WO2022166600A1 - 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用 - Google Patents

一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用 Download PDF

Info

Publication number
WO2022166600A1
WO2022166600A1 PCT/CN2022/072898 CN2022072898W WO2022166600A1 WO 2022166600 A1 WO2022166600 A1 WO 2022166600A1 CN 2022072898 W CN2022072898 W CN 2022072898W WO 2022166600 A1 WO2022166600 A1 WO 2022166600A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photocurable
elastic support
channel structure
functional groups
Prior art date
Application number
PCT/CN2022/072898
Other languages
English (en)
French (fr)
Inventor
张涛
何宇
祝芙天纯
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022166600A1 publication Critical patent/WO2022166600A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • C08F299/065Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes from polyurethanes with side or terminal unsaturations
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Definitions

  • the invention relates to the technical field of microfluidic chips, in particular to a light-curing microfluidic chip based on an elastic support and a preparation method and application thereof.
  • Microfluidic chips have gained more and more extensive research and applications in chemistry, biology, medicine and other fields due to their advantages of precise fluid control, less sample demand, fast response, and easy integration.
  • the materials used to fabricate microfluidic chips mainly include silicon, glass, and organic polymers.
  • organic polymers have many advantages compared with inorganic materials such as silicon and glass, including variety, easy to obtain large aspect ratio, mass production, and low cost.
  • Representative organic polymers include polycarbonate (PC), polymethyl methacrylate (PMMA), cyclic olefin copolymer (COC), and the like. These materials can produce microfluidic chips in batches and cheaply by hot pressing, injection molding, etc.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • COC cyclic olefin copolymer
  • PDMS polydimethylsiloxane
  • PDMS materials also have some serious limitations: 1) the curing speed is slow, the mold takes a long time, and it is difficult to achieve mass production; 2) the surface modification is difficult, the steps are cumbersome, and it is more difficult to achieve local controllable modification; 3) Breathable, not suitable for applications such as polymerase chain reaction (PCR) that need to prevent the evaporation of reagents; 4) easily swelled by organic reagents, severely limiting its application in related chemical reactions; and so on.
  • PCR polymerase chain reaction
  • PDMS chip prototypes developed by conventional laboratories often require secondary development processes such as material substitution and processing technology optimization to achieve mass production and reduce costs. This is also one of the important reasons why many excellent microfluidic chip research results have not been successfully commercialized.
  • photocurable materials have gradually become a popular research topic in microfluidic chips. They can usually be cured rapidly (several seconds to tens of seconds) by UV irradiation at room temperature, so they not only meet the needs of rapid prototyping in the laboratory development stage, but also have good potential for mass production. Microfluidic chips prepared from photocurable materials have obvious advantages in surface modification and in-situ photocurable microstructures due to their large number of active functional groups.
  • photocurable materials such as acrylates, thiol-enes, epoxy resins, etc.
  • reagent companies such as Sartomer, Evonik, Changxing, etc.
  • Photocurable materials with different physical and chemical properties (density, viscosity, hardness, elasticity, adhesion, refractive index, hydrophilicity, hydrophobicity, solvent resistance, etc.), so at the beginning of chip design, they can be selected according to specific application requirements and modulate the most suitable material. This will greatly improve the success rate of microfluidic chips from design and development to productization.
  • the present invention discloses a light-curing microfluidic chip based on an elastic support, which has no special restrictions on the types of light-curing materials, nor on the types of molds, so that the use of hard materials such as silicon as molds becomes a It is possible to save additional PDMS mold processing links, and at the same time effectively overcome the problem of oxygen inhibition, so that the entire chip processing process can be carried out at room temperature and atmospheric environment; and chip processing, including chip punching, sealing, cutting And the connection of external pipelines is also simpler and faster, which is not only suitable for the design and development of microfluidic chip prototypes in conventional laboratories, but also has good mass production potential.
  • a light-cured microfluidic chip based on an elastic support comprising a channel structure layer and a sealing layer for sealing the channel structure layer;
  • the channel structure layer comprises a photocurable layer containing a channel structure and an elastic support for supporting the photocurable layer;
  • the elastic support body and the photocurable layer are connected by covalent bonding or adhesion;
  • the photocurable layer containing the channel structure is formed by covering the mold with a photocurable raw material and then irradiated by light, and the photocurable raw material includes a photocurable functional group-containing monomer and/or a photocurable functional group-containing oligomer , the photocurable functional group is selected from one or more of acrylate functional groups, methacrylate functional groups, mercapto functional groups, alkenyl functional groups, vinyl ether functional groups, and epoxy functional groups;
  • the elastic support includes a bulk layer and a selectively increased connecting layer
  • the material of the body layer is selected from polydimethylsiloxane, polyurethane acrylate, polyurethane methacrylate, thermoplastic polyurethane elastomer, thermoplastic polyolefin elastomer, thermoplastic polyester elastomer, thermoplastic polystyrene elastomer, one or more of thiol-ene polymers;
  • the sealing layer is selected from a substrate or another of the channel structure layers.
  • the core idea of the light-cured microfluidic chip disclosed in the present invention is to use an elastic support with good flexibility to connect it with the light-cured layer containing the channel structure through covalent bonding or adhesion, so that it can be placed on the mold.
  • the channel structure layer is quickly prepared, and then sealed with other channel structure layers, intermediate layers or base layers to form a complete photocurable microfluidic chip.
  • Due to the support of the elastic support, the photocurable layer containing the channel structure will also have certain flexibility and elasticity, which will enable almost all photocurable materials to be used in the preparation of microfluidic chips; at the same time, , the punching, sealing, cutting and external pipeline connection of chips will also become easier.
  • the good flexibility and elasticity endowed by the elastic support also make it possible to use hard materials such as silicon as molds, thereby eliminating the need for additional PDMS mold processing links, and effectively overcoming the problem of oxygen inhibition, so that the entire chip processing process can be At room temperature, in the atmosphere.
  • this method is suitable for almost all photocurable materials, and the processing of the chip is also simpler and faster. It is not only suitable for the design and development of microfluidic chip prototypes in conventional laboratories, but also has a good potential for mass production.
  • the thickness of the photo-curing layer is selected from 30-300 ⁇ m; the photo-curing raw material under this thickness is easily cured into a complete photo-curing layer, and exhibits good flexibility and elasticity under the support of the elastic support.
  • the thickness of the elastic support body is selected from 1-6 mm; the elastic support body with this thickness has a better supporting effect on the photocured layer.
  • the elastic support includes a bulk layer and a connecting layer with increased selectivity; when the bulk layer has a photocurable functional group that can be connected with the photocurable layer through covalent bonding or adhesion , there is no need to introduce a connecting layer; when the bulk layer cannot be directly connected to the photocurable layer through covalent bonding or adhesion, a connecting layer needs to be introduced.
  • the bulk layer has a photocurable functional group that can be connected with the photocurable layer through covalent bonding or adhesion, and there are two situations:
  • the monomer or oligomer used to prepare the bulk layer is polymerized and the polymer itself has a photocurable functional group, such as thiol-ene (Thiol-ene) polymer, urethane acrylate, urethane methyl One or more of acrylates.
  • thiol-ene Thiol-ene
  • urethane acrylate urethane methyl One or more of acrylates.
  • the ratio of thiol to alkene functional group in the thiol-ene (Thiol-ene) polymer is greater than or equal to 1.5 to obtain better elasticity; greater than or equal to 100%.
  • the monomer or oligomer used to prepare the bulk layer is polymerized to produce a polymer without photocurable functional groups, but the photocurable functional groups are obtained after surface modification treatment.
  • the preferred bulk layer is a PDMS material, which is preferably treated with a plasma first and then treated with a silane coupling agent to modify the surface of the PDMS material with photocurable functional groups.
  • the elastic modulus of the body layer is less than or equal to 1000 MPa. More preferred are thiol-ene polymers, urethane acrylates, PDMS or thermoplastic polyurethane elastomers.
  • the tie layer introduced in terms of weight percentage, the raw material composition includes:
  • the photo-curing agent and the cross-linking agent are not 0 at the same time, but the total weight of the three is guaranteed to be 100%.
  • the preferred bulk layer in this case is a PDMS material.
  • connection layer by weight percentage, the raw material composition includes:
  • the photocurable agent is selected from monomers containing photocurable functional groups and/or oligomers containing photocurable functional groups, and the photocurable functional groups are selected from acrylate functional groups, methacrylate functional groups, mercapto functional groups, alkenyl functional groups, One or more of vinyl ether functional groups and epoxy functional groups.
  • the crosslinking agent is selected from reagents containing two or more reactive functional groups; the reactive functional groups are selected from acrylate functional groups, methacrylate functional groups, mercapto functional groups, alkenyl functional groups, epoxy functional groups or amino functional groups; preferably acrylic acid vinyl ester, vinyl methacrylate, allyl acrylate, allyl methacrylate, vinyl mercaptan, allyl mercaptan, vinyl amine, aminopropylene, allyl glycidyl ether, mercapto polyethylene glycol One or more of acrylate, glycidyl methacrylate, acrylamide, mercaptoethylamine and mercaptopropylamine.
  • the type of the photopolymerization initiator which can be selected from common types in the art, such as one or more of benzil compounds, alkyl phenone compounds, and acyl phosphorus oxides kind.
  • a thin layer of glue or a thin double-sided adhesive tape with good adhesion to the body layer and the photocurable layer is directly used as the connecting layer.
  • the glue is selected from epoxy resin glue with good transparency (such as Lantian epoxy resin AB glue 9005), acrylate resin glue (such as ZLDJS-1000, ZLDJS-2500) or UV-curable glue (such as Kaisimi One or more of K2018);
  • the double-sided tape is selected from optical double-sided tape with good uniformity and transparency (such as 3M OCA optical double-sided tape).
  • the light-curable functional group-containing monomer is selected from bisphenol A ethoxy acid diacrylic acid, bisphenol A glycerol dimethacrylate, bisphenol A glycerol diacrylic acid, bisphenol A dimethacrylate, bisphenol A dimethacrylate, and bisphenol A glycerol dimethacrylate.
  • the photocurable functional group-containing oligomer is selected from urethane acrylate oligomer, polysiloxane acrylate oligomer, perfluoropolyether acrylate oligomer, polyethylene glycol acrylate oligomer, cyclic Oxyacrylate oligomers, polyester acrylate oligomers, polyether acrylate oligomers, urethane methacrylate oligomers, polysiloxane methacrylate oligomers, perfluoropolyether methyl Acrylate oligomer, polyethylene glycol methacrylate oligomer, epoxy methacrylate oligomer, polyester methacrylate oligomer, polyether methacrylate oligomer, mercapto poly Siloxane oligomer, mercapto urethane oligomer, mercapto perfluoropolyether oligomer, mercapto polyester oligomer, mercapto polyether oligomer, alken
  • the selection principle of the photo-curing raw material and the photo-curing agent is the same, and both are monomers or oligomers containing photo-curing functional groups, but the two may be the same or different.
  • the photo-curing raw material also includes a photo-initiator.
  • a photo-initiator which can be selected from common types in the field, such as benzil compounds, alkyl phenone compounds , one or more of acyl phosphorus oxides.
  • a functional layer such as an anti-evaporation functional layer, is optionally provided between the elastic support body and the light-cured layer.
  • the functional layer can be a single layer or a multi-layered layer, which can be adaptively adjusted according to the specific application environment. .
  • double-sided tape can be used as the functional layer.
  • the double-sided tape can be selected from optical double-sided tape with good uniformity and transparency (such as 3M OCA optical double-sided tape), or
  • the thin film formed by curing the photocuring agent is used as the functional layer, and the photocuring agent can be selected from tricyclodecane dimethanol acrylate with high Tg.
  • the molds include, but are not limited to, male molds made of materials such as SU-8 photoresist, monocrystalline silicon, glass, polydimethylsiloxane (PDMS), polymethacrylate (PMMA), and metal. ;
  • the mold is a SU-8 photoresist positive mold processed by photolithography technology or a single crystal silicon positive mold processed by photolithography and etching technology.
  • the surface of the substrate has a photocurable functional group, which is selected from a film formed by curing the photocurable raw material or a surface-modified glass with a photocurable functional group.
  • the channel structure layer can be directly encapsulated by the substrate, or can be encapsulated by another channel structure layer.
  • the composition and structure of the two channel structure layers are independent of each other, which can be the same or different.
  • the sealing method includes one or more of photocuring sealing, heat sealing and plasma sealing.
  • An intermediate layer can also be added between the channel structure layer and the sealing layer according to specific application needs.
  • the application design of a pneumatic valve in a microfluidic chip requires a film with good elasticity (thickness is 30-60 ⁇ m)
  • the film is formed by curing the photocurable raw materials, and can be selected from urethane acrylate oligomer, urethane methacrylate oligomer, perfluoropolyether acrylate oligomer One or more of oligomers, perfluoropolyether methacrylate oligomers, mercaptopolysiloxane oligomers, and alkenyl polysiloxane oligomers.
  • the invention also discloses the preparation process of the light-cured microfluidic chip based on the elastic support, including mold processing, light-cured raw material preparation, channel structure layer processing and chip sealing.
  • the channel structure layer is processed as follows. One of the processing:
  • the elastic support used in the above processes, when it only includes the body layer, is prepared and processed according to one of the following methods:
  • the monomers or oligomers used to prepare the body layer with the photoinitiator uniformly, and prepare by curing and molding; for example, the material of the body layer is thiol-ene (Thiol-ene) polymer, polyurethane
  • the monomer or oligomer corresponding to each material is prepared by blending, injection molding, curing and demoulding with a photoinitiator.
  • the preparation of the elastic support body is processed by one of the following methods:
  • the connecting layer is covered on the molded body layer, and the connecting layer and the body layer are connected together by adhesion to prepare.
  • the substrate is selected from one of glass, silicon wafer, and polytetrafluoroethylene plate.
  • the prepolymer of the bulk layer is selected from PDMS prepolymer, and the curing agent is selected from common curing agents in the art; preferably, the mass ratio of the PDMS prepolymer to the curing agent is 5-10:1.
  • the liquid elastic support precursor material is selected from one or more of urethane acrylate oligomers, urethane methacrylate oligomers, thiol olefin polymers, and epoxy resin AB glue.
  • the invention also discloses that the light-cured microfluidic chip processed according to the above method has wide applications in the fields of droplet microfluidics, surface modification, in-situ light-cured microstructure and the like.
  • the present invention has the following beneficial effects:
  • the invention discloses a light-cured microfluidic chip based on an elastic support.
  • the elastic support can be connected with a light-cured layer containing a channel structure through covalent bonding or adhesion, and has multi-layer superposition and composite properties. It can be sealed with other channel structure layers, intermediate layers or base layers to form a complete photocurable microfluidic chip.
  • the photocurable layer containing the channel structure Due to the supporting effect of the elastic support, the photocurable layer containing the channel structure also has certain flexibility and elasticity, which will enable almost all photocurable materials to be used in the preparation of microfluidic chips, so it can be used according to the light
  • the physical and chemical properties of the cured material (viscosity, hardness, glass transition temperature, elongation, refractive index, hydrophilicity and hydrophobicity, solvent resistance, etc.), combined with the application scenario, select the appropriate photocurable material as needed. Therefore, the processing method of the photocurable microfluidic chip has the advantages of strong versatility, wide selection of photocurable materials, and multi-layer photocurable materials can be composited and stacked.
  • the good flexibility and elasticity endowed by the elastic support will also make the punching, sealing, cutting and external pipeline connection of the chip easier.
  • hard materials such as silicon can be used as molds, eliminating the need for additional PDMS mold processing links, and at the same time effectively overcoming the problem of oxygen inhibition, so that the chip processing process can be carried out at room temperature and atmospheric environment. Therefore, the light-cured microfluidic chip processing method has the advantages of simple operation and rapidity, which is not only suitable for the design and development of microfluidic chip prototypes in conventional laboratories, but also has good mass production potential.
  • Photocurable microfluidic chips based on elastic supports have broad application prospects in the fields of droplet microfluidics, surface modification by UV irradiation, and in situ photocurable microstructures.
  • photocurable materials with hydrophilic or hydrophobic properties can be selected respectively according to the properties of the droplets to prepare the required microfluidic chip, that is, when generating water-in-oil droplets, the hydrophobic light is selected.
  • hydrophilic photo-curable materials are selected, thereby eliminating the relatively tedious surface modification steps.
  • the inner surface of the photocurable microfluidic chip has a large number of photocurable functional groups, its operability is also stronger.
  • one end containing photocurable functional groups and one end containing modified functional groups can be selected.
  • Modification reagents can be selectively modified by UV irradiation.
  • the photocurable microfluidic chip also has the ability to further process the microstructure. By passing UV light through a specific mask pattern, the desired pattern can be cured in situ in the microchannel and fixed to the photocured microfluidic chip. , which provides more possibilities for the precision processing of microfluidic chips.
  • FIG. 1 is an exploded schematic diagram of the channel structure layer of the light-cured microfluidic chip of the present invention, in the figure:
  • Fig. 2 is the structural representation of the elastic support body with the photocurable functional group on the surface of the present invention, among the figure: 4 is the body layer, 5 is the photocurable functional group, 6 is the connection layer with the photocurable functional group 5;
  • Fig. a) is The body layer 4 itself has or has a photocurable functional group 5 through surface modification, which can be directly used as an elastic support;
  • Figure b) shows that the body layer 4 and the connection layer 6 with the photocurable functional group 5 are composited to form an elastic support;
  • FIG. 3 is a schematic diagram of the preparation process of the channel structure layer of the light-cured microfluidic chip of the present invention.
  • FIG. 4 is a schematic structural diagram of a light-curing microfluidic chip of the present invention.
  • FIG. 5 is a diagram of masks used for the processing of photocuring microfluidic chip molds in Example 8(a) and Example 19(b) and (c) of the present invention
  • Fig. 6 is the physical diagram of the elastic support body formed by PDMS prepared in Example 4 and the connecting layer with acrylate functional groups;
  • Fig. 7 is the photocuring microfluidic chip and the photocuring microfluidic chip of the three-dimensional channel structure prepared respectively in embodiment 8 and embodiment 19 The physical map of;
  • Example 8 is a diagram of an array of water-in-oil droplets generated in a droplet generation test using the light-cured microfluidic chip prepared in Example 8;
  • Example 9 is an array diagram of oil-in-water droplets generated in a droplet generation test using the photocurable microfluidic chip prepared in Example 11;
  • Figure 10 is a microscope photo of the droplet production area when the photocured microfluidic chip prepared in Example 12 is used for the droplet generation test. Modification, in (c) the photocurable microfluidic chip is modified with hydrophobic surface, and in (d) the photocured microfluidic chip is modified with hydrophilic surface;
  • FIG. 11 is a photo-cured mask pattern (a) in the photo-cured microfluidic chip prepared in Example 15 and a microscopic view of the cured microstructure (b).
  • Fig. 1 is a schematic diagram showing the decomposition of the channel structure layer of the light-cured microfluidic chip disclosed in the present invention, in the figure: 1 is an elastic support body, 2 is a light-cured layer comprising a channel structure, 1 and 2 are covalently bonded or adhered connected to form the channel structure layer 3 .
  • Fig. 2 is the structural representation of the elastic support body with photocurable functional groups on the surface of the present invention, in the figure: 4 is the body layer, 5 is the photocurable functional group, 6 is the connection layer with the photocurable functional group 5, Fig. a) is The body layer 4 itself has or has a photocurable functional group 5 through surface modification, and can be directly used as an elastic support; Figure b) shows that the body layer 4 and the connection layer 6 with a photocurable functional group 5 are composited to form an elastic support.
  • FIG. 3 is a schematic diagram of the preparation process of the channel structure layer of the light-cured microfluidic chip of the present invention, and the schematic diagram includes four processing techniques:
  • Method A a) Cover the photocurable raw material 1 on the mold 2, cover with a solid elastic support 3, and apply light irradiation; b) After the photocurable raw material is cured, a photocured layer 4 containing a channel structure is formed, and is combined with elasticity. The supports are connected; k) peel off the entirety of the channel structure layer from the mold, and punch holes at the sample inlet and outlet.
  • Method B c) covering the photocurable raw material 1 on the mold 2, and applying light irradiation; d) curing or partially curing the photocurable raw material into a photocurable layer 4 containing a channel structure; e) capping the elastic support 3, Connect it with the photocurable layer 4; k) peel off the entirety of the channel structure layer from the mold, and punch holes at the sample inlet and outlet.
  • Method C f) covering the photocurable raw material 1 on the mold 2 and applying light irradiation; g) curing or partially curing the photocurable raw material into a photocurable layer 4 containing a channel structure; h) covering the liquid elastic support precursor Material 5, apply light irradiation or heat to cure and connect with the photocurable layer; k) peel off the entirety of the channel structure layer from the mold, and punch holes at the sample inlet and outlet.
  • Method D i) covering the photocurable raw material 1 on the surface of the elastic support 3; j) placing the mold 2 on the photocurable raw material by an imprinting method, applying light irradiation, and forming a channel-containing structure after the photocurable raw material is cured
  • the photo-cured layer 4 is connected to the elastic support body; k) The entirety of the channel structure layer is peeled off from the mold, and holes are punched at the sample inlet and outlet.
  • FIG. 4 is a schematic structural diagram of a light-cured microfluidic chip of the present invention, including a channel structure layer and a sealing layer, wherein the sealing layer can be a base layer or another channel structure layer, and specifically includes the following two solutions:
  • Scheme A The channel structure layer a) and the base layer b) are sealed to form a photocurable microfluidic chip c).
  • Scheme B The channel structure layer d) is sealed with another channel structure layer e) to form a photocurable microfluidic chip f) with a three-dimensional channel structure.
  • step b) Pour the solution 1 prepared in step a) into and fill the groove with a depth of 3 mm, cover it with a clean glass sheet and flatten it, apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), and the irradiation time is 180 s ⁇ 200s.
  • the thiol-ene solid (bulk layer) obtained in this example has good elasticity, the elastic modulus is about 250 MPa, and itself has a photocurable functional group, which can be directly used as an elastic support.
  • step b) Pour the solution 2 prepared in step a) into and fill the groove with a depth of 3mm, cover it with a clean glass sheet and flatten it, apply ultraviolet light (365nm, 2.5mW/cm 2 ), and the irradiation time is 340s ⁇ 360s.
  • the urethane acrylate solid (bulk layer) obtained in this example has good elasticity, the elastic modulus is about 70MPa, and itself has a photocurable functional group, which can be directly used as an elastic support.
  • the thermally cured PDMS is plasma treated (500V, 13.56MHz, 45s), it is immersed in a silane coupling agent solution (3-(methacryloyloxy)propyltrimethoxysilane in ethanol solution, volume fraction 10%), soaking for 1 to 2 hours to ensure that the PDMS surface is modified with acrylate functional groups.
  • a silane coupling agent solution (3-(methacryloyloxy)propyltrimethoxysilane in ethanol solution, volume fraction 10%
  • step c) Take out the PDMS in step b), rinse it with ethanol, dry it with nitrogen, and use it for later use.
  • the surface of the PDMS bulk layer is modified with photocurable functional groups, it is used as an elastic support.
  • Example 4 The composite of PDMS and the connecting layer with acrylate functional groups to form an elastic support:
  • Example 5 PDMS and allyl methacrylate thin layer composite to form elastic support:
  • step a) is 95% allyl methacrylate (Sigma, 234931) and 5% photoinitiator 2-hydroxy-2-methyl -1-Phenyl-1-propanone (Sigma, 405655);
  • step b the irradiation time is different and increased to 1200s ⁇ 1300s.
  • Example 6 PDMS and polysiloxane acrylate thin layer composite to form elastic support:
  • step b) and the PDMS of step c) are subjected to plasma treatment (500V, 13.56MHz, 45s) and then sealed to form an elastic support body.
  • Example 7 The polyurethane body layer and the thiol-ene material thin layer are composited to form an elastic support body:
  • thermoplastic polyurethane elastomer has good adhesion to the thiol-ene photocurable material, and can be used to prepare a stable composite elastic support.
  • polyurethane elastomers interact with many light-curable materials such as bisphenol A ethoxylate diacrylate (Sigma, 413550), 4-hydroxybutyl acrylate (Sigma, 275573), polyurethane acrylate (Changxing Materials). Company, 6115J-80), etc., all have good adhesion, so they can also be directly used as elastic supports.
  • a) Mold processing spin-coating photoresist (Microchem, SU-83050) on the clean single-crystal silicon wafer with a thickness of 50 ⁇ m; On the silicon wafer coated with photoresist, and exposed on an ultraviolet photolithography machine; develop, remove excess photoresist, and obtain a mold with a photoresist pattern.
  • photoresist Microchem, SU-83050
  • Channel structure layer processing drop the photocurable raw material prepared in step b) on the SU-8 mold, cover the elastic support prepared in Example 4, apply ultraviolet light (365nm, 2.5mW/cm 2 ), irradiate The time is 40s to 80s, so that the photocurable raw material is cured into a photocured layer containing a channel structure, and is connected with an elastic support through covalent bonding to form a channel structure layer.
  • Punching the channel structure layer peel off the cured channel structure layer from the mold, and use a hole puncher to punch holes at the inlet and outlet.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365nm, 2.5mW/cm 2 ), The irradiation time was 50s to 70s, and one of the glass sheets was uncovered to expose the base layer.
  • Chip sealing Align the channel structure layer with the base layer, press to remove air bubbles, apply ultraviolet light (365nm, 2.5mW/cm2), and the irradiation time is 150s ⁇ 200s, so that the base layer and the channel structure layer are sealed to form A complete photo-curing microfluidic chip (see Figure a in Figure 7 of the accompanying drawing for the actual picture).
  • the processing time of the channel structure layer in Example 8 is 90s, and there are 4 chip patterns on one mold, that is, the processing rate of the channel structure layer of the light-curing microfluidic chip preparation method can reach 25s/chip.
  • the light-cured microfluidic chip processing method has a good potential for mass production.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 20s to 30s, and one of the glass sheets is uncovered to expose the base layer.
  • Example 10 1,10-Decanediol diacrylate light-cured microfluidic chip processing:
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 30s to 50s, and one of the glass sheets is uncovered to expose the base layer.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time was 70s to 90s, and one of the glass sheets was uncovered to expose the base layer.
  • Examples 8-11 show that the method can successfully prepare photocurable microfluidic chips by using monomers containing photocurable functional groups.
  • Embodiment 12 Poly(ethylene glycol) diacrylate light-cured microfluidic chip processing:
  • Channel structure layer processing drop the photocurable raw material prepared in step b) on the SU-8 mold, cover the elastic support prepared in Example 7, apply ultraviolet light (365nm, 2.5mW/cm 2 ), irradiate The time is 50s to 70s, so that the photocurable raw material is cured into a photocurable layer containing a channel structure, and is connected with an elastic support through covalent bonding to form a channel structure layer.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365nm, 2.5mW/cm 2 ), The irradiation time was 20s to 40s, and one of the glass sheets was uncovered to expose the base layer.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365nm, 2.5mW/cm 2 ), The irradiation time is 90s to 100s, and one of the glass sheets is uncovered to expose the base layer.
  • step f) Chip sealing similar to step f) in Example 8, except that the sealing is performed in a nitrogen atmosphere.
  • Channel structure layer processing drop the photocurable raw material prepared in step b) on the SU-8 mold, cover the elastic support prepared in Example 6, apply ultraviolet light (365nm, 2.5mW/cm 2 ), irradiate The time is 80s to 90s, so that the photocurable raw material is cured into a photocured layer containing a channel structure, and is connected with an elastic support through covalent bonding to form a channel structure layer.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 50s to 60s, and one of the glass sheets is uncovered to expose the base layer.
  • Chip sealing Align the channel structure layer and the base layer after plasma treatment (condition?), press to remove air bubbles, and seal the base layer and the channel structure layer to form a complete photocuring microfluidic chip.
  • Example 15 Processing of urethane acrylate light-cured microfluidic chip:
  • Channel structure layer processing drop the photocurable raw material prepared in step b) on the SU-8 mold, cover the elastic support prepared in Example 4, apply ultraviolet light (365nm, 2.5mW/cm 2 ), irradiate The time is 180s-200s, so that the photocurable raw material is cured into a photocurable layer containing a channel structure, and is connected with the elastic support through covalent bonding to form a channel structure layer.
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 100s to 120s, and one of the glass sheets is uncovered to expose the base layer.
  • Chip sealing Align the channel structure layer with the base layer, press to remove air bubbles, and after heating at 100°C for 2 hours, seal the base layer and the channel structure layer to form a complete photocurable microfluidic chip.
  • Examples 12 to 15 show that this method can successfully prepare photocurable microfluidic chips using polymers containing photocurable functional groups.
  • step c) Processing of the channel structure layer: drop the photocurable raw material prepared in step b) on the SU-8 mold, cover with a thermoplastic polyurethane elastomer sheet, apply ultraviolet light (365nm, 2.5mW/cm 2 ), and the irradiation time is 180s For ⁇ 200s, the photocurable raw material is cured into a photocurable layer containing a channel structure, and is connected with the elastic support through adhesion to form a channel structure layer.
  • ultraviolet light 365nm, 2.5mW/cm 2
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 100s to 120s, and one of the glass sheets is uncovered to expose the base layer.
  • Chip sealing Align the channel structure layer with the base layer, press to remove air bubbles, and after heating at 100°C for 2 hours, seal the base layer and the channel structure layer to form a complete photocurable microfluidic chip.
  • This example shows that the body layer with good adhesion to the photocurable material can be used directly as an elastic support, the channel structure layer can be processed according to the method A in FIG. chip.
  • Example 17 Processing of neopentyl glycol propoxane diacrylic acid light-cured microfluidic chip:
  • a double-sided tape (3M, OCA optical double-sided tape) is flatly pasted on the surface of the thermoplastic polyurethane elastomer sheet, and composited to form an elastic support.
  • Channel structure layer processing drop the photocurable raw material prepared in step b) on the SU-8 mold, and flatten it on the mold pattern, apply ultraviolet light (365nm, 2.5mW/cm 2 ), and the irradiation time is 40s For ⁇ 60s, the photocurable raw material is cured into a photocurable layer containing a channel structure, and then the elastic support prepared in step c) is covered, and connected with the photocurable layer by adhesion to form a channel structure layer.
  • ultraviolet light 365nm, 2.5mW/cm 2
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time was 50s to 70s, and one of the glass sheets was uncovered to expose the base layer.
  • This example shows that the composite elastic support with good adhesion to the photocurable material can be used to process the channel structure layer according to the method B in FIG. 3 , and prepare the photocurable microfluidic chip according to the scheme A in FIG. 4 .
  • Example 18 Processing of isobornyl acrylate light-cured microfluidic chip:
  • step c) Processing of channel structure layer: drop the photocurable raw material prepared in step b) on the SU-8 mold, and lay it flat on the mold pattern, apply ultraviolet light (365nm, 2.5mW/cm 2 ), and the irradiation time is 60s For ⁇ 80s, the photocurable raw material is cured into a photocurable layer with a channel structure, and then tin foil is used as a glue tank, and 30g of liquid elastic glue (Taiwan Yongguang Chemical Industry Co., Ltd., UV UV glue 8051) is poured on the photocured layer. , UV light (365nm, 2.5mW/cm 2 ) is applied again, and the irradiation time is 340s-360s, so that the photocurable layer is connected with the elastic glue to form a channel structure layer.
  • ultraviolet light 365nm, 2.5mW/cm 2
  • Base layer processing drop the photocurable raw material prepared in step b) between two clean glass sheets to form a bubble-free liquid layer with a thickness of about 100 microns, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time was 50s to 70s, and one of the glass sheets was uncovered to expose the base layer.
  • liquid elastic support precursor material can be used to process the channel structure layer according to the method C in FIG. 3
  • the photocurable microfluidic chip can be prepared according to the scheme A in FIG. 4 .
  • Example 19 Processing of urethane acrylate three-dimensional structure light-cured microfluidic chip:
  • mold processing the mold processing steps are exactly the same as step a) in Example 8, and the masks used are respectively as b and c in accompanying drawing 5 to obtain two kinds of molds with different patterns, which are respectively denoted as molds I and c. Mold II.
  • channel structure layer I Processing of channel structure layer I: drop the photocurable raw material prepared in step b) on the SU-8 mold I, cover the elastic support prepared in Example 4, and apply ultraviolet light (365nm, 2.5mW/cm 2 ), The irradiation time is 180s-200s, so that the photocurable raw material is cured into a photocured layer containing a channel structure, and is connected with the elastic support through covalent bonding to form the channel structure layer I.
  • channel structure layer II Processing of channel structure layer II: drop the photocurable raw material prepared in step b) on the SU-8 mold II, cover the elastic support prepared in Example 4, and apply ultraviolet light (365 nm, 2.5 mW/cm 2 ), The irradiation time is 180s-200s, so that the photocurable raw material is cured into a photocurable layer containing a channel structure, and is connected with the elastic support through covalent bonding to form a channel structure layer II.
  • ultraviolet light 365 nm, 2.5 mW/cm 2
  • Chip sealing Align the channel structure layer I with the channel structure layer II, press to remove air bubbles, apply ultraviolet light (365nm, 2.5mW/cm2), and the irradiation time is 150s ⁇ 200s, so that the channel structure layer I and the channel structure Layer II is sealed to form a complete light-cured microfluidic chip (see Figure b in Figure 7 of the accompanying drawing for the actual picture).
  • This example shows that the upper and lower channel structure layers can be sealed, and a photocurable microfluidic chip with a three-dimensional channel structure can be prepared according to Scheme B in FIG. 4 .
  • the bisphenol A ethoxylate diacrylate photocurable microfluidic chip prepared in Example 8 was hydrophobic, and was prepared with 97% mineral oil (Sigma, M5904) and 3% surfactant (ABIL, EM90).
  • ABIL 3% surfactant
  • As the continuous phase a deionized aqueous solution containing 8 mg/mL food coloring (Lion Head) was used as the dispersed phase, and the flow rate of the continuous phase was set to 300 ⁇ L/h, and the flow rate of the dispersed phase was 10 ⁇ L/h.
  • Fig. 8 is an array diagram of the water-in-oil droplets generated by the light-cured microfluidic chip prepared in Example 8. It can be found by observing the picture that the water-in-oil droplets generated in the chip are uniform and stable, with a diameter of about 115 ⁇ m .
  • 2-Acrylic acid-(2-hydroxy-1,3-propylene)bis[oxy(2-hydroxy-3,1-propylene)]ester photocurable microfluidic chip prepared in Example 11 is hydrophilic, with 2% TWEEN-80 (Sangong, TT1817), 0.8% food coloring (Lion Head brand), 97.2% deionized water as the continuous phase, and silicone oil (Dow Corning, 5cst) as the dispersed phase.
  • the phase flow rate was 300 ⁇ L/h and the disperse phase flow rate was 10 ⁇ L/h.
  • Figure 9 shows the oil-in-water droplets generated by the light-cured microfluidic chip prepared in Example 11; by observing Figure 9, it can be seen that the oil-in-water droplets generated in the chip are uniform and stable, with a diameter of about 115 ⁇ m.
  • Fig. 10 a is a microscope photo of the photocurable microfluidic chip prepared in Example 12 at the droplet production area. It was observed that the photocurable chip could not generate water-in-oil droplets.
  • the surface of the channel of the light-cured microfluidic chip is treated with hydrophobicity, specifically, firstly, continuously pouring 49.5% butyl acrylate (Merrell, M06236) and 0.5% photoinitiator 2-hydroxy-2 into the chip channel - Ethanol solution of methyl-1-phenyl-1-propanone (Sigma, 405655), the flow rate is 150 ⁇ L/h, and then the chip is subjected to ultraviolet light (365nm, 2.5mW/cm 2 ) for 180s, and then pass through Ethanol can be used to wash away the residual hydrophobic modification reagent.
  • hydrophobicity specifically, firstly, continuously pouring 49.5% butyl acrylate (Merrell, M06236) and 0.5% photoinitiator 2-hydroxy-2 into the chip channel - Ethanol solution of methyl-1-phenyl-1-propanone (Sigma, 405655), the flow rate is 150 ⁇ L/h, and then the chip is subjected to ultraviolet light (
  • Figure 10 c is a microscope image of the photocurable microfluidic chip prepared in Example 12 after hydrophobic surface modification to generate water-in-oil droplets in the droplet generation area; it was observed that after surface modification by UV light, the chip channel The surface is obviously hydrophobic and can stably generate water-in-oil droplets.
  • the poly(ethylene glycol) diacrylate light-cured microfluidic chip prepared in Example 12 was prepared with 2% TWEEN-80 (Sangong, TT1817), 0.8% food coloring (Lion Head brand), 97.2% deionized Water was used as the continuous phase, and silicone oil (Dow Corning, 5cst) was used as the dispersed phase.
  • FIG. 10 is a microscope photo of the photocurable microfluidic chip prepared in Example 12 at the droplet production area. It is observed that the photocurable chip cannot generate oil-in-water droplets.
  • Hydrophilic modification was performed on the channel surface of the photocurable microfluidic chip: continuous flow of 9.9% acrylic acid (Aladdin, 147230) and 0.1% photoinitiator 2-hydroxy-2-methyl-1 into the chip channel -Aqueous solution of phenyl-1-propanone (Sigma, 405655), the flow rate is 300 ⁇ L/h, and then subjected to ultraviolet light (365nm, 2.5mW/cm 2 ) for 320s, and then deionized water is passed in to wash away the residual A hydrophilic modification reagent is sufficient.
  • FIG. 10 is a microscope image of the photocurable microfluidic chip prepared in Example 12 after hydrophilic surface modification to generate oil-in-water droplets in the droplet generation area. It was observed that the chip was modified by UV light after surface modification. The surface of the channel is obviously hydrophilic and can stably generate oil-in-water droplets.
  • FIG. 11 is a mask diagram of in-situ photocuring in the photocurable microfluidic chip prepared in Example 15 and a corresponding microstructure effect diagram.
  • a is the drawn mask image
  • white is the light-transmitting part, which is a group of circular arrays with a diameter of 20 microns
  • b is the cured microstructure effect diagram, it can be seen that the cured circular pattern array is the same as The pattern drawn by the mask is consistent, and the measured circle size is 20 microns. Since the surface of the photocurable chip has a large number of photocurable functional groups, the formed microstructure can be covalently connected to it to form a stable micropillar structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micromachines (AREA)

Abstract

本发明公开了一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用,该光固化微流控芯片包括通道结构层和封接层,通道结构层包含含通道结构的光固化层和用于支撑该光固化层的弹性支撑体;弹性支撑体与光固化层之间通过共价结合或粘附作用连接;含通道结构的光固化层由光固化原料覆盖于模具之上通过光辐照后固化形成;弹性支撑体包括本体层和选择性增加的连接层。该光固化微流控芯片对光固化材料和模具种类均没有特殊限制,使得整个芯片加工过程可以在室温、大气环境下进行;且芯片的打孔、封接、切割以及外界管路连接等方面也更加简便、快速,既适合于常规实验室中开展微流控芯片原型的设计开发,也具有良好的批量化生产潜力。

Description

一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用 技术领域
本发明涉及微流控芯片技术领域,尤其涉及一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用。
背景技术
微流控芯片由于具有流体控制精确、样品需求量少、反应快速以及易于集成等优势,在化学、生物学、医学等领域获得了越来越广泛的研究与应用。目前,用于制备微流控芯片的材料主要包括硅、玻璃和有机聚合物等。其中,有机聚合物与硅和玻璃等无机材料相比具有许多优势,包括种类多样、易于获得较大的深宽比、可以批量化生产、成本低等。代表性的有机聚合物包括聚碳酸酯(PC)、聚甲基丙烯酸甲酯(PMMA)、环烯烃共聚物(COC)等。这些材料可以通过热压、注塑等方式批量、廉价地生产微流控芯片,但由于模具的加工复杂、周期长、成本高,且芯片制备需要注塑机等大型设备,因而对芯片设计、开发等环节构成了极大的挑战。
基于以上原因,聚二甲基硅氧烷(PDMS)仍是目前最常用的有机聚合物芯片材料。因其可以在常规实验室内通过模塑法快速成型,同时具有较低的成本、良好的弹性、优异的生物相容性等优点,几乎是目前绝大多数实验室开展微流控芯片研究的首选。但实际上,PDMS材料也存在一些严重的局限:1)固化速度慢,模具占用时间长,难以实现批量化生产;2)表面改性困难、步骤繁琐,更难以实现局部可控修饰;3)透气,不适合聚合酶链式反应(PCR)等需要防止试剂蒸发的应用;4)易被有机试剂溶胀,严重限制其在相关化学反应中的应用;等等。综上所述,尽管PDMS是一种非常具有优势、同时也是最受欢迎的微流控芯片材料,但显然难以满足日益广泛的应用需求。此外,常规实验室所研制的PDMS芯片原型往往还需要经过材料替代、加工工艺优化等二次开发 过程才能实现批量生产和降低成本。这也是很多优秀的微流控芯片研究成果未能成功商品化的重要原因之一。
近年来,光固化材料逐渐成为了微流控芯片研究的热门。它们通常可以在室温条件下,通过紫外光照射迅速(几秒至几十秒)固化,因此既满足实验室研发阶段的快速成型需求,同时也具有很好的批量化生产潜力。由光固化材料所制备的微流控芯片由于具有大量活性官能团,在表面改性、原位光固化微结构等方面具有十分明显的优势。此外,光固化材料的种类很多(如丙烯酸酯类、硫醇-烯类、环氧树脂类等),众多的试剂公司(如沙多玛、赢创、长兴等)可以提供数以千计的具有不同物理化学性质(密度、粘度、硬度、弹性、粘附力、折射率、亲疏水性、抗溶剂性等)的光固化材料,因此在芯片设计之初,就可以根据特定的应用需求来选择和调制最适合的材料。这将大大提高微流控芯片从设计开发到产品化的成功率。
但截至目前,光固化微流控芯片的加工仍面临诸多挑战:1)很多光固化材料的柔韧性差,难以从硅等硬质模具上翻模,因此只能以有弹性的PDMS等材料作为模具,这不仅会增加加工步骤,而且不适用于可以溶胀PDMS的光固化材料。2)由于存在氧阻聚问题,目前的光固化微流控芯片加工多在真空或者氮气环境下完成,大大增加了设备、加工工艺的复杂度和成本,这在以PDMS材料作为模具时尤为突出。3)多数光固化材料不适合单独作为微流控芯片主体(一般几毫米厚)。这一方面是由于它们一般对紫外光吸收较强,从而造成沿光传播方向的聚合反应差异,此外快速且大量的放热也容易引起材料内部不均匀;另一方面,很多光固化材料的机械性能并不满足微流控芯片的要求(如过软、过硬或者易碎等),同时也使得芯片在切割、打孔、外界管路连接等方面存在诸多不便。因此,亟需发展更加简便、通用的光固化微流控芯片加工方法,以使得大量优秀的光固化材料更好地应用于微流控芯片领域。
发明内容
针对上述问题,本发明公开了一种基于弹性支撑体的光固化微流控芯片,对光固化材料的种类没有特殊限制,对模具种类也没有特殊限 制,使得利用硅等硬质材料作为模具成为可能,从而省去额外的PDMS模具加工环节,同时有效克服了氧阻聚问题,使得整个芯片加工过程可以在室温、大气环境下进行;且芯片的加工,包括芯片的打孔、封接、切割以及外界管路连接等方面也更加简便、快速,既适合于常规实验室中开展微流控芯片原型的设计开发,也具有良好的批量化生产潜力。
具体技术方案如下:
一种基于弹性支撑体的光固化微流控芯片,包括通道结构层和用于封接所述通道结构层的封接层;
所述通道结构层包含含通道结构的光固化层和用于支撑所述光固化层的弹性支撑体;
所述弹性支撑体与所述光固化层之间通过共价结合或粘附作用连接;
所述含通道结构的光固化层由光固化原料覆盖于模具之上通过光辐照后固化形成,所述光固化原料包括含光固化官能团的单体和/或含光固化官能团的低聚物,所述光固化官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、乙烯基醚官能团、环氧基官能团中的一种或多种;
所述弹性支撑体包括本体层和选择性增加的连接层;
所述本体层的材质选自聚二甲基硅氧烷、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、热塑性聚氨酯弹性体、热塑性聚烯烃弹性体、热塑性聚酯弹性体、热塑性聚苯乙烯弹性体、硫醇-烯聚合物中的一种或多种;
所述封接层选自基底或另一所述通道结构层。
本发明公开的光固化微流控芯片,其核心思想在于采用具有良好柔韧性的弹性支撑体,使其通过共价结合或者粘附作用与含通道结构的光固化层相连接,从而在模具上快速制备通道结构层,再与其它通道结构层、中间层或基底层封接形成完整的光固化微流控芯片。由于弹性支撑体的支撑作用,含通道结构的光固化层也将具备一定的柔韧性和弹性,这一特点将使几乎所有光固化材料都可以被应用于微流控芯片的制备;与此同时,芯片的打孔、封接、切割以及外界管路连接等方面也将变得更加容易。由弹性支撑体所赋予的良好柔韧性和弹性还使得利用硅等硬 质材料作为模具成为可能,从而省去额外的PDMS模具加工环节,同时有效克服了氧阻聚问题,使得整个芯片加工过程可以在室温、大气环境下进行。总之,该方法适用于几乎所有的光固化材料,芯片的加工也更加简便、快速,既适合于常规实验室中开展微流控芯片原型的设计开发,也具有良好的批量化生产潜力。
优选的:
所述光固化层的厚度选自30~300μm;此厚度下的光固化原料容易固化成完整的光固化层,并在弹性支撑体的支撑下表现出良好的良好柔韧性和弹性。
所述弹性支撑体的厚度选自1~6mm;此厚度下的弹性支撑体对光固化层具有更好的支撑作用。
本发明中,所述弹性支撑体包括本体层和选择性增加的连接层;当所述本体层带有可以与所述光固化层之间通过共价结合或粘附作用连接的光固化官能团时,就无需引入连接层;当所述本体层无法直接与所述光固化层之间通过共价结合或粘附作用连接时,需要引入连接层。
所述本体层带有可以与所述光固化层之间通过共价结合或粘附作用连接的光固化官能团,又存在两种情况:
一种情况是用于制备本体层的单体或低聚物经聚合后制备的聚合物本身带有光固化官能团,如硫醇-烯(Thiol-ene)聚合物、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯中的一种或多种。
优选的,所述硫醇-烯(Thiol-ene)聚合物中硫醇与烯官能团的比例大于等于1.5,以获得更好的弹性;所述聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯的拉伸率大于等于100%。
另一种情况是用于制备本体层的单体或低聚物经聚合后制备的聚合物本身不带有光固化官能团,但通过表面改性处理后获得了光固化官能团。此种情况优选的本体层为PDMS材料,优选先经等离子体处理后再经硅烷偶联剂处理,在PDMS材料表面修饰上光固化官能团。
经试验发现,若本体层的弹性模量过大会由于应力问题破坏模具(一般为SU-8光胶),或者损坏要复制的通道结构。优选的,所述本体层的弹性模量小于等于1000MPa。更优选自硫醇-烯聚合物、聚氨酯丙烯 酸酯、PDMS或热塑性聚氨酯弹性体。
当所述本体层无法直接与所述光固化层之间通过共价结合或粘附作用连接时,需要引入连接层,引入的连接层也存在两种情况。
第一种情况,引入的连接层,按重量百分比计,原料组成包括:
光固化试剂         0.0~99.5%;
交联剂             0.0~99.5%;
光聚合引发剂       0.5~5.0%;
所述光固化试剂与所述交联剂不同时为0,但保证三者的总重量为100%。
此种情况优选的本体层为PDMS材料。
经试验发现,当连接层中未加入光固化试剂时,固化时间会被大大延长;而当采用的光固化试剂为聚硅氧烷丙烯酸酯时,可以在该配方中不加入交联剂,但在与本体层复合时,需要额外采用等离子体处理后再复合。
优选的,所述连接层,按重量百分比计,原料组成包括:
光固化试剂           45.5~70%;
交联剂               25.5~50%;
光聚合引发剂         0.5~5.0%;
所述光固化试剂选自含光固化官能团的单体和/或含光固化官能团的低聚物,所述光固化官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、乙烯基醚官能团、环氧基官能团中的一种或多种。
所述交联剂选自包含两种以上反应官能团的试剂;所述反应官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、环氧基官能团或氨基官能团;优选为丙烯酸乙烯酯、甲基丙烯酸乙烯酯、丙烯酸烯丙酯、甲基丙烯酸烯丙酯、乙烯基硫醇、烯丙基硫醇、乙烯胺、氨基丙烯、烯丙基缩水甘油醚、巯基聚乙二醇丙烯酸酯、甲基丙烯酸缩水甘油酯、丙烯酰胺、巯基乙胺、巯基丙胺中的一种或多种。
本发明中,对于所述光聚合引发剂的种类没有特殊要求,可选自本领域常见的种类,如苯偶酰类化合物、烷基苯酮类化合物、酰基磷氧化 物中的一种或多种。
第二种情况,直接以与本体层及光固化层具有良好粘附性的胶水薄层或双面胶薄层作为连接层。
所述胶水选自透明性良好的环氧树脂胶水(如蓝田环氧树脂AB胶9005)、丙烯酸酯树脂胶水(如粘力达ZLDJS-1000、ZLDJS-2500)或UV固化胶水(如凯思密K2018)中的一种或多种;所述双面胶选自均匀性、透明性良好的光学双面胶带(如3M OCA光学双面胶)。
本发明中:
所述含光固化官能团的单体选自双酚A乙氧酸二丙烯酸、双酚A丙三醇双甲基丙烯酸酯、双酚A甘油二丙烯酸、双酚A二甲基丙烯酸酯、丙烯酸异冰片酯、新戊基二醇丙氧杂酸二丙烯酸、三环癸烷二甲醇丙烯酸酯、甲基丙烯酸硬脂酸酯、三羟甲基丙烷三丙烯酸酯、丙氧基化三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、1,6-己二醇二丙烯酸酯、1,10-癸二醇二丙烯酸酯、1H,1H,2H,2H-全氟癸基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯、甘油1,3-二甘油醇酸二丙烯酸酯、丙烯酸-4-羟基丁酯、乙二醇二甲基丙烯酸酯、三[2-(3-巯基丙酸基)乙基]异氰尿酸酯、三羟甲基丙烷三(3-巯基丙酸酯)、四(2-巯基乙酸)季戊四醇酯、1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、三羟甲基丙烷二烯丙基醚、双酚A二缩水甘油醚中的一种或多种;
所述含光固化官能团的低聚物选自聚氨酯丙烯酸酯低聚物、聚硅氧烷丙烯酸酯低聚物、全氟聚醚丙烯酸酯低聚物、聚乙二醇丙烯酸酯低聚物、环氧丙烯酸酯低聚物、聚酯丙烯酸酯低聚物、聚醚丙烯酸酯低聚物、聚氨酯甲基丙烯酸酯低聚物、聚硅氧烷甲基丙烯酸酯低聚物、全氟聚醚甲基丙烯酸酯低聚物、聚乙二醇甲基丙烯酸酯低聚物、环氧甲基丙烯酸酯低聚物、聚酯甲基丙烯酸酯低聚物、聚醚甲基丙烯酸酯低聚物、巯基聚硅氧烷低聚物、巯基聚氨酯低聚物、巯基全氟聚醚低聚物、巯基聚酯低聚物、巯基聚醚低聚物、烯基聚硅氧烷低聚物、烯基聚氨酯低聚物、烯基全氟聚醚低聚物、烯基聚酯低聚物、烯基聚醚低聚物、环氧基聚硅氧烷低聚物、环氧基聚氨酯低聚物、环氧基全氟聚醚低聚物、环氧基聚酯低聚物、环氧基聚醚低聚物中的一种或多种。
所述光固化原料与所述光固化试剂的选择原则相同,均为含光固化官能团的单体或低聚物,但两者可以相同也可以不同。
所述光固化原料中还包括光引发剂,本发明中,对于所述光引发剂的种类没有特殊要求,可选自本领域常见的种类,如苯偶酰类化合物、烷基苯酮类化合物、酰基磷氧化物中的一种或多种。
优选的:
所述弹性支撑体与所述光固化层之间还选择性设有功能层,如防蒸发的功能层,该功能层可以是单层也可以是多层,可根据具体应用环境进行适应性调整。
以该功能层为防蒸发层为例,可采用双面胶作为该功能层,双面胶可选择均匀性、透明性良好的光学双面胶带(如3M OCA光学双面胶),也可采用通过所述光固化试剂固化形成的薄膜作为该功能层,光固化试剂可选择具有高Tg的三环癸烷二甲醇丙烯酸酯。通过在所述弹性支撑体与所述光固化层之间增设该功能层作为防蒸发层,针对高温应用领域,如芯片内进行PCR反应。
本发明中:
所述模具包括但不限于利用SU-8光刻胶、单晶硅、玻璃、聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸酯(PMMA)以及金属等材料加工而成的阳模;作为优选,所述模具为利用光刻技术加工的SU-8光刻胶阳模或者利用光刻和蚀刻技术加工的单晶硅阳模。
所述基底表面带有光固化官能团,选自由所述光固化原料固化形成的薄膜或经表面修饰带有光固化官能团的玻璃。
所述通道结构层可以通过基底直接进行封装,也可以通过另外一个通道结构层进行封装,两个通道结构层的组成与结构相互独立,可以相同也可以不同。
所述封接的方式包括光固化封接、热封接、等离子体封接中的一种或多种。
所述通道结构层与所述封接层之间还可以根据具体的应用需要增设中间层,如在微流控芯片内气动阀的应用设计,需要具有良好弹性的薄膜(厚度为30~60μm)作为微阀通道层与控制层之间的中间层,薄膜由 所述光固化原料固化形成,可选择聚氨酯丙烯酸酯低聚物、聚氨酯甲基丙烯酸酯低聚物、全氟聚醚丙烯酸酯低聚物、全氟聚醚甲基丙烯酸酯低聚物、巯基聚硅氧烷低聚物、烯基聚硅氧烷低聚物中的一种或多种。
本发明还公开了所述的基于弹性支撑体的光固化微流控芯片的制备工艺,包括模具加工、光固化原料配制、通道结构层加工和芯片封接,所述通道结构层加工按如下方法之一加工:
A)将光固化原料覆盖于模具之上,加盖弹性支撑体,然后在光辐照下使光固化原料固化成含通道结构的光固化层,并与弹性支撑体连接,形成所述通道结构层;
B)将光固化原料覆盖于模具之上,先在光辐照下使光固化原料固化成含通道结构的光固化层,再加盖弹性支撑体,使其与光固化层连接,形成所述通道结构层;
C)将光固化原料覆盖于模具之上,先在光辐照下使光固化原料固化成含通道结构的光固化层,再覆盖液态弹性支撑体前驱体材料,使其固化后与所述光固化层相连接,形成所述通道结构层;
D)将光固化原料覆盖于弹性支撑体表面,再将模具置于所述光固化原料之上,然后在光辐照下使所述光固化原料固化成含通道结构的光固化层,并与弹性支撑体连接,形成所述通道结构层。
以上各工艺中采用的弹性支撑体,当其仅包括本体层时,制备按如下方法之一加工:
a)将用于制备所述本体层的单体或低聚物与光引发剂混合均匀,经固化成型制备得到;如该本体层的材质为硫醇-烯(Thiol-ene)聚合物、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯时,将各材质对应的单体或低聚物与光引发剂共混、注模、固化、脱模后制备得到。
b)将用于制备所述本体层的预聚物与固化剂混合均匀,经固化成型后再经表面处理修饰上光固化官能团;如该本体层的材质为PDMS时,将PDMS的预聚体与固化剂混合,经注模、固化、脱模后制备得到聚合物,再进行等离子体处理、硅烷偶联剂处理修饰上光固化官能团。
当所述弹性支撑体包括本体层和连接层时,所述弹性支撑体的制备按如下方法之一加工:
c)将所述连接层的各原料混合后置于基板上,先在光辐照下使其固化得到连接层,再将用于制备所述本体层的预聚物与固化剂混合均匀后置于所述连接层上,再经整体固化后制备得到。
d)当直接以胶水薄层或双面胶薄层作为连接层时,将所述连接层覆盖在成型的本体层上,连接层与本体层之间通过粘附作用连接在一起,制备得到。
所述基板选自玻璃、硅片、聚四氟乙烯板中的一种。
所述本体层的预聚物选自PDMS预聚物,固化剂选自本领域常见的固化剂种类;优选的,所述PDMS的预聚物与固化剂的质量比为5~10:1。
所述液态弹性支撑体前驱体材料选自聚氨酯丙烯酸酯低聚物、聚氨酯甲基丙烯酸酯低聚物、硫醇烯聚合物、环氧树脂AB胶中的一种或多种。
本发明还公开了根据上述方法加工的光固化微流控芯片在液滴微流控、表面改性、原位光固化微结构等领域中具有广泛的应用。
与现有技术相比,本发明具有如下有益效果:
本发明公开了一种基于弹性支撑体的光固化微流控芯片,该弹性支撑体可以通过共价结合或者粘附作用与含通道结构的光固化层相连接,且具有多层叠加复合性,可以再与其它通道结构层、中间层或基底层封接形成完整的光固化微流控芯片。由于弹性支撑体的支撑作用,含通道结构的光固化层也具备一定的柔韧性和弹性,这一特点将使几乎所有光固化材料都可以被应用于微流控芯片的制备,因而可以根据光固化材料的物理化学特性(粘度、硬度、玻璃化转变温度、延展率、折射率、亲疏水性、耐溶剂性等),结合应用场景,按需选择合适的光固化材料。因此该光固化微流控芯片的加工方法具有通用性强、光固化材料选择范围广、可复合叠加多层光固化材料等优点。
由弹性支撑体赋予的良好柔韧性和弹性,还将使得芯片的打孔、封接、切割以及外界管路连接等方面变得更加容易。此外,可以利用硅等硬质材料作为模具,省去了额外的PDMS模具加工环节,同时有效克服了氧阻聚问题,使得芯片加工过程可在室温、大气环境下进行。因此该 光固化微流控芯片加工方法具有操作简便、快速等优点,既适合于常规实验室中微流控芯片原型的设计开发,也具有良好的批量化生产潜力。
基于弹性支撑体的光固化微流控芯片在液滴微流控、UV光照表面改性、原位光固化微结构等领域具有广阔的应用前景。对于液滴微流控,可以根据液滴的性质,分别选择具有亲水或疏水性质的光固化材料来制备所需的微流控芯片,即,生成油包水液滴时,选择疏水性光固化材料,而要生成水包油液滴时,则选择亲水性光固化材料,从而省去相对繁琐的表面修饰步骤。对于必要的表面改性,由于光固化微流控芯片内表面具有大量的光固化官能团,其可操作性也更强,可以根据改性需求,选择一端含光固化官能团而一端含有改性官能团的修饰试剂,通过紫外光照的方式即可以实现选择性的修饰。此外,光固化微流控芯片还具有进一步加工微结构的能力,通过使紫外光照透过特定掩膜图案,可以在微通道内原位固化出所需图案并与光固化微流控芯片固接,这为微流控芯片的精密加工提供了更多可能性。
附图说明
图1为本发明的光固化微流控芯片的通道结构层分解示意图,图中:
1-弹性支撑体,2-包含通道结构的光固化层,3-通道结构层;
图2为本发明的表面带有光固化官能团的弹性支撑体的结构示意图,图中:4为本体层,5为光固化官能团,6为带有光固化官能团5的连接层;图a)为本体层4自身具有或者通过表面修饰带有光固化官能团5,可直接作为弹性支撑体;图b)为本体层4与带有光固化官能团5的连接层6复合形成弹性支撑体;
图3为本发明的光固化微流控芯片的通道结构层制备流程示意图;
图4为本发明的光固化微流控芯片的结构示意图;
图5为本发明的实施例8(a)以及实施例19(b)和(c)中分别用于光固化微流控芯片模具加工的掩膜图;
图6为实施例4制备的PDMS与带有丙烯酸酯官能团的连接层形成的弹性支撑体实物图;
图7为实施例8以及实施例19中分别制备的光固化微流控芯片与三维通 道结构的光固化微流控芯片的实物图;
图8为以实施例8制备的光固化微流控芯片进行液滴生成试验中生成的油包水液滴阵列图;
图9为以实施例11制备的光固化微流控芯片进行液滴生成试验中生成的水包油液滴阵列图;
图10为以实施例12制备的光固化微流控芯片进行液滴生成试验时在液滴生产区处的显微镜照片,(a)、(b)图中未对光固化微流控芯片进行表面修饰,(c)图中对光固化微流控芯片进行疏水性表面修饰,(d)图中对光固化微流控芯片进行亲水性表面修饰;
图11为在实施例15制备的光固化微流控芯片中进行光固化的掩膜图案(a)和固化后的微结构显微镜图(b)。
具体实施方式
为了进一步理解本发明,下面结合以上附图及以下实施例对本发明进行具体描述,但本发明并不限于这些实施例,该领域技术人员在本发明核心指导思想下做出的非本质改进和调整,仍然属于本发明的保护范围。
图1为本发明公开的光固化微流控芯片的通道结构层分解示意图,图中:1为弹性支撑体,2为包含通道结构的光固化层,1和2通过共价结合或粘附作用相连接形成通道结构层3。
图2为本发明的表面带有光固化官能团的弹性支撑体的结构示意图,图中:4为本体层,5为光固化官能团,6为带有光固化官能团5的连接层,图a)为本体层4自身具有或者通过表面修饰带有光固化官能团5,可直接作为弹性支撑体;图b)为本体层4与带有光固化官能团5的连接层6复合形成弹性支撑体。
图3为本发明的光固化微流控芯片的通道结构层制备流程示意图,该示意图中包含四种加工工艺:
方法A:a)将光固化原料1覆盖于模具2之上,加盖固态弹性支撑体3,施加光辐照;b)光固化原料固化后形成含通道结构的光固化层4,并与弹性支撑体相连接;k)将通道结构层整体从模具上剥离下来, 并在进出样口处打孔。
方法B:c)将光固化原料1覆盖于模具2之上,施加光辐照;d)光固化原料固化或者部分固化成含通道结构的光固化层4;e)加盖弹性支撑体3,使其与光固化层4连接;k)将通道结构层整体从模具上剥离下来,并在进出样口处打孔。
方法C:f)将光固化原料1覆盖于模具2之上,施加光辐照;g)光固化原料固化或者部分固化成含通道结构的光固化层4;h)覆盖液态弹性支撑体前驱体材料5,施加光辐照或者加热使其固化并与光固化层连接;k)将通道结构层整体从模具上剥离下来,并在进出样口处打孔。
方法D:i)将光固化原料1覆盖于弹性支撑体3表面;j)通过压印方法,将模具2置于光固化原料之上,施加光辐照,光固化原料固化后形成含通道结构的光固化层4,并与弹性支撑体连接;k)将通道结构层整体从模具上剥离下来,并在进出样口处打孔。
图4为本发明的光固化微流控芯片的结构示意图,包括通道结构层与封接层,其中封接层可以是基底层,也可以是另外一个通道结构层,具体包括如下两种方案:
方案A:通道结构层a)和基底层b)封接形成光固化微流控芯片c)。
方案B:通道结构层d)与另一通道结构层e)封接形成具有三维通道结构的光固化微流控芯片f)。
弹性支撑体加工:
实施例1 基于硫醇-烯材料的弹性支撑体制备:
a)配制溶液:按质量百分比计,将73%的四(2-巯基乙酸)季戊四醇酯(阿拉丁,P160529)、26%的1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(阿拉丁,T123406)、1%的光引发剂2,4,6-三甲基苯甲酰基苯基膦酸乙酯(阿拉丁,E186856)混合均匀,得到溶液1。
b)将步骤a)中配制的溶液1倒入并填充满3mm深的凹槽中,上方盖一块洁净玻璃片压平,施加紫外光(365nm,2.5mW/cm 2),辐照时间为180s~200s。
c)固化后,将硫醇-烯固体从凹槽中取出备用。
此实施例中所获得的硫醇-烯固体(本体层)具有良好的弹性,弹性模量约为250MPa,且自身具有光固化官能团,可直接作为弹性支撑体。
实施例2 基于聚氨酯丙烯酸酯材料的弹性支撑体制备:
a)配制溶液:按质量百分比计,将99%的聚氨酯丙烯酸酯(长兴材料公司,6115J-80)、1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)混合均匀,得到溶液2。
b)将步骤a)中配制的溶液2倒入并填充满3mm深的凹槽中,上方盖一块洁净玻璃片压平,施加紫外光(365nm,2.5mW/cm 2),辐照时间为340s~360s。
c)固化后,将聚氨酯丙烯酸酯固体从凹槽中取出备用。
此实施例中所获得的聚氨酯丙烯酸酯固体(本体层)具有良好的弹性,弹性模量约为70MPa,且自身具有光固化官能团,可直接作为弹性支撑体。
实施例3 PDMS表面修饰丙烯酸酯官能团作为弹性支撑体:
a)将PDMS预聚物(迈图,RTV615)和固化剂(道康宁,Sylgard184)按质量比10:1混合,搅拌均匀后倾倒30g到注胶槽内,整体加热固化2小时。
b)将热固化后的PDMS进行等离子体处理(500V,13.56MHz,45s)后,浸入硅烷偶联剂溶液(3-(甲基丙烯酰氧)丙基三甲氧基硅烷的乙醇溶液,体积分数为10%),浸泡1~2小时以保证PDMS表面修饰上丙烯酸酯官能团。
c)将步骤b)中的PDMS取出,经过乙醇冲洗,氮气吹干后备用。
此实施例中,PDMS本体层表面修饰光固化官能团后,作为弹性支撑体。
实施例4 PDMS与带有丙烯酸酯官能团的连接层复合形成弹性支撑体:
a)配制溶液:按质量百分比计,将59.4%的双酚A乙氧基化物二丙烯酸酯(西格玛,413550)、39.6%的甲基丙烯酸烯丙酯(西格玛, 234931)与1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)混合均匀得到溶液4。
b)向一块洁净玻璃片上滴加溶液4,盖上另一块洁净的上玻璃片,使之形成约60微米厚度的液膜,在玻璃片上方施加紫外光(365nm,2.5mW/cm 2),辐照时间为160s~170s,形成带有丙烯酸酯官能团的薄层。
c)移除上玻璃片后,用锡纸做注胶槽,然后将PDMS预聚物和固化剂(道康宁,Sylgard184)按质量比5:1混合,搅拌均匀后倾倒30g到注胶槽内,整体加热固化1小时;
d)PDMS固化后,与带有丙烯酸酯官能团的薄层紧密连接,形成弹性支撑体(实物图见说明书附图6)。
实施例5 PDMS与甲基丙烯酸烯丙酯薄层复合形成弹性支撑体:
采用与实施例4中完全相同的工艺流程,区别仅在于:步骤a)中的溶液为95%甲基丙烯酸烯丙酯(西格玛,234931)与5%光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655);步骤b)中,辐照时间不同,增加至1200s~1300s。
实施例6 PDMS与聚硅氧烷丙烯酸酯薄层复合形成弹性支撑体:
a)配制溶液:按质量百分比计,将99%的聚硅氧烷丙烯酸酯(赢创公司,TEGOMER V-Si-2250)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)混合均匀得到溶液6;
b)向一块洁净玻璃片上滴加溶液6,盖上另一块洁净的上玻璃片,使之形成60微米厚度左右的液膜,在玻璃片上方施加紫外光(365nm,2.5mW/cm 2),辐照时间为80s~90s,固化后取下一侧玻璃片,得到具有硅氧烷骨架且带有丙烯酸酯官能团的薄层;
c)将PDMS预聚物和固化剂(道康宁,Sylgard184)按10:1的比例混合,搅拌均匀后倾倒30g到注胶槽内,整体加热固化2小时;
d)将步骤b)的薄层与步骤c)的PDMS进行等离子体处理(500V,13.56MHz,45s)后封接,复合形成弹性支撑体。
实施例7 聚氨酯本体层与硫醇-烯材料薄层复合形成弹性支撑体:
a)配制溶液:按质量百分比计,将73%的四(2-巯基乙酸)季戊四醇酯(阿拉丁,P160529)、26%的1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮(阿拉丁,T123406)、1%的光引发剂2,4,6-三甲基苯甲酰基苯基膦酸乙酯(阿拉丁,E186856)混合均匀,得到溶液8;
b)向一块洁净玻璃片上滴加溶液8,盖上热塑性聚氨酯弹性体(5mm厚),形成60微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为100s~120s;
c)硫醇-烯材料固化后与聚氨酯本体层通过粘性作用连接,复合形成弹性支撑体。
本实施例表明,热塑性聚氨酯弹性体与硫醇-烯类光固化材料具有良好的粘附性,可以用于制备稳定的复合弹性支撑体。进一步的实验还发现,聚氨酯弹性体与很多光固化材料如双酚A乙氧基化物二丙烯酸酯(西格玛,413550)、丙烯酸-4-羟基丁酯(西格玛,275573)、聚氨酯丙烯酸酯(长兴材料公司,6115J-80)等,都具有良好的粘附性,因而也可以直接作为弹性支撑体。
光固化微流控芯片加工:
实施例8 双酚A乙氧基化物二丙烯酸酯光固化微流控芯片加工:
a)模具加工:在洁净的单晶硅片上面旋涂光胶(Microchem,SU-83050),厚度为50μm;经前烘后,将掩膜(通道结构见说明书附图5中a图)置于涂有光胶的硅片上,并在紫外光刻机上曝光;显影,去除多余光刻胶,得到带有光胶图案的模具。
b)光固化原料配制:按质量百分比计,将99%的双酚A乙氧基化物二丙烯酸酯(西格玛,413550)与1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例4制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为40s~80s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:将固化后的通道结构层从模具上揭下,使用打孔器在进出样口位置打通孔。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~70s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:将通道结构层与基底层对齐,按压除气泡,施加紫外光(365nm,2.5mW/cm2),辐照时间为150s~200s,使基底层与通道结构层封接,形成完整的光固化微流控芯片(实物图见说明书附图7中a图)。
实施例8的通道结构层加工用时90s,一个模具上有4个芯片图案,即该光固化微流控芯片制备方法的通道结构层加工速率可达到25s/片,因此,这种基于弹性支撑体的光固化微流控芯片加工方法具备良好的批量化生产潜力。
实施例9 三羟甲基丙烷三丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例9中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的三羟甲基丙烷三丙烯酸酯(西格玛,246808)与1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例3制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为30s~50s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为20s~30s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8中步骤f)完全相同。
实施例10 1,10-癸二醇二丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的1,10-癸二醇二丙烯酸酯(阿拉丁,B152190)与1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例2制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~70s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为30s~50s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8步骤f)完全相同。
实施例11 2-丙烯酸-(2-羟基-1,3-亚丙基)二[氧基(2-羟基-3,1-亚丙基)]酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的2-丙烯酸-(2-羟基-1,3-亚丙基)二[氧基(2-羟基-3,1-亚丙基)]酯(西格玛,475807)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例5制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为90s~110s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为70s~90s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8中步骤f)完全相同。
实施例8~11表明,本方法可以利用含光固化官能团的单体成功制备光固化微流控芯片。
实施例12 聚(乙二醇)二丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的聚(乙二醇)二丙烯酸酯(西格玛,475629)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例7制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~70s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为20s~40s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8中步骤f)完全相同。
实施例13 全氟聚醚丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的全氟聚醚丙烯酸酯(FLUOROLINK公司,MD 700)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例1制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为120s~140s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm, 2.5mW/cm 2),辐照时间为90s~100s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8中步骤f)类似,区别仅在于,封接在氮气环境中进行。
实施例14 聚硅氧烷丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的聚硅氧烷丙烯酸酯(赢创公司,TEGOMER V-Si-2250)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例6制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为80s~90s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~60s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:将通道结构层与基底层进行等离子体处理(条件?)后对齐,按压除气泡,使基底层与通道结构层封接,形成完整的光固化微流控芯片。
实施例15 聚氨酯丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的聚氨酯丙烯酸酯(长兴材料公司,6115J-80)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖实施例4制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为180s~200s,使光固化原料固化成含通道结构的光固化层,并 与弹性支撑体通过共价结合连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为100s~120s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:将通道结构层与基底层对齐,按压除气泡,100℃加热2小时后,使基底层与通道结构层封接,形成完整的光固化微流控芯片。
实施例12~15表明,本方法可以利用含光固化官能团的聚合物成功制备光固化微流控芯片。
实施例16 聚氨酯丙烯酸酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的聚氨酯丙烯酸酯(长兴材料公司,6115J-80)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,加盖热塑性聚氨酯弹性体薄板,施加紫外光(365nm,2.5mW/cm 2),辐照时间为180s~200s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过粘附作用连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为100s~120s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:将通道结构层与基底层对齐,按压除气泡,100℃加热2小时后,使基底层与通道结构层封接,形成完整的光固化微流控芯片。
本实施例表明,可以利用与光固化材料具有良好粘附性的本体层直接作为弹性支撑体,按图3中的方法A加工通道结构层,按图4中的方案A制备光固化微流控芯片。
实施例17 新戊基二醇丙氧杂酸二丙烯酸光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的新戊基二醇丙氧杂酸二丙烯酸(西格玛,412147)和1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)弹性支撑体制备:在热塑性聚氨酯弹性体薄板表面平整粘贴双面胶(3M,OCA光学双面胶),复合形成弹性支撑体。
d)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,并平整铺在模具图案上,施加紫外光(365nm,2.5mW/cm 2),辐照时间为40s~60s,使光固化原料固化成含通道结构的光固化层,然后加盖步骤c)制备的弹性支撑体,与光固化层通过粘附作用连接,形成通道结构层。
e)通道结构层打孔:与实施例8中步骤d)完全相同。
f)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~70s,揭开其中一块玻璃片,露出基底层。
g)芯片封接:与实施例8中步骤f)完全相同。
本实施例表明,可以利用与光固化材料具有良好粘附性的复合弹性支撑体,按图3中的方法B加工通道结构层,按图4中的方案A制备光固化微流控芯片。
实施例18 丙烯酸异冰片酯光固化微流控芯片加工:
a)模具加工:与实施例8中步骤a)完全相同。
b)光固化原料配制:按质量百分比计,将99%的丙烯酸异冰片酯(西格玛,392103)、1%的光引发剂2,4,6-三甲基苯甲酰基苯基膦酸乙酯(阿拉丁,E186856)均匀混合;
c)通道结构层加工:将步骤b)配制的光固化原料滴在SU-8模具上,并平整铺在模具图案上,施加紫外光(365nm,2.5mW/cm 2),辐照时间为60s~80s,使光固化原料固化成含通道结构的光固化层,然后用锡纸做注胶槽,倾倒30g液态弹性胶水(台湾永固化学工业股份有限公司,紫外UV胶水8051)在光固化层上,再次施加紫外光(365nm,2.5mW/cm 2),辐照时间为340s~360s,使得光固化层与弹性胶水连接,形成通道结构层。
d)通道结构层打孔:与实施例8中步骤d)完全相同。
e)基底层加工:将步骤b)配制的光固化原料滴在两块洁净的玻璃片之间,形成100微米厚度左右的无气泡液层,施加紫外光(365nm,2.5mW/cm 2),辐照时间为50s~70s,揭开其中一块玻璃片,露出基底层。
f)芯片封接:与实施例8中步骤f)完全相同。
本实施例表明,可以利用液态弹性支撑体前驱体材料,按图3中的方法C加工通道结构层,按图4中的方案A制备光固化微流控芯片。
实施例19 聚氨酯丙烯酸酯三维结构光固化微流控芯片加工:
a)模具加工:模具加工步骤与实施例8中步骤a)完全相同,利用的掩膜分别如附图5中的b图和c图,得到两种不同图案的模具,分别记为模具Ⅰ和模具Ⅱ。
b)光固化原料配制:按质量百分比计,将99%的聚氨酯丙烯酸酯(长兴材料公司,6115J-80)与1%的光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)均匀混合;
c)通道结构层Ⅰ加工:将步骤b)配制的光固化原料滴在SU-8模具Ⅰ上,加盖实施例4制备的弹性支撑体,施加紫外光(365nm,2.5mW/cm 2),辐照时间为180s~200s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层Ⅰ。
d)通道结构层Ⅰ打孔:将固化后的通道结构层从模具上揭下,使用打孔器在进出样口位置打通孔。
e)通道结构层Ⅱ加工:将步骤b)配制的光固化原料滴在SU-8模具Ⅱ上,加盖实施例4制备的弹性支撑体,施加紫外光(365nm,2.5 mW/cm 2),辐照时间为180s~200s,使光固化原料固化成含通道结构的光固化层,并与弹性支撑体通过共价结合连接,形成通道结构层Ⅱ。
f)芯片封接:将通道结构层Ⅰ与通道结构层Ⅱ对齐,按压除气泡,施加紫外光(365nm,2.5mW/cm2),辐照时间为150s~200s,使通道结构层Ⅰ与通道结构层Ⅱ封接,形成完整的光固化微流控芯片(实物图见说明书附图7中b图)。
本实施例表明,可以将上、下两个通道结构层封接,按图4中的方案B制备具有三维通道结构的光固化微流控芯片。
应用例1 利用本发明制备的光固化微流控芯片进行液滴生成实验
1、利用实施例8制备的双酚A乙氧基化物二丙烯酸酯光固化微流控芯片,呈疏水性,以97%矿物油(西格玛,M5904)和3%表面活性剂(ABIL,EM90)作为连续相,以含有8mg/mL食用色素(狮头牌)的去离子水溶液作为分散相,设置连续相流速为300μL/h,分散相流速为10μL/h。
图8为以实施例8制备的光固化微流控芯片生成的油包水液滴阵列图,观察该图可以发现,芯片内生成的油包水液滴均一、稳定性佳,直径约为115μm。
2、利用实施例11制备的2-丙烯酸-(2-羟基-1,3-亚丙基)二[氧基(2-羟基-3,1-亚丙基)]酯光固化微流控芯片,呈亲水性,以2%TWEEN-80(生工,TT1817)、0.8%食用色素(狮头牌)、97.2%去离子水作为连续相,以硅油(道康宁,5cst)作为分散相,设置连续相流速为300μL/h,分散相流速为10μL/h。
图9为利用实施例11制备的光固化微流控芯片生成的水包油液滴;观察图9可以看到芯片内生成的水包油液滴均一、稳定性佳,直径约为115μm。
3、利用实施例12制备的聚(乙二醇)二丙烯酸酯光固化微流控芯片,以97%矿物油(西格玛,M5904)和3%表面活性剂(ABIL,EM90)作为连续相,以含有8mg/mL食用色素(狮头牌)的去离子水溶液作为分散相,设置连续相流速为300μL/h,分散相流速为10μL/h。
图10中a为实施例12制备的光固化微流控芯片在液滴生产区处的显微镜照片,观察发现,该光固化芯片不能生成油包水液滴。
对该光固化微流控芯片的通道表面进行疏水性处理,具体为首先向芯片通道内连续通入含有49.5%的丙烯酸丁酯(迈瑞尔,M06236)和0.5%光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)的乙醇溶液,流速为150μL/h,然后对芯片进行紫外光照(365nm,2.5mW/cm 2),时间为180s,再通入乙醇,冲走残留的疏水性修饰试剂即可。
图10中c为实施例12制备的光固化微流控芯片经过疏水性表面修饰后在液滴生成区生成油包水液滴的显微镜图;观察发现,经过UV光照表面改性后该芯片通道表面明显表现为疏水性,可以稳定生成油包水液滴。
4、利用实施例12制备的聚(乙二醇)二丙烯酸酯光固化微流控芯片,以2%TWEEN-80(生工,TT1817)、0.8%食用色素(狮头牌)、97.2%去离子水作为连续相,以硅油(道康宁,5cst)作为分散相,设置连续相流速为300μL/h,分散相流速为10μL/h。
图10中b为实施例12所制备的光固化微流控芯片在液滴生产区处的显微镜照片,观察发现,该光固化芯片不能生成水包油液滴。
对该光固化微流控芯片的通道表面进行亲水性修饰:向芯片通道内连续通入含有9.9%丙烯酸(阿拉丁,147230)、0.1%光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655)的水溶液,流速为300μL/h,然后进行紫外光照(365nm,2.5mW/cm 2),时间为320s,再通入去离子水,冲走残留的亲水性修饰试剂即可。
图10中d为实施例12制备的光固化微流控芯片经过亲水性表面修饰后在液滴生成区生成水包油液滴的显微镜图,观察发现,经过UV光照表面改性后该芯片通道表面明显表现为亲水性,可以稳定生成水包油液滴。
应用例2 利用本发明制备的光固化微流控芯片进行原位光固化微结构实验
首先,配制光固化溶液,按质量百分比计,包括35%聚氨酯丙烯酸 酯(长兴材料公司,6115J-80)、64.5%丙烯酸异冰片酯(西格玛,392103)、0.5%光引发剂2-羟基-2-甲基-1-苯基-1-丙酮(西格玛,405655);
其次,将配制好的光固化溶液,通入实施例15制备的光固化微流控芯片内充满腔室和通道,然后将绘制好的图案掩膜置于腔室上方,准备UV照射;在UV曝光过程中保持芯片与掩膜位置不变,设置UV紫外波长为365nm,曝光功率为4mW/cm 2,时间为3s,得到与掩膜图案一致的光固化微结构。
图11为在实施例15制备的光固化微流控芯片中进行原位光固化的掩膜图及对应的微结构效果图。图中,a为绘制的掩膜图,白色为透光部分,是一组直径20微米的圆形阵列;b为固化出来的微结构效果图,可以看到,固化出来的圆形图案阵列与掩膜绘制的图案一致,测量圆形尺寸均为20微米。由于光固化芯片表面具有大量的光固化官能团,因而所形成的微结构可以与之共价连接,形成稳定的微柱结构。
以上是本发明的优选案例,并不能因此而理解为对本发明的限制。对于本技术领域的技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (10)

  1. 一种基于弹性支撑体的光固化微流控芯片,包括通道结构层和用于封接所述通道结构层的封接层,其特征在于:
    所述通道结构层包含含通道结构的光固化层和用于支撑所述光固化层的弹性支撑体;
    所述弹性支撑体与所述光固化层之间通过共价结合或粘附作用连接;
    所述含通道结构的光固化层由光固化原料覆盖于模具之上通过光辐照后固化形成,所述光固化原料包括含光固化官能团的单体和/或含光固化官能团的低聚物,所述光固化官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、乙烯基醚官能团、环氧基官能团中的一种或多种;
    所述弹性支撑体包括本体层和选择性增加的连接层;
    所述本体层的材质选自聚二甲基硅氧烷、聚氨酯丙烯酸酯、聚氨酯甲基丙烯酸酯、热塑性聚氨酯弹性体、热塑性聚烯烃弹性体、热塑性聚酯弹性体、热塑性聚苯乙烯弹性体、硫醇-烯聚合物中的一种或多种;
    所述封接层选自基底或另一所述通道结构层。
  2. 根据权利要求1所述的基于弹性支撑体的光固化微流控芯片,其特征在于:
    所述光固化层的厚度选自30~300μm;
    所述弹性支撑体的厚度选自1~6mm。
  3. 根据权利要求1所述的基于弹性支撑体的光固化微流控芯片,其特征在于:
    所述连接层,按重量百分比计,原料组成包括:
    光固化试剂          0.0~99.5%;
    交联剂              0.0~99.5%;
    光聚合引发剂         0.5~5.0%;
    所述光固化试剂与所述交联剂不同时为0,但保证三者的总重量为 100%;
    所述光固化试剂选自含光固化官能团的单体和/或含光固化官能团的低聚物,所述光固化官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、乙烯基醚官能团、环氧基官能团中的一种或多种;
    所述交联剂选自包含两种以上反应官能团的试剂;所述反应官能团选自丙烯酸酯官能团、甲基丙烯酸酯官能团、巯基官能团、烯基官能团、环氧基官能团或氨基官能团;
    所述光聚合引发剂选自苯偶酰类化合物、烷基苯酮类化合物、酰基磷氧化物中的一种或多种;
    或者,所述连接层为与所述本体层及所述光固化层具有良好粘附性的胶水薄层或双面胶薄层。
  4. 根据权利要求1或3所述的基于弹性支撑体的光固化微流控芯片,其特征在于:
    所述含光固化官能团的单体选自双酚A乙氧酸二丙烯酸、双酚A丙三醇双甲基丙烯酸酯、双酚A甘油二丙烯酸、双酚A二甲基丙烯酸酯、丙烯酸异冰片酯、新戊基二醇丙氧杂酸二丙烯酸、三环癸烷二甲醇丙烯酸酯、甲基丙烯酸硬脂酸酯、三羟甲基丙烷三丙烯酸酯、丙氧基化三羟甲基丙烷三丙烯酸酯、乙氧基化三羟甲基丙烷三丙烯酸酯、1,6-己二醇二丙烯酸酯、1,10-癸二醇二丙烯酸酯、1H,1H,2H,2H-全氟癸基丙烯酸酯、2-(全氟辛基)乙基甲基丙烯酸酯、甘油1,3-二甘油醇酸二丙烯酸酯、丙烯酸-4-羟基丁酯、乙二醇二甲基丙烯酸酯、三[2-(3-巯基丙酸基)乙基]异氰尿酸酯、三羟甲基丙烷三(3-巯基丙酸酯)、四(2-巯基乙酸)季戊四醇酯、1,3,5-三烯丙基-1,3,5-三嗪-2,4,6(1H,3H,5H)-三酮、三羟甲基丙烷二烯丙基醚、双酚A二缩水甘油醚中的一种或多种;
    所述含光固化官能团的低聚物选自聚氨酯丙烯酸酯低聚物、聚硅氧烷丙烯酸酯低聚物、全氟聚醚丙烯酸酯低聚物、聚乙二醇丙烯酸酯低聚物、环氧丙烯酸酯低聚物、聚酯丙烯酸酯低聚物、聚醚丙烯酸酯低聚物、聚氨酯甲基丙烯酸酯低聚物、聚硅氧烷甲基丙烯酸酯低聚物、全氟聚醚甲基丙烯酸酯低聚物、聚乙二醇甲基丙烯酸酯低聚物、环氧甲基丙 烯酸酯低聚物、聚酯甲基丙烯酸酯低聚物、聚醚甲基丙烯酸酯低聚物、巯基聚硅氧烷低聚物、巯基聚氨酯低聚物、巯基全氟聚醚低聚物、巯基聚酯低聚物、巯基聚醚低聚物、烯基聚硅氧烷低聚物、烯基聚氨酯低聚物、烯基全氟聚醚低聚物、烯基聚酯低聚物、烯基聚醚低聚物、环氧基聚硅氧烷低聚物、环氧基聚氨酯低聚物、环氧基全氟聚醚低聚物、环氧基聚酯低聚物、环氧基聚醚低聚物中的一种或多种。
  5. 根据权利要求1所述的基于弹性支撑体的光固化微流控芯片,其特征在于:
    所述光固化原料中还包括光引发剂,选自苯偶酰类化合物、烷基苯酮类化合物、酰基磷氧化物中的一种或多种。
  6. 根据权利要求1所述的基于弹性支撑体的光固化微流控芯片,其特征在于:
    所述弹性支撑体与所述光固化层之间还选择性设有功能层;
    所述通道结构层与所述封接层之间还选择性设有中间层。
  7. 一种根据权利要求1~6任一权利要求所述的基于弹性支撑体的光固化微流控芯片的制备工艺,其特征在于,包括模具加工、光固化原料配制、通道结构层加工和芯片封接,所述通道结构层加工按如下方法之一加工:
    A)将光固化原料覆盖于模具之上,加盖弹性支撑体,然后在光辐照下使光固化原料固化成含通道结构的光固化层,并与弹性支撑体连接,形成所述通道结构层;
    B)将光固化原料覆盖于模具之上,先在光辐照下使光固化原料固化成含通道结构的光固化层,再加盖弹性支撑体,使其与光固化层连接,形成所述通道结构层;
    C)将光固化原料覆盖于模具之上,先在光辐照下使光固化原料固化成含通道结构的光固化层,再覆盖液态弹性支撑体前驱体材料,使其固化后与所述光固化层相连接,形成所述通道结构层;
    D)将光固化原料覆盖于弹性支撑体表面,再将模具置于所述光固化原料之上,然后在光辐照下使所述光固化原料固化成含通道结构的光固化层,并与弹性支撑体连接,形成所述通道结构层。
  8. 根据权利要求7所述的基于弹性支撑体的光固化微流控芯片的制备工艺,其特征在于:
    所述弹性支撑体仅包括本体层时,所述弹性支撑体的制备按如下方法之一加工:
    a)将用于制备所述本体层的单体或低聚物与光引发剂混合均匀,经固化成型制备得到;
    b)将用于制备所述本体层的预聚物与固化剂混合均匀,经固化成型后再经表面处理修饰上光固化官能团;
    所述弹性支撑体包括本体层和连接层时,所述弹性支撑体的制备按如下方法之一加工:
    c)将所述连接层的各原料混合后置于基板上,先在光辐照下使其固化得到连接层,再将用于制备所述本体层的预聚物与固化剂混合均匀后置于所述连接层上,再经整体固化后制备得到;
    d)将所述连接层覆盖在本体层上,通过连接层与本体层的粘附或者共价结合作用得到。
  9. 根据权利要求7所述的基于弹性支撑体的光固化微流控芯片的制备工艺,其特征在于:
    所述液态弹性支撑体前驱体材料选自聚氨酯丙烯酸酯低聚物、聚氨酯甲基丙烯酸酯低聚物、硫醇烯聚合物、环氧树脂AB胶中的一种或多种。
  10. 一种根据权利要求1~6任一权利要求所述的基于弹性支撑体的光固化微流控芯片在液滴微流控、表面改性或原位光固化微结构领域中的应用。
PCT/CN2022/072898 2021-02-05 2022-01-20 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用 WO2022166600A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110161473.XA CN112892627B (zh) 2021-02-05 2021-02-05 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用
CN202110161473.X 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022166600A1 true WO2022166600A1 (zh) 2022-08-11

Family

ID=76124154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072898 WO2022166600A1 (zh) 2021-02-05 2022-01-20 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112892627B (zh)
WO (1) WO2022166600A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892627B (zh) * 2021-02-05 2022-04-05 浙江大学 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用
CN113318798B (zh) * 2021-06-09 2022-10-25 浙江大学 一种用于液滴无损失捕获的微柱阵列微流控芯片及其制备方法和应用
CN114887673B (zh) * 2022-04-26 2023-06-09 浙江大学 一种集成流道数字微流控芯片及其制备方法和应用
WO2023216229A1 (zh) * 2022-05-13 2023-11-16 深圳先进技术研究院 微流控芯片及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128929A1 (en) * 2004-12-23 2008-06-05 Pirelli & C. S. P.A Method for Manufacturing Optical Devices
TW201100263A (en) * 2009-06-23 2011-01-01 Hon Hai Prec Ind Co Ltd Nano-imprint stemplate and mthod for manufacturing the same
US20160089672A1 (en) * 2014-09-29 2016-03-31 E I Du Pont De Nemours And Company Microfluidic device and a method for preparing the microfluidic device from a photosensitive element
CN112892627A (zh) * 2021-02-05 2021-06-04 浙江大学 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1307486C (zh) * 2004-12-20 2007-03-28 西安交通大学 聚二甲基硅氧烷微流控芯片复型光固化树脂模具制作方法
CN101512646B (zh) * 2006-09-14 2011-06-15 株式会社普利司通 光固化性转印片、使用该转印片制备光信息记录介质的方法和光信息记录介质
WO2010059351A2 (en) * 2008-10-30 2010-05-27 University Of Washington Substrate for manufacturing disposable microfluidic devices
CN102166537B (zh) * 2011-01-30 2013-05-01 南京大学 一种亲水、多功能集成、易于光学检测的微流控芯片及其制法和用途
CN103145089A (zh) * 2012-10-01 2013-06-12 合肥工业大学 逆向热键合技术制作尺寸可控的微纳米流体系统
CN102921480B (zh) * 2012-10-26 2014-10-01 北京理工大学 一种利用紫外固化光胶制作微流控芯片的方法
CN103279009B (zh) * 2013-06-14 2015-09-30 中国科学院光电技术研究所 一种柔性紫外光压印复合模板及其制备方法
US9180652B2 (en) * 2013-09-16 2015-11-10 Fluxergy, Llc Microfluidic chips with optically transparent glue coating and a method of manufacturing microfluidic chips with optically transparent glue coating for a microfluidic device
US20160238929A1 (en) * 2013-10-01 2016-08-18 Covestro Deutschland Ag Uv-patternable hard-coating for transparent conductive film
WO2016006190A1 (en) * 2014-07-08 2016-01-14 Canon Kabushiki Kaisha Adhesion layer composition, method for forming film by nanoimprinting, methods for manufacturing optical component, circuit board and electronic apparatus
CN105711017B (zh) * 2016-02-17 2018-10-16 复旦大学 一种基于水凝胶3d打印的聚合物微流控芯片制备方法
CN107583692B (zh) * 2017-05-23 2022-11-11 深圳市博瑞生物科技有限公司 液滴微流控芯片及其制备方法
CN109797096B (zh) * 2019-01-25 2024-03-12 中国科学院苏州生物医学工程技术研究所 数字pcr芯片及其制备方法、制备装置、使用方法
CN111635487B (zh) * 2020-05-01 2021-05-04 浙江大学 用于制备光固化液滴阵列芯片的光固化油相及光固化液滴阵列芯片的制备方法、产品和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128929A1 (en) * 2004-12-23 2008-06-05 Pirelli & C. S. P.A Method for Manufacturing Optical Devices
TW201100263A (en) * 2009-06-23 2011-01-01 Hon Hai Prec Ind Co Ltd Nano-imprint stemplate and mthod for manufacturing the same
US20160089672A1 (en) * 2014-09-29 2016-03-31 E I Du Pont De Nemours And Company Microfluidic device and a method for preparing the microfluidic device from a photosensitive element
CN112892627A (zh) * 2021-02-05 2021-06-04 浙江大学 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用

Also Published As

Publication number Publication date
CN112892627B (zh) 2022-04-05
CN112892627A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2022166600A1 (zh) 一种基于弹性支撑体的光固化微流控芯片及其制备方法和应用
Chan-Park et al. Fabrication of high aspect ratio poly (ethylene glycol)-containing microstructures by UV embossing
US9744715B2 (en) Method for producing patterned materials
KR100739515B1 (ko) 적층 구조를 가지는 마이크로디바이스 및 그 제조 방법
Choi et al. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photofluidization of azobenzene materials
Choi et al. Modulus-and surface energy-tunable ultraviolet-curable polyurethane acrylate: properties and applications
Suh et al. Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering
Khoury et al. Ultra rapid prototyping of microfluidic systems using liquid phase photopolymerization
JP5292621B2 (ja) ナノインプリント用樹脂製モールド
Roy et al. Prototyping of microfluidic systems using a commercial thermoplastic elastomer
JP3777112B2 (ja) マイクロ流体デバイス及びその製造方法
CN101799626A (zh) 用于改性聚合物膜表面相互作用的工艺和方法
WO2004009489A2 (en) Fabrication of 3d photopolymeric devices
US20060237080A1 (en) Patterned surfaces and polymeric microstructures within robust microfluidic channels
JP5877786B2 (ja) 光硬化型含フッ素樹脂組成物およびこれを用いた樹脂モールドの製造方法
Chan-Park et al. Ultraviolet embossing for patterning high aspect ratio polymeric microstructures
JP2002086399A (ja) 積層構造を有するマイクロデバイス及びその製造方法
JP2003136500A (ja) 樹脂ダイヤフラムを有するマイクロ流体デバイスの製造方法
JP2016192519A (ja) レプリカモールドおよびその製造方法
JP4714805B2 (ja) マイクロチップ
US20210387182A1 (en) Reversible microfluidic chip
JP4307771B2 (ja) マイクロ流体デバイスの製造方法
Li 3D Printed Microfluidic Devices for Controlled Biomaterial Fabrication
Pardon et al. Surface energy micropattern inheritance from mold to replica
CN117970746A (zh) 一种用于图案化薄膜制备的组合物、图案化基底及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748879

Country of ref document: EP

Kind code of ref document: A1