WO2022168467A1 - 分光測定装置、及び分光測定方法 - Google Patents

分光測定装置、及び分光測定方法 Download PDF

Info

Publication number
WO2022168467A1
WO2022168467A1 PCT/JP2021/046916 JP2021046916W WO2022168467A1 WO 2022168467 A1 WO2022168467 A1 WO 2022168467A1 JP 2021046916 W JP2021046916 W JP 2021046916W WO 2022168467 A1 WO2022168467 A1 WO 2022168467A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
light
illumination
slit
objective lens
Prior art date
Application number
PCT/JP2021/046916
Other languages
English (en)
French (fr)
Inventor
克昌 藤田
一樹 畔堂
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to EP21924852.3A priority Critical patent/EP4290217A1/en
Priority to US18/275,245 priority patent/US20240110830A1/en
Priority to JP2022579380A priority patent/JPWO2022168467A1/ja
Publication of WO2022168467A1 publication Critical patent/WO2022168467A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0216Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using light concentrators or collectors or condensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0224Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using polarising or depolarising elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/06Scanning arrangements arrangements for order-selection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/04Slit arrangements slit adjustment
    • G01J2003/045Sequential slits; Multiple slits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a spectroscopic measurement device and a spectroscopic measurement method, and more particularly to a spectroscopic measurement device and a spectroscopic measurement method for spectroscopically measuring signal light such as Raman scattered light generated in a sample.
  • Non-Patent Document 1 discloses a Raman imaging method in which sheet illumination is used as excitation light and Raman scattered light from a sample is detected by a spectroscope.
  • excitation light is sheet illumination by a cylindrical lens.
  • the Raman scattered light is propagated to the spectroscope by an optical system including an objective lens, a notch filter, a bandpass filter, and the like.
  • the excitation light is applied to the sample without passing through the objective lens.
  • the present disclosure has been made in view of the above points, and aims to provide a spectroscopic measurement apparatus and a spectroscopic measurement method capable of spectroscopic measurement with a high SN ratio by reducing background light.
  • the spectroscopic measurement apparatus includes a detection objective lens into which signal light from a sample is incident, a slit having a slit opening through which the signal light passes, and a signal light passing through the slit opening that is detected according to the wavelength. a wavelength dispersion element that disperses, a two-dimensional photodetector that detects the signal light dispersed by the wavelength dispersion element, a processing unit that generates a spectral image based on the detection signal of the two-dimensional photodetector, an illumination optical system for causing illumination light to enter the sample from the side of the detection objective lens.
  • the above spectroscopic measurement device may further include means for scanning the sample or the illumination light.
  • the above spectroscopic measurement device may further comprise means for causing the sample to flow through the channel.
  • the arrangement direction of the pixels of the two-dimensional photodetector and the dispersion direction of the wavelength dispersive element may be oblique.
  • the slit may be a multi-slit having a plurality of slit openings.
  • the slit aperture may be formed along a direction perpendicular to or parallel to the optical axis direction of the illumination light incident on the sample.
  • the illumination optical system may focus the illumination light on the sample as a Bessel beam, sheet illumination, or lattice illumination.
  • the above spectroscopic measurement apparatus further includes an illumination objective lens for condensing the illumination light onto the sample, and a filter disposed between the illumination objective lens and the sample for transmitting the illumination light. good too.
  • the above spectroscopic measurement apparatus further includes an illumination objective lens for condensing the illumination light onto the sample, and a polarization control element that causes the sample to be polarized in a direction parallel to the optical axis of the illumination light.
  • the slit opening may be formed along the direction of the optical axis.
  • the sample may flow in a channel, and the optical axis of the illumination light incident on the sample may be in a direction perpendicular to the direction of the channel.
  • At least one surface of the channel may be a reflecting surface that reflects the signal light.
  • the signal light from the sample flowing through the channel is detected by different pixels of the two-dimensional photodetector, and the detection signals from the different pixels are integrated. good too.
  • the signal light may be detected at a magnification corresponding to one pixel of the two-dimensional photodetector in the direction orthogonal to the wavelength dispersion direction of the wavelength dispersion element.
  • the sample or illumination light may be scanned in a direction along the optical axis of the detection objective lens.
  • the spectroscopic measurement method includes the steps of illuminating a sample from the side of a detection objective lens, causing signal light from the sample to enter the detection objective lens, and applying the signal light to a slit of a slit. passing through an aperture; wavelength-dispersing the signal light that has passed through the slit aperture by a wavelength dispersion element; and detecting the signal light wavelength-dispersed by the wavelength dispersion element using a two-dimensional photodetector. and generating a spectroscopic image based on the detection signal of the two-dimensional photodetector.
  • the present invention it is possible to provide a spectroscopic measurement device and a spectroscopic measurement method capable of spectroscopic measurement with a high SN ratio by reducing background light.
  • FIG. 1 is a schematic diagram showing an optical system of a spectrometer according to Embodiment 1.
  • FIG. It is a perspective view which shows a sample and an objective lens typically.
  • FIG. 8 is a schematic diagram showing an optical system of a spectroscopic measurement device according to Embodiment 2; It is a perspective view which shows a sample and an objective lens typically.
  • FIG. 11 is a schematic diagram showing an optical system of a spectroscopic measurement device according to Embodiment 3; It is a perspective view which shows a sample and an objective lens typically.
  • FIG. 11 is a schematic diagram showing an optical system of a spectroscopic measurement device according to Modification 1 of Embodiment 3; FIG.
  • FIG. 11 is a schematic diagram showing an optical system of a spectroscopic measurement device according to Embodiment 4; It is a perspective view which shows a sample and an objective lens typically.
  • FIG. 11 is a schematic diagram showing an optical system of a spectroscopic measurement device according to Modification 2 of Embodiment 4; It is a figure for demonstrating the wavelength-dispersion direction in the light-receiving surface of a photodetector. It is a figure which shows an example of an optical system.
  • FIG. 10 is a diagram showing a configuration for detecting Raman scattered light emitted to the ⁇ Z side;
  • FIG. 10 is a diagram showing a configuration for detecting Raman scattered light emitted to the ⁇ Z side;
  • FIG. 10 is a diagram showing a configuration for detecting Raman scattered light emitted to the ⁇ Z side;
  • FIG. 2 is a diagram showing the configuration of Examples 1 to 4;
  • FIG. 12 is a diagram showing the configuration of Example 5;
  • FIG. 12 is a diagram showing the configuration of Examples 6 and 7;
  • FIG. 12 is a diagram showing the configuration of an eighth embodiment;
  • FIG. 22 is a diagram showing the configuration of Example 9;
  • FIG. 10 is a diagram showing a configuration using a polarization control element that controls polarization of illumination light; It is a figure which shows the example in which the optical axis of illumination light and signal light inclines from the perpendicular direction. It is a figure which shows the example in which the optical axis of illumination light and signal light inclines from the perpendicular direction. It is a schematic diagram which shows an example of the slit direction and the direction of a flow path.
  • FIG. 4 is a schematic diagram for explaining the operation of a sample flowing through a channel and a pixel;
  • FIG. 4 is a schematic diagram for explaining the operation of a sample flowing through a channel and a pixel;
  • FIG. 4 is a schematic diagram for explaining the operation of a sample flowing through a channel and a pixel;
  • FIG. 4 is a schematic diagram for explaining the operation of a sample flowing through a channel and a pixel;
  • FIG. 1 is a schematic diagram showing the optical system of the spectrometer 1. As shown in FIG. 1, a YZ plan view is shown on the left side, and an XZ plan view is shown on the right side.
  • FIG. 2 is a diagram schematically showing the objective lens 31 and the sample S.
  • the spectrometer 1 includes an illumination optical system 10 , a drive stage 20 , a detection optical system 30 and a processing section 51 . Note that the driving stage 20 is omitted in FIG.
  • the Z direction is the detection direction. Therefore, the Z direction is a direction parallel to the optical axis of the objective lens 31 .
  • the XY plane is a plane perpendicular to the optical axis of the detection light and parallel to the plane on which the sample S is arranged.
  • the Y direction is the optical axis direction of the illumination light L1 with which the sample S is irradiated. That is, the Y direction is a direction parallel to the optical axis of the lens 11 that converges the illumination light L1 on the sample S.
  • the illumination optical system 10 is an optical system for guiding the illumination light L1 to the sample S.
  • a light source (not shown) generates illumination light L1.
  • the illumination light L1 is an Nd/YVO4 laser that emits CW (Continuous Wave) light with a wavelength of 532 nm.
  • the illumination optical system 10 has a lens 11 .
  • the lens 11 serves as an illumination objective lens for condensing the illumination light L1 onto the sample S. As shown in FIG.
  • the optical axis of the lens 11 is parallel to the Y direction.
  • the illumination light L1 is applied to the sample S from the side of the objective lens 31 .
  • the illumination light L1 is a Bessel beam.
  • the illumination optical system 10 may form a Bessel beam using an axicon lens or spatial modulator (not shown).
  • the illumination light L1 is excitation light that excites the sample S.
  • Raman scattered light is generated from the region of the sample S illuminated by the illumination light L1. Raman scattered light is emitted in various directions.
  • the detection optical system 30 includes an objective lens 31 , a lens 32 , a slit 41 , a lens 42 , a grating 43 , a lens 44 and a photodetector 50 .
  • a slit 41, a lens 42, a grating 43, a lens 44, and a spectroscope 40 are constructed.
  • the detection optical system 30 guides the Raman scattered light generated by the sample S to the photodetector 50 .
  • the objective lens 31 is a detection objective lens.
  • the optical axis of the objective lens 31 is perpendicular to the optical axis of the lens 11 .
  • Raman scattered light emitted in the direction of the objective lens 31 that is, in the +Z direction, enters the objective lens 31 .
  • Raman scattered light condensed by the objective lens 31 enters the lens 32 .
  • the focal point of the objective lens 31 may coincide with the focal point of the illumination light L1.
  • the Raman scattered light from the objective lens 31 be the signal light L2.
  • the lens 32 converges the signal light L2 onto the slit 41 .
  • the slit 41 has a slit opening with the Y direction as the longitudinal direction and the X direction as the lateral direction (slit width direction).
  • the slit 41 is arranged at a position conjugate with the focal plane of the objective lens 31 . High resolution can be obtained by the confocal effect.
  • the signal light L2 that has passed through the slit 41 is condensed by the lens 42 into a parallel light beam.
  • the grating 43 is a wavelength dispersion element that wavelength-disperses the signal light L2.
  • the grating 43 has a diffraction angle corresponding to the wavelength, and wavelength-disperses the signal light L2 in a direction tilted from the longitudinal direction (Y direction) of the slit.
  • the wavelength dispersion element of the spectroscope 40 is not limited to the grating 43, and a prism or the like can be used.
  • the signal light L2 from the grating 43 is incident on the photodetector 50 via the lens 44.
  • the lens 44 is an imaging lens and forms an image of the slit aperture on the light receiving surface of the photodetector 50 .
  • the photodetector 50 is a two-dimensional photodetector such as a CCD (Charge Coupled Device) camera or a CMOS (Complementary Metal Oxide Semiconductor) image sensor.
  • the photodetector 50 has, for example, a plurality of pixels arranged along the X direction and the Y direction. The Y coordinate of photodetector 50 corresponds to the position at the slit aperture.
  • the Y coordinate of the photodetector 50 corresponds to the position on the sample S in the Y direction. Further, when the chromatic dispersion direction is a direction orthogonal to the Y direction, the X coordinate of the photodetector 50 corresponds to the wavelength of the signal light L2.
  • the sample S is placed on the drive stage 20.
  • the drive stage 20 is a three-dimensional movable stage that can be driven in the XYZ directions. For example, the drive stage 20 moves the sample S in the X direction. Thereby, the illumination position on the sample S and the detection area of the photodetector 50 on the sample S are scanned. The signal light L2 from the two-dimensional area of the sample S is detected by scanning the sample S in the direction perpendicular to the slit opening.
  • the optical system may be scanned instead of scanning by the drive stage 20 .
  • the processing unit 51 is an information processing device such as a personal computer.
  • the photodetector 50 outputs a detection signal to the processing section 51 .
  • the processing unit 51 stores the value of the detection signal for each pixel of the photodetector 50 in a memory or the like.
  • the processing unit 51 associates the detection signal with the scanning position of the drive stage 20 .
  • the processing unit 51 generates a spectral image based on the detection signal.
  • a Raman spectral image can be displayed on the screen by performing a predetermined operation in the processing unit 51 .
  • the processing unit 51 can store the data of the spectral image in a memory or the like.
  • the spectroscope 40 disperses the signal light L2.
  • the signal light L2 split by the spectroscope 40 is detected by the photodetector 50 . Therefore, one frame image of the photodetector 50 is data of the position and wavelength in the longitudinal direction of the slit.
  • the sample S is moved in the X direction using the drive stage 20 on which the sample S is placed. Thereby, the detection area of the photodetector 50 on the sample S is scanned. That is, the sample S is scanned in a direction perpendicular to the longitudinal direction of the slit. Raman scattered light from a two-dimensional area of the sample S can be detected. A two-dimensional Raman spectroscopic image of the sample S can be captured.
  • the illumination optical system 10 illuminates the sample S from the side of the objective lens 31 .
  • the illumination light L 1 is applied to the sample S without passing through the objective lens 31 . Since the objective lens 31 and the lens 11 are not coaxial, background light from the sample and the optical system can be reduced. It becomes possible to detect the signal light L2 with a high SN ratio. Furthermore, high-throughput Raman spectroscopy imaging can be realized.
  • the amount of Raman scattered light is about ten orders of magnitude lower than that of fluorescence.
  • fluorescence and scattered light may be generated in areas other than the sample due to illumination light irradiation.
  • various optical elements such as objective lenses, filters, and intermediate optical systems also generate fluorescence and Raman scattered light.
  • the substrate of the sample S also generates fluorescence and Raman scattered light. If fluorescence and Raman scattered light from sources other than the sample S are detected as background light, the SN ratio will decrease. Furthermore, fluorescence and Raman scattered light are generated also from the sample S other than the focal plane.
  • the detection optical system 30 may be provided with a filter such as an edge filter.
  • the SN ratio can be further increased by providing a filter that transmits Raman scattered light and shields the illumination light L1 in the optical path.
  • FIG. 3 is a schematic diagram showing the optical system of the spectrometer 1. As shown in FIG. In FIG. 3, the YZ plane view is shown on the left side, and the XZ plane view is shown on the right side.
  • FIG. 4 is a perspective view schematically showing the objective lens 31 and the sample S. FIG. The drive stage 20 is omitted in FIG.
  • multi-beam illumination is performed.
  • the basic configuration of the spectroscopic measurement apparatus 1 other than the multi-beam illumination is the same as that of the first embodiment, so the description is omitted.
  • FIGS. 3 and 4 three multi-beams are used, and these are shown as illumination beams L11, L12, and 13.
  • FIG. The three illumination beams L11, L12, and L13 will be collectively referred to as illumination light L1.
  • the illumination light L1 comprises three illumination beams L11, L12, L13.
  • the number of illumination beams is not limited to three, and may be two, four or more.
  • the illumination beams L11, L12, and L13 propagate along optical axes parallel to the Y direction.
  • Three illumination beams L11, L12, and L13 are arranged in the X direction. That is, the illumination beam L13 is on the +X side of the illumination beam L12, and the illumination beam L11 is on the -X side. In the X-direction, the illumination beams L11, L12, L13 illuminate different positions of the sample S.
  • Each of the illumination beams L11, L12, and L13 is a Bessel beam.
  • a multi-slit 41M is arranged on the incident side of the spectroscope 40 .
  • a plurality of slit openings are provided in the multi-slit 41M.
  • the multi-slit 41M has three slit apertures, the same as the number of illumination beams.
  • Each slit opening has the Y direction as its longitudinal direction.
  • Each slit opening has the X direction as the lateral direction (width direction).
  • a plurality of slit openings are arranged side by side in the X direction.
  • the focal plane of the objective lens 31 is located conjugate with the multi-slit 41M.
  • the Raman scattered light from the area illuminated by the illumination beam L11 is transmitted through the first slit aperture.
  • Raman scattered light from the area illuminated by illumination beam L12 passes through the second slit aperture.
  • Raman scattered light from the area illuminated by the illumination beam L13 is transmitted through the third slit aperture.
  • the drive stage and the like scan the sample S in the X direction. Thereby, a Raman spectral image can be obtained. Also in the present embodiment, Raman scattered light can be detected with a high SN ratio as in the first embodiment. Furthermore, since the signal light L2 from a plurality of regions can be detected simultaneously, the spectroscopic measurement time can be shortened.
  • FIG. 5 is a schematic diagram showing the optical system of the spectrometer 1. As shown in FIG. In FIG. 5, the YZ plan view is shown on the left side, and the XZ plan view is shown on the right side.
  • FIG. 6 is a perspective view schematically showing the objective lens 31 and the sample S. FIG. The driving stage 20 is omitted in FIG.
  • sheet-like lighting is used. Since this is the same as the first embodiment except that the sheet-shaped illumination is used, the description is omitted.
  • a slit 41 having one slit aperture is provided on the incident side of the spectroscope 40 .
  • the illumination light L1 is incident on the sample S with the Y direction as the optical axis direction.
  • the illumination light L1 is sheet-like illumination light spread in the X direction.
  • sheet-like illumination is formed by using a cylindrical lens.
  • the cylindrical lens converges the illumination light L1 in the Z direction and does not converge in the X direction.
  • the illumination light L1 uniformly illuminates a wide area of the sample S in the X direction. That is, an area sufficiently wider than the field of view of the objective lens 31 is illuminated with the uniform illumination light L1.
  • the relative position of the sample S with respect to the objective lens 31 is moved in the X direction.
  • the drive stage on which the sample S is placed is driven in the X direction.
  • the detection optical system 30 including the objective lens 31 may be moved.
  • the detection area of the photodetector 50 on the sample S changes in the X direction.
  • Raman scattered light from a two-dimensional area of the sample S can be detected.
  • a Raman spectral image can be captured with a high SN ratio.
  • FIG. 7 is a diagram showing a spectrometer 1 according to Modification 1, which is a modification of Embodiment 3. As shown in FIG. In FIG. 7, the YZ plan view is shown on the left side, and the XZ plan view is shown on the right side. In FIG. 7, the direction of the slit 41 and the wavelength dispersion direction are different from those in the configuration of FIG. Specifically, the slit 41 is provided with a slit opening whose longitudinal direction is the X direction. The width direction of the slit opening is the Y direction.
  • the grating 43 wavelength-disperses the signal light L2 in the X direction and the tilted direction.
  • the grating 43 disperses the signal light L2 in the Y direction according to the wavelength.
  • the relative position of the objective lens 31 with respect to the sample S moves in the Y direction.
  • Raman scattered light from a two-dimensional area in the XY directions can be detected.
  • a Raman spectroscopic image can be captured with a high SN ratio.
  • FIG. 8 is a schematic diagram showing the optical system of the spectrometer 1. As shown in FIG. In FIG. 8, the YZ plan view is shown on the left side, and the XZ plan view is shown on the right side.
  • FIG. 9 is a perspective view schematically showing the objective lens 31 and the sample S. FIG. Note that the sample S is omitted in FIG.
  • a multi-slit 41M is used as in the second embodiment.
  • the multi-slit 41M has a plurality of slit openings. Each slit opening has the Y direction as its longitudinal direction. A plurality of slit openings are arranged side by side in the X direction.
  • the relative position of the sample S with respect to the objective lens 31 is moved in the X direction.
  • Raman scattered light from a two-dimensional area in the XY directions can be detected.
  • a Raman spectroscopic image can be captured with a high SN (Signal to Noise) ratio.
  • the signal light L2 from a plurality of regions can be detected simultaneously, the spectroscopic measurement time can be shortened.
  • FIG. 10 is a diagram showing a spectrometer 1 according to Modification 2, which is a modification of Embodiment 4.
  • the YZ plan view is shown on the left side
  • the XZ plan view is shown on the right side.
  • the direction of the multi-slit 41M and the wavelength dispersion direction are different from those in the configuration of FIG.
  • the multi-slit 41M is provided with a slit opening whose longitudinal direction is the X direction.
  • the width direction of the slit opening is the Y direction.
  • a plurality of slit openings are arranged side by side in the Y direction.
  • the grating 43 wavelength-disperses the signal light L2 in the X direction and the tilted direction.
  • the grating 43 disperses the signal light L2 in the Y direction according to the wavelength.
  • the relative position of the objective lens 31 with respect to the sample S moves in the Y direction.
  • Raman scattered light from a two-dimensional area in the XY directions can be detected.
  • a Raman spectroscopic image can be captured with a high SN ratio.
  • the sample S is irradiated with the illumination light L1 from the side of the objective lens 31 . That is, the illumination light L ⁇ b>1 and the signal light L ⁇ b>2 are not coaxial, and the sample S is irradiated with the illumination light L ⁇ b>1 without passing through the objective lens 31 . Thereby, Raman scattered light can be detected with a high SN ratio.
  • Wavelength dispersion direction An example of the wavelength dispersion direction and the pixel arrangement direction that can be applied to the above embodiment and its modifications will be described with reference to FIG. 11 .
  • 11 shows the multi-slit 41M and the light receiving surface of the photodetector 50.
  • the multi-slit 41M has five slit openings A1 to A5.
  • the longitudinal direction of each of the slit openings A1 to A5 is the Y direction. That is, the X direction is the lateral direction (width direction) of the slit openings A1 to A5.
  • Five slit openings A1 to A5 are arranged in the X direction.
  • the detection areas B1 to B5 in which the detection light passing through the slit openings A1 to A5 are detected are parallelograms.
  • the signal light L2 that has passed through the slit aperture A1 is dispersed in the detection area B1.
  • the signal light L2 that has passed through the slit apertures A2-A5 is dispersed in the detection regions B2-B5, respectively.
  • the detection areas B1 to B5 have two sides parallel to the Y direction, and the remaining two sides are inclined from the X direction.
  • the directions of the two sides inclined from the X direction are the dispersion directions of the grating 43 .
  • the chromatic dispersion direction is tilted from the X direction. By doing so, the measurable wavelength range can be widened, and the number of data in the wavelength direction can be increased.
  • the detection areas B1 to B5 are set so as not to overlap each other. For example, the long wavelength ( ⁇ n) side of the detection region B1 is shifted from the short wavelength ( ⁇ 1) side of the detection region B2.
  • FIG. 12 is a diagram showing an example of the illumination optical system 10 and the detection optical system 30. As shown in FIG. FIG. 12 shows an example of an optical system that scans the illumination area. That is, the illumination area on the sample S is scanned by the optical scanner 108 deflecting the illumination light L1.
  • the illumination optical system 10 includes a light source 101 , lenses 102 to 104 , a lens 105 , a mirror 106 , a dichroic mirror 107 , an optical scanner 108 , a lens 109 , a dichroic mirror 110 , a mirror 111 , lenses 112 and 113 .
  • the light source 101 is, for example, a laser light source, and generates monochromatic illumination light L1. Illumination light L1 is incident on mirror 106 via lenses 102-105.
  • the lens 104 is an axicon lens or a cylindrical lens.
  • the illumination light L1 is a Bessel beam as in Embodiments 1 and 2
  • the lens 104 is an axicon lens.
  • the lens 104 is a cylindrical lens.
  • the mirror 106 reflects the illumination light L1 toward the dichroic mirror 107.
  • the dichroic mirror 107 has wavelength characteristics that reflect the illumination light L1 and transmit the Raman scattered light.
  • Illumination light L ⁇ b>1 reflected by dichroic mirror 107 enters optical scanner 108 .
  • the optical scanner 108 is, for example, a galvanomirror, and deflects the illumination light L1 in the X direction. Thereby, the sample S is scanned with the illumination light L1.
  • the illumination light L1 reflected by the optical scanner 108 enters the dichroic mirror 110 via the lens 109 .
  • the dichroic mirror 110 has wavelength characteristics that reflect the illumination light L1 and transmit the Raman scattered light.
  • Illumination light L ⁇ b>1 reflected by dichroic mirror 110 enters mirror 111 .
  • the illumination light L1 reflected by the mirror 111 is incident on the sample S via the lenses 112 and 113 .
  • a lens 113 is an illumination objective lens.
  • the detection optical system 30 includes an objective lens 301 , a mirror 302 , a lens 303 , a dichroic mirror 110 , a lens 109 , an optical scanner 108 , a dichroic mirror 107 , a lens 310 and a spectroscope 40 .
  • a dichroic mirror 110 , a lens 109 , and an optical scanner 108 are common to the detection optical system 30 and the illumination optical system 10 .
  • the illumination light L1 is incident on the sample S from the side of the objective lens 301 of the detection optical system 30 .
  • Raman scattered light generated in the sample S enters the objective lens 301 .
  • the Raman scattered light from the objective lens 301 be the signal light L2.
  • Signal light L2 is reflected by mirror 302 .
  • Signal light L2 from mirror 302 enters dichroic mirror 110 via lens 303 .
  • the dichroic mirror 110 is a beam splitter that splits the optical paths of the signal light L2 and the illumination light L1 depending on the wavelength.
  • the signal light L2 transmitted through the dichroic mirror 110 enters the optical scanner 108 via the lens 109 .
  • the optical scanner 108 descans the signal light L2.
  • the signal light L2 reflected by the optical scanner 108 is incident on the dichroic mirror 107 .
  • the dichroic mirror 107 is a beam splitter that splits the optical paths of the signal light L2 and the illumination light L1 depending on the wavelength.
  • the signal light L2 that has passed through the dichroic mirror 107 enters the lens 310 .
  • a lens 310 is an imaging lens, and forms an image of the sample S on the slit 41 of the spectroscope 40 .
  • the signal light L2 that has passed through the slit aperture of the slit 41 is wavelength-dispersed by the spectroscope 40 . Detected by a photodetector 50 dispersed by a spectroscope 40 .
  • Raman scattered light is detected with a high SN ratio as in the embodiment. Furthermore, the illumination position on the sample S can be scanned using the optical scanner 108 .
  • FIG. 13 is a side view schematically showing the periphery of the sample S.
  • the illumination light L1 is a Bessel beam.
  • Sample S is, for example, a spheroid or an organoid.
  • Raman scattered light is generated in various directions from the region illuminated by the illumination light L1.
  • the Raman scattered light generated in the +Z direction from the sample S is defined as Raman scattered light LSu, and the Raman scattered light generated in the ⁇ Z direction is defined as Raman scattered light LSd.
  • Objective lenses 31 for detection are arranged on the +Z side and -Z side of the sample S, respectively.
  • the objective lens 31 on the +Z side of the sample S is shown as an objective lens 31u
  • the objective lens 31 on the -Z side is shown as an objective lens 31d.
  • a sample S is arranged between the objective lens 31u and the objective lens 31d. That is, the objective lens 31u and the objective lens 31d are coaxial.
  • the Raman scattered light LSu enters the objective lens 31u.
  • the signal light L2u is dispersed and detected by the spectroscope 40 in the same manner as in the above embodiments.
  • the Raman scattered light LSd enters the objective lens 31d.
  • the Raman scattered light LSd from the objective lens 31d be the signal light L2d.
  • the signal light L2d is dispersed and detected by the spectroscope 40 in the same manner as in the above embodiments.
  • the detection optical system 30 can be provided for each of the signal light L2u and the signal light L2d. By doing so, the amount of detected Raman scattered light can be almost doubled.
  • the illumination light L1 is incident on the sample S from the sides of the objective lenses 31u and 31d. That is, the optical axis of the illumination light L1 passes through the space between the objective lens 31u and the objective lens 31d. By doing so, detection can be performed at a high SN ratio.
  • the optical axis of the illumination light L1 is parallel to the Y-axis. Also, a high NA, low magnification, wide field of view objective lens can be used.
  • FIG. 14 is a side view schematically showing another example of 4 ⁇ detection.
  • sample S is placed on substrate 400 .
  • the substrate 400 is, for example, a metal substrate made of stainless steel and has a high light reflectance.
  • a main surface of the substrate 400 is parallel to the XY plane.
  • a sample S is placed on the +Z side surface of the substrate 400 .
  • the sample S is, for example, a cell sheet, molecules on the substrate 400, or bacteria.
  • the objective lens 31 is arranged only on the +Z side of the substrate 400 .
  • the illumination light L1 is irradiated onto the sample S from the side of the objective lens 31 .
  • the optical axis of illumination light L1 is slightly tilted from the Y direction.
  • the illumination light L1 travels in the -Z direction.
  • the illumination light L1 can be sheet illumination.
  • Raman scattered light is emitted from the sample S in various directions. Raman scattered light traveling in the ⁇ Z direction is incident on the substrate 400 .
  • the substrate 400 reflects Raman scattered light directed in the -Z direction.
  • the Raman scattered light reflected by the substrate 400 travels in the +Z direction and enters the objective lens 31 . Therefore, the Raman scattered light generated in the ⁇ Z direction as well as in the +Z direction can be incident on the objective lens 31 .
  • Detection light from the objective lens 31 is guided to the spectroscope 40 by the detection optical system 30 described above. By doing so, the amount of detected Raman scattered light can be almost doubled. Also, a high NA, low magnification, wide field of view objective lens can be used.
  • the sample S is irradiated with the illumination light L1 from the side of the objective lens 31 as well.
  • the optical axis of the sheet-shaped illumination light L1 may be tilted from the Y direction.
  • the sample S may be irradiated with the illumination light L1 from the objective lens side (+Z side).
  • FIG. 15 is a YZ plan view schematically showing a channel chip 500 holding a sample.
  • the sample is assumed to be a fluid flowing through channels 501-504.
  • the channel chip 500 is a microchannel chip in which microchannels are formed.
  • a biological sample can flow through channels 501-504.
  • sample cells and bacteria are flowing through the channels 501 to 504 .
  • the sample to be flowed through the flow path may be separated into individual components that are output via high performance liquid chromatography (HPLC), or may be incorporated into a part of the flow cytometry process.
  • HPLC high performance liquid chromatography
  • the channel chip 500 has channels 501 to 504 formed along the X direction.
  • Each of the channels 501 to 504 is a microchannel with the X direction as the sample channel direction.
  • the YZ cross-sectional shape of the channels 501 to 504 is rectangular.
  • the liquid sample flowing in the X direction is irradiated with the illumination light L1.
  • the illumination light L1 is incident on the channel 501 along the Y direction.
  • the direction of the optical axis of the illumination light L1 is perpendicular to the direction of the flow path of the sample.
  • a wide area in the direction of the flow path is illuminated by using sheet-like illumination as the illumination light L1.
  • the longitudinal direction of the slit opening of the slit 41 can be the Y direction. Therefore, a wide area in the direction of the flow path can be used as the detection area.
  • the optical axis direction, slit direction, and flow path direction of the illumination light L1 are not limited to the above examples.
  • the illumination light L1 may be one or a plurality of Bessel beams.
  • the reflective elements 12 are provided adjacent to the channels 501-504.
  • the reflective element 12 is held by the channel chip 500 .
  • Illumination light L ⁇ b>1 condensed by lens 11 enters reflection element 12 .
  • the reflective element 12 functions as a mirror having a metal reflective surface.
  • the reflective surface of the reflective element 12 is flat and inclined at 45° from the Z-axis.
  • the lens 11 is arranged below the channel chip 500 .
  • the reflecting surface of the reflecting element 12 may be a concave surface so as to focus the illumination light L1 on the sample.
  • the optical axis of the lens 11 is parallel to the Z direction. Therefore, the reflecting element 12 reflects the illumination light L1 from the lens 11 toward the channels 501-504. As a result, the sample flowing through the channels 501 to 504 is illuminated and Raman scattered light is generated.
  • Channels 501-504 represent Examples 1-4, respectively. Each example will be described below.
  • Example 1 indicated by flow path 501 Example 1 indicated by flow path 501 will be described.
  • the illumination light L1 is condensed at the center of the channel 501 .
  • Raman scattered lights LSu and LSd are generated.
  • Raman scattered light LSu is Raman scattered light generated in the +Z direction
  • Raman scattered light LSd is Raman scattered light generated in the ⁇ Z direction.
  • Detection optical systems 30 are provided on both sides of the channel chip 500, respectively. By doing so, Raman scattered light emitted in various directions can be detected.
  • Example 2 indicated by flow path 502 Example 2 indicated by flow path 502 will be described.
  • the illumination light L1 is condensed at the center of the channel 501 .
  • Raman scattered lights LSu and LSd are generated.
  • a reflecting mirror 322 is arranged on the ⁇ Z side of the channel 502 .
  • the reflecting mirror 322 is arranged below the channel chip 500 .
  • the reflecting mirror 322 is a concave mirror such as a spherical mirror or an ellipsoidal mirror.
  • the Raman scattered light LSd reflected to the -Z side is incident on the reflecting mirror 322, it is reflected in the +Z direction. Therefore, the objective lens 31 (not shown in FIG. 15) should be placed only on the +Z side of the channel 502, as in FIG. Since the detection optical system can be shared between the Raman scattered light LSu and the Raman scattered light LSd, the device configuration can be simplified.
  • Example 3 indicated by flow path 503 will be described.
  • the illumination light L1 illuminates the entire sample.
  • the condensing position of the illumination light L1 is shifted from the channel 503 in the +Y direction. Therefore, Raman scattered light is generated from a wide area of the channel 503 . By doing so, it is possible to detect Raman scattered light from a wider area. By doing so, it is possible to efficiently detect signal light from a sample that is thick in the Z direction.
  • one surface on the -Z side of the channel 503 is a metal reflecting surface 323 . Therefore, the Raman scattering light LS emitted to the -Z side is reflected by the metal reflecting surface 323. FIG. Then, the Raman scattered light LS reflected by the metal reflecting surface 323 travels in the +Z direction.
  • the objective lens 31 (not shown in FIG. 15) may be arranged only on the +Z side of the flow path 502 . Therefore, as in the second embodiment, the device configuration can be simplified.
  • Example 4 indicated by channel 504 will be described.
  • two surfaces of the channel 504 function as dichroic mirrors 324 .
  • a dichroic mirror 324 serves as an incident surface on the incident side of the illumination light L1 and an exit surface on the exit side.
  • the dichroic mirror 324 transmits the illumination light L1, which is the excitation light, and reflects the Raman scattered light. Raman scattered light emitted in the +Y direction or the -Y direction is reflected by the dichroic mirror 324 .
  • the Raman scattered light having the -Z direction component is reflected by the dichroic mirror 324 and the metal reflecting surface 323 . Therefore, it is extracted in the +Z direction from the channel 504 .
  • Raman scattered light with a large +Y direction component can be incident on the objective lens 31 (not shown in FIG. 15). That is, it is possible to detect Raman scattered light having a Y-direction component larger than the Z-direction component. Therefore, the amount of light detected by the photodetector can be made higher than in the second and third embodiments.
  • FIG. 16 is a diagram showing the channel 505 of Example 5.
  • the cross-sectional shape of the channel 505 is a curved surface. That is, the channel 505 is elliptical in YZ plan view.
  • the inner peripheral surface of the flow path 505 serves as a metal reflecting surface 525 .
  • the +Z side of the channel 505 serves as an extraction portion 505a. Therefore, channel 505 functions as an integrating sphere.
  • the Raman scattered light emitted in various directions is reflected by the metal reflecting surface 525 and extracted from the extracting portion 505a. This makes it possible to increase the amount of light detected by the photodetector.
  • a portion through which the illumination light L1 passes is configured to transmit the illumination light.
  • FIG. 17 is a YZ plan view showing a channel 506 corresponding to Example 6 and a channel 507 corresponding to Example 7.
  • a channel 506 is formed in the channel chip 500 .
  • the channel 506 is formed along the X direction.
  • the illumination light L1 is sheet illumination.
  • a slit 41 is provided directly above the channel 506 .
  • the slit 41 is placed on the channel chip 500 . In this configuration, a slit 41 may be arranged between the detection objective lens (not shown) and the sample S.
  • the slit 41 is formed along the direction of the flow path 506 . That is, the slit opening of the slit 41 has the X direction as the longitudinal direction and the Y direction as the lateral direction (slit width direction).
  • a filter 38 is provided at the slit opening of the slit 41 .
  • the filter 38 blocks the illumination light L1 and transmits the Raman scattered light.
  • the filter 38 is provided between the slit 41 and the channel 506 , it may be arranged closer to the spectroscope 40 than the slit 41 .
  • the slit 41 is provided on the sample side of the detection objective lens. Therefore, there is no need to provide an imaging optical system in the middle of the detection optical system. Therefore, the device configuration can be simplified.
  • the slit 41 may be a multi-slit 41M.
  • a condensing element 527 is added to the configuration of the sixth embodiment. Specifically, a condensing element 527 is provided above the channel 507 .
  • the condensing element 527 functions as a lens that condenses the Raman scattered light.
  • the Raman scattered light condensed by the condensing element 527 enters the slit 41 .
  • the condensing element 527 is provided inside the channel chip 500 .
  • the condensing element 527 can be mounted in the channel chip 500 by forming a curved surface on the +Z side of the channel 507 .
  • the condensing element 527 may be a cylindrical lens whose longitudinal direction is the X direction.
  • the detection NA can be increased. Therefore, spatial resolution can be increased. Furthermore, the incident NA of the spectroscopic optical system of the spectroscope 40 can be reduced.
  • FIG. 18 is a YZ plan view showing an eighth embodiment.
  • the filter 16 is provided near the channel 508 .
  • the filter 16 is, for example, a laser line filter or a bandpass filter that transmits the laser wavelength of the laser light that becomes the illumination light L1.
  • Filter 16 is positioned between reflective element 12 and channel 508 .
  • a filter 16 is arranged in the optical path between the lens 11, which is an illumination objective lens, and the sample.
  • Raman scattered light is generated only by light of the laser wavelength. Therefore, the noise of signal light can be reduced, and Raman spectroscopy can be appropriately performed.
  • FIG. 19 is a YZ plan view showing the ninth embodiment.
  • the filter 16 is arranged between the sample S and the lens 11 .
  • the lens 11 is an illumination objective lens that converges the illumination light L1 on the sample S as described above.
  • the optical axis of the lens 11 is parallel to the Y direction.
  • the illumination light L1 condensed by the lens 11 is incident on the sample S through the filter 16 .
  • it is a laser line filter or a bandpass filter that transmits the laser wavelength of the laser light that becomes the illumination light L1.
  • the filter 16 has a thickness of about 300 ⁇ m. Such a configuration can also prevent light other than the laser wavelength from entering the sample. Raman scattered light is generated only by light of the laser wavelength. Therefore, the noise of signal light can be reduced, and Raman spectroscopy can be appropriately performed.
  • FIG. 20 is a YZ plan view showing the configuration around the sample.
  • the polarization state of the illumination light L1 is shown schematically.
  • the illumination light L1 condensed on the sample is polarized parallel to the optical axis (Y direction) of the illumination light L1.
  • the illumination light L1 is sheet illumination.
  • the slit opening of the slit 41 is parallel to the Y direction.
  • a polarization control element 17 is arranged between the lens 11 and the sample S.
  • the polarization control element 17 is a split wavelength plate.
  • the polarization control element 17 is desirably divided into two.
  • the illumination light L1 is condensed by the lens 11 . Therefore, at the focal position of the lens 11, the illumination light L1 can produce a large electric field component in its optical axis direction. That is, at the detection position, the polarization direction of the illumination light L1 is parallel to the optical axis direction.
  • the polarization control element 17 may be arranged closer to the light source than the lens 11 .
  • the signal light L2 incident on the slit 41 has a large polarization component parallel to the slit aperture.
  • the P-polarized component becomes large.
  • the groove direction of the grating 43 and the vibration direction of the electric field vector are parallel, and when it is S-polarized, the groove direction and the vibration direction of the electric field vector are orthogonal. Therefore, the diffraction efficiency of the grating 43 can be increased. Since the polarization characteristics differ depending on the grating characteristics and the wavelength region to be observed, the polarization is controlled according to the conditions.
  • the filter 16 may be used in the optical path for any of sheet illumination, Bessel beam, and multi-beam.
  • 4 ⁇ detection may be performed for any of sheet illumination, Bessel beams, and multibeams. Two or more of the embodiments, modifications, and examples may be combined as appropriate.
  • lattice lighting may be used.
  • lattice illumination the sample S can be illuminated with a lattice illumination pattern.
  • an edge filter that blocks light of the wavelength of the illumination light L1 and transmits Raman scattered light may be arranged in the optical path of the signal light L2.
  • the following three exposure methods can be used. 1) The sample in the channel is stopped and measured, and after the measurement is completed, the sample is flown and the next sample is measured. 2) Measurement is performed while the sample is flowing through the channel. At this time, the charge shift speed of the CCD camera and the flow speed of the sample in the channel are made the same, and the signal light from the same sample is integrated in a single pixel. 3) Measurement is performed while the sample is flowing through the channel. At this time, after measuring a plurality of times with a short exposure time, the signal of a single sample is integrated by data processing. The position of the sample at the time of measurement is measured by microscopic observation such as Rayleigh scattering.
  • Raman data from the same sample is extracted on the CCD and integrated.
  • Signal light from the same sample is detected by different pixels of the photodetector 50 . That is, the signal light from the same sample flowing through the channel is detected multiple times by the photodetector 50 .
  • Detection signals of different pixels of the photodetector 50 are integrated to obtain Raman scattered light from the same sample.
  • Cells (bacteria):camera pixels preferably close to 1:1 overall magnification.
  • a sample cell corresponds to one pixel of the photodetector 50 .
  • the magnification of the entire apparatus is 1, assuming that the cell diameter is 20 ⁇ m, the cell fits in (1 ⁇ n) pixels.
  • n is an integer of 2 or more and corresponds to the number of pixels in the direction of dispersion of Raman scattered light.
  • Teledyne PIXIS400B one pixel of which is 20 ⁇ m square, can be used. Magnification can be changed depending on the size of the cells and purpose.
  • the cell when observing at a magnification of about 5 times the entire device, assuming that the cell diameter is 20 ⁇ m, the cell will fit into (5 ⁇ n) pixels.
  • the SN ratio can be improved by lowering the overall magnification.
  • One pixel of the photodetector 50 corresponds to a sample cell.
  • the magnification of the objective lens 31 or the like may be determined so that cells can be detected with a size equivalent to one pixel.
  • the photodetector 50 detects the signal light dispersed by the spectroscope 40 . Therefore, on the light receiving surface of the photodetector 50, the signal light from the cells spreads in the dispersion direction. Even if the magnification is set such that one pixel of the photodetector 50 corresponds to the sample cell, the signal light from the cell is detected by a plurality of pixels in the dispersion direction. Signal light from cells is detected by (1 ⁇ n) pixels of the photodetector 50 . In other words, the signal light from the cells is detected by one pixel of the photodetector 50 in the direction orthogonal to the scattering direction.
  • the signal light L2 is detected at such a magnification that the cell of the sample corresponds to one pixel of the photodetector 50 in the direction orthogonal to the wavelength dispersion direction of the wavelength dispersion element.
  • the measurement is preferably performed at a magnification such that the cells are contained within 5 pixels or less, and more preferably at a magnification such that the cells are contained within 1 pixel or less.
  • the illumination light L1 may be scanned in the optical axis direction of the objective lens 31 for detection.
  • the entire cell is illuminated while scanning the lateral illumination at high speed in that direction.
  • the illumination light L1 is scanned in the Z direction.
  • the spectroscopic measurement was performed while scanning the sample or the illumination light, but the sample or the illumination light may not be scanned.
  • the measurement may be performed while the sample is flowing through the channel. That is, instead of the means for scanning the sample or the illumination light, there may be means for causing the sample to flow through the channel.
  • FIG. 12 shows an example of a configuration in which the optical axes of illumination light and detection light are tilted in the horizontal direction and the vertical direction.
  • water 601 is stored in the dish 600. Furthermore, a sample substrate 603 for holding the sample S is arranged in the dish 600 . A sample S is placed on the sample substrate 603 .
  • An objective lens 31 and a lens 11 are arranged above the dish 600 .
  • An objective lens 31 and a lens 11 are arranged obliquely above the sample S.
  • the sample S is irradiated with illumination light L1 from obliquely above the sample.
  • the illumination light L1 from the lens 11 propagates through water and enters the sample S.
  • Raman scattered light generated in the sample S and propagating obliquely upward enters the objective lens 31 .
  • the Raman scattered light from the sample S propagates through water and enters the objective lens 31 .
  • Fig. 22 shows another example of a configuration in which the optical axes of illumination light and detection light are tilted in the horizontal direction and the vertical direction.
  • water 601 is stored in dish 600 .
  • a sample S is arranged in the dish 600 .
  • Dish 600 is made of a transparent material such as glass.
  • the objective lens 31 and lens 11 are arranged below the dish 600 . That is, the sample S is irradiated with the illumination light L1 from obliquely below the sample S. As shown in FIG. The illumination light L1 from the lens 11 is transmitted through the bottom of the dish 600 and enters the sample S. FIG. Also, Raman scattered light generated in the sample S and traveling obliquely downward enters the objective lens 31 . Raman scattered light from the sample S passes through the bottom of the dish 600 and enters the objective lens 31 .
  • the signal light is mainly Raman scattered light, but the signal light may be light other than Raman scattered light. Therefore, the spectroscopic measurement apparatus according to this embodiment may be a spectroscopic measurement apparatus other than Raman spectroscopy.
  • it may be a spectrometer that detects fluorescence excited by excitation light, or a spectrometer that measures an infrared absorption spectrum or a near-infrared absorption spectrum. These spectrometers can also measure spectra with a high SN ratio.
  • it is suitable for a spectroscopic measurement device that requires high-speed measurement and repeated measurement. Applications of the spectrometer are not limited to imaging. If the sample is a uniform sample such as a solution, a large area can be measured simultaneously, so the amount of signal increases and the measurement time can be shortened. In this case the measured spectra are integrated.
  • the spectrometer 1 can spectroscopically measure spontaneous Raman scattered light. Further, the spectrometer 1 may spectroscopically measure stimulated Raman scattering light.
  • the sample When measuring stimulated Raman scattering light, the sample may be irradiated with pump light and Stokes light. That is, two laser light sources with different wavelengths are used. In this case, the pump light and the Stokes light may be arranged so that the sample is irradiated from the side.
  • FIG. 23 to 25 are diagrams schematically showing the channel 501 provided in the channel chip 500.
  • FIG. FIG. 23 is a diagram schematically showing a configuration in which the longitudinal direction of the slit is parallel to the direction of the flow channel 501.
  • FIG. 24 is a diagram schematically showing the configuration when the longitudinal direction of the slit is inclined from the direction of the flow channel 501.
  • FIG. 25 is a diagram schematically showing a configuration in which the channel 501 meanders.
  • FIG. 23 to 25 show the slit opening A1 of the slit projected onto the channel chip 500.
  • the longitudinal direction of the slit opening A1 is parallel to the X direction. That is, the width direction of the slit opening A1 is the Y direction. A region corresponding to the slit opening A1 becomes a detection region of the flow channel 501 .
  • the illumination direction is parallel to the Y direction.
  • the Z direction perpendicular to the plane of the paper is parallel to the optical axis of the objective lens.
  • samples 710 and 711 to be measured are flowing through the channel 501 .
  • the samples 710 and 711 can be biological samples such as cells.
  • a fluid for flowing samples 710 and 711 is supplied to the channel 501 .
  • the channel 501 is provided along the X direction. Therefore, the samples 710 and 711 flow in the X direction.
  • the longitudinal direction of the slit opening A1 and the direction of the channel 501 are parallel.
  • the longitudinal direction of the slit opening A1 is inclined from the direction of the flow channel 501. In FIG. That is, the direction of the channel 501 is inclined from the X direction and the Y direction.
  • the sample 710 flows through the channel 501 across the detection area corresponding to the slit opening A1. Therefore, with the configuration of FIG. 24, signal light from a wider range of the sample 710 can be detected. For example, assume that the width of the channel 501 is wider than the size corresponding to the width of the slit opening A1. As shown in FIG. 23, it is assumed that there is a sample 711 flowing through the channel 501 deviated from the center of the channel 501 in the Y direction. In this case, only signal light from part of the sample 711 can be detected.
  • any sample 710 can cross the detection area corresponding to slit aperture A1. Therefore, the entire sample 710 passes through the detection area corresponding to the slit aperture A1.
  • the signal light from a wider area of the sample 710 can be measured by the photodetector 50 detecting the signal light while the sample 710 traverses the slit aperture A1.
  • the channel 501 is bent in a meandering manner.
  • a sample 710 flowing through the channel 501 reciprocates in the Y direction. That is, the sample 710 alternately flows along the channel 501 in the +Y direction and the -Y direction.
  • the sample 710 flows through the channel 501 so as to repeatedly cross the detection area corresponding to the slit opening A1. By doing so, the spectroscopic measurement of the sample 710 can be repeatedly performed.
  • a cooling region 702 may be provided in at least part of the channel chip 500 .
  • the channel chip 500 is cooled in the cooling area 702 .
  • a cooling means such as a coolant is in contact with the channel chip 500 .
  • a tributary 703 may be provided in the middle of the channel 501 .
  • the flow velocity of the sample 710 can be changed. That is, the measurement can be performed by changing the flow velocity.
  • a solution or a drug that reacts with the sample 710 may be supplied from the branch stream 703 . By doing so, it becomes possible to measure the change in the spectrum due to the reaction. In other words, spectra can be measured before, during, and after the reaction.
  • FIG. 26 to 28 are schematic diagrams showing the operation of the sample 710 flowing through the channel 501 and the pixels of the photodetector 50.
  • FIG. A sample 710 is a cell or the like flowing through the channel 501 .
  • the sample 710 flows through the channel 501 together with a fluid such as a solution.
  • the slit direction and the spectroscopic method are perpendicular to each other.
  • FIG. 26 to 28 schematically show four pixel columns of the photodetector 50.
  • Pixels in the first column are a pixel column 151 .
  • the second, third, and fourth pixel columns are pixel columns 152-154.
  • the charge shift speed of the CCD camera and the flow speed of the sample in the channel are made the same.
  • a Raman spectrum is measured in one pixel row. That is, the arrangement direction of pixels included in the pixel row 151 is parallel to the spectral direction of the spectroscope 40 .
  • the orthogonal direction orthogonal to the spectral direction corresponds to the direction of the flow channel. Therefore, the signal light from the sample 710 flowing through the channel 501 is detected in the order of the pixel row 151, the pixel row 152, the pixel row 153, and the pixel row 154.
  • the flow speed is adjusted so that the speed at which the sample 710 flows through the channel 501 and the transfer speed of the signal charge between the pixel columns match.
  • the sample 710 exists at a position corresponding to the pixel column 151.
  • the CCD reads the signal charges generated by the pixels of the first pixel row 151 .
  • signal light from the sample 710 is detected by each pixel of the pixel array 151 .
  • the sample 710 flows through the channel 501 as shown in FIGS. In FIG. 27, the sample 710 has moved to a corresponding position between the pixel columns 151 and 152 . Signal charges read out from the pixels of the pixel row 151 are transferred to the pixel row 152 .
  • each pixel of the pixel row 152 generates a signal charge corresponding to the amount of light received.
  • signal light from sample 710 is detected by each pixel of pixel array 152 .
  • the CCD reads the signal charges generated by the pixels in the second pixel row 152 . Therefore, the signal charges generated in the pixels of the first pixel row and the signal charges generated in the pixels of the second pixel row 152 are integrated.
  • the integrated number of pixels is not limited to four.
  • the flow speed of the sample is adjusted to a speed corresponding to the signal charge transfer speed. Then, in the photodetector 50, signal charges of a plurality of pixels are integrated. Signal light L2 from the same sample 710 is accumulated in a plurality of pixel columns and detected. This enables measurement with a higher SN ratio.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本実施の形態にかかる分光測定装置(1)は、試料Sからの信号光が入射する検出用対物レンズと、信号光が通過するスリット(41)と、スリット(41)を通過した信号光を波長分散する波長分散素子と、波長分散素子で波長分散された信号光を検出する光検出器(50)と、試料における光検出器(50)の検出領域を走査する走査手段と、光検出器(50)の検出信号に基づいて、分光画像を生成する処理部(51)と、検出用対物レンズの側方から前記試料を照明する照明光学系(10)と、を備えている。

Description

分光測定装置、及び分光測定方法
 本発明は、分光測定装置、及び分光測定方法に関し、特に詳しくは試料で発生したラマン散乱光等の信号光を分光測定する分光測定装置、及び分光測定方法に関する。
 非特許文献1には、シート照明を励起光として、試料からのラマン散乱光を分光器で検出するラマンイメージング方法が開示されている。非特許文献1では、シリンドリカルレンズにより励起光がシート照明になっている。ラマン散乱光は対物レンズ、ノッチフィルタ、バンドパスフィルタなどを含む光学系により分光器まで伝播されている。励起光は、対物レンズを介さずに試料に照射されている。
”Optical sectioning using single-plane-illumination Raman imaging” Ishan Barman,a Khay Ming Tanb and Gajendra Pratap Singhb, J. Raman Spectrosc. 2010, 41, 1099-1101
 本開示は上記の点に鑑みなされたもので、背景光を低減することで、高いSN比で分光測定することができる分光測定装置、及び分光測定方法を提供することを目的とする。
 本実施形態にかかる分光測定装置は、試料からの信号光が入射する検出用対物レンズと、前記信号光が通過するスリット開口を有するスリットと、前記スリット開口を通過した信号光を波長に応じて分散する波長分散素子と、前記波長分散素子で分散された信号光を検出する二次元光検出器と、前記二次元光検出器の検出信号に基づいて、分光画像を生成する処理部と、前記検出用対物レンズの側方から照明光を前記試料に入射させる照明光学系と、を備えている。
 上記の分光測定装置は、前記試料又は前記照明光を走査する手段をさらに備えていてもよい。
 上記の分光測定装置は、前記試料を流路に流す手段をさらに備えていてもよい。
 上記の分光測定装置において、前記二次元光検出器の画素の配列方向と、前記波長分散素子の分散方向が斜めに傾いていてもよい。
 上記の分光測定装置において、前記スリットが複数のスリット開口を有するマルチスリットであってもよい。
 上記の分光測定装置において、前記スリット開口が、前記試料に入射する前記照明光の光軸方向と直交する方向又は平行な方向に沿って形成されていてもよい。
 上記の分光測定装置において、前記照明光学系が前記照明光をベッセルビーム、シート状照明、又はラティス照明として前記試料に集光していてもよい。
 上記の分光測定装置は、前記照明光を試料に集光する照明用対物レンズと、前記照明用対物レンズと前記試料との間に配置され、前記照明光を透過するフィルタとをさらに備えていてもよい。
 上記の分光測定装置は、前記照明光を前記試料に集光する照明用対物レンズと、前記試料において、前記照明光の光軸と平行な方向の偏光状態にする偏光制御素子とを、さらに備え、前記スリット開口が前記光軸の方向に沿って形成されていてもよい。
 上記の分光測定装置において、前記試料が流路を流れており、前記試料に入射する前記照明光の光軸が前記流路の方向と直交する方向であってもよい。
 上記の分光測定装置において、前記流路の少なくとも一面が信号光を反射する反射面となっていてもよい。
 上記の分光測定装置において、流路を流がれている前記試料からの信号光が前記二次元光検出器の異なる画素で検出されており、前記異なる画素からの検出信号を積算するようにしてもよい。
 上記の分光測定装置において、前記波長分散素子の波長分散方向と直交する方向において前記試料の細胞が前記二次元光検出器の1画素に対応する倍率で前記信号光が検出されていてもよい。
 上記の分光測定装置において、前記試料又は照明光が、前記検出用対物レンズの光軸に沿った方向に走査されていてもよい。
 本実施の形態にかかる分光測定方法は、検出用対物レンズの側方から試料を照明するステップと、前記検出用対物レンズに試料からの信号光が入射するステップと、前記信号光がスリットのスリット開口を通過するステップと、前記スリット開口を通過した信号光を波長分散素子により波長分散するステップと、二次元光検出器を用いて前記波長分散素子で波長分散された信号光を検出するステップと、前記二次元光検出器の検出信号に基づいて、分光画像を生成するステップと、を備えている。
 本発明によれば、背景光を低減することで、高いSN比で分光測定することができる分光測定装置、及び分光測定方法を提供することができる。
実施の形態1に係る分光測定装置の光学系を示す模式図である。 試料と対物レンズを模式的に示す斜視図である。 実施の形態2に係る分光測定装置の光学系を示す模式図である。 試料と対物レンズを模式的に示す斜視図である。 実施の形態3に係る分光測定装置の光学系を示す模式図である。 試料と対物レンズを模式的に示す斜視図である。 実施の形態3の変形例1に係る分光測定装置の光学系を示す模式図である。 実施の形態4に係る分光測定装置の光学系を示す模式図である。 試料と対物レンズを模式的に示す斜視図である。 実施の形態4の変形例2に係る分光測定装置の光学系を示す模式図である。 光検出器の受光面における波長分散方向を説明するための図である。 光学系の一例を示す図である。 -Z側に放出されたラマン散乱光を検出するための構成を示す図である。 -Z側に放出されたラマン散乱光を検出するための構成を示す図である。 実施例1~実施例4の構成を示す図である。 実施例5の構成を示す図である。 実施例6,実施例7の構成を示す図である。 実施例8の構成を示す図である。 実施例9の構成を示す図である。 照明光の偏光を制御する偏光制御素子を用いた構成を示す図である。 照明光と信号光の光軸が鉛直方向から傾いている例を示す図である。 照明光と信号光の光軸が鉛直方向から傾いている例を示す図である。 スリット方向と流路の方向の一例を示す模式図である。 スリット方向と流路の方向の一例を示す模式図である。 スリット方向と流路の方向の一例を示す模式図である。 流路を流れる試料と画素の動作を説明するための模式図である。 流路を流れる試料と画素の動作を説明するための模式図である。 流路を流れる試料と画素の動作を説明するための模式図である。
 以下に、本発明を適用可能な実施の形態が説明される。以下の説明は、本発明の実施形態を説明するものであり、本発明が以下の実施形態に限定されるものではない。説明の明確化のため、以下の記載は、適宜、省略及び簡略化がなされている。又、当業者であれば、以下の実施形態の各要素を、本発明の範囲において容易に変更、追加、変換することが可能であろう。尚、各図において同一の符号を付されたものは同様の要素を示しており、適宜、説明が省略される。
実施の形態1.
 実施の形態1にかかる分光測定装置とその測定方法について、図1、図2を用いて説明する。図1は、分光測定装置1の光学系を示す模式図である。図1では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図2は、対物レンズ31と試料Sとを模式的に示す図である。分光測定装置1は、照明光学系10と、駆動ステージ20と、検出光学系30と処理部51を備えている。なお、図2では駆動ステージ20を省略している。
 説明の簡便化のため、XYZ三次元直交座標系を用いて説明を行う。Z方向は検出方向である。よって、Z方向は、対物レンズ31の光軸と平行な方向である。XY平面は検出光の光軸と直交する平面であり、試料Sが配置されている面に平行な面である。Y方向は、試料Sに照射される照明光L1の光軸方向となっている。つまり、Y方向は、試料Sに照明光L1を集光するレンズ11の光軸と平行な方向である。
 照明光学系10は、照明光L1を試料Sに導くための光学系である。照明光学系10において、図示しない光源が照明光L1を発生する。照明光L1は、波長532nmのCW(Continuous Wave)光を放出するNd/YVO4レーザである。照明光学系10は、レンズ11を備えている。レンズ11は、照明光L1を試料Sに集光する照明用対物レンズとなっている。レンズ11の光軸は、Y方向と平行になっている。
 照明光L1は、対物レンズ31の側方から試料Sに照射されている。照明光L1は、ベッセルビームとなっている。例えば、照明光学系10は図示しないアキシコンレンズや空間変調器を用いてベッセルビームを形成してもよい。照明光L1は試料Sを励起する励起光である。試料Sにおいて、照明光L1で照明された領域から、ラマン散乱光が発生する。ラマン散乱光は、様々な方向に放出される。
 検出光学系30は、対物レンズ31、レンズ32,スリット41、レンズ42、グレーティング43、レンズ44、光検出器50を備えている。スリット41、レンズ42,グレーティング43、レンズ44、分光器40を構成する。検出光学系30は、試料Sで発生したラマン散乱光を光検出器50に導く。
 対物レンズ31は、検出用対物レンズである。対物レンズ31の光軸は、レンズ11の光軸と直交している。試料Sにおいて、対物レンズ31の方向、つまり、+Z方向に放出されたラマン散乱光が、対物レンズ31に入射する。対物レンズ31で集光されたラマン散乱光がレンズ32に入射する。対物レンズ31の焦点は、照明光L1の集光点と一致していてもよい。
 対物レンズ31からのラマン散乱光を信号光L2とする。レンズ32は、信号光L2をスリット41に集光する。スリット41には、Y方向を長手方向、X方向を短手方向(スリット幅方向)とするスリット開口を有している。スリット41は、対物レンズ31の焦点面と共役な位置に配置されている。共焦点効果により、高い分解能を得ることができる。
 スリット41を通過した信号光L2は、レンズ42で集光されて平行光束となる、レンズ42からの信号光L2は、グレーティング43に入射する。グレーティング43は、信号光L2を波長分散する波長分散素子である。グレーティング43は、波長に応じた回折角を有しており、信号光L2をスリットの長手方向(Y方向)から傾いた方向に波長分散する。分光器40の波長分散素子はグレーティング43に限らず、プリズム等を用いることが可能である。
 グレーティング43からの信号光L2は、レンズ44を介して光検出器50に入射する。レンズ44は、結像レンズであり、スリット開口の像を光検出器50の受光面に結像する。光検出器50は、CCD(Charge Coupled Device)カメラやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の二次元光検出器である。光検出器50は、例えば、X方向、及びY方向に沿って配列された複数の画素を有している。光検出器50のY座標が、スリット開口における位置に対応している。つまり、光検出器50のY座標は、試料SでのY方向位置に対応している。また、波長分散方向がY方向と直交する方向である場合、光検出器50のX座標が信号光L2の波長に対応している。
 試料Sは駆動ステージ20に載置されている。駆動ステージ20はXYZ方向に駆動可能な三次元可動ステージである。例えば、駆動ステージ20は、試料SをX方向に移動させる。これにより、試料Sにおける照明位置、及び試料Sにおける光検出器50の検出領域が走査される。スリット開口と直交する方向に、試料Sが走査されることで、試料Sの二次元領域からの信号光L2が検出される。もちろん、駆動ステージ20による走査に限らず、光学系を走査しても良い。
 処理部51は、パーソナルコンピュータなどの情報処理装置である。光検出器50は検出信号を処理部51に出力する。処理部51は、光検出器50の画素毎に検出信号の値をメモリなどに記憶する。処理部51は、検出信号を駆動ステージ20の走査位置と対応付ける。処理部51は、検出信号に基づいて分光画像を生成する。処理部51で所定の操作を行うことにより、ラマン分光画像を画面上に表示させることできる。また、処理部51は、分光画像のデータをメモリなどに記憶することができる。
 分光器40は、信号光L2を分光している。そして分光器40で分光された信号光L2が光検出器50で検出されている。よって、光検出器50の1フレームの画像は、スリット長手方向における位置と波長のデータとなる。そして、試料Sを載置する駆動ステージ20などを用いて、試料SをX方向に移動させる。これにより、試料Sにおける光検出器50の検出領域が走査される。つまり、試料Sをスリット長手方向と直交する方向に走査する。試料Sの二次元領域からのラマン散乱光を検出することができる。試料Sの二次元ラマン分光画像を撮像することができる。
 このように、照明光学系10は、対物レンズ31の側方から試料Sを照明する。照明光L1は対物レンズ31を介さずに試料Sに照射されている。対物レンズ31とレンズ11とが同軸となっていないため、試料や光学系からの背景光を減らすことができる。高いSN比で信号光L2を検出することが可能となる。さらに、高スループットでのラマン分光イメージングを実現することができる。
 例えば、ラマン散乱光の光量は、蛍光と比べて十数桁程度低い。また、照明光学系10や検出光学系30において、照明光の照射により試料以外でも蛍光、散乱光が発生することがある。例えば、対物レンズ、フィルタ、中間光学系等の各種光学素子においても、蛍光、ラマン散乱光が発生する。試料Sが生体サンプル、組織サンプル等の場合、試料Sの基板からも蛍光、ラマン散乱光が発生する。試料S以外からの蛍光、ラマン散乱光が背景光として検出されてしまうと、SN比が低下してしまう。さらに、試料Sの焦点面以外からも、蛍光、ラマン散乱光が発生する。
 よって、対物レンズ31の側方から試料Sを照明することで、照明光学系10や試料Sの基板で発生する背景光を低減することができる。つまり、照明光L1が検出光学系30における光学素子に照射されないため、背景光を抑制することができる。さらに、スリット41が試料Sと共役な位置に配置されている。したがって、共焦点効果により、試料Sの焦点面以外で発生した背景光が検出されるのを抑制することができる。本実施の形態により、高いSN比でのラマン分光イメージングを実現することができる。なお、検出光学系30には、エッジフィルタなどのフィルタを設けても良い。ラマン散乱光を透過し、照明光L1を遮光するフィルタを光路中に設けることで、SN比をさらに高くすることができる。
実施の形態2.
 実施の形態2について、図3、及び図4を用いて説明する。図3は、分光測定装置1の光学系を示す模式図である。図3では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図4は、対物レンズ31と試料Sとを模式的に示す斜視図である。図4では駆動ステージ20を省略している。
 実施の形態では、マルチビームにより照明を行っている。なお、マルチビーム照明以外の分光測定装置1の基本的な構成は、実施の形態1と同様であるため、説明を省略する。図3、図4では、3本のマルチビームを用いており、これらを照明ビームL11、L12、13として示している。そして、3本の照明ビームL11、L12、L13をまとめて、照明光L1として説明する。換言すると、照明光L1は、3本の照明ビームL11、L12、L13を備えている。もちろん、照明ビームの数は3本に限らず、2本であってもよく、4本以上であってもよい。
 照明ビームL11、L12、L13は、Y方向と平行な光軸に沿って伝搬している。X方向に3本の照明ビームL11、L12、L13が並んでいる。つまり、照明ビームL12の+X側に照明ビームL13があり、-X側に照明ビームL11がある。X方向において、照明ビームL11、L12、L13は試料Sの異なる位置を照明している。照明ビームL11、L12、L13はそれぞれベッセルビームとなっている。
 分光器40の入射側には、マルチスリット41Mが配置されている。マルチスリット41Mでは複数のスリット開口が設けられている。ここでは、マルチスリット41Mは、照明ビームの本数と同様に3つのスリット開口を有している。それぞれのスリット開口は、Y方向を長手方向としている。それぞれのスリット開口は、X方向を短手方向(幅方向)としている。そして、複数のスリット開口はX方向に並んで配置されている。対物レンズ31の焦点面は、マルチスリット41Mと共役な位置にある。
 よって、照明ビームL11で照明された領域からのラマン散乱光が1つ目のスリット開口を透過する。同様に、照明ビームL12で照明された領域からのラマン散乱光が2つ目のスリット開口を通過する。照明ビームL13で照明された領域からのラマン散乱光が3つ目のスリット開口を透過する。
 実施の形態1と同様に、駆動ステージなどが試料SをX方向に走査する。これにより、ラマン分光画像を得ることができる。本実施の形態においても、実施の形態1と同様に高いSN比でラマン散乱光を検出することができる。さらに、複数の領域からの信号光L2を同時に検出することができるため、分光測定の時間を短縮することができる。
実施の形態3.
 実施の形態3にかかる分光測定装置について、図5,及び図6を用いて説明する。図5は、分光測定装置1の光学系を示す模式図である。図5では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図6は、対物レンズ31と試料Sとを模式的に示す斜視図である。図6では駆動ステージ20を省略している。
 実施の形態3では、シート状照明を用いている。シート状照明を用いる点以外については、実施の形態1と同様であるため説明を省略する。例えば、分光器40の入射側には、1つのスリット開口を有するスリット41が設けられている。
 照明光L1は、Y方向を光軸方向として試料Sに入射している。照明光L1はX方向に広がったシート状照明光となっている。例えば、照明光学系10において、シリンドリカルレンズを用いることで、シート状照明を形成する。この場合、シリンドリカルレンズはZ方向に照明光L1を集光し、X方向には集光しない。照明光L1は、試料Sにおいて、X方向に広い領域が均一に照明される。つまり、対物レンズ31の視野よりも十分に広い領域が均一な照明光L1で照明される。
 そして、対物レンズ31に対する試料Sの相対位置をX方向に移動させる。例えば、試料Sを載置する駆動ステージをX方向に駆動する。あるいは、対物レンズ31を含む検出光学系30を移動させてもよい。これにより、試料Sにおける光検出器50の検出領域がX方向に変化する。試料Sの二次元領域からのラマン散乱光を検出することができる。ラマン分光画像を高いSN比で撮像することができる。
変形例1
 図7は実施の形態3を変形した変形例1にかかる分光測定装置1を示す図である。図7では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図7では、図5の構成に比べてスリット41の方向、及び波長分散方向が異なっている。具体的には、スリット41には、X方向を長手方向とするスリット開口が設けられている。スリット開口はY方向を幅方向としている。
 グレーティング43はX方向と傾いた方向に信号光L2を波長分散する。ここでは、グレーティング43が波長に応じて、Y方向に信号光L2を分散させる。試料Sに対する対物レンズ31の相対位置がY方向に移動する。これにより、XY方向の二次元領域からのラマン散乱光を検出することができる。実施の形態1~3と同様に、高いSN比で、ラマン分光画像を撮像することができる。シート状照明を用いた場合、試料Sを照明する方向、つまり、照明光L1の光軸方向をスリット開口と直交する方向にすることができる。
実施の形態4.
 実施の形態4にかかる分光測定装置について、図8,及び図9を用いて説明する。図8は、分光測定装置1の光学系を示す模式図である。図8では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図9は、対物レンズ31と試料Sとを模式的に示す斜視図である。なお、図8では、試料Sを省略している。
 実施の形態4では、実施の形態3と同様にシート状照明を用いている。したがって、X方向において、対物レンズ31の視野よりも十分に広い領域が照明されている。さらに、実施の形態4では、実施の形態2と同様にマルチスリット41Mを用いている。マルチスリット41Mは、複数のスリット開口を有している。それぞれのスリット開口は、Y方向を長手方向としている。そして、複数のスリット開口がX方向に並んで配置されている。
 対物レンズ31に対する試料Sの相対位置をX方向に移動する。これにより、XY方向の二次元領域からのラマン散乱光を検出することができる。実施の形態1~3と同様に、高いSN(Signal to Noise)比で、ラマン分光画像を撮像することができる。さらに、複数の領域からの信号光L2を同時に検出することができるため、分光測定の時間を短縮することができる。
変形例2
 図10は実施の形態4を変形した変形例2にかかる分光測定装置1を示す図である。図10では、左側にYZ平面図が示され、右側にXZ平面図が示されている。図10では、図8の構成に比べてマルチスリット41Mの方向、及び波長分散方向が異なっている。具体的には、マルチスリット41Mには、X方向を長手方向とするスリット開口が設けられている。スリット開口はY方向を幅方向としている。複数のスリット開口がY方向に並んで配置されている。
 グレーティング43はX方向と傾いた方向に信号光L2を波長分散する。ここでは、グレーティング43が波長に応じて、Y方向に信号光L2を分散させる。試料Sに対する対物レンズ31の相対位置がY方向に移動する。これにより、XY方向の二次元領域からのラマン散乱光を検出することができる。実施の形態1~3と同様に、高いSN比で、ラマン分光画像を撮像することができる。シート状照明を用いた場合、試料Sを照明する方向、つまり、照明光L1の光軸方向をスリット開口と直交する方向にすることができる。
 上記の実施の形態1~4とその変形例では、対物レンズ31の側方から照明光L1を試料Sに照射させている。つまり、照明光L1と信号光L2とが同軸になっておらず、対物レンズ31を介さず、照明光L1が試料Sに照射する。これにより、高いSN比でラマン散乱光を検出することができる。
(波長分散方向)
 上記の実施の形態とその変形例に適用可能な波長分散方向と画素配列方向の一例について、図11を用いて説明する。図11は、マルチスリット41Mと、光検出器50の受光面を示している。
 マルチスリット41Mは、5つのスリット開口A1~A5を備えている。ここでは、スリット開口A1~A5のそれぞれがY方向を長手方向としている。つまり、X方向がスリット開口A1~A5の短手方向(幅方向)となっている。5つのスリット開口A1~A5がX方向に並んでいる。
 光検出器50の受光面では、X方向、及びY方向に沿って画素が配列されている。そして、波長分散方向をX方向、及びY方向から傾いた斜め方向とする。したがって、スリット開口A1~A5を通過した検出光が検出される検出領域B1~B5が平行四辺形となる。例えば、スリット開口A1を通過した信号光L2が検出領域B1に分散される。同様に、スリット開口A2~A5を通過した信号光L2が検出領域B2~B5にそれぞれ分散される。
 検出領域B1~B5は、Y方向と平行な2辺を有しており、残りの2辺がX方向から傾いている。X方向から傾いた2辺の方向がグレーティング43による分散方向となる。検出領域B1~B5のそれぞれにおいて、波長分散方向がX方向から傾いている。このようにすることで、測定可能な波長範囲を広げることができ、波長方向におけるデータ数を増やすことができる。なお、検出領域B1~B5は、それぞれ重複しないように設定されている。例えば、検出領域B1の長波長(λn)側と検出領域B2の短波長(λ1)側とがずれている。
(光学系)
 図12は、照明光学系10と検出光学系30の一例を示す図である。図12では、照明領域を走査する光学系の一例が示されている。つまり、光スキャナ108が、照明光L1を偏向させることで、試料Sにおける照明領域が走査される。
 照明光学系10は、光源101、レンズ102~104、レンズ105、ミラー106、ダイクロイックミラー107、光スキャナ108、レンズ109、ダイクロイックミラー110,ミラー111、レンズ112、レンズ113を備えている。
 光源101は、例えば、レーザ光源であり、単色の照明光L1を発生する。照明光L1は、レンズ102~105を介して、ミラー106に入射する。なお、レンズ104は、アキシコンレンズやシリンドリカルレンズとなっている。例えば、実施の形態1、2のように、照明光L1をベッセルビームとする場合、レンズ104がアキシコンレンズとなる。あるいは、実施の形態3、4のように、照明光L1をシート状照明とする場合、レンズ104がシリンドリカルレンズとなる。
 ミラー106は、ダイクロイックミラー107に向けて、照明光L1を反射する。ダイクロイックミラー107は、照明光L1を反射し、ラマン散乱光を透過する波長特性を有している。ダイクロイックミラー107で反射した照明光L1は、光スキャナ108に入射する。光スキャナ108は、例えば、ガルバノミラーであり、照明光L1をX方向に偏向する。これにより、試料Sにおいて照明光L1が走査される。
 光スキャナ108で反射した照明光L1は、レンズ109を介して、ダイクロイックミラー110に入射する。ダイクロイックミラー110は、照明光L1を反射し、ラマン散乱光を透過する波長特性を有している。ダイクロイックミラー110で反射した照明光L1は、ミラー111に入射する。ミラー111で反射した照明光L1は、レンズ112,レンズ113を介して、試料Sに入射する。レンズ113は、照明用対物レンズである。
 試料Sにおいて、照明光L1で照明された領域からはラマン散乱光が発生する。ラマン散乱光を検出するための検出光学系30について説明する。検出光学系30は、対物レンズ301、ミラー302,レンズ303、ダイクロイックミラー110、レンズ109と、光スキャナ108、ダイクロイックミラー107、レンズ310、及び分光器40を備えている。ダイクロイックミラー110,レンズ109、光スキャナ108は、検出光学系30と照明光学系10と共通となっている。
 上記したように、検出光学系30の対物レンズ301の側方から照明光L1が試料Sに入射している。試料Sで発生したラマン散乱光は、対物レンズ301に入射する。対物レンズ301からのラマン散乱光を信号光L2とする。信号光L2はミラー302で反射される。ミラー302からの信号光L2は、レンズ303を介して、ダイクロイックミラー110に入射する。
 ダイクロイックミラー110は、波長に応じて、信号光L2と照明光L1の光路を分岐するビームスプリッタである。ダイクロイックミラー110を透過した信号光L2は、レンズ109を介して、光スキャナ108に入射する。光スキャナ108は、信号光L2をデスキャンする。光スキャナ108で反射した信号光L2は、ダイクロイックミラー107に入射する。
 ダイクロイックミラー107は、波長に応じて、信号光L2と照明光L1の光路を分岐するビームスプリッタである。ダイクロイックミラー107を透過した信号光L2は、レンズ310に入射する。レンズ310は結像レンズであり、試料Sを分光器40のスリット41に結像する。スリット41のスリット開口を通過した信号光L2は、分光器40で波長分散される。分光器40で分散された光検出器50で検出される。
 このような構成であっても、実施の形態と同様に高いSN比でラマン散乱光を検出する。さらに、光スキャナ108を用いて、試料Sにおける照明位置を走査することができる。
(4π検出)
 上記の説明では、+Z方向に放出されたラマン散乱光を検出しているが、+Z方向だけでなく、-Z方向に放出されたラマン散乱光を検出する例について、説明する。+Z方向及び-Z方向に放出するラマン散乱光を検出する構成を4π検出とする。
 図13は、試料Sの周辺を模式的に示す側面図である。ここでは、照明光L1がベッセルビームとなっている。試料Sは、例えば、スフェロイド、オルガノイドである。照明光L1で照明された領域からは様々な方向にラマン散乱光が発生する。試料Sから+Z方向に発生したラマン散乱光をラマン散乱光LSuとし、-Z方向に発生したラマン散乱光をラマン散乱光LSdとする。
 また、試料Sの+Z側と-Z側にそれぞれ検出用の対物レンズ31が配置されている。試料Sの+Z側にある対物レンズ31を対物レンズ31uとし、-Z側にある対物レンズ31を対物レンズ31dとして図示している。対物レンズ31uと対物レンズ31dとの間に試料Sが配置されている。つまり、対物レンズ31uと対物レンズ31dとは同軸になっている。
 ラマン散乱光LSuは、対物レンズ31uに入射する。対物レンズ31uからのラマン散乱光LSuを信号光L2uとする。信号光L2uは、上記の実施形態と同様に、分光器40で分光されて、検出される。
 ラマン散乱光LSdは、対物レンズ31dに入射する。対物レンズ31dからのラマン散乱光LSdを信号光L2dとする。信号光L2dは、上記の実施形態と同様に、分光器40で分光されて、検出される。例えば、信号光L2u、信号光L2dのそれぞれに対して検出光学系30が設けることができる。このようにすることで、ラマン散乱光の検出光量をほぼ2倍に増やすことができる。
 対物レンズ31u、31dの側方から照明光L1が試料Sに入射している。つまり、照明光L1の光軸が、対物レンズ31uと対物レンズ31dの間の空間を通っている。このようにすることで、高いSN比での検出を行うことができる。ここでは、照明光L1の光軸がY軸と平行になっている。また、高NA、低倍率、広視野の対物レンズを用いることができる。
 図14は、4π検出の別の例を模式的に示す側面図である。図14では、試料Sが基板400の上に配置されている。基板400は、例えば、ステンレス製の金属基板であり、高い光反射率を有している。基板400の主面は、XY平面と平行になっている。基板400の+Z側の面に試料Sが配置されている。試料Sは、例えば細胞シートや基板400上の分子、バクテリアである。対物レンズ31は基板400の+Z側のみに配置されている。
 照明光L1は対物レンズ31の側方から試料Sに照射される。照明光L1の光軸はY方向からわずかに傾いている。例えば、XZ平面視において、照明光L1は-Z方向に進む。照明光L1は、シート状照明とすることができる。
 試料Sからは、ラマン散乱光が様々な方向に放出される。-Z方向に進むラマン散乱光は基板400に入射する。基板400は-Z方向に向かうラマン散乱光を反射する。基板400で反射されたラマン散乱光は、+Z方向に進み、対物レンズ31に入射する。したがって、+Z方向だけでなく、-Z方向に発生したラマン散乱光を対物レンズ31に入射させることができる。対物レンズ31からの検出光は、上記の検出光学系30により、分光器40まで導かれる。このようにすることで、ラマン散乱光の検出光量をほぼ2倍に増やすことができる。また、高NA、低倍率、広視野の対物レンズを用いることができる。
 さらに、-Z側に発生したラマン散乱光と、+Z側に放出されたラマン散乱光とで、共通の検出光学系が用いられる。よって、装置構成を簡素化することができる。なお、図14の構成においても、対物レンズ31の側方から照明光L1が試料Sに照射されている。なお、シート状の照明光L1の光軸は、Y方向から傾いていてもよい。例えば、対物レンズ側(+Z側)から照明光L1が試料Sに照射されていてもよい。
実施例
 以下、本実施形態の実施例について、図15を用いて説明する。図15は、試料を保持する流路チップ500を模式的に示すYZ平面図である。ここでは、試料が流路501~504を流れる流体としている。例えば、流路チップ500は、マイクロチャネルが形成されたマイクロ流路チップである。流路501~504に生体サンプルを流すことができる。例えば、流路501~504には、試料となる細胞やバクテリアが流れている。たとえば、流路に流す試料は、高速液体クロマトグラフィー(HPLC)を経て出射される、成分ごとにわかれたものや、フローサイトメトリーの工程の一部に組み込むという形態でも良い。
 流路チップ500には、X方向に沿って流路501~504が形成されている。流路501~504のそれぞれは、X方向を試料の流路方向とするマイクロチャネルとなっている。流路501~504のYZ断面形状は、矩形となっている。
 X方向に流れる液体の試料に照明光L1が照射される。Y方向に沿って照明光L1が流路501に入射している。つまり、照明光L1の光軸方向と試料の流路方向とが直交している。照明光L1をシート状照明とすることで、流路方向において幅広い領域が照明される。スリット41のスリット開口の長手方向は、Y方向とすることができる。よって、流路方向に幅広い領域を検出領域とすることができる。照明光L1の光軸方向、スリット方向、流路方向は上記の例に限定されるものではない。また、照明光L1を1本又は複数本のベッセルビームとしても良い。
 流路チップ500において、流路501~504に隣接して反射素子12が設けられている。反射素子12は、流路チップ500に保持されている。レンズ11で集光された照明光L1が反射素子12に入射する。
 反射素子12は、金属反射面を有するミラーとして機能する。例えば、反射素子12の反射面は、平面となっており、Z軸から45°傾いている。また、流路チップ500の下側にレンズ11が配置されている。なお、反射素子12の反射面は、照明光L1を試料に集光するように凹面となっていてもよい。また、レンズ11の光軸はZ方向と平行になっている。したがって、反射素子12は、レンズ11からの照明光L1を流路501~504に向けて反射する。これにより、流路501~504を流れる試料が照明されて、ラマン散乱光が発生する。
 以下に示す実施例の基本的な構成は、上記の実施形態と同様であるため、図示を省略すると共に、適宜、説明を省略する。流路501~504がそれぞれ実施例1~4を示している。以下、各実施例について説明する。
(実施例1)
 流路501で示される実施例1について説明する。照明光L1は、流路501の中心に集光されている。照明光L1が流路501に流れる試料に照射されると、ラマン散乱光LSu、LSdが発生する。図13と同様に、図13と同様にラマン散乱光LSuは+Z方向の発生したラマン散乱光であり、ラマン散乱光LSdは、-Z方向に発生したラマン散乱光である。そして、流路チップ500の両側にそれぞれ検出光学系30(図15では不図示)を設ける。このようにすることで、様々な方向に放出されたラマン散乱光を検出することができる。
(実施例2)
 流路502で示される実施例2について説明する。照明光L1は、流路501の中心に集光されている。照明光L1が流路501に流れる試料に照射されると、ラマン散乱光LSu、LSdが発生する。流路502の-Z側には、反射鏡322が配置されている。反射鏡322は、流路チップ500の下側に配置されている。反射鏡322は、球面鏡又は楕円面鏡などの凹面鏡となっている。-Z側に反射されたラマン散乱光LSdが反射鏡322に入射すると、+Z方向に反射される。よって、図14と同様に、流路502の+Z側のみに対物レンズ31(図15では不図示)を配置すればよい。ラマン散乱光LSuとラマン散乱光LSdとで検出光学系を共通化できるため、装置構成を簡素化できる。
(実施例3)
 流路503で示される実施例3について説明する。照明光L1が試料全体を照明している。例えば、照明光L1の集光位置が流路503から+Y方向にずれている。よって、流路503の広い領域からラマン散乱光が発生する。このようにすることで、より広い領域からのラマン散乱光を検出することができる。こうすることでZ方向に厚みのある試料からの信号光を効率よく検出することができる。
 また、流路503の-Z側の一面が金属反射面323となっている。したがって、-Z側に放出されたラマン散乱光LSが金属反射面323で反射される。そして、金属反射面323で反射されたラマン散乱光LSは、+Z方向に進む。実施例2と同様に、流路502の+Z側のみに対物レンズ31(図15では不図示)を配置すればよい。したがって、実施例2と同様に、装置構成を簡素化できる。
(実施例4)
 流路504で示される実施例4について説明する。実施例4では、流路504の二面がダイクロイックミラー324として機能している。照明光L1の入射側にはる入射面と、出射側にある出射面がダイクロイックミラー324となっている。ダイクロイックミラー324は、励起光である照明光L1を透過して、ラマン散乱光を反射する。+Y方向、又は-Y方向に放出されたラマン散乱光がダイクロイックミラー324で反射される。
 -Z方向成分を有するラマン散乱光は、ダイクロイックミラー324及び金属反射面323で反射される。よって、流路504から+Z方向に取り出される。このようにすることで、+Y方向成分の大きいラマン散乱光を対物レンズ31(図15では不図示)に入射することができる。つまり、Y方向成分がZ方向成分よりも大きいラマン散乱光を検出することができる。よって、実施例2,3よりも光検出器での検出光量を高くすることができる。
(実施例5)
 図16は実施例5の流路505を示す図である。実施例5では、流路505の断面形状が曲面となっている。すなわち、YZ平面視において、流路505が楕円形となっている。流路505の内周面が金属反射面525となっている。流路505の+Z側が取出し部505aとなっている。よって、流路505が積分球として機能する。様々な方向に放出されたラマン散乱光が金属反射面525で反射して、取出し部505aから取り出される。これにより、光検出器での検出光量を高くすることができる。なお、照明光L1が通過する部分は、照明光を透過するように構成する。
(実施例6)
 図17は、実施例6に対応する流路506と、実施例7に対応する流路507とを示すYZ平面図である。まず、実施例6について説明する。流路チップ500には、流路506が形成されている。流路506は、X方向に沿って形成されている。照明光L1はシート状照明となっている。流路506の真上には、スリット41が設けられている。スリット41は、流路チップ500の上に載せられている。この構成では、図示しない検出用対物レンズと試料Sとの間にスリット41が配置されていてもよい。
 スリット41は、流路506の方向に沿って形成されている。つまり、スリット41のスリット開口は、X方向を長手方向とし、Y方向を短手方向(スリット幅方向)としている。スリット41のスリット開口部には、フィルタ38が設けられている。フィルタ38は、照明光L1を遮光し、ラマン散乱光を透過する。なお、フィルタ38は、スリット41と流路506との間に設けられているが、スリット41よりも分光器40側に配置されていてもよい。
 このように実施例では、検出用対物レンズよりも試料側にスリット41が設けられている。よって、検出光学系の途中に結像光学系を設ける必要がなくなる。よって、装置構成を簡素化することができる。もちろん、スリット41をマルチスリット41Mとしてもよい。
(実施例7)
 実施例7にかかる流路507では、実施例6の構成に対して集光素子527が追加されている。具体的には、流路507の上に集光素子527が設けられている。集光素子527は、ラマン散乱光を集光するレンズとして機能する。集光素子527で集光されたラマン散乱光がスリット41に入射する。例えば、集光素子527は、流路チップ500内に設けられている。あるいは、流路507の+Z側の部分を曲面とすることで、流路チップ500内に、集光素子527を実装することができる。集光素子527は、X方向を長手方向とするシリンドリカルレンズであってもよい。
 このようにすることで、検出NAを大きくすることができる。よって、空間分解能を高くすることができる。さらに、分光器40の分光光学系の入射NAを小さくすることができる。
(実施例8)
 図18は、実施例8を示すYZ平面図である。実施例8では、流路508の近傍にフィルタ16が設けられている。フィルタ16は、例えば、照明光L1となるレーザ光のレーザ波長を透過するレーザラインフィルタやバンドパスフィルタである。フィルタ16は、反射素子12と流路508との間に配置されている。照明用対物レンズであるレンズ11と試料との間の光路中にフィルタ16が配置されている。このように、レンズ11と試料との間にフィルタ16を設けることで、レーザ波長以外の光が試料に入射することを防ぐことができる。レーザ波長の光のみでラマン散乱光が発生する。よって、信号光のノイズを低減することができ、適切にラマン分光測定を行うことができる。
(実施例9)
 図19は、実施例9を示すYZ平面図である。実施例9においても、試料Sとレンズ11との間にフィルタ16が配置されている。レンズ11は、上記のように試料Sに照明光L1を集光する照明用対物レンズである。レンズ11の光軸は、Y方向と平行になっている。レンズ11によって集光された照明光L1がフィルタ16を介して、試料Sに入射する。例えば、照明光L1となるレーザ光のレーザ波長を透過するレーザラインフィルタやバンドパスフィルタである。フィルタ16は厚さ300μm程度となっている。このような構成によっても、レーザ波長以外の光が試料に入射することを防ぐことができる。レーザ波長の光のみでラマン散乱光が発生する。よって、信号光のノイズを低減することができ、適切にラマン分光測定を行うことができる。
(偏光状態)
 次に、照明光L1の偏向状態の一例について、図20を用いて説明する。図20は、試料周辺の構成を示すYZ平面図であり。照明光L1の偏光状態を模式的に示している。ここでは、試料に集光される照明光L1が、照明光L1の光軸(Y方向)と平行な偏光状態となっている。照明光L1はシート照明となっている。また、スリット41のスリット開口は、Y方向と平行になっている。
 レンズ11と、試料Sとの間には、偏光制御素子17が配置されている。偏光制御素子17は、分割波長板である。偏光制御素子17は、2分割であることが望ましい。さらに、照明光L1は、レンズ11で集光されている。よって、レンズ11の焦点位置では、照明光L1は、その光軸方向に大きな電場成分を作り出すことができる。つまり、検出位置において、照明光L1の偏光方向が光軸方向と平行になる。なお、偏光制御素子17は、レンズ11よりも光源側に配置されていてもよい。
 このようにすることで、スリット41に入射する信号光L2はスリット開口と平行な偏光成分が大きくなる。グレーティング43に入射する信号光L2において、P偏光成分が大きくなる。例えば、グレーティング43に入射する信号光L2がP偏光の時、グレーティング43の溝方向と電場ベクトルの振動方向が平行になり、S偏光の時、溝方向と電場ベクトルの振動方向が直交する。よって、グレーティング43の回折効率を高くすることができる。グレーティングの特性や、観察対象となる波長領域によって偏光特性が異なってくるため、条件に応じて偏光を制御する。
 上記の実施の形態、変形例、実施例のそれぞれは適宜組み合わせて用いることができる。例えば、シート状照明、ベッセルビーム、マルチビームのいずれについても、光路中にフィルタ16を用いても良い。シート状照明、ベッセルビーム、マルチビームのいずれについても、4π検出を行ってもよい。実施の形態、変形例、実施例の2つ以上を適宜組み合わせても良い。
 また、ベッセルビーム、シート照明に限らず、ラティス照明を用いてもよい。ラティス照明を用いることで、試料Sを格子状の照明パターンで照明することができる。また、信号光L2の光路中に照明光L1の波長の光を遮光し、ラマン散乱光を透過するエッジフィルタを配置してもよい。
 さらに流路内を流れている試料を分光測定する場合、例えば、以下の3つの露光方法を用いることができる。
1)流路内の試料を止めて計測し、計測終了後に流して次の試料を測定する。
2)流路に試料を流しながら測定する。このとき、CCDカメラのチャージシフト速度と流路内の試料の流速を同じにして、同一試料からの信号光を単一の画素に積算する。
3)流路に試料を流しながら測定する。このとき、短い露光時間で複数回測定した後、データ処理により、単一試料の信号を積算する。測定時間における試料の場所は、レイリー散乱などの顕微観察で計測しておく。この計測結果を基に、同一試料からのラマンデータをCCD上で抽出して積算する。光検出器50の異なる画素で同一試料からの信号光が検出される。つまり、流路を流れる同一試料からの信号光が光検出器50で複数回検出される。光検出器50の異なる画素の検出信号を積算して、同一試料からのラマン散乱光とする。
 流体内の細胞あるいはバクテリアを観察するときは読み出しノイズを減らすことが有効である。細胞(バクテリア):カメラの画素=1:1に近い総合倍率にすることが好ましい。試料の細胞が光検出器50の1画素に対応している。例えば、装置全体の倍率が1倍の時は、細胞直径、20μmと仮定すると、細胞は(1×n)画素に収まるようになる。nは2以上の整数であり、ラマン散乱光の分散方向の画素数に相当する。CCDカメラとして、例えば、テレダイン社PIXIS400B、1画素20μm四方を用いることができる。細胞の大きさや目的によって倍率は変更できる。他にも、例えば装置全体の倍率5倍程度で観察した場合には、細胞直径、20μmと仮定すると、細胞は(5×n)画素に収まるようになる。総合倍率を下げることでSN比の向上を図ることができる。光検出器50の1画素が試料の細胞に対応している。例えば、細胞が1画素のサイズと同等になって検出されるように、対物レンズ31などの倍率を決定すればよい。
 ここで、光検出器50は分光器40で分散された信号光を検出している。したがって、光検出器50の受光面では、細胞からの信号光が分散方向に拡がる。光検出器50の1画素が試料の細胞に対応するような倍率が設定されていたとしても、分散方向では、細胞からの信号光が複数の画素で検出される。光検出器50の(1×n)個の画素で細胞からの信号光が検出される。換言すると、分散方向と直交する方向において、細胞からの信号光は光検出器50の1つの画素で検出される。波長分散素子の波長分散方向と直交する方向において試料の細胞が光検出器50の1画素に対応するような倍率で信号光L2が検出されていることが好ましい。波長分散方向と直交する方向において、細胞が5画素以下に収まるような倍率で測定することが好ましく、1画素以下に収まるような倍率で測定することがさらに好ましい。
 また、照明光L1が、検出用の対物レンズ31の光軸方向に走査されていてもよい。例えば、流路を流れる試料の場合、画像を取得するのではなく、試料全体のスペクトルを取得することも可能である。この場合、高さ方向(検出用の対物レンズ31の光軸方向)にも一様に照明したいため、側方照明をその方向に高速走査しながら、細胞全体を照明する。例えば、図1~図10などの構成において、Z方向に照明光L1を走査する。
 上記の説明では、試料又は照明光を走査しながら分光測定を行ったが、試料又は照明光を走査しなくてもよい。例えば、試料を流路に流しながら測定を行ってもよい。つまり、試料又は照明光を走査する手段の代わりに、試料を流路に流す手段があってもよい。
 また、図12では、レンズ113の光軸が水平方向と平行であり、対物レンズ301の光軸が鉛直方向と平行であるが、光軸は水平方向、及び鉛直方向から傾いていても良い。照明光及び検出光の光軸は水平方向、及び鉛直方向が傾いている構成の一例を図21に示す。
 図21では、ディッシュ600内に水601が貯留されている。さらに、ディッシュ600内には、試料Sを保持する試料基板603が配置されている。試料基板603の上に試料Sが載置されている。
 ディッシュ600の上側に対物レンズ31とレンズ11とが配置されている。対物レンズ31とレンズ11とが試料Sの斜め上方に配置されている。試料Sの斜め上方から照明光L1が試料Sに照射されている。レンズ11からの照明光L1は水中を伝播して、試料Sに入射する。また、試料Sで発生して斜め上方に進むラマン散乱光が対物レンズ31に入射する。試料Sからのラマン散乱光は、水中を伝播して、対物レンズ31に入射する。
 照明光及び検出光の光軸は水平方向、及び鉛直方向が傾いている構成の別の一例を図22に示す。図22では、ディッシュ600内に水601が貯留されている。さらに、ディッシュ600内に試料Sが配置されている。ディッシュ600はガラスなどの透明材料で形成されている。
 対物レンズ31とレンズ11とがディッシュ600の下方に配置されている。つまり、試料Sの斜め下方から照明光L1が試料Sに照射されている。レンズ11からの照明光L1のディッシュ600の底部を透過して試料Sに入射する。また、試料Sで発生して斜め下方に進むラマン散乱光が対物レンズ31に入射する。試料Sからのラマン散乱光は、ディッシュ600の底部を透過して対物レンズ31に入射する。
 なお、上記の実施の形態では、主として、信号光がラマン散乱光であるとして説明したが、信号光は、ラマン散乱光以外の光であってもよい。したがって、本実施の形態にかかる分光測定装置は、ラマン分光以外の分光測定装置であってもよい。例えば、励起光によって励起される蛍光を検出する分光測定装置や、赤外吸収スペクトルや近赤外吸収スペクトルを測定する分光測定装置であってもよい。これらの分光測定装置でも、高いSN比で、スペクトルの測定を行うことができる。特に、高速計測や繰り返し計測を求められる分光測定装置に好適である。分光測定装置の用途は、イメージングに限られるものではない。試料が溶液などの一様な試料の場合は広い面積を同時に計測できるので信号量が増し、測定時間を短くできる。この場合計測されたスペクトルは積算される。
 分光測定装置1は自発ラマン散乱光を分光測定することができる。また、分光測定装置1は誘導ラマン散乱光を分光測定してもよい。誘導ラマン散乱光を測定する場合、ポンプ光とストークス光を試料に照射してもよい。つまり、異なる波長の2つのレーザ光源が用いられる。この場合、ポンプ光とストークス光が側方から試料に照射されるように配置すればよい。
 次に、図23~図25を用いて、スリットの方向に対する流路の方向について説明する。図23~図25は、流路チップ500に設けられた流路501を模式的に示す図である。図23は、スリットの長手方向が流路501の方向と平行の場合の構成を模式的に示す図である。図24は、スリットの長手方向が流路501の方向から傾いている場合の構成を模式的に示す図である。図25は、流路501が蛇行している構成を模式的に示す図である。
 図23~図25はスリットのスリット開口A1を流路チップ500上に投影して示している。図23~図25において、スリット開口A1の長手方向がX方向と平行になっている。つまり、スリット開口A1の幅方向がY方向となっている。スリット開口A1に対応する領域が流路501の検出領域となる。また、照明方向がY方向と平行になっている。紙面と直交するZ方向が対物レンズの光軸と平行になる。
 図23では、測定対象の試料710、711が流路501内を流れている。ここで、試料710、711は、細胞などの生体試料とすることができる。流路501には、試料710、711を流すための流体が供給されている。図23では、流路501はX方向に沿って設けられている。よって、試料710、711がX方向に流れていく。
 図23では、スリット開口A1の長手方向と、流路501の方向が平行となっている。図24では、スリット開口A1の長手方向が、流路501の方向から傾いている。つまり、流路501の方向が、X方向及びY方向から傾いている。
 図24では、試料710がスリット開口A1に対応する検出領域を横切るように流路501を流れていく。よって、図24の構成では、試料710のより広い範囲からの信号光を検出することができるようになる。例えば、スリット開口A1の幅に対応するサイズよりも流路501の幅が広くなっていると仮定する。図23に示すように、Y方向において流路501の中心からずれて流路501を流れている試料711があるとする。この場合、試料711の一部からの信号光のみしか検出することができない。
 図24の構成では、いずれの試料710も、スリット開口A1に対応する検出領域を横切ることができる。よって、試料710の全体がスリット開口A1に対応する検出領域を通過する。試料710がスリット開口A1を横切る間、光検出器50が信号光を検出することで、試料710のより広い範囲からの信号光を測定することができる。
 図25では、流路501が蛇行するように曲げられている。流路501を流れる試料710がY方向に往復する。つまり、試料710は、流路501に沿って、+Y方向及び-Y方向に交互に流れていく。試料710がスリット開口A1に対応する検出領域を繰り返し横切るように、流路501を流れていく。このようにすることで、試料710の分光測定を繰り返し行うことができる。
 さらに、図25に示すように、流路チップ500の少なくとも一部に冷却領域702を設けるようにしてもよい。冷却領域702では流路チップ500が冷却されている。たとえば、冷却領域702では冷媒など冷却手段が流路チップ500に接触している。このようにすることで、試料710である細胞を冷却しながらの分光測定が可能となる。よって、試料710への光ダメージを低減することができる。
 さらに、流路501の途中に、支流703が設けられていてもよい。支流703から溶液などを供給することで、試料710の流速を変えることができる。つまり、流速を変えて測定を行うことができる。
 さらに、試料710と反応する溶液や薬剤を支流703から供給してもよい。このようにすることで、反応によるスペクトルの変化を測定することが可能となる。つまり、反応前、反応途中、反応後のスペクトルを測定することができる。
 次に、同一試料からの信号光を画素に積算する方法について。図26~図28を用いて説明する。図26~図28は流路501を流れる試料710と光検出器50の画素の動作を示す模式図である。試料710は流路501を流れる細胞などである。試料710は、溶液などの流体とともに流路501を流れていく。図26~図28に示すようにスリット方向と分光方法は直交する方向になっている。
 また、図26~図28では、光検出器50の4列分の画素列が模式的に示されている。1列目の画素を画素列151としている。同様に、2列目、3列目、4列目の画素列を画素列152~154としている。ここでは、CCDカメラのチャージシフト速度と流路内の試料の流速を同じにしている。
 1つの画素列でラマンスペクトルが測定される。つまり、画素列151に含まれる画素の配列方向が分光器40の分光方向と平行になっている。分光方向と直交する直交方向が、流路の方向に対応している。したがって、流路501を流れる試料710からの信号光は、画素列151,画素列152、画素列153、画素列154の順番で検出される。
 ここで、試料710が流路501を流れる速度と、画素列間の信号電荷の転送速度とが一致するように、流速を調整する。例えば、図26では、試料710が画素列151に対応する位置に存在している。画素列151の画素では、受光量に応じた信号電荷が発生する。そして、CCDが1列目の画素列151の画素が発生した信号電荷を読みだす。図26では、試料710からの信号光が画素列151の各画素で検出される。
 試料710が図27,図28に示すように流路501を流れていく。図27では、試料710が画素列151と画素列152との間に対応する位置に移動している。画素列151の画素で読み出された信号電荷が、画素列152に転送される。
 そして、図28に示すように、試料710が画素列152に対応する位置に移動する。すると、画素列152の各画素が受光量に応じた信号電荷を発生する。図28では、試料710からの信号光が画素列152の各画素で検出される。CCDが2列目の画素列152の画素が発生した信号電荷を読みだす。したがって、1列目の画素列の画素で発生した信号電荷と、2列目の画素列152の画素で発生した信号電荷が積算される。
 このようにすることで、複数の画素で発生した信号電荷を積算することができる。つまり、4列分の画素列151~154の信号電荷が波長毎に積算される。分光方向と直交する方向における画素アドレスが異なったとしても、同じ試料710からの信号光が検出される。よって、SN比を向上することができる。もちろん、画素の積算数は、4つに限定されるものではない。
 このように、流路501内を流れる試料710を分光測定する場合、試料の流速を信号電荷の転送速度と対応する速度に調整する。そして、光検出器50において、複数の画素の信号電荷を積算していく。同じ試料710からの信号光L2が複数の画素列で蓄積されて、検出される。これにより、より高いSN比での測定が可能となる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限られたものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
 この出願は、2021年2月4日に出願された日本出願特願2021-16751を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1 分光測定装置
 10 照明光学系
 11 レンズ
 16 フィルタ
 17 偏光制御素子
 30 検出光学系
 31 対物レンズ
 32 レンズ
 40 分光器
 41 スリット
 42 レンズ
 43 グレーティング
 44 レンズ
 50 光検出器
 51 処理部
 101 光源
 102~105 レンズ
 106 ミラー
 107 ダイクロイックミラー
 108 光スキャナ
 109 レンズ
 500 流路チップ
 501~508 流路
 702 冷却領域
 703 支流
 710 試料
 L1 照明光
 L2 信号光

Claims (15)

  1.  試料からの信号光が入射する検出用対物レンズと、
     前記信号光が通過するスリット開口を有するスリットと、
     前記スリット開口を通過した信号光を波長に応じて分散する波長分散素子と、
     前記波長分散素子で波長分散された信号光を検出する二次元光検出器と、
     前記二次元光検出器の検出信号に基づいて、分光画像を生成する処理部と、
     前記検出用対物レンズの側方から照明光を前記試料に入射させる照明光学系と、を備えた分光測定装置。
  2.  前記試料又は前記照明光を走査する手段をさらに備えた請求項1に記載の分光測定装置。
  3.  前記試料を流路に流す手段をさらに備えた請求項1、又は2に記載の分光測定装置。
  4.  前記二次元光検出器の画素の配列方向と、前記波長分散素子の分散方向が斜めに傾いている請求項1~3のいずれか1項に記載の分光測定装置。
  5.  前記スリットが複数のスリット開口を有するマルチスリットである請求項1~4のいずれか1項に記載の分光測定装置。
  6.  前記スリット開口が、前記試料に入射する前記照明光の光軸方向と直交する方向又は平行な方向に沿って形成されている請求項5に記載の分光測定装置。
  7.  前記照明光学系が前記照明光をベッセルビーム、シート状照明、又はラティス照明として前記試料に集光している請求項1~6のいずれか1項に記載の分光測定装置。
  8.  前記照明光を前記試料に集光する照明用対物レンズと、
     前記照明用対物レンズと前記試料との間に配置され、前記照明光を透過するフィルタとをさらに備えた請求項1~7のいずれか1項に記載の分光測定装置。
  9.  前記照明光を前記試料に集光する照明用対物レンズと、
     前記試料において、前記照明光の光軸と平行な方向の偏光状態にする偏光制御素子とを、さらに備え、
     前記スリット開口が前記光軸の方向に沿って形成されている請求項1~8のいずれか1項に記載の分光測定装置。
  10.  前記試料が流路を流れており、
     前記試料に入射する前記照明光の光軸が前記流路の方向と直交する方向である請求項1~9のいずれか1項に記載の分光測定装置。
  11.  前記流路の少なくとも一面が信号光を反射する反射面となっている請求項10に記載の分光測定装置。
  12.  流路を流がれている前記試料からの信号光が前記二次元光検出器の異なる画素で検出されており、
     前記異なる画素からの検出信号を積算する請求項1~11のいずれか1項に記載の分光測定装置。
  13.  前記波長分散素子の波長分散方向と直交する方向において前記試料の細胞が前記二次元光検出器の1画素に対応する倍率で前記信号光が検出されている請求項1~12のいずれか1項に分光測定装置。
  14.  前記試料又は照明光が、前記検出用対物レンズの光軸に沿った方向に走査されている請求項1~13のいずれか1項に記載の分光測定装置。
  15.  検出用対物レンズの側方から試料を照明するステップと、
     前記検出用対物レンズに試料からの信号光が入射するステップと、
     前記信号光がスリットのスリット開口を通過するステップと、
     前記スリット開口を通過した信号光を波長分散素子により波長分散するステップと、
     二次元光検出器を用いて前記波長分散素子で波長分散された信号光を検出するステップと、
     前記二次元光検出器の検出信号に基づいて、分光画像を生成するステップと、を備えた分光測定方法。
PCT/JP2021/046916 2021-02-04 2021-12-20 分光測定装置、及び分光測定方法 WO2022168467A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21924852.3A EP4290217A1 (en) 2021-02-04 2021-12-20 Spectrometry device and spectrometry method
US18/275,245 US20240110830A1 (en) 2021-02-04 2021-12-20 Spectrometry device and spectrometry method
JP2022579380A JPWO2022168467A1 (ja) 2021-02-04 2021-12-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-016751 2021-02-04
JP2021016751 2021-02-04

Publications (1)

Publication Number Publication Date
WO2022168467A1 true WO2022168467A1 (ja) 2022-08-11

Family

ID=82742172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046916 WO2022168467A1 (ja) 2021-02-04 2021-12-20 分光測定装置、及び分光測定方法

Country Status (4)

Country Link
US (1) US20240110830A1 (ja)
EP (1) EP4290217A1 (ja)
JP (1) JPWO2022168467A1 (ja)
WO (1) WO2022168467A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113021A (ja) * 2004-10-18 2006-04-27 Univ Waseda ラマン分光装置、及び分光装置
JP2009063462A (ja) * 2007-09-07 2009-03-26 Sony Corp 光学測定装置及び微粒子解析装置
JP2018128325A (ja) * 2017-02-07 2018-08-16 ナノフォトン株式会社 分光顕微鏡及び、及び分光観察方法
JP2019045625A (ja) * 2017-08-31 2019-03-22 国立大学法人北陸先端科学技術大学院大学 Shg顕微鏡及びshg光を観察する方法
JP2021500558A (ja) * 2017-10-23 2021-01-07 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ スペクトル散乱フローサイトメトリのための光学構成方法
JP2021016751A (ja) 2019-07-17 2021-02-15 有限会社トライ金型 冷却機能付小型容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113021A (ja) * 2004-10-18 2006-04-27 Univ Waseda ラマン分光装置、及び分光装置
JP2009063462A (ja) * 2007-09-07 2009-03-26 Sony Corp 光学測定装置及び微粒子解析装置
JP2018128325A (ja) * 2017-02-07 2018-08-16 ナノフォトン株式会社 分光顕微鏡及び、及び分光観察方法
JP2019045625A (ja) * 2017-08-31 2019-03-22 国立大学法人北陸先端科学技術大学院大学 Shg顕微鏡及びshg光を観察する方法
JP2021500558A (ja) * 2017-10-23 2021-01-07 ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー, デパートメント オブ ヘルス アンド ヒューマン サービシーズ スペクトル散乱フローサイトメトリのための光学構成方法
JP2021016751A (ja) 2019-07-17 2021-02-15 有限会社トライ金型 冷却機能付小型容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ISHAN BARMANA KHAY MING TANBGAJENDRA PRATAP SINGHB: "Optical sectioning using single-plane-illumination Raman imaging", J. RAMAN SPECTROSC., vol. 41, 2010, pages 1099 - 1101

Also Published As

Publication number Publication date
JPWO2022168467A1 (ja) 2022-08-11
US20240110830A1 (en) 2024-04-04
EP4290217A1 (en) 2023-12-13

Similar Documents

Publication Publication Date Title
US7561265B2 (en) Optical microscope and spectrum measuring method
US9435741B2 (en) Spectrometry device and spectrometry method
US7595873B1 (en) Rapid spatial averaging over an extended sample in a Raman spectrometer
JP4817356B2 (ja) 光学顕微鏡
US10114204B2 (en) Apparatus and method for optical beam scanning microscopy
EP2685303B1 (en) Optical microscope, and spectroscopic measurement method
US11002601B2 (en) Spectroscopic microscope and spectroscopic observation method
US9442013B2 (en) Microscope spectrometer, optical axis shift correction device, spectroscope and microscope using same
JP5712342B2 (ja) 光学顕微鏡、及びスペクトル測定方法
US11029506B2 (en) Scanning microscope with multiplexed light sources
US11442259B2 (en) Optical microscope and spectroscopic measurement method
JP2012003198A (ja) 顕微鏡
JP5371362B2 (ja) レーザ顕微鏡装置
WO2022168467A1 (ja) 分光測定装置、及び分光測定方法
JP5190603B2 (ja) 光学顕微鏡、及び観察方法
US11841318B2 (en) Identification apparatus
US20240053258A1 (en) Optical module and multifocal optical device
JP2005121522A (ja) 蛍光画像/スペクトルを測定する蛍光測定装置
JPWO2022168467A5 (ja)
JP2012112692A (ja) 分光装置とそれを用いた顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18275245

Country of ref document: US

Ref document number: 2022579380

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021924852

Country of ref document: EP

Effective date: 20230904