状変化が小さい。よって、二酸化炭素吸着材5を加熱しても、二酸化炭素吸着材5の形態を安定して維持でき、二酸化炭素吸着材5に損傷が生じにくい。従って、加熱しても変質しにくく且つ優れた吸着性能を有する二酸化炭素吸着材5を実現できる。
 具体的に二酸化炭素吸着材5は、水を吸着後、加熱により乾燥される際、割れて多孔質構造が損傷するのを防止できる。また、二酸化炭素吸着材5の形態を維持するために、二酸化炭素吸着材5の材料を過度に圧縮する必要がない。このため、二酸化炭素吸着材5の多孔質構造が、圧縮による高密度化により損なわれるのを防止できる。
 また高分子化合物7の官能基7bは、アミン基が高分子化合物7の化学構造における分枝鎖の末端に位置している。これにより、高分子化合物7の化学構造に起因する立体障害により、アミン基が二酸化炭素分子を吸着しにくくなるのを抑制できる。よって、二酸化炭素吸着材5に二酸化炭素を更に効率よく吸着させることができる。
 また高分子化合物7の化学構造は、アミン基に直接又は間接的に結合した芳香環を含む。これにより、アミン基の近傍に芳香環を配置し易くできる。よって、空気に含まれる二酸化炭素を二酸化炭素吸着材5が吸着する場合、空気に含まれる水分子が親水性のアミン基に吸着されることで、高分子化合物7の二酸化炭素の吸着が阻害されるのを芳香環により抑制できる。これにより、二酸化炭素吸着材5の選択幅を向上できる。また、高分子化合物7に水を付着しにくくできるため、二酸化炭素吸着材5の再生時に二酸化炭素吸着材5を加熱する加熱温度を低温にできる。
 また高分子化合物7は、官能基7bの分子量が、70以上200以下の範囲の値である。これにより、芳香環による疎水性をアミン基に対して発揮し易くできる。また、二酸化炭素吸着材5中におけるアミン基の密度を適度に保持できる。また、官能基7bの分子量の下限値を70以上とすることで、二酸化炭素吸着材5の二酸化炭素吸着量を2mol/kg以上の豊富な量に設定し易くできる。
 また高分子化合物7は、少なくともポリスチレン系樹脂の骨格を含んでいる。これにより、二酸化炭素吸着材5の吸着性能を更に向上できる。また、ポリスチレンは比較的融点が高いため、高分子化合物7がポリスチレン系樹脂の骨格を含むことで、二酸化炭素吸着材5が空気調和装置1で用いられる温度範囲において、二酸化炭素吸着材5を固体の状態で使用できる。これにより、例えば二酸化炭素吸着材5が液体等である場合に比べて、二酸化炭素吸着材5の取扱性を向上できる。また、例えば二酸化炭素吸着材5が使用中に揮発するのを抑制できる。また、二酸化炭素吸着材5の表面形状を変化させ、二酸化炭素吸着材5の二酸化炭素に対する接触面積を増大し易くできる。
 また本実施形態の二酸化炭素吸着材5は、アミン担持量が、2.0mmol/g以上の範囲の値である。これにより、二酸化炭素吸着材5中に豊富なアミン基を存在させることができる。よって、二酸化炭素吸着材5の二酸化炭素の吸着性能を一層向上できる。
 また一例として、二酸化炭素吸着材5は、平均粒径が300μm以上1.3mm以下の範囲の値である粉体である。これにより、二酸化炭素吸着材5の比表面積を更に増大できる。よって、二酸化炭素吸着材5を二酸化炭素に接触し易くできる。結果として、二酸化炭素吸着材5の二酸化炭素の吸着性能を良好に向上できる。また、二酸化炭素吸着材5の平均粒径を比較的大きい値に設定できるので、例えば、粉体状の二酸化炭素吸着材5をホルダで保持して吸着デバイス4を構成する場合に、ホルダの通気部分を通って二酸化炭素吸着材5が脱落するのを低減できる。よって、二酸化炭素吸着材5の取扱性を向上できる。
 また二酸化炭素吸着材5は、一例として、10%変形時応力が、5×10Pa以上14×10Pa以下の範囲の値である。これにより、二酸化炭素吸着材5に適度な強度を付与できる。よって、例えば二酸化炭素吸着材5を用いて吸着デバイス4を構成する際に、二酸化炭素吸着材5の割れや欠け等による脱落を防止できる。また、当該変形時応力を上記範囲の値に設定することで、適度な密度を有するように二酸化炭素吸着材5を構成できる。その結果、二酸化炭素吸着材5の多孔性を良好に維持できる。
 なお、空気調和装置1により室内の二酸化炭素濃度を低濃度で維持し続ける場合には、二酸化炭素吸着材5の再生時に発生する二酸化炭素は、室外に排出されてもよい。以下、二酸化炭素吸着材5が含む高分子化合物に係る他の実施形態を例示する。
 (その他の実施形態)
 図3は、第2実施形態に係る高分子化合物17を示す図である。図3に示される高分子化合物17は、分子骨格をなす基材17aと、官能基17bを含む直鎖状の側鎖とを有する。基材17aは、樹脂骨格として、少なくともポリスチレン(PS)系樹脂の骨格を含む。高分子化合物17は、少なくとも1級アミン基であるアミン基が、高分子化合物17の化学構造における分枝鎖の末端に位置している。従って、高分子化合物17は、高分子化合物7と同様に、化学構造の立体障害により、二酸化炭素分子がアミン基に近づきにくくなるのが抑制され、二酸化炭素の吸着性能を発揮し易くできる。
 図4は、第3実施形態に係る高分子化合物27を示す図である。図5は、第4実施形態に係る高分子化合物37を示す図である。図6は、第5実施形態に係る高分子化合物47を示す図である。高分子化合物27、37、47は、それぞれの官能基27b、37b、47bが、3級アミン基であるアミン基を含む。
 図7は、第6実施形態に係る高分子化合物57を示す図である。図8は、第7実施形態に係る高分子化合物67を示す図である。高分子化合物57、67は、それぞれの官能基57b、67bが、1級アミン基であるアミン基を含むが、高分子化合物57、67の化学構造は、芳香環を含まない。高分子化合物57、67は、それぞれのアミン基が、高分子化合物57、67の化学構造における分枝鎖の末端に位置している。
 図9は、第8実施形態に係る高分子化合物77を示す図である。高分子化合物77は、一部に図9に示す化学構造を含む。高分子化合物77の官能基77bは、1級アミン基であるアミン基を含むが、アミン基は高分子化合物77の化学構造における分枝鎖の途中に位置している。この分枝鎖は、直鎖状でもよいし、更に別の分枝鎖に分岐していてもよい。
 図10は、第9実施形態に係る高分子化合物87を示す図である。図11は、第10実施形態に係る高分子化合物97を示す図である。高分子化合物87、97は、ポリウレタン(PU)系樹脂を含む樹脂骨格を有する。高分子化合物87の官能基87bは、1級アミン基であるアミン基を含む。高分子化合物97の官能基97bは、2級アミン基であるアミン基を含む。高分子化合物97のように、官能基97bは、アミン基の窒素原子を含む複素環構造を有していてもよい。
 本開示は、上記各実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、その構成を変更、追加、又は削除できる。空気調和用の二酸化炭素吸着材、及び、空気調和装置の各用途は、室内用途に限定されず、例えば、工場の排ガス処理用途、農業施設用途、車載用途等、他の用途でもよい。吸着材が粉体である場合、吸着材の粒子は、形状やサイズが同一でなくてもよい。
 1  空気調和装置
 3  送風機構
 4  吸着デバイス
 5  二酸化炭素吸着材
 6  再生機構
 7、17、27、37、47、57、67、77、87、97  高分子化合物
 7b、17b、27b、37b、47b、57b、67b、77b、87b、97b  官能基

Claims (10)

  1.  少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有し、繰り返し二酸化炭素を吸着し且つ加熱されることにより放出する高分子化合物を含み、
     多孔質状に形成され、乾燥状態における10%変形時応力dと、湿潤状態における10%変形時応力wとの比率d/wが、1以上10以下の範囲の値である、空気調和用の二酸化炭素吸着材。
  2.  前記官能基は、前記アミン基が前記化学構造における分枝鎖の末端に位置している、請求項1に記載の空気調和用の二酸化炭素吸着材。
  3.  前記化学構造は、前記アミン基に直接又は間接的に結合した芳香環を含む、請求項1又は2に記載の空気調和用の二酸化炭素吸着材。
  4.  前記官能基の分子量が、70以上200以下の範囲の値である、請求項1~3のいずれか1項に記載の空気調和用の二酸化炭素吸着材。
  5.  前記高分子化合物は、少なくともポリスチレン系樹脂の骨格を含む、請求項1~4のいずれか1項に記載の空気調和用の二酸化炭素吸着材。
  6.  アミン担持量が2.0mmol/g以上の範囲の値である、請求項1~5のいずれか1項に記載の空気調和用の二酸化炭素吸着材。
  7.  平均粒径が300μm以上1.3mm以下の範囲の値である粉体である、請求項1~6のいずれか1項に記載の空気調和用の二酸化炭素吸着材。
  8.  10%変形時応力が、5×10Pa以上14×10Pa以下の範囲の値である、請求項1~7のいずれか1項に記載の空気調和用の二酸化炭素吸着材。
  9.  請求項1~8のいずれか1項に記載の空気調和用の二酸化炭素吸着材を備える、吸着デバイス。
  10.  請求項9に記載の吸着デバイスと、
     前記吸着デバイスを通過する気流を発生させる送風機構と、
     前記吸着デバイス内の前記二酸化炭素吸着材に二酸化炭素を放出させて前記二酸化炭素吸着材を再生させる再生機構と、を備える、空気調和装置。
PCT/JP2021/030298 2021-02-09 2021-08-19 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置 WO2022172489A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21925737.5A EP4292703A1 (en) 2021-02-09 2021-08-19 Carbon dioxide adsorbent for air conditioning, adsorption device and air conditioning device
AU2021427706A AU2021427706A1 (en) 2021-02-09 2021-08-19 Carbon dioxide adsorbent for air conditioning, adsorption device and air conditioning device
CN202180093250.2A CN116867570A (zh) 2021-02-09 2021-08-19 空气调节用的二氧化碳吸附材料、吸附器件和空气调节装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-019321 2021-02-09
JP2021019321 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022172489A1 true WO2022172489A1 (ja) 2022-08-18

Family

ID=82837635

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/030298 WO2022172489A1 (ja) 2021-02-09 2021-08-19 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置
PCT/JP2022/025178 WO2023135838A1 (ja) 2021-02-09 2022-06-23 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/025178 WO2023135838A1 (ja) 2021-02-09 2022-06-23 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置

Country Status (5)

Country Link
EP (1) EP4292703A1 (ja)
JP (1) JP2022122253A (ja)
CN (2) CN116867570A (ja)
AU (1) AU2021427706A1 (ja)
WO (2) WO2022172489A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725596B1 (ja) * 1970-08-12 1972-07-12
JPS6359339A (ja) * 1986-08-29 1988-03-15 Sumitomo Heavy Ind Ltd 炭酸ガス除去装置に於ける熱回収方法
WO2004094040A1 (ja) * 2003-04-24 2004-11-04 Organo Corporation ケミカルフィルター
JP2019090546A (ja) 2017-11-10 2019-06-13 三菱電機株式会社 送風装置、空気調和装置および換気システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746344Y2 (ja) * 1990-06-14 1995-10-25 三菱重工業株式会社 炭酸ガス除去装置
CN112747439B (zh) * 2021-01-04 2022-07-19 青岛海尔空调器有限总公司 用于空调器的空气清洁控制方法及空调器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4725596B1 (ja) * 1970-08-12 1972-07-12
JPS6359339A (ja) * 1986-08-29 1988-03-15 Sumitomo Heavy Ind Ltd 炭酸ガス除去装置に於ける熱回収方法
WO2004094040A1 (ja) * 2003-04-24 2004-11-04 Organo Corporation ケミカルフィルター
JP2019090546A (ja) 2017-11-10 2019-06-13 三菱電機株式会社 送風装置、空気調和装置および換気システム

Also Published As

Publication number Publication date
CN116867570A (zh) 2023-10-10
JP2022122253A (ja) 2022-08-22
EP4292703A1 (en) 2023-12-20
AU2021427706A1 (en) 2023-08-24
WO2023135838A1 (ja) 2023-07-20
CN116459812A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
ES2746198T3 (es) Gránulo adsorbente de material compuesto, proceso para su producción y proceso de separación de gases
US11794164B2 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
Lee et al. CO2 adsorption by Y-type zeolite impregnated with amines in indoor air
Zhou et al. Stability and efficiency of CO 2 capture using linear amine polymer modified carbon nanotubes
US10994261B2 (en) Polyamine phosphorus dendrimer materials for carbon dioxide capture
Quang et al. Investigation of CO2 adsorption performance and fluidization behavior of mesoporous silica supported polyethyleneimine
KR20190030361A (ko) 아민작용기를 도입하여 이산화탄소 흡착률을 향상시킨 메조다공성 중공형 실리카 물질의 제조방법
Bhagiyalakshmi et al. Octa (aminophenyl) silsesquioxane fabrication on chlorofunctionalized mesoporous SBA-15 for CO2 adsorption
KR101490202B1 (ko) 미세기공성 이산화탄소 흡착제 및 그의 제조방법
Choe et al. Shaping and silane coating of a diamine-grafted metal-organic framework for improved CO2 capture
WO2022172490A1 (ja) 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置
Celedonio et al. FT-IR study on CO 2 adsorbed species of CO 2 sorbents
JP2011132903A (ja) キャニスタ用吸着材
WO2022172489A1 (ja) 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置
Sekizkardes et al. Single polymer sorbent fibers for high performance and rapid direct air capture
WO2022172488A1 (ja) 空気調和用の二酸化炭素吸着材、吸着デバイス、及び空気調和装置
JP2001259417A (ja) 空調装置用吸着材,吸湿素子および除湿方法
JP2009543686A (ja) 吸着性フィルター材料
Kim et al. Effect of various aminosilanes functionalized inside nanoporous silica on CO 2 adsorption performance
KR101488237B1 (ko) 기체상 이산화탄소에 대한 선택적 건식 포집체의 제조방법
Quang et al. Polyethyleneimine supported mesoporous silica for CO2 capture: adsorption kinetics and degradation problems
US20240165584A1 (en) Regenerable rotor and method of manufacture
WO2023152659A1 (en) Polymeric amine sorbents for gas separation using a moisture swing regeneration step
KR20190130362A (ko) 활성탄 복합제를 적용한 공기청정시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093250.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021427706

Country of ref document: AU

Date of ref document: 20210819

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021925737

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021925737

Country of ref document: EP

Effective date: 20230911