WO2022168361A1 - レーダ信号処理装置 - Google Patents
レーダ信号処理装置 Download PDFInfo
- Publication number
- WO2022168361A1 WO2022168361A1 PCT/JP2021/034524 JP2021034524W WO2022168361A1 WO 2022168361 A1 WO2022168361 A1 WO 2022168361A1 JP 2021034524 W JP2021034524 W JP 2021034524W WO 2022168361 A1 WO2022168361 A1 WO 2022168361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radar
- target
- signal processing
- vehicle
- detection
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 136
- 238000000034 method Methods 0.000 claims abstract description 18
- 238000012545 processing Methods 0.000 claims description 77
- 238000012911 target assessment Methods 0.000 abstract 1
- 238000012937 correction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- 239000012634 fragment Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/93—Radar or analogous systems specially adapted for specific applications for anti-collision purposes
- G01S13/931—Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/87—Combinations of radar systems, e.g. primary radar and secondary radar
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
- G01S7/4026—Antenna boresight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4052—Means for monitoring or calibrating by simulation of echoes
- G01S7/4082—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
- G01S7/4091—Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation
Definitions
- the present invention relates to a radar signal processing device, for example, a radar system including a plurality of radar devices mounted on a vehicle, and a radar signal processing device provided in the radar device.
- In-vehicle millimeter-wave radar is one of the sensors in the above system that explores the external environment in real time (estimating distance, speed, angle, reflection intensity, etc. as target object information around the vehicle).
- Target information is estimated by radiating radio waves, receiving reflected waves bounced back from targets, and performing signal processing.
- radar devices such as in-vehicle millimeter-wave radars (hereinafter sometimes simply referred to as radars) are subject to changes in the vehicle attitude or deterioration of the radar itself over time after delivery of the radar-equipped vehicle. and the vehicle traveling direction axis.
- This misalignment may cause an error in the radar's estimation of surrounding target information, which may adversely affect vehicle control after the radar.
- the position of the preceding vehicle may be incorrectly estimated as if it were in the next lane even though the preceding vehicle is in the same lane as the own vehicle.
- the present invention has been made in view of the above circumstances, and is capable of easily detecting shaft misalignment and estimating and correcting the amount of shaft misalignment in a radar system using a plurality of radar devices mounted on a vehicle. It is an object of the present invention to provide a radar signal processing device.
- a radar signal processing device of the present invention is a radar signal processing device for processing signals from a plurality of radars mounted on a vehicle, wherein a signal from a first radar among the plurality of radars a target detection unit for detecting a target around the vehicle by the signal of the plurality of radars and detecting the target by a signal from a second radar of the plurality of radars; It is determined whether or not the targets are the same based on the difference in time when the target was detected by the radar and the difference in distance to the target detected by the first radar and the second radar.
- the target determination unit determines that the target is the same
- the first radar is determined based on the difference in the distance to the target detected by the first radar and the second radar.
- an axis deviation detection unit that detects an axis deviation of the radar or the second radar.
- the present invention by comparing the inclination of the wall detection information, which is the target information detected by each radar, and the detection time information, the above-described detection of axis deviation and estimation and correction of the amount of axis deviation can be performed. It is possible.
- FIG. 1 is a block diagram showing the configuration of a radar device according to an embodiment of the present invention
- FIG. FIG. 2 is a configuration diagram of a perimeter monitoring system in which a plurality of radar devices 100 shown in FIG. 1 are installed in a vehicle
- FIG. 2 is a processing flow diagram of an aiming processing unit 180 in the radar device 100 shown in FIG. 1
- FIG. 2 is an image diagram for explaining the principle of the present embodiment (no radar axis deviation).
- FIG. 2 is an image diagram for explaining the principle of the present embodiment (with radar axis deviation);
- FIG. 5 is a diagram showing the relationship between the amount of radar axis deviation and the amount of deviation of the inclination of a wall detection straight line or plane;
- FIG. 4 is an image diagram when the detection ranges of the radar 100a and the radar 100c partially overlap.
- FIG. 1 shows the configuration of a radar device according to the present embodiment in general.
- the radar device 100 of the illustrated embodiment includes a millimeter wave radar, a LIDAR, a sonar, etc., and basically includes a transmitter 101, a receiver 103, a radar signal processor (radar signal processor) 105, A transmission/reception control unit 110 is provided.
- Transmitting section 101 includes modulation processing section 120 and transmitting antenna 130 .
- Receiving section 103 includes receiving antenna 140 and demodulation processing section 150 .
- Radar signal processing section 105 includes frequency analysis section 160 , target detection section 170 and aiming processing section 180 .
- the aiming processing unit 180 also includes an application condition determination unit 181 , a target determination unit 183 , an axis deviation detection unit 185 , an axis deviation radar determination unit 187 , and an axis deviation amount estimation/correction unit 189 .
- the radar signal processing unit (radar signal processing device) 105 includes a processor such as a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), HDD (Hard Disk Drive) and other memories. It is configured as a computer provided with Each function of the radar signal processing unit (radar signal processing device) 105 is realized by the processor executing a program stored in the ROM.
- the RAM stores data including intermediate data for calculations by programs executed by the processor.
- the modulation processing unit 120 raises the carrier wave frequency to a specific frequency band such as the 77 GHz band by phase-modulating or frequency-modulating the radio wave according to the system, and then transmits it to space via the transmitting antenna 130. radiate. Radio waves reflected from surrounding targets are received by the receiving antenna 140, and in the demodulation processing unit 150, the transmitted waves are used to lower the frequency band of the baseband signal that can be analyzed by signal processing, and a signal amplifier or filter is used. Converts to digital data (signal) through processing and AD conversion.
- the transmission/reception control section 110 is provided to control the operations of the modulation processing section 120 and the demodulation processing section 150 .
- the converted digital data (signal) is input to the frequency analysis unit 160 of the radar signal processing unit 105, and from the frequency spectrum after Fourier transform in the distance direction, speed direction, and angle direction, the distance, speed, and angle of the surrounding target are obtained. (hereinafter these may be referred to as target object information).
- the estimated target information is input to the target detection unit 170, and not only the currently estimated target information but also the past target information is considered to improve the estimation accuracy of the target information.
- the processing contents (tracking and wall detection processing) of the target detection unit 170 will be described in detail later.
- the aiming processing unit 180 detects the radar axis misalignment, estimates the amount of axis misalignment when there is axis misalignment, and corrects the target object information of the target object detection unit 170 by the amount of the axis misalignment. After that, the information is CAN-output and transmitted to the ECU (vehicle control unit) 200 in the subsequent stage.
- the application condition determination unit 181 first determines the execution of the axis deviation detection process (application condition determination). Only when the application condition determination unit 181 satisfies the application condition, the target determination unit 183 determines the same target object information (wall detection information) detected by the radar device 100 and the other radar device 100′. conduct.
- the axis deviation detection unit 185 compares two pieces of target information (wall detection information) determined as the same target, and determines whether or not there is an axis deviation. detection or judgment.
- the axis deviation radar determination unit 187 detects the axis deviation radar based on the reliability given to the target information (wall detection information) of each radar, for example. make a judgment.
- the axis deviation estimation/correction unit 189 estimates the axis deviation amount of the radar determined by the determination of the axis deviation radar, corrects the target object information of the target object detection unit 170, and outputs it by CAN.
- the aiming processing unit 180 of the present embodiment utilizes information detected by the other radar device 100' to detect the axis deviation and estimate the amount of axis deviation.
- the detection information 100A' of (the target detection unit 170 of) the other radar device 100' is input to the target determination unit 183).
- the detection information 100A' of (the target detection unit 170 of) the other radar device 100' is, for example, the tilt of the wall (calculated from the detected distance information) and the detection time, among the information identified as the wall. Yes (explained later), and the other radar device 100′ is, for example, a rear left corner radar 100c (shown in FIG. 2) when the radar device 100 is a front left corner radar 100a (shown in FIG. 2).
- the other radar device 100′ is, for example, a rear left corner radar 100c (shown in FIG. 2) when the radar device 100 is a front left corner radar 100a (shown in FIG. 2).
- FIG. 2 shows a configuration example of a perimeter monitoring system as a radar system using a plurality of units of the above-described radar device (a plurality of units installed in a vehicle).
- FIG. 2 shows an example in which two units (100a and 100b) are mounted on the left and right corners of the front of the vehicle, and two units (100c and 100d) are mounted on the left and right corners of the rear of the vehicle.
- the detection ranges of the respective radar devices front left corner radar 100a, front right corner radar 100b, rear left corner radar 100c, rear right corner radar 100d mounted on the vehicle 500 overlap.
- each radar device 100a, 100b, 100c, 100d is sent to the ECU 200 via the CAN bus 300.
- the ECU 200 predicts collisions with surrounding targets and alerts the driver according to the degree of collision risk. Or it is a system that activates the emergency brake.
- the radar signal processing unit (radar signal processing device) 105 of the present embodiment is a processing device installed collectively in each radar device 100a, 100b, 100c, 100d or in the ECU 200, and does not depend on the installation location. .
- a case of being installed in each radar device 100a, 100b, 100c, 100d is exemplified.
- Radar signal processor radar signal processor
- ⁇ Target detection part 170> The tracking and wall detection processing of the target detection unit 170 in the radar signal processing unit 105 of the radar device 100 will be described.
- the target detection unit 170 first performs tracking processing for tracking and detecting targets (information) around the vehicle, considering not only the target information currently estimated by the frequency analysis unit 160, but also past target information. to implement. The details of the tracking process are omitted in this specification because conventionally known techniques can be employed.
- the target object detection unit 170 outputs wall detection information to CAN, assuming that there are structures such as walls and guardrails around the vehicle. Note that the wall detection information described here indicates the detected tilt of the wall and detection time information.
- the target detection unit 170 detects data representing a plane as a wall from the distance to the target (detection point) after tracking processing, and detects the angle of the detected plane (data) (corresponding to the inclination of the wall). Output to CAN as wall detection information along with detection time.
- the detection points should be evenly spaced and lined up in the vertical direction. ⁇ The detection points should be from a stationary object.
- ⁇ Aiming processing unit 180> A flowchart of the aiming processing unit 180 in the radar signal processing unit 105 of the radar device 100 is shown in FIG.
- the aiming processing unit 180 uses detection information 100A estimated within the radar device 100 and detection information 100A' estimated within the other radar device 100' as main input information.
- the radar device 100 indicates, for example, the front left corner radar 100a, and the other radar device 100' indicates the rear left corner radar 100c (see FIG. 2).
- the wall detection information (inclination of the detection line and detection time) detected in the tracking and wall detection processing of the marker detection unit 170 is shown.
- the aiming processing unit 180 performs application condition determination S301 by the application condition determination unit 181, same target determination S303 by the target determination unit 183, axis deviation determination S305 by the axis deviation detection unit 185, axis deviation radar Determination S307 of the axis deviation radar by the determination unit 187, estimation and correction S309 of the axis deviation amount estimation and correction unit 189, composed of a total of five processing blocks, the same target determination S303 which is the first processing related to the target.
- an application condition determination S301 which is a process for determining whether to execute the shaft deviation detection process, is performed.
- Applicable Condition Judgment S301 Applicable Condition Judgment Unit 181
- the application condition determination S301 it is determined whether or not the application condition for executing the axis deviation detection processing is satisfied. Only when all the applicable conditions are satisfied (S302: Yes), the same target determination S303 is performed. Skip all.
- This embodiment utilizes radar wall detection information to detect and estimate axial misalignment. Therefore, if the present embodiment is applied in a state in which the accuracy of radar wall detection information is poor, there is a risk of malfunction (such as erroneous detection of shaft misalignment).
- this embodiment is applied only in situations where the accuracy of wall detection information is relatively high.
- the application conditions of this embodiment determined in the application condition determination S301 and the grounds for setting each application condition are shown below.
- ⁇ Applicable conditions of this embodiment>> (a) Wall detection information is present in both front and rear radars (b) Yaw rate is below the default value, or steering angle is below the default value (c) Vehicle speed is above the default value to be
- the yaw rate is equal to or less than the default value, or the steering angle is equal to or less than the default value
- the condition (b) is provided so that the present embodiment is out of the applicable range when the own vehicle is turning (in other words, the straight running state is the applicable range of the present embodiment).
- Vehicle speed is equal to or greater than a predetermined value
- This application condition is set from the viewpoint of the accuracy deterioration of the subsequent same target determination S303, not the accuracy deterioration of the wall detection information.
- the time difference ⁇ t from when the front radar detects the wall until when the rear radar detects the wall, which will be described later in S303, is a function of the vehicle speed Vsv. There is an inversely proportional relationship such that ⁇ t increases as Vsv decreases.
- ⁇ t is calculated to be 10.8 seconds by the formula (1) described later.
- this application condition was set in order to prevent erroneous shaft misalignment detection.
- the application condition determination S301 based on the vehicle information (yaw rate, steering angle, vehicle speed) regarding the behavior of the vehicle and the wall detection information as the target object information detected by the radar, the execution determination of the radar axis deviation detection processing is performed. to prevent false misalignment detection.
- FIG. 4 shows an image diagram for explaining this processing.
- the left diagram of FIG. 4 shows a scene in which a fragment with a guardrail is detected by the front left corner radar 100a at an arbitrary time t [sec] while the vehicle 500 is traveling at a certain speed Vsv [km/h]. .
- the detection range of the radar 100a and the detection range of the radar 100c do not overlap, but as the vehicle 500 moves for ⁇ t seconds, the fragment with the guardrail spans the detection range of the radar 100a and the detection range of the radar 100c. become a thing.
- the time difference ⁇ t between detection by the radar 100a and detection by the radar 100c can be calculated using the following formula (1).
- Lwall is the length of the guardrail fragment detected by the radar 100a
- Lsv is the length in the traveling direction of the vehicle
- Vsv is the vehicle speed.
- the following calculation formula (1) is for the installation angle of the radar 100a and the radar 100c. It is a calculation formula when the left end of the range (the orientation of the sector at the rear left corner in FIG. 4) is parallel to the rear surface of the vehicle, and the calculation formula differs depending on the radar installation angle.
- the difference between the time detected by the radar 100a and the time detected by the radar 100c should be approximately equal to ⁇ t if the same target is detected by each radar.
- the information detected by the radar 100a and the information detected by the radar 100c are It is determined that they are the same target.
- the time difference between detection of the target by the front left corner radar 100a and the rear left corner radar 100c and the distance to the target detected by the front left corner radar 100a and the rear left corner radar 100c It is determined whether or not the targets are the same based on the difference in inclination obtained from .
- the process proceeds to axis deviation determination S305, and if not determined to be the same target (S304: No), skip the shaft deviation determination S305 and thereafter, and end the process.
- axis deviation determination S305 Axis deviation detection unit 185)
- axis deviation determination S305 the presence or absence of axis deviation is detected or determined by comparing two pieces of wall detection information (inclinations of straight lines or planes) determined to be the same target.
- the default value 2 for determination is smaller than the default value 1 in the same target determination S303. It is determined (S306: Yes), and if it does not exceed, it is determined that there is no axis deviation, assuming that the difference in inclination of the straight line or plane is within the detection error range of the radar (S306: No).
- FIG. 5 shows an image diagram for explaining this processing when only the rear left corner radar 100c is off-axis.
- the straight line or plane of the wall detection result is tilted by the amount of the axis misalignment, as shown in FIG.
- the distance to the target detected by the front left corner radar 100a and the rear left corner radar 100c is obtained. Based on the tilt difference (in other words, the angle difference between the plane detected by the front left corner radar 100a and the plane detected by the rear left corner radar 100c), the front left corner radar 100a or the rear left corner radar 100c Detects shaft misalignment.
- Determination S307 of axis deviation radar axis deviation radar determination unit 187)
- the reliability of the output data is first given to the wall detection information of the radar in the axis deviation radar determination S307.
- the wall detection information with a high degree of reliability is assumed to be positive, and the wall detection information with a low degree of reliability is assumed to be axially misaligned.
- a radar that monitors the side of the vehicle (side radar) is installed on the side of the vehicle.
- this overlapping area is referred to as a common area.
- the front radar and the side radar each acquire detection information for the same target, so it can be said that the difference between the detection information is less than the detection accuracy of the radar. Therefore, if the difference in wall detection information detected in the common area is less than the detection accuracy of the radar, it is unlikely that both the front and side radars have the same axis deviation. Assuming that the reliability of the detection information is high, the reliability is added.
- the method of giving reliability is not limited to this method, and methods such as giving reliability from the AND condition with detection information from sensors other than radar are also conceivable.
- axis deviation amount estimation and correction S309 axis misalignment amount estimation/correction unit 189
- axis deviation amount estimation and correction S309 when axis deviation has occurred, estimation and correction of the axis deviation amount (axis deviation angle) of the radar in which the axis deviation has occurred, which has been clarified in axis deviation radar determination S307, are performed. conduct.
- FIG. 6 shows the relationship between the axis deviation amount 189a of the radar and the deviation amount 189b of the wall detection straight line or inclination of the plane.
- FIG. 6 is drawn assuming that the rear left corner radar 100c is installed at a predetermined angle ⁇ , and an axis deviation of an angle ⁇ occurs in the counterclockwise direction. From FIG. 6, since the amount of deviation 189a of the radar axis and the amount of deviation 189b of the inclination of the wall detection straight line or plane are equal, the amount of deviation of the radar axis can be estimated from the amount of deviation of the inclination of the wall detection straight line or plane. .
- the apparent axis misalignment can be corrected by rotating the target detection position and velocity vector by the estimated radar axis misalignment amount of 189a (in the opposite direction). be.
- the radar signal processing unit (radar signal processing device) 105 of this embodiment processes signals from a plurality of radars mounted on a vehicle.
- the distance to the target is data representing a plane, and based on the difference in angle (tilt) between the plane detected by the first radar and the plane detected by the second radar, the Detecting axial misalignment of the first radar or the second radar.
- each of the plurality of radars is provided with a reliability level of output data, and when the axial deviation is detected, which one of the first radar and the second radar causes the axial deviation based on the reliability level. determine what is happening.
- each information is detected, and the amount of axis deviation is estimated and detected. Correction is possible.
- FIG. 7 shows an image diagram when the detection ranges of the radar 100a and the radar 100c partially overlap.
- the detection ranges of the radar 100a and the radar 100c partially overlap. be.
- radar axis deviation is detected by observing the same target with each radar in a common area and comparing the observed information.
- This embodiment is similar in that it observes the same target, but it compares relative information such as the inclination of a straight line or plane that does not depend on coordinates, and the difference in detection time is a known value (this embodiment By comparing with ⁇ t) described in 1 and comparing the above two points, it is possible to observe the same target with each radar even if there is no common area.
- each of the above configurations, functions, processing units, processing means, etc. may be realized in hardware, for example, by designing a part or all of them with an integrated circuit.
- each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function.
- Information such as programs, tables, and files that implement each function can be stored in storage devices such as memory, hard disks, SSDs (Solid State Drives), or recording media such as IC cards, SD cards, and DVDs.
- control lines and information lines indicate what is considered necessary for explanation, and not all control lines and information lines are necessarily indicated on the product. In practice, it may be considered that almost all configurations are interconnected.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
図1に本実施例の実施例全般に係るレーダ装置の構成を示す。
前記<レーダ装置>にて、レーダ装置単体の内部的な処理を説明した。前述したレーダ装置を複数ユニット用いた(車両に複数設置した)レーダシステムとしての周辺監視システムの一構成例を図2に示す。図2では、車両前方の左右角に2ユニット(100aおよび100b)、車両後方の左右角に2ユニット(100cおよび100d)をそれぞれ搭載した例を示している。後で説明するように、本実施例では、車両500に搭載された各レーダ装置(前方左角レーダ100a、前方右角レーダ100b、後方左角レーダ100c、後方右角レーダ100d)の検知範囲は重複していない。各レーダ装置100a、100b、100c、100dで検知した情報はCANバス300を通してECU200に送信され、ECU200内部で周辺の物標との衝突予測を行い、衝突の危険度に応じて、運転手へ警報または緊急ブレーキを作動させるシステムとなっている。
以下、図1とともに図3を参照して、レーダ装置100内のレーダ信号処理部105内の物標検知部170およびエイミング処理部180の各部の処理内容を説明する。
レーダ装置100のレーダ信号処理部105における、物標検知部170のトラッキングおよび壁検知処理について説明する。物標検知部170は、まず、周波数解析部160で現在推定した物標情報だけでなく、過去の物標情報も考慮して、車両の周囲の物標(情報)を追跡・検知するトラッキング処理を実施する。トラッキング処理の詳細については従来公知の技術を採用できるため本明細書では割愛する。トラッキング処理後の検知点が以下の条件を満たしたとき、物標検知部170は、車両の周囲に壁やガードレール等の構造物が存在するとして、壁検知情報をCANへ出力する。なお、ここで述べた壁検知情報とは、検知した壁の傾きや検知時刻情報を示す。すなわち、物標検知部170は、トラッキング処理後の物標(検知点)までの距離から平面を表すデータを壁として検出し、検出された平面(データ)の角度(壁の傾きに相当)を検知時刻とともに壁検知情報としてCANへ出力する。
・検知点が等間隔、かつ、縦方向(鉛直方向)に並んでいること
・静止物からの検知点であること
レーダ装置100のレーダ信号処理部105における、エイミング処理部180のフローチャートを図3に示す。エイミング処理部180は、レーダ装置100内で推定した検知情報100Aと、他レーダ装置100’内で推定した検知情報100A’を主な入力情報とする。ここで、レーダ装置100とは、例えば前方左角レーダ100a、他レーダ装置100’とは、後方左角レーダ100cをそれぞれ示し(図2参照)、検知情報100Aと100A’は、各レーダの物標検知部170のトラッキングおよび壁検知処理内で検知した壁検知情報(検知線の傾きと検知した時刻)を示すこととする。
同一物標判定S303に入る前に、適用条件判定S301では、軸ずれ検知処理の実行の適用条件を満足しているか否かの判定を行う。適用条件すべてを満足した場合にのみ(S302:Yes)、同一物標判定S303に移行するとし、適用条件を満足しなかった場合には(S303:No)、同一物標判定S303以降の処理をすべてスキップする。
(a)前方レーダおよび後方レーダ共に壁検知情報が存在していること
(b)ヨーレートが既定値以下であること、またはステアリング角が既定値以下であること
(c)自車速度が既定値以上であること
(a)前方レーダおよび後方レーダ共に壁検知情報が存在していること
本実施例は、壁検知情報を用いてレーダ軸ずれの検知および軸ずれ量の推定を行っているため、前記情報が存在することが本実施例の前提条件となる。
自車両が旋回しているとき、下記の観点で壁検知情報の精度が劣化する可能性がある。したがって、自車旋回時は本実施例を適用範囲外とする(言い換えれば、直進状態を本実施例の適用範囲とする)ために、(b)の条件を設けている。
・物標の状態判定(移動物または静止物の判定)の精度が劣化する
・壁またはガードレールを斜めに検知してしまい、誤った軸ずれ検知に繋がる
本適用条件は、壁検知情報の精度劣化ではなく、後段の同一物標判定S303の精度劣化という観点で設定している。後述する同一物標判定S303にて記述する、前方レーダが壁検知してから後方レーダで壁検知するまでの時間差Δtは、車両速度Vsvの関数になっており、Vsvが大きいほどΔtは小さく、Vsvが小さいほどΔtは大きくなる、といった反比例の関係にある。
同一物標判定S303では、レーダ装置100(前方左角レーダ100a)および他レーダ装置100’(後方左角レーダ100c)で検知した壁検知情報が、同一物標か否かの判定を行う。図4に本処理を説明するためのイメージ図を示す。図4の左図は、車両500がある速度Vsv[km/h]で走行中の任意の時刻t[sec]に、前方左角レーダ100aにてガードレールのある断片を検知した場面を示している。図4の右図は、左図からΔt秒後の時刻t+Δt[sec]において、前述の前方左角レーダ100aで検知したガードレールのある断片と「同じ断片」を後方左角レーダ100cにて検知した場面を示している。本実施例では、レーダ100aの検知範囲とレーダ100cの検知範囲は重複しないが、Δt秒間に車両500が移動することによって、ガードレールのある断片はレーダ100aの検知範囲とレーダ100cの検知範囲にまたがるものとなる。
(a)レーダ100aおよびレーダ100cの壁検知時刻差≒Δt
(b)レーダ100aおよびレーダ100cの壁検知の傾きの差<既定値1
軸ずれ判定S305では、同一物標として判定された2つの壁検知情報(直線ないし平面の傾き)を比較することにより、軸ずれの有無の検知ないし判定を行う。
軸ずれ判定S305にて、レーダの軸ずれを検知したのちに、軸ずれレーダの判別S307にて、第一にレーダの壁検知情報に出力データの信頼度を付与する。次に、信頼度の高い壁検知情報を正として、信頼度の低い壁検知情報に軸ずれが生じたとして、軸ずれが生じたレーダを判別する。
軸ずれ量推定および補正S309では、軸ずれが生じていた場合に、軸ずれレーダの判別S307にて判明した、軸ずれが生じているレーダの軸ずれ量(軸ずれ角度)の推定および補正を行う。レーダの軸ずれ量189aと壁検知の直線ないし平面の傾きのずれ量189bとの関係を図6に示す。
以上で説明したように、本実施例のレーダ信号処理部(レーダ信号処理装置)105は、車両に搭載された複数のレーダからの信号を処理するものであって、前記複数のレーダのうち第一のレーダからの信号により前記車両の周囲の物標を検知し、前記複数のレーダのうち第二のレーダからの信号により前記物標を検知する物標検知部170と、前記第一のレーダおよび前記第二のレーダで前記物標が検知された時間差と、前記第一のレーダおよび前記第二のレーダで検知された前記物標までの距離(から求まる傾き)の差に基づいて、前記物標が同一か否かを判定する物標判定部183と、前記物標が同一であると判定された場合に、前記第一のレーダおよび前記第二のレーダで検知された前記物標までの距離(から求まる傾き)の差に基づいて前記第一のレーダまたは前記第二のレーダの軸ずれを検知する軸ずれ検知部185と、を備える。
図7にレーダ100aとレーダ100cの検知範囲が一部分重複したときのイメージ図を示す。
100A:検知情報(レーダ装置)
100a:前方左角レーダ
100b:前方右角レーダ
100c:後方左角レーダ
100d:後方右角レーダ
100’:他レーダ装置
100A’:検知情報(他レーダ装置)
101:送信部
103:受信部
105:レーダ信号処理部(レーダ信号処理装置)
110:送受信制御部
120:変調処理部
130:送信アンテナ
140:受信アンテナ
150:復調処理部
160:周波数解析部
170:物標検知部
180:エイミング処理部
181:適用条件判定部
183:物標判定部
185:軸ずれ検知部
187:軸ずれレーダ判別部
189:軸ずれ量推定・補正部
189a:レーダの軸ずれ量
189b:壁検知の直線ないし平面の傾きのずれ量
200:ECU(車両制御部)
300:CANバス
500:車両
Claims (8)
- 車両に搭載された複数のレーダからの信号を処理するレーダ信号処理装置であって、
前記複数のレーダのうち第一のレーダからの信号により前記車両の周囲の物標を検知し、前記複数のレーダのうち第二のレーダからの信号により前記物標を検知する物標検知部と、
前記第一のレーダおよび前記第二のレーダで前記物標が検知された時間差と、前記第一のレーダおよび前記第二のレーダで検知された前記物標までの距離の差に基づいて、前記物標が同一か否かを判定する物標判定部と、
前記物標が同一であると判定された場合に、前記第一のレーダおよび前記第二のレーダで検知された前記物標までの距離の差に基づいて前記第一のレーダまたは前記第二のレーダの軸ずれを検知する軸ずれ検知部と、を備えることを特徴とするレーダ信号処理装置。 - 請求項1に記載のレーダ信号処理装置において、
前記第一のレーダの検知範囲と前記第二のレーダの検知範囲は重複しないことを特徴とするレーダ信号処理装置。 - 請求項2に記載のレーダ信号処理装置において、
前記車両の移動によって前記物標は前記第一のレーダの検知範囲と前記第二のレーダの検知範囲にまたがるものであることを特徴とするレーダ信号処理装置。 - 請求項3に記載のレーダ信号処理装置において、
前記物標までの距離は平面を表すデータであって、前記第一のレーダで検出された平面と前記第二のレーダで検出された平面の角度の差に基づいて、前記第一のレーダまたは前記第二のレーダの軸ずれを検知することを特徴とするレーダ信号処理装置。 - 請求項1に記載のレーダ信号処理装置において、
前記複数のレーダのそれぞれに出力データの信頼度が付与され、前記軸ずれが検知された場合、前記信頼度に基づいて前記第一のレーダまたは前記第二のレーダのいずれが軸ずれを起こしているかを判定することを特徴とするレーダ信号処理装置。 - 請求項1に記載のレーダ信号処理装置において、
前記車両の挙動に関する車両情報または前記レーダが検知した物標情報を基に、前記第一のレーダまたは前記第二のレーダの軸ずれ検知処理の実行判定を行うことを特徴とするレーダ信号処理装置。 - 請求項6に記載のレーダ信号処理装置において、
前記車両のヨーレート、ステアリング角、または車両速度を基に、前記第一のレーダまたは前記第二のレーダの軸ずれ検知処理の実行判定を行うことを特徴とするレーダ信号処理装置。 - 請求項1に記載のレーダ信号処理装置において、
前記物標判定部は、前記第一のレーダおよび前記第二のレーダで前記物標が検知された時間差と、前記物標の長さを前記車両の車両速度で除した時間を少なくとも含む時間差とを比較し、前記物標が同一か否かを判定することを特徴とするレーダ信号処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021005686.7T DE112021005686T5 (de) | 2021-02-03 | 2021-09-21 | Radarsignalprozessor |
JP2022579329A JP7546704B2 (ja) | 2021-02-03 | 2021-09-21 | レーダ信号処理装置 |
CN202180087594.2A CN116670538A (zh) | 2021-02-03 | 2021-09-21 | 雷达信号处理装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-015894 | 2021-02-03 | ||
JP2021015894 | 2021-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022168361A1 true WO2022168361A1 (ja) | 2022-08-11 |
Family
ID=82741041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/034524 WO2022168361A1 (ja) | 2021-02-03 | 2021-09-21 | レーダ信号処理装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7546704B2 (ja) |
CN (1) | CN116670538A (ja) |
DE (1) | DE112021005686T5 (ja) |
WO (1) | WO2022168361A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011043387A (ja) * | 2009-08-20 | 2011-03-03 | Toyota Motor Corp | 車載レーダシステム |
US20130218398A1 (en) * | 2012-02-22 | 2013-08-22 | GM Global Technology Operations LLC | Method for determining object sensor misalignment |
US20180239354A1 (en) * | 2017-02-23 | 2018-08-23 | GM Global Technology Operations LLC | System and method for detecting improper sensor installation within a vehicle to mitigate hazards associated with object detection |
WO2020050363A1 (ja) * | 2018-09-06 | 2020-03-12 | 株式会社デンソー | 物体検出装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6291781B2 (ja) | 2013-10-17 | 2018-03-14 | 株式会社デンソー | 周辺監視装置及び周辺監視システム |
JP6848725B2 (ja) | 2017-06-29 | 2021-03-24 | 株式会社デンソー | 車両用の対象物検出装置および車両用の対象物検出装置における水平方向の軸ずれ判定方法 |
-
2021
- 2021-09-21 JP JP2022579329A patent/JP7546704B2/ja active Active
- 2021-09-21 CN CN202180087594.2A patent/CN116670538A/zh active Pending
- 2021-09-21 DE DE112021005686.7T patent/DE112021005686T5/de active Pending
- 2021-09-21 WO PCT/JP2021/034524 patent/WO2022168361A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011043387A (ja) * | 2009-08-20 | 2011-03-03 | Toyota Motor Corp | 車載レーダシステム |
US20130218398A1 (en) * | 2012-02-22 | 2013-08-22 | GM Global Technology Operations LLC | Method for determining object sensor misalignment |
US20180239354A1 (en) * | 2017-02-23 | 2018-08-23 | GM Global Technology Operations LLC | System and method for detecting improper sensor installation within a vehicle to mitigate hazards associated with object detection |
WO2020050363A1 (ja) * | 2018-09-06 | 2020-03-12 | 株式会社デンソー | 物体検出装置 |
Also Published As
Publication number | Publication date |
---|---|
DE112021005686T5 (de) | 2023-11-23 |
JPWO2022168361A1 (ja) | 2022-08-11 |
JP7546704B2 (ja) | 2024-09-06 |
CN116670538A (zh) | 2023-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11262442B2 (en) | Ghost removal method and radar device | |
JP5511863B2 (ja) | レーダ装置とその制御方法 | |
US10967857B2 (en) | Driving support device and driving support method | |
JP5714075B2 (ja) | 車載用レーダ装置およびターゲット検出方法 | |
JP4992367B2 (ja) | 物体検出装置、物体検出方法、およびコンピュータが実行するためのプログラム | |
US9102329B2 (en) | Tracking control apparatus | |
JP2000098026A (ja) | レ―ダ装置においてレ―ダ・アンテナの照準を較正する方法および装置 | |
US10191148B2 (en) | Radar system for vehicle and method for measuring azimuth therein | |
US10481251B2 (en) | Radar device and target detecting method | |
US10473760B2 (en) | Radar device and vertical axis-misalignment detecting method | |
JP2017538183A (ja) | 車線変更検出 | |
US11348462B2 (en) | Collision prediction apparatus | |
US20190061748A1 (en) | Collision prediction apparatus | |
JP2006292518A (ja) | 車両用物体検出装置 | |
US10754024B2 (en) | Object-sensing system for vehicle and object-sensing method for vehicle | |
EP3865909B1 (en) | Electronic device, method for controlling electronic device, and program for controlling electronic device | |
CN110799851A (zh) | 周边监视雷达装置 | |
JP2009058316A (ja) | レーダ装置、物体検出方法、及び車両 | |
CN112986945B (zh) | 雷达目标的识别方法、装置、设备和存储介质 | |
WO2022168361A1 (ja) | レーダ信号処理装置 | |
JP2019158787A (ja) | レーダ装置及び信号処理方法 | |
JP2009074804A (ja) | 物体検出装置 | |
JP4356820B2 (ja) | レーダ装置 | |
WO2023033077A1 (ja) | 車両用レーダ装置 | |
WO2023033078A1 (ja) | 車両用レーダ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21924749 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022579329 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112021005686 Country of ref document: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180087594.2 Country of ref document: CN |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21924749 Country of ref document: EP Kind code of ref document: A1 |