WO2022168735A1 - Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane - Google Patents

Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane Download PDF

Info

Publication number
WO2022168735A1
WO2022168735A1 PCT/JP2022/003177 JP2022003177W WO2022168735A1 WO 2022168735 A1 WO2022168735 A1 WO 2022168735A1 JP 2022003177 W JP2022003177 W JP 2022003177W WO 2022168735 A1 WO2022168735 A1 WO 2022168735A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silicon compound
integer
formula
carbon atoms
Prior art date
Application number
PCT/JP2022/003177
Other languages
French (fr)
Japanese (ja)
Inventor
友大 片村
惇也 中辻
豊 杉田
祐梨 及川
一広 山中
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2022579500A priority Critical patent/JPWO2022168735A1/ja
Priority to KR1020237029113A priority patent/KR20230142534A/en
Priority to CN202280011656.6A priority patent/CN116802186A/en
Publication of WO2022168735A1 publication Critical patent/WO2022168735A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups

Definitions

  • One embodiment of the present invention relates to a silicon compound containing a hexafluoroisopropanol group and a method for producing the same.
  • one embodiment of the present invention relates to a polysiloxane obtained by polymerizing the silicon compound and a method for producing the same.
  • Polysiloxane polymer compounds or simply polysiloxane are used in the field of semiconductors as coating materials and sealing materials, taking advantage of their high heat resistance and transparency. in use. It is also used as a resist layer material due to its high resistance to oxygen plasma.
  • a polysiloxane polymer compound In order to use a polysiloxane polymer compound as a resist, it must be soluble in an alkali such as an alkaline developer.
  • an acidic group may be introduced into the polysiloxane polymer compound.
  • acidic groups include phenol groups, carboxyl groups, fluorocarbinol groups, and the like.
  • polysiloxane polymer compounds containing a phenol group or a carboxyl group may cause deterioration in transparency, coloration, etc., or poor heat resistance when used at high temperatures.
  • a fluorocarbinol group which is an acidic group, such as a hexafluoroisopropanol group ⁇ 2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group [-C(CF 3 ) 2 OH], hereinafter sometimes referred to as an HFIP group ⁇ , are disclosed in Patent Documents 1 and 2.
  • Patent Document 1 discloses a method for producing an organosilicon compound (R 3 Si—CH 2 —CH 2 —CH 2 —C(CF 3 ) 2 OH) having an HFIP group (R has 1 to 3 carbon atoms). alkoxy group).
  • the organosilicon compound is obtained by hydrosilylating a compound having an HFIP group represented by CH 2 ⁇ CH—CH 2 —C(CF 3 ) 2 OH and a trialkoxysilane containing an alkoxy group having 1 to 3 carbon atoms. can get.
  • a fluorocarbinol group is bonded to a main chain consisting only of siloxane via a linear, branched, cyclic or bridged cyclic divalent hydrocarbon group having 1 to 20 carbon atoms.
  • Polymeric compounds are disclosed.
  • the organosilicon compound described in Patent Document 1 contains an ethylene bond ( --CH.sub.2--CH.sub.2--) between the HFIP group and the silicon atom, and the polymer compound described in Patent Document 2 contains the HFIP group and the siloxane main chain.
  • An aliphatic hydrocarbon group is interposed between the silicon atoms of .
  • Patent Documents 3 and 4 disclose a method for producing an HFIP group-containing silicon compound (1) in which an HFIP group and a silicon atom are directly bonded, and an HFIP group-containing polysiloxane polymer obtained by polymerizing (1).
  • the compound is disclosed, and it is shown that the polysiloxane polymer compound exhibits higher heat resistance than the polymer compound described in Patent Document 1. It is also disclosed that the HFIP group-containing polysiloxane polymer compound has both transparency and alkali solubility.
  • the HFIP group-containing impurities containing halogen other than fluorine is used.
  • Silicon-containing compound (1) may be obtained.
  • the present inventors have found that a specific halogenated silane compound is contained as one of the halogen-containing impurities in the method for producing the HFIP group-containing silicon compound (1) described in Patent Documents 3 and 4, It has been found that there is room for improvement in reducing the content of halogen-containing impurities by reducing the content of the halogenated silane compound.
  • a silicon compound containing an HFIP group in which the content of a specific halogenated silane compound is reduced hereinafter also referred to as an HFIP group-containing aromatic alkoxysilane
  • a method for producing the same a silicon compound containing an HFIP group
  • An object of the present invention is to provide a polysiloxane obtained by polymerizing a compound and a method for producing the same.
  • the present inventors diligently studied a new method for removing halogen-containing impurities remaining in the HFIP group-containing alkoxysilane. As a result, it was found that halogen-containing impurities remaining in the HFIP group-containing alkoxysilane can be removed by performing distillation again after removing high-boiling components by distillation.
  • One embodiment of the present invention includes a silicon compound represented by the following formula (1) and a halogenated silane compound represented by the following formula (2), wherein the halogenated silane compound represented by the formula (2) content is more than 0 ppm by mass and 1000 ppm by mass or less.
  • R 1 is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms
  • R 2 is each independently , a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • n is an integer of 1 to 5
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • c is 1 or more It is an integer of 3 or less
  • R 2a is each independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X is a chlorine atom, a bromine atom or an iodine atom
  • n is an integer of
  • the upper limit of the content of the halogenated silane compound may be 100 ppm by mass or less.
  • aa may be 1.
  • dd may be 1.
  • R 2a may be a methyl group or an ethyl group.
  • the halogenated silane compound is represented by formula (2) in which aa is 1, bb is 0, dd is 1 or 2, cc is 1 or 2, and R 2a is a methyl group or an ethyl group. It may be a compound that is
  • the content of the silicon compound (meta form) represented by the formula (1) composed of the group represented by the formula (2A) is Xa mol
  • Ya mol is the content of the silicon compound (para-body) represented by the formula (1) composed of the group represented by the formula (2B)
  • Ya/(Ya+Xa) ⁇ 0.10 may satisfy the relationship of
  • the halide ion concentration may be 100 ppm by mass or less.
  • One embodiment of the present invention distills a mixture containing at least a silicon compound represented by the following formula (1) and a halogenated silane compound represented by the following formula (2), and a first distillation step of recovering a first mixture containing a lower boiling point component than the silicon compound represented by the formula (1); Distilling the first mixture containing the silicon compound represented by the formula (1) and a component with a boiling point lower than that of the silicon compound represented by the formula (1) obtained in the first step, ) and a second distillation step to recover the silicon compound represented by Provided is a method for producing a silicon compound, characterized in that the content of the halogenated silane compound represented by formula (2) is 1000 ppm by mass or less.
  • each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms
  • each R 2 is independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • n is an integer of 1 to 5
  • a is an integer of 1 to 3
  • b is an integer of 0 to 2
  • c is 1 It is an integer greater than or equal to 3 and less than or equal to 3
  • a + b + c 4.
  • each R 1a is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms
  • R 2a is each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • X is a chlorine atom, a bromine atom or an iod
  • One embodiment of the present invention provides a polysiloxane obtained by polymerizing any of the above silicon compounds.
  • the halide ion concentration may be 1000 ppm by mass or less.
  • An embodiment of the present invention provides a method for producing polysiloxane by polymerizing any of the above silicon compounds.
  • a silicon compound containing a HFIP group (HFIP group-containing aromatic alkoxysilane) having a reduced content of a specific halogenated silane compound, a method for producing the same, and a silicon compound containing an HFIP group are polymerized. and a method for producing the same can be provided.
  • a silicon compound (HFIP group-containing aromatic alkoxysilane), a method for producing the same, polysiloxane, and a method for producing the same according to an embodiment of the present invention will be described below.
  • the embodiments of the present invention should not be construed as being limited to the descriptions of the embodiments and examples shown below.
  • the notation "X to Y" in the explanation of the numerical range means X or more and Y or less, unless otherwise specified.
  • alkyl group includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
  • cyclic alkyl group includes not only monocyclic structures but also polycyclic structures. The same applies to a “cycloalkyl group”.
  • HFIP group a hexafluoroisopropanol group represented by —C(CF 3 ) 2 OH is sometimes referred to as “HFIP group”.
  • a silicon compound according to one embodiment of the present invention includes an HFIP group-containing aromatic alkoxysilane and a halogenated silane compound, which will be described below.
  • HFIP group-containing aromatic alkoxysilane (silicon compound) used in the present invention is represented by the following general formula (1) and has a structure in which the HFIP group and silicon atoms are directly bonded to an aromatic ring.
  • each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms.
  • Each R 2 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is an integer of 1-5.
  • a is an integer of 1 or more and 3 or less
  • b is an integer of 0 or more and 2 or less
  • c is an integer of 1 or more and 3 or less
  • a+b+c 4.
  • n is preferably 1 or 2, and particularly preferably at least one group selected from the group consisting of groups represented by the following formulas (2A) to (2D). Moreover, as for a, 1 is preferable.
  • line segments intersecting with the wavy lines represent bonds.
  • R 1 is preferably an alkyl group having 1 to 5 carbon atoms, particularly preferably a methyl group.
  • R 2 is preferably a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 3 to 4 carbon atoms, and all or part of the hydrogen atoms in the alkyl group are substituted with fluorine atoms.
  • R 2 includes methyl group, ethyl group, 1-propyl group, 2-propyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2 , 2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group and the like can be used, and methyl group or ethyl group is particularly preferable.
  • the halogenated silane compound contained in the silicon compound according to the present invention is represented by the following formula (2).
  • the halogenated silane compound represented by the following formula (2) is preferably not included in the silicon compound according to the present invention.
  • Halogens and/or halogen compounds may be contained as raw materials or by-reactants, so it is difficult to reduce the content of halogenated silane compounds in the silicon compound according to the present invention to 0 mass ppm.
  • the silicon compound according to the present invention is characterized in that the content of the halogenated silane compound represented by the following formula (2) is lower than ever before.
  • R 1a is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms
  • R 2a is each independently and , a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • X is a chlorine atom, a bromine atom or an iodine atom
  • n is an integer of 1 to 5
  • aa is an integer of 1 or more and 3 or less
  • bb is an integer of 0 or more and 2 or less
  • cc is an integer of 0 or more and 2 or less.
  • n may be 1 or 2, particularly one or more selected from the group consisting of groups represented by the following formulas (2A) to (2D) good too.
  • aa may be 1.
  • line segments intersecting with the wavy lines represent bonds.
  • dd may be 1.
  • R 1a may be an alkyl group having 1 to 5 carbon atoms, especially a methyl group.
  • R 2a may be a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 3 to 4 carbon atoms, and all or part of the hydrogen atoms in the alkyl group are fluorine atoms. may be replaced with Specifically, R 2a includes a methyl group, ethyl group, 1-propyl group, 2-propyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2 , 2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group, and the like, and particularly methyl group or e
  • the silicon compound according to the present invention mainly contains an HFIP group-containing aromatic alkoxysilane represented by formula (1), and in one embodiment, the content of the halogenated silane compound represented by formula (2) is 0 mass. ppm and not more than 1000 mass ppm. Preferably, the upper limit of the content of the halogenated silane compound represented by formula (2) is 100 mass ppm or less. In the silicon compound according to the present invention, the content of the halogenated silane compound represented by formula (2) is preferably as small as possible, and may be 0 ppm by mass.
  • Halogens and/or halogen compounds may be included as raw materials or by-reactants in the process, so it is difficult to reduce the content of the halogenated silane compound in the silicon compound according to the present invention to 0 mass ppm.
  • the detection limit may be the lower limit.
  • the lower limit may be 10 mass ppm.
  • the content of the halogenated silane compound represented by formula (2) shall be measured using gas chromatography.
  • the silicon compound according to the present invention preferably has a halide ion concentration of 100 ppm by mass or less.
  • the halide ions to be measured are evaluated as halide ions including the halogen contained in the halogenated silane compound represented by formula (2).
  • the halide ions to be measured are chloride, bromide or iodide ions.
  • the halide ion concentration may be 0 mass ppm, but as described above, it is difficult to make the halide ion concentration 0 due to the production process using a halogen compound, From a technical point of view for detecting halide ion concentration, the detection limit may be the lower limit.
  • the lower limit may be 0.1 mass ppm.
  • the halide ion concentration can be determined by an optimum measuring method depending on the sample to be measured. A measurement sample in which the silicon compound of the present invention is solid and a measurement sample containing the silicon compound of the present invention and a water-insoluble organic solvent are measured using ion chromatography.
  • a measurement sample containing the silicon compound or polysiloxane of the present invention and a water-soluble organic solvent is measured using a silver chloride nephelometry.
  • the halide ion concentration of the silicon compound of the present invention can be calculated from the halide ion concentration of a measurement sample containing an organic solvent.
  • the halide ion concentration (ppm) obtained by subtracting the halide ion concentration (ppm) of the organic solvent from the halide ion concentration (ppm) of the measurement sample containing the organic solvent, and the weight (g) of the measurement sample containing the organic solvent , the halide ion amount (g) of the measurement sample excluding the halide ions derived from the organic solvent (hereinafter referred to as halide ion amount (1)) can be obtained.
  • the mass (g) of the silicon compound in the measurement sample containing the organic solvent can be obtained from the concentration (% by mass) of the measurement sample containing the organic solvent and the weight (g) of the measurement sample containing the organic solvent.
  • the amount of halide ions (1) obtained above is considered to be derived from the silicon compound. Concentration (ppm) can be calculated.
  • the content of the silicon compound (meta-body) represented by formula (1) composed of the group represented by formula (2A) is Xa mol, composed of the group represented by formula (2B)
  • the content of the silicon compound (para-body) represented by the formula (1) is Ya mol, Ya/(Ya+Xa) ⁇ 0.10 may satisfy the relationship of
  • the silicon compound according to the embodiment of the present invention is solid at room temperature (eg, 20°C), and by satisfying the above relationship, the fluidity of the solid can be improved.
  • room temperature eg, 20°C
  • the fluidity tends to be improved which is preferable from the viewpoint of handling of solids.
  • the meta isomer and the para isomer have different polymerization reactivity, and by satisfying the above relationship, it is possible to suppress variations in polymerization reactivity.
  • the smaller the value of the above relational expression the more likely it is that variation in polymerization reactivity will be suppressed, which is preferable from the viewpoint of polymer quality and production stability.
  • Method for producing silicon compound is not particularly limited, and the method for producing the HFIP group-containing aromatic alkoxysilane (1) can be used. A typical manufacturing method is described below.
  • the compound represented by general formula (1) is known, and can be synthesized by referring to the methods described in Patent Document 3 and Patent Document 4, for example.
  • the synthesized HFIP group-containing aromatic alkoxysilane (1) contains halogens and/or halogen compounds produced by raw materials and side reactions. That is, since the silicon compound in the state before purification contains the above halogens and/or halogen compounds, the halogenated silane compound represented by the formula (2) is likely to be produced when a conventional purification operation is performed. . Therefore, in one embodiment of the method for producing a silicon compound according to the present invention, the following purification method is used.
  • the HFIP group-containing aromatic alkoxysilane represented by formula (1) is subjected to a distillation step, and the HFIP group-containing aromatic alkoxysilane and the A first step of recovering a mixture containing a boiling point component, and a mixture containing the HFIP group-containing aromatic alkoxysilane obtained in the following first step and a component with a boiling point lower than that of the HFIP group-containing aromatic alkoxysilane. is subjected to a distillation step again to perform a second step of recovering the HFIP group-containing aromatic alkoxysilane, thereby reducing halogen-containing impurities.
  • the operation will be described in detail below.
  • Pre-distillation (first distillation step)
  • the HFIP group-containing aromatic alkoxysilane is subjected to distillation (pre-distillation) as the first distillation step for the purpose of removing high-boiling components.
  • distillation pre-distillation
  • the halogenated silane compound represented by formula (2) is produced as a by-product.
  • a mixture containing the HFIP group-containing aromatic alkoxysilane and a component with a boiling point lower than that of the HFIP group-containing aromatic alkoxysilane is recovered, and high boiling halogen-containing impurities that cause thermal decomposition are removed. It can be removed as boiler residue.
  • the distillation fraction obtained by this operation is subjected to distillation purification again to separate the halogenated silane compound from the HFIP group-containing aromatic alkoxysilane, thereby reducing halogen-containing impurities.
  • pre-distillation there are no particular restrictions on the method of pre-distillation, and in addition to simple distillation, multi-stage distillation that repeats this, batch-type distillation equipped with a rectifying column, continuous distillation, and thin-film distillation for high-boiling compounds. is used.
  • the optimum distillation temperature for distillation varies greatly depending on the type of the HFIP group-containing aromatic alkoxysilane (1) to be purified, but it is preferably in the range of 100°C to 200°C. If the temperature is too high, the yield may decrease due to thermal decomposition. More preferably, the pre-distillation is carried out in the range of 100°C to 180°C.
  • the pressure during pre-distillation is not particularly limited, but it is preferably adjusted according to the boiling point of the HFIP group-containing aromatic alkoxysilane. Specifically, pre-distillation is performed at 0.01 to 101 kPa (atmospheric pressure). preferable.
  • the halogen-containing impurities are reduced by re-distilling the obtained distillation fraction after the pre-distillation.
  • the main halogen-containing impurity contained in the distillation fraction of the pre-distillation is the halogenated silane compound (2) produced as a by-product during the pre-distillation. Therefore, the halogenated silane compound (2) may be removed before the main distillation. Examples of such a removal step include retreatment with alcohol corresponding to OR 2 in formula (1) (so-called HOR 2 ) and washing with water.
  • the optimum distillation temperature in the main distillation varies greatly depending on the type of the HFIP group-containing aromatic alkoxysilane (1) to be purified, which is used in the same manner as in the pre-distillation. C. to 180.degree. C. is more preferable.
  • the pressure during the main distillation is not particularly limited as in the pre-distillation, but it is preferably adjusted according to the boiling point of the HFIP group-containing aromatic alkoxysilane, specifically 0.01 to 101 kPa (atmospheric pressure). Preference is given to carrying out the main distillation.
  • the polysiloxane according to this embodiment is a polysiloxane obtained by polymerizing the silicon compound of the present invention, and has at least one or more siloxane bonds.
  • Methods for producing polysiloxane are known, and can be synthesized with reference to the methods described in Patent Documents 3 and 4, for example.
  • HFIP group-containing polysiloxane polymer compound of the present invention is obtained by adding to the inside and then stirring the reaction solution at room temperature or while heating to allow hydrolysis and polycondensation reactions to proceed.
  • the reaction solvent may be any solvent that dissolves the raw material compound, and the solvent may be a water-soluble or water-insoluble organic solvent, such as an alcohol solvent or an ether solvent.
  • the water-soluble organic solvent in the present invention is an organic solvent having a solubility in water of more than 50 g/L, and the water-insoluble organic solvent has a solubility in water of 50 g/L or less.
  • An organic solvent examples include lower alcohols, lower ethers, lower ketones, and lower esters.
  • methanol (solubility in water: optionally mixed), ethanol (solubility in water: arbitrarily mixed), 1-propanol (water solubility: arbitrarily mixed), isopropanol (water solubility: 1000 g/L), 1-butanol (water solubility: 77 g/L), diethyl ether (solubility in water: 60 g / L), acetonitrile (solubility in water: 1000 g / L), tetrahydrofuran (solubility in water: arbitrarily mixed), N,N-dimethylformamide (solubility in water : arbitrarily mixed), and N-methyl-2-pyrrolidone (solubility in water: arbitrarily mixed).
  • water-insoluble solvents examples include hydrocarbons, higher ethers, and higher ketones. Specifically, toluene (solubility in water: 0.526 g/L), diisopropyl ether (solubility in water: 11 g/L), L), and methyl-t-butyl ether (solubility in water: 42 g/L).
  • the content of the halogenated silane represented by the formula (2) contained in the HFIP group-containing aromatic alkoxysilane represented by the formula (1) is reduced, it is possible to polymerize them. , a polysiloxane with a low halogen content can be obtained.
  • the halide ion concentration in the polysiloxane is 1000 mass ppm or less.
  • chloride ion measurement In this example, chloride ion was measured as the halogen.
  • Silver chloride nephelometry A sample containing the silicon compound or polysiloxane of the present invention and a water-soluble organic solvent was measured by a silver chloride nephelometry using silver nitrate.
  • the silver chloride turbidimetric method can be performed according to JISB8224:2016. Nitric acid with a mass fraction of 60% specified in JIS K 8541 was used, and silver nitrate aqueous solution was 1.2 mol/L. Measurement was performed at a measurement wavelength of 335 nm.
  • the molecular weight of the polymer was measured by GPC using a gel permeation chromatograph (manufactured by Tosoh Corporation, HLC-8320GPC), and the weight average molecular weight (Mw) was calculated by polystyrene conversion.
  • Example 1 200 g of the mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene obtained in Synthesis Example 1 was distilled at a temperature of 125 to 135°C under reduced pressure.
  • the obtained fraction is subjected to precision distillation at a distillation temperature of 143 to 146 ° C. and a reduced pressure of 0.2 kPa using a distillation apparatus with 15 distillation stages to obtain 3-(2-hydroxy-1,1,1, 3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 99.4%), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl) 144 g (yield 72%) of -triethoxysilylbenzene (para-isomer: GC purity 0.5%) was obtained as a solid.
  • Example 1 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta compound ) has almost the same GC purity and yield (Example 1 has a GC purity of 99.4% and a yield of 72%, Comparative Example 1 has a GC purity of 99.2% and a yield of 73%), but the formula (2 ) and chloride ion concentrations in Example 1 were clearly lower than those in Comparative Example 1.
  • Example 1 and Comparative Example 1 both use the raw material obtained in Synthesis Example 1, Example 1, which is within the scope of the present invention, is more effective as a method for reducing chlorine-containing impurities. It became clear.
  • Example 2 For 200 g of the mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-diethoxy(methyl)silylbenzene obtained in Synthesis Example 2, a distillation temperature of 97 to 107 °C, the degree of pressure reduction of 0.5 kPa, and the obtained fraction is again subjected to precision distillation at a distillation temperature of 103 to 106 ° C. and a degree of pressure reduction of 0.5 kPa using a distillation apparatus with 15 distillation stages.
  • a reaction solvent can also be used for the purpose of advancing the polycondensation reaction as described above.
  • 3-(2-Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene metala form: GC purity 99.4%
  • 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene para-body: GC purity 0.5%) mixture
  • chloride ion concentration 2 .5 ppm
  • chloride ion concentration was 1.7 ppm

Abstract

Provided are: a silicon compound (HFIP group-containing aromatic alkoxysilane) containing an HFIP group and containing a reduced amount of a specific halogenated silane compound; a method for producing the same; a polysiloxane obtained by polymerizing the silicon compound which contains the HFIP group; and a method for producing the same. Provided is a silicon compound containing a silicon compound represented by formula (1) and a halogenated silane compound represented by formula (2), wherein the content of the halogenated silane compound represented by formula (2) is greater than 0 ppm by mass and no greater than 1,000 ppm by mass.

Description

ヘキサフルオロイソプロパノール基を含むケイ素化合物、ケイ素化合物の製造方法、ポリシロキサン及びポリシロキサンの製造方法Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane and method for producing polysiloxane
 本発明の一実施形態は、ヘキサフルオロイソプロパノール基を含むケイ素化合物及びその製造方法に関する。又は、本発明の一実施形態は、そのケイ素化合物を重合してなるポリシロキサン及びその製造方法に関する。 One embodiment of the present invention relates to a silicon compound containing a hexafluoroisopropanol group and a method for producing the same. Alternatively, one embodiment of the present invention relates to a polysiloxane obtained by polymerizing the silicon compound and a method for producing the same.
 シロキサン結合を含む高分子化合物(以下、ポリシロキサン高分子化合物、又は単にポリシロキサンと呼ぶことがある)は、その高い耐熱性及び透明性等を活かし、コーティング材料及び封止材として、半導体分野で使用されている。また、高い酸素プラズマ耐性を有することからレジスト層の材料としても用いられている。 Polymer compounds containing siloxane bonds (hereinafter sometimes referred to as polysiloxane polymer compounds or simply polysiloxane) are used in the field of semiconductors as coating materials and sealing materials, taking advantage of their high heat resistance and transparency. in use. It is also used as a resist layer material due to its high resistance to oxygen plasma.
 ポリシロキサン高分子化合物をレジストとして用いるためにはアルカリ現像液等のアルカリに可溶であることが要求される。アルカリ現像液に可溶とする手段としては、ポリシロキサン高分子化合物に酸性基を導入することが挙げられる。このような酸性基としては、フェノール基、カルボキシル基、フルオロカルビノール基等が挙げられる。しかし、フェノール基又はカルボキシル基を含むポリシロキサン高分子化合物は、高温下で使用すると透明性の劣化及び着色等を生じたり、耐熱性に劣ったりする場合があることが知られている。 In order to use a polysiloxane polymer compound as a resist, it must be soluble in an alkali such as an alkaline developer. As a means for making the polysiloxane polymer soluble in an alkaline developer, an acidic group may be introduced into the polysiloxane polymer compound. Such acidic groups include phenol groups, carboxyl groups, fluorocarbinol groups, and the like. However, it is known that polysiloxane polymer compounds containing a phenol group or a carboxyl group may cause deterioration in transparency, coloration, etc., or poor heat resistance when used at high temperatures.
 ポリシロキサン高分子化合物に、酸性基であるフルオロカルビノール基、例えば、ヘキサフルオロイソプロパノール基{2-ヒドロキシ-1,1,1,3,3,3-フルオロイソプロピル基[-C(CFOH]、以下、HFIP基と呼ぶことがある}を導入したポリシロキサン高分子化合物が特許文献1と特許文献2に開示されている。 A fluorocarbinol group, which is an acidic group, such as a hexafluoroisopropanol group {2-hydroxy-1,1,1,3,3,3-fluoroisopropyl group [-C(CF 3 ) 2 OH], hereinafter sometimes referred to as an HFIP group}, are disclosed in Patent Documents 1 and 2.
 特許文献1にはHFIP基を有する有機珪素化合物(RSi-CH-CH-CH-C(CFOH)の製造方法が開示されている(Rは炭素数1から3のアルコキシ基を意味する)。当該有機珪素化合物はCH=CH-CH-C(CFOHで表されるHFIP基を有する化合物と、炭素数1~3のアルコキシ基を含むトリアルコキシシランをヒドロシリル化することによって得られる。 Patent Document 1 discloses a method for producing an organosilicon compound (R 3 Si—CH 2 —CH 2 —CH 2 —C(CF 3 ) 2 OH) having an HFIP group (R has 1 to 3 carbon atoms). alkoxy group). The organosilicon compound is obtained by hydrosilylating a compound having an HFIP group represented by CH 2 ═CH—CH 2 —C(CF 3 ) 2 OH and a trialkoxysilane containing an alkoxy group having 1 to 3 carbon atoms. can get.
 特許文献2には、シロキサンのみからなる主鎖に、炭素数1~20の直鎖状、分岐状、環状もしくは有橋環状の2価の炭化水素基を介して、フルオロカルビノール基が結合した高分子化合物が開示されている。 In Patent Document 2, a fluorocarbinol group is bonded to a main chain consisting only of siloxane via a linear, branched, cyclic or bridged cyclic divalent hydrocarbon group having 1 to 20 carbon atoms. Polymeric compounds are disclosed.
 特許文献1に記載の有機珪素化合物は、HFIP基と珪素原子の間にエチレン結合(-CH-CH-)を含み、特許文献2に記載の高分子化合物は、HFIP基とシロキサン主鎖の珪素原子間に脂肪族炭化水素基を介している。 The organosilicon compound described in Patent Document 1 contains an ethylene bond ( --CH.sub.2--CH.sub.2--) between the HFIP group and the silicon atom, and the polymer compound described in Patent Document 2 contains the HFIP group and the siloxane main chain. An aliphatic hydrocarbon group is interposed between the silicon atoms of .
 また、特許文献3及び特許文献4には、HFIP基と珪素原子が直接結合したHFIP基含有珪素化合物(1)の製造方法及び(1)を重合して得られるHFIP基含有含ポリシロキサン高分子化合物が開示されており、当該ポリシロキサン高分子化合物が、前記特許文献1に記載の高分子化合物に比べて高い耐熱性を示すことが示されている。当該HFIP基含有ポリシロキサン高分子化合物は、透明性とアルカリ可溶性も併せ持つことも、開示されている。
Figure JPOXMLDOC01-appb-C000007
Further, Patent Documents 3 and 4 disclose a method for producing an HFIP group-containing silicon compound (1) in which an HFIP group and a silicon atom are directly bonded, and an HFIP group-containing polysiloxane polymer obtained by polymerizing (1). The compound is disclosed, and it is shown that the polysiloxane polymer compound exhibits higher heat resistance than the polymer compound described in Patent Document 1. It is also disclosed that the HFIP group-containing polysiloxane polymer compound has both transparency and alkali solubility.
Figure JPOXMLDOC01-appb-C000007
特開2004-256503号公報JP-A-2004-256503 特開2002-55456号公報JP-A-2002-55456 特開2014-156461号公報JP 2014-156461 A 国際公報第2019/167770号International Publication No. 2019/167770
 例えば、特許文献3及び特許文献4に記載されたHFIP基含有珪素化合物(1)の製造工程においては、フッ素以外のハロゲンを含む化合物が用いられるため、フッ素以外のハロゲンを含む不純物を含むHFIP基含有珪素化合物(1)が得られる可能性がある。一般に電子材料用途にアルコキシシランを用いるためには、ハロゲン含有不純物の含有量が低いことが要求される場合がある。 For example, in the manufacturing process of the HFIP group-containing silicon compound (1) described in Patent Documents 3 and 4, since a compound containing halogen other than fluorine is used, the HFIP group containing impurities containing halogen other than fluorine is used. Silicon-containing compound (1) may be obtained. In general, in order to use alkoxysilanes for electronic material applications, it may be required that the content of halogen-containing impurities be low.
 本発明者らは、特許文献3及び特許文献4に記載のHFIP基含有珪素化合物(1)の製造方法において、特定のハロゲン化シラン化合物がハロゲン含有不純物の一つとして含有されることを見出し、当該ハロゲン化シラン化合物の含有量を低減することにより、ハロゲン含有不純物の含有量低減に改善の余地があることを見出した。 The present inventors have found that a specific halogenated silane compound is contained as one of the halogen-containing impurities in the method for producing the HFIP group-containing silicon compound (1) described in Patent Documents 3 and 4, It has been found that there is room for improvement in reducing the content of halogen-containing impurities by reducing the content of the halogenated silane compound.
 そこで本開示では、特定のハロゲン化シラン化合物の含有量を低減したHFIP基を含有するケイ素化合物(以下、HFIP基含有芳香族アルコキシシランとも称する。)と、その製造方法、HFIP基を含有するケイ素化合物を重合してなるポリシロキサン、及びその製造方法を提供することを課題とする。 Therefore, in the present disclosure, a silicon compound containing an HFIP group in which the content of a specific halogenated silane compound is reduced (hereinafter also referred to as an HFIP group-containing aromatic alkoxysilane), a method for producing the same, and a silicon compound containing an HFIP group An object of the present invention is to provide a polysiloxane obtained by polymerizing a compound and a method for producing the same.
 本発明者らはHFIP基含有アルコキシシラン中に残留するハロゲン含有不純物を除去するための新しい方法について鋭意検討を行った。その結果、蒸留操作で高沸点成分を除去したのちに再度蒸留操作を行うことで、HFIP基含有アルコキシシラン中に残留するハロゲン含有不純物を除去できることを見出した。 The present inventors diligently studied a new method for removing halogen-containing impurities remaining in the HFIP group-containing alkoxysilane. As a result, it was found that halogen-containing impurities remaining in the HFIP group-containing alkoxysilane can be removed by performing distillation again after removing high-boiling components by distillation.
 本発明の一実施形態は、下記式(1)で表されるケイ素化合物と、下記式(2)で表されるハロゲン化シラン化合物とを含み、式(2)で表されるハロゲン化シラン化合物の含有量が0質量ppmよりも多く、1000質量ppm以下である、ケイ素化合物を提供する。
Figure JPOXMLDOC01-appb-C000008

(式(1)中、Rは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、Rはそれぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、nは1~5の整数であり、aは1以上3以下の整数、bは0以上2以下の整数、cは1以上3以下の整数であり、a+b+c=4である。)
Figure JPOXMLDOC01-appb-C000009

(式(2)中、R1aは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、R2aは、それぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、Xは塩素原子、臭素原子又はヨウ素原子であり、nは1~5の整数であり、aaは1以上3以下の整数、bbは0以上2以下の整数、ccは0以上2以下の整数、ddは1以上3以下の整数であり、aa+bb+cc+dd=4である。)
One embodiment of the present invention includes a silicon compound represented by the following formula (1) and a halogenated silane compound represented by the following formula (2), wherein the halogenated silane compound represented by the formula (2) content is more than 0 ppm by mass and 1000 ppm by mass or less.
Figure JPOXMLDOC01-appb-C000008

(In formula (1), R 1 is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2 is each independently , a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, n is an integer of 1 to 5, a is an integer of 1 to 3, b is an integer of 0 to 2, c is 1 or more It is an integer of 3 or less, and a+b+c=4.)
Figure JPOXMLDOC01-appb-C000009

(In formula (2), R 1a is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2a is each independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, X is a chlorine atom, a bromine atom or an iodine atom, n is an integer of 1 to 5, and aa is an integer of 1 to 3 , bb is an integer of 0 or more and 2 or less, cc is an integer of 0 or more and 2 or less, dd is an integer of 1 or more and 3 or less, and aa+bb+cc+dd=4.)
 ハロゲン化シラン化合物の含有量の上限が100質量ppm以下であってもよい。 The upper limit of the content of the halogenated silane compound may be 100 ppm by mass or less.
 式(1)及び式(2)中の
Figure JPOXMLDOC01-appb-C000010

(波線と交差する線分は結合手を表す。)
で表される基が、
下記式(2A)~(2D)で表される基からなる群から選択される1種以上であってもよい。
Figure JPOXMLDOC01-appb-C000011

(それぞれ、波線と交差する線分は結合手を表す。)
in formula (1) and formula (2)
Figure JPOXMLDOC01-appb-C000010

(A line segment that intersects with a wavy line represents a bond.)
The group represented by
It may be one or more selected from the group consisting of groups represented by the following formulas (2A) to (2D).
Figure JPOXMLDOC01-appb-C000011

(The line segments intersecting the wavy lines represent bonds, respectively.)
 aaが1であってもよい。 aa may be 1.
 ddが1であってもよい。 dd may be 1.
 R2aがメチル基又はエチル基であってもよい。 R 2a may be a methyl group or an ethyl group.
 ハロゲン化シラン化合物が、aaが1であり、bbが0であり、ddが1又は2であり、ccが1又は2であり、R2aがメチル基又はエチル基である式(2)で表される化合物であってもよい。 The halogenated silane compound is represented by formula (2) in which aa is 1, bb is 0, dd is 1 or 2, cc is 1 or 2, and R 2a is a methyl group or an ethyl group. It may be a compound that is
 式(2A)で表される基で構成される式(1)で表されるケイ素化合物(メタ体)の含有量をXaモル、
式(2B)で表される基で構成される式(1)で表されるケイ素化合物(パラ体)の含有量をYaモルとしたときに、
 
Ya/(Ya+Xa)<0.10
 
の関係を満たしてもよい。
The content of the silicon compound (meta form) represented by the formula (1) composed of the group represented by the formula (2A) is Xa mol,
When Ya mol is the content of the silicon compound (para-body) represented by the formula (1) composed of the group represented by the formula (2B),

Ya/(Ya+Xa)<0.10

may satisfy the relationship of
 ハロゲン化物イオン濃度が100質量ppm以下であってもよい。 The halide ion concentration may be 100 ppm by mass or less.
 本発明の一実施形態は、少なくとも下記式(1)で表されるケイ素化合物、及び、下記式(2)で表されるハロゲン化シラン化合物を含む混合物を蒸留して、式(1)で表されるケイ素化合物と、式(1)で表されるケイ素化合物よりも低沸点成分を含む第1の混合物を回収する第1の蒸留工程と、
第1の工程で得られた、式(1)で表されるケイ素化合物と、式(1)で表されるケイ素化合物よりも低沸点成分を含む第1の混合物を蒸留して、式(1)で表されるケイ素化合物を回収する第2の蒸留工程と、を含み、
式(2)で表されるハロゲン化シラン化合物の含有量が1000質量ppm以下である、ことを特徴とする、ケイ素化合物の製造方法を提供する。
Figure JPOXMLDOC01-appb-C000012

(前記式(1)中、Rは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、Rはそれぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、nは1~5の整数であり、aは1以上3以下の整数、bは0以上2以下の整数、cは1以上3以下の整数であり、a+b+c=4である。)
Figure JPOXMLDOC01-appb-C000013

(前記式(2)中、R1aは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、R2aは、それぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、Xは塩素原子、臭素原子又はヨウ素原子であり、nは1~5の整数であり、aaは1以上3以下の整数、bbは0以上2以下の整数、ccは0以上2以下の整数、ddは1以上3以下の整数であり、aa+bb+cc+dd=4である。)
One embodiment of the present invention distills a mixture containing at least a silicon compound represented by the following formula (1) and a halogenated silane compound represented by the following formula (2), and a first distillation step of recovering a first mixture containing a lower boiling point component than the silicon compound represented by the formula (1);
Distilling the first mixture containing the silicon compound represented by the formula (1) and a component with a boiling point lower than that of the silicon compound represented by the formula (1) obtained in the first step, ) and a second distillation step to recover the silicon compound represented by
Provided is a method for producing a silicon compound, characterized in that the content of the halogenated silane compound represented by formula (2) is 1000 ppm by mass or less.
Figure JPOXMLDOC01-appb-C000012

(In the above formula (1), each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and each R 2 is independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, n is an integer of 1 to 5, a is an integer of 1 to 3, b is an integer of 0 to 2, c is 1 It is an integer greater than or equal to 3 and less than or equal to 3, and a + b + c = 4.)
Figure JPOXMLDOC01-appb-C000013

(In the above formula (2), each R 1a is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2a is each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, X is a chlorine atom, a bromine atom or an iodine atom, n is an integer of 1 to 5, aa is 1 to 3 an integer, bb is an integer of 0 or more and 2 or less, cc is an integer of 0 or more and 2 or less, dd is an integer of 1 or more and 3 or less, and aa+bb+cc+dd=4.)
 本発明の一実施形態は、上記の何れかのケイ素化合物を重合してなるポリシロキサンを提供する。 One embodiment of the present invention provides a polysiloxane obtained by polymerizing any of the above silicon compounds.
 ハロゲン化物イオン濃度が1000質量ppm以下であってもよい。 The halide ion concentration may be 1000 ppm by mass or less.
 本発明の一実施形態は、上記の何れかのケイ素化合物を重合する、ポリシロキサンの製造方法を提供する。 An embodiment of the present invention provides a method for producing polysiloxane by polymerizing any of the above silicon compounds.
 本発明によれば、特定のハロゲン化シラン化合物の含有量を低減したHFIP基を含有するケイ素化合物(HFIP基含有芳香族アルコキシシラン)と、その製造方法、HFIP基を含有するケイ素化合物を重合してなるポリシロキサン、及びその製造方法を提供することができる。 According to the present invention, a silicon compound containing a HFIP group (HFIP group-containing aromatic alkoxysilane) having a reduced content of a specific halogenated silane compound, a method for producing the same, and a silicon compound containing an HFIP group are polymerized. and a method for producing the same can be provided.
 以下、本発明の実施形態に係るケイ素化合物(HFIP基含有芳香族アルコキシシラン)、その製造方法、ポリシロキサン及びその製造方法について説明する。ただし、本発明の実施形態は、以下に示す実施形態及び実施例の記載内容に限定して解釈されるものではない。なお本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表すものとする。 A silicon compound (HFIP group-containing aromatic alkoxysilane), a method for producing the same, polysiloxane, and a method for producing the same according to an embodiment of the present invention will be described below. However, the embodiments of the present invention should not be construed as being limited to the descriptions of the embodiments and examples shown below. In this specification, the notation "X to Y" in the explanation of the numerical range means X or more and Y or less, unless otherwise specified.
 本明細書における基(原子団)の表記において、置換か無置換かを記していない表記は、置換基を有しないものと置換基を有するものの両方を包含するものである。例えば「アルキル基」とは、置換基を有しないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。 In the notation of a group (atomic group) in this specification, a notation that does not indicate whether it is substituted or unsubstituted includes both those having no substituents and those having substituents. For example, the term “alkyl group” includes not only alkyl groups without substituents (unsubstituted alkyl groups) but also alkyl groups with substituents (substituted alkyl groups).
 本明細書において、「環状のアルキル基」は、単環構造だけでなく多環構造も含む。「シクロアルキル基」も同様である。 As used herein, the "cyclic alkyl group" includes not only monocyclic structures but also polycyclic structures. The same applies to a "cycloalkyl group".
 本明細書中、-C(CFOHで表されるヘキサフルオロイソプロパノール基を、「HFIP基」と表記することがある。 In this specification, a hexafluoroisopropanol group represented by —C(CF 3 ) 2 OH is sometimes referred to as “HFIP group”.
 本発明の一実施形態に係るケイ素化合物は、以下で説明するHFIP基含有芳香族アルコキシシランと、ハロゲン化シラン化合物を含む。 A silicon compound according to one embodiment of the present invention includes an HFIP group-containing aromatic alkoxysilane and a halogenated silane compound, which will be described below.
<HFIP基含有芳香族アルコキシシラン>
 本発明に使用されるHFIP基含有芳香族アルコキシシラン(ケイ素化合物)は下記一般式(1)で表され、HFIP基及びケイ素原子が芳香環に直接結合した構造を有する。
Figure JPOXMLDOC01-appb-C000014
<HFIP Group-Containing Aromatic Alkoxysilane>
The HFIP group-containing aromatic alkoxysilane (silicon compound) used in the present invention is represented by the following general formula (1) and has a structure in which the HFIP group and silicon atoms are directly bonded to an aromatic ring.
Figure JPOXMLDOC01-appb-C000014
 式(1)中、Rは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基である。Rはそれぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、nは1~5の整数である。aは1以上3以下の整数であり、bは0以上2以下の整数であり、cは1以上3以下の整数であり、a+b+c=4である。 In formula (1), each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms. Each R 2 is independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and n is an integer of 1-5. a is an integer of 1 or more and 3 or less, b is an integer of 0 or more and 2 or less, c is an integer of 1 or more and 3 or less, and a+b+c=4.
 これらのうち、式(1)で表されるHFIP基含有芳香族アルコキシシラン中の
Figure JPOXMLDOC01-appb-C000015

で表される基について、nは1又は2が好ましく、特に次の式(2A)~式(2D)で表される基からなる群から選択される1種以上である基が好ましい。また、aは、1が好ましい。なお、上記式及び式(2A)~式(2D)において、波線と交差する線分は結合手を表す。
Figure JPOXMLDOC01-appb-C000016
Among these, in the HFIP group-containing aromatic alkoxysilane represented by formula (1)
Figure JPOXMLDOC01-appb-C000015

In the group represented by, n is preferably 1 or 2, and particularly preferably at least one group selected from the group consisting of groups represented by the following formulas (2A) to (2D). Moreover, as for a, 1 is preferable. In the above formulas and formulas (2A) to (2D), line segments intersecting with the wavy lines represent bonds.
Figure JPOXMLDOC01-appb-C000016
 Rとしては、炭素数1~5のアルキル基が好ましく、特にメチル基が好ましい。 R 1 is preferably an alkyl group having 1 to 5 carbon atoms, particularly preferably a methyl group.
 Rとしては炭素数1~4の直鎖状のアルキル基、又は、炭素数3~4の分岐状のアルキル基が好ましく、アルキル基中の水素原子の全て又は一部がフッ素原子と置換されていてもよい。具体的には、Rとしては、メチル基、エチル基、1-プロピル基、2-プロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基などを使用することができ、特にメチル基又はエチル基が好ましい。 R 2 is preferably a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 3 to 4 carbon atoms, and all or part of the hydrogen atoms in the alkyl group are substituted with fluorine atoms. may be Specifically, R 2 includes methyl group, ethyl group, 1-propyl group, 2-propyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2 , 2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group and the like can be used, and methyl group or ethyl group is particularly preferable.
<ハロゲン化シラン化合物>
 本発明に係るケイ素化合物に含まれるハロゲン化シラン化合物は、下記式(2)で表される。後述するように、下記式(2)で表されるハロゲン化シラン化合物は、本発明に係るケイ素化合物に含まれないことが好ましいが、HFIP基含有芳香族アルコキシシラン(1)の製造工程上、原料として、あるいは副反応物として、ハロゲン及び/又はハロゲン化合物が含まれうるため、本発明に係るケイ素化合物中のハロゲン化シラン化合物の含有量を0質量ppmにするのは難しい。本発明に係るケイ素化合物においては、下記式(2)で表されるハロゲン化シラン化合物の含有量が従来になく低減されたことを特徴とする。
Figure JPOXMLDOC01-appb-C000017
<Halogenated silane compound>
The halogenated silane compound contained in the silicon compound according to the present invention is represented by the following formula (2). As will be described later, the halogenated silane compound represented by the following formula (2) is preferably not included in the silicon compound according to the present invention. Halogens and/or halogen compounds may be contained as raw materials or by-reactants, so it is difficult to reduce the content of halogenated silane compounds in the silicon compound according to the present invention to 0 mass ppm. The silicon compound according to the present invention is characterized in that the content of the halogenated silane compound represented by the following formula (2) is lower than ever before.
Figure JPOXMLDOC01-appb-C000017
 式(2)中、R1aは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、R2aは、それぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基である。Xは塩素原子、臭素原子又はヨウ素原子であり、nは1~5の整数であり、aaは1以上3以下の整数、bbは0以上2以下の整数、ccは0以上2以下の整数であり、ddは1以上3以下の整数であり、aa+bb+cc+dd=4である。 In formula (2), R 1a is each independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2a is each independently and , a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. X is a chlorine atom, a bromine atom or an iodine atom, n is an integer of 1 to 5, aa is an integer of 1 or more and 3 or less, bb is an integer of 0 or more and 2 or less, and cc is an integer of 0 or more and 2 or less. and dd is an integer of 1 or more and 3 or less, and aa+bb+cc+dd=4.
 これらのうち、式(2)で表されるハロゲン化シラン化合物中の
Figure JPOXMLDOC01-appb-C000018

で表される基について、nが1又は2のものであってもよく、特に次の式(2A)~式(2D)で表される基からなる群から選択される1種以上であってもよい。また、aaは、1であってもよい。なお、上記式及び式(2A)~式(2D)において、波線と交差する線分は結合手を表す。
Figure JPOXMLDOC01-appb-C000019
Among these, in the halogenated silane compound represented by formula (2)
Figure JPOXMLDOC01-appb-C000018

For the group represented by n may be 1 or 2, particularly one or more selected from the group consisting of groups represented by the following formulas (2A) to (2D) good too. Also, aa may be 1. In the above formulas and formulas (2A) to (2D), line segments intersecting with the wavy lines represent bonds.
Figure JPOXMLDOC01-appb-C000019
 一実施形態において、ddは1であってもよい。 In one embodiment, dd may be 1.
 R1aは、炭素数1~5のアルキル基であってもよく、特にメチル基であってもよい。 R 1a may be an alkyl group having 1 to 5 carbon atoms, especially a methyl group.
 R2aとしては炭素数1~4の直鎖状のアルキル基、又は、炭素数3~4の分岐状のアルキル基であってもよく、アルキル基中の水素原子の全て又は一部がフッ素原子と置換されていてもよい。具体的には、R2aとしては、メチル基、エチル基、1-プロピル基、2-プロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-フルオロエチル基、2,2,2-トリフルオロエチル基、3-フルオロプロピル基、3,3-ジフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基などを例示することができ、特にメチル基又はエチル基であってもよい。 R 2a may be a linear alkyl group having 1 to 4 carbon atoms or a branched alkyl group having 3 to 4 carbon atoms, and all or part of the hydrogen atoms in the alkyl group are fluorine atoms. may be replaced with Specifically, R 2a includes a methyl group, ethyl group, 1-propyl group, 2-propyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, 2-fluoroethyl group, 2,2,2-trifluoroethyl group, 3-fluoropropyl group, 3,3-difluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2 , 2,3,3,3-pentafluoropropyl group, 1,1,1,3,3,3-hexafluoroisopropyl group, and the like, and particularly methyl group or ethyl group.
 本発明に係るケイ素化合物は、式(1)で表されるHFIP基含有芳香族アルコキシシランを主として含み、一実施形態において、式(2)で表されるハロゲン化シラン化合物の含有量が0質量ppmよりも多く、1000質量ppm以下である。好ましくは、式(2)で表されるハロゲン化シラン化合物の含有量の上限が100質量ppm以下である。本発明に係るケイ素化合物において、式(2)で表されるハロゲン化シラン化合物の含有量は少ないほど好ましく、0質量ppmであってもよいが、HFIP基含有芳香族アルコキシシラン(1)の製造工程上、原料として、あるいは副反応物として、ハロゲン及び/又はハロゲン化合物が含まれうるため、本発明に係るケイ素化合物中のハロゲン化シラン化合物の含有量を0質量ppmにするのは難しい。また、ハロゲン化シラン化合物を検出するための技術的な観点から、検出限界を下限としてもよい。例えば、10質量ppmを下限としてもよい。本明細書において、式(2)で表されるハロゲン化シラン化合物の含有量は、ガスクロマトグラフィーを用いて測定するものとする。 The silicon compound according to the present invention mainly contains an HFIP group-containing aromatic alkoxysilane represented by formula (1), and in one embodiment, the content of the halogenated silane compound represented by formula (2) is 0 mass. ppm and not more than 1000 mass ppm. Preferably, the upper limit of the content of the halogenated silane compound represented by formula (2) is 100 mass ppm or less. In the silicon compound according to the present invention, the content of the halogenated silane compound represented by formula (2) is preferably as small as possible, and may be 0 ppm by mass. Halogens and/or halogen compounds may be included as raw materials or by-reactants in the process, so it is difficult to reduce the content of the halogenated silane compound in the silicon compound according to the present invention to 0 mass ppm. Moreover, from a technical point of view for detecting a halogenated silane compound, the detection limit may be the lower limit. For example, the lower limit may be 10 mass ppm. In this specification, the content of the halogenated silane compound represented by formula (2) shall be measured using gas chromatography.
 一実施形態において、本発明に係るケイ素化合物は、ハロゲン化物イオン濃度が100質量ppm以下であることが好ましい。本明細書において、測定されるハロゲン化物イオンは、式(2)で表されるハロゲン化シラン化合物に含まれるハロゲンも含めたハロゲン化物イオンとして評価される。測定されるハロゲン化物イオンは、塩化物イオン、臭化物イオン又はヨウ化物イオンである。 In one embodiment, the silicon compound according to the present invention preferably has a halide ion concentration of 100 ppm by mass or less. In this specification, the halide ions to be measured are evaluated as halide ions including the halogen contained in the halogenated silane compound represented by formula (2). The halide ions to be measured are chloride, bromide or iodide ions.
 本発明に係るケイ素化合物において、ハロゲン化物イオン濃度は0質量ppmであってもよいが、上述したように、ハロゲン化合物を用いる製造工程上、ハロゲン化物イオン濃度を0にすることは難しく、また、ハロゲン化物イオン濃度を検出するための技術的な観点から、検出限界を下限としてもよい。例えば、0.1質量ppmを下限としてもよい。本明細書において、ハロゲン化物イオン濃度は、測定する試料により最適な測定方法を選ぶことができる。本発明のケイ素化合物が固体状である測定試料及び本発明のケイ素化合物と非水溶性の有機溶媒を含む測定試料はイオンクロマトグラフィーを用いて測定するものとする。または、本発明のケイ素化合物又はポリシロキサンと水溶性の有機溶媒を含む測定試料、例えば、後述するポリシロキサンの製造方法において用いる反応溶媒を含む測定試料は、塩化銀比濁法を用いて測定するものとする。 In the silicon compound according to the present invention, the halide ion concentration may be 0 mass ppm, but as described above, it is difficult to make the halide ion concentration 0 due to the production process using a halogen compound, From a technical point of view for detecting halide ion concentration, the detection limit may be the lower limit. For example, the lower limit may be 0.1 mass ppm. In the present specification, the halide ion concentration can be determined by an optimum measuring method depending on the sample to be measured. A measurement sample in which the silicon compound of the present invention is solid and a measurement sample containing the silicon compound of the present invention and a water-insoluble organic solvent are measured using ion chromatography. Alternatively, a measurement sample containing the silicon compound or polysiloxane of the present invention and a water-soluble organic solvent, for example, a measurement sample containing a reaction solvent used in the method for producing polysiloxane described later, is measured using a silver chloride nephelometry. shall be
 一実施形態において、ケイ素化合物を含む溶液においてハロゲン化物イオン濃度を測定する場合には、有機溶媒を含む測定試料のハロゲン化物イオン濃度から、本発明のケイ素化合物のハロゲン化物イオン濃度を計算することができる。例えば、有機溶媒を含む測定試料のハロゲン化物イオン濃度(ppm)から有機溶媒のハロゲン化物イオン濃度(ppm)を減じたハロゲン化物イオン濃度(ppm)と、有機溶媒を含む測定試料の重量(g)から、有機溶媒由来のハロゲン化物イオンを除いた上記測定試料のハロゲン化物イオン量(g)(以下、ハロゲン化物イオン量(1)とする)を得ることができる。また、有機溶媒を含む測定試料の濃度(質量%)と有機溶媒を含む測定試料の重量(g)から有機溶媒を含む測定試料中のケイ素化合物の質量(g)を得ることができる。上記で得られた、ハロゲン化物イオン量(1)はケイ素化合物に由来すると考えられるため、ハロゲン化物イオン量(1)と測定試料中のケイ素化合物の質量(g)から、ケイ素化合物のハロゲン化物イオン濃度(ppm)を計算することができる。 In one embodiment, when measuring the halide ion concentration in a solution containing a silicon compound, the halide ion concentration of the silicon compound of the present invention can be calculated from the halide ion concentration of a measurement sample containing an organic solvent. can. For example, the halide ion concentration (ppm) obtained by subtracting the halide ion concentration (ppm) of the organic solvent from the halide ion concentration (ppm) of the measurement sample containing the organic solvent, and the weight (g) of the measurement sample containing the organic solvent , the halide ion amount (g) of the measurement sample excluding the halide ions derived from the organic solvent (hereinafter referred to as halide ion amount (1)) can be obtained. Also, the mass (g) of the silicon compound in the measurement sample containing the organic solvent can be obtained from the concentration (% by mass) of the measurement sample containing the organic solvent and the weight (g) of the measurement sample containing the organic solvent. The amount of halide ions (1) obtained above is considered to be derived from the silicon compound. Concentration (ppm) can be calculated.
 一実施形態において、式(2A)で表される基で構成される式(1)で表されるケイ素化合物(メタ体)の含有量をXaモル、式(2B)で表される基で構成される式(1)で表されるケイ素化合物(パラ体)の含有量をYaモルとしたときに、
 
Ya/(Ya+Xa)<0.10
 
の関係を満たしてもよい。
In one embodiment, the content of the silicon compound (meta-body) represented by formula (1) composed of the group represented by formula (2A) is Xa mol, composed of the group represented by formula (2B) When the content of the silicon compound (para-body) represented by the formula (1) is Ya mol,

Ya/(Ya+Xa)<0.10

may satisfy the relationship of
 本発明の実施形態に係るケイ素化合物は、室温(例えば20℃)において固体であり、上記の関係を満たすことにより、当該固体の流動性を向上させることができる。特に上記関係式の値が小さいほど流動性が向上される傾向があり、固体の取り扱い性の観点から好ましい。 The silicon compound according to the embodiment of the present invention is solid at room temperature (eg, 20°C), and by satisfying the above relationship, the fluidity of the solid can be improved. In particular, the smaller the value of the above relational expression, the more the fluidity tends to be improved, which is preferable from the viewpoint of handling of solids.
 メタ体とパラ体は、重合反応性が異なることが知られており、上記の関係を満たすことで、重合反応性のばらつきを抑制することができる。特に上記関係式の値が小さいほど重合反応性のばらつきが抑制される傾向があり、ポリマーの品質や製造の安定性の観点から好ましい。 It is known that the meta isomer and the para isomer have different polymerization reactivity, and by satisfying the above relationship, it is possible to suppress variations in polymerization reactivity. In particular, the smaller the value of the above relational expression, the more likely it is that variation in polymerization reactivity will be suppressed, which is preferable from the viewpoint of polymer quality and production stability.
[ケイ素化合物の製造方法]
 本発明に係るケイ素化合物の製造方法は、HFIP基含有芳香族アルコキシシラン(1)の製造方法を用いることができ、特には限定されない。典型的な製造方法を以下に説明する。
[Method for producing silicon compound]
The method for producing the silicon compound according to the present invention is not particularly limited, and the method for producing the HFIP group-containing aromatic alkoxysilane (1) can be used. A typical manufacturing method is described below.
 一般式(1)により表される化合物は公知であり、例えば特許文献3や特許文献4に記載の方法を参考にして合成することができる。 The compound represented by general formula (1) is known, and can be synthesized by referring to the methods described in Patent Document 3 and Patent Document 4, for example.
[精製方法]
 合成したHFIP基含有芳香族アルコキシシラン(1)には、原料や副反応で生じたハロゲン及び/又はハロゲン化合物が含まれる。すなわち、精製前の状態のケイ素化合物には上記のようなハロゲン及び/又はハロゲン化合物が含まれるため、従来の精製操作を行うと、式(2)で表されるハロゲン化シラン化合物が生成し易い。このため、本発明に係るケイ素化合物の製造方法においては、一実施形態において、以下の精製方法を用いる。
[Purification method]
The synthesized HFIP group-containing aromatic alkoxysilane (1) contains halogens and/or halogen compounds produced by raw materials and side reactions. That is, since the silicon compound in the state before purification contains the above halogens and/or halogen compounds, the halogenated silane compound represented by the formula (2) is likely to be produced when a conventional purification operation is performed. . Therefore, in one embodiment of the method for producing a silicon compound according to the present invention, the following purification method is used.
 本発明における精製方法は式(1)で表されるHFIP基含有芳香族アルコキシシランを蒸留工程に付して、当該HFIP基含有芳香族アルコキシシランと、当該HFIP基含有芳香族アルコキシシランよりも低沸点成分を含む混合物を回収する第1の工程と、続く第1の工程で得られた、当該HFIP基含有芳香族アルコキシシランと、当該HFIP基含有芳香族アルコキシシランよりも低沸点成分を含む混合物を再度蒸留工程に付して、当該HFIP基含有芳香族アルコキシシランを回収する第2の工程を行うことにより、ハロゲン含有不純物を低減することを特徴とする。以下、操作について詳細に説明していく。 In the purification method of the present invention, the HFIP group-containing aromatic alkoxysilane represented by formula (1) is subjected to a distillation step, and the HFIP group-containing aromatic alkoxysilane and the A first step of recovering a mixture containing a boiling point component, and a mixture containing the HFIP group-containing aromatic alkoxysilane obtained in the following first step and a component with a boiling point lower than that of the HFIP group-containing aromatic alkoxysilane. is subjected to a distillation step again to perform a second step of recovering the HFIP group-containing aromatic alkoxysilane, thereby reducing halogen-containing impurities. The operation will be described in detail below.
[前蒸留(第1の蒸留工程)]
 本発明では、第1の蒸留工程としてHFIP基含有芳香族アルコキシシランに対して高沸点成分を除去する目的で蒸留(前蒸留)を行う。前蒸留を実施せずに直接精密蒸留(本蒸留)を実施した場合(従来の精製操作の場合)、式(2)で表されるハロゲン化シラン化合物が副生成物として生じる。これは、HFIP基含有芳香族アルコキシシラン中に残留する高沸点のハロゲン含有不純物が蒸留時の熱によって分解し、その際に発生したハロゲン化水素がアルコキシ基(Si―OR)と交換反応を起こして生成したと推察される。上記の熱分解反応は分解速度が遅いものの、蒸留中継続して起こり続けるため、HFIP基含有芳香族アルコキシシランからハロゲン含有不純物であるハロゲン化シラン化合物を完全に分離することは困難である。
[Pre-distillation (first distillation step)]
In the present invention, the HFIP group-containing aromatic alkoxysilane is subjected to distillation (pre-distillation) as the first distillation step for the purpose of removing high-boiling components. When direct precision distillation (main distillation) is performed without pre-distillation (in the case of conventional purification operations), the halogenated silane compound represented by formula (2) is produced as a by-product. This is because the high-boiling halogen-containing impurities remaining in the HFIP group-containing aromatic alkoxysilane are decomposed by the heat during distillation, and the hydrogen halide generated at that time undergoes an exchange reaction with the alkoxy group (Si—OR 2 ). It is presumed that it was generated by waking up. Although the decomposition rate of the above thermal decomposition reaction is slow, it continues to occur during the distillation, making it difficult to completely separate the halogenated silane compound, which is a halogen-containing impurity, from the HFIP group-containing aromatic alkoxysilane.
 一方、前蒸留を行うことで、当該HFIP基含有芳香族アルコキシシランと、当該HFIP基含有芳香族アルコキシシランよりも低沸点成分を含む混合物を回収し、熱分解を起こす高沸点のハロゲン含有不純物を釜残として取り除くことができる。この操作で得られた蒸留留分に対して再度蒸留精製を行い、HFIP基含有芳香族アルコキシシランからハロゲン化シラン化合物の分離を行うことで、ハロゲン含有不純物の低減が可能となる。 On the other hand, by performing pre-distillation, a mixture containing the HFIP group-containing aromatic alkoxysilane and a component with a boiling point lower than that of the HFIP group-containing aromatic alkoxysilane is recovered, and high boiling halogen-containing impurities that cause thermal decomposition are removed. It can be removed as boiler residue. The distillation fraction obtained by this operation is subjected to distillation purification again to separate the halogenated silane compound from the HFIP group-containing aromatic alkoxysilane, thereby reducing halogen-containing impurities.
 前蒸留の方法については特別な制限はなく、単蒸留のほか、これを繰り返した多段の蒸留や精留塔を備えたバッチ式蒸留、連続式蒸留、また高沸点化合物の場合は薄膜式蒸留等が用いられる。蒸留における最適な蒸留温度は、精製対象のHFIP基含有芳香族アルコキシシラン(1)の種類によって大きく異なるが、100℃から200℃の範囲で行うことが好ましい。温度が高すぎると熱分解により収率が低下する恐れがある。より好ましくは100℃から180℃の範囲で前蒸留を行う。前蒸留時の圧力は特に限定されないが、HFIP基含有芳香族アルコキシシランの沸点に合わせて調節することが好ましく、具体的には0.01~101kPa(大気圧)で前蒸留を実施することが好ましい。 There are no particular restrictions on the method of pre-distillation, and in addition to simple distillation, multi-stage distillation that repeats this, batch-type distillation equipped with a rectifying column, continuous distillation, and thin-film distillation for high-boiling compounds. is used. The optimum distillation temperature for distillation varies greatly depending on the type of the HFIP group-containing aromatic alkoxysilane (1) to be purified, but it is preferably in the range of 100°C to 200°C. If the temperature is too high, the yield may decrease due to thermal decomposition. More preferably, the pre-distillation is carried out in the range of 100°C to 180°C. The pressure during pre-distillation is not particularly limited, but it is preferably adjusted according to the boiling point of the HFIP group-containing aromatic alkoxysilane. Specifically, pre-distillation is performed at 0.01 to 101 kPa (atmospheric pressure). preferable.
 本発明では、上記の前蒸留を実施後、得られた蒸留留分を再度蒸留することでハロゲン含有不純物の低減を行う。この際、前蒸留の蒸留留分に含まれる主なハロゲン含有不純物は前蒸留時に副生したハロゲン化シラン化合物(2)である。そのため、本蒸留前にハロゲン化シラン化合物(2)の除去を行ってもよい。このような除去工程としては、例えば、式(1)中のORに相当するアルコール(所謂、HOR)での再処理や水洗などが挙げられる。 In the present invention, the halogen-containing impurities are reduced by re-distilling the obtained distillation fraction after the pre-distillation. At this time, the main halogen-containing impurity contained in the distillation fraction of the pre-distillation is the halogenated silane compound (2) produced as a by-product during the pre-distillation. Therefore, the halogenated silane compound (2) may be removed before the main distillation. Examples of such a removal step include retreatment with alcohol corresponding to OR 2 in formula (1) (so-called HOR 2 ) and washing with water.
[本蒸留(第2の蒸留工程)]
 続いて第2の蒸留工程として、HFIP基含有芳香族アルコキシシラン(1)の回収及びハロゲン化シラン化合物(2)を除去する目的で本蒸留を行う。本蒸留の方法については特別な制限はなく、単蒸留のほか、これを繰り返した多段の蒸留や精留塔を備えたバッチ式蒸留・連続式蒸留、又は高沸点化合物の場合は薄膜式蒸留等が用いられる。ただし、ハロゲン化シラン化合物(2)との分離の観点から、精留塔を備えたバッチ式蒸留・連続式蒸留が好ましい。本蒸留における最適な蒸留温度は、前蒸留と同様に使用する精製対象のHFIP基含有芳香族アルコキシシラン(1)の種類によって大きく異なるが、100℃から200℃の範囲で行うことが好ましく、100℃から180℃の範囲で行うのがより好ましい。本蒸留時の圧力も前蒸留時と同様に、特に限定されないが、HFIP基含有芳香族アルコキシシランの沸点に合わせて調節することが好ましく、具体的には0.01~101kPa(大気圧)で本蒸留を実施することが好ましい。
[Main distillation (second distillation step)]
Subsequently, as a second distillation step, main distillation is performed for the purpose of recovering the HFIP group-containing aromatic alkoxysilane (1) and removing the halogenated silane compound (2). There are no particular restrictions on the method of this distillation, and in addition to simple distillation, multi-stage distillation that repeats this, batch-type distillation/continuous distillation equipped with a rectification column, or thin-film distillation for high-boiling compounds. is used. However, from the viewpoint of separation from the halogenated silane compound (2), batch distillation or continuous distillation equipped with a rectifying column is preferred. The optimum distillation temperature in the main distillation varies greatly depending on the type of the HFIP group-containing aromatic alkoxysilane (1) to be purified, which is used in the same manner as in the pre-distillation. C. to 180.degree. C. is more preferable. The pressure during the main distillation is not particularly limited as in the pre-distillation, but it is preferably adjusted according to the boiling point of the HFIP group-containing aromatic alkoxysilane, specifically 0.01 to 101 kPa (atmospheric pressure). Preference is given to carrying out the main distillation.
[ポリシロキサン]
 本実施形態に係るポリシロキサンは、上記本発明のケイ素化合物を重合してなるポリシロキサンであり、少なくとも1つ以上のシロキサン結合を有するものである。ポリシロキサンの製造方法は公知であり、例えば特許文献3や特許文献4に記載の方法を参考にして合成することができる。
[Polysiloxane]
The polysiloxane according to this embodiment is a polysiloxane obtained by polymerizing the silicon compound of the present invention, and has at least one or more siloxane bonds. Methods for producing polysiloxane are known, and can be synthesized with reference to the methods described in Patent Documents 3 and 4, for example.
 具体的には、上記本発明のケイ素化合物を反応容器内に採取した後、上記本発明のケイ素化合物を加水分解するための水、重縮合反応を進行させるための酸触媒及び反応溶媒を反応器内に加え、次いで反応溶液を室温で、又は加熱しながら撹拌し、加水分解及び重縮合反応を進行させることにより、本発明のHFIP基含有ポリシロキサン高分子化合物が得られる。 Specifically, after collecting the silicon compound of the present invention in a reaction vessel, water for hydrolyzing the silicon compound of the present invention, an acid catalyst for advancing the polycondensation reaction, and a reaction solvent are added to the reactor. The HFIP group-containing polysiloxane polymer compound of the present invention is obtained by adding to the inside and then stirring the reaction solution at room temperature or while heating to allow hydrolysis and polycondensation reactions to proceed.
 上記反応溶媒は、原料化合物が溶解する溶媒であればよく、溶媒は水溶性や非水溶性の有機溶媒であってもよく、例えばアルコール系溶媒やエーテル系溶媒を挙げることができる。本発明における水溶性の有機溶媒とは、水への溶解性が50g/Lより大きい有機溶媒のことであり、非水溶性の有機溶媒とは、水への溶解性が50g/L以下である有機溶媒のことである。水溶性の有機溶媒としては低級アルコール、低級エーテル、低級ケトン、及び低級エステルなどが挙げられ、具体的には、メタノール(水への溶解性:任意に混和)、エタノール(水への溶解性:任意に混和)、1-プロパノール(水への溶解性:任意に混和)、イソプロパノール(水への溶解性:1000g/L)、1-ブタノール(水への溶解性:77g/L)、ジエチルエーテル(水への溶解性:60g/L)、アセトニトリル(水への溶解性:1000g/L)、テトラヒドロフラン(水への溶解性:任意に混和)、N,N-ジメチルホルムアミド(水への溶解性:任意に混和)、及びN-メチル-2-ピロリドン(水への溶解性:任意に混和)などが挙げられる。非水溶性の溶媒としては炭化水素や高級エーテル、高級ケトンなどが挙げられ、具体的にはトルエン(水への溶解性:0.526g/L)、ジイソプロピルエーテル(水への溶解性:11g/L)、及びメチル―t―ブチルエーテル(水への溶解性:42g/L)などが挙げられる。 The reaction solvent may be any solvent that dissolves the raw material compound, and the solvent may be a water-soluble or water-insoluble organic solvent, such as an alcohol solvent or an ether solvent. The water-soluble organic solvent in the present invention is an organic solvent having a solubility in water of more than 50 g/L, and the water-insoluble organic solvent has a solubility in water of 50 g/L or less. An organic solvent. Examples of water-soluble organic solvents include lower alcohols, lower ethers, lower ketones, and lower esters. Specifically, methanol (solubility in water: optionally mixed), ethanol (solubility in water: arbitrarily mixed), 1-propanol (water solubility: arbitrarily mixed), isopropanol (water solubility: 1000 g/L), 1-butanol (water solubility: 77 g/L), diethyl ether (solubility in water: 60 g / L), acetonitrile (solubility in water: 1000 g / L), tetrahydrofuran (solubility in water: arbitrarily mixed), N,N-dimethylformamide (solubility in water : arbitrarily mixed), and N-methyl-2-pyrrolidone (solubility in water: arbitrarily mixed). Examples of water-insoluble solvents include hydrocarbons, higher ethers, and higher ketones. Specifically, toluene (solubility in water: 0.526 g/L), diisopropyl ether (solubility in water: 11 g/L), L), and methyl-t-butyl ether (solubility in water: 42 g/L).
 本発明では、式(1)で表されるHFIP基含有芳香族アルコキシシラン中に含有する、式(2)で表されるハロゲン化シランの含有率が低減されているため、それらを重合することで、ハロゲン含有量の低いポリシロキサンを得ることができる。一実施形態において、ポリシロキサン中のハロゲン化物イオン濃度は1000質量ppm以下である。 In the present invention, since the content of the halogenated silane represented by the formula (2) contained in the HFIP group-containing aromatic alkoxysilane represented by the formula (1) is reduced, it is possible to polymerize them. , a polysiloxane with a low halogen content can be obtained. In one embodiment, the halide ion concentration in the polysiloxane is 1000 mass ppm or less.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 The present invention will be specifically described below with reference to examples, but the present invention is not limited by these examples.
 本実施例における各種分析は、以下に示す方法で行った。 Various analyzes in this example were performed by the methods shown below.
[ガスクロマトグラフ(GC)]
 ケイ素化合物の純度、及び式(2)に該当するクロロシラン化合物の含有量は、島津製作所株式会社製ガスクロマトグラフィー、商品名Shimadzu GC-2010を用い、カラムはキャピラリーカラム DB1(60mm×0.25mmφ×1μm)を用いて測定を行った。
[Gas Chromatograph (GC)]
The purity of the silicon compound and the content of the chlorosilane compound corresponding to the formula (2) were measured using a gas chromatograph manufactured by Shimadzu Corporation under the trade name Shimadzu GC-2010, using a capillary column DB1 (60 mm × 0.25 mmφ × 1 µm ) was used for the measurement.
[塩化物イオン測定]
 本実施例においては、ハロゲンとして塩化物イオンを測定した。
[Chloride ion measurement]
In this example, chloride ion was measured as the halogen.
[イオンクロマトグラフィー]
 本発明のケイ素化合物が固体状である測定試料及び本発明のケイ素化合物と非水溶性の有機溶媒を含む測定試料はイオンクロマトグラフィーを用いて測定した。イオンクロマトグラフィーによる塩化物イオン測定は測定試料にメチル―t―ブチルエーテル及び超純水を加え攪拌した後、水層をサーモフィッシャーサイエンティフィック株式会社製のイオンクロマトグラフ(DIONEX(登録商標)AQUION)に注入し、測定した。カラムにはDionex(登録商標)Ion Pac AS22を用いた。
[Ion chromatography]
A measurement sample in which the silicon compound of the present invention is solid and a measurement sample containing the silicon compound of the present invention and a water-insoluble organic solvent were measured using ion chromatography. Chloride ion measurement by ion chromatography was performed by adding methyl-t-butyl ether and ultrapure water to the measurement sample and stirring, and then the water layer was subjected to ion chromatography (DIONEX (registered trademark) AQUION) manufactured by Thermo Fisher Scientific Co., Ltd. was injected and measured. Dionex (registered trademark) Ion Pac AS22 was used for the column.
[塩化銀比濁法]
 本発明のケイ素化合物又はポリシロキサンと水溶性の有機溶媒を含む試料については、硝酸銀を使用した塩化銀比濁法により測定した。前記塩化銀比濁法はJISB8224:2016に準拠して行うことができる。なお、硝酸はJIS K 8541で規定する質量分率60 %の硝酸を用い、硝酸銀水溶液は1.2mol/Lの硝酸銀水溶液 を用い、測定試料にメタノールを加え均一な試料を調整した後、試料を測定波長335nmで測定を実施した。
[Silver chloride nephelometry]
A sample containing the silicon compound or polysiloxane of the present invention and a water-soluble organic solvent was measured by a silver chloride nephelometry using silver nitrate. The silver chloride turbidimetric method can be performed according to JISB8224:2016. Nitric acid with a mass fraction of 60% specified in JIS K 8541 was used, and silver nitrate aqueous solution was 1.2 mol/L. Measurement was performed at a measurement wavelength of 335 nm.
[分子量測定]
 重合物の分子量はゲル浸透クロマトグラフ(東ソー株式会社製、HLC-8320GPC)を使用してGPCを測定し、ポリスチレン換算により、重量平均分子量(Mw)を算出した。
[Molecular weight measurement]
The molecular weight of the polymer was measured by GPC using a gel permeation chromatograph (manufactured by Tosoh Corporation, HLC-8320GPC), and the weight average molecular weight (Mw) was calculated by polystyrene conversion.
[合成例1]
 1Lの撹拌機付きオートクレーブに、フェニルトリクロロシラン360g(1.70mol)、塩化アルミニウム5.70g(0.0425mol)を加えた。次いで、窒素置換を実施したのち、内温を5~15℃に維持しながら、ヘキサフルオロアセトン271g(1.63mol)を5時間かけて加え、その後12時間攪拌を継続した。反応終了後、温度計、メカニカルスターラー、ジムロート還流管を備え付け、乾燥窒素雰囲気下に置換した容量3Lのガラス反応装置に、反応液を移し、フラスコ内容物を攪拌しながら60℃に加熱した。その後窒素バブリングさせながら、滴下ポンプを用いて無水エタノール376g(8.16mol)を3時間かけて滴下し、塩化水素除去を行いながらアルコキシ化反応を行った。その後、減圧ポンプを用いて過剰量のエタノールを留去した。得られた混合物に対して水洗操作を行うことで、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼンを含む混合物611g(GCarea%:1-3置換体(メタ体)=86.7%、1-4置換体(パラ体)=3.7%、トリエトキシフェニルシラン=5.3%、その他:4.3%)を得た。得られた混合物中、式(2)で表されるクロロシラン化合物である3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロジエトキシシリルベンゼンはGCにて検出されず(すなわち、検出下限の10質量ppm未満)、塩化物イオン濃度は1.4ppmであった。
[Synthesis Example 1]
360 g (1.70 mol) of phenyltrichlorosilane and 5.70 g (0.0425 mol) of aluminum chloride were added to a 1 L stirred autoclave. Then, after nitrogen substitution, 271 g (1.63 mol) of hexafluoroacetone was added over 5 hours while maintaining the internal temperature at 5 to 15° C., and then stirring was continued for 12 hours. After completion of the reaction, the reaction solution was transferred to a 3 L glass reactor equipped with a thermometer, a mechanical stirrer, and a Dimroth reflux tube and replaced with a dry nitrogen atmosphere, and the contents of the flask were heated to 60°C while stirring. Thereafter, 376 g (8.16 mol) of anhydrous ethanol was added dropwise using a dropping pump over 3 hours while nitrogen bubbling was performed, and an alkoxylation reaction was carried out while removing hydrogen chloride. After that, excess ethanol was distilled off using a vacuum pump. By washing the resulting mixture with water, 611 g of a mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (GCarea%: 1-3 substituted (meta) = 86.7%, 1-4 substituted (para) = 3.7%, triethoxyphenylsilane = 5.3%, others: 4.3%) were obtained. . In the resulting mixture, 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-chlorodiethoxysilylbenzene, which is the chlorosilane compound represented by formula (2), was analyzed by GC. The chloride ion concentration was 1.4 ppm.
[実施例1]
 合成例1で得られた3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼンを含む混合物200gに対して蒸留温度125~135℃、減圧度1.2kPaにて単蒸留を行い、190gの3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度88.2%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度3.9%)、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロジエトキシシリルベンゼン(GCにて検出:20質量ppm)からなる留分を得た。得られた留分を蒸留段数15段の蒸留装置を用いて蒸留温度143~146℃、減圧度0.2kPaにて精密蒸留を行うことで、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度99.4%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度0.5%)を固体として144g(収率72%)得た。式(2)で表されるクロロシラン化合物である3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロジエトキシシリルベンゼンはGCにて検出されず(すなわち、検出下限の10質量ppm未満)、塩化物イオン濃度は0.3ppmであった。
[Example 1]
200 g of the mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene obtained in Synthesis Example 1 was distilled at a temperature of 125 to 135°C under reduced pressure. Simple distillation was carried out at a degree of 1.2 kPa, and 190 g of 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 88.2 %), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (para-isomer: GC purity 3.9%), 3-(2-hydroxy- A fraction consisting of 1,1,1,3,3,3-hexafluoroisopropyl)-chlorodiethoxysilylbenzene (detected by GC: 20 mass ppm) was obtained. The obtained fraction is subjected to precision distillation at a distillation temperature of 143 to 146 ° C. and a reduced pressure of 0.2 kPa using a distillation apparatus with 15 distillation stages to obtain 3-(2-hydroxy-1,1,1, 3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 99.4%), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl) 144 g (yield 72%) of -triethoxysilylbenzene (para-isomer: GC purity 0.5%) was obtained as a solid. 3-(2-Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-chlorodiethoxysilylbenzene, which is a chlorosilane compound represented by formula (2), was not detected by GC (i.e. , less than the detection limit of 10 mass ppm), and the chloride ion concentration was 0.3 ppm.
[比較例1]
 合成例1で得られた3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼンを含む混合物200gに対して蒸留段数15段の蒸留装置を用いて蒸留温度143~146℃、減圧度0.1kPaにて精密蒸留を行うことで、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度99.2%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度0.4%)を固体として146g(収率73%)得た。式(2)で表されるクロロシラン化合物である3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロジエトキシシリルベンゼンはGCにて検出され、1700質量ppmであり、塩化物イオン濃度は140ppmであった。
[Comparative Example 1]
For 200 g of the mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene obtained in Synthesis Example 1, a distillation apparatus with 15 distillation stages was used. 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilyl by performing precision distillation at a distillation temperature of 143 to 146 ° C. and a reduced pressure of 0.1 kPa using Benzene (meta form: GC purity 99.2%), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (para form: GC purity 0.4 %) was obtained as a solid (146 g (yield 73%)). 3-(2-Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-chlorodiethoxysilylbenzene, which is a chlorosilane compound represented by formula (2), was detected by GC and weighed 1700 mass. ppm and the chloride ion concentration was 140 ppm.
 実施例1と比較例1を比較すると、式(1)で表される3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体)のGC純度と収率がほぼ同等(実施例1がGC純度99.4%で収率72%、比較例1がGC純度99.2%で収率73%)であるが、式(2)で表されるクロロシラン化合物と塩化物イオン濃度は、実施例1のほうが比較例1よりも明らかに低い値が得られた。 Comparing Example 1 and Comparative Example 1, 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta compound ) has almost the same GC purity and yield (Example 1 has a GC purity of 99.4% and a yield of 72%, Comparative Example 1 has a GC purity of 99.2% and a yield of 73%), but the formula (2 ) and chloride ion concentrations in Example 1 were clearly lower than those in Comparative Example 1.
 実施例1と比較例1では、共通して合成例1で得られた原料を用いていることからも、本発明の範疇である実施例1のほうが塩素含有不純物の低減方法としてより有効であることが明らかとなった。 Since Example 1 and Comparative Example 1 both use the raw material obtained in Synthesis Example 1, Example 1, which is within the scope of the present invention, is more effective as a method for reducing chlorine-containing impurities. It became clear.
[合成例2]
 1Lの撹拌機付きオートクレーブに、ジクロロ(メチル)フェニルシラン325g(1.70mol)、塩化アルミニウム5.70g(0.0425mol)を加えた。次いで、窒素置換を実施したのち、内温を5~15℃に維持しながら、ヘキサフルオロアセトン271g(1.63mol)を5時間かけて加え、その後12時間攪拌を継続した。反応終了後、温度計、メカニカルスターラー、ジムロート還流管を備え付け、乾燥窒素雰囲気下に置換した容量3Lのガラス反応装置に、反応液を移し、フラスコ内容物を攪拌しながら60℃に加熱した。その後窒素バブリングさせながら、滴下ポンプを用いて無水エタノール251g(5.44mol)を3時間かけて滴下し、塩化水素除去を行いながらアルコキシ化反応を行った。その後、減圧ポンプを用いて過剰量のエタノールを留去した。得られた混合物に対して水洗操作を行うことで、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-ジエトキシ(メチル)シリルベンゼンを含む混合物514g(GCarea%:1-3置換体(メタ体)=79.9%、1-4置換体(パラ体)=6.2%、ジエトキシ(メチル)フェニルシラン=4.4%、その他:9.5%)を得た。得られた混合物中、式(2)で表されるクロロシラン化合物である3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロ(ジエトキシ)メチルシリルベンゼンはGCにて検出されず(すなわち、検出下限の10質量ppm未満)、塩化物イオン濃度は6.8ppmであった。
[Synthesis Example 2]
325 g (1.70 mol) of dichloro(methyl)phenylsilane and 5.70 g (0.0425 mol) of aluminum chloride were added to a 1 L stirred autoclave. Then, after nitrogen substitution, 271 g (1.63 mol) of hexafluoroacetone was added over 5 hours while maintaining the internal temperature at 5 to 15° C., and then stirring was continued for 12 hours. After completion of the reaction, the reaction solution was transferred to a 3 L glass reactor equipped with a thermometer, a mechanical stirrer, and a Dimroth reflux tube and replaced with a dry nitrogen atmosphere, and the contents of the flask were heated to 60°C while stirring. Thereafter, 251 g (5.44 mol) of anhydrous ethanol was added dropwise over 3 hours using a dropping pump while nitrogen bubbling was performed, and an alkoxylation reaction was carried out while removing hydrogen chloride. After that, excess ethanol was distilled off using a vacuum pump. By washing the resulting mixture with water, 514 g of a mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-diethoxy(methyl)silylbenzene (GCarea %: 1-3 substituted (meta) = 79.9%, 1-4 substituted (para) = 6.2%, diethoxy(methyl)phenylsilane = 4.4%, others: 9.5% ). In the resulting mixture, 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-chloro(diethoxy)methylsilylbenzene, which is the chlorosilane compound represented by formula (2), It was not detected by GC (that is, less than the detection limit of 10 mass ppm), and the chloride ion concentration was 6.8 ppm.
[実施例2]
 合成例2で得られた3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-ジエトキシ(メチル)シリルベンゼンを含む混合物200gに対して、蒸留温度97~107℃、減圧度0.5kPaにて単蒸留を行い、得られた留分を再度、蒸留段数15段の蒸留装置を用いて蒸留温度103~106℃、減圧度0.5kPaにて精密蒸留を行うことで、3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-ジエトキシ(メチル)シリルベンゼン(メタ体:GC純度99.9%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-ジエトキシ(メチル)シリルベンゼン(パラ体:GC純度0.1%)を固体として110g(収率55%)得た。式(2)で表されるクロロシラン化合物である3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-クロロ(エトキシ)メチルシリルベンゼンはGCにて検出されず(すなわち、検出下限の10質量ppm未満)、塩化物イオン濃度は9.3ppmであった。
[Example 2]
For 200 g of the mixture containing 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-diethoxy(methyl)silylbenzene obtained in Synthesis Example 2, a distillation temperature of 97 to 107 ℃, the degree of pressure reduction of 0.5 kPa, and the obtained fraction is again subjected to precision distillation at a distillation temperature of 103 to 106 ° C. and a degree of pressure reduction of 0.5 kPa using a distillation apparatus with 15 distillation stages. Thus, 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-diethoxy(methyl)silylbenzene (meta form: GC purity 99.9%), 4-(2- Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-diethoxy(methyl)silylbenzene (para-isomer: GC purity 0.1%) was obtained as a solid (110 g, yield 55%). 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-chloro(ethoxy)methylsilylbenzene, which is the chlorosilane compound represented by formula (2), was not detected by GC. (that is, less than the detection limit of 10 mass ppm), and the chloride ion concentration was 9.3 ppm.
[実施例3]
 実施例1に記載の方法にて別途合成した3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度99.4%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度0.5%)の混合物(塩化物イオン濃度=2.5ppm)30g(74mmol)、水、4.2g(233mmol)、酢酸、0.2g(3mmol)を加え、75℃で24時間攪拌することで、HFIP基含有ポリシロキサン高分子化合物を得た。GPCを測定した結果、Mw=1970であり、塩化物イオン濃度は3.9ppmであった。
[Example 3]
3-(2-Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 99.4% ), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (para-body: GC purity 0.5%) mixture (chloride ion concentration = 2 .5 ppm) 30 g (74 mmol), water 4.2 g (233 mmol), and acetic acid 0.2 g (3 mmol) were added and stirred at 75° C. for 24 hours to obtain an HFIP group-containing polysiloxane polymer compound. As a result of GPC measurement, Mw=1970 and the chloride ion concentration was 3.9 ppm.
 [実施例4]
 ポリシロキサン高分子化合物を得るために、先述のとおり重縮合反応を進行させる目的で反応溶媒を用いることもできる。実施例1に記載の方法にて別途合成した3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度99.4%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度0.5%)の混合物(塩化物イオン濃度=2.5ppm)28gに反応溶媒としてエタノール12gを加え、70質量%のエタノール溶液(塩化物イオン濃度は1.7ppm)とした後、実施例3と同様の手順でポリシロキサン高分子を得られることが確認できた。反応後にGPCを測定した結果、Mw=1850であり、塩化物イオン濃度は2.7ppmであった。
[Example 4]
In order to obtain a polysiloxane polymer compound, a reaction solvent can also be used for the purpose of advancing the polycondensation reaction as described above. 3-(2-Hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 99.4% ), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (para-body: GC purity 0.5%) mixture (chloride ion concentration = 2 .5 ppm) was added with 12 g of ethanol as a reaction solvent to obtain a 70% by mass ethanol solution (chloride ion concentration was 1.7 ppm), and then the same procedure as in Example 3 was performed to obtain a polysiloxane polymer. It could be confirmed. As a result of GPC measurement after the reaction, Mw=1850 and the chloride ion concentration was 2.7 ppm.
[実施例5]
 同様に、実施例1に記載の方法にて別途合成した3-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(メタ体:GC純度99.4%)、4-(2-ヒドロキシ-1,1,1,3,3,3-ヘキサフルオロイソプロピル)-トリエトキシシリルベンゼン(パラ体:GC純度0.5%)の混合物(塩化物イオン濃度=2.5ppm)28gに反応溶媒としてトルエン12gを加え、70質量%のトルエン溶液(塩化物イオン濃度は1.0ppm)とした後、実施例3と同様の手順でポリシロキサン高分子を得られることが確認できた。反応後にGPCを測定した結果、Mw=1620であり、塩化物イオン濃度は1.6ppmであった。
 
[Example 5]
Similarly, 3-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (meta form: GC purity 99 .4%), 4-(2-hydroxy-1,1,1,3,3,3-hexafluoroisopropyl)-triethoxysilylbenzene (para-body: GC purity 0.5%) mixture (chloride ion concentration = 2.5 ppm), 12 g of toluene was added as a reaction solvent to obtain a 70 mass% toluene solution (chloride ion concentration was 1.0 ppm), and then the same procedure as in Example 3 was performed to obtain a polysiloxane polymer. It was confirmed that As a result of GPC measurement after the reaction, Mw was 1620 and the chloride ion concentration was 1.6 ppm.

Claims (13)

  1. 下記式(1)で表されるケイ素化合物と、下記式(2)で表されるハロゲン化シラン化合物とを含み、前記式(2)で表されるハロゲン化シラン化合物の含有量が0質量ppmよりも多く、1000質量ppm以下である、ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000001

    (前記式(1)中、Rは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、Rはそれぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、nは1~5の整数であり、aは1以上3以下の整数、bは0以上2以下の整数、cは1以上3以下の整数であり、a+b+c=4である。)
    Figure JPOXMLDOC01-appb-C000002

    (前記式(2)中、R1aは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、R2aは、それぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、Xは塩素原子、臭素原子又はヨウ素原子であり、nは1~5の整数であり、aaは1以上3以下の整数、bbは0以上2以下の整数、ccは0以上2以下の整数、ddは1以上3以下の整数であり、aa+bb+cc+dd=4である。)
    It contains a silicon compound represented by the following formula (1) and a halogenated silane compound represented by the following formula (2), and the content of the halogenated silane compound represented by the above formula (2) is 0 ppm by mass. more than 1000 mass ppm or less, a silicon compound.
    Figure JPOXMLDOC01-appb-C000001

    (In the above formula (1), each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and each R 2 is independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, n is an integer of 1 to 5, a is an integer of 1 to 3, b is an integer of 0 to 2, c is 1 It is an integer greater than or equal to 3 and less than or equal to 3, and a + b + c = 4.)
    Figure JPOXMLDOC01-appb-C000002

    (In the above formula (2), each R 1a is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2a is each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, X is a chlorine atom, a bromine atom or an iodine atom, n is an integer of 1 to 5, aa is 1 to 3 an integer, bb is an integer of 0 or more and 2 or less, cc is an integer of 0 or more and 2 or less, dd is an integer of 1 or more and 3 or less, and aa+bb+cc+dd=4.)
  2. 前記ハロゲン化シラン化合物の含有量の上限が100質量ppm以下であることを特徴とする、請求項1に記載のケイ素化合物。 2. The silicon compound according to claim 1, wherein the upper limit of the content of said halogenated silane compound is 100 mass ppm or less.
  3. 前記式(1)及び前記式(2)中の
    Figure JPOXMLDOC01-appb-C000003

    (波線と交差する線分は結合手を表す。)
    で表される基が、
    下記式(2A)~(2D)で表される基からなる群から選択される1種以上であることを特徴とする、請求項1又は2に記載のケイ素化合物。
    Figure JPOXMLDOC01-appb-C000004

    (それぞれ、波線と交差する線分は結合手を表す。)
    in the above formula (1) and the above formula (2)
    Figure JPOXMLDOC01-appb-C000003

    (A line segment that intersects with a wavy line represents a bond.)
    The group represented by
    3. The silicon compound according to claim 1, which is one or more selected from the group consisting of groups represented by the following formulas (2A) to (2D).
    Figure JPOXMLDOC01-appb-C000004

    (The line segments intersecting the wavy lines represent bonds, respectively.)
  4. 前記aaが1である、請求項1~3の何れか1項に記載のケイ素化合物。 The silicon compound according to any one of claims 1 to 3, wherein said aa is 1.
  5. 前記ddが1である、請求項1~4の何れか1項に記載のケイ素化合物。 The silicon compound according to any one of claims 1 to 4, wherein said dd is 1.
  6. 前記R2aがメチル基又はエチル基である、請求項1~5の何れか1項に記載のケイ素化合物。 The silicon compound according to any one of claims 1 to 5, wherein said R 2a is a methyl group or an ethyl group.
  7. 前記ハロゲン化シラン化合物が、前記aaが1であり、前記bbが0であり、前記ddが1又は2であり、前記ccが1又は2であり、前記R2aがメチル基又はエチル基である前記式(2)で表される化合物である、請求項1~3の何れか1項に記載のケイ素化合物。 The halogenated silane compound is such that the aa is 1, the bb is 0, the dd is 1 or 2, the cc is 1 or 2 , and the R2a is a methyl group or an ethyl group. The silicon compound according to any one of claims 1 to 3, which is a compound represented by the formula (2).
  8. 前記式(2A)で表される基で構成される前記式(1)で表されるケイ素化合物(メタ体)の含有量をXaモル、
    前記式(2B)で表される基で構成される前記式(1)で表されるケイ素化合物(パラ体)の含有量をYaモルとしたときに、
     
    Ya/(Ya+Xa)<0.10
     
    の関係を満たすことを特徴とする、請求項3に記載のケイ素化合物。
    The content of the silicon compound (meta-body) represented by the formula (1) composed of the group represented by the formula (2A) is Xa mol,
    When Ya mol is the content of the silicon compound (para-body) represented by the formula (1) composed of the group represented by the formula (2B),

    Ya/(Ya+Xa)<0.10

    4. The silicon compound according to claim 3, characterized in that it satisfies the relationship:
  9. ハロゲン化物イオン濃度が100質量ppm以下である、請求項1~8の何れか1項に記載のケイ素化合物。 The silicon compound according to any one of claims 1 to 8, which has a halide ion concentration of 100 mass ppm or less.
  10. 少なくとも下記式(1)で表されるケイ素化合物、及び、下記式(2)で表されるハロゲン化シラン化合物を含む混合物を蒸留して、式(1)で表されるケイ素化合物と、式(1)で表されるケイ素化合物よりも低沸点成分を含む第1の混合物を回収する第1の蒸留工程と、
    第1の工程で得られた、前記第1の混合物を蒸留して、式(1)で表されるケイ素化合物を回収する第2の蒸留工程と、を含み、
    式(2)で表されるハロゲン化シラン化合物の含有量が1000質量ppm以下である、ことを特徴とする、ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005

    (前記式(1)中、Rは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、Rはそれぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、nは1~5の整数であり、aは1以上3以下の整数、bは0以上2以下の整数、cは1以上3以下の整数であり、a+b+c=4である。)
    Figure JPOXMLDOC01-appb-C000006

    (前記式(2)中、R1aは、それぞれ独立に、水素原子、炭素数1以上5以下のアルキル基、フェニル基、又は炭素数1以上10以下のフルオロアルキル基であり、R2aは、それぞれ独立に、水素原子、又は炭素数1以上5以下のアルキル基であり、Xは塩素原子、臭素原子又はヨウ素原子であり、nは1~5の整数であり、aaは1以上3以下の整数、bbは0以上2以下の整数、ccは0以上2以下の整数、ddは1以上3以下の整数であり、aa+bb+cc+dd=4である。)
    A mixture containing at least the silicon compound represented by the following formula (1) and the halogenated silane compound represented by the following formula (2) is distilled to obtain the silicon compound represented by the formula (1) and the formula ( 1) a first distillation step of recovering a first mixture containing a lower boiling point component than the silicon compound represented by;
    a second distillation step of distilling the first mixture obtained in the first step to recover the silicon compound represented by formula (1);
    A method for producing a silicon compound, characterized in that the content of the halogenated silane compound represented by formula (2) is 1000 mass ppm or less.
    Figure JPOXMLDOC01-appb-C000005

    (In the above formula (1), each R 1 is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and each R 2 is independently, a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, n is an integer of 1 to 5, a is an integer of 1 to 3, b is an integer of 0 to 2, c is 1 It is an integer greater than or equal to 3 and less than or equal to 3, and a + b + c = 4.)
    Figure JPOXMLDOC01-appb-C000006

    (In the above formula (2), each R 1a is independently a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, a phenyl group, or a fluoroalkyl group having 1 to 10 carbon atoms, and R 2a is each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, X is a chlorine atom, a bromine atom or an iodine atom, n is an integer of 1 to 5, aa is 1 to 3 an integer, bb is an integer of 0 or more and 2 or less, cc is an integer of 0 or more and 2 or less, dd is an integer of 1 or more and 3 or less, and aa+bb+cc+dd=4.)
  11. 請求項1~9の何れか1項に記載のケイ素化合物を重合してなるポリシロキサン。 A polysiloxane obtained by polymerizing the silicon compound according to any one of claims 1 to 9.
  12. ハロゲン化物イオン濃度が1000質量ppm以下である、請求項11に記載のポリシロキサン。 12. The polysiloxane according to claim 11, which has a halide ion concentration of 1000 mass ppm or less.
  13. 請求項1~9の何れか1項に記載のケイ素化合物を重合する、ポリシロキサンの製造方法。
     
    A method for producing polysiloxane, comprising polymerizing the silicon compound according to any one of claims 1 to 9.
PCT/JP2022/003177 2021-02-05 2022-01-27 Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane WO2022168735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022579500A JPWO2022168735A1 (en) 2021-02-05 2022-01-27
KR1020237029113A KR20230142534A (en) 2021-02-05 2022-01-27 Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane and method for producing polysiloxane
CN202280011656.6A CN116802186A (en) 2021-02-05 2022-01-27 Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017792 2021-02-05
JP2021017792 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168735A1 true WO2022168735A1 (en) 2022-08-11

Family

ID=82741564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003177 WO2022168735A1 (en) 2021-02-05 2022-01-27 Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane

Country Status (5)

Country Link
JP (1) JPWO2022168735A1 (en)
KR (1) KR20230142534A (en)
CN (1) CN116802186A (en)
TW (1) TW202246291A (en)
WO (1) WO2022168735A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156461A (en) * 2013-01-21 2014-08-28 Central Glass Co Ltd Silicon compound containing hexafluoroisopropanol groups, method for producing the same, and polymer compound obtained by polymerizing the same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component
WO2019167770A1 (en) * 2018-02-28 2019-09-06 セントラル硝子株式会社 Silicon compound containing hexafluoroisopropanol group, and method for producing same
WO2020090746A1 (en) * 2018-10-30 2020-05-07 セントラル硝子株式会社 Resin composition, photosensitive resin composition, cured film, production method for cured film, patterned cured film, and production method for patterned cured film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019247B2 (en) 2000-06-02 2007-12-12 信越化学工業株式会社 Polymer compound, resist material, and pattern forming method
JP4172291B2 (en) 2003-02-27 2008-10-29 東亞合成株式会社 Method for producing organosilicon compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156461A (en) * 2013-01-21 2014-08-28 Central Glass Co Ltd Silicon compound containing hexafluoroisopropanol groups, method for producing the same, and polymer compound obtained by polymerizing the same
JP2015129908A (en) * 2013-11-01 2015-07-16 セントラル硝子株式会社 Positive photosensitive resin composition, method for producing film using the same, and electronic component
WO2019167770A1 (en) * 2018-02-28 2019-09-06 セントラル硝子株式会社 Silicon compound containing hexafluoroisopropanol group, and method for producing same
WO2020090746A1 (en) * 2018-10-30 2020-05-07 セントラル硝子株式会社 Resin composition, photosensitive resin composition, cured film, production method for cured film, patterned cured film, and production method for patterned cured film

Also Published As

Publication number Publication date
TW202246291A (en) 2022-12-01
KR20230142534A (en) 2023-10-11
JPWO2022168735A1 (en) 2022-08-11
CN116802186A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
US9884879B2 (en) Method of synthesizing siloxane monomers and use thereof
JP7189453B2 (en) Silicon compound containing hexafluoroisopropanol group, and method for producing the same
KR102611310B1 (en) Silicon-containing layer forming composition and method for producing a patterned substrate using the same
KR102044434B1 (en) Method for purifying silane compound containing unsaturated bond and method for producing the same
JPH0488024A (en) Production of carbinol group-containing organopolysiloxane
WO2022168735A1 (en) Silicon compound containing hexafluoroisopropanol group, method for producing silicon compound, polysiloxane, and method for producing polysiloxane
CN112110950B (en) Preparation method of disilane
JP3848260B2 (en) Method for producing hydroxyalkylpolysiloxane
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
JP2017160115A (en) Cyclic silane composition
US11261202B2 (en) Catalytic reduction of halogenated carbosilanes and halogenated carbodisilanes
WO2012091154A1 (en) Method of producing a hydrolyzable silicon-containing compound
JP2023542476A (en) Method of preparing siloxane
JPH0977762A (en) Production of 1-allyloxymethyl-1,4-dioxane
JPWO2022113724A5 (en)
JP3908509B2 (en) Germanium atom and silicon atom containing ladder type heat resistant resin and method for producing the same
JP7324170B2 (en) Method for producing silicone compound
WO2022113724A1 (en) Silicon-containing monomer, mixture, polysiloxane, and method for producing same
JP7219434B2 (en) Method for producing cyclic siloxane compound, cyclic siloxane compound, composition, and heat-resistant material
WO2021186994A1 (en) Composition, composition precursor solution, production method for composition, substrate, and production method for patterned substrate
JPS6377887A (en) Purifying method for organosilicon compound
WO2003004446A1 (en) Process for producing fluorinated alcohol
CN102089315A (en) Method for preventing polymerization of unsaturated organosilicon compounds
JP2014009170A (en) Production method of silicon compound
JPS63159387A (en) P-nitrophenylsilane compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022579500

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011656.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237029113

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749609

Country of ref document: EP

Kind code of ref document: A1