WO2022169169A1 - 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널 - Google Patents

면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널 Download PDF

Info

Publication number
WO2022169169A1
WO2022169169A1 PCT/KR2022/001270 KR2022001270W WO2022169169A1 WO 2022169169 A1 WO2022169169 A1 WO 2022169169A1 KR 2022001270 W KR2022001270 W KR 2022001270W WO 2022169169 A1 WO2022169169 A1 WO 2022169169A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
conductive composite
heating element
conductive
carbon members
Prior art date
Application number
PCT/KR2022/001270
Other languages
English (en)
French (fr)
Inventor
신동수
홍창완
Original Assignee
(주)에스플러스컴텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에스플러스컴텍 filed Critical (주)에스플러스컴텍
Priority to EP22749923.3A priority Critical patent/EP4290978A1/en
Priority to JP2023543160A priority patent/JP2024503125A/ja
Priority to US18/269,292 priority patent/US20240064870A1/en
Priority to CN202280012154.5A priority patent/CN116830798A/zh
Publication of WO2022169169A1 publication Critical patent/WO2022169169A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/146Conductive polymers, e.g. polyethylene, thermoplastics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/18Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/24Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor being self-supporting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/026Heaters specially adapted for floor heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/036Heaters specially adapted for garment heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/04Heating means manufactured by using nanotechnology

Definitions

  • the present invention relates to a planar heating element, a cold/hot water purifier using the same, a floor heating panel for a building, and a clothing manager. It relates to this simple and flat heating element capable of generating heat when power is applied, and to a clothing manager including the same, a cold/hot water purifier, and a floor heating panel of a building.
  • a widely used electric heater is a sheath heater, which is a tubular heater in which a heating wire is embedded in a metal protective tube in a coil shape and filled with magnesium oxide, an insulating powder, to insulate the heating wire and the protective tube.
  • sheath heaters are robust against external physical shocks, have high electrical and thermal energy efficiency, and can be processed and used in various shapes to suit the user's purpose and shape.
  • the conventional planar heating element is manufactured by a method such as laminating a plurality of sheets or coating a heating layer on the sheet, there is a problem in that the manufacturing process is complicated and the manufacturing time is long.
  • An object of the present invention is to provide a planar heating element capable of being manufactured in various shapes with a simple manufacturing process, and a clothing manager, cold/hot water purifier and floor heating panel of a building including the same.
  • a pair of wires are inserted at a predetermined distance from each other in a matrix formed by molding a conductive composite material mixed with a base resin and a conductive material, and when power is applied so that the wires have a potential difference and a heating unit that generates heat by electrical resistance generated inside the matrix, wherein the conductive material is interposed between carbon members that are dispersed in the base resin and form an electrical network, and the carbon members are interposed between the carbon members.
  • the conductive composite material Containing metal powders that increase the electrical network by the members and increase the thermal conductivity of the conductive composite material to transfer the electrical resistance heat generated by the carbon members to the surface of the heating part, the conductive composite material In the content of the base resin is 60 to 72w%, the content of the carbon members in the conductive composite material, to form the electrical network, 10w% or more, 17w% or less, the metal powder in the conductive composite material Their diameter is 10 nm to 100 nm, and the content of the metal powder is 12w% or more to increase the electrical network between the carbon members and increase the thermal conductivity of the conductive composite material, the specific gravity of the conductive composite material 22w% or less, the specific gravity of the conductive composite material (test result according to ASTM D792) is 0.8 to 1.3, the specific resistance is 2 to 10 ⁇ mm 2 /m, and the thermal conductivity is 156 to 235kcal/mh is °C.
  • the tensile strength of the conductive composite material (test result according to ASTM D638) is 180 to 200 kgf/cm 2 .
  • the carbon members include carbon nanotubes and graphene, and a mixing ratio of the graphene and the carbon nanotubes is 1w%:10w%.
  • the carbon members include at least one of carbon fibers and carbon nanotubes, and the carbon members have a length of 1 to 100 ⁇ m.
  • the metal powders include aluminum powder.
  • the base resin includes a non-conductive resin including acrylonitrile-butadiene-styrene (ABS), silicone, polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polydimethylsiloxane (PDMS), and polypyrrole (PPy). and a conductive resin, wherein the content of the conductive resin in the base resin is greater than 0 and less than 10w%.
  • ABS acrylonitrile-butadiene-styrene
  • silicone silicone
  • PE polyethylene
  • PET polyethylene terephthalate
  • PP polypropylene
  • PDMS polydimethylsiloxane
  • PPy polypyrrole
  • the conductive composite material further includes a stabilizer and an adhesive, the content of the stabilizer is 0.1 to 0.6w%, and the content of the adhesive is 0.4 to 2.1w%.
  • the wire includes at least one of an aluminum wire, a copper alloy wire, a copper wire, and a conductive composite wire.
  • heating part It is formed integrally with the heating part, and further includes a non-heating part formed of a material having lower electrical conductivity than the conductive composite material.
  • the electric wires are insert injection molded into the matrix, and the heating part and the non-heating part are double injection molded.
  • a clothing manager using a planar heating element includes an ironing board for removing wrinkles or forming creases on trousers by pressing clothes, wherein the ironing board includes a conductive composite material in which a base resin and a conductive material are mixed.
  • a planar heating element comprising a heating part that generates heat by electrical resistance generated inside the matrix when a pair of wires are inserted to be spaced apart from each other at a predetermined distance in the matrix formed by molding, and when power is applied so that the wires have a potential difference and the conductive material is dispersed in the base resin and forms an electrical network, and is interposed between the carbon members to increase the electrical network by the carbon members as well as the conductive composite material.
  • the content of the carbon members in the material is 10w% or more and 17w% or less to form the electrical network
  • the diameter of the metal powders in the conductive composite material is 10nm to 100nm
  • the content of the metal powders is, 12w% or more to increase the electrical network between the carbon members and increase the thermal conductivity of the conductive composite material, and 22w% or less to decrease the specific gravity of the conductive composite material
  • the specific gravity of the conductive composite material (ASTM) Test result according to D792) is 0.8 to 1.3
  • the specific resistance is 2 to 10 ⁇ mm 2 /m
  • the thermal conductivity is 156 to 235 kcal/mh°C.
  • the cold/hot water purifier using a planar heating element includes a planar heating element provided to be in contact with at least one surface of a hot water tank containing hot water, and the planar heating element is a conductive composite material mixed with a base resin and a conductive material.
  • a pair of wires are inserted to be spaced apart from each other at a predetermined distance in the formed matrix, and a heating part that generates heat by electric resistance generated inside the matrix when power is applied so that the wires have a potential difference
  • the conductive material comprising: , carbon members that are dispersed in the base resin and form an electrical network, and are interposed between the carbon members to increase the electrical network by the carbon members and increase the thermal conductivity of the conductive composite material.
  • the floor heating panel of a building using the planar heating element according to the present invention includes a planar heating element provided in the floor heating panel of the building, and the planar heating element is formed by press molding a conductive composite material mixed with a base resin and a conductive material A pair of wires are inserted into the matrix to be spaced apart from each other by a predetermined distance, and a heating part that generates heat by electrical resistance generated inside the matrix when power is applied so that the wires have a potential difference, the conductive material comprising: Carbon members that are dispersed in the base resin and form an electrical network, and are interposed between the carbon members to increase the electrical network by the carbon members and increase the thermal conductivity of the conductive composite material to increase the carbon It contains metal powders that transfer the electrical resistance heat generated by the members to the surface of the heating part, the content of the base resin in the conductive composite material is 60 to 72w%, and the content of the carbon members in the conductive composite material Silver, to form the electrical network, 10w% or more, 17w% or less,
  • the planar heating element includes a matrix formed by press-molding a composite material mixed with a non-conductive resin and an electrically conductive material, and spaced apart from each other at a predetermined distance in the matrix, and inserted at a predetermined distance from each other during the press molding. It includes at least a pair of wires integrally formed with a matrix, and when power is applied so that the wires have a potential difference, heat is generated by electrical resistance generated inside the matrix.
  • a hot/cold water purifier using a planar heating element is provided to be in contact with at least one surface of a hot water tank containing hot water, and a matrix formed by press molding a composite material mixed with a non-electrically conductive resin and an electrically conductive material; ,
  • the matrix includes at least a pair of wires inserted at a predetermined distance from each other and integrally formed with the matrix during press molding, and when power is applied so that the wires have a potential difference, generated inside the matrix Heat is generated by the applied electrical resistance.
  • a floor heating panel of a building using a planar heating element is provided in a floor heating panel of a building, and a matrix formed by press molding a composite material mixed with a non-electrically conductive resin and an electrically conductive material; At least one pair of wires are inserted into the matrix at a predetermined distance from each other and integrally formed with the matrix during press molding, and when power is applied so that the wires have a potential difference, electricity generated inside the matrix heat by resistance.
  • a clothing management device using a planar heating element is a composite in which a non-conductive resin and an electrically conductive material are mixed, which is provided on an ironing board to remove wrinkles by pressing clothes or to form a wrinkle of trousers.
  • a pair of wires are inserted at a predetermined distance apart from each other in the matrix formed of the first material, and when power is applied so that the wires have a potential difference, generated inside the matrix It includes a heating unit that generates heat by the electrical resistance, and a non-heating unit formed of a second material that is divided and integrally formed with the heating unit, and has lower electrical conductivity than the first material.
  • a clothing care device including a planar heating element includes an ironing board for removing wrinkles by pressing clothes or forming a wrinkle of trousers, wherein the ironing board includes a matrix formed of a first material A pair of wires are inserted to be spaced apart from each other at a predetermined distance inside of a heating part that generates heat by electrical resistance generated inside the matrix when power is applied so that the wires have a potential difference, and the heating part is divided and integrated and is divided into a non-heating part formed of a second material having lower electrical conductivity than the first material.
  • a hot/cold water purifier comprising a planar heating element includes a planar heating element provided to be in contact with at least one surface of a hot water tank in which hot water is accommodated, and the planar heating element is, in the interior of a matrix formed of a first material
  • a pair of wires are inserted to be spaced apart from each other by a predetermined distance, and a heating part that generates heat by electrical resistance generated inside the matrix when power is applied so that the wires have a potential difference, and the heating part and the heating part are formed integrally , is divided into a non-heating portion formed of a second material having lower electrical conductivity than the first material.
  • a floor heating panel of a building comprising a planar heating element includes a planar heating element provided in a floor heating panel of a building, wherein the planar heating element is a predetermined mutually inside a matrix formed of a first material
  • a pair of wires are inserted to be spaced apart, and a heating part that generates heat by electrical resistance generated inside the matrix when power is applied so that the wires have a potential difference, and the heating part and the heating part are divided and integrally formed, the It is divided into a non-heating part formed of a second material having lower electrical conductivity than the first material.
  • the planar heating element according to the present invention is configured such that a pair of wires are inserted into the matrix formed by molding the base resin and the conductive material, and heat is generated by the electrical resistance generated inside the matrix when power is applied, so that the structure is simple And while manufacturing is simple, sufficient heating effect can be obtained regardless of thermal conductivity.
  • the area of the planar heating element is divided into a heating part and a non-heating part, and by integrally manufacturing the heating part and the non-heating part through a double injection molding method, the planar heating element of various shapes can be manufactured while the manufacturing process is simple, so the manufacturing cost is simple and manufacturing time can be reduced.
  • the conductive material includes carbon members and metal powders
  • the content of the carbon members in the conductive composite material is 10 to 17w%
  • the content of the metal powders is 12 to 22w%
  • the content of the base resin By containing 60 to 72w% of silver, it is easy to form an electrical network by the carbon members, and the electrical resistance heat generated by the carbon members is transferred to the surface of the heating part by the metal powders It has the advantage of being easy.
  • FIG. 1 is a view showing an example of a planar heating element according to a first embodiment of the present invention.
  • Figure 2 is a view schematically showing the press molding method of the planar heating element according to the first embodiment of the present invention.
  • FIG 3 is a view showing an example of a cold/hot water purifier using a planar heating element according to a second embodiment of the present invention.
  • FIG. 4 is a view showing an example of a floor heating panel of a building using a planar heating element according to a third embodiment of the present invention.
  • FIG. 5 is a view showing an example of a clothes management device using a planar heating element according to a fourth embodiment of the present invention.
  • FIG. 6 is a view schematically showing a double injection molding method of a planar heating element according to a fifth embodiment of the present invention.
  • FIG. 7 is a view schematically showing a planar heating element according to a sixth embodiment of the present invention.
  • FIG. 8 is a view showing an example of a clothes management device using a planar heating element according to a seventh embodiment of the present invention.
  • FIG. 9 is a view illustrating the ironing board shown in FIG. 8 .
  • FIG. 10 is a view showing an example of a cold/hot water purifier using a planar heating element according to an eighth embodiment of the present invention.
  • FIG. 11 is a view showing an example of a floor heating panel of a building using a planar heating element according to a ninth embodiment of the present invention.
  • FIG. 1 is a view showing an example of a planar heating element according to a first embodiment of the present invention.
  • the planar heating element 10 includes a heating unit that generates heat through the surface when power is applied, and is formed in the form of a thin sheet or film.
  • the heating unit is formed by inserting a pair of wires 12 into the matrix 11 made of a conductive composite material in which the base resin 11a and the conductive material 11b are mixed, and when power is applied, the conductive material forms an electrical network and generates heat.
  • the conductive composite material includes the conductive material 11b, the base resin 11a, a stabilizer and other adhesives.
  • the conductive material 11b includes carbon members and metal powders.
  • the carbon members include at least one of carbon fibers, carbon nanotubes, and graphene.
  • the carbon members are dispersed in the base resin to form an electrical network.
  • the content of the carbon members in the conductive composite material is 10w% or more to form the electrical network, but 17w% or less.
  • the carbon members are described as an example of using a mixture of carbon nanotubes (CNT) and the graphene.
  • the length of the carbon nanotubes is 1 to 100 ⁇ m.
  • the mixing ratio of the graphene and the carbon nanotubes is preferably 1w%: 20w%.
  • the metal powders are interposed between the carbon members to increase the electrical network by the carbon members and increase the thermal conductivity of the conductive composite material to heat the electrical resistance heat generated by the carbon members transfer to the negative surface.
  • the metal powders are not interposed, the electrical resistance heat generated by the carbon members cannot be transferred to the surface of the heating part due to the non-conductive resin having a very low thermal conductivity, so that the thermal conductivity of the conductive composite material is The thermal conductivity of the non-conductive resin is lowered to a level similar to that of the non-conductive resin.
  • the diameter of the metal powder is 10 nm to 100 nm, and the content of the metal powder is 12w% to increase the electrical network between the carbon members and increase the thermal conductivity of the conductive composite material or more, and 22w% or less in order to reduce the specific gravity of the conductive composite material.
  • the metal powder will be described as an example using aluminum powder.
  • the present invention is not limited thereto, and the conductive material may of course include a silver nano material.
  • the base resin 11a is a non-conductive resin including acrylonitrile-butadiene-styrene (ABS), silicone, polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polydimethylsiloxane (PDMS), and polypyrrole (PPy). , polypyrrole) containing a conductive resin.
  • ABS acrylonitrile-butadiene-styrene
  • silicone silicone
  • PE polyethylene
  • PET polyethylene terephthalate
  • PP polypropylene
  • PDMS polydimethylsiloxane
  • PPy polypyrrole
  • the non-conductive resin uses PP (Polypropylene), and the conductive resin uses PPy (Polypyrrole) as an example.
  • the content of the PPy in the base resin can be used in the range of 0 to 10w% or less, and in this embodiment, the mixing ratio of the PP and the PPy is 5w%:95w%.
  • the PPy is added to the base resin 11a, electrical properties of the conductive composite material may be improved.
  • the present invention is not limited thereto, and the base resin 11a may be made of only the non-conductive resin.
  • the electric wires 12 are inserted into the matrix 11 spaced apart from each other by a predetermined distance, and are integrally formed with the matrix during the press molding.
  • the wires 12 are made of at least one pair. In this embodiment, it will be described as an example that a pair of wires 12 are disposed inside the matrix 11 .
  • the wires 12 are disposed long in the longitudinal direction. The length or insertion position of the wires 12 can be variously changed and applied.
  • the wires 12 use at least one of an aluminum wire, a copper alloy wire, a copper wire, and a conductive composite wire.
  • the conductive composite wire includes a carbon wire.
  • the electric wires 12 are described as copper wires as an example. However, the present invention is not limited thereto, and may be applied in various ways as long as it can supply power.
  • the wires 12 may be connected to a power supply (not shown) provided on the outside of the planar heating element 10 to receive power.
  • planar heating element 10 may be connected or provided with a control unit (not shown) for supplying or blocking power and controlling the temperature.
  • the carbon member, the aluminum powder, the base resin, the stabilizer, and the pressure-sensitive adhesive are mixed in a predetermined ratio.
  • the content of the carbon member is set within the range of 10 to 17w% with respect to the total content of the conductive composite material.
  • the content of the carbon member is a parameter affecting the electrical conductivity, that is, the specific resistance of the conductive composite material.
  • the content of the carbon member is less than 10w%, the electrical network of the carbon member is not well formed, and thus electrical conductivity is lowered.
  • the electrical conductivity is too low, electricity does not pass through, so that heat of electrical resistance is not generated.
  • the content of the carbon member exceeds 17w%, since the electrical conductivity is no longer increased, 17w% or less is used to reduce costs.
  • the content of the carbon member is preferably within the range of 10 to 17w%. In particular, it is more preferable that the content of the carbon member is mixed in an amount of 12 to 15w%.
  • the carbon member will be described as an example using the carbon nanotubes and the graphene.
  • the mixing ratio of the graphene and the carbon nanotubes is preferably 1w%:10w%.
  • the content of the aluminum powder is set within the range of 12 to 22w% with respect to the total content of the conductive composite material.
  • the content of the aluminum powder is a parameter affecting the electrical conductivity and thermal conductivity of the conductive composite material. If the content of the aluminum powder is less than 12w%, not only does not serve as an electrical network between the carbon nanotubes, but also does not sufficiently serve as a heat conduction to transfer the electrical resistance heat generated by the carbon members to the surface of the heating unit. can not do it.
  • the content of the aluminum powder exceeds 22w%, there is a problem in that the specific gravity of the conductive composite material is increased. Therefore, the content of the aluminum powder is preferably within the range of 12 to 22w%. In particular, the content of the aluminum powder is more preferably mixed in 15 to 20w%.
  • the content of the base resin is 60 to 72w%
  • the content of the stabilizer is 0.1 to 0.6w%
  • the content of the adhesive is mixed in 0.4 to 2.1w%.
  • the said base resin is demonstrated as an example by adding the said PPy to the said PP.
  • the content of the PPy in the base resin is 0 to 10w%. In particular, the content of the PPy is more preferably 5w%.
  • the conductive composite material mixed in the optimal ratio as described above is put into the pre-fabricated lower mold 22 .
  • the composite material is put into the lower mold 22 and the pair of wires 12 is inserted at a preset position.
  • the pair of wires 12 are arranged to be spaced apart from each other by a predetermined distance.
  • the conductive composite material is first put into the lower mold 22 and then the wires 12 are inserted as an example, but the present invention is not limited thereto, and the wires 12 are placed first. It is of course also possible to put the conductive composite material after In addition, when the conductive composite material is input first, it is of course possible to additionally input the conductive composite material after inserting the wires 12 .
  • the planar heating element 10 in which the wires 12 are integrally formed in the matrix 11 is formed.
  • the manufacturing method is very simple, and the manufacturing time and cost can be reduced.
  • planar heating element 10 can be manufactured in various shapes, and can be applied to more various products.
  • the specific gravity of the conductive composite material (test result according to ASTM D792) is 0.8 to 1.3.
  • the specific resistance of the conductive composite material is 2 to 10 ⁇ mm 2 /m.
  • the thermal conductivity of the conductive composite material is 156 to 235 kcal/mh°C.
  • the thermal conductivity may vary depending on the content of the aluminum powder.
  • the conductive composite material may fall within the thermal conductivity range by setting the content of the aluminum powder to be in the range of 12 to 22w%. Therefore, by mixing the aluminum powder, the thermal conductivity of the conductive composite material is increased, so that the electrical resistance heat generated by the carbon members can be effectively transferred to the surface of the heating unit.
  • Tensile strength (test result according to ASTM D638) of the conductive composite material is 180 to 200 kgf / cm 2
  • Tensile Elongation (test result according to ASTM D638) is 22 to 27w%
  • bending Flexural Modulus (test result according to ASTM D790) is 1200 to 1300 kgf/cm 2
  • flexural strength (test result according to ASTM D790) is 200 to 220 kgf/cm 2 .
  • the conductive materials When power is applied to generate a potential difference to the pair of wires 12 , the conductive materials form an electrical network in the matrix 11 , and heat is generated by the electrical resistance generated therein. .
  • heat may be generated on the entire surface of the planar heating element 10 .
  • planar heating element according to the first embodiment of the present invention configured as described above is manufactured by integrally including the electric wires 12 inside the matrix 11 formed of a conductive composite material, thereby having a simple structure and a manufacturing method This is very simple, and the manufacturing time and cost can be reduced. That is, the number of steps is reduced and manufacturing is easy compared to the case of manufacturing by separately connecting electric wires or stacking a plurality of sheets and terminals.
  • FIG. 3 is a view showing an example of a cold/hot water purifier using a planar heating element according to a second embodiment of the present invention.
  • the cold/hot water purifier 200 using the planar heating element 210 according to the second embodiment of the present invention includes a main body 201 and a hot water tank provided in the main body 201 and containing hot water.
  • the planar heating element 210 is different from the first embodiment in that it is provided to be in contact with at least one surface of the hot water tank 202, and the rest of the configuration and action are similar, so different points will be described in detail focusing on
  • planar heating element 210 will be described as an example provided to surround the outer circumferential surface of the hot water tank 202 .
  • the present invention is not limited thereto, and the planar heating element 210 is applicable to any surface, such as the bottom surface of the hot water tank 202 , as long as it is capable of transferring heat to the hot water tank 202 .
  • the planar heating element 210 is made of a thin sheet or film form, and is easily coupled to the hot water tank 202 by being formed of a flexible material.
  • planar heating element 210 The configuration and manufacturing method of the planar heating element 210 is applied in the same manner as in the first embodiment.
  • FIG. 4 is a view showing an example of a floor heating panel of a building using a planar heating element according to a third embodiment of the present invention.
  • the floor heating panel 300 of a building using the planar heating element 310 according to the third embodiment of the present invention is installed on the floor of the building and is a panel for floor heating, and the planar heating element ( 310) is different from that of the first embodiment in that it is provided in the floor heating panel 300, and the rest of the configuration and operation are similar.
  • the planar heating element 310 may be provided inside or on the upper surface of the floor heating panel 300 .
  • the planar heating element 310 is made in the form of a thin sheet or film, and at least one or more of the floor heating panels 300 may be provided.
  • the planar heating element 310 is made in the form of a thin sheet or film, and at least one or more may be provided in the floor heating panel 300 .
  • planar heating element 310 The configuration and manufacturing method of the planar heating element 310 is applied in the same manner as in the first embodiment.
  • Figure 5 is a view showing an example of a clothes care device using a planar heating element according to a fourth embodiment of the present invention.
  • the clothing manager 400 using the planar heating element 410 according to the fourth embodiment of the present invention is provided in the main body 420 , the door 430 and the door 430 to press the clothing. and an ironing board 440 for removing wrinkles or forming creases of trousers, and the planar heating element 410 provided on the ironing board 440 is different from the first embodiment, and other Since the rest of the configuration and operation are similar, it will be described in detail focusing on different points.
  • the main body 420 forms a space in which clothes can be put, and the front is formed to be open.
  • the door 430 is formed to open and close the front surface of the main body 420 .
  • a clamp 431 , a support plate 432 , a pressure plate 433 , and the ironing board 440 are provided on the inner surface of the door 430 .
  • the tongs 431 are provided on the inner surface of the door 430 and are a holder formed to hold the end of the pants (P).
  • the support plate 432 is a panel that is fixedly installed on the inner surface of the door 430 and is disposed opposite to the pants P caught by the tongs 431 .
  • the support plate 432 serves to support the ironing board 440 and the pressing plate 433 when the trousers P are pressed.
  • the pressure plate 433 is rotatably coupled to the support plate 432 to press the ironing board 440 in a direction toward the support plate 432 .
  • the ironing board 440 is disposed between the pressure plate 433 and the support plate 432 , and is rotatably coupled from the support plate 432 .
  • the planar heating element 410 may be attached to the inside of the ironing board 440 or a surface facing the pants P.
  • the planar heating element 410 is made in the form of a thin sheet or film, and at least one or more may be provided.
  • planar heating element 410 The configuration and manufacturing method of the planar heating element 410 is applied in the same manner as in the first embodiment.
  • planar heating element is applicable to a barbecue for grilling meat.
  • Figure 6 is a view schematically showing the double injection molding method of the planar heating element according to the fifth embodiment of the present invention.
  • the planar heating element 510 according to the fifth embodiment of the present invention, a heating unit 501 that generates heat through the surface when power is applied, and a non-heating unit 502 that does not generate heat when the power is applied. is divided and formed. That is, in the planar heating element 510, the heating part 501 and the non-heating part 502 are integrally formed, and the heating part 501 which is a region that generates heat and the non-heated part that does not generate heat ( 502).
  • the heating unit 501 is integrally formed with the non-heating unit 502 , and is formed of a material different from that of the non-heating unit 502 to have different electrical conductivity from the non-heating unit 502 .
  • the heating unit 501 is formed by inserting a pair of wires 12 into the matrix 11 made of a conductive composite material in which the base resin 11a and the conductive material 11b are mixed, and power is applied. When the conductive material forms an electrical network, heat is generated.
  • the conductive composite material includes the conductive material 11b, the base resin 11a, a stabilizer and other adhesives.
  • the conductive material 11b includes carbon members and metal powders.
  • the carbon members include at least one of carbon fibers, carbon nanotubes, and graphene.
  • the carbon members are dispersed in the base resin to form an electrical network.
  • the content of the carbon members in the conductive composite material is 10w% or more to form the electrical network, but 17w% or less.
  • the carbon members are described as an example of using a mixture of carbon nanotubes (CNT) and the graphene.
  • the carbon nanotubes have a length of 1 to 100 ⁇ m.
  • the mixing ratio of the graphene and the carbon nanotubes is preferably 1w%: 20w%.
  • the metal powders are interposed between the carbon members to increase the electrical network by the carbon members and increase the thermal conductivity of the conductive composite material to heat the electrical resistance heat generated by the carbon members transfer to the negative surface.
  • the metal powders are not interposed, the electrical resistance heat generated by the carbon members cannot be transferred to the surface of the heating part due to the non-conductive resin having very low thermal conductivity, so the thermal conductivity of the conductive composite material is The thermal conductivity of the non-conductive resin is lowered to a level similar to that of the non-conductive resin.
  • the diameter of the metal powder is 10 nm to 100 nm, and the content of the metal powder is 12w% to increase the electrical network between the carbon members and increase the thermal conductivity of the conductive composite material or more, and 22w% or less in order to reduce the specific gravity of the conductive composite material.
  • the metal powder will be described as an example using aluminum powder.
  • the present invention is not limited thereto, and the conductive material may of course include a silver nano material.
  • the base resin 11a is a non-conductive resin including acrylonitrile-butadiene-styrene (ABS), silicone, polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polydimethylsiloxane (PDMS), and polypyrrole (PPy). ) and a conductive resin containing.
  • ABS acrylonitrile-butadiene-styrene
  • silicone silicone
  • PE polyethylene
  • PET polyethylene terephthalate
  • PP polypropylene
  • PDMS polydimethylsiloxane
  • PPy polypyrrole
  • the non-conductive resin uses PP (Polypropylene), and the conductive resin uses PPy (Polypyrrole) as an example.
  • the content of the PPy in the base resin can be used in the range of 0 to 10w% or less, and in this embodiment, the mixing ratio of the PP and the PPy is 5w%:95w%.
  • the PPy is added to the base resin 11a, electrical properties of the conductive composite material may be improved.
  • the present invention is not limited thereto, and the base resin 11a may be made of only the non-conductive resin.
  • the non-heating part 502 is formed of a material having lower electrical conductivity than the heating part 501 .
  • the non-heating part 502 will be described as an example made of only the non-conductive resin.
  • the present invention is not limited thereto, and the non-heating unit 502 may be made of the same material as the base resin of the heating unit 501 . Since the non-conductive resin of the heating part 501 and the non-conductive resin of the non-heating part 502 use the same material, interfacial separation and the like can be prevented during integral molding.
  • the configuration of the wires 12 is applied in the same manner as in the first embodiment.
  • planar heating element 510 may be connected or provided with a control unit (not shown) for supplying or blocking power and controlling the temperature.
  • the planar heating element 510 according to the fifth embodiment of the present invention configured as described above is different from the first embodiment in that the heating part 501 and the non-heating part 502 are manufactured by double injection molding. , and the rest of the configuration and operation are the same.
  • the mold 2 for the double injection molding includes a lower mold 2a and an upper mold 2b, and only the upper mold 2b is replaced. That is, the upper mold 2b includes an upper mold for a heating part and an upper mold for a non-heating part. Accordingly, an upper mold (not shown) for the heating part is disposed on the lower mold 2a, and the conductive composite material is put in to form the heating part 501 . Thereafter, the non-heating part 502 may be molded by replacing the upper mold (not shown) for the non-heating part on the lower mold 2a and injecting the non-conductive resin.
  • the carbon member, the aluminum powder, the base resin, the stabilizer, and the pressure-sensitive adhesive are mixed in a predetermined ratio and a conductive composite material is injected between the lower mold 2a and the upper mold for the heating unit (not shown). .
  • the pair of wires 12 is inserted at a preset position, and the mold 2 is heated to harden the conductive composite material.
  • the conductive composite material is first put into the mold 20 and then the wires 12 are inserted as an example, but it is not limited thereto and the wires 12 are placed first. After that, it is of course also possible to put the conductive composite material. In addition, when the conductive composite material is input first, it is of course possible to additionally input the conductive composite material after inserting the wires 12 .
  • the heating part 501 in which the wires 12 are inserted is formed in the matrix 11 formed of the conductive composite material.
  • the non-conductive resin is injected between the lower mold 2a and the upper mold for the non-heating part and cured.
  • the non-heating part 502 made of the non-conductive resin and integrally formed with the heating part 501 is formed.
  • planar heating element 510 is separated from the mold 2 .
  • planar heating element 510 in which the area is partitioned into the heating part 501 and the non-heating part 502 through a double injection molding process, it is possible to manufacture in various shapes and because the manufacturing process is simple. , manufacturing time and manufacturing cost can be reduced.
  • planar heating element 510 is molded so that only a portion is made of the heating part 501, it can be manufactured in various shapes and can be applied to a variety of products.
  • the heating part 501 and the non-conductive resin included in the non-heating part 502 are separated.
  • the interface may be formed by being more firmly coupled without being separated.
  • carbon nanotubes which are conductive materials included in the heating unit 501 , may serve as a bridge connecting the interface between the heating unit 501 and the non-heating unit 502 , they may be more firmly coupled. have.
  • the present invention is not limited thereto, and it is also possible to double injection molding by putting the first material constituting the matrix of the heating unit 501 and the second material constituting the non-heating unit 502 into a single mold, respectively.
  • a mold for double injection molding can be applied in various ways.
  • Figure 7 is a view schematically showing a planar heating element according to a sixth embodiment of the present invention.
  • the planar heating element 610 according to the sixth embodiment of the present invention is formed to be divided into a heating unit 601 and a non-heating unit 602, the non-heating unit 602 is the heating It is different from the fifth embodiment in that it is formed to extend on at least one of the left and right side surfaces of the part 601 , and the rest of the configuration and operation are similar, so that the different points will be described in detail.
  • the heating unit 601 is integrally formed with the non-heating unit 602 , and is formed of a material different from that of the non-heating unit 602 to have different electrical conductivity from the non-heating unit 602 .
  • the heating unit 601 is formed by inserting a pair of wires 12 into the matrix 11 made of a conductive composite material in which the base resin 11a and the conductive material 11b are mixed, and power is applied. When the conductive material forms an electrical network, heat is generated.
  • the non-heating unit 602 is formed of a material having lower electrical conductivity than the heating unit 601 .
  • the non-heating unit 602 will be described as an example made of only the non-conductive resin. However, the present invention is not limited thereto, and the non-heating unit 602 may be made of the same material as the base resin of the heating unit 601 . Since the non-conductive resin of the heating part 501 and the non-conductive resin of the non-heating part 502 use the same material, interfacial separation and the like can be prevented during integral molding.
  • the configuration of the heating unit 601 , the non-heating unit 602 , and the electric wire 12 is applied in the same manner as in the fifth embodiment.
  • the manufacturing method of the planar heating element is applied in the same manner as in the fifth embodiment.
  • FIG. 8 is a view showing an example of a clothes management device using a planar heating element according to a seventh embodiment of the present invention.
  • 9 is a view illustrating the ironing board shown in FIG. 8 .
  • a clothing manager 700 using a planar heating element according to a seventh embodiment of the present invention is provided in the body 701 , the door 702 and the door 702 to press the clothing. and an ironing board 705 for removing wrinkles or forming creases of trousers, wherein the ironing board 705 is a planar heating element formed by being partitioned into a heating unit 710 and a non-heating unit 720 .
  • This is different from the fifth embodiment, and the rest of the configuration and operation are similar.
  • the main body 701 forms a space in which clothes can be put, and is formed to have an open front.
  • the door 702 is formed to open and close the front surface of the main body 701 .
  • the tongs 703 , the support plate 704 , the pressure plate 706 and the ironing board 705 are provided on the inner surface of the door 702 .
  • the tongs 703 is a holder provided on the inner surface of the door 702 to hold the end of the pants.
  • the support plate 704 is a panel that is fixedly installed on the inner surface of the door 702 and is disposed opposite to the pants caught by the tongs 703 .
  • the support plate 704 serves to support the ironing board 705 and the pressing plate 706 when pressing the pants.
  • the pressing plate 706 is rotatably coupled to the supporting plate 704 to press the ironing board 705 in a direction toward the supporting plate 704 .
  • the ironing board 705 is disposed between the pressure plate 706 and the support plate 704 , and is rotatably coupled from the support plate 703 .
  • At least a part of the ironing board 705 may be formed of the planar heating element, and in this embodiment, the ironing board 705 will be described as a planar heating element.
  • the ironing board 705 is double injection molded with different materials so as to be divided into a heating part 710 and a non-heating part 720 .
  • the two heating units 710 are provided on both left and right sides of the ironing board 705 as an example.
  • the configuration and operation of the heating unit 710 and the non-heating unit 720 are applied in the same manner as in the fifth embodiment.
  • the manufacturing method and operating method of the planar heating element is applied in the same manner as in the fifth embodiment.
  • FIG. 10 is a view showing an example of a cold/hot water purifier using a planar heating element according to an eighth embodiment of the present invention.
  • a hot/cold water purifier 800 using a planar heating element includes a main body 801 and a hot water tank 802 provided in the main body 801 and containing hot water.
  • the planar heating element 810 is different from the fifth embodiment in that it is provided to be in contact with at least one surface of the hot water tank 802, and the rest of the configuration and action are similar, so focusing on the different points It will be described in detail.
  • planar heating element 810 will be described as an example provided to surround the outer circumferential surface of the hot water tank 802 .
  • the present invention is not limited thereto, and the planar heating element 810 is applicable to any surface that can transfer heat to the hot water tank 802 , such as the bottom surface of the hot water tank 802 .
  • the planar heating element 810 is partitioned into a heating part 811 and a non-heating part 812 and is molded. That is, the planar heating element 810, except for the heating portion 811, all other parts correspond to the non-heating portion 812.
  • the configuration and operation of the heating unit 811 and the non-heating unit 812 are the same as those of the fifth embodiment.
  • the manufacturing method and operating method of the planar heating element 810 is applied in the same manner as in the fifth embodiment.
  • FIG. 11 is a view showing an example of a floor heating panel of a building using a planar heating element according to a ninth embodiment of the present invention.
  • the floor heating panel 900 of a building using the planar heating element 910 according to the ninth embodiment of the present invention is installed on the floor of the building and is a panel for floor heating, and the planar heating element ( 910) is different from that of the first embodiment in that it is provided in the floor heating panel 900, and the rest of the configuration and operation are similar.
  • the planar heating element 910 may be provided inside or on the upper surface of the floor heating panel 900 .
  • the planar heating element 910 is partitioned into a heating part 911 and a non-heating part 912 and is molded. That is, the planar heating element 910, except for the heating portion 911, all other parts correspond to the non-heating portion 912.
  • the configuration and operation of the heating unit 911 and the non-heating unit 912 are the same as those of the fifth embodiment.
  • the manufacturing method and operating method of the planar heating element 910 is applied in the same manner as in the fifth embodiment.
  • the content of the beige resin, the content of the carbon member, and the diameter and content of the metal powder have been described as examples in the above embodiment, but the present invention is not limited thereto and can be changed.
  • values for specific gravity, specific resistance, and thermal conductivity of the conductive composite material have been described as examples, the present invention is not limited thereto.
  • a planar heating element having a simple structure and reducing manufacturing cost and manufacturing time, a clothing manager including the same, a cold/hot water purifier, and a floor heating panel of a building.

Landscapes

  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)
  • Central Heating Systems (AREA)

Abstract

본 발명에 따른 면상 발열체는 베이스 수지와 전도성 소재를 성형하여 형성된 매트릭스의 내부에 한 쌍의 전선들이 삽입되어, 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하도록 구성됨으로써, 구조가 간단하고 제조가 간편하면서도 열전도율과 관계없이 충분한 발열 효과를 얻을 수 있다. 또한, 면상 발열체는 히팅부와 비히팅부로 영역이 구획되고, 히팅부와 비히팅부를 이중 사출 성형 방법을 통해 일체로 제조함으로써, 다양한 형상의 면상 발열체를 제조할 수 있으면서도 제조 공정이 간단하여 제조 비용 및 제조 시간이 절감될 수 있는 이점이 있다.

Description

면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널
본 발명은 면상 발열체와 이를 이용한 냉온정수기, 건물의 바닥난방 패널 및 의류 관리기에 관한 것으로서, 보다 상세하게는 베이스 수지와 전도성 수지를 포함한 전도성 복합소재에 한 쌍의 전선을 삽입하여 제조함으로써, 제조 공정이 간단하면서도 전원 인가시 발열 가능한 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널에 관한 것이다.
일반적으로 널리 사용되는 전열 히터는 시즈 히터(Sheath Heater)가 대표적이며, 금속 보호관에 전열선을 코일 모양으로 내장하고 절연 분말인 산화마그네슘을 넣어 함께 충진하여 열선과 보호관을 절연한 관 모양의 히터이다. 이러한 시즈히터는 외부의 물리적인 충격에도 견고하고 전기 열에너지의 효율이 높으면서 다양한 모양으로 사용자의 용도와 형태로 적합하게 가공하여 사용할 수 있다.
최근에는 다양한 제품에 전열 히터가 사용되고 있으므로, 보다 컴팩트하면서도 제조가 용이한 면상 발열체에 대한 관심이 증대되고 있다.
종래의 면상 발열체는 복수의 시트들을 적층하거나 시트 위에 발열층을 코팅하는 등의 방법으로 제조되기 때문에, 제조 공정이 복잡하고 제조 시간이 오래 걸리는 문제점이 있다.
본 발명의 목적은, 제조 공정이 간단하면서도 다양한 형상으로 제조가 가능한 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널을 제공하는 데 있다.
본 발명에 따른 면상 발열체는, 베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고, 상기 전도성 소재는, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고, 상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고, 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고, 상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고, 상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃이다.
상기 전도성 복합소재의 인장강도(ASTM D638에 따른 시험결과)는 180 내지 200kgf/cm2이다.
상기 탄소 부재들은, 탄소나노튜브와 그래핀을 포함하고, 상기 그래핀과 상기 탄소나노튜브의 혼합 비율은 1w%:10w%이다.
상기 탄소 부재들은, 탄소 섬유와 탄소나노튜브 중 적어도 하나를 포함하고,상기 탄소 부재들의 길이는 1 내지 100μm 이다.
상기 금속 분말들은, 알루미늄 파우더를 포함한다.
상기 베이스 수지는, ABS(acrylonitrile-butadiene-styrene), 실리콘, PE(Polyethylene), PET(Polyethylene terephthalate), PP(Polypropylene), PDMS(Polydimethylsiloxane)를 포함하는 비전도성 수지와, PPy(Polypyrrole)를 포함하는 전도성 수지를 포함하고, 상기 베이스 수지에서 상기 전도성 수지의 함량은 0 보다 크고 10w%이하이다.
상기 전도성 복합소재는 안정제와 점착제를 더 포함하고, 상기 안정제의 함량은 0.1~0.6w%이고, 상기 점착제의 함량은 0.4~2.1w%이다.
상기 전선은, 알루미늄선, 구리합금선, 구리선, 전도성 복합소재 와이어 중 적어도 하나를 포함한다.
상기 히팅부와 구획되어 일체로 형성되고, 상기 전도성 복합소재보다 전기전도도가 낮은 소재로 형성된 비히팅부를 더 포함한다.
상기 전선들은, 상기 매트릭스에 인서트 사출 성형되고, 상기 히팅부와 상기 비히팅부는 이중 사출 성형된다.
본 발명에 따른 면상 발열체를 이용한 의류 관리기는, 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드를 포함하고, 상기 다리미 보드는, 베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하는 면상 발열체이고, 상기 전도성 소재는, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고, 상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고, 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고, 상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고, 상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃이다.
본 발명에 따른 면상 발열체를 이용한 냉온정수기는, 온수가 수용된 온수 탱크의 적어도 일면에 접촉되게 구비된 면상 발열체를 포함하고, 상기 면상 발열체는, 베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고, 상기 전도성 소재는, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고, 상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고, 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고, 상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고, 상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃이다.
본 발명에 따른 면상 발열체를 이용한 건물의 바닥난방 패널은, 건물의 바닥난방 패널에 구비된 면상 발열체를 포함하고, 상기 면상 발열체는, 베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 프레스 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고, 상기 전도성 소재는, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고, 상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고, 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고, 상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고, 상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃이다.
본 발명의 또 다른 측면에 따른 면상 발열체는, 비 전기전도성 수지와 전기전도성 소재를 혼합한 복합소재를 프레스 성형하여 형성된 매트릭스와, 상기 매트릭스의 내부에 서로 소정간격 이격되게 삽입되어 상기 프레스 성형시 상기 매트릭스와 일체로 성형된 적어도 한 쌍의 전선들을 포함하고, 상기 전선들이 전위차를 가지도록 전원 인가시, 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열한다.
본 발명의 또 다른 측면에 따른 면상 발열체를 이용한 냉온정수기는, 온수가 수용된 온수 탱크의 적어도 일면에 접촉되게 구비되고, 비 전기전도성 수지와 전기전도성 소재를 혼합한 복합소재를 프레스 성형하여 형성된 매트릭스와, 상기 매트릭스의 내부에 서로 소정간격 이격되게 삽입되어 상기 프레스 성형시 상기 매트릭스와 일체로 성형된 적어도 한 쌍의 전선들을 포함하고, 상기 전선들이 전위차를 가지도록 전원 인가시, 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열한다.
본 발명의 또 다른 측면에 따른 면상 발열체를 이용한 건물의 바닥난방 패널은, 건물의 바닥난방 패널에 구비되고, 비 전기전도성 수지와 전기전도성 소재를 혼합한 복합소재를 프레스 성형하여 형성된 매트릭스와, 상기 매트릭스의 내부에 서로 소정간격 이격되게 삽입되어 상기 프레스 성형시 상기 매트릭스와 일체로 성형된 적어도 한 쌍의 전선들을 포함하고, 상기 전선들이 전위차를 가지도록 전원 인가시, 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열한다.
본 발명의 또 다른 측면에 따른 면상 발열체를 이용한 의류 관리기는, 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드에 구비되고, 비 전기전도성 수지와 전기전도성 소재를 혼합한 복합소재를 프레스 성형하여 형성된 매트릭스와, 상기 매트릭스의 내부에 서로 소정간격 이격되게 삽입되어 상기 프레스 성형시 상기 매트릭스와 일체로 성형된 적어도 한 쌍의 전선들을 포함하고, 상기 전선들이 전위차를 가지도록 전원 인가시, 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열한다.
본 발명의 또 다른 측면에 따른 면상 발열체는, 제1소재로 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생되는 전기 저항에 의해 발열하는 히팅부와, 상기 히팅부와 구획되어 일체로 형성되고, 상기 제1소재보다 전기전도도가 낮은 제2소재로 형성된 비히팅부를 포함한다.
본 발명의 또 다른 측면에 따른 면상 발열체를 포함하는 의류 관리기는, 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드를 포함하고, 상기 다리미 보드는, 제1소재로 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생되는 전기 저항에 의해 발열하는 히팅부와, 상기 히팅부와 구획되어 일체로 형성되고, 상기 제1소재보다 전기전도도가 낮은 제2소재로 형성된 비히팅부로 구획된다.
본 발명의 또 다른 측면에 따른 면상 발열체를 포함하는 냉온정수기는, 온수가 수용된 온수 탱크의 적어도 일면에 접촉되게 구비된 면상 발열체를 포함하고, 상기 면상 발열체는, 제1소재로 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생되는 전기 저항에 의해 발열하는 히팅부와, 상기 히팅부와 구획되어 일체로 형성되고, 상기 제1소재보다 전기전도도가 낮은 제2소재로 형성된 비히팅부로 구획된다.
본 발명의 또 다른 측면에 따른 면상 발열체를 포함하는 건물의 바닥난방 패널은, 건물의 바닥난방 패널에 구비된 면상 발열체를 포함하고, 상기 면상 발열체는, 제1소재로 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생되는 전기 저항에 의해 발열하는 히팅부와, 상기 히팅부와 구획되어 일체로 형성되고, 상기 제1소재보다 전기전도도가 낮은 제2소재로 형성된 비히팅부로 구획된다.
본 발명에 따른 면상 발열체는 베이스 수지와 전도성 소재를 성형하여 형성된 매트릭스의 내부에 한 쌍의 전선들이 삽입되어, 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하도록 구성됨으로써, 구조가 간단하고 제조가 간편하면서도 열전도율과 관계없이 충분한 발열 효과를 얻을 수 있다.
또한, 면상 발열체는 히팅부와 비히팅부로 영역이 구획되고, 히팅부와 비히팅부를 이중 사출 성형 방법을 통해 일체로 제조함으로써, 다양한 형상의 면상 발열체를 제조할 수 있으면서도 제조 공정이 간단하여 제조 비용 및 제조 시간이 절감될 수 있는 이점이 있다.
또한, 상기 전도성 소재는, 탄소 부재들과 금속 분말들을 포함하고, 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은 10 내지 17w%이고, 상기 금속 분말들의 함량은 12 내지 22w%이고, 베이스 수지의 함량은 60 내지 72w%으로 포함하여 제조됨으로써, 상기 탄소 부재들에 의해 전기적 네트워크의 형성이 용이하고, 상기 탄소 부재들에 의해 발생된 전기저항 열이 상기 금속 분말들에 의해 상기 히팅부의 표면으로 전달이 용이한 이점이 있다.
도 1은 본 발명의 제1실시예에 따른 면상 발열체의 일 예를 나타낸 도면이다.
도 2는 본 발명의 제1실시예에 따른 면상 발열체의 프레스 성형 방법을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 제2실시예에 따른 면상 발열체를 이용한 냉온정수기의 예를 나타낸 도면이다.
도 4는 본 발명의 제3실시예에 따른 면상 발열체를 이용한 건물의 바닥난방 패널의 예를 나타낸 도면이다.
도 5는 본 발명의 제4실시예에 따른 면상 발열체를 이용한 의류관리기의 예를 나타낸 도면이다.
도 6은 본 발명의 제5실시예에 따른 면상 발열체의 이중 사출 성형 방법을 개략적으로 나타낸 도면이다.
도 7은 본 발명의 제6실시예에 따른 면상 발열체를 개략적으로 나타낸 도면이다.
도 8은 본 발명의 제7실시예에 따른 면상 발열체를 이용한 의류관리기의 예를 나타낸 도면이다.
도 9는 도 8에 도시된 다리미 보드를 나타낸 도면이다.
도 10는 본 발명의 제8실시예에 따른 면상 발열체를 이용한 냉온정수기의 예를 나타낸 도면이다.
도 11은 본 발명의 제9실시예에 따른 면상 발열체를 이용한 건물의 바닥난방 패널의 예를 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면 다음과 같다.
도 1은 본 발명의 제1실시예에 따른 면상 발열체의 일 예를 나타낸 도면이다.
도 1을 참조하면, 본 발명의 제1실시예에 따른 면상 발열체(10)는, 전원 인가시 면을 통해 발열하는 히팅부를 포함하며, 두께가 얇은 시트나 필름 형태로 이루어진다.
상기 히팅부는, 베이스 수지(11a)와 전도성 소재(11b)가 혼합된 전도성 복합소재로 이루어진 매트릭스(11)의 내부에 한 쌍의 전선들(12)이 삽입되어 형되어, 전원 인가시 상기 전도성 소재가 전기적 네트워크를 형성하며 발열한다.
상기 전도성 복합소재는, 상기 전도성 소재(11b), 상기 베이스 수지(11a), 안정제(Stabilizer) 및 기타 점착제(Other additives)를 포함한다.
상기 전도성 소재(11b)는, 탄소 부재들과 금속 분말들을 포함한다.
상기 탄소 부재들은, 탄소 섬유, 탄소나노튜브, 그래핀 중 적어도 하나를 포함한다. 상기 탄소부재들은, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성한다. 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w%이하이다. 본 실시예에서는, 상기 탄소부재들은 탄소나노튜브(CNT)와 상기 그래핀을 혼합하여 사용하는 것으로 예를 들어 설명한다. 상기 탄소나노튜브의 길이는 1 내지 100μm 이다. 상기 그래핀과 상기 탄소나노튜브의 혼합 비율은 1w%:20w%인 것이 바람직하다.
상기 금속 분말들은, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달한다. 상기 금속 분말들이 개재되지 않을 경우, 상기 탄소 부재들에 의해 발생된 전기저항 열은 열전도도가 매우 낮은 비전도성 수지로 인해 상기 히팅부의 표면으로 전달되지 못하게 되어, 상기 전도성 복합소재의 열전도도는 상기 비전도성 수지의 열전도도와 유사한 수준까지 낮아지게 된다.
따라서, 상기 전도성 복합소재에서 상기 금속 파우더의 직경은 10nm 내지 100nm이고, 상기 금속 파우더의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w%이하이다. 본 실시예에서는, 상기 금속 분말들은 알루미늄 파우더를 사용하는 것으로 예를 들어 설명한다. 하지만, 본 발명은 이에 한정되지 않고, 상기 전도성 소재는 은나노 소재를 포함하는 것도 물론 가능하다.
상기 베이스 수지(11a)는, ABS(acrylonitrile-butadiene-styrene), 실리콘, PE(Polyethylene), PET(Polyethylene terephthalate), PP(Polypropylene), PDMS(Polydimethylsiloxane)를 포함하는 비전도성 수지와, PPy(Polypyrrole, 폴리피롤)를 포함하는 전도성 수지를 포함한다.
본 실시예에서는, 상기 비전도성 수지는 PP(Polypropylene)를 사용하고, 상기 전도성 수지는 PPy(Polypyrrole)를 사용하는 것으로 예를 들어 설명한다. 상기 베이스 수지에서 상기 PPy의 함량은 0 내지 10w%이하 범위에서 사용가능하며, 본 실시예에서는 상기 PP와 상기 PPy의 혼합 비율은 5w%:95w%인 것으로 예를 들어 설명한다. 상기 베이스 수지(11a)에 상기 PPy가 추가될 경우, 상기 전도성 복합소재의 전기적 특성이 향상될 수 있다. 다만, 이에 한정되지 않고, 상기 베이스 수지(11a)는 상기 비전도성 수지만으로 이루어진 것도 물론 가능하다.
한편, 상기 전선들(12)은, 상기 매트릭스(11)의 내부에 서로 소정간격 이격되게 삽입되어, 상기 프레스 성형시 상기 매트릭스와 일체로 성형된다.
상기 전선들(12)은 적어도 한 쌍으로 이루어진다. 본 실시예에서는, 상기 매트릭스(11)의 내부에 한 쌍의 전선들(12)이 배치된 것으로 예를 들어 설명한다. 상기 전선들(12)의 길이방향으로 길게 배치된다. 상기 전선들(12)의 길이나 삽입 위치는 다양하게 변경하여 적용 가능하다.
상기 전선들(12)은, 알루미늄선, 구리합금선, 구리선, 전도성 복합소재 와이어 중 적어도 하나를 사용한다. 상기 전도성 복합소재 와이어는, 탄소 와이어를 포함한다. 본 실시예에서는, 상기 전선들(12)은 구리선인 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 전원을 공급할 수 있는 것이라면 다양하게 적용 가능하다. 상기 전선들(12)은, 상기 면상 발열체(10)의 외부에 구비된 전원 공급 장치(미도시)에 연결되어 전원을 공급받을 수 있다.
또한, 상기 면상 발열체(10)는 전원을 공급 또는 차단하고 온도를 제어하는 제어부(미도시)가 연결되거나 구비될 수 있다.
상기와 같이 구성된 본 발명의 제1실시예에 따른 면상 발열체의 제조 방법을 설명하면, 다음과 같다.
먼저, 상기 탄소 부재, 상기 알루미늄 파우더, 상기 베이스 수지, 상기 안정제 및 상기 점착제는 미리 설정된 비율로 혼합한다.
상기 탄소 부재의 함량은 상기 전도성 복합소재의 총 함량에 대하여 10 내지 17w% 범위 이내로 설정된다. 상기 탄소 부재의 함량은 상기 전도성 복합소재의 전기전도도, 즉 비저항에 영향을 주는 파라미터이다. 상기 탄소 부재의 함량이 10w% 미만이면 상기 탄소 부재의 전기적 네트워크가 잘 이루어지지 않게 되어 전기전도도가 저하된다. 상기 전기전도도가 너무 낮을 경우, 전기가 통하지 않게 되므로 전기저항 열이 발생되지 않는다. 한편, 상기 탄소 부재의 함량이 17w%를 초과하면 상기 전기전도도가 더 이상 증가되지 않기 때문에, 비용 절감을 위하여 17w% 이하로 사용한다. 즉, 본 발명에서는 전도성 복합소재가 적절한 범위의 전기 전도도를 가지도록 하기 위하여, 상기 탄소 부재의 함량은 10 내지 17w% 범위 이내가 바람직하다. 특히, 상기 탄소 부재의 함량은 12 내지 15w%로 혼합된 것이 더욱 바람직하다.
본 실시예에서는, 상기 탄소 부재는, 상기 탄소나노튜브와 상기 그래핀을 사용하는 것으로 예를 들어 설명한다. 특히, 상기 그래핀과 상기 탄소나노튜브의 혼합 비율은 1w%:10w%인 것이 바람직하다.
또한, 상기 알루미늄 파우더의 함량은 상기 전도성 복합소재의 총 함량에 대하여 12 내지 22w% 범위 이내로 설정된다. 상기 알루미늄 파우더의 함량은 상기 전도성 복합소재의 전기전도도와 열전도도에 영향을 주는 파라미터이다. 상기 알루미늄 파우더의 함량이 12w% 미만이면, 상기 탄소나노튜브 사이에서 전기적 네트워크 역할을 하지 못할 뿐만 아니라, 상기 탄소 부재들에 의하여 발생된 전기저항 열을 상기 히팅부의 표면으로 전달하는 열전도 역할을 충분히 하지 못한다. 한편, 상기 알루미늄 파우더의 함량이 22w%를 초과하면, 상기 전도성 복합소재의 비중이 증가되는 문제점이 있다. 따라서, 상기 알루미늄 파우더의 함량은 12 내지 22w% 범위 이내가 바람직하다. 특히, 상기 알루미늄 파우더의 함량은 15 내지 20w%로 혼합된 것이 더욱 바람직하다. 상기 알루미늄 파우더를 추가함으로써, 상기 탄소 부재들만을 사용하는 경우에 비해 비용은 절감되고, 전기 전도도와 열전도도는 보다 향상시킬 수 있다.
또한, 상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w%, 상기 안정제의 함량은 0.1 내지 0.6w%, 상기 점착제의 함량은 0.4 내지 2.1w%으로 혼합된다.
또한, 상기 베이스 수지는, 상기 PP에 상기 PPy를 추가하는 것으로 예를 들어 설명한다. 상기 베이스 수지에서 상기 PPy의 함량은 0 내지 10w%이다. 특히, 상기 PPy의 함량은 5w%인 것이 더욱 바람직하다.
상기와 같이 최적의 비율로 혼합한 전도성 복합소재를 미리 제작된 하부 몰드(22)에 투입한다.
상기 복합소재를 상기 하부 몰드(22)에 투입하고, 미리 설정된 위치에 상기 한 쌍의 전선들(12)을 삽입한다. 상기 한 쌍의 전선들(12)은 서로 소정간격 이격되도록 배치한다.
본 실시예에서는, 상기 하부 몰드(22)에 상기 전도성 복합소재를 먼저 투입한 후 상기 전선들(12)을 삽입하는 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 전선들(12)을 먼저 배치시킨 후 상기 전도성 복합소재를 투입하는 것도 물론 가능하다. 또한, 상기 전도성 복합소재를 먼저 투입하는 경우, 상기 전선들(12)을 삽입한 후 상기 전도성 복합소재를 추가로 투입하는 것도 물론 가능하다.
이후, 상기 상부 몰드(21)로 고온 가압하면, 상기 매트릭스(11)에 상기 전선들(12)이 일체로 형성된 상기 면상 발열체(10)가 형성된다.
따라서, 한번의 프레스 성형 공정으로 상기 전선들(12)이 구비된 상기 면상 발열체(10)를 형성할 수 있기 때문에, 제조 방법이 매우 간단하고, 제조 시간 및 비용이 절감될 수 있다.
또한, 상기 면상 발열체(10)는 다양한 형상으로 제조가 가능하여, 보다 다양한 제품에 적용 가능하다.
상기와 같은 방법으로 제조된 상기 전도성 복합소재를 시험한 결과는 다음과 같다.
상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이다. 상기 전도성 복합소재의 비저항은 2 내지 10Ωmm2/m이다. 상기 탄소나노튜브와 상기 알루미늄 파우더의 함량을 최적의 비율로 혼합하여 제조함으로써, 상기 전도성 복합소재가 최적의 비저항을 가지게 되어 적절한 전기 전도도와 열전도도를 가질 수 있다.
상기 전도성 복합소재의 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃이다. 상기 열전도도는 상기 알루미늄 파우더의 함량에 따라 달라질 수 있는 바, 본 실시예에서는 상기 알루미늄 파우더의 함량을 12 내지 22w% 범위로 설정함으로써 상기 전도성 복합소재가 상기 열전도도 범위에 들 수 있다. 따라서, 상기 알루미늄 파우더를 혼합함으로써 상기 전도성 복합소재의 열전도도가 증가하여, 상기 탄소 부재들에 의하여 발생된 전기저항 열을 상기 히팅부의 표면으로 효과적으로 전달할 수 있다.
상기 전도성 복합소재의 인장강도(Tensile Strength)(ASTM D638에 따른 시험결과)는 180 내지 200kgf/cm2이고, 인장연신율(Tensile Elongation)(ASTM D638에 따른 시험결과)은 22 내지 27w%이고, 굽힘 탄성율(Flexural Modulus)(ASTM D790에 따른 시험결과)은 1200 내지 1300kgf/cm2이고, 굽힘 강도(Flexural Strength)(ASTM D790에 따른 시험결과)은 200 내지 220kgf/cm2이다.
상기와 같이 구성된 본 발명의 제1실시예에 따른 면상 발열체의 작동을 서명하면 다음과 같다.
상기 한 쌍의 전선들(12)에 전위차가 발생하도록 전원을 인가하면, 상기 매트릭스(11)의 내부에서 상기 전도성 소재들이 전기적 네트워크를 형성하게 되며, 내부에서 발생되는 전기 저항에 의해 열이 발생된다.
따라서, 상기 면상 발열체(10)의 전체 면에서 열이 발생될 수 있다.
상기와 같이 구성된 본 발명의 제1실시예에 따른 면상 발열체는, 전도성 복합소재로 형성된 상기 매트릭스(11)의 내부에 상기 전선(12)들을 일체로 구비하여 제조됨으로써, 구조가 간단하고, 제조 방법이 매우 간단하고, 제조 시간 및 비용이 절감될 수 있다. 즉, 별도로 전선을 연결하거나, 복수의 시트들과 단자들을 적층하여 제조하는 경우에 비해 공정수가 감소되고, 제조가 용이하다.
또한, 한 쌍의 전선들(12)에 전위차를 가지도록 전원을 인가하여, 상기 매트릭스(11) 내부에서 발생된 전기 저항에 의해 발열하도록 구성됨으로써, 상기 매트릭스(11)나 상기 전선들(12)의 열전도율과 관계없이 충분한 발열 효과를 얻을 수 있는 이점이 있다. 즉, 매트릭스 내부에 발열 단자를 삽입하는 경우, 발열 단자와 매트릭스가 모두 열전도율이 높아야만 충분한 발열 효과를 얻을 수 있는 반면, 본 발멸에서는 매트릭스 내부에 발열 단자가 아닌 전선을 삽입하여 전기를 통하게 함으로써, 매트릭스 내부에서 발열이 발생되므로 열전도율과 관계없이 충분한 발열 효과를 얻을 수 있다.
한편, 도 3은 본 발명의 제2실시예에 따른 면상 발열체를 이용한 냉온정수기의 예를 나타낸 도면이다.
도 3을 참조하면, 본 발명의 제2실시예에 따른 면상 발열체(210)를 이용한 냉온정수기(200)는, 본체(201)와, 상기 본체(201)의 내부에 구비되고 온수가 수용된 온수 탱크(202)를 포함하고, 상기 면상 발열체(210)는 상기 온수 탱크(202)의 적어도 일면에 접촉되게 구비된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 면상 발열체(210)는, 상기 온수 탱크(202)의 외둘레면을 감싸도록 구비된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 면상 발열체(210)는, 상기 온수 탱크(202)의 바닥면 등 상기 온수 탱크(202)에 열전달을 할 수 있는 면이라면 어느 면에나 적용 가능하다.
상기 면상 발열체(210)는, 두께가 얇은 시트나 필름 형태로 이루어지며, 유연한 재질로 형성됨으로써 상기 온수 탱크(202)에 결합시키는 것이 용이하다.
상기 면상 발열체(210)의 구성과 제조 방법은 상기 제1실시예와 동일하게 적용된다.
한편, 도 4는 본 발명의 제3실시예에 따른 면상 발열체를 이용한 건물의 바닥난방 패널의 예를 나타낸 도면이다.
도 4를 참조하면, 본 발명의 제3실시예에 따른 면상 발열체(310)를 이용한 건물의 바닥난방 패널(300)은, 건물의 바닥면에 설치되어 바닥 난방을 위한 패널이며, 상기 면상 발열체(310)는 상기 바닥난방 패널(300)에 구비된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 면상 발열체(310)는, 상기 바닥난방 패널(300)의 내부 또는 상면에 구비될 수 있다.
상기 면상 발열체(310)는, 두께가 얇은 시트나 필름 형태로 이루어지고, 적어도 하나 이상이 상기 바닥난방 패널(300)이 구비될 수 있다.
상기 면상 발열체(310)는, 두께가 얇은 시트나 필름 형태로 이루어져, 적어도 하나 이상이 상기 바닥난방 패널(300)에 구비될 수 있다.
상기 면상 발열체(310)의 구성과 제조 방법은 상기 제1실시예와 동일하게 적용된다.
한편, 도 5는 본 발명의 제4실시예에 따른 면상 발열체를 이용한 의류관리기의 예를 나타낸 도면이다.
도 5를 참조하면, 본 발명의 제4실시예에 따른 면상 발열체(410)를 이용한 의류 관리기(400)는, 본체(420), 도어(430) 및 상기 도어(430)에 구비되어 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드(440)를 포함하고, 상기 면상 발열체(410)는 상기 다리미 보드(440)에 구비된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 본체(420)는 의류를 넣을 수 있는 공간을 형성하고, 전면이 개방되게 형성된다.
상기 도어(430)는, 상기 본체(420)의 전면을 개폐가능하도록 형성된다.
상기 도어(430)의 내측면에는 집게부(431), 지지판(432), 가압판(433) 및 상기 다리미 보드(440)가 구비된다.
상기 집게부(431)는, 상기 도어(430)의 내측면 상부에 구비되어, 바지(P)의 단부를 잡을 수 있도록 형성된 홀더이다.
상기 지지판(432)은, 상기 도어(430)의 내측면에 고정 설치되어, 상기 집게부(431)에 걸린 바지(P)에 대향되게 배치된 패널이다. 상기 지지판(432)은 상기 다리미 보드(440)와 상기 가압판(433)이 상기 바지(P)를 가압할 때 지지해주는 역할을 한다.
상기 가압판(433)은, 상기 지지판(432)에 회동가능하게 결합되어 상기 다리미 보드(440)를 상기 지지판(432)을 향한 방향으로 가압하기 위한 패널이다.
상기 다리미 보드(440)는, 상기 가압판(433)과 상기 지지판(432) 사이에 배치되며, 상기 지지판(432)으로부터 회동가능하도록 결합된다.
상기 면상 발열체(410)는, 상기 다리미 보드(440)의 내부 또는 상기 바지(P)를 향한 면에 부착될 수 있다. 상기 면상 발열체(410)는, 두께가 얇은 시트나 필름 형태로 이루어지고, 적어도 하나 이상이 구비될 수 있다.
상기 면상 발열체(410)의 구성과 제조 방법은 상기 제1실시예와 동일하게 적용된다.
상기 실시예들에 한정되지 않고, 상기 면상 발열체는 고기구이용 불판에도 적용 가능하다.
한편, 도 6은 본 발명의 제5실시예에 따른 면상 발열체의 이중 사출 성형 방법을 개략적으로 나타낸 도면이다.
도 6을 참조하면, 본 발명의 제5실시예에 따른 면상 발열체(510)는, 전원 인가시 면을 통해 발열하는 히팅부(501)와, 상기 전원 인가시 발열하지 않는 비히팅부(502)로 구획되어 형성된다. 즉, 상기 면상 발열체(510)는 상기 히팅부(501)와 상기 비히팅부(502)가 일체로 형성되되, 발열하는 영역인 상기 히팅부(501)와 발열하지 않는 영역인 상기 비히팅부(502)로 구획된다.
상기 히팅부(501)는, 상기 비히팅부(502)와 일체로 형성되되, 상기 비히팅부(502)와 서로 다른 소재로 형성되어 상기 비히팅부(502)와 서로 다른 전기전도도를 가진다.
상기 히팅부(501)는, 베이스 수지(11a)와 전도성 소재(11b)가 혼합된 전도성 복합소재로 이루어진 매트릭스(11)의 내부에 한 쌍의 전선들(12)이 삽입되어 형되어, 전원 인가시 상기 전도성 소재가 전기적 네트워크를 형성하며 발열한다.
상기 전도성 복합소재는, 상기 전도성 소재(11b), 상기 베이스 수지(11a), 안정제(Stabilizer) 및 기타 점착제(Other additives)를 포함한다.
상기 전도성 소재(11b)는, 탄소 부재들과 금속 분말들을 포함한다.
상기 탄소 부재들은, 탄소 섬유, 탄소나노튜브, 그래핀 중 적어도 하나를 포함한다. 상기 탄소부재들은, 상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성한다. 상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w%이하이다. 본 실시예에서는, 상기 탄소부재들은 탄소나노튜브(CNT)와 상기 그래핀을 혼합하여 사용하는 것으로 예를 들어 설명한다. 상기 탄소나노튜브의 길이는 1 내지 100μm 이다. 상기 그래핀과 상기 탄소나노튜브의 혼합 비율은 1w%:20w%인 것이 바람직하다.
상기 금속 분말들은, 상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달한다. 상기 금속 분말들이 개재되지 않을 경우, 상기 탄소 부재들에 의해 발생된 전기저항 열은 열전도도가 매우 낮은 비전도성 수지로 인해 상기 히팅부의 표면으로 전달되지 못하게 되어, 상기 전도성 복합소재의 열전도도는 상기 비전도성 수지의 열전도도와 유사한 수준까지 낮아지게 된다.
따라서, 상기 전도성 복합소재에서 상기 금속 파우더의 직경은 10nm 내지 100nm이고, 상기 금속 파우더의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w%이하이다. 본 실시예에서는, 상기 금속 분말들은 알루미늄 파우더를 사용하는 것으로 예를 들어 설명한다. 하지만, 본 발명은 이에 한정되지 않고, 상기 전도성 소재는 은나노 소재를 포함하는 것도 물론 가능하다.
상기 베이스 수지(11a)는, ABS(acrylonitrile-butadiene-styrene), 실리콘, PE(Polyethylene), PET(Polyethylene terephthalate), PP(Polypropylene), PDMS(Polydimethylsiloxane)를 포함하는 비전도성 수지와, PPy(Polypyrrole)를 포함하는 전도성 수지를 포함한다.
본 실시예에서는, 상기 비전도성 수지는 PP(Polypropylene)를 사용하고, 상기 전도성 수지는 PPy(Polypyrrole)를 사용하는 것으로 예를 들어 설명한다. 상기 베이스 수지에서 상기 PPy의 함량은 0 내지 10w%이하 범위에서 사용가능하며, 본 실시예에서는 상기 PP와 상기 PPy의 혼합 비율은은 5w%:95w%인 것으로 예를 들어 설명한다. 상기 베이스 수지(11a)에 상기 PPy가 추가될 경우, 상기 전도성 복합소재의 전기적 특성이 향상될 수 있다. 다만, 이에 한정되지 않고, 상기 베이스 수지(11a)는 상기 비전도성 수지만으로 이루어진 것도 물론 가능하다.
상기 비히팅부(502)는, 상기 히팅부(501)보다 전기전도도가 낮은 소재로 형성된다. 상기 비히팅부(502)는 상기 비전도성 수지만으로 이루어진 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 비히팅부(502)는 상기 히팅부(501)의 베이스 수지의 소재와 동일한 소재로 이루어지는 것도 물론 가능하다. 상기 히팅부(501)의 비전도성 수지와 상기 비히팅부(502)의 비전도성 수지는 동일한 소재가 사용되어 일체로 성형시 계면 분리 등이 방지될 수 있다.
상기 전선들(12)의 구성은 상기 제1실시예와 동일하게 적용된다.
또한, 상기 면상 발열체(510)는 전원을 공급 또는 차단하고 온도를 제어하는 제어부(미도시)가 연결되거나 구비될 수 있다.
상기와 같이 구성된 본 발명의 제5실시예에 따른 면상 발열체의 제조 방법을 설명하면, 다음과 같다.
상기와 같이 구성된 본 발명의 제5실시예에 따른 면상 발열체(510)는, 상기 히팅부(501)와 상기 비히팅부(502)를 이중 사출성형하여 제조하는 점이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 동일하게 적용된다.
본 실시예에서는, 상기 이중 사출 성형을 위한 상기 몰드(2)는, 하부 몰드(2a)와 상부 몰드(2b)를 포함하고, 상기 상부 몰드(2b)만 교체되는 것으로 예를 들어 설명한다. 즉, 상기 상부 몰드(2b)는 히팅부용 상부 몰드와 비히팅부용 상부 몰드를 포함한다. 따라서, 상기 하부 몰드(2a) 위에 상기 히팅부용 상부 몰드(미도시)를 배치시키고, 상기 전도성 복합소재를 투입하여 상기 히팅부(501)를 성형한다. 이후, 상기 하부 몰드(2a)위에 상기 비히팅부용 상부 몰드(미도시)로 교체하여, 상기 비전도성 수지를 투입하여 상기 비히팅부(502)를 성형할 수 있다.
먼저, 상기 탄소 부재, 상기 알루미늄 파우더, 상기 베이스 수지, 상기 안정제 및 상기 점착제는 미리 설정된 비율로 혼합한 전도성 복합소재를 상기 하부 몰드(2a)와 상기 히팅부용 상부 몰드(미도시)사이에 주입한다.
이 때, 상기 한 쌍의 전선들(12)을 미리 설정된 위치에 인서트하고, 상기 몰드(2)를 가열하여 상기 전도성 복합소재를 경화시킨다.
본 실시예에서는, 상기 몰드(20)에 상기 전도성 복합소재를 먼저 투입한 후 상기 전선들(12)을 삽입하는 것으로 예를 들어 설명하나, 이에 한정되지 않고 상기 전선들(12)을 먼저 배치시킨 후 상기 전도성 복합소재를 투입하는 것도 물론 가능하다. 또한, 상기 전도성 복합소재를 먼저 투입하는 경우, 상기 전선들(12)을 삽입한 후 상기 전도성 복합소재를 추가로 투입하는 것도 물론 가능하다.
따라서, 상기 전도성 복합소재로 형성된 상기 매트릭스(11)에 상기 전선들(12)이 인서트된 상기 히팅부(501)가 형성된다.
이후, 상기 비히팅부용 상부 몰드로 교체하여, 상기 하부 몰드(2a)와 상기 비히팅부용 상부 몰드사이에 상기 비전도성 수지를 주입하고, 경화시킨다.
따라서, 상기 비전도성 수지로 이루어지고 상기 히팅부(501)와 일체로 성형된 상기 비히팅부(502)가 형성된다.
상기 경화가 완료되면, 상기 몰드(2)로부터 상기 면상 발열체(510)를 분리한다.
따라서, 이중 사출 성형 공정을 통해 상기 히팅부(501)와 상기 비히팅부(502)로 영역이 구획된 상기 면상 발열체(510)를 제조함으로써, 다양한 형상으로 제조가 가능하면서도 제조 공정이 간단하기 때문에, 제조 시간 및 제조 비용이 절감될 수 있다.
상기 면상 발열체(510)는 일부분만이 상기 히팅부(501)로 이루어지도록 성형되기 때문에, 다양한 형상으로 제조가 가능하여 보다 다양한 제품에 적용 가능하다.
또한, 상기 히팅부(501)에 포함된 비전도성 수지와 상기 비히팅부(502)에 포함된 비전도성 수지를 동일한 소재를 사용함으로써, 상기 히팅부(501)와 상기 비히팅부(502)의 경계면이 분리되지 않고 보다 견고하게 결합되어 성형될 수 있다.
또한, 상기 히팅부(501)에 포함된 전도성 소재인 탄소나노튜브가 상기 히팅부(501)와 상기 비히팅부(502)의 경계면을 연결하는 가교 역할을 할 수 있으므로, 보다 견고하게 결합될 수 있다.
다만, 이에 한정되지 않고, 하나의 몰드에 상기 히팅부(501)의 매트릭스를 이루는 제1소재와 상기 비히팅부(502)를 이루는 제2소재를 각각 투입하여 이중 사출 성형하는 것도 가능하며, 상기 이중 사출 성형을 위한 몰드는 다양하게 적용 가능하다.
한편, 도 7은 본 발명의 제6실시예에 따른 면상 발열체를 개략적으로 나타낸 도면이다.
도 7을 참조하면, 본 발명의 제6실시예에 따른 면상 발열체(610)는, 히팅부(601)와 비히팅부(602)로 구획되도록 형성되되, 상기 비히팅부(602)는 상기 히팅부(601)의 좌,우 양측면 중 적어도 일면에 연장되게 형성된 것이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로 상이한 점을 중심으로 상세히 설명한다.
상기 히팅부(601)는, 상기 비히팅부(602)와 일체로 형성되되, 상기 비히팅부(602)와 서로 다른 소재로 형성되어 상기 비히팅부(602)와 서로 다른 전기전도도를 가진다.
상기 히팅부(601)는, 베이스 수지(11a)와 전도성 소재(11b)가 혼합된 전도성 복합소재로 이루어진 매트릭스(11)의 내부에 한 쌍의 전선들(12)이 삽입되어 형되어, 전원 인가시 상기 전도성 소재가 전기적 네트워크를 형성하며 발열한다.
상기 비히팅부(602)는, 상기 히팅부(601)보다 전기전도도가 낮은 소재로 형성된다. 상기 비히팅부(602)는 상기 비전도성 수지만으로 이루어진 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 비히팅부(602)는 상기 히팅부(601)의 베이스 수지의 소재와 동일한 소재로 이루어지는 것도 물론 가능하다. 상기 히팅부(501)의 비전도성 수지와 상기 비히팅부(502)의 비전도성 수지는 동일한 소재가 사용되어 일체로 성형시 계면 분리 등이 방지될 수 있다.
상기 히팅부(601), 상기 비히팅부(602) 및 상기 전선(12)의 구성은 상기 제5실시예와 동일하게 적용된다. 또한, 상기 면상 발열체의 제조 방법도 상기 제5실시예와 동일하게 적용된다.
도 8은 본 발명의 제7실시예에 따른 면상 발열체를 이용한 의류관리기의 예를 나타낸 도면이다. 도 9는 도 8에 도시된 다리미 보드를 나타낸 도면이다.
도 8 및 도 9를 참조하면, 본 발명의 제7실시예에 따른 면상 발열체를 이용한 의류 관리기(700)는, 본체(701), 도어(702) 및 상기 도어(702)에 구비되어 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드(705)를 포함하고, 상기 다리미 보드(705)는, 히팅부(710)와 비히팅부(720)로 구획되어 성형된 면상 발열체인 것이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 본체(701)는 의류를 넣을 수 있는 공간을 형성하고, 전면이 개방되게 형성된다.
상기 도어(702)는, 상기 본체(701)의 전면을 개폐가능하도록 형성된다.
상기 도어(702)의 내측면에는 집게부(703), 지지판(704), 가압판(706) 및 상기 다리미 보드(705)가 구비된다.
상기 집게부(703)는, 상기 도어(702)의 내측면 상부에 구비되어, 바지의 단부를 잡을 수 있도록 형성된 홀더이다.
상기 지지판(704)은, 상기 도어(702)의 내측면에 고정 설치되어, 상기 집게부(703)에 걸린 바지에 대향되게 배치된 패널이다. 상기 지지판(704)은 상기 다리미 보드(705)와 상기 가압판(706)이 상기 바지를 가압할 때 지지해주는 역할을 한다.
상기 가압판(706)은, 상기 지지판(704)에 회동가능하게 결합되어 상기 다리미 보드(705)를 상기 지지판(704)을 향한 방향으로 가압하기 위한 패널이다.
상기 다리미 보드(705)는, 상기 가압판(706)과 상기 지지판(704) 사이에 배치되며, 상기 지지판(703)으로부터 회동가능하도록 결합된다.
상기 다리미 보드(705)는, 적어도 일부분이 상기 면상 발열체로 형성될 수 있으며, 본 실시예에서는 상기 다리미 보드(705)가 면상 발열체인 것으로 예를 들어 설명한다.
상기 다리미 보드(705)는, 히팅부(710)와 비히팅부(720)로 구획되도록 서로 다른 소재로 이중 사출 성형된다. 본 실시예에서는, 상기 다리미 보드(705)의 좌,우 양측에 2개의 상기 히팅부(710)가 구비되는 것으로 예를 들어 설명한다.
상기 히팅부(710)와 상기 비히팅부(720)의 구성 및 작용은 상기 제5실시예와 동일하게 적용된다. 또한, 상기 면상 발열체의 제조 방법 및 작동 방법은 상기 제5실시예와 동일하게 적용된다.
도 10은 본 발명의 제8실시예에 따른 면상 발열체를 이용한 냉온정수기의 예를 나타낸 도면이다.
도 10을 참조하면, 본 발명의 제8실시예에 따른 면상 발열체를 이용한 냉온 정수기(800)는, 본체(801)와, 상기 본체(801)의 내부에 구비되고 온수가 수용된 온수 탱크(802)를 포함하고, 상기 면상 발열체(810)는 상기 온수 탱크(802)의 적어도 일면에 접촉되게 구비된 것이 상기 제5실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 면상 발열체(810)는, 상기 온수 탱크(802)의 외둘레면을 감싸도록 구비된 것으로 예를 들어 설명한다. 다만, 이에 한정되지 않고, 상기 면상 발열체(810)는, 상기 온수 탱크(802)의 바닥면 등 상기 온수 탱크(802)에 열전달을 할 수 있는 면이라면 어느 면에나 적용 가능하다.
상기 면상 발열체(810)는, 히팅부(811)와 비히팅부(812)로 구획되어 성형된다. 즉, 상기 면상 발열체(810)는, 상기 히팅부(811)를 제외한 나머지 부분은 모두 비히팅부(812)에 해당한다.
상기 히팅부(811)와 상기 비히팅부(812)의 구성 및 작용은 상기 제5실시예와 동일하게 적용된다. 또한, 상기 면상 발열체(810)의 제조 방법 및 작동 방법은 상기 제5실시예와 동일하게 적용된다.
한편, 도 11은 본 발명의 제9실시예에 따른 면상 발열체를 이용한 건물의 바닥난방 패널의 예를 나타낸 도면이다.
도 11을 참조하면, 본 발명의 제9실시예에 따른 면상 발열체(910)를 이용한 건물의 바닥난방 패널(900)은, 건물의 바닥면에 설치되어 바닥 난방을 위한 패널이며, 상기 면상 발열체(910)는 상기 바닥난방 패널(900)에 구비된 것이 상기 제1실시예와 상이하고, 그 외 나머지 구성 및 작용은 유사하므로, 상이한 점을 중심으로 상세히 설명한다.
상기 면상 발열체(910)는, 상기 바닥난방 패널(900)의 내부 또는 상면에 구비될 수 있다.
상기 면상 발열체(910)는, 히팅부(911)와 비히팅부(912)로 구획되어 성형된다. 즉, 상기 면상 발열체(910)는, 상기 히팅부(911)를 제외한 나머지 부분은 모두 비히팅부(912)에 해당한다.
상기 히팅부(911)와 상기 비히팅부(912)의 구성 및 작용은 상기 제5실시예와 동일하게 적용된다. 또한, 상기 면상 발열체(910)의 제조 방법 및 작동 방법은 상기 제5실시예와 동일하게 적용된다.
본 발명은 상기 실시예에서 상기 베이지 수지의 함량, 상기 탄소 부재의 함량 및 상기 금속 분말의 직경과 함량을 예를 들어 설명하였으나, 이에 한정되지 않고 변경 가능하다. 또한, 상기 전도성 복합소재의 비중, 비저항 및 열전도도에 대한 값들도 예를 들어 설명하였으나, 이에 한정되지 않는다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명에 따르면 구조가 간단하고 제조 비용 및 제조 시간이 절감될 수 있는 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방패널을 제조할 수 있다.

Claims (13)

  1. 베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고,
    상기 전도성 소재는,
    상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과,
    상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고,
    상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고,
    상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고,
    상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고,
    상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃인 면상 발열체.
  2. 청구항 1에 있어서,
    상기 전도성 복합소재의 인장강도(ASTM D638에 따른 시험결과)는 180 내지 200kgf/cm2인 면상 발열체.
  3. 청구항 1에 있어서,
    상기 탄소 부재들은, 탄소나노튜브와 그래핀을 포함하고,
    상기 그래핀과 상기 탄소나노튜브의 혼합 비율은 1w%:10w%인 면상 발열체.
  4. 청구항 1에 있어서,
    상기 탄소 부재들은, 탄소 섬유와 탄소나노튜브 중 적어도 하나를 포함하고,
    상기 탄소 부재들의 길이는 1 내지 100μm 인 면상 발열체.
  5. 청구항 1에 있어서,
    상기 금속 분말들은, 알루미늄 파우더를 포함하는 면상 발열체.
  6. 청구항 1에 있어서,
    상기 베이스 수지는, ABS(acrylonitrile-butadiene-styrene), 실리콘, PE(Polyethylene), PET(Polyethylene terephthalate), PP(Polypropylene), PDMS(Polydimethylsiloxane)를 포함하는 비전도성 수지와, PPy(Polypyrrole)를 포함하는 전도성 수지를 포함하고,
    상기 베이스 수지에서 상기 전도성 수지의 함량은 0 보다 크고 10w%이하인 면상 발열체.
  7. 청구항 1에 있어서,
    상기 전도성 복합소재는 안정제와 점착제를 더 포함하고,
    상기 안정제의 함량은 0.1~0.6w%이고,
    상기 점착제의 함량은 0.4~2.1w%인 면상 발열체.
  8. 청구항 1에 있어서,
    상기 전선은, 알루미늄선, 구리합금선, 구리선, 전도성 복합소재 와이어 중 적어도 하나를 포함하는 면상 발열체.
  9. 청구항 1에 있어서,
    상기 히팅부와 구획되어 일체로 형성되고, 상기 전도성 복합소재보다 전기전도도가 낮은 소재로 형성된 비히팅부를 더 포함하는 면상 발열체.
  10. 청구항 9에 있어서,
    상기 전선들은, 상기 매트릭스에 인서트 사출 성형되고,
    상기 히팅부와 상기 비히팅부는 이중 사출 성형되는 면상 발열체.
  11. 의류를 가압하여 구김을 제거하거나 바지의 칼주름을 형성하기 위한 다리미 보드를 포함하고,
    상기 다리미 보드는,
    베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하는 면상 발열체이고,
    상기 전도성 소재는,
    상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과,
    상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고,
    상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고,
    상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고,
    상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고,
    상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃인 의류 관리기.
  12. 온수가 수용된 온수 탱크의 적어도 일면에 접촉되게 구비된 면상 발열체를 포함하고,
    상기 면상 발열체는,
    베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고,
    상기 전도성 소재는,
    상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과,
    상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고,
    상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고,
    상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고,
    상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고,
    상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃인 면상 발열체를 포함하는 냉온 정수기.
  13. 건물의 바닥난방 패널에 구비된 면상 발열체를 포함하고,
    상기 면상 발열체는,
    베이스 수지와 전도성 소재를 혼합한 전도성 복합소재를 프레스 성형하여 형성된 매트릭스의 내부에 서로 소정간격 이격되게 한 쌍의 전선들이 삽입되어, 상기 전선들이 전위차를 가지도록 전원 인가시 상기 매트릭스의 내부에서 발생된 전기 저항에 의해 발열하는 히팅부를 포함하고,
    상기 전도성 소재는,
    상기 베이스 수지 내에 분산되어 있되 전기적 네트워크를 형성하는 탄소 부재들과,
    상기 탄소 부재들 사이에 개재되어 상기 탄소 부재들에 의한 전기적 네트워크를 증가시킴과 아울러 상기 전도성 복합소재의 열전도도를 증가시켜 상기 탄소 부재들에 의하여 발생되는 전기저항 열을 상기 히팅부의 표면으로 전달하는 금속 분말들을 포함하고,
    상기 전도성 복합소재에서 상기 베이스 수지의 함량은 60 내지 72w% 이고,
    상기 전도성 복합소재에서 상기 탄소 부재들의 함량은, 상기 전기적 네트워크를 형성시키기 위하여 10w% 이상이되, 17w% 이하이고,
    상기 전도성 복합소재에서 상기 금속 분말들의 직경은 10nm 내지 100nm이고, 상기 금속 분말들의 함량은, 상기 탄소 부재들 사이의 전기적 네트워크를 증가시키기고 상기 전도성 복합소재의 열전도도를 증가시키기 위하여 12w% 이상이고, 상기 전도성 복합소재의 비중을 감소시키기 위하여 22w% 이하이고,
    상기 전도성 복합소재의 비중(ASTM D792에 따른 시험결과)은 0.8 내지 1.3 이고, 비저항은 2 내지 10Ωmm2/m이고, 열전도도(Thermal conductivity)는 156 내지 235kcal/mh℃인 건물의 바닥난방 패널.
PCT/KR2022/001270 2021-02-03 2022-01-25 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널 WO2022169169A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22749923.3A EP4290978A1 (en) 2021-02-03 2022-01-25 Planar heating element, and clothing management apparatus, hot/cold water purifier and floor heating panel for building, comprising same
JP2023543160A JP2024503125A (ja) 2021-02-03 2022-01-25 面状発熱体とそれを含む衣類管理機、冷温浄水器及び建物の床暖房パネル
US18/269,292 US20240064870A1 (en) 2021-02-03 2022-01-25 Planar heating element, and clothing management apparatus, hot/cold water purifier and floor heating panel for building, comprising the same
CN202280012154.5A CN116830798A (zh) 2021-02-03 2022-01-25 面状发热体及包括其的衣物管理机、冷热水净化器及建筑物的地采暖板

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2021-0015684 2021-02-03
KR20210015684 2021-02-03
KR20210020005 2021-02-15
KR10-2021-0020005 2021-02-15
KR1020210118801A KR102367910B1 (ko) 2021-02-03 2021-09-07 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널
KR10-2021-0118801 2021-09-07

Publications (1)

Publication Number Publication Date
WO2022169169A1 true WO2022169169A1 (ko) 2022-08-11

Family

ID=80490096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001270 WO2022169169A1 (ko) 2021-02-03 2022-01-25 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널

Country Status (6)

Country Link
US (1) US20240064870A1 (ko)
EP (1) EP4290978A1 (ko)
JP (1) JP2024503125A (ko)
KR (1) KR102367910B1 (ko)
CN (1) CN116830798A (ko)
WO (1) WO2022169169A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161686A (ja) * 1985-01-09 1986-07-22 徳丸 千之助 シ−ト状発熱体
KR20060028620A (ko) * 2004-09-25 2006-03-30 엘지전자 주식회사 세라믹 발열체 및 그 제조방법
KR20120119120A (ko) * 2011-04-20 2012-10-30 (주)피엔유에코에너지 온도 자가조절형 면상발열체를 적용한 의류 및 그 제조방법
KR101206413B1 (ko) * 2010-10-21 2012-11-29 박명숙 열전도성 카본 잉크조성물을 이용한 발열시트
KR20130122327A (ko) * 2012-04-30 2013-11-07 주식회사 대유신소재 면상발열체를 이용한 발열체 패드의 제조방법 및 발열체 패드가 적용된 발열시트

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102157442B1 (ko) 2019-07-24 2020-09-17 숭실대학교산학협력단 내산화성이 향상된 면상발열체의 제조방법 및 이에 의하여 제조된 면상발열체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161686A (ja) * 1985-01-09 1986-07-22 徳丸 千之助 シ−ト状発熱体
KR20060028620A (ko) * 2004-09-25 2006-03-30 엘지전자 주식회사 세라믹 발열체 및 그 제조방법
KR101206413B1 (ko) * 2010-10-21 2012-11-29 박명숙 열전도성 카본 잉크조성물을 이용한 발열시트
KR20120119120A (ko) * 2011-04-20 2012-10-30 (주)피엔유에코에너지 온도 자가조절형 면상발열체를 적용한 의류 및 그 제조방법
KR20130122327A (ko) * 2012-04-30 2013-11-07 주식회사 대유신소재 면상발열체를 이용한 발열체 패드의 제조방법 및 발열체 패드가 적용된 발열시트

Also Published As

Publication number Publication date
US20240064870A1 (en) 2024-02-22
EP4290978A1 (en) 2023-12-13
KR102367910B1 (ko) 2022-02-25
CN116830798A (zh) 2023-09-29
JP2024503125A (ja) 2024-01-24

Similar Documents

Publication Publication Date Title
WO2018194291A2 (ko) 궐련형 전자담배장치용 발열히터
WO2017131312A1 (ko) 발열필름 및 발열품 제조방법
CA2337218A1 (en) Thermally-conductive, electrically non-conductive heat transfer material and articles made thereof
WO2017094968A1 (ko) 전기밥솥용 면상발열체의 고정구조
CA2402170A1 (en) Compact cartridge hot runner nozzle and method of making
WO2022169169A1 (ko) 면상 발열체와 이를 포함하는 의류 관리기, 냉온정수기 및 건물의 바닥난방 패널
CZ323494A3 (en) Electrical insulation material and process for producing an electrically-insulated conductor
WO2015076636A1 (ko) 스트립형 전열선 벤딩 장치 및 방법, 그리고 그 스트립형 전열선으로 형성된 발열체
WO2014003257A1 (ko) 고분자 ptc 정온발열잉크를 이용한 정온발열체
WO2017018778A1 (ko) 자켓 히터
WO2019112227A1 (ko) 실리콘 복합재 및 이의 제조방법
WO2015178569A1 (ko) 발열사 제조를 위한 전도/발열성 폴리머 제조방법
WO2017222192A1 (ko) 발열체
WO2020017698A1 (ko) 가열효율이 개선된 프레스장치
WO2020130336A1 (ko) 선택적 통전 소결장치
WO2011132996A2 (ko) 연료전지용 세퍼레이터의 성형장치, 연료전지용 세퍼레이터의 성형방법 및 그 성형방법에 의해 성형된 연료전지용 세퍼레이터
ATE47085T1 (de) Von zwei raeumen fuer die luftzirkulation umschlossene elektrische heizeinheit fuer die steuerbare heizung von zylindern von strangpressen, spritzgusspressen und ziehpressen fuer kunststoff, gummi und dergl.
WO2021230608A1 (ko) 금속코팅 탄소섬유를 이용한 발열복합소재의 제조방법 및 상기 제조방법에 의한 발열복합소재
WO2017018673A1 (ko) 전자파 상쇄 면상 발열체
WO2023177011A1 (ko) 가열장치가 내장된 이동용 플렉시블 백 제조 방법 및 이동용 플렉시블 백
WO2019074134A1 (ko) 탄소 프리프레그 압축성형 금형장치
JPH0714664A (ja) 面状ヒーターおよびその製造方法
WO2023132391A1 (ko) 헤어 아이롱
WO2023038186A1 (ko) 고효율 하이브리드 발열체 및 이의 제조방법
WO2017116181A2 (ko) 히터, 이를 제조하는 방법, 냉각수 가열장치 및 이를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269292

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023543160

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280012154.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749923

Country of ref document: EP

Effective date: 20230904