WO2022168983A1 - 薄膜トランジスタ、および薄膜トランジスタの製造方法 - Google Patents

薄膜トランジスタ、および薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2022168983A1
WO2022168983A1 PCT/JP2022/004765 JP2022004765W WO2022168983A1 WO 2022168983 A1 WO2022168983 A1 WO 2022168983A1 JP 2022004765 W JP2022004765 W JP 2022004765W WO 2022168983 A1 WO2022168983 A1 WO 2022168983A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate insulating
insulating film
electrode layer
layer
film
Prior art date
Application number
PCT/JP2022/004765
Other languages
English (en)
French (fr)
Inventor
ちひろ 今村
学 伊藤
幸一 田中
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to EP22749854.0A priority Critical patent/EP4290586A1/en
Priority to CN202280011292.1A priority patent/CN116783714A/zh
Publication of WO2022168983A1 publication Critical patent/WO2022168983A1/ja
Priority to US18/366,938 priority patent/US20230387242A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present disclosure relates to a thin film transistor including, as a gate insulating layer, a laminate of a first gate insulating film made of an organic polymer compound and a second gate insulating film made of an inorganic silicon compound, and a method for manufacturing the thin film transistor.
  • a thin film transistor having an organic polymer compound film and an inorganic silicon compound film as a gate insulating layer has both pressure resistance and flexibility.
  • the dielectric constant ⁇ A used for calculating the dielectric property value is the dielectric constant of the first gate insulating film containing the organic polymer compound.
  • the thickness dA is the thickness of the first gate insulating film.
  • the relative dielectric constant ⁇ B used for calculating the dielectric property value is the relative dielectric constant of the second gate insulating film containing the inorganic silicon compound.
  • the thickness dB is the thickness of the second gate insulating film.
  • the dielectric constant of the gate insulating layer is an index value indicating whether or not the amount of charge induced per unit area can be secured. It is also an index value indicating whether or not to suppress current leakage between
  • the dielectric constant of the gate insulating layer is not closely related to the electrical durability against bending of the flexible substrate.
  • the above dielectric property values comparing the susceptibility to dielectric polarization between the first and second gate insulating films are also closely related to the electrical resistance to bending of the flexible substrate. Not related. As a result, even a structure having a specific dielectric constant within a predetermined range and a structure having a dielectric property value within a predetermined range cannot increase the electrical durability against bending of the flexible substrate. .
  • a thin film transistor for solving the above problems includes a flexible substrate having a support surface, a gate electrode layer positioned on a first portion of the support surface, a second portion of the support surface, and the gate electrode layer. a covering gate insulating layer; the semiconductor layer sandwiching the gate insulating layer between the gate electrode layer and the semiconductor layer; a source electrode layer in contact with a first end of the semiconductor layer; and a contacting drain electrode layer.
  • the gate insulating layer is composed of an organic polymer compound, a first gate insulating film covering the second portion and the gate electrode layer, and an inorganic silicon compound, and is composed of the first gate insulating film and the semiconductor layer. and a second gate insulating film sandwiched between and.
  • the thickness of the second gate insulating film is 2 nm or more and 30 nm or less, and the hydrogen content of the second gate insulating film is 2 at % or more and 15 at % or less.
  • a thin film transistor for solving the above problems includes a flexible substrate having a support surface, a gate electrode layer positioned on a first portion of the support surface, a second portion of the support surface, and the gate electrode layer. a covering gate insulating layer; the semiconductor layer sandwiching the gate insulating layer between the gate electrode layer and the semiconductor layer; a source electrode layer in contact with a first end of the semiconductor layer; and a contacting drain electrode layer.
  • the gate insulating layer is composed of an organic polymer compound and is composed of a first gate insulating film covering the second portion and the gate electrode layer and silicon oxide, and is composed of the first gate insulating film and the semiconductor layer. and a second gate insulating film sandwiched between.
  • the thickness of the second gate insulating film is 2 nm or more and 40 nm or less, and the hydrogen content of the second gate insulating film is 2 at % or more and 14 at % or less.
  • a thin film transistor for solving the above problems includes a flexible substrate having a support surface, a gate electrode layer positioned on a first portion of the support surface, a second portion of the support surface, and the gate electrode layer. a covering gate insulating layer; the semiconductor layer sandwiching the gate insulating layer between the gate electrode layer and the semiconductor layer; a source electrode layer in contact with a first end of the semiconductor layer; and a contacting drain electrode layer.
  • the gate insulating layer is composed of an organic polymer compound, a first gate insulating film covering the second portion and the gate electrode layer, and silicon nitride, and is composed of the first gate insulating film and the semiconductor layer. and a second gate insulating film sandwiched between.
  • the thickness of the second gate insulating film is 2 nm or more and 30 nm or less, and the hydrogen content of the second gate insulating film is 5 at % or more and 18 at % or less.
  • each of the thin film transistors described above it is possible to reduce the amount of change in threshold voltage and increase the field effect mobility of the semiconductor layer. Furthermore, it is possible to suppress changes in the field effect mobility with respect to bending of the flexible substrate.
  • the thickness of the second gate insulating film may be 5 nm or more and 25 nm or less, and the hydrogen content of the second gate insulating film may be 6 atomic % or more and 10 atomic % or less. According to this thin film transistor, suppression of change in field effect mobility due to bending of the flexible substrate can be realized in a configuration having higher field effect mobility.
  • the first gate insulating film has a relative dielectric constant ⁇ A and a thickness dA
  • the second gate insulating film has a relative dielectric constant ⁇ B and a thickness dB
  • the gate insulating layer may satisfy the following formula (1). According to this thin film transistor, it is possible to suppress the change in the field effect mobility due to the bending of the flexible substrate under high field effect mobility. 0.001 ⁇ ( ⁇ A /d A )/( ⁇ B /d B ) ⁇ 0.015 Equation (1)
  • the relative dielectric constant of the first gate insulating film may be lower than the relative dielectric constant of the second gate insulating film, and the thickness of the first gate insulating film may be 300 nm or more and 2500 nm or less. .
  • the semiconductor layer may be an oxide semiconductor layer containing indium.
  • a method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a first portion of a support surface of a flexible substrate, and covering a second portion of the support surface and the gate electrode layer. forming a gate insulating layer, forming the semiconductor layer such that the gate insulating layer is sandwiched between the gate electrode layer and a semiconductor layer, and a source electrode layer in contact with a first end of the semiconductor layer; forming a drain electrode layer contacting the second end of the semiconductor layer.
  • Forming the gate insulating layer includes forming a first gate insulating film made of an organic polymer compound covering the second portion and the gate electrode layer by a coating method; forming a second gate insulating film sandwiched between the film and the semiconductor layer and made of an inorganic silicon compound by plasma CVD.
  • the thickness of the second gate insulating film is 2 nm or more and 30 nm or less, and the hydrogen content of the second gate insulating film is 2 at % or more and 15 at % or less.
  • a method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a first portion of a support surface of a flexible substrate, and covering a second portion of the support surface and the gate electrode layer. forming a gate insulating layer, forming the semiconductor layer such that the gate insulating layer is sandwiched between the gate electrode layer and a semiconductor layer, and a source electrode layer in contact with a first end of the semiconductor layer; forming a drain electrode layer contacting the second end of the semiconductor layer.
  • Forming the gate insulating layer includes forming a first gate insulating film made of an organic polymer compound covering the second portion and the gate electrode layer by a coating method; forming a second gate insulating film made of silicon oxide sandwiched between the film and the semiconductor layer by plasma CVD.
  • the thickness of the second gate insulating film is 2 nm or more and 40 nm or less, and the hydrogen content of the second gate insulating film is 2 at % or more and 14 at % or less.
  • a method of manufacturing a thin film transistor for solving the above problems includes forming a gate electrode layer on a first portion of a support surface of a flexible substrate, and covering a second portion of the support surface and the gate electrode layer. forming a gate insulating layer, forming the semiconductor layer such that the gate insulating layer is sandwiched between the gate electrode layer and a semiconductor layer, and a source electrode layer in contact with a first end of the semiconductor layer; forming a drain electrode layer contacting the second end of the semiconductor layer.
  • Forming the gate insulating layer includes forming a first gate insulating film made of an organic polymer compound covering the second portion and the gate electrode layer by a coating method; forming a second gate insulating film made of silicon nitride sandwiched between the film and the semiconductor layer by plasma CVD.
  • the thickness of the second gate insulating film is 2 nm or more and 30 nm or less, and the hydrogen content of the second gate insulating film is 5 at % or more and 18 at % or less.
  • each thin film transistor it is possible to reduce the amount of change in the threshold voltage and to increase the field effect mobility of the semiconductor layer. Furthermore, it is possible to suppress changes in the field effect mobility with respect to bending of the flexible substrate.
  • FIG. 1 is a cross-sectional view showing a first example of a multilayer structure of a thin film transistor.
  • FIG. 2 is a cross-sectional view showing a second example of a multi-layered structure of a thin film transistor.
  • FIG. 3 is a cross-sectional view showing a thin film transistor in a comparative example.
  • FIG. 4 is a scatter plot showing the relationship between the mobility reduction rate and the thickness and hydrogen content.
  • FIG. 5 is a scatter diagram showing the relationship between the mobility reduction rate and the thickness and the dielectric property value.
  • FIG. 6 is a table showing the relationship between the layer structure and the rate of decrease in mobility in each example.
  • FIG. 7 is a table showing the relationship between the layer structure and the rate of decrease in mobility in each comparative example.
  • FIG. 1 shows a first example of a multilayer structure of a thin film transistor.
  • FIG. 2 shows a second example of a multi-layered structure possessed by a thin film transistor. 1 and 2, the upper and lower surfaces of each component of the thin film transistor will be described below.
  • one electrode layer may change the function from the source to the drain, and another electrode layer may change the function from the drain to the source. good too.
  • a first example of a thin film transistor is a bottom-gate top-contact transistor.
  • a thin film transistor includes a flexible substrate 11 , a gate electrode layer 12 , a first gate insulating film 21 , a second gate insulating film 22 , a semiconductor layer 13 , a source electrode layer 14 and a drain electrode layer 15 .
  • the first gate insulating film 21 and the second gate insulating film 22 form a gate insulating layer.
  • the flexible substrate 11 and the gate electrode layer 12 are arranged in the channel depth direction Z, which is the upward direction in FIG.
  • the source electrode layer 14 and the drain electrode layer 15 are arranged in the channel length direction X, which is the right direction in FIG.
  • the channel width direction Y is orthogonal to the channel length direction X and the channel depth direction Z.
  • the upper surface of the flexible substrate 11 is a support surface 11S extending in the channel length direction X and the channel width direction Y.
  • the support surface 11S includes a first portion 11S1 and a second portion 11S2 that are in contact with each other in the channel length direction X.
  • the area of the first portion 11S1 is smaller than the area of the second portion 11S2.
  • the first portion 11S1 contacts the bottom surface of the gate electrode layer 12 .
  • the second portion 11S2 is in contact with part of the lower surface of the first gate insulating film 21. As shown in FIG.
  • the first gate insulating film 21 is in contact with the upper surface of the gate electrode layer 12 .
  • the first gate insulating film 21 may cover the entire support surface 11S or may cover a portion of the support surface 11S.
  • the bottom surface of the second gate insulating film 22 contacts the top surface of the first gate insulating film 21 .
  • the second gate insulating film 22 may cover the entire first gate insulating film 21 or may cover a portion of the first gate insulating film 21 .
  • the second gate insulating film 22 covers the upper surface of the gate electrode layer 12 so that the first gate insulating film 21 is sandwiched between the second gate insulating film 22 and the gate electrode layer 12 .
  • a portion of the first gate insulating film 21 is located between the gate electrode layer 12 and a portion of the second gate insulating film 22 .
  • the first gate insulating film 21 is stacked on the gate electrode layer 12 .
  • the second gate insulating film 22 is stacked on the first gate insulating film 21 .
  • the bottom surface of the semiconductor layer 13 is in contact with the top surface of the second gate insulating film 22 .
  • the semiconductor layer 13 covers the upper surface of the gate electrode layer 12 so that the semiconductor layer 13 and the gate electrode layer 12 sandwich the first gate insulating film 21 and the second gate insulating film 22 .
  • a portion of the first gate insulating film 21 and a portion of the second gate insulating film 22 are located between the gate electrode layer 12 and the semiconductor layer 13 .
  • the semiconductor layer 13 is stacked on the second gate insulating film 22 . In the channel length direction X, the length of the semiconductor layer 13 is longer than the length of the gate electrode layer 12 .
  • a portion of the lower surface of the source electrode layer 14 is in contact with the upper surface of the semiconductor layer 13 .
  • the other portion of the bottom surface of the source electrode layer 14 is in contact with the top surface of the second gate insulating film 22 .
  • the source electrode layer 14 covers the first end of the semiconductor layer 13 so as to be connected to the first end, which is the end of the semiconductor layer 13 , in the direction opposite to the channel length direction X. As shown in FIG.
  • the source electrode layer 14 stacks on the first end of the semiconductor layer 13 .
  • a portion of the lower surface of the drain electrode layer 15 is in contact with the upper surface of the semiconductor layer 13 .
  • the other portion of the lower surface of the drain electrode layer 15 is in contact with the upper surface of the second gate insulating film 22 .
  • the drain electrode layer 15 covers the second end of the semiconductor layer 13 in the channel length direction X so as to be connected to the second end of the semiconductor layer 13 .
  • the drain electrode layer 15 overlies the second end of the semiconductor layer 13 .
  • the source electrode layer 14 and the drain electrode layer 15 are separated from each other.
  • a length L between the source electrode layer 14 and the drain electrode layer 15 in the channel length direction X is smaller than the length of the gate electrode layer 12 .
  • the channel region C is the region between the source electrode layer 14 and the drain electrode layer 15 in the semiconductor layer 13 .
  • the length of the channel region C in the channel length direction X that is, the length L between the source electrode layer 14 and the drain electrode layer 15 is the channel length.
  • the length of the channel region C in the channel width direction Y is the channel width.
  • the average value of all the channel lengths is the channel length in one thin film transistor. If the length L is greater than the length of the gate electrode layer 12, the channel region C is the region of the semiconductor layer 13 that overlaps the gate electrode layer 12 in the channel depth direction Z. As shown in FIG.
  • the thin film transistor is a bottom-gate/bottom-contact transistor.
  • the configuration different from that of the bottom-gate/top-contact transistor will be mainly described.
  • the bottom surface of the source electrode layer 14 is in contact with the top surface of the second gate insulating film 22 .
  • the lower surface of the drain electrode layer 15 is in contact with the upper surface of the second gate insulating film 22 .
  • a portion of the lower surface of the semiconductor layer 13 is in contact with the second gate insulating film 22 .
  • a portion of the lower surface of the semiconductor layer 13 constitutes a channel region C filling between the source electrode layer 14 and the drain electrode layer 15 in the channel length direction X. As shown in FIG.
  • the first end which is the end in the direction opposite to the channel length direction X on the bottom surface of the semiconductor layer 13 , covers the top surface of the source electrode layer 14 so as to be in contact with the top surface of the source electrode layer 14 .
  • the second end which is the end in the channel length direction X on the bottom surface of the semiconductor layer 13 , covers the top surface of the drain electrode layer 15 so as to be in contact with the top surface of the drain electrode layer 15 .
  • the flexible substrate 11 has an insulating upper surface.
  • the flexible substrate 11 may be a transparent substrate or an opaque substrate.
  • the flexible substrate 11 may be a film having an insulating property, a metal foil having an insulating property on the supporting surface 11S, an alloy foil having an insulating property on the supporting surface 11S, or any other suitable material.
  • a flexible thin plate glass may be used.
  • the material forming the flexible substrate 11 is at least one selected from the group consisting of organic polymer compounds, composite materials of organic and inorganic materials, metals, alloys, and inorganic polymer compounds.
  • the flexible substrate 11 may be a single-layer structure or a multi-layer structure.
  • the constituent material of each layer constituting the flexible substrate 11 is selected from the group consisting of organic polymer compounds, composite materials, metals, alloys, and inorganic polymer compounds. is one of the
  • the flexible substrate 11 may include a base substrate and a release layer configured to be peelable from the base substrate.
  • the release layer is stripped from the underlying substrate together with the device structure.
  • a release layer comprising device structures may be applied to another flexible substrate.
  • Flexible substrates include low heat resistant papers, cellophane substrates, cloths, recycled fibers, leathers, nylon substrates, and polyurethane substrates.
  • the release layer and the flexible base constitute another flexible substrate 11 .
  • Organic polymer compounds include polymethyl methacrylate, polyacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyether sulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, cycloolefin polymer, polyether sulphene, triacetyl cellulose, and polyvinyl fluoride film. , ethylene-tetrafluoroethylene copolymer, polyimide, fluorine-based polymer, and cyclic polyolefin-based polymer.
  • the composite material is glass fiber reinforced acrylic polymer or glass fiber reinforced polycarbonate.
  • the metal is aluminum or copper.
  • the alloy is an iron-chromium alloy, an iron-nickel alloy, or an iron-nickel-chromium alloy.
  • the inorganic polymer compound is alkali-free glass containing silicon oxide, boron oxide and aluminum oxide, or alkali glass containing silicon oxide, sodium oxide and calcium oxide.
  • each of the electrode layers 12, 14, 15 may be a single-layer structure or a multi-layer structure.
  • each electrode layer 12, 14, 15 includes the bottom layer that enhances the adhesion with the lower layer of the electrode layer and the adhesion with the upper layer of the electrode layer. It is preferred to have a top layer that enhances.
  • each electrode layer 12, 14, 15 may be a metal, an alloy, or a conductive metal oxide.
  • the materials forming each electrode layer 12, 14, 15 may be different from each other or may be the same.
  • the metals are at least one of transition metals, alkali metals, and alkaline earth metals.
  • the transition metal is at least one selected from the group consisting of indium, aluminum, gold, silver, platinum, titanium, copper, nickel and tungsten.
  • the alkali metal is lithium or cesium.
  • Alkaline earth metal is at least one of magnesium and calcium.
  • the alloy is one selected from the group consisting of molybdenum niobium (MoNb), iron chromium, aluminum lithium, magnesium silver, aluminum neodymium alloy, and aluminum neodymium zirconia alloy ( ).
  • the metal oxide is one selected from the group consisting of indium oxide, tin oxide, zinc oxide, cadmium oxide, indium cadmium oxide, cadmium tin oxide, and zinc tin oxide.
  • the metal oxide may contain impurities.
  • the metal oxide containing impurities is indium oxide containing at least one impurity selected from the group consisting of tin, zinc, titanium, cerium, hafnium, zirconium and molybdenum.
  • the metal oxide containing impurities may be antimony or tin oxide containing fluorine.
  • the metal oxide containing impurities may be zinc oxide containing at least one impurity selected from the group consisting of gallium, aluminum and boron.
  • each of the electrode layers 14 and 15 is made of the same constituent element as the semiconductor layer 13 and has an impurity concentration sufficiently higher than that of the semiconductor layer 13. may be
  • the electrical resistivity of each electrode layer 12, 14, 15 is preferably 5.0 ⁇ 10 ⁇ 5 ⁇ cm or more.
  • the electric resistivity of each of the electrode layers 12, 14 and 15 is preferably 1.0 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the thickness of each electrode layer 12, 14, 15 is preferably 50 nm or more. In order to improve the flatness of each layer constituting the thin film transistor, the thickness of each electrode layer 12, 14, 15 is preferably 300 nm or less.
  • the material forming the semiconductor layer 13 may be an inorganic semiconductor or an organic semiconductor.
  • the inorganic semiconductor may be an oxide semiconductor, amorphous silicon, or a compound semiconductor.
  • the oxide semiconductor contains at least one of indium and zinc.
  • the semiconductor layer 13 is preferably an oxide semiconductor layer containing indium.
  • the oxide semiconductor is more preferably an In-M-Zn oxide.
  • the In-M-Zn oxide contains indium (In) and zinc (Zn), and is selected from the group consisting of aluminum, titanium, gallium (Ga), germanium, yttrium, zirconium, lanthanum, cerium, hafnium, and tin. It contains at least one selected metal element (M).
  • the thickness of the semiconductor layer 13 is preferably 5 nm or more.
  • the thickness of the semiconductor layer 13 is preferably 100 nm or less.
  • the thickness of the semiconductor layer 13 is preferably 5 nm or more and 100 nm or less.
  • the thickness of the semiconductor layer 13 is more preferably 10 nm or more and 50 nm or less.
  • the electrical resistivity of the semiconductor layer 13 is preferably 1.0 ⁇ 10 4 ⁇ cm or less.
  • the electrical resistivity of the semiconductor layer 13 is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ cm or more.
  • the electrical resistivity of the semiconductor layer 13 is preferably 1.0 ⁇ 10 ⁇ 1 ⁇ cm or more and 1.0 ⁇ 10 4 ⁇ cm. It is below.
  • the electrical resistivity of the semiconductor layer 13 is more preferably 1.0 ⁇ 10 0 ⁇ cm or more and 1.0 ⁇ 10 3 ⁇ cm or less.
  • the material forming the first gate insulating film 21 is an organic polymer compound.
  • the organic polymer compound is selected from the group consisting of polyvinylphenol, polyimide, polyvinyl alcohol, acrylic polymer, epoxy polymer, fluoropolymer including amorphous fluoropolymer, melamine polymer, furan polymer, xylene polymer, polyamideimide polymer, and silicone polymer. is at least one When increasing the heat resistance of the first gate insulating film 21, the organic polymer compound is preferably at least one selected from the group consisting of polyimide, acrylic polymer, and fluorine-based polymer.
  • the first gate insulating film 21 may be a single layer film or a multilayer film.
  • the constituent material of each layer constituting the first gate insulating film 21 is an organic polymer compound.
  • the dielectric constant ⁇ A of the first gate insulating film 21 is 2.0 or more and 5.0 or less.
  • the dielectric constant of the first gate insulating film 21 is preferably 3.0 or more and 4.0 or less.
  • the thickness of the first gate insulating film 21 is preferably 500 nm or more.
  • the thickness of the first gate insulating film 21 is preferably 10 ⁇ m or less.
  • the thickness of the first gate insulating film 21 is preferably 500 nm or more and 10 ⁇ m or less.
  • the first gate insulating film 21 is more preferably 1000 nm or more and 5000 nm or less.
  • the thickness of the first gate insulating film 21 is more preferably 1000 nm or more and 2500 nm or less.
  • the resistivity of the gate insulating layer is preferably 1 ⁇ 10 11 ⁇ cm or more. Further, when the thickness of the first gate insulating film 21 is to be reduced, the resistivity of the gate insulating layer is more preferably 1 ⁇ 10 13 ⁇ cm or more.
  • the material forming the second gate insulating film 22 is an inorganic silicon compound that does not have long-range order.
  • the inorganic silicon compound is at least one selected from the group consisting of silicon oxide, silicon nitride and silicon oxynitride.
  • Elements constituting silicon nitride include oxygen, silicon, and hydrogen.
  • Elements constituting silicon nitride include nitrogen, silicon, and hydrogen.
  • Elements constituting silicon oxynitride include oxygen, nitrogen, silicon, and hydrogen.
  • the relative dielectric constant ⁇ B of the second gate insulating film 22 is equal to or higher than the relative dielectric constant ⁇ A of the first gate insulating film 21 and is 3.5 or more and 10 or less.
  • the thickness of the second gate insulating film 22 is 2 nm or more so that the inorganic silicon compound is formed as a continuous film without being scattered like islands.
  • the second gate insulating film 22 may be a single layer film or a multilayer film.
  • the constituent material of each layer constituting the second gate insulating film 22 is an inorganic silicon compound.
  • Silicon oxide contains hydrogen in at least one form of bonding between silicon and hydrogen and bonding between oxygen and hydrogen.
  • the ratio of the oxygen content of silicon oxide to the silicon content of silicon oxide is 2 or less, which is the stoichiometric ratio of silicon dioxide.
  • Silicon nitride contains hydrogen in at least one form of bonding between silicon and hydrogen and bonding between nitrogen and hydrogen.
  • the ratio of the nitrogen content of silicon nitride to the silicon content of silicon nitride is 4/3 or less, which is the stoichiometric ratio of trisilicon tetranitride.
  • Silicon oxynitride contains hydrogen in at least one state of bonding between silicon and hydrogen, bonding between oxygen and hydrogen, and bonding between nitrogen and hydrogen.
  • the nitrogen content may be higher than the oxygen content, or the oxygen content may be higher than the nitrogen content.
  • the hydrogen contained in the inorganic silicon compound forms defects in the lattice of the inorganic silicon compound that forms the short-range order, and mitigates the fluctuation of the short-range order due to bending of the flexible substrate 11 .
  • the hydrogen content increases, dangling bonds of silicon contained in the inorganic silicon compound tend to decrease.
  • the contents of oxygen and nitrogen contained in the inorganic silicon compound are likely to decrease, when the semiconductor layer 13 is an oxide semiconductor, it is easy to maintain a suitable amount of oxygen deficiency in the oxide semiconductor.
  • the hydrogen content is excessive, hydrogen is likely to dissociate from silicon in the second gate insulating film 22, and the dissociated hydrogen may diffuse to change the threshold voltage.
  • the material forming the second gate insulating film 22 is at least one of silicon oxide, silicon nitride, and silicon oxynitride, in order to increase the durability of the electrical characteristics against bending of the flexible substrate 11,
  • the two-gate insulating film 22 satisfies the following conditions 1 and 2. Note that at % is an atomic percent.
  • the hydrogen content is 2 at % or more and 15 at % or less.
  • the thickness dB is 30 nm or less.
  • the second gate insulating film 22 When the material forming the second gate insulating film 22 is silicon oxide, the second gate insulating film 22 satisfies the following condition 3, in order to increase the durability of the electrical characteristics against bending of the flexible substrate 11 . and satisfy condition 4. (Condition 3)
  • the hydrogen content is 2 at % or more and 14 at % or less.
  • the thickness dB is 40 nm or less.
  • the hydrogen content of silicon oxide is preferably 6 at % or more and 10 at % or less
  • the thickness of the second gate insulating film 22 is preferably It is 5 nm or more and 25 nm or less.
  • the second gate insulating film 22 satisfies the following condition 5, in order to increase the durability of the electrical characteristics against bending of the flexible substrate 11 . and satisfy condition 6.
  • condition 5 The hydrogen content is 5 at % or more and 18 at % or less.
  • Condition 6) The thickness dB is 30 nm or less.
  • the gate insulating layer which is a laminated structure of the first gate insulating film 21 and the second gate insulating film 22, preferably satisfies the following formula (1).
  • the first gate insulating film 21 has a relative dielectric constant ⁇ A and a thickness dA
  • the second gate insulating film 22 has a relative dielectric constant ⁇ B and a thickness dB . 0.001 ⁇ ( ⁇ A /d A )/( ⁇ B /d B ) ⁇ 0.015 Equation (1)
  • the dielectric property value K is preferably 0.001 or more.
  • a method for manufacturing a bottom-gate/top-contact transistor includes a first step of forming a gate electrode layer 12 on a flexible substrate 11, a second step of laminating a first gate insulating film 21 on the gate electrode layer 12, and a first step of forming a first gate insulating film 21 on the gate electrode layer 12.
  • a third step of laminating the second gate insulating film 22 on the gate insulating film 21 is included.
  • the method for manufacturing a bottom-gate/top-contact transistor includes a fourth step of stacking the semiconductor layer 13 on the second gate insulating film 22, and a fourth step of stacking the source electrode layer 14 and the drain electrode layer 15 on the semiconductor layer 13. Includes 5 steps.
  • the source electrode layer 14 and the drain electrode layer 15 are laminated on the second gate insulating film 22 .
  • the semiconductor layer 13 is laminated on the source electrode layer 14 , the drain electrode layer 15 and the second gate insulating film 22 .
  • the method used in the fourth step is the method used in the fifth step in the method of manufacturing a bottom-gate/top-contact transistor.
  • the method used in the fifth step is the method used in the fourth step in the method of manufacturing a bottom-gate/top-contact transistor. Therefore, the method for manufacturing a bottom-gate/top-contact transistor will be mainly described below, and redundant description of the method for manufacturing a bottom-gate/bottom-contact transistor will be omitted.
  • the gate electrode layer 12 may be formed by a film formation method using a mask that follows the shape of the gate electrode layer 12 .
  • the gate electrode layer 12 may be formed by forming an electrode film to form the gate electrode layer 12 and then processing the electrode film into the shape of the gate electrode layer 12 using an etching method.
  • the film-forming method used for forming the gate electrode layer 12 is selected from the group consisting of a vacuum deposition method, an ion plating method, a sputtering method, a laser ablation method, a spin coating method using a conductive paste, a dip coating method, and a slit die coating method. at least one type of Alternatively, the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
  • the first gate insulating film 21 may be formed by a coating method using a mask that follows the shape of the first gate insulating film 21 .
  • the first gate insulating film 21 may be formed by forming a coating film to be the first gate insulating film 21 and then processing the coating film into the shape of the first gate insulating film 21 by photolithography. .
  • the coating method used for forming the first gate insulating film 21 is at least selected from the group consisting of spin coating, dip coating, slit die coating, screen printing, and inkjet using a coating liquid containing an organic polymer compound. It is one kind.
  • a coating film is formed by baking a liquid film made of a coating liquid.
  • the coating liquid contains a photosensitive polymer.
  • the second gate insulating film 22 may be formed by a film forming method using a mask that follows the shape of the second gate insulating film 22 .
  • the second gate insulating film 22 may be formed by forming an insulating film to be the second gate insulating film 22 and then processing the insulating film into the shape of the second gate insulating film 22 using an etching method. good.
  • the film formation method used to form the second gate insulating film 22 is at least one selected from the group consisting of laser ablation, plasma CVD, optical CVD, thermal CVD, sputtering, and sol-gel.
  • the film forming method used to form the second gate insulating film 22 is a spin coating method, dip coating method, slit die coating method, screen printing method, or inkjet method using a coating liquid containing a precursor of an inorganic polymer compound. At least one coating method selected from the group.
  • the semiconductor layer 13 may be formed by a film forming method using a mask that follows the shape of the semiconductor layer 13 .
  • the semiconductor layer 13 may be formed by forming a semiconductor film to be the semiconductor layer 13 and then processing the semiconductor film into the shape of the semiconductor layer 13 using an etching method.
  • the semiconductor layer 13 is formed by a sputtering method or a CVD method.
  • the sputtering method includes a DC sputtering method in which a DC voltage is applied to the flexible substrate 11, or an RF sputtering method in which a high frequency is applied to the film formation space.
  • Impurity addition methods include a plasma processing method, an ion implantation method, an ion doping method, and a plasma immersion ion implantation method.
  • the source electrode layer 14 and the drain electrode layer 15 may be formed by a film formation method using a mask following the shape of the electrode layers.
  • the source electrode layer 14 and the drain electrode layer 15 are formed by forming electrode films to be the electrode layers 14 and 15, and then etching the electrode films into the shapes of the source electrode layer 14 and the drain electrode layer 15. It may be formed by a method of processing.
  • Film formation methods used to form the source electrode layer 14 and the drain electrode layer 15 include a vacuum deposition method, an ion plating method, a sputtering method, a laser ablation method, a spin coating method using a conductive paste, a dip coating method, and a slit die coating. It is at least one selected from the group consisting of laws.
  • the film formation method used to form the gate electrode layer 12 is at least one selected from the group consisting of screen printing, letterpress printing, intaglio printing, planographic printing, and inkjet.
  • Example 1 First, a polyimide film was used as the flexible substrate 11 and a MoNb film with a thickness of 100 nm was used as the gate electrode layer 12 .
  • the gate electrode layer 12 was formed by placing a shadow mask on the upper surface of the flexible substrate 11 and using a non-heated sputtering method using a MoNb sintered body as a target. The conditions for forming the MoNb film by the non-heating sputtering method are shown below.
  • an acrylic polymer film with a thickness d A of 1000 nm was used as the first gate insulating film 21
  • a silicon oxide film with a thickness d B of 2 nm was used as the second gate insulating film 22 .
  • a coating film was laminated on the upper surfaces of the flexible substrate 11 and the gate electrode layer 12 using a spin coating method using an acrylic polymer as an organic polymer compound. The coating film was then baked to obtain an acrylic polymer film.
  • the first gate insulating film 21 of Example 1 was formed on a substrate for measuring the relative dielectric constant ⁇ A , and the relative dielectric constant ⁇ A was measured.
  • the dielectric constant ⁇ A was 3.5.
  • the conditions for forming the acrylic polymer film by the spin coating method are shown below.
  • a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film.
  • the silicon oxide film of Example 1 was formed on a substrate for measuring the relative dielectric constant ⁇ B , and the relative dielectric constant ⁇ B was measured. B was 4.7.
  • the conditions for forming the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the dielectric property value K of the gate insulating layer of Example 1 was 0.00149.
  • the silicon oxide film of Example 1 was formed on the substrate for measuring the hydrogen content rH, and the second gate insulating film 22 of Example 1 was subjected to hydrogen forward scattering spectrometry (HFS). , hydrogen content r H (atomic concentration: at %) was measured.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 1 was 9.7 at %.
  • the silicon content in the silicon oxide film of Example 1 using Rutherford Backscattering Spectrometry (RBS) was 31.2 at %, the oxygen content was 58.0 at %, and nitrogen and carbon was found to be below the detection limit.
  • an InGaZnO film with a thickness of 35 nm was used as the semiconductor layer 13 .
  • the InGaZnO film was formed by placing a shadow mask on the upper surface of the second gate insulating film 22 and using a non-heated sputtering method using an InGaZnO sintered body as a target.
  • the deposition conditions of the InGaZnO film by the non-heating sputtering method are shown below.
  • a MoNb film with a thickness of 100 nm was used as the source electrode layer 14 .
  • a MoNb film with a thickness of 100 nm was used as the drain electrode layer 15 .
  • the source electrode layer 14 and the drain electrode layer 15 were formed by placing a shadow mask on the upper surfaces of the second gate insulating film 22 and the semiconductor layer 13 and using a non-heated sputtering method using a MoNb sintered body as a target. The conditions for forming the MoNb film by the non-heating sputtering method are shown below.
  • the flexible substrate 11, the gate electrode layer 12, the first gate insulating film 21, the second gate insulating film 22, the semiconductor layer 13, the source electrode layer 14, and the drain electrode layer 15 are annealed at 150.degree.
  • the bottom-gate/top-contact transistor of Example 1 was obtained.
  • the thin film transistor of Example 1 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 2 A silicon oxide film having a thickness dB of 5 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of the first example, thereby fabricating the bottom-gate/top-contact transistor of the second example. Obtained.
  • the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain the silicon oxide film of Example 2. .
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 2 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 2 was 4.7, and the dielectric property value K of the gate insulating layer of Example 2 was 0.00372.
  • the thin film transistor of Example 2 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 3 A silicon oxide film with a thickness dB of 20 nm was used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 was the same as in Example 1, and the bottom-gate/top-contact transistor of Example 3 was manufactured. Obtained. In the formation of the second gate insulating film 22, the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain the silicon oxide film of Example 3. .
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 3 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 3 was 4.7, and the dielectric property value K of the gate insulating layer of Example 3 was 0.01489.
  • the thin film transistor of Example 3 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 4 A silicon nitride film having a thickness of 5 nm was used as the second gate insulating film 22, and the configuration other than the second gate insulating film 22 was the same as in Example 1, thereby obtaining a bottom-gate/top-contact transistor of Example 4. .
  • a silicon nitride film was formed on the upper surface of the acrylic polymer film using a parallel plate plasma CVD method. The deposition conditions of the silicon nitride film by the plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 4 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 4 was 7.8, and the dielectric property value K of the gate insulating layer of Example 4 was 0.00224.
  • the thin film transistor of Example 4 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • the silicon content in the silicon nitride film of Example 4 using Rutherford Backscattering Spectrometry (RBS) was 40.1 at%, the nitrogen content was 43.5 at%, and the oxygen content was 1.9 at %, and carbon was found to be below the detection limit.
  • Example 5 A silicon nitride film with a thickness dB of 15 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as in Example 1, and the bottom-gate/top-contact transistor of Example 5 is manufactured. Obtained.
  • the film formation time was changed from the film formation conditions of Example 4, and the conditions other than the film formation time were the same to obtain a silicon nitride film.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 5 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 5 was 7.8, and the dielectric property value K of the gate insulating layer of Example 5 was 0.01346.
  • the thin film transistor of Example 5 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 6 A bottom-gate/top-contact transistor of Example 6, using a silicon oxynitride film with a thickness dB of 20 nm as the second gate insulating film 22 and having the same configuration as in Example 1 except for the second gate insulating film 22. got A silicon oxynitride film was formed on the upper surface of the acrylic polymer film using a parallel plate plasma CVD method. The deposition conditions of the silicon oxynitride film by the plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 6 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 6 was 6.1, and the dielectric property value K of the gate insulating layer of Example 6 was 0.01147.
  • the thin film transistor of Example 6 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 7 A silicon oxide film having a thickness dB of 5 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of the first example, thereby fabricating the bottom-gate/top-contact transistor of the seventh example. Obtained.
  • a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film. The deposition conditions of the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 7 was 3.0 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 7 was 4.2, and the dielectric property value K of the gate insulating layer of Example 7 was 0.00417.
  • the thin film transistor of Example 7 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 8 A silicon oxide film having a thickness dB of 25 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of the first example, and the bottom-gate/top-contact transistor of the eighth example is manufactured. Obtained.
  • a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film.
  • the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain the silicon oxide film of Example 8.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 8 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 8 was 4.7, and the dielectric property value K of the gate insulating layer of Example 8 was 0.01861.
  • the thin film transistor of Example 8 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 9 An acrylic polymer film with a thickness d A of 2500 nm was used as the first gate insulating film 21 .
  • a silicon oxide film having a thickness dB of 3 nm is used as the second gate insulating film 22, and the structure other than the first gate insulating film 21 and the second gate insulating film 22 is the same as that of the first example.
  • a bottom-gate top-contact transistor was obtained.
  • the acrylic polymer film of Example 9 was obtained by changing the coating amount from the film formation conditions of Example 8 and keeping the conditions other than the coating amount the same as those of Example 1.
  • the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain the silicon oxide film of Example 9.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 9 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 9 was 4.7, and the dielectric property value K of the gate insulating layer of Example 9 was 0.00089.
  • the thin film transistor of Example 9 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 10 An acrylic polymer film with a thickness d A of 2000 nm is used as the first gate insulating film 21 , a silicon nitride film with a thickness d B of 4 nm is used as the second gate insulating film 22 , and the first gate insulating film 21 and the second gate insulating film 21 are A bottom-gate/top-contact transistor of Example 10 was obtained with the same configuration as that of Example 4 except for the gate insulating film 22 .
  • the acrylic polymer film of Example 10 was obtained by changing the coating amount under the film forming conditions of Example 4 and keeping the conditions other than the coating amount the same as those of Example 4.
  • the silicon nitride film the film formation time was changed from the film formation conditions of Example 4, and the conditions other than the film formation time were the same as those of Example 4, and the silicon nitride film of Example 10 was obtained.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 10 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 10 was 7.8, and the dielectric property value K of the gate insulating layer of Example 10 was 0.00090.
  • the thin film transistor of Example 10 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 11 An acrylic polymer film with a thickness d A of 600 nm is used as the first gate insulating film 21 , a silicon oxide film with a thickness d B of 7 nm is used as the second gate insulating film 22 , and the first gate insulating film 21 and the second gate insulating film 21 are A bottom-gate/top-contact transistor of Example 11 was obtained with the same configuration as in Example 1 except for the gate insulating film 22 .
  • the coating amount was changed from the film forming conditions of Example 1, and the conditions other than the coating amount were the same as those of Example 1 to obtain an acrylic polymer film of Example 11.
  • the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1, and the silicon oxide film of Example 11 was obtained.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 11 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 11 was 4.7, and the dielectric property value K of the gate insulating layer of Example 11 was 0.00869.
  • the thin film transistor of Example 11 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 12 An acrylic polymer film with a thickness d A of 400 nm is used as the first gate insulating film 21 , a silicon oxide film with a thickness d B of 7 nm is used as the second gate insulating film 22 , and the first gate insulating film 21 and the second gate insulating film 21 are A bottom-gate/top-contact transistor of Example 12 was obtained with the same configuration as in Example 1 except for the gate insulating film 22 .
  • the coating amount was changed from the film forming conditions of Example 1, and the conditions other than the coating amount were the same as those of Example 1 to obtain an acrylic polymer film of Example 12.
  • the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain the silicon oxide film of Example 12.
  • the hydrogen content rH in the second gate insulating film 22 of Example 12 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 12 was 4.7, and the dielectric property value K of the gate insulating layer of Example 12 was 0.01303.
  • the thin film transistor of Example 12 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 13 An acrylic polymer film with a thickness d A of 300 nm is used as the first gate insulating film 21 , a silicon nitride film with a thickness d B of 4 nm is used as the second gate insulating film 22 , the first gate insulating film 21 and the second gate insulating film 21 are A bottom-gate/top-contact transistor of Example 13 was obtained with the same configuration as in Example 4 except for the gate insulating film 22 .
  • the coating amount was changed from the film forming conditions of Example 1, and the conditions other than the coating amount were the same as those of Example 1 to obtain an acrylic polymer film of Example 13.
  • the film formation time was changed from the film formation conditions of Example 4, and the conditions other than the film formation time were the same as those of Example 4 to obtain the silicon nitride film of Example 13.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 13 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 13 was 7.8, and the dielectric property value K of the gate insulating layer of Example 13 was 0.00598.
  • the thin film transistor of Example 13 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 14 An acrylic polymer film with a thickness d A of 600 nm is used as the first gate insulating film 21 , a silicon nitride film with a thickness d B of 4 nm is used as the second gate insulating film 22 , the first gate insulating film 21 and the second gate insulating film 21 are A bottom-gate/top-contact transistor of Example 14 was obtained with the same configuration as in Example 4 except for the gate insulating film 22 .
  • the coating amount was changed from the film forming conditions of Example 4, and the conditions other than the coating amount were the same as those of Example 4 to obtain an acrylic polymer film of Example 14.
  • the film formation time was changed from the film formation conditions of Example 4, and the conditions other than the film formation time were the same as those of Example 4 to obtain the silicon nitride film of Example 14.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 14 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 14 was 7.8, and the dielectric property value K of the gate insulating layer of Example 14 was 0.00298.
  • the thin film transistor of Example 14 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 15 A silicon oxide film having a thickness dB of 25 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of the first example. Obtained.
  • a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film. The deposition conditions of the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 13 was 12.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 13 was 4.7, and the dielectric property value K of the gate insulating layer of Example 15 was 0.01861.
  • the thin film transistor of Example 15 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 16 A silicon nitride film having a thickness dB of 25 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of Example 4, and the bottom-gate/top-contact transistor of Example 16 is fabricated. Obtained.
  • a silicon nitride film was formed on the upper surface of the acrylic polymer film using a parallel plate plasma CVD method. The deposition conditions of the silicon nitride film by the plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Example 16 was 6.9 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Example 16 was 7.8, and the dielectric property value K of the gate insulating layer of Example 16 was 0.01122.
  • the thin film transistor of Example 16 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • the thin film transistor of Comparative Example 1 has a multi-layer structure obtained by omitting the second gate insulating film 22 from the bottom-gate/bottom-contact transistor described with reference to FIG. That is, the thin film transistor of Comparative Example 1 includes the source electrode layer 14 and the drain electrode layer 15 on the upper surface of the first gate insulating film 21 . Further, in the thin film transistor of Comparative Example 1, a semiconductor is formed on the upper surface of the source electrode layer 14, the upper surface of the drain electrode layer 15, and the upper surface of the first gate insulating film 21 so as to connect the source electrode layer 14 and the drain electrode layer 15 to each other. A layer 13 is provided.
  • the thin film transistor of Comparative Example 1 similarly to the formation of the thin film transistor of Example 1, a polyimide film was used as the flexible substrate 11, a MoNb film having a thickness of 100 nm was used as the gate electrode layer 12, and the first An acrylic polymer film having a thickness of 1000 nm was used as the gate insulating film 21 .
  • the conditions for forming the MoNb film and the conditions for forming the acrylic polymer film were the same as in Example 1.
  • a shadow mask is placed on the upper surface of the first gate insulating film 21, a MoNb film having a thickness of 100 nm is formed as the source electrode layer 14, and a MoNb film having a thickness of 100 nm is formed as the drain electrode layer 15. formed a MoNb film of 100 nm.
  • the same unheated sputtering method as in Example 1 was used as the conditions for forming the MoNb film.
  • an InGaZnO film was formed as the semiconductor layer 13 on the upper surface of the first gate insulating film 21 so as to connect the source electrode layer 14 and the drain electrode layer 15 .
  • Example 1 The same unheated sputtering method as in Example 1 was used as the deposition conditions for the InGaZnO film. Then, the thin film transistor of Comparative Example 1 was obtained by performing annealing at 150° C. in the same manner as in Example 1. The thin film transistor of Comparative Example 1 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 2 A silicon oxide film having a thickness dB of 50 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of Example 1. A bottom-gate/top-contact transistor of Comparative Example 2 is manufactured. Obtained. In the formation of the second gate insulating film 22, the film formation time was changed from the film formation conditions of Example 1, and the conditions other than the film formation time were the same as those of Example 1 to obtain a silicon oxide film of Comparative Example 2. .
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 2 was 9.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 2 was 4.7, and the dielectric property value K of the gate insulating layer of Comparative Example 2 was 0.03723.
  • the thin film transistor of Comparative Example 2 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • a silicon nitride film having a thickness dB of 35 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of Example 4, and the bottom-gate/top-contact transistor of Comparative Example 3 is fabricated. Obtained.
  • the film formation time was changed from the film formation conditions of Example 4, and the conditions other than the film formation time were the same as those of Example 4 to obtain a silicon nitride film of Comparative Example 3. .
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 3 was 14.1 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 3 was 7.8, and the dielectric property value K of the gate insulating layer of Comparative Example 4 was 0.01571.
  • the thin film transistor of Comparative Example 4 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • a silicon oxide film having a thickness dB of 5 nm is used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 is the same as that of Example 1.
  • a bottom-gate/top-contact transistor of Comparative Example 4 is fabricated. Obtained.
  • a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film. The deposition conditions of the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 4 was 1.0 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 4 was 3.9, and the dielectric property value K of the gate insulating layer of Comparative Example 4 was 0.00449.
  • the thin film transistor of Comparative Example 4 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • a silicon nitride film having a thickness of 10 nm was used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 was the same as in Example 4, thereby obtaining a bottom-gate/top-contact transistor of Comparative Example 5.
  • a silicon nitride film was formed on the upper surface of the acrylic polymer film using a parallel plate plasma CVD method. The deposition conditions of the silicon nitride film by the plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 5 was 1.2 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 5 was 6.8, and the dielectric property value K of the gate insulating layer of Comparative Example 5 was 0.00515.
  • the thin film transistor of Comparative Example 5 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Example 6 A silicon oxide film having a thickness dB of 25 nm was used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 was the same as in Example 1. A bottom-gate/top-contact transistor of Comparative Example 6 was manufactured. Obtained. In the formation of the silicon oxide film, a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film. The deposition conditions of the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 6 was less than 1.0 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 6 was 3.9, and the dielectric property value K of the gate insulating layer of Comparative Example 6 was 0.02244.
  • the thin film transistor of Comparative Example 6 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Comparative Example 7 A silicon oxide film having a thickness dB of 15 nm was used as the second gate insulating film 22, and the structure other than the second gate insulating film 22 was the same as that of Example 1. A bottom-gate/top-contact transistor of Comparative Example 7 was manufactured. Obtained. In the formation of the silicon oxide film, a parallel plate plasma CVD method was used to stack a silicon oxide film on the upper surface of the acrylic polymer film. The deposition conditions of the silicon oxide film by the parallel plate plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 7 was 16.2 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 7 was 5.1, and the dielectric property value K of the gate insulating layer of Comparative Example 7 was 0.01029.
  • the thin film transistor of Comparative Example 7 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • Comparative Example 8 A bottom-gate/top-contact transistor of Comparative Example 8 was obtained by using a silicon nitride film having a thickness of 15 nm as the second gate insulating film 22 and having the same configuration as in Example 4 except for the second gate insulating film 22. .
  • a silicon nitride film was formed on the upper surface of the acrylic polymer film using a parallel plate plasma CVD method. The deposition conditions of the silicon nitride film by the plasma CVD method are shown below.
  • the hydrogen content r 2 H in the second gate insulating film 22 of Comparative Example 8 was 21.7 at %.
  • the dielectric constant ⁇ B of the second gate insulating film 22 of Comparative Example 8 was 8.1, and the dielectric property value K of the gate insulating layer of Comparative Example 8 was 0.00648.
  • the thin film transistor of Comparative Example 8 had a channel length of 200 ⁇ m and a channel width of 2000 ⁇ m.
  • the voltage of the source electrode layer 14 is set to 0 V, and the source-drain voltage Vds, which is the voltage between the source electrode layer 14 and the drain electrode layer 15, is set to 10 V. Then, the transfer characteristic, which is the relationship between the gate voltage Vgs and the drain current Id, was obtained.
  • a gate voltage Vgs is the voltage between the source electrode layer 14 and the gate electrode layer 12 .
  • a drain current Id is a current that flows through the drain electrode layer 15 .
  • the gate voltage Vgs was changed by changing the voltage of the gate electrode layer 12 from -20V to +20V. Then, the gate voltage Vgs when the drain current Id is 1 mA was measured as the threshold voltage.
  • the mutual conductance Gm (A/V), which is the change in the drain current Id with respect to the change in the gate voltage Vgs, was calculated. Then, in the relational expression between the mutual conductance Gm and the source-drain voltage Vds in the linear region, the dielectric constant ⁇ A and the thickness d A of the first gate insulating film 21 and the dielectric constant ⁇ B of the second gate insulating film 22 are and thickness d B , channel length, channel width, and source-drain voltage Vds were applied to calculate the mobility.
  • the voltage of the gate electrode layer 12 is ⁇ 20 V
  • the source-drain voltage Vds is 0 V
  • the stress temperature is 60° C.
  • the stress The application time was set to 1 hour. That is, the source electrode layer 14 and the drain electrode layer 15 of the thin film transistor were set at the same potential, and a potential lower than that of the source electrode layer 14 and the drain electrode layer 15 was applied to the gate electrode layer 12 for a certain period of time.
  • the threshold voltage after the load test was subtracted from the threshold voltage before the load test, and the subtracted value was measured as the change amount ⁇ Vth of the threshold voltage.
  • the flexible substrate 11 was bent back so that the radius of curvature was 1 mm, and the bending of the flexible substrate 11 was repeated 100,000 times. Then, the ratio of the difference value between the mobility before the bending test and the mobility after the bending test to the mobility before the bending test was calculated as the reduction rate of the mobility.
  • FIG. 4 shows the mobility reduction rate with respect to the thickness d B and the hydrogen content r 2 H of the second gate insulating film 22 for Examples 1 to 16 and Comparative Examples 1 to 8.
  • the hollow circles in FIG. 4 indicate the level at which the second gate insulating film 22 is a silicon oxide film and the rate of decrease in mobility is less than 20%.
  • a black circle in FIG. 4 indicates a level at which the second gate insulating film 22 is a silicon oxide film and the rate of decrease in mobility is 20% or more.
  • the hollow square marks in FIG. 4 indicate the level at which the second gate insulating film 22 is a silicon nitride film and the rate of decrease in mobility is less than 20%.
  • the hollow triangles in FIG. 4 indicate the level at which the second gate insulating film 22 is a silicon oxynitride film and the rate of decrease in mobility is 19% or less.
  • FIG. 5 shows the mobility reduction rate with respect to the thickness dB of the second gate insulating film 22 and the dielectric property value K for Examples 1 to 16 and Comparative Examples 1 to 8.
  • the hollow circles in FIG. 5 indicate the level at which the second gate insulating film 22 is a silicon oxide film and the rate of decrease in mobility is less than 20%.
  • a black circle in FIG. 5 indicates a level at which the second gate insulating film 22 is a silicon oxide film and the rate of decrease in mobility is 20% or more.
  • the hollow square marks in FIG. 5 indicate the level at which the second gate insulating film 22 is a silicon nitride film and the rate of decrease in mobility is less than 20%.
  • the hollow triangles in FIG. 5 indicate the level at which the second gate insulating film 22 is a silicon oxynitride film and the rate of decrease in mobility is 19% or less.
  • FIG. 6 and 7 show relative dielectric constant ⁇ A and thickness d A of first gate insulating film 21 and relative dielectric constant ⁇ of second gate insulating film 22 for Examples 1 to 16 and Comparative Examples 1 to 8.
  • B material, thickness d B , and hydrogen content r H , dielectric property value K, mobility, change in threshold voltage ⁇ Vth, and rate of decrease in mobility.
  • the mobilities of Examples 1 to 16 were each as high as 8.0 cm 2 /V or more.
  • the mobilities of Comparative Examples 1 and 4 to 8 were each as low as 5.1 cm 2 /V or less.
  • the amount of change ⁇ Vth in the threshold voltage of Examples 1 to 16 was a small value of -1.9 V or more and -0.2 or less.
  • the amount of change ⁇ Vth in the threshold voltage of Comparative Examples 1 and 4 to 8 was a large value of ⁇ 10.0 V or less.
  • the mobility reduction rates of Examples 1 to 16 were each as low as 19% or less. On the other hand, the rate of decrease in mobility in Comparative Examples 1, 4, 5 and 8 was a high value of 20% or more.
  • the thin film transistors of Comparative Examples 2 and 3 exhibit a high value of 11.4 cm 2 /V or more, and the variation ⁇ Vth of the threshold voltage is -1. Although the value was as small as 1 V or more and -0.2 or less, cracking or peeling was observed after the bending test.
  • the oxygen-containing inorganic silicon compound the hydrogen content r 2 H is 2 at % or more, the amount of change ⁇ Vth in the threshold voltage can be suppressed, and the rate of decrease in mobility can be suppressed to less than 20%. It was also found that if the hydrogen content r 3 H is 15 at % or less, the amount of change ⁇ Vth in the threshold voltage can be suppressed and high mobility can be obtained.
  • the second gate insulating film 22 is a silicon oxide film
  • the hydrogen content rate rH is 14 atomic % (intermediate value between Example 15 and Comparative Example 7) or less, the amount of change ⁇ Vth is small and the mobility is high. , and the effectiveness of the effect of obtaining a low reduction rate thereof was also recognized.
  • the nitrogen-containing inorganic silicon It was confirmed that even in the compound, if the hydrogen content r 3 H is 2 at % or more, the amount of change ⁇ Vth in the threshold voltage can be suppressed, and the decrease rate of the mobility can be suppressed such as less than 20%. . It was also found that if the hydrogen content r 3 H is 15 at % or less, the amount of change ⁇ Vth in the threshold voltage can be suppressed and high mobility can be obtained.
  • the second gate insulating film 22 is a silicon nitride film
  • the hydrogen content rH is 18 at % or less (an intermediate value between Example 4 and Comparative Example 8)
  • the amount of change ⁇ Vth is small, and the mobility is high. , and the effectiveness of the effect of obtaining the low reduction rate was recognized to increase.
  • the thickness d B is It was confirmed that by satisfying condition 2, a high mobility of 8.0 cm 2 /V or more was obtained. It was also confirmed that the decrease in mobility due to the bending of the flexible substrate 11 can be suppressed. In addition, it was confirmed that the mobility durability against bending of the flexible substrate 11 can be obtained at a level that satisfies the conditions 1 and 2 in the configuration in which the dielectric characteristic value K satisfies the formula (1).
  • the comparison between Examples 2 and 3 and Comparative Examples 6 and 7 reveals that the hydrogen content of the silicon oxide film satisfies Condition 3 and From the comparison between No. 8 and Comparative Examples 1 and 2, it was confirmed that when the thickness d B satisfies Condition 4, the effectiveness of the effect of suppressing the decrease in mobility can be enhanced. That is, based on the intermediate value of the thickness d B between Example 8 and Comparative Example 2, it was confirmed that the effect of suppressing the decrease in mobility can be enhanced by satisfying Condition 4.
  • the second gate insulating film 22 is a silicon nitride film
  • a comparison between Examples 4 and 5 and Comparative Examples 5 and 8 shows that the hydrogen content of the silicon nitride film satisfies Condition 5 and From the comparison between No. 10 and Comparative Examples 1 and 3, it was confirmed that when the thickness d B satisfies Condition 6, the feasibility of the effect of suppressing the decrease in mobility was enhanced. That is, based on the intermediate value of the thickness d B between Example 5 and Comparative Example 3, it was confirmed that by satisfying Condition 6, it was possible to enhance the feasibility of the effect of suppressing the decrease in mobility.
  • the configuration including the second gate insulating film 22 of Examples 2, 3, and 8 provided higher mobility than Examples 1, 7, and 9. Therefore, if the silicon oxide film has a hydrogen content of 6 at % or more and 10 at % or less and a thickness dB of the silicon oxide film is 5 nm or more and 25 nm or less, the mobility can be increased.
  • the silicon oxide film has a hydrogen content of 6 at % or more and 10 at % or less and a thickness dB of the silicon oxide film is 5 nm or more and 20 nm or less, a higher mobility can be obtained after the bending test. It becomes possible.
  • the thickness dA of the first gate insulating film 21 is preferably 1000 nm or less, more preferably 600 nm or less, and 400 nm or less. is more preferred.
  • the following effects can be obtained. (1) With a configuration that satisfies the above conditions 1 to 6, it is possible to reduce the amount of change in the threshold voltage and increase the mobility of the semiconductor layer 13, and to prevent bending of the flexible substrate 11. It becomes possible to suppress a change in mobility. (2) When the dielectric property value K is 0.001 or more and less than 0.015, it is possible to obtain the effect according to the above (1) with high mobility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

ゲート絶縁層は、支持面の第2部分とゲート電極層とを覆う有機高分子化合物で構成された第1ゲート絶縁膜21と、第1ゲート絶縁膜21と半導体層13とに挟まれて無機珪素化合物で構成された第2ゲート絶縁膜22と、から構成される。第2ゲート絶縁膜22の厚さが、2nm以上30nm以下であり、第2ゲート絶縁膜22の水素含有量が、5at%以上13at%以下であり、これによって可撓性基板の曲げに対する薄膜トランジスタの電気的な耐久性が高まる。

Description

薄膜トランジスタ、および薄膜トランジスタの製造方法
 本開示は、有機高分子化合物によって構成された第1ゲート絶縁膜と、無機珪素化合物によって構成された第2ゲート絶縁膜との積層体をゲート絶縁層として備える薄膜トランジスタ、および薄膜トランジスタの製造方法に関する。
 有機高分子化合物膜と無機珪素化合物膜とをゲート絶縁層に備えた薄膜トランジスタは、耐圧性と柔軟性とを兼ね備える。薄膜トランジスタの電気的な特性を高めること、および薄膜トランジスタにおける層間での密着性を高めることを目的として、ゲート絶縁層の誘電特性値(=(ε/d)/(ε/d))を0.015以上1.0以下とすることが提案されている(例えば、特許文献1を参照)。なお、誘電特性値の算出に用いる比誘電率εは、有機高分子化合物を含有する第1ゲート絶縁膜の比誘電率である。厚さdは、第1ゲート絶縁膜の厚さである。また、誘電特性値の算出に用いる比誘電率εは、無機珪素化合物を含有する第2ゲート絶縁膜の比誘電率である。厚さdは、第2ゲート絶縁膜の厚さである。
特開2010-21264号公報
 ゲート絶縁層が有する比誘電率は、単位面積あたりに誘起される電荷量を確保できるか否かを示す指標値であり、また、ゲート絶縁層が有する比誘電率は、ゲート電極と他の電極との間の電流漏れを抑えるか否かを示す指標値でもある。一方、ゲート絶縁層が有する比誘電率は、可撓性基板の曲げに対する電気的な耐久性と密接に関連していない。同様に、誘電分極のしやすさを第1ゲート絶縁膜と第2ゲート絶縁膜との間で比較した上述の誘電特性値もまた、可撓性基板の曲げに対する電気的な耐久性と密接に関連していない。結果として、所定範囲の比誘電率を備えた構成、さらには所定範囲の誘電特性値を備えた構成であっても、可撓性基板の曲げに対する電気的な耐久性を高めるまでには至らない。
 上記課題を解決するための薄膜トランジスタは、支持面を有した可撓性基板と、前記支持面の第1部分に位置するゲート電極層と、前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、前記半導体層の第1端部に接するソース電極層と、前記半導体層の第2端部に接するドレイン電極層と、を備える。前記ゲート絶縁層は、有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、無機珪素化合物によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成される。前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、前記第2ゲート絶縁膜の水素含有量が、2at%以上15at%以下である。
 上記課題を解決するための薄膜トランジスタは、支持面を有した可撓性基板と、前記支持面の第1部分に位置するゲート電極層と、前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、前記半導体層の第1端部に接するソース電極層と、前記半導体層の第2端部に接するドレイン電極層と、を備える。前記ゲート絶縁層は、有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、酸化珪素によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成される。前記第2ゲート絶縁膜の厚さが、2nm以上40nm以下であり、前記第2ゲート絶縁膜の水素含有量が、2at%以上14at%以下である。
 上記課題を解決するための薄膜トランジスタは、支持面を有した可撓性基板と、前記支持面の第1部分に位置するゲート電極層と、前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、前記半導体層の第1端部に接するソース電極層と、前記半導体層の第2端部に接するドレイン電極層と、を備える。前記ゲート絶縁層は、有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、窒化珪素によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成される。前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、前記第2ゲート絶縁膜の水素含有量が、5at%以上18at%以下である。
 上記各薄膜トランジスタによれば、しきい値電圧の変化量を低めること、かつ半導体層の電界効果移動度を高めることが可能となる。さらに、可撓性基板の曲げに対する電界効果移動度の変化を抑えることが可能となる。
 上記薄膜トランジスタにおいて、前記第2ゲート絶縁膜の厚さが、5nm以上25nm以下であり、前記第2ゲート絶縁膜の水素含有量が、6at%以上10at%以下であってもよい。この薄膜トランジスタによれば、可撓性基板の曲げに対する電界効果移動度の変化を抑えることが、より高い電界効果移動度を備える構成において実現可能となる。
 上記薄膜トランジスタにおいて、前記第1ゲート絶縁膜は、比誘電率εと厚さdとを有し、前記第2ゲート絶縁膜は、比誘電率εと厚さdとを有し、前記ゲート絶縁層が下記式(1)を満たしてもよい。この薄膜トランジスタによれば、可撓性基板の曲げに対する電界効果移動度の変化を高い電界効果移動度のもとで抑えることが実現可能となる。
 0.001≦(ε/d)/(ε/d)<0.015  …  式(1)
 上記薄膜トランジスタにおいて、前記第1ゲート絶縁膜の比誘電率は、前記第2ゲート絶縁膜の比誘電率よりも低く、前記第1ゲート絶縁膜の厚さは、300nm以上2500nm以下であってもよい。
 上記薄膜トランジスタにおいて、前記半導体層は、インジウムを含有する酸化物半導体層であってもよい。
 上記課題を解決するための薄膜トランジスタの製造方法は、可撓性基板の支持面における第1部分にゲート電極層を形成すること、前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含む。前記ゲート絶縁層を形成することは、前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて無機珪素化合物によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含む。前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、前記第2ゲート絶縁膜の水素含有量が、2at%以上15at%以下である。
 上記課題を解決するための薄膜トランジスタの製造方法は、可撓性基板の支持面における第1部分にゲート電極層を形成すること、前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含む。前記ゲート絶縁層を形成することは、前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて酸化珪素によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含む。前記第2ゲート絶縁膜の厚さが、2nm以上40nm以下であり、前記第2ゲート絶縁膜の水素含有量が、2at%以上14at%以下である。
 上記課題を解決するための薄膜トランジスタの製造方法は、可撓性基板の支持面における第1部分にゲート電極層を形成すること、前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含む。前記ゲート絶縁層を形成することは、前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて窒化珪素によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含む。前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、前記第2ゲート絶縁膜の水素含有量が、5at%以上18at%以下である。
 上記各薄膜トランジスタの製造方法によれば、しきい値電圧の変化量を低めること、かつ半導体層の電界効果移動度を高めることが可能となる。さらに、可撓性基板の曲げに対する電界効果移動度の変化を抑えることが可能となる。
 上記構成によれば、可撓性基板の曲げに対する薄膜トランジスタの電気的な耐久性の向上が可能となる。
図1は、薄膜トランジスタが有する多層構造の第1例を示す断面図である。 図2は、薄膜トランジスタが有する多層構造の第2例を示す断面図である。 図3は、比較例における薄膜トランジスタを示す断面図である。 図4は、厚さと水素含有率とに対する移動度の減少率の関係を示す散布図である。 図5は、厚さと誘電特性値とに対する移動度の減少率の関係を示す散布図である。 図6は、各実施例における層構成と移動度の減少率との関係を示す表である。 図7は、各比較例における層構成と移動度の減少率との関係を示す表である。
 薄膜トランジスタ、および薄膜トランジスタの製造方法の一実施形態を以下に示す。まず、薄膜トランジスタの多層構造を説明し、次に薄膜トランジスタの各層について構成材料と寸法とを説明し、次に薄膜トランジスタの製造方法を説明する。
 なお、図1は、薄膜トランジスタが有する多層構造の第1例を示す。図2は、薄膜トランジスタが有する多層構造の第2例を示す。以下では、図1、図2のそれぞれを視座として、薄膜トランジスタの各構成要素における上面、および下面を記載する。
 また、薄膜トランジスタにおけるソースとドレインとは、薄膜トランジスタの駆動回路の動作によって定まるため、1つの電極層がソースからドレインに機能を替えてもよく、かつ他の電極層がドレインからソースに機能を替えてもよい。
 [多層構造]
 図1が示すように、薄膜トランジスタの第1例は、ボトムゲート・トップコンタクト型トランジスタである。薄膜トランジスタは、可撓性基板11、ゲート電極層12、第1ゲート絶縁膜21、第2ゲート絶縁膜22、半導体層13、ソース電極層14、およびドレイン電極層15を備える。第1ゲート絶縁膜21、および第2ゲート絶縁膜22が、ゲート絶縁層を構成する。
 可撓性基板11とゲート電極層12とが、図1の上方向であるチャンネル深さ方向Zに並ぶ。ソース電極層14とドレイン電極層15とが、図1の右方向であるチャンネル長方向Xに並ぶ。チャンネル幅方向Yが、チャンネル長方向Xとチャンネル深さ方向Zとに直交する。
 可撓性基板11の上面は、チャンネル長方向Xとチャンネル幅方向Yとに広がる支持面11Sである。支持面11Sは、チャンネル長方向Xにおいて相互に接する第1部分11S1と第2部分11S2とを備える。第1部分11S1の面積は、第2部分11S2の面積よりも小さい。第1部分11S1は、ゲート電極層12の下面と接する。第2部分11S2は、第1ゲート絶縁膜21の下面の一部分と接する。
 第1ゲート絶縁膜21は、ゲート電極層12の上面に接する。第1ゲート絶縁膜21は、支持面11Sの全体を覆ってもよいし、支持面11Sの一部分を覆ってもよい。
 第2ゲート絶縁膜22の下面は、第1ゲート絶縁膜21の上面に接する。第2ゲート絶縁膜22は、第1ゲート絶縁膜21の全体を覆ってもよいし、第1ゲート絶縁膜21の一部分を覆ってもよい。第2ゲート絶縁膜22は、第2ゲート絶縁膜22とゲート電極層12とが第1ゲート絶縁膜21を挟むように、ゲート電極層12の上面を覆う。第1ゲート絶縁膜21の一部は、ゲート電極層12と第2ゲート絶縁膜22の一部との間に位置する。第1ゲート絶縁膜21は、ゲート電極層12に積み重なる。第2ゲート絶縁膜22は、第1ゲート絶縁膜21に積み重なる。
 半導体層13の下面は、第2ゲート絶縁膜22の上面に接する。半導体層13は、半導体層13とゲート電極層12とが第1ゲート絶縁膜21と第2ゲート絶縁膜22とを挟むように、ゲート電極層12の上面を覆う。第1ゲート絶縁膜21の一部と第2ゲート絶縁膜22の一部とは、ゲート電極層12と半導体層13との間に位置する。半導体層13は、第2ゲート絶縁膜22に積み重なる。チャンネル長方向Xにおいて、半導体層13の長さは、ゲート電極層12の長さよりも大きい。
 ソース電極層14の下面の一部分は、半導体層13の上面に接する。ソース電極層14の下面の他部分は、第2ゲート絶縁膜22の上面に接する。ソース電極層14は、チャンネル長方向Xの反対方向において、半導体層13の端部である第1端部に接続されるように、半導体層13の第1端部を覆う。ソース電極層14は、半導体層13の第1端部に積み重なる。
 ドレイン電極層15の下面の一部分は、半導体層13の上面に接する。ドレイン電極層15の下面の他部分は、第2ゲート絶縁膜22の上面に接する。ドレイン電極層15は、チャンネル長方向Xにおいて、半導体層13の端部である第2端部に接続されるように、半導体層13の第2端部を覆う。ドレイン電極層15は、半導体層13の第2端部に積み重なる。
 ソース電極層14とドレイン電極層15とは、相互に離間している。チャンネル長方向Xにおいて、ソース電極層14とドレイン電極層15との間の長さLは、ゲート電極層12の長さよりも小さい。この場合、半導体層13のなかのソース電極層14とドレイン電極層15との間の領域が、チャンネル領域Cである。チャンネル長方向Xにおけるチャンネル領域Cの長さ、すなわち、ソース電極層14とドレイン電極層15との間の長さLが、チャンネル長である。また、チャンネル幅方向Yにおけるチャンネル領域Cの長さが、チャンネル幅である。
 なお、1つの薄膜トランジスタのなかでチャンネル幅方向Yの各位置でのチャンネル長が一定でない場合、全てのチャンネル長の平均値が、1つの薄膜トランジスタにおけるチャンネル長である。また、長さLがゲート電極層12の長さよりも大きい場合、チャンネル深さ方向Zにおいて、半導体層13のなかでゲート電極層12と重なる領域が、チャンネル領域Cである。
 図2が示すように、薄膜トランジスタは、ボトムゲート・ボトムコンタクト型トランジスタである。以下では、ボトムゲート・トップコンタクト型トランジスタと異なる構成について主に説明する。
 ソース電極層14の下面は、第2ゲート絶縁膜22の上面に接する。ドレイン電極層15の下面は、第2ゲート絶縁膜22の上面に接する。
 半導体層13の下面の一部分は、第2ゲート絶縁膜22に接する。半導体層13の下面の一部分は、チャンネル長方向Xにおいて、ソース電極層14とドレイン電極層15との間を埋めるチャンネル領域Cを構成する。
 半導体層13の下面におけるチャンネル長方向Xとは反対方向の端部である第1端部は、ソース電極層14の上面に接するように、ソース電極層14の上面を覆う。半導体層13の下面におけるチャンネル長方向Xの端部である第2端部は、ドレイン電極層15の上面に接するように、ドレイン電極層15の上面を覆う。
 [可撓性基板]
 可撓性基板11は、上面に絶縁性を有する。可撓性基板11は、透明基板でもよいし、不透明基板でもよい。可撓性基板11は、絶縁性を有したフィルムでもよいし、支持面11Sに絶縁性を付与された金属箔でもよいし、支持面11Sに絶縁性を付与された合金箔でもよいし、可撓性を有した薄板ガラスでもよい。
 可撓性基板11を構成する材料は、有機高分子化合物、有機材料と無機材料との複合材料、金属、合金、および無機高分子化合物からなる群から選択される少なくとも一種である。
 可撓性基板11は、単層構造体でもよいし、多層構造体でもよい。可撓性基板11が多層構造体である場合、可撓性基板11を構成する各層の構成材料は、それぞれ有機高分子化合物、複合材料、金属、合金、無機高分子化合物からなる群から選択されるいずれか一種である。
 可撓性基板11が多層構造体である場合、可撓性基板11は、下地基板と、下地基板から剥離可能に構成された剥離層とを備えてもよい。剥離層は、素子構造体と共に、下地基板から剥がされる。素子構造体を備える剥離層は、別の可撓性基材に貼り付けられてもよい。可撓性基材は、耐熱性が低い紙類、セロファン基材、布類、再生繊維類、皮革類、ナイロン基材、ポリウレタン基材を含む。この場合、剥離層と可撓性基材とは、別の可撓性基板11を構成する。
 有機高分子化合物は、ポリメチルメタクリレート、ポリアクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、シクロオレフィンポリマー、ポリエーテルサルフェン、トリアセチルセルロース、ポリビニルフルオライドフィルム、エチレン-テトラフルオロエチレンコポリマー、ポリイミド、フッ素系ポリマー、環状ポリオレフィン系ポリマーからなる群から選択される少なくとも一種である。
 複合材料は、ガラス繊維強化アクリルポリマー、あるいはガラス繊維強化ポリカーボネートである。金属は、アルミニウム、あるいは銅である。合金は、鉄クロム合金、鉄ニッケル合金、あるいは鉄ニッケルクロム合金である。無機高分子化合物は、酸化珪素、酸化硼素、および酸化アルミニウムを含む無アルカリガラス、あるいは、酸化珪素、酸化ナトリウム、および酸化カルシウムを含むアルカリガラスである。
 [電極層]
 各電極層12,14,15は、それぞれ単層構造体でもよいし、多層構造体でもよい。各電極層12,14,15が多層構造体である場合、各電極層12,14,15は、それぞれ電極層の下層との密着性を高める最下層、および電極層の上層との密着性を高める最上層を有することが好ましい。
 各電極層12,14,15を構成する材料は、金属でもよいし、合金でもよいし、導電性を有する金属酸化物でもよい。各電極層12,14,15を構成する材料は、相互に異なってもよいし、同じであってもよい。
 金属は、それぞれ遷移金属、アルカリ金属、およびアルカリ土類金属の少なくとも一種である。遷移金属は、インジウム、アルミニウム、金、銀、白金、チタン、銅、ニッケル、タングステンからなる群から選択される少なくとも一種である。アルカリ金属は、リチウム、あるいはセシウムである。アルカリ土類金属は、マグネシウム、およびカルシウムの少なくとも一種である。合金は、モリブデンニオブ(MoNb)、鉄クロム、アルミニウムリチウム、マグネシウム銀、アルミネオジウム合金、アルミネオジムジルコニア合金()からなる群から選択されるいずれか一種である。
 金属酸化物は、酸化インジウム、酸化錫、酸化亜鉛、酸化カドミウム、酸化インジウムカドミウム、酸化カドミウム錫、酸化亜鉛錫からなる群から選択されるいずれか一種である。金属酸化物は、不純物を含有してもよい。不純物を含有する金属酸化物は、錫、亜鉛、チタン、セリウム、ハフニウム、ジルコニウム、モリブデンからなる群から選択される少なくとも一種の不純物を含有する酸化インジウムである。不純物を含有する金属酸化物は、アンチモン、またはフッ素を含有する酸化錫でもよい。不純物を含有する金属酸化物は、ガリウム、アルミニウム、硼素からなる群から選択される少なくとも一種の不純物を含有する酸化亜鉛でもよい。
 半導体層13を構成する材料が金属酸化物である場合、各電極層14,15は、半導体層13と同一の構成元素から構成され、かつ不純物の濃度を半導体層13よりも十分に高めた層であってもよい。
 各電極層12,14,15に適用できる材料の範囲を広げる場合、各電極層12,14,15の電気抵抗率は、それぞれ好ましくは5.0×10-5Ω・cm以上である。薄膜トランジスタの消費電力を抑える場合、各電極層12,14,15の電気抵抗率は、それぞれ好ましくは1.0×10-2Ω・cm以下である。
 各電極層12,14,15の電気抵抗値を抑える場合、各電極層12,14,15の厚さは、それぞれ好ましくは50nm以上である。薄膜トランジスタを構成する各層の平坦性を高める場合、各電極層12,14,15の厚さは、それぞれ好ましくは300nm以下である。
 [半導体層]
 半導体層13を構成する材料は、無機半導体でもよいし、有機半導体でもよい。無機半導体は、酸化物半導体でもよいし、アモルファスシリコンでもよいし、化合物半導体でもよい。酸化物半導体は、インジウム、および亜鉛の少なくとも一方を含む。
 半導体層13の光透過率、および電界効果移動度(以下、移動度とも言う)を高める場合、半導体層13は、好ましくはインジウムを含む酸化物半導体層である。酸化物半導体は、より好ましくはIn-M-Zn系酸化物である。In-M-Zn系酸化物は、インジウム(In)および亜鉛(Zn)を含み、かつアルミニウム、チタン、ガリウム(Ga)、ゲルマニウム、イットリウム、ジルコニウム、ランタン、セリウム、ハフニウム、および錫からなる群から選択される少なくとも一種の金属元素(M)を含む。
 半導体層13の厚さの均一性を高める場合、半導体層13の厚さは、好ましくは5nm以上である。半導体層13の材料使用量を抑える場合、半導体層13の厚さは、好ましくは100nm以下である。厚さの均一性の向上、および材料使用量の抑制の両立を図る場合、半導体層13の厚さは、好ましくは5nm以上100nm以下である。さらに、これらの効果を得る実効性を高める場合、半導体層13の厚さは、より好ましくは10nm以上50nm以下である。
 移動度を高める場合、半導体層13の電気抵抗率は、好ましくは1.0×10Ω・cm以下である。オン電流値とオフ電流値との比である電流オン/オフ比を高める場合、半導体層13の電気抵抗率は、好ましくは1.0×10-1Ω・cm以上である。移動度の向上、および電流オン/オフ比の向上の両立を図る場合、半導体層13の電気抵抗率は、好ましくは1.0×10-1Ω・cm以上1.0×10Ω・cm以下である。さらに、これらの効果を得る実効性を高める場合、半導体層13の電気抵抗率は、より好ましくは1.0×10Ω・cm以上1.0×10Ω・cm以下である。
 [絶縁膜]
 第1ゲート絶縁膜21を構成する材料は、有機高分子化合物である。有機高分子化合物は、ポリビニルフェノール、ポリイミド、ポリビニルアルコール、アクリルポリマー、エポキシポリマー、アモルファスフッ素ポリマーを含むフッ素系ポリマー、メラミンポリマー、フランポリマー、キシレンポリマー、ポリアミドイミドポリマー、シリコーンポリマーからなる群から選択される少なくとも一種である。第1ゲート絶縁膜21の耐熱性を高める場合、有機高分子化合物は、好ましくは、ポリイミド、アクリルポリマー、フッ素系ポリマーからなる群から選択される少なくとも一種である。
 第1ゲート絶縁膜21は、単層膜でもよいし、多層膜でもよい。第1ゲート絶縁膜21が多層膜である場合、第1ゲート絶縁膜21を構成する各層の構成材料は、それぞれ有機高分子化合物である。
 第1ゲート絶縁膜21の比誘電率εは、2.0以上5.0以下である。第1ゲート絶縁膜21の厚さを薄くし、移動度を高める場合、第1ゲート絶縁膜21の比誘電率は、好ましくは3.0以上4.0以下である。
 ゲート電極層12と他の電極層14,15との間の電流漏れを抑える場合、第1ゲート絶縁膜21の厚さは、好ましくは500nm以上である。薄膜トランジスタを駆動するためのゲート電圧の抑制を図る場合、第1ゲート絶縁膜21の厚さは、好ましくは10μm以下である。電流漏れの抑制、およびゲート電圧の抑制を図る場合、第1ゲート絶縁膜21の厚さは、好ましくは500nm以上10μm以下である。さらに、これらの効果を得る実効性を高めると共に、第1ゲート絶縁膜21の厚さの均一性を高め、かつ第1ゲート絶縁膜21の生産性の向上を図る場合、第1ゲート絶縁膜21の厚さは、より好ましくは1000nm以上5000nm以下である。第1ゲート絶縁膜21の厚さは、さらに好ましくは1000nm以上2500nm以下である。
 ゲート絶縁層の耐圧性の向上を図る場合、ゲート絶縁層の抵抗率は、好ましくは1×1011Ω・cm以上である。さらに、第1ゲート絶縁膜21の薄膜化を図る場合、ゲート絶縁層の抵抗率は、より好ましくは1×1013Ω・cm以上である。
 第2ゲート絶縁膜22を構成する材料は、長距離秩序を有しない無機珪素化合物である。無機珪素化合物は、酸化珪素、窒化珪素、および酸化窒化珪素からなる群から選択される少なくとも一種である。窒化珪素を構成する元素は、酸素、珪素、および水素を含む。窒化珪素を構成する元素は、窒素、珪素、および水素を含む。酸化窒化珪素を構成する元素は、酸素、窒素、珪素、および水素を含む。
 第2ゲート絶縁膜22の比誘電率εは、第1ゲート絶縁膜21の比誘電率ε以上であって、3.5以上10以下である。無機珪素化合物を島状に点在させず連続膜にするため、第2ゲート絶縁膜22の厚さは、2nm以上である。
 第2ゲート絶縁膜22は、単層膜でもよいし、多層膜でもよい。第2ゲート絶縁膜22が多層膜である場合、第2ゲート絶縁膜22を構成する各層の構成材料は、それぞれ無機珪素化合物である。
 酸化珪素は、珪素と水素との結合、および酸素と水素との結合の少なくとも一種の状態で水素を含む。酸化珪素の珪素の含有量に対する酸化珪素の酸素の含有量の比率は、二酸化珪素の化学量論比である2以下である。
 窒化珪素は、珪素と水素との結合、および窒素と水素との結合の少なくとも一種の状態で水素を含む。窒化珪素の珪素の含有量に対する窒化珪素の窒素の含有量の比率は、四窒化三珪素の化学量論比である4/3以下である。
 酸化窒化珪素は、珪素と水素との結合、酸素と水素との結合、および窒素と水素との結合の少なくとも一種の状態で水素を含む。酸化窒化珪素の組成は、窒素の含有量が酸素の含有量よりも高くてもよいし、酸素の含有量が窒素の含有量よりも高くてもよい。
 無機珪素化合物に含有される水素は、短距離秩序を形成する無機珪素化合物の格子に欠陥を形成し、可撓性基板11の曲げによる短距離秩序の揺らぎを緩和する。なお、水素の含有量が上がるほど、無機珪素化合物に含まれる珪素の未結合手(ダングリングボンド)が減りやすい。また、無機珪素化合物に含まれる酸素や窒素の含有量が下がりやすいため、半導体層13が酸化物半導体である場合、酸化物半導体における好適な酸素欠損量を保ちやすい。一方で、水素の含有量が過大である場合、第2ゲート絶縁膜22のなかで水素が珪素から解離しやすく、解離した水素が拡散し、しきい値電圧を変化させるおそれがある。
 そこで、第2ゲート絶縁膜22を構成する材料が酸化珪素、窒化珪素、および酸化窒化珪素の少なくとも一種である場合、可撓性基板11の曲げに対する電気的な特性の耐久性を高めるため、第2ゲート絶縁膜22は、下記条件1、および条件2を満たす。なお、at%は、原子百分率(atomic percent)である。
(条件1)水素含有量が2at%以上15at%以下である。
(条件2)厚さdが30nm以下である。
 また、第2ゲート絶縁膜22を構成する材料が酸化珪素である場合、可撓性基板11の曲げに対する電気的な特性の耐久性を高めるため、第2ゲート絶縁膜22は、下記条件3、および条件4を満たす。
(条件3)水素含有量が2at%以上14at%以下である。
(条件4)厚さdが40nm以下である。
 さらに、電気的な特性の耐久性を高める実効性を高める場合、酸化珪素の水素含有量は、好ましくは6at%以上10at%以下であり、かつ第2ゲート絶縁膜22の厚さは、好ましくは5nm以上25nm以下である。
 また、第2ゲート絶縁膜22を構成する材料が窒化珪素である場合、可撓性基板11の曲げに対する電気的な特性の耐久性を高めるため、第2ゲート絶縁膜22は、下記条件5、および条件6を満たす。
(条件5)水素含有量が5at%以上18at%以下である。
(条件6)厚さdが30nm以下である。
 また、薄膜トランジスタの電気的な特性を高める場合、第1ゲート絶縁膜21と第2ゲート絶縁膜22との積層構造体であるゲート絶縁層は、好ましくは下記式(1)を満たす。第1ゲート絶縁膜21は、比誘電率εと厚さdとを有し、第2ゲート絶縁膜22は、比誘電率εと厚さdとを有する。
 0.001≦(ε/d)/(ε/d)<0.015  …  式(1)
 ゲート絶縁層の耐圧性を高める場合、誘電特性値K(=(ε/d)/(ε/d))は、好ましくは0.015より小さい。移動度を高める場合、誘電特性値Kは、好ましくは0.001以上である。
 [薄膜トランジスタの製造方法]
 ボトムゲート・トップコンタクト型トランジスタの製造方法は、可撓性基板11にゲート電極層12を形成する第1工程、ゲート電極層12に第1ゲート絶縁膜21を積層する第2工程、および第1ゲート絶縁膜21に第2ゲート絶縁膜22を積層する第3工程を含む。また、ボトムゲート・トップコンタクト型トランジスタの製造方法は、第2ゲート絶縁膜22に半導体層13を積層する第4工程、および半導体層13にソース電極層14とドレイン電極層15とを積層する第5工程を含む。
 なお、ボトムゲート・ボトムコンタクト型トランジスタの製造方法は、第4工程において、第2ゲート絶縁膜22にソース電極層14とドレイン電極層15とを積層する。また、第5工程において、ソース電極層14、ドレイン電極層15、および第2ゲート絶縁膜22に半導体層13を積層する。第4工程に用いる方法は、ボトムゲート・トップコンタクト型トランジスタの製造方法における第5工程に用いる方法を用いる。第5工程に用いる方法は、ボトムゲート・トップコンタクト型トランジスタの製造方法における第4工程に用いる方法を用いる。そのため、以下では、ボトムゲート・トップコンタクト型トランジスタの製造方法を主に説明し、ボトムゲート・ボトムコンタクト型トランジスタの製造方法において重複した説明を割愛する。
 第1工程において、ゲート電極層12は、ゲート電極層12の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、ゲート電極層12は、ゲート電極層12となる電極膜を成膜した後に、エッチング法を用いて電極膜をゲート電極層12の形状に加工する方法によって形成されてもよい。
 ゲート電極層12の形成に用いる成膜方法は、真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法、導電性ペーストを用いるスピンコート法、ディップコート法、スリットダイコート法からなる群から選択される少なくとも一種である。あるいは、ゲート電極層12の形成に用いる成膜方法は、スクリーン印刷法、凸版印刷法、凹版印刷法、平版印刷法、インクジェット法からなる群から選択される少なくとも一種である。
 第2工程において、第1ゲート絶縁膜21は、第1ゲート絶縁膜21の形状に追従したマスクを用いる塗布法によって形成されてもよい。あるいは、第1ゲート絶縁膜21は、第1ゲート絶縁膜21となる塗布膜を形成した後に、塗布膜をフォトリソグラフィー法で第1ゲート絶縁膜21の形状に加工する方法によって形成されてもよい。
 第1ゲート絶縁膜21の形成に用いる塗布法は、有機高分子化合物を含む塗布液を用いるスピンコート法、ディップコート法、スリットダイコート法、スクリーン印刷法、インクジェット法からなる群から選択される少なくとも一種である。塗布法は、塗布液からなる液状膜を焼成することによって塗布膜を形成する。第1ゲート絶縁膜21の形成にフォトリソグラフィー法を用いる場合、塗布液は、感光性を有したポリマーを含む。
 第3工程において、第2ゲート絶縁膜22は、第2ゲート絶縁膜22の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、第2ゲート絶縁膜22は、第2ゲート絶縁膜22となる絶縁膜を形成した後に、エッチング法を用いて絶縁膜を第2ゲート絶縁膜22の形状に加工する方法によって形成されてもよい。
 第2ゲート絶縁膜22の形成に用いる成膜方法は、レーザーアブレーション法、プラズマCVD法、光CVD法、熱CVD法、スパッタリング法、ゾルゲル法からなる群から選択される少なくとも一種である。あるいは、第2ゲート絶縁膜22の形成に用いる成膜方法は、無機高分子化合物の前駆体を含む塗布液を用いるスピンコート法、ディップコート法、スリットダイコート法、スクリーン印刷法、インクジェット法からなる群から選択される少なくとも一種の塗布法である。
 第4工程において、半導体層13は、半導体層13の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、半導体層13は、半導体層13となる半導体膜を形成した後に、エッチング法を用いて半導体膜を半導体層13の形状に加工する方法によって形成されてもよい。
 半導体層13は、スパッタリング法、あるいはCVD法によって形成される。スパッタリング法は、可撓性基板11に直流電圧を印加したDCスパッタ法、あるいは成膜空間に高周波を印加したRFスパッタ法を含む。不純物の添加法は、プラズマ処理法、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法である。
 第5工程において、ソース電極層14、およびドレイン電極層15は、電極層の形状に追従したマスクを用いる成膜方法によって形成されてもよい。あるいは、ソース電極層14、およびドレイン電極層15は、電極層14,15となる電極膜を成膜した後に、エッチング法を用いて電極膜をソース電極層14、およびドレイン電極層15の形状に加工する方法によって形成されてもよい。
 ソース電極層14、およびドレイン電極層15の形成に用いる成膜方法は、真空蒸着法、イオンプレーティング法、スパッタリング法、レーザーアブレーション法、導電性ペーストを用いるスピンコート法、ディップコート法、スリットダイコート法からなる群から選択される少なくとも一種である。あるいは、ゲート電極層12の形成に用いる成膜方法は、スクリーン印刷法、凸版印刷法、凹版印刷法、平版印刷法、インクジェット法からなる群から選択される少なくとも一種である。
 [実施例1]
 まず、可撓性基板11としてポリイミドフィルムを用い、ゲート電極層12として厚さが100nmのMoNb膜を用いた。ゲート電極層12は、可撓性基板11の上面にシャドウマスクを配置し、MoNb焼結体をターゲットとする無加熱スパッタ法を用いて形成した。無加熱スパッタ法によるMoNb膜の成膜条件を以下に示す。
 <MoNb膜の成膜条件>
・ターゲット組成比 :Mo(at%):Nb(at%)=9:1
・スパッタガス   :アルゴン
・スパッタガス流量 :45sccm
・成膜圧力     :1.0Pa
・ターゲット電力  :200W(DC)
 次いで、第1ゲート絶縁膜21として厚さdが1000nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが2nmの酸化珪素膜を用いた。
 アクリルポリマー膜の形成は、まず、アクリルポリマーを有機高分子化合物とするスピンコート法を用いて、可撓性基板11およびゲート電極層12の上面に塗布膜を積層した。次いで、塗布膜を焼成して、アクリルポリマー膜を得た。
 なお、比誘電率εを測定するための基板に実施例1の第1ゲート絶縁膜21を形成し、比誘電率εを測定した結果、実施例1の第1ゲート絶縁膜21における比誘電率εは3.5であった。スピンコート法による上記アクリルポリマー膜の成膜条件を以下に示す。
 <アクリルポリマー膜の成膜条件>
・基材回転速度   :730rpm/30秒
・仮焼成温度    :90℃
・仮焼成時間    :2分
・本焼成温度    :200℃
・本焼成時間    :1時間
 酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。なお、比誘電率εを測定するための基板に実施例1の酸化珪素膜を形成し、比誘電率εを測定した結果、実施例1の第2ゲート絶縁膜22における比誘電率εは、4.7であった。平行平板のプラズマCVD法による上記酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、500sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例1のゲート絶縁層における誘電特性値Kは、0.00149であった。
 水素含有率rを測定するための基板に実施例1の酸化珪素膜を形成し、実施例1の第2ゲート絶縁膜22について、水素前方散乱分析法(Hydrogen Forward Scattering Spectrometry:HFS)を用い、水素含有率r(原子濃度:at%)を測定した。実施例1の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。なお、ラザフォード後方散乱法(Rutherford Backscattering Spectrometry:RBS)を用いた実施例1の酸化珪素膜における珪素含有量は31.2at%であり、酸素含有量は58.0at%であり、窒素、および炭素は検出限界以下であることが認められた。
 次いで、半導体層13として厚さが35nmのInGaZnO膜を用いた。InGaZnO膜は、第2ゲート絶縁膜22の上面にシャドウマスクを配置し、InGaZnO焼結体をターゲットとする無加熱スパッタ法を用いて形成した。無加熱スパッタ法によるInGaZnO膜の成膜条件を以下に示す。
 <InGaZnO膜の成膜条件>
・ターゲット組成比 :原子質量% In:Ga:Zn:O=1:1:1:4
・スパッタガス   :アルゴン/酸素
・スパッタガス流量 :50sccm(アルゴン)、0.2sccm(酸素)
・成膜圧力     :1.0Pa・ターゲット電力  :300W
・ターゲット周波数 :13.56MHz
 次いで、ソース電極層14として厚さが100nmのMoNb膜を用いた。また、ドレイン電極層15として厚さが100nmのMoNb膜を用いた。ソース電極層14、およびドレイン電極層15は、第2ゲート絶縁膜22、および半導体層13の上面にシャドウマスクを配置し、MoNb焼結体をターゲットとする無加熱スパッタ法を用いて形成した。無加熱スパッタ法によるMoNb膜の成膜条件を以下に示す。
 <MoNb膜の成膜条件>
・ターゲット組成比 :原子質量% Mo:Nb=9:1
・スパッタガス   :アルゴン
・スパッタガス流量 :45sccm
・成膜圧力     :1.0Pa
・ターゲット電力  :200W(DC)
 そして、可撓性基板11、ゲート電極層12、第1ゲート絶縁膜21、第2ゲート絶縁膜22、半導体層13、ソース電極層14、およびドレイン電極層15を150℃でアニールし、これにより、実施例1のボトムゲート・トップコンタクト型トランジスタを得た。実施例1の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例2]
 第2ゲート絶縁膜22として厚さdが5nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例2のボトムゲート・トップコンタクト型トランジスタを得た。第2ゲート絶縁膜22の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例2の酸化珪素膜を得た。
 実施例2の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。実施例2の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例2のゲート絶縁層における誘電特性値Kは、0.00372であった。実施例2の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例3]
 第2ゲート絶縁膜22として厚さdが20nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例3のボトムゲート・トップコンタクト型トランジスタを得た。第2ゲート絶縁膜22の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例3の酸化珪素膜を得た。
 実施例3の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。実施例3の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例3のゲート絶縁層における誘電特性値Kは、0.01489であった。実施例3の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例4]
 第2ゲート絶縁膜22として厚さが5nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例4のボトムゲート・トップコンタクト型トランジスタを得た。窒化珪素膜は、平行平板プラズマCVD法を用いて、アクリルポリマー膜の上面に形成した。プラズマCVD法による窒化珪素膜の成膜条件を以下に示す。
 <窒化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/アンモニア/水素/窒素
・反応ガス流量   :10sccm(シラン)、70sccm(アンモニア)
           3000sccm(水素)、2000sccm(窒素)
・成膜圧力     :300Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例4の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例4の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例4のゲート絶縁層における誘電特性値Kは、0.00224であった。実施例4の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。なお、ラザフォード後方散乱法(Rutherford Backscattering Spectrometry:RBS)を用いた実施例4の窒化珪素膜における珪素含有量は40.1at%であり、窒素含有量は43.5at%であり、酸素含有量は1.9at%であり、炭素は検出限界以下であることが認められた。
 [実施例5]
 第2ゲート絶縁膜22として厚さdが15nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例5のボトムゲート・トップコンタクト型トランジスタを得た。第2ゲート絶縁膜22の形成では、実施例4の成膜条件における成膜時間を変更し、成膜時間以外の条件を同じくして、窒化珪素膜を得た。
 実施例5の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例5の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例5のゲート絶縁層における誘電特性値Kは、0.01346であった。実施例5の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例6]
 第2ゲート絶縁膜22として厚さdが20nmの酸化窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例6のボトムゲート・トップコンタクト型トランジスタを得た。酸化窒化珪素膜は、平行平板プラズマCVD法を用いて、アクリルポリマー膜の上面に形成した。プラズマCVD法による酸化窒化珪素膜の成膜条件を以下に示す。
 <酸化窒化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/アンモニア/水素/一酸化二窒素
・反応ガス流量   :10sccm(シラン)、60sccm(アンモニア)
           3000sccm(水素)、1500sccm(窒素)
・成膜圧力     :300Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例6の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例6の第2ゲート絶縁膜22における比誘電率εは、6.1であり、実施例6のゲート絶縁層における誘電特性値Kは、0.01147であった。実施例6の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例7]
 第2ゲート絶縁膜22として厚さdが5nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例7のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。平行平板のプラズマCVD法による酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、600sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例7の第2ゲート絶縁膜22における水素含有率rは、3.0at%であった。実施例7の第2ゲート絶縁膜22における比誘電率εは、4.2であり、実施例7のゲート絶縁層における誘電特性値Kは、0.00417であった。実施例7の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例8]
 第2ゲート絶縁膜22として厚さdが25nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例8のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。酸化珪素膜の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例8の酸化珪素膜を得た。
 実施例8の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。実施例8の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例8のゲート絶縁層における誘電特性値Kは、0.01861であった。実施例8の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例9]
 第1ゲート絶縁膜21として厚さdが2500nmのアクリルポリマー膜を用いた。第2ゲート絶縁膜22として厚さdが3nmの酸化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例9のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例8の成膜条件における塗布量を変更し、塗布量以外の条件を実施例1と同じくして、実施例9のアクリルポリマー膜を得た。酸化珪素膜の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例9の酸化珪素膜を得た。
 実施例9の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。実施例9の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例9のゲート絶縁層における誘電特性値Kは、0.00089であった。実施例9の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例10]
 第1ゲート絶縁膜21として厚さdが2000nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが4nmの窒化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例4と同じくして、実施例10のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例4の成膜条件における塗布量を変更し、塗布量以外の条件を実施例4と同じくして、実施例10のアクリルポリマー膜を得た。窒化珪素膜の形成では、実施例4の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例4と同じくして、実施例10の窒化珪素膜を得た。
 実施例10の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例10の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例10のゲート絶縁層における誘電特性値Kは、0.00090であった。実施例10の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例11]
 第1ゲート絶縁膜21として厚さdが600nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが7nmの酸化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例11のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例1の成膜条件における塗布量を変更し、塗布量以外の条件を実施例1と同じくして、実施例11のアクリルポリマー膜を得た。酸化珪素膜の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例11の酸化珪素膜を得た。
 実施例11の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。実施例11の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例11のゲート絶縁層における誘電特性値Kは、0.00869であった。実施例11の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例12]
 第1ゲート絶縁膜21として厚さdが400nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが7nmの酸化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例12のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例1の成膜条件における塗布量を変更し、塗布量以外の条件を実施例1と同じくして、実施例12のアクリルポリマー膜を得た。酸化珪素膜の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、実施例12の酸化珪素膜を得た。
 実施例12の第2ゲート絶縁膜22における水素含有率rは、9,7at%であった。実施例12の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例12のゲート絶縁層における誘電特性値Kは、0.01303であった。実施例12の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例13]
 第1ゲート絶縁膜21として厚さdが300nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが4nmの窒化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例4と同じくして、実施例13のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例1の成膜条件における塗布量を変更し、塗布量以外の条件を実施例1と同じくして、実施例13のアクリルポリマー膜を得た。窒化珪素膜の形成では、実施例4の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例4と同じくして、実施例13の窒化珪素膜を得た。
 実施例13の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例13の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例13のゲート絶縁層における誘電特性値Kは、0.00598であった。実施例13の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例14]
 第1ゲート絶縁膜21として厚さdが600nmのアクリルポリマー膜を用い、第2ゲート絶縁膜22として厚さdが4nmの窒化珪素膜を用い、第1ゲート絶縁膜21、および第2ゲート絶縁膜22以外の構成を実施例4と同じくして、実施例14のボトムゲート・トップコンタクト型トランジスタを得た。アクリル膜の形成では、実施例4の成膜条件における塗布量を変更し、塗布量以外の条件を実施例4と同じくして、実施例14のアクリルポリマー膜を得た。窒化珪素膜の形成では、実施例4の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例4と同じくして、実施例14の窒化珪素膜を得た。
 実施例14の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。実施例14の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例14のゲート絶縁層における誘電特性値Kは、0.00298であった。実施例14の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例15]
 第2ゲート絶縁膜22として厚さdが25nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、実施例15のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。平行平板のプラズマCVD法による酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、400sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例13の第2ゲート絶縁膜22における水素含有率rは、12.1at%であった。実施例13の第2ゲート絶縁膜22における比誘電率εは、4.7であり、実施例15のゲート絶縁層における誘電特性値Kは、0.01861であった。実施例15の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [実施例16]
 第2ゲート絶縁膜22として厚さdが25nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例4と同じくして、実施例16のボトムゲート・トップコンタクト型トランジスタを得た。窒化珪素膜は、平行平板プラズマCVD法を用いて、アクリルポリマー膜の上面に形成した。プラズマCVD法による窒化珪素膜の成膜条件を以下に示す。
 <窒化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/アンモニア/水素/窒素
・反応ガス流量   :10sccm(シラン)、70sccm(アンモニア)
           2500sccm(水素)、2000sccm(窒素)
・成膜圧力     :300Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 実施例16の第2ゲート絶縁膜22における水素含有率rは、6.9at%であった。実施例16の第2ゲート絶縁膜22における比誘電率εは、7.8であり、実施例16のゲート絶縁層における誘電特性値Kは、0.01122であった。実施例16の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例1]
 図3が示すように、比較例1の薄膜トランジスタは、図2で説明したボトムゲート・ボトムコンタクト型トランジスタから第2ゲート絶縁膜22を省略した多層構造体である。すなわち、比較例1の薄膜トランジスタは、第1ゲート絶縁膜21の上面にソース電極層14とドレイン電極層15とを備える。また、比較例1の薄膜トランジスタは、ソース電極層14とドレイン電極層15とを接続するように、ソース電極層14の上面、ドレイン電極層15の上面、および第1ゲート絶縁膜21の上面に半導体層13を備える。
 比較例1の薄膜トランジスタの形成には、実施例1の薄膜トランジスタの形成と同じく、可撓性基板11としてポリイミドフィルムを用い、ゲート電極層12として厚さが100nmのMoNb膜を用い、そして、第1ゲート絶縁膜21として厚さが1000nmのアクリルポリマー膜を用いた。MoNb膜の成膜条件、およびアクリルポリマー膜の成膜条件は、実施例1と同じ条件を用いた。
 また、比較例1の薄膜トランジスタの形成では、第1ゲート絶縁膜21の上面にシャドウマスクを配置して、ソース電極層14として厚さが100nmのMoNb膜を形成し、ドレイン電極層15として厚さが100nmのMoNb膜を形成した。MoNb膜の成膜条件は、実施例1と同じ無加熱スパッタ法を用いた。次いで、ソース電極層14とドレイン電極層15とを接続するように、第1ゲート絶縁膜21の上面に半導体層13としてInGaZnO膜を形成した。InGaZnO膜の成膜条件は、実施例1と同じ無加熱スパッタ法を用いた。そして、実施例1と同じく、150℃のアニールを行うことによって、比較例1の薄膜トランジスタを得た。比較例1の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例2]
 第2ゲート絶縁膜22として厚さdが50nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、比較例2のボトムゲート・トップコンタクト型トランジスタを得た。第2ゲート絶縁膜22の形成では、実施例1の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例1と同じくして、比較例2の酸化珪素膜を得た。
 比較例2の第2ゲート絶縁膜22における水素含有率rは、9.7at%であった。比較例2の第2ゲート絶縁膜22における比誘電率εは、4.7であり、比較例2のゲート絶縁層における誘電特性値Kは、0.03723であった。比較例2の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例3]
 第2ゲート絶縁膜22として厚さdが35nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例4と同じくして、比較例3のボトムゲート・トップコンタクト型トランジスタを得た。第2ゲート絶縁膜22の形成では、実施例4の成膜条件における成膜時間を変更し、成膜時間以外の条件を実施例4と同じくして、比較例3の窒化珪素膜を得た。
 比較例3の第2ゲート絶縁膜22における水素含有率rは、14.1at%であった。比較例3の第2ゲート絶縁膜22における比誘電率εは、7.8であり、比較例4のゲート絶縁層における誘電特性値Kは、0.01571であった。比較例4の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例4]
 第2ゲート絶縁膜22として厚さdが5nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、比較例4のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。平行平板のプラズマCVD法による酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、700sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 比較例4の第2ゲート絶縁膜22における水素含有率rは、1.0at%であった。比較例4の第2ゲート絶縁膜22における比誘電率εは、3.9であり、比較例4のゲート絶縁層における誘電特性値Kは、0.00449であった。比較例4の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例5]
 第2ゲート絶縁膜22として厚さが10nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例4と同じくして、比較例5のボトムゲート・トップコンタクト型トランジスタを得た。窒化珪素膜は、平行平板プラズマCVD法を用いて、アクリルポリマー膜の上面に形成した。プラズマCVD法による窒化珪素膜の成膜条件を以下に示す。
 <窒化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/アンモニア/水素/窒素
・反応ガス流量   :10sccm(シラン)、70sccm(アンモニア)
           2000sccm(水素)、2000sccm(窒素)
・成膜圧力     :300Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 比較例5の第2ゲート絶縁膜22における水素含有率rは、1.2at%であった。比較例5の第2ゲート絶縁膜22における比誘電率εは、6.8であり、比較例5のゲート絶縁層における誘電特性値Kは、0.00515であった。比較例5の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例6]
 第2ゲート絶縁膜22として厚さdが25nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、比較例6のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。平行平板のプラズマCVD法による酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、800sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 比較例6の第2ゲート絶縁膜22における水素含有率rは、1.0at%未満であった。比較例6の第2ゲート絶縁膜22における比誘電率εは、3.9であり、比較例6のゲート絶縁層における誘電特性値Kは、0.02244であった。比較例6の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例7]
 第2ゲート絶縁膜22として厚さdが15nmの酸化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例1と同じくして、比較例7のボトムゲート・トップコンタクト型トランジスタを得た。酸化珪素膜の形成では、平行平板のプラズマCVD法を用いて、アクリルポリマー膜の上面に酸化珪素膜を積層した。平行平板のプラズマCVD法による酸化珪素膜の成膜条件を以下に示す。
 <酸化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/一酸化二窒素
・反応ガス流量   :65sccm(シラン)、300sccm(一酸化二窒素)
・成膜圧力     :200Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 比較例7の第2ゲート絶縁膜22における水素含有率rは、16.2at%であった。比較例7の第2ゲート絶縁膜22における比誘電率εは、5.1であり、比較例7のゲート絶縁層における誘電特性値Kは、0.01029であった。比較例7の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [比較例8]
 第2ゲート絶縁膜22として厚さが15nmの窒化珪素膜を用い、第2ゲート絶縁膜22以外の構成を実施例4と同じくして、比較例8のボトムゲート・トップコンタクト型トランジスタを得た。窒化珪素膜は、平行平板プラズマCVD法を用いて、アクリルポリマー膜の上面に形成した。プラズマCVD法による窒化珪素膜の成膜条件を以下に示す。
 <窒化珪素膜の成膜条件>
・基材温度     :200℃
・反応ガス     :シラン/アンモニア/水素/窒素
・反応ガス流量   :10sccm(シラン)、70sccm(アンモニア)
           5000sccm(水素)、2000sccm(窒素)
・成膜圧力     :300Pa
・高周波電力    :500W
・高周波電力周波数 :13.56MHz
 比較例8の第2ゲート絶縁膜22における水素含有率rは、21.7at%であった。比較例8の第2ゲート絶縁膜22における比誘電率εは、8.1であり、比較例8のゲート絶縁層における誘電特性値Kは、0.00648であった。比較例8の薄膜トランジスタにおけるチャンネル長は200μmであり、チャンネル幅は2000μmであった。
 [評価]
 実施例1~16、および比較例1~8の薄膜トランジスタについて、半導体パラメータアナライザ(B1500A:アジレント・テクノロジー株式会社製)を用い、伝達特性を測定した。そして、伝達特性から、移動度、負荷試験前後におけるしきい値電圧の変化量ΔVth、および屈曲試験前後における移動度の減少率を算出した。
 しきい値電圧の測定、および移動度の算出は、まず、ソース電極層14の電圧を0V、ソース電極層14とドレイン電極層15との間の電圧であるソース-ドレイン電圧Vdsを10Vに設定し、ゲート電圧Vgsとドレイン電流Idとの関係である伝達特性を得た。ゲート電圧Vgsは、ソース電極層14とゲート電極層12との間の電圧である。ドレイン電流Idは、ドレイン電極層15に流れる電流である。この際、ゲート電極層12の電圧を-20Vから+20Vまで変化させることによって、ゲート電圧Vgsを変化させた。そして、ドレイン電流Idが1mAであるときのゲート電圧Vgsをしきい値電圧として測定した。
 次いで、ゲート電圧Vgsとドレイン電流Idとの伝達特性を用い、ゲート電圧Vgsの変化に対するドレイン電流Idの変化である相互コンダクタンスGm(A/V)を算出した。そして、線形領域における相互コンダクタンスGmとソース-ドレイン電圧Vdsとの関係式に、第1ゲート絶縁膜21の比誘電率εと厚さd、第2ゲート絶縁膜22の比誘電率εと厚さd、チャンネル長、チャンネル幅、およびソース-ドレイン電圧Vdsを適用して、移動度を算出した。なお、相互コンダクタンスGmとソース-ドレイン電圧Vdsとの関係式は、ソース-ドレイン電圧Vds、ゲート絶縁層の容量、移動度の積に相互コンダクタンスGmが比例すると見なす。相互コンダクタンスGmは、d(Id)/d(Vg)によって表される。
 しきい値電圧の変化量ΔVthの測定に用いた負荷試験(Negative Bias Temperature Stress: NBTS)は、ゲート電極層12の電圧を-20V、ソース-ドレイン電圧Vdsを0V、ストレス温度を60℃、ストレス印加時間を1時間に設定した。すなわち、薄膜トランジスタのソース電極層14とドレイン電極層15とを同電位に設定し、ソース電極層14およびドレイン電極層15よりも低い電位をゲート電極層12に一定時間印加した。そして、負荷試験前のしきい値電圧から負荷試験後のしきい値電圧を減算し、減算値をしきい値電圧の変化量ΔVthとして測定した。
 移動度の減少率測定に用いた屈曲試験は、曲率半径が1mmとなるように可撓性基板11を曲げて戻し、可撓性基板11の曲げを100000回にわたり繰り返した。そして、屈曲試験前の移動度に対する、屈曲試験前の移動度と屈曲試験後の移動度の差分値の割合を、移動度の減少率として算出した。
 図4は、実施例1~16、および比較例1~8について、第2ゲート絶縁膜22の厚さdと水素含有率rとに対する移動度の減少率を示す。図4における白抜き丸印は、第2ゲート絶縁膜22が酸化珪素膜であり、移動度の減少率が20%未満である水準を示す。図4における黒塗り丸印は、第2ゲート絶縁膜22が酸化珪素膜であり、移動度の減少率が20%以上である水準を示す。図4における白抜き四角印は、第2ゲート絶縁膜22が窒化珪素膜であり、移動度の減少率が20%未満である水準を示す。図4における黒塗り四角印は、第2ゲート絶縁膜22が窒化珪素膜であり、移動度の減少率が20%以上である水準を示す。図4における白抜き三角印は、第2ゲート絶縁膜22が酸化窒化珪素膜であり、移動度の減少率が19%以下である水準を示す。
 図5は、実施例1~16、および比較例1~8について、第2ゲート絶縁膜22の厚さdと誘電特性値Kとに対する移動度の減少率を示す。図5における白抜き丸印は、第2ゲート絶縁膜22が酸化珪素膜であり、移動度の減少率が20%未満である水準を示す。図5における黒塗り丸印は、第2ゲート絶縁膜22が酸化珪素膜であり、移動度の減少率が20%以上である水準を示す。図5における白抜き四角印は、第2ゲート絶縁膜22が窒化珪素膜であり、移動度の減少率が20%未満である水準を示す。図5における黒塗り四角印は、第2ゲート絶縁膜22が窒化珪素膜であり、移動度の減少率が20%以上である水準を示す。図5における白抜き三角印は、第2ゲート絶縁膜22が酸化窒化珪素膜であり、移動度の減少率が19%以下である水準を示す。
 図6、図7は、実施例1~16、および比較例1~8について、第1ゲート絶縁膜21の比誘電率εと厚さd、第2ゲート絶縁膜22の比誘電率ε、材料、厚さd、および水素含有率r、誘電特性値K、移動度、しきい値電圧の変化量ΔVth、および移動度の減少率を示す。
 図6が示すように、実施例1~16の移動度は、それぞれ8.0cm/V以上という高い値であった。一方、比較例1,4~8の移動度は、それぞれ5.1cm/V以下という低い値であった。
 実施例1~16のしきい値電圧の変化量ΔVthは、それぞれ-1.9V以上-0.2以下という小さい値であった。一方、比較例1,4~8のしきい値電圧の変化量ΔVthは、それぞれ-10.0V以下という大きい値であった。
 実施例1~16の移動度の減少率は、それぞれ19%以下という低い値であった。一方、比較例1,4,5,8の移動度の減少率は、それぞれ20%以上という高い値であった。
 他方、比較例2,3の薄膜トランジスタは、実施例1~16の移動度と同様に、11.4cm/V以上という高い値を示し、かつしきい値電圧の変化量ΔVthが、-1.1V以上-0.2以下という小さい値であるが、屈曲試験後において割れ、あるいは剥がれが認められた。
 まず、実施例1~16と比較例1との比較から、第2ゲート絶縁膜22が存在することによって、しきい値電圧の変化量ΔVthを抑えられることが認められた。一方で、実施例1~16と比較例4~8との比較から、高い移動度を保ち、かつしきい値電圧の変化量ΔVthを抑制することに、第2ゲート絶縁膜22の水素含有率rが大きく寄与し、適した範囲が存在することが認められた。
 例えば、実施例3,6,15および比較例4,7が示す、しきい値電圧の変化量ΔVthおよび移動度の減少率と水素含有率rとの関係から、酸素を含む無機珪素化合物において、水素含有率rが2at%以上であれば、しきい値電圧の変化量ΔVthを抑えられ、また20%未満のように、移動度の減少率を抑えられることが認められた。また、水素含有率rが15at%以下であれば、しきい値電圧の変化量ΔVthを抑えられ、かつ高い移動度が得られることが認められた。特に、第2ゲート絶縁膜22が酸化珪素膜である場合、水素含有率rが14at%(実施例15と比較例7との中間値)以下であれば、低い変化量ΔVth、高い移動度、およびその低い減少率が得られるという効果の実効性が高まることも認められた。
 例えば、実施例4,5,6,16および比較例5,8が示す、しきい値電圧の変化量ΔVthおよび移動度の減少率と水素含有率rとの関係から、窒素を含む無機珪素化合物においても、水素含有率rが2at%以上であれば、しきい値電圧の変化量ΔVthを抑えられ、また20%未満のように、移動度の減少率を抑えられることが認められた。また、水素含有率rが15at%以下であれば、しきい値電圧の変化量ΔVthを抑えら、かつ高い移動度が得られることが認められた。特に、第2ゲート絶縁膜22が窒化珪素膜である場合、水素含有率rが18at%(実施例4と比較例8との中間値)以下であれば、低い変化量ΔVth、高い移動度、およびその低い減少率が得られる効果の実効性が高まることが認められた。
 次に、実施例1~3,6,8および比較例2が示す厚さdと移動度の減少率との関係から、酸素を含む無機珪素化合物の厚さdが薄いほど、移動度の減少率が低いことが認められた。また実施例4~6および比較例3が示す厚さdと移動度の減少率との関係からも、窒素を含む無機珪素化合物の厚さdが薄いほど、移動度の減少率が低いことが認められた。
 これらにより、各実施例と比較例4~8との比較から、無機珪素化合物の水素含有量が条件1を満たし、かつ各実施例と比較例1~3との比較から、厚さdが条件2を満たすことによって、8.0cm/V以上の高い移動度が得られることが認められた。そして、可撓性基板11の曲げに起因した移動度の低下を抑制可能であることが認められた。なお、こうした可撓性基板11の曲げに対する移動度の耐久性は、誘電特性値Kが式1を満たす構成のなかで、条件1および条件2を満たす水準で得られることが認められた。
 特に、第2ゲート絶縁膜22が酸化珪素膜である場合、実施例2,3と比較例6,7との比較から、酸化珪素膜の水素含有量が条件3を満たし、かつ実施例1,8と比較例1,2との比較から、厚さdが条件4を満たすことによって、移動度の低下抑制効果の実効性を高められることが認められた。すなわち、実施例8と比較例2との厚さdの中間値に基づいて、条件4を満たすことによって、移動度の低下抑制効果について実効性を高められることが認められた。
 特に、第2ゲート絶縁膜22が窒化珪素膜である場合、実施例4,5と比較例5,8との比較から、窒化珪素膜の水素含有量が条件5を満たし、かつ実施例5,10と比較例1,3との比較から、厚さdが条件6を満たすことによって、移動度の低下抑制効果の実行性を高められることが認められた。すなわち、実施例5と比較例3との厚さdの中間値に基づいて、条件6を満たすことによって、移動度の低下抑制効果について実行性を高められることが認められた。
 さらに、実施例2,3,8の第2ゲート絶縁膜22を備える構成であれば、実施例1,7,9よりも高い移動度が得られることが認められた。そのため、酸化珪素膜の水素含有量が6at%以上10at%以下であり、かつ酸化珪素膜の厚さdが5nm以上25nm以下である構成であれば、移動度を高めることが可能ともなる。
 そのうえ、実施例2,3の第2ゲート絶縁膜22を備える構成であれば、実施例1,7~9よりも高い移動度を得られ、かつ8%以下という低い移動度の減少率を得られることが認められた。そのため、酸化珪素膜の水素含有量が6at%以上10at%以下であり、かつ酸化珪素膜の厚さdが5nm以上20nm以下である構成であれば、より高い移動度を屈曲試験後に得られることが可能ともなる。
 なお、実施例9,10と実施例11~14との比較によれば、第1ゲート絶縁膜21の厚さdが300nmであれ、2500nmであれ、低い変化量ΔVth、高い移動度、およびその低い減少率が得られることも認められた。特に、第1ゲート絶縁膜21の厚さdが薄いほど、変化量ΔVthは低く、移動度は高く、そして移動度の減少率が低いという傾向が認められた。そのため、移動度の減少率を低めることを要求される場合、第1ゲート絶縁膜21の厚さdは1000nm以下であることが好ましく、600nm以下であることがより好ましく、400nm以下であることがさらに好ましい。
 上記実施形態によれば、以下に列挙する効果が得られる。
 (1)上記条件1~6を満たす構成であれば、しきい値電圧の変化量を低めること、かつ半導体層13の移動度を高めることが可能になると共に、可撓性基板11の曲げに対する移動度の変化を抑えることが可能となる。
 (2)誘電特性値Kが0.001以上であって0.015よりも小さい場合、上記(1)に準じた効果を高い移動度のもとで得ることが可能となる。
 C…チャンネル領域
 L…チャンネル長
 11…可撓性基板
 11S…支持面
 11S1…第1部分
 11S2…第2部分
 12…ゲート電極層
 13…半導体層
 14…ソース電極層
 15…ドレイン電極層
 21…第1ゲート絶縁膜
 22…第2ゲート絶縁膜

Claims (10)

  1.  支持面を有した可撓性基板と、
     前記支持面の第1部分に位置するゲート電極層と、
     前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、
     前記半導体層の第1端部に接するソース電極層と、
     前記半導体層の第2端部に接するドレイン電極層と、を備え、
     前記ゲート絶縁層は、
     有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、
     無機珪素化合物によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成され、
     前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、2at%以上15at%以下である
     薄膜トランジスタ。
  2.  支持面を有した可撓性基板と、
     前記支持面の第1部分に位置するゲート電極層と、
     前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、
     前記半導体層の第1端部に接するソース電極層と、
     前記半導体層の第2端部に接するドレイン電極層と、を備え、
     前記ゲート絶縁層は、
     有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、
     酸化珪素によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成され、
     前記第2ゲート絶縁膜の厚さが、2nm以上40nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、2at%以上14at%以下である
     薄膜トランジスタ。
  3.  支持面を有した可撓性基板と、
     前記支持面の第1部分に位置するゲート電極層と、
     前記支持面の第2部分と前記ゲート電極層とを覆うゲート絶縁層と、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟む前記半導体層と、
     前記半導体層の第1端部に接するソース電極層と、
     前記半導体層の第2端部に接するドレイン電極層と、を備え、
     前記ゲート絶縁層は、
     有機高分子化合物によって構成され、前記第2部分と前記ゲート電極層とを覆う第1ゲート絶縁膜と、
     窒化珪素によって構成され、前記第1ゲート絶縁膜と前記半導体層とに挟まれた第2ゲート絶縁膜と、から構成され、
     前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、5at%以上18at%以下である
     薄膜トランジスタ。
  4.  前記第2ゲート絶縁膜の厚さが、5nm以上25nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、6at%以上10at%以下である
     請求項2に記載の薄膜トランジスタ。
  5.  前記第1ゲート絶縁膜は、比誘電率εと厚さdとを有し、
     前記第2ゲート絶縁膜は、比誘電率εと厚さdとを有し、
     前記ゲート絶縁層が下記式(1)を満たす
     0.001≦(ε/d)/(ε/d)<0.015  …  式(1)
     請求項1から4のいずれか一項に記載の薄膜トランジスタ。
  6.  前記第1ゲート絶縁膜の比誘電率は、前記第2ゲート絶縁膜の比誘電率よりも低く、
     前記第1ゲート絶縁膜の厚さは、300nm以上2500nm以下である
     請求項1から5のいずれか一項に記載の薄膜トランジスタ。
  7.  前記半導体層は、インジウムを含有する酸化物半導体層である
     請求項1から6のいずれか一項に記載の薄膜トランジスタ。
  8.  可撓性基板の支持面における第1部分にゲート電極層を形成すること、
     前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、
     前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含み、
     前記ゲート絶縁層を形成することは、
     前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて無機珪素化合物によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含み、
     前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、2at%以上15at%以下である
     薄膜トランジスタの製造方法。
  9.  可撓性基板の支持面における第1部分にゲート電極層を形成すること、
     前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、
     前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含み、
     前記ゲート絶縁層を形成することは、
     前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて酸化珪素によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含み、
     前記第2ゲート絶縁膜の厚さが、2nm以上40nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、2at%以上14at%以下である
     薄膜トランジスタの製造方法。
  10.  可撓性基板の支持面における第1部分にゲート電極層を形成すること、
     前記支持面の第2部分と前記ゲート電極層とを覆うようにゲート絶縁層を形成すること、
     前記ゲート電極層と半導体層とによって前記ゲート絶縁層を挟むように前記半導体層を形成すること、および、
     前記半導体層の第1端部に接するソース電極層、および前記半導体層の第2端部に接するドレイン電極層を形成すること、を含み、
     前記ゲート絶縁層を形成することは、
     前記第2部分と前記ゲート電極層とを覆う有機高分子化合物によって構成された第1ゲート絶縁膜を塗布法によって形成すること、および、前記第1ゲート絶縁膜と前記半導体層とに挟まれて窒化珪素によって構成された第2ゲート絶縁膜をプラズマCVD法によって形成すること、を含み、
     前記第2ゲート絶縁膜の厚さが、2nm以上30nm以下であり、
     前記第2ゲート絶縁膜の水素含有量が、5at%以上18at%以下である
     薄膜トランジスタの製造方法。
PCT/JP2022/004765 2021-02-08 2022-02-07 薄膜トランジスタ、および薄膜トランジスタの製造方法 WO2022168983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22749854.0A EP4290586A1 (en) 2021-02-08 2022-02-07 Thin-film transistor and method for manufacturing thin-film transistor
CN202280011292.1A CN116783714A (zh) 2021-02-08 2022-02-07 薄膜晶体管以及薄膜晶体管的制造方法
US18/366,938 US20230387242A1 (en) 2021-02-08 2023-08-08 Thin film transistor and method of manufactruting thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-018151 2021-02-08
JP2021018151A JP6897897B1 (ja) 2021-02-08 2021-02-08 薄膜トランジスタ、および薄膜トランジスタの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/366,938 Continuation US20230387242A1 (en) 2021-02-08 2023-08-08 Thin film transistor and method of manufactruting thin film transistor

Publications (1)

Publication Number Publication Date
WO2022168983A1 true WO2022168983A1 (ja) 2022-08-11

Family

ID=76650004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004765 WO2022168983A1 (ja) 2021-02-08 2022-02-07 薄膜トランジスタ、および薄膜トランジスタの製造方法

Country Status (5)

Country Link
US (1) US20230387242A1 (ja)
EP (1) EP4290586A1 (ja)
JP (2) JP6897897B1 (ja)
CN (1) CN116783714A (ja)
WO (1) WO2022168983A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115610B1 (ja) * 2021-03-15 2022-08-09 凸版印刷株式会社 薄膜トランジスタ、および、薄膜トランジスタの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246342A (ja) * 2008-03-12 2009-10-22 Toppan Printing Co Ltd 電界効果型トランジスタ及びその製造方法並びに画像表示装置
WO2014196107A1 (ja) * 2013-06-04 2014-12-11 パナソニック株式会社 薄膜トランジスタ素子とその製造方法及び表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246342A (ja) * 2008-03-12 2009-10-22 Toppan Printing Co Ltd 電界効果型トランジスタ及びその製造方法並びに画像表示装置
WO2014196107A1 (ja) * 2013-06-04 2014-12-11 パナソニック株式会社 薄膜トランジスタ素子とその製造方法及び表示装置

Also Published As

Publication number Publication date
JP2022121355A (ja) 2022-08-19
JP2022121026A (ja) 2022-08-19
EP4290586A1 (en) 2023-12-13
JP6897897B1 (ja) 2021-07-07
CN116783714A (zh) 2023-09-19
US20230387242A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
JP5137146B2 (ja) 半導体素子及びその製造方法
JP5213422B2 (ja) 絶縁層を有する酸化物半導体素子およびそれを用いた表示装置
KR102418493B1 (ko) 이차원 반도체를 포함하는 박막 트랜지스터 및 이를 포함하는 표시장치
KR102518392B1 (ko) 박막트랜지스터 어레이 기판
JP5496745B2 (ja) 薄膜電界効果型トランジスタおよびその製造方法
JP5647860B2 (ja) 薄膜トランジスタおよびその製造方法
US8785243B2 (en) Method for manufacturing a thin film transistor array panel
US20230387242A1 (en) Thin film transistor and method of manufactruting thin film transistor
KR101942980B1 (ko) 반도체 디바이스 및 그 형성 방법
CN103972297A (zh) 半导体元件结构及其制造方法
JP6260326B2 (ja) 薄膜トランジスタ装置及びその製造方法
JP6550514B2 (ja) ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びディスプレイ用スパッタリングターゲット
WO2022196684A1 (ja) 薄膜トランジスタ、および、薄膜トランジスタの製造方法
JP5548500B2 (ja) 薄膜電界効果型トランジスタの製造方法
KR101694876B1 (ko) 트랜지스터와 그 제조방법 및 트랜지스터를 포함하는 전자소자
JP6756875B1 (ja) ディスプレイ用酸化物半導体薄膜、ディスプレイ用薄膜トランジスタ及びスパッタリングターゲット
WO2023153509A1 (ja) 薄膜トランジスタ、および薄膜トランジスタの製造方法
US20230146193A1 (en) Thin-film transistor, thin-film transistor array, and method of producing thin-film transistor
JP2023120470A (ja) 薄膜トランジスタ、および薄膜トランジスタの製造方法
JP2024072115A (ja) 薄膜トランジスタアレイ
JP2023155745A (ja) 薄膜トランジスタ、および薄膜トランジスタの製造方法
JP2024012995A (ja) 薄膜トランジスタ、および薄膜トランジスタの製造方法
JP2014157907A (ja) 薄膜トランジスタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749854

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280011292.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749854

Country of ref document: EP

Effective date: 20230908